<table>
<thead>
<tr>
<th>Title</th>
<th>Solid-state bonding using Ag nanoporous sheet for high temperature die attach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kim, Minsu</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/59583</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/59583</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Doctoral Dissertation

Solid-state bonding using Ag nanoporous sheet for high temperature die attach

Min-Su Kim

April 2016

Graduate School of Engineering
Osaka University
Supervisor

Assoc. Prof. Hiroshi Nishikawa, Ph. D.
Department of Smart Green Processing, Joining and Welding Research Institute
Osaka University

Doctoral Committee

Assoc. Prof. Hiroshi Nishikawa, Ph. D.
Department of Smart Green Processing, Joining and Welding Research Institute
Osaka University

Prof. Shinsuke Yamanaka, Ph. D.
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering
Osaka University

Prof. Michihiko Ike, Ph. D.
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering
Osaka University

Prof. Akio Hirose, Ph. D.
Division of Materials and Manufacturing Science, Graduate School of Engineering
Osaka University
Contents

Chapter 1 Research background 1

1.1 Recent trend in power electronics 1

1.1.1 Applications of power electronics 1

1.1.2 Wide bandgap semiconductor for next generation power electronics 2

1.1.3 Power electronics in electric powered vehicle 4

1.2 Immersion technology for power electronics packaging materials 6

1.2.1 Wire bonding interconnections 7

1.2.2 Die/substrate attach 8

1.2.3 Ceramic substrate with Cu metallization 9

1.3 High temperature die attach 10

1.3.1 Current situation of environmental regulation in high temperature electronics .. 10

1.3.2 High temperature solders 12

1.3.3 Transient liquid phase bonding 14

1.3.4 Metallic nanoparticle sintering 16

1.3.5 Requirement of die shear strength 16

1.4 Research motivation 18
1.4.1 Possible problems of Ag nanoparticle sintering

1.4.2 Nanoporous structure with high specific surface area

1.4.3 Ag nanoporous structure and applying as a bonding material

1.4.4 Au nanoporous bump for low temperature interconnection

1.5 Outline of dissertation

References

Chapter 2 Fabrication of Ag nanoporous sheet by dealloying method

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Experimental</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1 Fabrication of Al-Ag precursor</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2 Fabrication of Ag nanoporous structure using dealloying method</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3 Characterization methods</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Microstructural characteristics of Al-Ag precursor alloy</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1 Bi-phase Al-Ag precursor</td>
<td>34</td>
</tr>
<tr>
<td>2.3.2 Phase separation of Ag and Al in α-Al(Ag) phase</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3 Growth of plate-shaped γ-Ag$_2$Al precipitate</td>
<td>38</td>
</tr>
<tr>
<td>2.4 Dealloying behavior of Al-Ag precursor in the HCl solution</td>
<td>40</td>
</tr>
<tr>
<td>2.4.1 Change of phase constitution during the dealloying</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2 Morphology change during the dealloying</td>
<td>41</td>
</tr>
<tr>
<td>2.4.3 Intergranular corrosion induced by Ag depletion at the grain boundary</td>
<td>42</td>
</tr>
<tr>
<td>2.4.4 Development of porosity from α-Al and γ-Ag$_2$Al phases</td>
<td>45</td>
</tr>
<tr>
<td>2.4.5 Ligament coarsening and assessment of surface diffusivity of Ag</td>
<td>48</td>
</tr>
<tr>
<td>2.5 Overall description on the dealloying behavior of bi-phase Al-Ag</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Conclusion</td>
<td>52</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

Chapter 3 Solid-state thermo-compression bonding using Ag nanoporous sheet

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Experimental</td>
<td>58</td>
</tr>
</tbody>
</table>
3.2.1 Preparation of Ag nanoporous sheet .. 58
3.2.2 Ag nanoporous bonding process ... 58
3.2.3 Characterization methods ... 61
3.3 Joint formation of Ag nanoporous bonding 61
 3.3.1 Microstructural characteristics of Ag layer 61
 3.3.2 Interfacial reaction between Ag nanoporous sheet and ENIG surface finish ... 63
3.4 Effect of bonding temperature on shear strength and microstructure of Ag nanoporous bonding joint .. 67
 3.4.1 Shear strength of Ag nanoporous bonding joint 67
 3.4.2 Microstructural characteristics of Ag nanoporous bonding joint 68
3.5 Effects of bonding temperature and atmosphere on the fracture mode 70
 3.5.1 Image analysis of fracture mode .. 70
 3.5.2 Fracture morphology of Ag fractured region 74
 3.5.3 Ni oxidation of Au delamination region 74
3.6 Conclusion ... 78
References .. 78

Chapter 4 Microstructure evolution of Ag nanoporous bonding joint during thermal storage ... 83
4.1 Introduction .. 83
4.2. Experimental .. 84
 4.1.1 Preparation of Ag nanoporous sheet 84
 4.1.2 Ag nanoporous bonding and thermal storage test 84
 4.1.3 Characterization methods .. 84
4.3 Metallic bonding at the Ag NPB with bare Cu and ENIG finished Cu substrates .. 85
 4.3.1 Lattice structure at the Ag/Cu interface 85
 4.3.2 Epitaxial interface between Ag and Au 88
4.4 Thermal degradation of Ag NPB joint ... 89
 4.4.1 Change of Ag NPB joint shear strength during thermal storage 89
4.4.2 Macroscopic element distribution at the fracture surface

4.4.3 Morphology of fracture surface

4.5 Interfacial reaction and microstructure evolution at the interface

4.5.1 Interfacial reaction at the Ag/Cu interface

4.5.2 Oxidation of Cu surface

4.5.3 Interfacial reaction at the Ag/ENIG interface

4.5.4 Formation of NiO and Ni\textsubscript{3}P at the Au/Ni interface

4.5.5 Comparison of oxidation behavior between Cu and ENIG finish

4.6 Microstructure evolution at the Ag/Cu and Ag/ENIG interfaces

4.7 Conclusion

References

Chapter 5 Reliability of Ag nanoporous die attach under temperature cycling

5.1 Introduction

5.2 Experimental

5.2.1 Ag nanoporous bonding process

5.2.2 Temperature cycling test

5.2.3 Characterization methods

5.3 Stability of Ag nanoporous bonding layer after temperature cycling

5.3.1 Non-destructive inspection on the Si wafer and Ag layer

5.3.2 Shear strength of Ag NPB and fracture mode after temperature cycling

5.4 Fracture behavior of Ag NPB after temperature cycling test

5.4.1 Macroscopic element distribution in the fracture surface

5.4.2 Stability of Ag layer after temperature cycling

5.4.3 Fracture morphology of Ag layer and metallization fractured region

5.5 Comparison of shear strength variation after temperature cycling

5.5.1 Comparison with high temperature solder joints

5.5.2 Comparison with Ag nanoparticle sintered joints

5.6 Conclusion

References
Chapter 6 Summary ... 135

6.1 Summary ... 135
6.2 Environmental assessment of Ag nanoporous bonding 137
 6.2.1 Fabrication process of bonding materials 137
 6.2.2 Comparative consideration on environmental assessment of bonding materials ... 139
6.3 Future work ... 139
 6.3.1 Improvement of bonding process for practical use 139
 6.3.2 Large-area bonding .. 140
 6.3.3 Surface finish selection for high reliability 140
 6.3.4 Reliability assessment under temperature cycling and power cycling 141
References .. 141

Appendix 1 In-situ lift-out method for TEM sample preparation using FIB/SEM 143
 A1.1 TEM analysis and sample preparation 143
 A1.2 Procedures of in-situ lift-out method 144
References .. 147

Appendix 2 Fourier mask filtering of HRTEM image 149
 A2.1 Relationship between HRTEM image and corresponding FFT pattern 149
 A2.2 Fourier mask filtering and its practical use 149
References .. 152

Research achievements .. 153
Acknowledgment ... 159
List of figures

Figure 1.1 Various applications of power electronics ... 2

Figure 1.2 Radar charts of (a) system level requirements and (b) component level requirements for low voltage DC-DC converter in telecommunication and in automotive applications ... 3

Figure 1.3 (a) Theoretical operation limits of Si, SiC, GaN and diamond semiconductor at the optimal structure and (b) the safe operating temperature of Si semiconductor, where the case limit corresponds to maximum operating temperature regulated by the packaging materials (such as solder, molding compound and silicon gel) and the silicon limit corresponds to breakdown voltage of Si as a function of junction temperature 3

Figure 1.4 Developments and power flow in electric vehicle (EV), plug-in hybrid vehicle (PHV) and fuel cell vehicle (FCV) from hybrid vehicle (HV) technology 5

Figure 1.5 A role of power semiconductor in the power control unit 5

Figure 1.6 IGBT power module, EconoDUAL™ 3 of Infineon 5

Figure 1.7 Schematic diagram of typical structure of IGBT power module (not to scale) 6

Figure 1.8 Typical failure locations under cyclic thermo-mechanical loading in IGBT module packaging: (a) solder joint for the die/substrate attach, (b) wire bonding and (c) substrate ... 6

Figure 1.9 Al ribbon bonding: (a) bonding tool and (b) cross-sectional SEM image of Al ribbon bonding with ENIG substrate ... 6

Figure 1.10 Appearance of Cu wire bonding and (b) cross-sectional SEM image of Cu wire bonding ... 8

Figure 1.11 Cross-sectional SEM images of (a) Zn-Sn high temperature solder, (b) transient liquid phase bonding of Cu/Sn/Cu system and (c) Ag flake-shape particle sintering 9

Figure 1.12 Appearances of (a) Si₃N₄ active metal brazed substrate after 600 cycles and (b) Al₂O₃
direct bond copper substrate after 100 cycles exposed to temperature cycle from −55 °C to 250 °C ... 9

Figure 1.13 Schematic diagram of (a) bonding temperature profile of transient liquid phase bonding and (b) joint formation by partial melting and diffusion of interlayer element and subsequent formation of intermetallic compound 14

Figure 1.14 Schematic diagrams of (a) reflow solder joint Sn solder with Cu metallization and (b) Cu/Sn/Cu transient liquid phase bonding joint (not to scale) 15

Figure 1.15 SEM images of TLP bonding joint, and growth of intermetallic compound and metallization consumption during bonding process: (a, b) Cu/Sn/Cu and (c, d) Ni/Sn/Ni systems ... 15

Figure 1.16 Ag metallo-organic nanoparticle: (a) schematic view of core-shell structure and (b) TEM BF image of Ag nanoparticles ... 17

Figure 1.17 Schematic diagram of Ag nanoparticle sintering process: (a) initial structure of Ag nanoparticles covered with capping molecules, (b) removal of capping molecules and densification of Ag nanoparticles and (c) densified Ag structure ... 17

Figure 1.18 Minimum die strength criteria defined in MIL-STD-883G (method 2019.7: Die shear strength). (a) rescaled minimum required fracture load versus die bonding area, (b) calculated minimum required shear strength from (a) ... 18

Figure 1.19 Optical microscopy images of Ag nanoparticle sintered joint using (a) aqueous base Ag nanoparticle and (b) polyol-based Ag nanoparticles, and (c) shear strength results of sintered joint with various Ag nanoparticle ... 19

Figure 1.20 SEM images of Ag nanoparticle sintered joint of (a) AgNP-20 sintered at 250 °C, (b) AgNP-20 sintered at 200 °C and (c) AgNP-30 sintered at 150 °C, and (d,e) thermal resistance of AgNP-20, AgNP-30 and AgNP-100 joint sintered at various temperatures ... 19

Figure 1.21 Schematic diagram of dealloying process sequence: (a) binary alloys precursor, (b) selective dissolution of less noble element into electrolyte and (c) dealloyed porous structure of more noble element ... 21

Figure 1.22 Ag nanoporous structure through dealloying method from Ag-Al precursor 21

Figure 1.23 Schematic diagram of thermo-compression bonding method using Ag nanoporous sheet ... 22

Figure 1.24 (a) Au nanoporous bump, (b) flip chip bonding using Au nanoporous bump with various bonding temperature and (c) possible application of Au nanoporous bump with anisotropic conductive adhesive ... 22
List of figures

Figure 2.1 (a) Equilibrium phase diagram of binary Ag-Al system, (b) miscibility gap in the eutectic α-Al + γ-Ag$_2$Al field .. 32

Figure 2.2 Schematic diagram of melt-spinning process .. 33

Figure 2.3 (a) X-ray diffraction (XRD) result of Al-Ag precursor alloy. The plane indexing indicates FCC plane and inset graph shows local XRD result of FCC (111) region. (b) The determination of lattice parameter of α-Al solid solution of Al-Ag precursor alloy to extrapolate to $\theta = 2\pi$ to reduce the systematic error 35

Figure 2.4 Electron probe micro-analyzer (EPMA) mapping result of Al-Ag precursor: (a) back-scattered electron (BSE) image, (b) Ag L line mapping and (c) Al K line mapping. Lined arrows and dotted arrows indicate boundary precipitate and Widmanstätten structure of γ-Ag$_2$Al, respectively 37

Figure 2.5 (a) Transmission electron microscopy (TEM) bright field (BF) image of melt-spun Al-Ag precursor, (b) selected area electron diffraction (SAED) pattern of vicinity of interface between α-Al(Ag) and γ-Ag$_2$Al denoted with white circle in a, (c) indexed SAED pattern, and TEM dark field (DF) images of (d) α-Al(Ag) using (311)$_{\alpha}$ spot, (e) γ-Ag$_2$Al using (10-1)$_{\gamma}$ spot and (f) α-Al(Ag) + γ-Ag$_2$Al using (311)$_{\alpha}$//(122)$_{\gamma}$ spot, where the diffraction spots used for DF images are denoted in (b) .. 37

Figure 2.6 (a) TEM BF image and corresponding SAD pattern of α-Al(Ag) region and (b) high resolution TEM (HRTEM) image and corresponding fast Fourier transform (FFT) spectrum of Al and Ag phase separated region. The separated Al and Ag show same crystallographic orientation and cohesive interface .. 39

Figure 2.7 Stacking sequences of (a) {111} layers of FCC, (b) (0001) layers of HCP and (c) stacking fault in FCC, and corresponding SAED patterns of (d) $<\overline{1}\bar{1}\overline{1}>$ direction of FCC and (e) [0001] direction of HCP and (f) formation of 1/3{422} forbidden reflection by superposition of diffraction patterns of FCC and HCP .. 39

Figure 2.8 (a) TEM BF image of vicinity plate-shaped γ-Ag$_2$Al precipitate, and HRTEM images of (b) coherent interface and (c) incoherent interface between α-Al(Ag) and γ-Ag$_2$Al .. 40

Figure 2.9 (a) The change of phase constitution, (b) the calculated lattice parameters of FCC crystal using diffraction data of (311)$_{\alpha}$ and (222)$_{\alpha}$ planes and (c) the residual Al measured by energy dispersive X-ray spectroscopy (EDS) during the dealloying reaction .. 41

Figure 2.10 SEM secondary electron (SE) images about the change of morphology during the dealloying reaction for the dealloying time of (a) 10 min, (b) 20 min, (c) 70 min and (d) 720 min .. 42
Figure 2.11 Scanning TEM (STEM) BF images, EDS mapping results of Ag and Al of (a) γ-Ag$_2$Al precipitate at the grain boundary and (b) γ-Ag$_2$Al precipitate inside the grain which are indicated white dotted area as 11a and 11b in Fig. 2.5, respectively. (c, d) Chemical compositions of Al and Ag the dotted lines in (a) and (b), where α-Al(Ag) and γ-Ag$_2$Al regions are indicated with bright grey and dark grey

Figure 2.12 Focused ion beam (FIB) milled SEM SE images of dealloyed sample for (a-c) 3 min and (d-f) 5 min. The magnified images of (b,c) denoted area in (a) and (e,f) denoted area in (d)

Figure 2.13 The schematic diagram of intergranular corrosion caused by formation of Ag-rich intermetallic phase and Ag depletion zone at the grain boundary: (a) Ag concentration around γ-Ag$_2$Al, (b) intergranular corrosion and (c) channel formation near the grain boundary

Figure 2.14 (a) Formation of Ag cluster from α-Al for 10 min, (b) development of nanoporous structure inside the sample by penetration of electrolyte along intergranular corrosion region for 15 min, and (c) channel formation along the grain boundary and Ag nanoporous structure of α-Al region for 20 min

Figure 2.15 SEM SE images on the formation of Ag cluster from γ-Ag$_2$Al for (a) 10 min, (b) 180 min, (c) 540 min, and (d) formation of pored-wall structure for 720 min

Figure 2.16 The example of ligament size measurement for Ag nanoporous structure which is dealloyed for 70 min

Figure 2.17 SEM SE images of nanoporous structure with different dealloying time: (a) 20 min, (b) 70 min, (c) 180 min, (d) 360 min, (e) 720 min and (f) change of ligament size as a function of time

Figure 2.18 Linear plotting of the radius of ligament, $r(t)$, versus the fourth root of dealloying time, $t^{1/4}$, for the calculation of surface diffusivity of Ag in HCl solution at room temperature

Figure 2.19 Schematic diagram of Al dissolution and Ag nanoporous structure formation sequence of the bi-phase Al-Ag alloy during the dealloying: (a) initial state, (b) intergranular corrosion and Ag cluster formation at the precursor/electrolyte interface, (c) formation of the 3-dimensional Ag nanoporous structure form α-Al, (d) formation of the Ag pored-wall structure from γ-Ag$_2$Al and (e) plane figure of the pored-wall structure (dotted area in d)

Figure 3.1 (a) Optical image of melt-spun Al-Ag precursor and dealloyed Ag nanoporous sheet, (b) scanning electron microscopy (SEM) secondary electron (SE) image of Ag nanoporous
structure, and (c) phase constitution of Al-Ag precursor and the dealloyed nanoporous Ag ... 59

Figure 3.2 SEM SE images and X-ray mapping results of Ag L and Al K on the dealloyed Ag nanoporous sheet (a) at 25 °C for 12 h and (b) at 75 °C for 3 h .. 59

Figure 3.3 (a) Schematic diagram of the electroless Ni/immersion Au (ENIG) finished Cu disk, (b) SEM SE image of focused ion beam (FIB) milled cross-section of ENIG finished Cu, and (c, d) transmission electron microscopy (TEM) bright field (BF) images of ENIG surface finish. Inset selected area electron diffraction (SAED) pattern in (c) indicated that Ni(P) layer is an amorphous structure ... 60

Figure 3.4 A temperature profile of Ag nanoporous bonding process .. 60

Figure 3.5 (a) SEM back-scattered electron (BSE) image, and (b) TEM BF image of nanoporous bonding joint bonded at 300 °C on air. The dotted line and broken line indicate the borderline of porous Ag layer/dense Ag layer and the interface of Ag/ENIG 62

Figure 3.6 Schematic diagrams of (a) the dense Ag/porous Ag sandwich structure by thermo-compression, and formation mechanisms of (b) the dense Ag layer and (c) the porous Ag layer ... 62

Figure 3.7 Scanning TEM (STEM) BF image and energy dispersive X-ray spectroscopy (EDS) line analysis of interface between Ag and ENIG layers of nanoporous bonding joint. The inset graph shows the atomic concentrations of Ag, Au, Ni, P, and Cu which is measured along the white dotted line. Nano-sized voids (about 5-10 nm) along the interface between Au and Ni(P) are indicated by a yellow dotted arrow, while white arrows indicate a void (about 20-50 nm) in the dense Ag layer 63

Figure 3.8 Estimated equilibrium concentration of vacancies of Au, Ag, Cu and Ni as a function of absolute temperature (300-800 K) ... 65

Figure 3.9 (a) High resolution TEM (HRTEM) image of Ag/Au interface, and fast Fourier transform (FFT) patterns of dotted region in (a) of (b) Ag and (c) Au, and (d) schematic diagram of atomic arrangement at the Ag/Au interface .. 66

Figure 3.10 Shear strength of Ag nanoporous bonding joint at the various bonding temperature and atmosphere. The dashed lines indicate the shear strength of Pb-5Sn die attach evaluated according to the Japanese Industrial Standards (JIS Z 3198-5) from the literatures for the comparison ... 67

Figure 3.11 Cross-sectional SEM BSE images of nanoporous bonding joints with the various bonding temperature of (a) 200 °C, (b) 250 °C, (c) 300 °C, (d) 350 °C and (e) 400 °C on air ... 69
Figure 3.12 (a) The variation of thickness of total, dense and porous Ag layers and (b) the measured porosity and estimated elastic modulus of porous Ag layer with the bonding temperature .. 69

Figure 3.13 (a) Schematic diagram of main fracture mode including Ag layer fracture (cohesive fracture in Ag layer), interface fracture (fracture at Ag/Au interface) and Au delamination (fracture at Au/Ni interface), and SEM images of fracture morphology of (b) Ag layer fracture, (c) interfacial fracture and (d) Au delamination. Inset diagrams in (b-d) indicate aspect of fracture and red lines indicate SEM observed surface 71

Figure 3.14 SEM SE images and results of X-ray elements mapping (Ag, Au and Ni) of fracture surfaces which are bonded at the 200, 300 and 400 °C on air. High level of Ag region indicates fracture within Ag layer. The red and green arrows indicate interface fracture and Au delamination, respectively .. 72

Figure 3.15 SEM SE images and results of X-ray elements mapping (Ag, Au and Ni) of fracture surfaces which are bonded at the 200, 300 and 400 °C in N_2 atmosphere. High level of Ag region indicates fracture within Ag layer. The red and green arrows indicate interfacial fracture and Au delamination, respectively .. 73

Figure 3.16 Area fraction of Ag layer fracture, interfacial fracture and Au delamination with various bonding conditions ... 73

Figure 3.17 SEM SE images of fracture morphology of Ag layer fractured region with the bonding temperature of (a) 200 °C, (b) 250 °C, (c) 300 °C, (d) 350 °C and (e) 400 °C on air ... 75

Figure 3.18 Magnified SEM SE image of fracture morphology of Ag layer fractured region with the bonding temperature of 300 °C on air ... 75

Figure 3.19 X-ray elements mapping of Ni and O of fracture surface of lower and upper sample which are bonded at 400 °C on air and in N_2 atmosphere ... 76

Figure 3.20 (a) X-ray photoelectron spectroscopy (XPS) survey spectrum and the core-level spectra of (b) Ni 2p_{3/2}, (c) O 1s, (d) Ag 3d_{5/2} and (e) Au 4f_{7/2} of fractured surface which is bonded at 400 °C in air. The deconvolution of multi peak core-level spectra (Ni 2p_{3/2} and O 1s) were indicated colored thin lines. The dotted data and black thick lines indicate raw data and fitting result of XPS spectra, respectively. The abbreviations of C \text{adv}, \text{met}, \text{O ads}, and \text{O def} indicate adventitious carbon, metallic, oxygen-containing adsorbates and oxygen existing at defective site, respectively ... 77

Figure 3.21 SEM SE image of fracture morphology of Au delamination region of bonded at 400 °C on air, where the ductile fracture of Ag layer fractured region and brittle fracture of Au delamination region can be confirmed ... 77
Figure 4.1 (a) Transmission electron microscopy (TEM) bright field (BF) image on the Ag/Cu interface of as-bonded Ag nanoporous bonding joint with bare Cu substrate, (b) high resolution (HR) TEM image of lattice fringe of Ag/Cu interface magnified in the box in (a), and (c) the corresponding fast Fourier transform (FFT) pattern on the (b), where lined circles indicate the patterns of Ag lattice and dotted circles indicate the patterns of Cu lattice

Figure 4.2 The FFT patterns and corresponding Fourier mask filtered inverse FFT (IFFT) images on the (a) Ag side, (b) Cu side and (c) Ag/Cu interface, which are denoted as 2a, 2b and 2c in Fig. 4.1, respectively

Figure 4.3 (a) TEM BF image on the Ag/ENIG interface of as-bonded Ag nanoporous bonding joint with ENIG finished Cu substrate, (b) high resolution (HR) TEM image of lattice fringe of Ag/Au interface magnified in the box in (a), and (c) the corresponding fast Fourier transform (FFT) pattern on the (b)

Figure 4.4 The FFT patterns and corresponding Fourier mask filtered IFFT images on the (a) Ag side, (b) Au side and (c) Ag/Ag interface, which are denoted as 4a, 4b and 4c in Fig. 4.3, respectively

Figure 4.5 Changes of shear strength of Ag nanoporous bonding joint with bare Cu and ENIG finished Cu substrates as a function of thermal storage time at 250 °C. Inset dotted lines indicate shear strength of Pb-5Sn die attach and requirement of minimum shear strength for die attach defined in US military standard (MIL-STD-883G)

Figure 4.6 Electron probe micro-analyzer (EPMA) element mapping results (Ag, Cu and O) on upper and lower surface of fractured sample of Ag nanoporous bonding joint with bare Cu substrate after thermal storage test at 250 °C: (a) as-bonded, (b) 100 h, (c) 250 h, (d) 500 h, (e) 750 h (f) 1000 h, and (g) fracture positions of Ag layer fracture, Ag/Cu interfacial fracture and Cu oxide fracture. Inset cross-circles indicate sample direction, where U and R indicate upper and right based on the lower sample, respectively. Upper and lower sample surfaces exhibit mirror plane relationship

Figure 4.7 EPMA element mapping results (Ag, Au, Ni, P and O) on upper and lower surface of fractured sample of Ag nanoporous bonding joint with ENIG finished Cu substrate after thermal storage test at 250 °C: (a) as-bonded, (b) 100 h, (c) 250 h, (d) 500 h, (e) 750 h, (f) 1000 h, and (g) fracture positions of Ag layer fracture, Ag/Au interfacial fracture and Au/Ni interfacial fracture. Inset cross-circles indicate sample direction, where U and R indicate upper and right, respectively. Upper and lower sample surfaces exhibit mirror plane relationship

Figure 4.8 The variation on the area fractions of fracture mode of Ag nanoporous bonding joint as a
function of thermal storage time with (a) bare Cu substrate and (b) ENIG finished Cu substrate ... 96

Figure 4.9 Scanning electron microscopy (SEM) secondary electron (SE) images of fracture surface of Ag nanoporous bonding joint with bare Cu substrate after thermal storage test: (a) macroscopic feature of fracture at Ag layer dominant, (b) elongated Ag porous structure and (c) partial Cu/Ag interfacial fracture, of as-bonded Ag NPB joint surface; (d) macroscopic feature of mixed fracture modes at Ag layer and Cu oxide, (e) elongated Ag porous structure and (f) intergranular fracture at Cu oxide, after 250 h; (g) macroscopic feature of Cu oxide dominant, (h) intergranular fracture at Cu oxide and (i) pull out of Cu oxide, after 1000 h ... 97

Figure 4.10 Tilted focused ion beam (FIB) SE images on the Cu oxide layer fractured regions (both of Ag side and Cu side) after thermal storage test for (a) 250 h, (b) 500 h and (c) 1000 h .. 98

Figure 4.11 EPMA elemental mapping results on the Cu oxide layer fractured region after thermal storage for 1000 h .. 99

Figure 4.12 SEM SE images of fracture surface of Ag nanoporous bonding joint with ENIG finished Cu substrate after thermal storage test: (a) macroscopic feature of fracture at Ag layer dominant, (b) elongated Ag porous structure and (c) Ag side at the Ag/Au interfacial fractured region, of as-bonded Ag NPB joint surface; (d) macroscopic feature of mixed fracture modes at Ag layer and Au/Ni interface, (e) elongated Ag porous structure and (f) Au/Ni interfacial fracture, after 500 h; (g) macroscopic feature of mixed fracture modes at Ag layer and Au/Ni interface, (h) elongated Ag porous structure and (i) Au/Ni interfacial fracture, after 1000 h ... 100

Figure 4.13 (a) Scanning TEM (STEM) BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface for as-bonded Ag NPB sample with bare Cu substrate, and (c) energy dispersive X-ray spectroscopy (EDS) line analysis along the dotted line in BF image ... 102

Figure 4.14 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 500 h, and (c) EDS line analysis along the dotted line in BF image ... 102

Figure 4.15 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 1000 h, and (c) EDS line analysis along the dotted line in BF image ... 103
Figure 4.16 Low magnification STEM BF image and corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 1000 h. The EDS point analysis is performed on the marked points. ... 103

Figure 4.17 TEM BF images of (a) Ag/Cu interface after thermal storage for 1000 h, (b) interface of Ag/Cu oxides, (c) Ag precipitates in Cu$_2$O layer, (d) void formation near the interface of Cu$_2$O/Cu, and HRTEM images and corresponding FFT patterns of (e) CuO and (f) Cu$_2$O .. 105

Figure 4.18 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface for as-bonded Ag NPB sample with ENIG finished Cu substrate, and (c) EDS line analysis along the dotted line in BF image ... 107

Figure 4.19 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 500 h, and (c) EDS line analysis along the dotted line in BF image ... 107

Figure 4.20 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 1000 h, and (c) EDS line analysis along the dotted line in BF image ... 108

Figure 4.21 High magnification STEM BF image and corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 1000 h. The EDS point analysis is performed on the marked points. ... 108

Figure 4.22 (a) X-ray energy spectrum for the EDS mapping of Fig. 4.19 and (b) deconvolution of P K$_a$ and Au M$_a$ peaks on the energy level of 1.8 - 2.4 keV, denoted range as grey box in (a) ... 109

Figure 4.23 (a) TEM BF image of Ag/ENIG interface after thermal storage for 1000 h, and HRTEM images and corresponding FFT patterns of (b) NiO, (c) Ni$_3$P and (d) Ni(P) layer .. 110

Figure 4.24 (a) TEM BF image of Ag/ENIG interface and (b) HRTEM image of NiO layer after thermal storage for 500 h. (c) TEM BF image of Ag/ENIG interface and (b) HRTEM image of NiO layer after thermal storage for 1000 h .. 111

Figure 4.25 Schematic diagram of microstructure evolution at the interface of Ag nanoporous bonding joint after thermal storage: (a) Ag/Cu interface and (b) Ag/ENIG interface. The thicknesses of each layers are not to scale. There are three types of diffusion flux of each
elements which are indicated as *line arrows* (mutual diffusion flux), *dotted arrows* (limited diffusion flux due to limited solubility in the matrix) and *broken arrows* (rare diffusion), where the thickness of each arrows is proportional to amount of diffusion flux 113

Figure 5.1 Schematic diagrams of (a) sample configuration of Ag nanoporous bonding joint with Si chip and active metal brazed (AMB) Cu silicon nitride (Si$_3$N$_4$) substrate, (b) structures of Si chip with Ti/Ni(P)/Au backside metallization and electroless Ni/immersion Au (ENIG) finished AMB Cu Si$_3$N$_4$ substrate, (c) thermo-compression Ag nanoporous bonding process, and (d) appearance of Si attached on the AMB Cu Si$_3$N$_4$ substrate ... 119

Figure 5.2 A temperature profile of temperature cycling test (temperature swing range from –55 °C to 150 °C, $\Delta T = 205$ °C) according to JEDEC standard (JESD22-A104E). *Grey and black lines* in the graph indicate the nominal and the measured temperature inside of the cycling chamber, respectively ... 120

Figure 5.3 Scanning acoustic tomography (SAT) ultrasonic reflection signal (A-scan) for Si die attach using Ag nanoporous sheet and magnified signal for the designating detecting depth for 2-dimensional plane image (C-scan) .. 121

Figure 5.4 Typical illustrations on the detectable defects using SAT: (a) damage on Si chip indicated with *red arrows*, (b) fracture of Si chip indicated with *green arrows* and (c) unattach or delamination between Si and die attach indicated *blue arrow* 121

Figure 5.5 SAT 2-dimensional plane scanning (C-scan) images on the Si wafer and Ag layer reflections of the Ag nanoporous bonding joint of (a) as-bonded; and after temperature cycling test for (b) 100 cycles, (c) 250 cycles, (d) 500 cycles, (e) 1000 cycles and (f) 1500 cycles. *Inset white arrows* indicate the delamination at the Ag bonding layer .. 123

Figure 5.6 The variation of shear strength of Si die attach on the AMB Cu Si$_3$N$_4$ substrate after temperature cycling test. *Inset number marks* (1-10) are correspond with fracture surface images in Fig. 5.7. The odd and even numbered sample exhibit higher and lower shear strength for each temperature cycling, respectively 125

Figure 5.7 Schematic diagram of fracture modes of Ag nanoporous bonding joint after temperature cycling test: (a) Si fracture, (b) metallization fracture and (c) Ag layer fracture 125

Figure 5.8 Electron probe micro-analyzer (EPMA) element mapping results (Ag, Au, Ni, Ti, Si and O) on the fracture surface (substrate side) of Ag nanoporous bonding joint after temperature cycling for (a) 100 cycles, (b) 250 cycles, (c) 500 cycles, (d) 1000 cycles
and (e) 1500 cycles. The sample numberings are correspond with marked in Fig. 5.6. The marked regions on the SE images with A, S and M indicate Ag layer fracture, Si fracture and metallization delamination, respectively.

Figure 5.9 EPMA elemental mapping results (Ag, Au, Ni, Ti, Si and O) on the fracture surface (Si side) of Ag nanoporous bonding joint after temperature cycling for (a) 1000 cycles (sample 2) and (b) 1500 cycles (sample 10).

Figure 5.10 Focused ion beam (FIB) secondary electron (SE) images of tilted view of fracture surface (substrate side) and FIB-milled cross-sectional view on the edge parts of Ag nanoporous bonding layer under the fracture surface after temperature cycling for (a) 1000 cycles (sample 8) and (b) 1500 cycles (sample 10).

Figure 5.11 Scanning electron microscope (SEM) SE image of fracture morphology on the Ag layer fractured region after temperature cycling for 1500 cycles: (a) fractured by shear test and (b) fractured during temperature cycling. The observation positions are indicated with the white arrows in inset low magnification image.

Figure 5.12 SEM SE image of fracture morphology on the metallization fractured region after temperature cycling for 1500 cycles. The observation position is indicated with the white arrow in inset low magnification image.

Figure 5.13 Variation of shear strength after temperature cycling for Ag nanoporous bonding joint, marked with *black solid square*, and high temperature solders joints, marked with *color open symbols*. The ranges of temperature cycling test are written in the *legend*.

Figure 5.14 Variation of shear strength after temperature cycling for Ag nanoporous bonding (Ag NPB, marked with *black solid square*) and Ag nanoparticle sintering (Ag NPS, marked with *color open symbols*) joints. The ranges of temperature cycling test are written in the *legend*.

Figure 6.1 Schematic diagrams on the fabrication process of bonding materials, including Pb-5Sn solder paste, Ag nanoparticle paste and Ag nanoporous sheet.

Figure A1.1 Schematic diagram of arrangement of Ga ion beam and electron beam columns of multi-beam FIB/SEM system. The angle between Ga ion beam column and electron beam column is 52°. Two gas injection nozzles (tungsten and carbon) and a micro-manipulator are also installed.

Figure A1.2 Preparation of wedge-shaped sample by rough-milling: (a) carbon deposition on the target position and (b) wedge-shaped sample preparation by rough-milling.
Procedures of in-situ lift-out: (a) micro-welding on the tungsten probe of micro-manipulator via tungsten deposition and in-situ lift-out, (b) lift-out from the bulk specimen, and (c) transferring and (d) mounting of wedge-shaped sample to molybdenum TEM grid.

Fine-milled sample for TEM observation

Mathematical relationship between (a) HRTEM image (real space) and (b) corresponding FFT pattern (reciprocal space)

The mask filtered FFT pattern and corresponding IFFT image on the HRTEM image of α-Al(Ag) precursor using (a) array filter and (b) spot filter

The mask filtered FFT pattern and corresponding IFFT image on the HRTEM image of Ag/Au bonding interface using (a) array filter and (b) spot filter

(a) The spot mask filtered (220) plane image of α-Al(Ag) precursor and (b) the intensity profile on the brightness along the designated line in a.
List of tables

Table 1.1 Physical properties of Si and wide-bandgap semiconductors 4
Table 1.2 Thermal properties of common packaging materials ... 7
Table 1.3 Applications exempted from the restriction of the use of lead in solders in Directive 2011/65/EU (RoHS2) .. 11
Table 1.4 Solidus and liquidus temperatures of typical Pb-free high temperature solders system ... 12
Table 1.5 Typical Pb-free high temperature solders system and their advantages and disadvantages .. 13

Table 2.1 Crystallographic parameters for Al, α-Al(Ag), Ag and γ-Ag₃Al 48

Table 4.1 EDS point analysis results on the marked points in Fig. 4.16 104
Table 4.2 EDS point analysis results on the marked points in Fig. 4.21 109
Table 4.3 Energies of characteristic X-ray (K, L and M lines) of O, P, Ni, Cu, Ag and Au 109

Table 5.1 Nominal and measured temperature cycling conditions ... 120
Table 5.2 Chip and substrate materials and conditions of temperature cycling test in the literature .. 132

Table 6.1 Environmental assessment on the fabrication of bonding materials, Pb-5Sn solder paste, Ag nanoparticle paste and Ag nanoporous sheet .. 139
Abbreviations and symbols

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMB</td>
<td>active metal brazing</td>
</tr>
<tr>
<td>BE</td>
<td>binding energy</td>
</tr>
<tr>
<td>BF</td>
<td>bright field</td>
</tr>
<tr>
<td>CP</td>
<td>cross-section polisher</td>
</tr>
<tr>
<td>CTE</td>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>DBC</td>
<td>direct bond copper</td>
</tr>
<tr>
<td>DF</td>
<td>dark field</td>
</tr>
<tr>
<td>EDS</td>
<td>energy dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>EELS</td>
<td>electron energy loss spectroscopy</td>
</tr>
<tr>
<td>ENEPiG</td>
<td>electroless Ni/electroless Pd/immersion Au</td>
</tr>
<tr>
<td>ENIG</td>
<td>electroless Ni/immersion Au</td>
</tr>
<tr>
<td>EPMA</td>
<td>electron probe micro-analyzer</td>
</tr>
<tr>
<td>EV</td>
<td>electric vehicle</td>
</tr>
<tr>
<td>FEG</td>
<td>field emission gun</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transform</td>
</tr>
<tr>
<td>FIB</td>
<td>focused ion beam</td>
</tr>
<tr>
<td>HEV</td>
<td>hybrid electric vehicle</td>
</tr>
<tr>
<td>HRTRM</td>
<td>high resolution transmission electron microscopy</td>
</tr>
<tr>
<td>ICDD</td>
<td>International Centre for Diffraction Data</td>
</tr>
<tr>
<td>IFFT</td>
<td>inverse fast Fourier transform</td>
</tr>
<tr>
<td>LN</td>
<td>less noble</td>
</tr>
<tr>
<td>MIL-STD</td>
<td>United States Military Standards</td>
</tr>
<tr>
<td>MN</td>
<td>more noble</td>
</tr>
<tr>
<td>MOSFET</td>
<td>metal oxide semiconductor field effect transistor</td>
</tr>
<tr>
<td>NPB</td>
<td>nanoporous bonding</td>
</tr>
<tr>
<td>OFC</td>
<td>oxygen-free copper</td>
</tr>
<tr>
<td>PCU</td>
<td>power control unit</td>
</tr>
<tr>
<td>PDF</td>
<td>powder diffraction file</td>
</tr>
<tr>
<td>RIR</td>
<td>reference intensity ratio</td>
</tr>
<tr>
<td>RoHS</td>
<td>restriction of hazardous substances</td>
</tr>
<tr>
<td>SAED</td>
<td>selected area electron diffraction</td>
</tr>
<tr>
<td>SAT</td>
<td>scanning acoustic tomography</td>
</tr>
<tr>
<td>SCR</td>
<td>silicon controlled rectifier</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>STEM</td>
<td>scanning transmission electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TLP</td>
<td>transient liquid phase</td>
</tr>
<tr>
<td>TRIAC</td>
<td>triode for alternating current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBG</td>
<td>wide-bandgap</td>
</tr>
<tr>
<td>WDS</td>
<td>wavelength dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffractometer</td>
</tr>
</tbody>
</table>

Symbols

- \(a \): lattice parameter
- \(C_v \): equilibrium concentration of vacancies
- \(D \): diffusivity
- \(D_s \): surface diffusivity
- \(d_{hkl} \): interplanar spacing of \(hkl \) plane
- \(d_m \): spacing of moiré fringe
- \(E_b \): elastic modulus of bulk material
- \(E_f \): formation energy of vacancy
- \(E_p \): elastic modulus of porous material
- \(k_B \): Boltzmann constant
- \(N \): number of atom
- \(N_A \): Avogadro constant
- \(N_v \): number of vacancy
- \(r \): radius
- \(r_{\text{met}} \): atomic radius (metallic)
- \(t \): time
- \(T \): absolute temperature
- \(T_{\text{max}} \): maximum soaking temperature
- \(T_{\text{min}} \): minimum soaking temperature
- \(V_c \): unit cell volume
- \(V_m \): molar volume
- \(x \): diffusion length
- \(Z \): number of formula units per unit cell
- \(\gamma \): surface energy
- \(\Delta T \): temperature variation
- \(\theta \): diffraction angle, interplanar angle
- \(\lambda \): wavelength
- \(\rho_b \): relative density of bulk material
- \(\rho_p \): relative density of porous material
1.1 Recent trends in power electronics

1.1.1 Applications of power electronics

Power electronics is a key component for the conversion, control and distribution of electrical energy. [1–4] In particular, electric powered transportations, such as electric/hybrid electric vehicles (EV/HEV) [5] and railway [6]; and renewable energy technologies, such as photovoltaic power generation [7] and wind turbine systems [8], have been received attention in order to overcome energy problem and to reduce carbon emission and air pollution. This effort to utilization of clean and renewable energy augments the demand and the importance of power electronics gradually.

Fig 1.1 shows various applications of power semiconductors with different operation frequencies and capacities. The range of applications of power semiconductors cover from home appliances to industrial applications which are powered by electricity [1]. The operating ranges of voltage, current and frequency are varied with the type of power semiconductors. The operating regions of thyristors cover low frequency (up to 100 Hz/1 kHz) and high voltage and current (over 5 kV and 2 kA). Silicon controlled rectifier (SCR), triode for alternating current (TRIAC) and gate turn-off thyristor (GTO) are a type of thyristors. Insulated gate bipolar transistor (IGBT) covers middle frequency (up to 50 kHz) and medium voltage and current (up to 3 kV and 1 kA). The operating range
of metal oxide semiconductor field effect transistor (MOSFET) covers high frequency (up to 1 MHz) and low voltage and current (up to 1 kV and 100 A) [1,4].

1.1.2 Wide-bandgap semiconductor for next generation power electronics

A growth of power density in power electronics and a limitation of conventional silicon (Si) power semiconductor lead to develop the next generation power semiconductor [9]. Wide-bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN) could operate at higher temperature compared with conventional Si devices. The limit operating junction temperature of Si devices is 150-200 °C, which is lower than requirement of junction temperature (approximately 220 °C) for automotive applications [1,10,11]. As shown in Fig. 1.2, the performance of current Si semiconductors cannot meet the requirements for DC-DC converter in automotive application, especially thermal conductivity and limit of junction temperature [11]. Fig. 1.3 shows operation limits of conventional Si and WBG semiconductors, including SiC, GaN and diamond, where the allowing junction temperature of high-voltage (> 10kV) SiC power semiconductor is over 500 °C. The WBG semiconductors therefore have been regarded as promising materials for next generation power electronics. Physical properties of Si and typical WBG semiconductors are shown in Table 1.1 [10].

The high frequency operation of power electronics increase heat generation by switching
Figure 1.2 Radar charts of (a) system level requirements and (b) component level requirements for low voltage DC-DC converter in the telecommunication and the automotive applications. Reprinted with permission from [11]. Copyright 2011, IEEE.

Figure 1.3 (a) Theoretical operation limits of Si, SiC, GaN and diamond semiconductor at the optimal structure and (b) the safe operating temperature of Si semiconductor, where the case limit corresponds to maximum operating temperature regulated by the packaging materials (such as solder, molding compound and silicon gel) and the silicon limit corresponds to breakdown voltage of Si as a function of junction temperature. Reprinted with permission from [10]. Copyright 2011, Elsevier.
loss. There are two solutions for reduction switching loss, including soft-switching converters and WBG semiconductor [2]. The WBG semiconductor devices are able to reduce switching loss approximately 70% compared with conventional Si semiconductor devices [12], which enable to reduce heat generation and to operate at high frequency.

1.1.3 Power electronics in electric powered vehicles

Power control unit (PCU) is the most important components of electric powered vehicle (Fig. 1.4), where multiple power modules are integrated in PCU to control electrical power (Fig. 1.5). An insulated gate bipolar transistor (IGBT) power module (Fig.1.6) has been used in EV/HEV for power switching in the last years. The IGBT module combines the advantages of high switching speed of MOSFET and low saturation voltage of bipolar transistor, and it make possible to use in EV/HEV [13]. The performance, reliability and efficiency of IGBT module are required for the efficiency of driving and control of electric EV/HEV [13,14].

Table 1.1 Physical properties of Si and wide-bandgap semiconductors [10].

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>3H-SiC</th>
<th>6H-SiC</th>
<th>4H-SiC</th>
<th>GaN</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandgap energy, E_g (eV)</td>
<td>1.12</td>
<td>2.3</td>
<td>2.9</td>
<td>3.2</td>
<td>3.39</td>
<td>5.6</td>
</tr>
<tr>
<td>Electron mobility, μ_n (cm2 V$^{-1}$ S$^{-1}$)</td>
<td>1450</td>
<td>1000</td>
<td>415</td>
<td>950</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>Hole mobility, μ_p (cm2 V$^{-1}$ S$^{-1}$)</td>
<td>450</td>
<td>45</td>
<td>90</td>
<td>115</td>
<td>350</td>
<td>3800</td>
</tr>
<tr>
<td>Critical electric field, E_c (V cm$^{-1}$)</td>
<td>3×10^5</td>
<td>2×10^6</td>
<td>2.5×10^6</td>
<td>3×10^6</td>
<td>5×10^6</td>
<td>10^7</td>
</tr>
<tr>
<td>Saturation velocity, v_{sat} (cm s$^{-1}$)</td>
<td>10^7</td>
<td>2.5×10^7</td>
<td>2×10^7</td>
<td>2×10^7</td>
<td>2×10^7</td>
<td>3×10^7</td>
</tr>
<tr>
<td>Thermal conductivity, λ (W cm$^{-1}$ K$^{-1}$)</td>
<td>1.3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1.3</td>
<td>20</td>
</tr>
<tr>
<td>Dielectric constant, ε_r</td>
<td>11.7</td>
<td>9.6</td>
<td>9.7</td>
<td>10</td>
<td>8.9</td>
<td>5.7</td>
</tr>
</tbody>
</table>
1.1.3 Power electronics in electric powered vehicles

Figure 1.4 Developments and power flow in electric vehicle (EV), plug-in hybrid vehicle (PHV) and fuel cell vehicle (FCV) from hybrid vehicle (HV) technology (courtesy of Toyota Motor Corporation).

Figure 1.5 A role of power semiconductor in the power control unit (courtesy of Toyota Motor Corporation).

Figure 1.6 IGBT power module, EconoDUAL™ 3 of Infineon (courtesy of Infineon Technologies AG).
1.2 Immerging technology for power electronics packaging materials

Fig. 1.7 shows a typical structure of IGBT power module, employed various components from ceramics to metals. The high current density capability, high temperature durability and good thermal dissipation ability are desirable properties of packaging materials for power electronics. A considerable amount of heat is generated from the IGBT device during operation. Moreover, the power electronics for automotive application is exposed to severe service environmental, such as wide temperature variation, humid and salty environments and vibration. It is necessary to consider the failure occurrence of power electronics packaging under various service environments.

Fig. 1.8 shows typical failure locations during operating of power devices. The fatigue crack propagation and fracture of die attach joint layer (Fig. 1.8(a)), lift-off or heel crack of wire bonding (Fig. 1.8(b)) and delamination of substrate metallization (Fig. 1.8(c)) are common failures of IGBT module [15]. A cycling thermo-mechanical loading induced by mismatch of coefficient of thermal

![Figure 1.7 Schematic diagram of typical structure of IGBT power module (not to scale).](image_url)

![Figure 1.8 Typical failure locations under cyclic thermo-mechanical loading in IGBT module packaging: (a) solder joint for the die/substrate attach, (b) wire bonding and (c) substrate. Reprinted with permission from [15]. Copyright 2009, Elsevier.](image_url)
expansion (CTE) between dissimilar materials at the interface is main cause of these failures [15,16]. Thermal properties of typical materials for power electronics are given in Table 1.2 [3,17]. More detailed information on the failure mechanism of the wire bonding, die attach and ceramic substrate and related research trends will be mentioned in following sections.

1.2.1 Wire bonding interconnection

Wire bonding plays a role of electrical interconnection between power semiconductor and lead frame. Al wire is a conventional interconnection material generally employed in the electronics; however it is not suitable for high current power electronics due to limited current carrying capability and long-term reliability issues at elevated temperature. To address these issues, heavy Al wire or Al ribbon bonding (Fig. 1.9) [18] and Cu wire bonding (Fig. 1.10) [19] have been suggested. Cu wire bonding is more promising material due to its reasonable cost and high electrical conductivity, however there remains some challenges, such as complicated bonding process and Cu oxidation. Al/ Cu clad ribbon for the reduction of heel crack [20], Pd coated Cu for the prevention of Cu oxidation [21] have been reported in order to improve current problems of Al ribbon or Cu wire bonding.

Table 1.2 Thermal properties of common packaging materials [3,17].

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Thermal conductivity, λ (W cm$^{-1}$ K$^{-1}$)</th>
<th>Coefficient of thermal expansion, α (ppm/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor</td>
<td>Si</td>
<td>1.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>SiC</td>
<td>5.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>GaN</td>
<td>1.3</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Au</td>
<td>3.17</td>
<td>14.2</td>
</tr>
<tr>
<td>Wire bonding</td>
<td>Al</td>
<td>2.05</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>4.0</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Pb-5Sn</td>
<td>0.35</td>
<td>29</td>
</tr>
<tr>
<td>Die attach</td>
<td>Au-20Sn</td>
<td>0.57</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>4.06</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Al$_2$O$_3$</td>
<td>0.30</td>
<td>6.5</td>
</tr>
<tr>
<td>Substrate</td>
<td>AlN</td>
<td>2.0</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Si$_3$N$_4$</td>
<td>0.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>
1.2.2 Die/substrate attach

As shown in Fig. 1.9, there are two bonding layers, including die attach (chip to substrate) and substrate attach (substrate to base plate), for mechanical bonding between the dissimilar materials. High Pb containing solders, Pb-5Sn and Pb-10Sn, have been generally employed for high temperature electronics. Alternative die attach materials is necessary to address the immersing two issues on the long-term reliability and environmental regulation on the use of Pb in electronics. Alternative bonding techniques, including high temperature solder alloys, transient liquid phase bonding and Ag nanoparticle sintering have been suggested. Fig. 1.11 shows joints of representative alternative bonding methods for power electronics die attach. Detailed information about the high temperature die attach materials will be mentioned in Section 1.3.

Figure 1.9 Al ribbon bonding: (a) bonding tool and (b) cross-sectional SEM image of Al ribbon bonding with ENIG substrate. Reprinted with permission from [18]. Copyright 2014, The Japan Society of Applied Physics.

Figure 1.10 (a) Appearance of Cu wire bonding and (b) cross-sectional SEM image of Cu wire bonding. Reprinted with permission from [19]. Copyright 2008, Elsevier.
1.2.3 Ceramic substrate with Cu metallization

In high power electronics, the heat generation during operation of IGBT module is abundant, and this causes temperature rise in the module. The ceramic substrate has the roles of relaxation of stress generation induced by CTE mismatch of chip and substrate and heat dissipation from the semiconductor device. Thermal management in power electronics is very important that is directly connected to the performance and the long-term reliability of device. Aluminum oxide (Al$_2$O$_3$), having the similar CTE with semiconductor materials (Table 1.2), with Cu metallization has been widely employed for ceramic substrate, usually called direct bond copper (DBC) substrate. Cu metallization

![Image](image1.png)

Figure 1.11 Cross-sectional SEM images of (a) Zn-Sn high temperature solder (reprinted with permission from [26]. Copyright 2009, Springer), (b) transient liquid phase bonding of Cu/Sn/Cu system (reprinted with permission from [27]. Copyright 2004, Elsevier) and (c) Ag flake-shape particle sintering (reprinted with permission from [28]. Copyright 2013, Springer).

![Image](image2.png)

Figure 1.12 Appearances of (a) Si$_3$N$_4$ active metal brazed substrate after 600 cycles and (b) Al$_2$O$_3$ direct bond copper substrate after 100 cycles exposed to temperature cycle from –55 °C to 250 °C. Reprinted with permission from [21]. Copyright 2014, IEEE.
exhibits high peel strength (over 65 N/cm) with Al₂O₃ or aluminum nitride (AlN) through DBC process [22].

However, Al₂O₃ cannot meet the requirements for IGBT module with the growth of power density and increase of junction temperature, due to low thermal conductivity and poor thermal cycle durability at wide temperature swing [22,23]. Two promising substrate materials, AlN DBC and silicon nitride (Si₃N₄) active metal brazed (AMB) substrates have been received attention due to their superior thermal conductivity and temperature cycle durability. Fukimoto et al. [23] reported comparable research on the delamination behavior of Si₃N₄ AMB and Al₂O₃ DBC substrates during extreme temperature cycle from -55 °C to 250 °C. As shows in Fig. 1.12, the Si₃N₄ AMB exhibits excellent stability without any delamination of Cu metallization up to 600 cycles, however, the Al₂O₃ exhibits small number of cycle to failure (under 100 cycles). Typical characteristics of Al₂O₃, AlN, Si₃N₄ for DBC or AMB substrates can be summarized as follows.

- Al₂O₃ DBC: cheap price, low thermal conductivity poor temperature cycle durability
- AlN DBC: high thermal conductivity, moderate temperature cycle durability
- Si₃N₄ AMB: medium thermal conductivity, excellent high temperature durability

1.3 High temperature die attach

1.3.1 Current situation of environmental regulation in high temperature electronics

An eutectic Pb-Sn solder for general electronic devices has been replaced with Sn-based solders, especially eutectic Sn-Ag-Cu [24], to respond environmental regulation, “Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment”, referred to as RoHS [25]. However, the substitution solder alloys for high Pb containing solders, such as Pb-5Sn and Pb-10Sn, are not established yet.

At present, the high Pb containing solders have been designated as the exemption application from the environmental regulation, “Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast)”, referred to as RoHS2. A list of applications exempted of use of Pb in solders from the RoHS2 is summarized in Table 1.3. The validity period for category 7(a), high Pb containing solders (Pb content > 85 wt.%), is 5 years from

1.3.1 Current situation of environmental regulation in high temperature electronics

21 July 2011. Namely, the exemption of high Pd containing solder will be expired or renewed in 2016 [26].

As an effort to eliminate the high Pb containing solders in the high temperature electronics, a numerous alternative Pb-free bonding techniques that could be used as high temperature die attach

<table>
<thead>
<tr>
<th>Exemption category</th>
<th>Scope and dates of applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(a) Lead in high melting temperature type solders (i.e. lead-based alloys containing 85 % by weight or more lead)</td>
<td></td>
</tr>
<tr>
<td>Lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signalling, transmission, and network management for telecommunications</td>
<td></td>
</tr>
<tr>
<td>7(b) Lead in solders consisting of more than two elements for the connection between the pins and the package of microprocessors with a lead content of more than 80 % and less than 85 % by weight</td>
<td>Expired on 1 January 2011 and after that date may be used in spare parts for EEE placed on the market before 1 January 2011</td>
</tr>
<tr>
<td>Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit flip chip package</td>
<td></td>
</tr>
<tr>
<td>15 Lead in solders for the soldering to machined through hole discoidal and planar array ceramic multilayer capacitors</td>
<td></td>
</tr>
<tr>
<td>24 Lead alloys as solder for transducers used in high-powered (designated to operate for several hours at acoustic power levels of 125 dB SPL and above) loudspeakers</td>
<td>Expired on 24 September 2010</td>
</tr>
<tr>
<td>27 Lead in soldering materials in mercury free flat fluorescent lamps (which, e.g. are used for liquid crystal displays, design or industrial lighting)</td>
<td></td>
</tr>
<tr>
<td>31 Lead in solders for the soldering of thin copper wires of 100 μm diameter and less in power transformers</td>
<td></td>
</tr>
</tbody>
</table>
have been reported. The alternative solders that exhibit high melting temperature over 260 °C will be mentioned in Section 1.3.2. Other new bonding processes which can be classified as low temperature bonding techniques, including transient liquid phase (TLP) bonding and metallic nanoparticle sintering, will be mentioned in Section 1.3.3 and Section 1.3.4. These bonding processes can be conducted under the temperature of 300 °C, which is similar with the melting temperature of conventional Pb-5Sn. Fig. 1.11 shows microstructural features of typical alternatives of high Pb containing solders for high temperature die attach, including Zn-Sn high temperature solder [27], transient liquid phase bonding of Cu/Sn/Cu system [28] and Ag flake sintering [29].

1.3.2 High temperature solders

Suganuma et al. [30] mentioned that high temperature solders exhibit the range of melting temperature of 260 °C to 400 °C, and summarized the requirements and applications of these high-

<table>
<thead>
<tr>
<th>Alloy system</th>
<th>Composition (wt%)</th>
<th>Solidus temperature (°C)</th>
<th>Liquidus temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Sn</td>
<td>Pb-10Sn</td>
<td>268</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Pb-5Sn</td>
<td>300</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Pb-2Sn</td>
<td>316</td>
<td>322</td>
</tr>
<tr>
<td>Au-Sn</td>
<td>Au-20Sn</td>
<td>280 (eutectic)</td>
<td>-</td>
</tr>
<tr>
<td>Au-Ge</td>
<td>Au-12Ge</td>
<td>356 (eutectic)</td>
<td>-</td>
</tr>
<tr>
<td>Bi-Ag</td>
<td>Bi-2.5Ag</td>
<td>263 (eutectic)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bi-11Ag</td>
<td>263</td>
<td>360</td>
</tr>
<tr>
<td>Zn-Al</td>
<td>Zn-6Al</td>
<td>381 (eutectic)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zn-4Al-3Mg-3.2Ga</td>
<td>309</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Zn-20Sn</td>
<td>198</td>
<td>383</td>
</tr>
<tr>
<td>Zn-Sn</td>
<td>Zn-30Sn</td>
<td>198</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>Zn-40Sn</td>
<td>198</td>
<td>365</td>
</tr>
<tr>
<td>Sn-Sb</td>
<td>Sn-5Sb</td>
<td>245 (eutectic)</td>
<td>-</td>
</tr>
</tbody>
</table>
temperature solders, including their melting temperature, mechanical/thermal/electrical properties, and current applications. High-temperature solders should exhibit relaxation ability of thermal stress of joint, good electrical, thermal and mechanical properties and so on. Especially fatigue resistance to withstand at the high junction temperature above 200 °C is important factor for long-term reliability. Many researchers have suggested on the potential candidates for Pb-free high temperature solders in the past decade. Au-[31], Bi-[32] and Zn-based solders [27] are typical alloys of high temperature solders. The solidus and liquidus temperatures of candidates of high temperature solder alloys and their characteristics can be found in Table 1.4 and Table 1.5 [30,33]. Further information can be found in some review articles [30,33–36].

The suggested candidates of high temperature Pb-free solder alloy remains some challenges of solving cost or reliability problems (Table 1.5). The extremely high cost of Au-based alloys discourages mass production. Bi-based alloys are brittle and exhibit poor thermal conductivity. Zn-

<table>
<thead>
<tr>
<th>Alloy system</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Sn</td>
<td>fluxless</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>good creep resistance</td>
<td>Brittle Au-Sn IMCs</td>
</tr>
<tr>
<td></td>
<td>low elastic modulus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stable microstructure</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>relative high strength</td>
<td>difficult to manufacture</td>
</tr>
<tr>
<td>Bi-Ag</td>
<td>acceptable melting point</td>
<td>poor workability</td>
</tr>
<tr>
<td></td>
<td>affordable cost</td>
<td>low conductivity</td>
</tr>
<tr>
<td>Zn-Al</td>
<td>low cost</td>
<td>highly corrosive</td>
</tr>
<tr>
<td></td>
<td>no IMC formed under equilibrium</td>
<td>poor wetting</td>
</tr>
<tr>
<td></td>
<td>low cost</td>
<td></td>
</tr>
<tr>
<td>Zn-Sn</td>
<td>no IMC formed under equilibrium</td>
<td>highly corrosive</td>
</tr>
<tr>
<td></td>
<td>ductility improved compared to Zn-Al</td>
<td>formation of liquid phase at 199 °C</td>
</tr>
<tr>
<td>Sn-Sb</td>
<td>stable microstructure</td>
<td>toxic</td>
</tr>
<tr>
<td></td>
<td>good creep properties</td>
<td></td>
</tr>
</tbody>
</table>
based alloys exhibit poor corrosion resistance [33]. These drawbacks inhibit the successful adoption of these solder materials in power electronic applications that require operation in severe environments and at high-temperatures, and so it is necessary to develop these materials and processes further.

1.3.3 Transient liquid phase bonding

TLP bonding is a partial melting of interlayer with the low melting temperature and simultaneous diffusion and reaction with parent material, and has been utilized in the various applications [28,37–40]. The schematic diagram of TLP bonding process is shown in Fig. 1.13. The TPL bonding is conducted above the melting temperature of interlayer. In microelectronics packaging industry, the low melting temperature elements, such as Sn and In, have been utilized as an interlayer for TLP bonding. A numerous TLP systems including Cu/Sn, Ag/Sn, Ni/Sn and Cu/In, have been reported [37–39].

The difference between reflow solder joint and TLP bonding joint are shown in Fig. 1.14. The reflow solder joint foamed solidified solder layer and intermetallic compounds with the thickness of a few μm at the interface (Fig. 1.14(a)). In case of TLP bonding, the interlayer (low melting temperature layer) is completely consumed through the reaction with high melting temperature layer. Consequently the final joint consists of Cu and intermetallic compound (IMC) which exhibit high

![Figure 1.13 Schematic diagram of (a) bonding temperature profile of transient liquid phase bonding and (b) joint formation by partial melting and diffusion of interlayer element and subsequent formation of intermetallic compound.](image-url)
melting temperatures (Fig. 1.14(b)). For example, there are two stable IMCs, including η-Cu$_6$Sn$_5$ and ε-Cu$_3$Sn, less than 300 °C (approximate TLP bonding temperature) in binary Cu-Sn system. Maximum stable temperatures of η-Cu$_6$Sn$_5$ and ε-Cu$_3$Sn are 415 °C and 676 °C, respectively, where these are higher than melting point of Sn-based solder [41]. As a result, a permissible temperature of TLP joint of Cu/Sn/Cu system exhibit over 415 °C. Chu et al. reported on the consumption of interlayer (Sn) and growth behavior of IMCs of Cu/Sn/Cu and Ni/Sn/Ni system with the various metallization (Cu and Ni) thicknesses, as shown in Fig. 1.15. According to this report, the shear strength of TLP bonding joint is affected on the interfacial reaction between Cu and Sn (or Ni and Sn), and the fracture surface exhibits intergranular fracture (at the grain boundary of IMCs) [39].

The TLP bonding technique has several advantages, such as high temperature sustainability, repeatability, reasonable cost and moderate bonding pressure/temperature, for alternative of Pb-5Sn

![Figure 1.14](image1.png)

Figure 1.14 Schematic diagrams of (a) reflow solder joint Sn solder with Cu metallization and (b) Cu/Sn/Cu transient liquid phase bonding joint (not to scale).

![Figure 1.15](image2.png)

Figure 1.15 SEM images of TLP bonding joint, and growth of intermetallic compound and metallization consumption during bonding process: (a, b) Cu/Sn/Cu and (c, d) Ni/Sn/Ni systems. Reprinted with permission from [39]. Copyright 2015, Elsevier.
Moreover, two stable IMCs in Cu/Sn/Cu system, \(\eta \)-Cu6Sn5 (0.341 W cm\(^{-1}\) K\(^{-1}\)) and \(\varepsilon \)-Cu3Sn (0.704 W cm\(^{-1}\) K\(^{-1}\)), exhibit relative higher thermal conductivities than it of Pb-5Sn solder (0.23 W cm\(^{-1}\) K\(^{-1}\)) [43]. The limitations of TLP bonding are the formation of brittle IMC or Kirkendall void at the bonding interface, which are generally detrimental effect on the cyclic loading capability of joint [34].

1.3.4 Metallic nanoparticle sintering

A die attach technique using metallic nanoparticles is a promising joining technology for use in high-temperature electronics and could potentially be substituted for conventional Pb-based die attach. Furthermore, nanoparticle sintered joint can be achieved at low temperature around 250 °C. Typical benefits of nanoparticle sintering process are superior electrical/thermal conductivities, high melting temperature and low homologous temperature compared with solder alloy [44].

Metallic fillers, such as Ag and Cu, and various organic substances employed for the formulation of Ag nanoparticle paste [29, 45–48]. Siow [44] summarized typical additives for the formulation of Ag nanoparticle paste, including dispersant, binder and solvent. A typical feature of Ag nanoparticle with a passivation layer to prevent agglomeration is shown in Fig. 1.16 [45]. Sintering process is conducted with multi step temperature profile, including volatilization of organic substances and densification of metallic nanoparticle [49]. Optimum bonding process parameters, such as temperature, pressure, atmosphere, are varied with the mixture of Ag nanoparticle paste [44]. The densification sequence of Ag nanoparticle is shown in Fig. 1.17.

1.3.5 Requirement of die shear strength

A requirement of shear strength of die attach for high temperature electronics has not been established clearly. Instead of that, the requirement of joint strength of die attach is defined in “United States Military Standards (MIL-STD) 883G (test method standard for microcircuits)”, as shown in Fig. 1.18 [50], may be one of the criterion of minimum requirement of shear strength for high temperature electronics. This value is a minimum requirement of fracture load during shear test of die attachment. The minimum fracture load (in kN) linearly increases with increasing of die bonding area up to 4 mm\(^2\), and then it certain value with the bonding area above 4 mm\(^2\). The calculated value of die shear strength (in MPa) versus die bonding area is shown in Fig. 1.18(b). The following cases are considered as that the device is failed in case of eutectic, solder, and other attachment.
Fails die strength requirements (1.0x)

Separation with less than 1.5 times the minimum strength (1.25x) and less than 50 percent adhesion of die attach medium.

Separation with less than 2.0 times the minimum strength (2.0x) and less than 10 percent adhesion of die attach medium.

This standard should be helpful for the evaluations of quality of die attach and failure criterion after reliability test, such as thermal storage, temperature cycling and thermal shock tests. However, the value of shear strength requirement defined in MIL-STD-883G standard seems too low to evaluate the quality of joint strictly. The shear strength of Pb-5Sn die attach can be one of the criterion of shear strength requirement. Ide et al. [51] and Shi et al. [52] have been estimated the shear strength of Pb-5Sn die attach according to Japanese Industrial Standards (JIS Z 3198-5) for the comparison of Pb-free die attach, where the value of Pb-5Sn were 18 MPa and 23 MPa, respectively.

Figure 1.16 Ag metallo-organic nanoparticle: (a) schematic view of core-shell structure and (b) TEM BF image of Ag nanoparticle. Reprinted with permission from [44]. Copyright 2005, Elsevier.

Figure 1.17 Schematic diagram of Ag nanoparticle sintering process: (a) initial structure of Ag nanoparticles covered with capping molecules, (b) removal of capping molecules and densification of Ag nanoparticles, (c) densified Ag structure.
1.4 Research motivation

1.4.1 Possible problems of Ag nanoparticle sintering

As mentioned in Section 1.3.4, various organic substances including solvents, capping molecules, and binder have been adopted to adjust the final properties of the paste in the fabrication of the requisite nanoparticle paste [44]. For example, polyvinylpyrrolidone has been used as capping molecule to provide control over the size of the nanoparticles and to protect them against oxidation [53–55]. These organic substances can cause some defects in the Ag nanoparticle sintered joint. Fig. 1.19 and Fig. 1.20 indicate typical defects of Ag nanoparticle sintered joint. The possible defects in Ag nanoparticle sintered joint are a formation of unfilled joint layer or an insufficient densification of Ag nanoparticle. These defects are generally detrimental to shear strength (Fig. 1.19) and thermal conductivity (Fig. 1.20) of the Ag sintered joint [56,57].

The coffee ring effect can cause unfilled joint layer, as shown in Fig. 1.19. The sintered
1.4.1 Possible problems of Ag nanoparticle sintering

Figure 1.19 Optical microscopy images of Ag nanoparticle sintered joint using (a) aqueous base Ag nanoparticle and (b) polyol based Ag nanoparticle. (c) Shear strength results of sintered joint with various Ag nanoparticle. Reprinted with permission from [56]. Copyright 2012, Springer.

Figure 1.20 SEM images of Ag nanoparticle sintered joint of (a) AgNP-20 sintered at 250 °C, (b) AgNP-20 sintered at 200 °C and (c) AgNP-30 sintered at 150 °C. (d,e) Thermal resistance of AgNP-20, AgNP-30 and AgNP-100 joint sintered at various temperatures. Reprinted with permission from [57]. Copyright 2012, Elsevier.
Ag joint with coffee ring (Fig. 1.19(a)) exhibits lower shear strength than the case of no coffee ring (Fig. 1.19(b)). The coffee ring effect refers to ring-like deposit caused by outward flow during evaporation of liquid media containing solid substances [58]. The capillary force can cause the agglomeration of Ag nanoparticle at the edge of joint and the gaps at the center of joint. The residual organic substances by the trapping in the densified Ag or incomplete decomposition also can cause unfilled joint layer or insufficient densification of Ag nanoparticle. A dense Ag sintered layer, AgNP-20 sintered at 250 °C (Fig. 1.20(a)), exhibits low thermal resistance of 0.120 mm²K/W, whereas the void formed Ag sintered layer, AgNO-30 sintered at 150 °C (Fig. 1.20(c)), exhibits high thermal resistance of approximately 400 mm²K/W [57].

1.4.2 Nanoporous structure with high specific surface area

Nanoporous metals have received attentions due to its unique properties as functional applications of catalyst [59], sensor and actuator [60], hydrogen storage [61] and surface-enhanced Raman scattering substrate [62]. The unique properties of nanoporous metals are attributed to their high specific surface area to volume ratio [61–63]. The nanoporous metals can be fabricated in the shape of sheet [62], thin film [63], wire [59] and particles [64]. Dealloying is widely used to fabricate the nanoporous metal which is selective dissolution of electrochemically active element into the electrolyte solution from the precursor alloy. As the precursor alloy contacts with the electrolyte, the dissolution of less noble (LN) atoms and the agglomeration of more noble (MN) atoms are simultaneously occurred at the metal/electrolyte interface. The remained MN atoms agglomerate and form island or cluster structures owing to minimize the surface area and the curvature which act as a driving force for the surface diffusion of MN atoms [65]. A schematic diagram selective dissolution of LN atoms and formation of nanoporous structure of MN atoms is shown in Fig. 1.21.

1.4.3 Ag nanoporous structure and applying as a bonding material

The nanoporous Ag (Fig. 1.22) has received attention due to its higher electrical and thermal conductivity and relatively higher strength than Au [66]. Some dealloying methods for the fabrication of nanoporous Ag from Ag-Al [66–69] and Ag-Zn [70,71] have been reported. There are many phases of Ag-Al [72] and Ag-Zn [73] binary alloy systems, which make the metallurgical phenomena and the microstructural change occurred during the dealloying complicated in comparison with the dealloying of Au-Ag which is a single phase solid solution over the whole composition range [74]. But it is still
not sufficient to explain the dealloying behavior of Ag-contained precursor and the evolution of Ag nanoporous structure. There is a need for further research on the dealloying behavior of Ag contained precursor alloys for the fabrication of Ag nanoporous structure.

The Ag nanoporous structure exhibits high specific surface area. Also it can maintain solid-state itself due to continuous ligament and pore structure. So, it is expected that solid-state bonding at low temperature can be possible without any organic substances through the Ag nanoporous sheet as a

Figure 1.21 Schematic diagram of dealloying process sequence: (a) binary alloys precursor, (b) selective dissolution of less noble element into electrolyte and (c) dealloyed porous structure of more noble element.

Figure 1.22 Ag nanoporous structure through dealloying method from Ag-Al precursor. Reprinted with permission from [58]. Copyright 2010, John Wiley & Sons.
bonding material. The possible concerns of Ag sintered joint, as mentioned in Section 1.4.1, can be solved, thereby eliminating of organic substances in bonding process. The schematic diagram of die attach process using Ag nanoporous sheet are shown in Fig. 1.23.

1.4.4 Au nanoporous bump for low temperature interconnection

Oppermann and Dietrich [75] suggested Au nanoporous bump for the low temperature interconnection, as shown in Fig. 1.24. They fabricated Au-70%Ag bump on the Si wafer by electroplating with the cyanide-based electrolyte, KAg(CN)₂ and KAu(CN)₂, and subsequent etching process in nitric acid solution in order to remove Ag from the Au-Ag alloy bump (Fig. 1.24(a)). The Au nanoporous bump exhibits low stiffness compared with bulk Au that can allow to easily deform

Figure 1.23 Schematic diagram of thermo-compression bonding method using Ag nanoporous sheet.

Figure 1.24 (a) Au nanoporous bump, (b) flip chip bonding using Au nanoporous bump with various bonding temperature and (c) possible application of Au nanoporous bump with anisotropic conductive adhesive. Reprinted with permission from [56]. Copyright 2012, Elsevier.
and densify at low temperature and pressure. It can be applied for feasible applications using Au nanoporous bump for wafer level thermocompression flip-chip bonding (Fig. 1.24(b)) and anisotropic conductive adhesive bonding (Fig. 1.24(c)). However, it is only rational to apply Au to fine-pitch interconnection [76], not a large area die attach, due to its extremely high cost.

1.5 Outline of dissertation

This dissertation covers the fabrication of Ag nanoporous sheet, establishment of Ag nanoporous bonding technique, and verification of reliability of Ag nanoporous bonding joint under the thermal storage and temperature cycling test.

In this chapter (Chapter 1), the brief descriptions on the background of power electronics, immersing issues of power electronics packaging and high temperature die attach are given. And a feasibility of Ag nanoporous bonding for high temperature die attach is also suggested.

In Chapter 2, the fabrication of Ag nanoporous sheet from Al-Ag precursor alloy using dealloying method is presented. The microstructure of Al-Ag precursor and related dealloying characteristics as a function of dealloying time were also clarified.

In Chapter 3, Ag nanoporous bonding (NPB) technique with electroless nickel/immersion gold (ENIG) finished Cu substrate using Ag nanoporous sheet is suggested. Mainly, the effects of bonding temperature and atmosphere on the shear strength of Ag NPB, microstructure of joint layer and fracture behavior of joint are discussed.

In Chapter 4, the thermal degradation behavior of Ag NPB joint with bare Cu and ENIG finished Cu during thermal storage test at 250 °C in air atmosphere is presented. The interdiffusion, oxidation and microstructure evolution at the bonding interface of Ag/ENIG and Ag/Cu during thermal storage test are demonstrated.

In Chapter 5, the reliability of Ag nanoporous bonding joint with Si chip and Cu metalized Si₃N₄ substrate under the temperature cycling from -55 °C to 150 °C is assessed. The long-term reliability of Ag NPB joint is estimated in terms of shear strength change after temperature cycling.
References

References

References

Chapter 2
Fabrication of Ag nanoporous sheet by dealloying method

2.1 Introduction

There are two phases of α-Al solid solution and γ-Ag$_2$Al intermetallic, with composition range of 40-100 at% Al in the Ag-Al phase diagram, as shown in Fig. 2.1 [1]. This make the metallurgical phenomena and the microstructural change occurred during the dealloying complicated in comparison with the dealloying of Au-Ag which is a single phase solid solution over the whole composition range [2]. The researchers have been reported about the fabrication of Ag nanoporous structure from Al-Ag precursor [3–6]. It is still not sufficient, however, to explain the dealloying behavior of Ag-contained precursor and the evolution of Ag nanoporous structure.

In the eutectic point (567 °C), over 35 at% of Ag can be soluble in the α-Al matrix. But the solubility of Ag in the Al matrix is sharply decreased with the decrease of temperature and it is negligible at the room temperature. Namely, α-Al phase is consisted mostly of Al atoms in this composition range. This eutectic reaction of Al-Ag alloy can lead to non-uniform distribution of alloying elements. Consequently, the Al dissolution from α-Al will cause formation of unexpected large pore during the dealloying. So, the supersaturation of Ag in the α-Al matrix is necessary to fabricate uniform nanoporous structure by the dealloying. Rapid solidification techniques, such as the atomization [7] and the melt-spinning [8], are helpful to the supersaturation of Ag in Al matrix, due to
their fast cooling rates.

In this chapter, a fabrication of Ag nanoporous sheet by dealloying in hydrochloric acid (HCl) solution from the Al-Ag precursor was conducted. The melt-spinning technique was adopted for the preparation of precursor for the supersaturation of Ag in Al. The melt-spun ribbon dealloyed in HCl at room temperature for 10-720 min was investigated to confirm and describe the occurring phenomena during the dealloying process. Especially, the channel formation occurred at the grain boundary and the formation of Ag cluster from α-Al and γ-Ag_2Al were observed. Then the coarsening

Figure 2.1 (a) Equilibrium phase diagram of binary Ag-Al system, (b) miscibility gap in the eutectic α-Al + γ-Ag_2Al field. Reprinted with permission from [8]. Copyright 1987, Springer.
behavior of Ag nanoporous structure was analyzed by coarsening mechanism which was controlled by surface diffusion of Ag in HCl solution.

2.2 Experimental

2.2.1 Fabrication of Al-Ag precursor

High purity aluminum (99.999%) and silver (99.98%) purchased from Nilaco Co. (Tokyo, Japan) were used for the preparation of precursor alloy. The precursor alloy was fabricated using single roller melt-spinning technique (Fig. 2.2). Al-20at% Ag ingot was prepared using high frequency induction melting furnace under argon atmosphere. Pre-alloyed Al-Ag ingot was remelted in the graphite crucible under argon atmosphere and then ejected through the rectangular shaped slit with the area of 0.3 mm x 20 mm on the oxygen-free copper (OFC) roller with the diameter of 305 mm. The temperature of molten metal was 750 °C at the ejection time, the ejection pressure was 55 kPa, the distance from the tip of slit to the surface of OFC roller was 0.7 mm and the linear velocity of roll was approximately 10 m/s. The melt-spun ribbon with the width of 18-20 mm and thickness of 90-100 μm can be obtained.

2.2.2 Fabrication of Ag nanoporous structure using dealloying method

The melt-spun Al-Ag was immersed into the dilute HCl solution with the concentration of 2 M at the room temperature (25 °C). For the description of dealloying behavior of Al-Ag alloy during
the process, Al-Ag ribbons were treated for the various dealloying times from 3 min to 720 min. The dealloyed specimen was sequentially rinsed with distilled water and ethyl alcohol.

2.2.3 Characterization methods

The observation of microstructures and chemical analysis of melt-spun Al-Ag precursor and dealloyed nanoporous Ag and chemical analysis were conducted using scanning electron microscope (SEM, SU-70, Hitachi) equipped with energy dispersive X-ray spectrometer (EDS, Oxford Instruments), electron probe micro-analyzer (EPMA, JXA-8530F, JEOL) and transmission electron microscope (TEM, JEM-2100F, JEOL) equipped with EDS detector (JED-2200, JEOL) on scanning (S)TEM mode. *In-situ* TEM sample preparation and cross-sectioning of dealloyed sample were conducted using focused ion beam (FIB, JIB-4500, JEOL). Detailed information about the *in-situ* TEM sample preparation method can be found in Appendix 1. TEM image acquisition and analysis were conducted using DigitalMicrograph (Gatan). The size scale related with the dealloyed microstructure was measured using commercial image analysis program, ImagePro Plus (Media Cybernetics).

The phase constitution of each sample was measured by X-ray diffractometer (XRD, Ultima IV, Rigaku) with Cu Kα (λ = 0.154056 nm) radiation. The 2θ scan range was 30° to 90°, scan step of 2θ was 0.02° and scan rate was 2°/min. The International Centre for Diffraction Data (ICDD) powder diffraction file (PDF) cards, including #01-071-3760 for the Al, #01-071-4613 for the Ag and #01-074-5113 for the aluminum silver (Ag0.667 Al0.333), were used as references for the identification of diffraction pattern. The quantitative phase analysis was conducted by means of the reference intensity ratio (RIR) method [9] using PDXL software (Rigaku).

2.3 Microstructural characteristics of Al-Ag precursor alloy

2.3.1 Bi-phase Al-Ag precursor

The Al-Ag precursor exhibited bi-phase structure, face centered cubic (FCC) α-Al and hexagonal γ-Ag2Al, as shown in Fig. 2.3(a). The volume fraction of α-Al and γ-Ag2Al were 94.4% and 5.6%, respectively. It can be confirmed that 78.59 at% and 1.85 at% of Al exists in α-Al and γ-Ag2Al, respectively, with the combination of XRD quantitative analysis and EDS result (an initial Ag composition of Al-Ag precursor = 19.44 at%). Due to the fast cooling rate of melt-spinning process
[10,11], the supersaturation of Ag element in the Al matrix and the suppression of considerable amount of γ-Ag_2Al became possible. This supersaturation of Ag leads to expansion of lattice structure of α-Al solid solution. The lattice parameters of α-Al(Ag) from the individual reflections can be calculated using the combination of the formula for the interplanar spacing of cubic cell (equation 2.1),

$$\frac{1}{d_{hkl}^2} = \frac{h^2+k^2+l^2}{a^2}$$

(2.1)

where d_{hkl} is an interplanar spacing of (hkl) plane and a is a lattice parameter of cubic cell, and the Bragg’s law (equation 2.2),

$$n\lambda = 2d \sin \theta$$

(2.2)

where λ is the wavelength of X-ray (Cu K$_{\alpha}$, 0.154056 nm) and θ is a diffraction angle [12]. The calculated results of lattice parameters of α-Al(Ag) phase are shown in Fig. 2.3(b). In order to reduce systematic error of sine curve, an extrapolation method to $\theta = 2\pi$ was adopted [13]. The extrapolated value of apparent lattice parameter of α-Al(Ag) phase was 0.40519 nm. According to the Vegard’s law which is based on the simple linear relationship between the concentration of solute element and the lattice parameter of matrix, solute (Ag) concentration in Al matrix was approximately
13.5 at%. But it will not be an accurate result due to the quite similar values between lattice parameters of Al and Ag [14].

The microstructure of melt-spun Al-Ag precursor can be confirmed in Fig. 2.4 and Fig. 2.5. Fig. 2.4 shows microstructure of Al-Ag precursor alloy and elemental distribution of Ag and Al. The plate-shaped γ-Ag$_2$Al precipitates were mainly observed at the grain boundary of α-Al(Ag) phase, and small amount of γ-Ag$_2$Al was observed as a Widmanstätten structure at the grain of α-Al(Ag). The Widmanstätten structure is generally occurred in Al-Ag alloy due to crystallographic orientation relationship, $\{111\}_{\alpha}/\{(0001)\}_{\gamma}$, between FCC matrix and hexagonal close packed (HCP) precipitate [15,16].

Fig. 2.5 shows bright field (BF) and dark field (DF) TEM images of Al-Ag precursor alloy. The dark area is γ-Ag$_2$Al precipitate, and the bright area vicinity the γ-Ag$_2$Al phase is Ag depleted zone in Fig. 2.4(a). Ag depleted zone in α-Al(Ag) phase around γ-Ag$_2$Al precipitates will be mentioned in Section 2.4.3. A selected area electron diffraction (SAED) pattern (Fig. 2.5(b)), obtained using a selected area aperture with the diameter of 150 nm, exhibits bi-phase of α-Al(Ag) and γ-Ag$_2$Al. The γ-Ag$_2$Al precipitates inside the grain were oriented in the certain direction, which is known as Widmanstätten structure. The precipitation caused by the diffusion of alloying element into the grain boundary involves concentration gradient near the boundary and consequently the solute depletion zone is formed [17]. The individual DF TEM images of α-Al(Ag) using (3 1 1)$_{\alpha}$ diffraction pattern (Fig. 2.5(d)) and γ-Ag$_2$Al precipitates and (1 0 -1)$_{\gamma}$ diffraction pattern (Fig. 2.5(e)) clearly show the distributions of α-Al(Ag) and γ-Ag$_2$Al phases. Meanwhile, DF image of Fig. 2.5(f) exhibited both of α-Al(Ag) and γ-Ag$_2$Al, because of the superposition of α-Al(Ag) and γ-Ag$_2$Al diffraction patterns.

2.3.2 Phase separation of Ag and Al in α-Al(Ag) phase

Fig. 2.6(a) show the phase separation of Al (bright area) and Ag (dark area) in α-Al(Ag) phase, which comes from the spinodal decomposition. The spinodal decomposition and growth of γ-Ag$_2$Al plate can be occurred through the supersaturation of Ag and subsequent quenching of Al-Ag alloy. The α-Al(Ag) phase decomposed into Ag-rich and Ag-poor in order to lower the free energy of system [18]. The decomposed α-Al(Ag) phase shows continuous Ag-rich phase due to the high content of solute (Ag) compared with dilute Al-Ag alloy [19]. A high resolution lattice image of α-Al(Ag), as shown in Fig. 2.6(b), indicates that the separated Al and Ag show same crystallographic orientation and coherent interface. This result shows good agreement with the single FCC peak in XRD result of
2.2.1 Bi-phase Al-Ag precursor

Figure 2.4 Electron probe micro-analyzer (EPMA) mapping result of Al-Ag precursor: (a) back-scattered electron (BSE) image, (b) Ag L line mapping and (c) Al K line mapping. Lined arrows and dotted arrows indicate boundary precipitate and Widmanstätten structure of γ-Ag₂Al, respectively.

Figure 2.5 (a) Transmission electron microscopy (TEM) bright field (BF) image of melt-spun Al-Ag precursor, (b) selected area electron diffraction (SAED) pattern of vicinity of interface between α-Al(Ag) and γ-Ag₂Al denoted with white circle in a, (c) indexed SAED pattern, and TEM dark field (DF) images of (d) α-Al(Ag) using (311)α, (e) γ-Ag₂Al using (10-1)γ, spot and (f) α-Al(Ag) + γ-Ag₂Al using (311)α// (122), spot, where the diffraction spots used for DF images are denoted in (b).
Al-Ag precursor (Fig. 2.3(a)). There are small lattice strain at the Ag/Al interface due to the slight difference in atomic radius between Al and Ag [20]. The measured interplanar distance of (220) plane of α-Al(Ag) phase was 0.143 nm (Fig. 2.6(b)). The interplanar distances of (220) plane of pure Al and pure Ag are 0.1431 nm and 0.1445 nm, respectively. Therefore, Ag rich region is subjected to compressive strain and Al rich region is subjected to tensile strain.

A SAED pattern of α-Al(Ag) phase (Fig. 2.6(a)) shows 6-fold {222} patterns and 1/3{422} forbidden reflections. This forbidden reflections have been reported in SAED patterns along the [111] direction in FCC metal [21–23]. Germain et al. [22] suggested some models for formation of 1/3{422} forbidden reflections in FCC structure. They argued that the presence of parallel (111) stacking fault or twin to the upper and lower surface of specimen can make 1/3{422} forbidden reflections appear in the SAED pattern with zone axis of [111].

The stacking fault is a planar defect can be easily observed FCC metal by removing (intrinsic stacking fault) or inserting (extrinsic) of close-packed plane. Fig. 2.7 shows the schematic diagrams of stacking sequences of FCC structure, HCP structure and FCC with stacking fault and corresponding electron diffraction patterns when the electron beam an incident electron beam is perpendicular to the close-packed plane. The diffraction patterns of (12-10)\textsubscript{HCP} and (01-10)\textsubscript{HCP} coincide with the diffraction patterns of (220)\textsubscript{FCC} and 1/3(422)\textsubscript{FCC} patterns, respectively. The superposition of SAED patterns of FCC and HCP is seemed to be a cause of formation of forbidden reflection.

2.3.3 Growth of plate-shape γ-Ag\textsubscript{2}Al precipitate

As shown in Fig. 2.8(a), γ-Ag\textsubscript{2}Al precipitate was formed as a plate shape. The HRTEM images of Fig. 2.8(b) and Fig. 2.8(c) show the coherent interface and incoherent interface of α-Al(Ag) and γ-Ag\textsubscript{2}Al. The cause of γ-Ag\textsubscript{2}Al precipitate growth as a plate-shaped is different growing velocity in directions. Generally, the coherent and semicoherent interfaces exhibit low mobility, and the incoherent interface exhibits fast mobility. The mobility difference between coherent interface and incoherent interface leads that the precipitate grows in shape of the plate type. The morphology of interface between matrix and precipitate is closely related with the type of interface. The coherent or semicoherent interfaces exhibits planar shape and an incoherent interface exhibits round/step shape, respectively [15].
2.3.2 Phase separation of Ag and Al in α-Al(Ag) phase

Figure 2.6 (a) TEM BF image and corresponding SAD pattern of α-Al(Ag) region and (b) high resolution TEM (HRTEM) image and corresponding fast Fourier transform (FFT) spectrum of Al and Ag phase separated region. The separated Al and Ag show same crystallographic orientation and coherent interface.

Figure 2.7 Stacking sequences of (a) $\{111\}$ layers of FCC, (b) (0001) layers of HCP and (c) stacking fault in FCC, and corresponding SAED patterns of (d) $<111>$ direction of FCC and (e) $[0001]$ direction of HCP and (f) formation of $1/3\{422\}$ forbidden reflection by superposition of diffraction patterns of FCC and HCP.
2.4 Dealloying behavior of Al-Ag precursor in the HCl solution

2.4.1 Change of phase constitution during the dealloying

Fig. 2.9(a) and 2.9(b) indicate XRD pattern and calculated lattice parameters of the melt-spun Al-Ag ribbon and the dealloyed samples as a function of dealloying time. The peak data of (311) and (222) plane diffraction for the FCC structure was used for the calculation to reduce systematic error. Fig. 2.9(c) shows EDS results about residual Al as a function of dealloying time. After 20 min, the 2θ position shifted into near the Ag position and widening of Al peaks were observed, which are the signs of the formation of porous Ag as a result of Al dissolution. Also the relative intensity of γ-Ag2Al peak was increased up to 40 min. It is caused by relative increase of the volume fraction of γ-Ag2Al due to the dissipation of α-Al. These results indicate that the dissolution rate of Al from α-Al solid solution is very fast compared with the γ-Ag2Al. This difference of dissolution rate between two
phases caused by the difference of electrochemical potential also can be found in the dealloying from Al-Cu alloy [24]. Also, it can be confirmed from EDS result (Fig. 2.9(c)). The contents of Al was significantly decreased and reached to about 5.6 at% for 20 min. With combination of XRD results which were mentioned above, it was confirmed that Al existed in α-Al was almost dissolved into the acid. After 360 min, the lattice parameter of FCC was nearly the same with the pure Ag. It indicates that α-Al phase was fully dealloyed and became pure Ag. And then, only FCC Ag peak was observed at 720 min.

2.4.2 Morphology change during the dealloying

The representative SEM images on the morphological change of Al-Ag precursor during the dealloying reaction with dealloying time of 10, 20, 70 and 720 min are shown in Fig. 2.10. At the early stage of dealloying process, intergranular corrosion (IGC) was occurred which is shown in Fig. 2.10 (a). After the 70 min (Fig. 2.10(c)), the plate-type precipitates of γ-Ag$_2$Al at the grain boundary (mean thickness of 227 ± 55 nm) and inside the grain (mean thickness of 72 ± 9 nm) were revealed. There

Figure 2.9 (a) The change of phase constitution, (b) the calculated lattice parameters of FCC crystal using diffraction data of (311)$_\alpha$ and (222)$_\alpha$ planes and (c) the residual Al measured by energy dispersive X-ray spectroscopy (EDS) during the dealloying reaction.
were deep channels (width of 50-300 nm) at the grain boundary. As shown in Fig. 2.9(d), \(\alpha \)-Al and \(\gamma \)-Ag\(_2\)Al became porous structure and initial grain/intermetallic wall structure was kept in shape at 720 min. The dealloyed structure from \(\alpha \)-Al was shown 3-dimensional bi-continuous ligament/pore structure. But the one from \(\gamma \)-Ag\(_2\)Al was shown pored wall structure due to the similarity between pore size and thickness of plate-type precipitates.

2.4.3 Intergranular corrosion induced by Ag depletion at the grain boundary

As shown in Fig. 2.4, the concentration of Ag shows lower value in the vicinity of interface of \(\alpha \)-Al(Ag) and \(\gamma \)-Ag\(_2\)Al, compared with precipitate (\(\gamma \)-Ag\(_2\)Al) and inside the grain. From the EPMA mapping, the depletion of solute (Ag) in the vicinity of grain boundary \(\gamma \)-Ag\(_2\)Al precipitates can confirm clearly, besides, the depletion of Ag in the vicinity of Widmanstätten structure is indistinctive. The spatial resolution of X-ray spectroscopy is governed by penetration and electron trajectory in the specimen, that is approximately 1 \(\mu \)m\(^2\) due to wide electron trajectory in bulk sample for SEM observation [25]. The X-ray mapping analysis with high spatial resolution can be achieved through the

Figure 2.10 SEM secondary electron (SE) images about the change of morphology during the dealloying reaction for the dealloying time of (a) 10 min, (b) 20 min, (c) 70 min and (d) 720 min.
2.4.3 Intergranular corrosion induced by Ag depletion at the grain boundary

Figure 2.11 Scanning TEM (STEM) BF images, EDS mapping results of Ag and Al of (a) γ-Ag$_2$Al precipitate at the grain boundary and (b) γ-Ag$_2$Al precipitate inside the grain which are indicated white dotted area as 11a and 11b in Fig. 2.5, respectively. (c, d) Chemical compositions of Al and Ag the dotted lines in (a) and (b), where α-Al(Ag) and γ-Ag$_2$Al regions are indicated with bright grey and dark grey.

STEM based EDS analysis, as shown in Fig. 2.11. The Ag depleted zones near the γ-Ag$_2$Al boundary precipitates (Fig. 2.11(a)) and Widmanstätten structure of γ-Ag$_2$Al precipitates (Fig. 2.11(b)) were more distinct than the EPMA mapping analysis (Fig. 2.4). The concentrations of Ag (solute) in the adjacent to the γ-Ag$_2$Al show lower than 3 at%, due to the migration of Ag into γ-Ag$_2$Al for the growth of precipitates. The phase separation of Ag and Al in the in the α-Al(Ag) phase, as explained in Section 2.3.2, led to the fluctuation of Ag concentration. The γ-Ag$_2$Al precipitate area exhibits a good agreement with the stoichiometric composition of γ-Ag$_2$Al (Fig. 2.11(c,d)).
The IGC can clearly observe in cross-section image after 3 and 5 min, as shown in Fig. 2.12. After dealloying for 3 min, there is empty space in the vicinity of γ-Ag$_2$Al (Ag-depleted zone) near the surface. The evolution of porosity in the α-Al(Ag) phase is insignificant. After dealloying for 5 min, the penetration depth of electrolyte increased and the α-Al(Ag) phase near the IGC is slightly dealloyed.

Fig. 2.13 shows the mechanism of channel formation during the dealloying of Al-Ag alloy at...
2.4.3 Intergranular corrosion induced by Ag depletion at the grain boundary

The grain boundary which can be understood from Fig. 2.11 and Fig. 2.12. As shown in Fig. 2.8, \(\gamma \)-\(\text{Ag}_2\text{Al} \) was mainly nucleated at the boundary and grew as plate-type due to the difference of the growth rate between semi-coherent and incoherent interface [15]. The Ag depleted zone is more sensitive to the acid than \(\alpha \)-\(\text{Al} \) and \(\gamma \)-\(\text{Ag}_2\text{Al} \) due to the low concentration of Ag. So, it was preferentially dissolved into the acid, as shown in Fig. 2.13(b) and 2.13(c). Consequently, the depleted zone completely disappeared and the channel was formed at \(\alpha \)-\(\text{Al} \)/\(\gamma \)-\(\text{Ag}_2\text{Al} \) interface.

2.4.4 Development of porosity from \(\alpha \)-\(\text{Al} \) and \(\gamma \)-\(\text{Ag}_2\text{Al} \) phases

In Fig. 2.14 and 2.15, the development of Ag cluster and the evolution to pore structure from \(\alpha \)-\(\text{Al} \) and \(\gamma \)-\(\text{Ag}_2\text{Al} \) are shown. There are some evidences of Ag cluster at the surface of \(\alpha \)-\(\text{Al} \) for 10 min (dotted arrow in Fig. 2.14(a)) and \(\gamma \)-\(\text{Ag}_2\text{Al} \) for 540 min (lined arrow in Fig. 2.15(c)). At these times, the scales of Ag cluster from \(\alpha \)-\(\text{Al} \) and \(\gamma \)-\(\text{Ag}_2\text{Al} \) were about 10-20 nm and 80-150 nm, respectively. The Ag cluster formation from \(\alpha \)-\(\text{Al} \) at the surface (Fig. 2.14(a)) and in the internal area (Fig. 2.14(b)) accompanied by IGC and subsequent electrolyte penetration were explained above. The \(\alpha \)-\(\text{Al} \) at the surface became nanoporous structure for 20 min (Fig. 2.14(c)). At this time, there is no any evidence of dealloying in \(\gamma \)-\(\text{Ag}_2\text{Al} \) region.
In the case of γ-Ag_2Al, as dealloying time passed by, the cluster size was increased and the step-like shape of Ag cluster was distinctly revealed (Fig. 2.15). Erlebacher [26] suggested the atomistic description that the cluster of MN elements formed and the island structure grew by gradual stripping of LN elements layer and surface diffusion of MN elements. The dissolution rate of Al from γ-Ag_2Al was considerably slow in comparison with in case of α-Al.

Figure 2.14 (a) Formation of Ag cluster from α-Al for 10 min, (b) development of nanoporous structure inside the sample by penetration of electrolyte along intergranular corrosion region for 15 min, and (c) channel formation along the grain boundary and Ag nanoporous structure of α-Al region for 20 min.

In the case of γ-Ag_2Al, as dealloying time passed by, the cluster size was increased and the step-like shape of Ag cluster was distinctly revealed (Fig. 2.15). Erlebacher [26] suggested the atomistic description that the cluster of MN elements formed and the island structure grew by gradual stripping of LN elements layer and surface diffusion of MN elements. The dissolution rate of Al from γ-Ag_2Al was considerably slow in comparison with in case of α-Al.

Volume changes during the evolution of nanoporosity from α-Al (15at%Ag supersaturated) and γ-Ag_2Al. Molar volume of crystalline material can be calculated using equation 2.3,
where V_m is a molar volume, V_c is a unit cell volume, N_a is the Avogadro constant ($6.022 \times 10^{23} \text{ mol}^{-1}$), and Z is a number of formula units per unit cell. Crystallographic parameters for pure Al, α-Al(Ag), pure Ag and γ-Ag$_2$Al are represented in Table 2.1. With an assumption that Al is completely dissolved into electrolyte, the porosity of Ag porous structure from α-Al(Ag) and γ-Ag$_2$Al can be calculated using equation 2.4,

$$\text{porosity} = \frac{V_m - (1 - C_{Ag})V_{m,Ag}}{V_m} \times 100\%$$ \hspace{1cm} (2.4)

where $V_{m,i}$ and $V_{m,Ag}$ are molar volumes of initial compound and Ag porous structure (equal to pure Ag), respectively, and C_{Ag} is an atomic concentration of Ag in initial compound (C_{Ag} of α-Al(Ag) = 15%, C_{Ag} of γ-Ag$_2$Al = 66.67%). The calculated volume changes as a result of dealloying from α-Al and γ-Ag$_2$Al were approximately 84.6% and 31.4%, respectively. According to the computational

Figure 2.15 SEM SE images on the formation of Ag cluster from γ-Ag$_2$Al for (a) 10 min, (b) 180 min, (c) 540 min, and (d) formation of pored-wall structure for 720 min.
Table 2.1 Crystallographic parameters for Al, α-Al(Ag), Ag and γ-Ag₂Al.

<table>
<thead>
<tr>
<th>Phase</th>
<th>JSPDS no</th>
<th>Symmetry</th>
<th>Space group</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Z</th>
<th>Vₐ (Å³)**</th>
<th>Vₘ (Å³/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>71-3760</td>
<td>cubic</td>
<td>Fm-3m</td>
<td>4.0488</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>66.371</td>
<td>9.992</td>
</tr>
<tr>
<td>α-Al(Ag)*</td>
<td>-</td>
<td>cubic</td>
<td>Fm-3m</td>
<td>4.0519</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>66.652</td>
<td>10.015</td>
</tr>
<tr>
<td>Ag</td>
<td>71-4613</td>
<td>cubic</td>
<td>Fm-3m</td>
<td>4.0880</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>68.318</td>
<td>10.285</td>
</tr>
<tr>
<td>γ-Ag₂Al</td>
<td>74-5113</td>
<td>hexagonal</td>
<td>P6₃/mmc</td>
<td>2.8779</td>
<td>-</td>
<td>4.6255</td>
<td>2</td>
<td>33.177</td>
<td>9.989</td>
</tr>
</tbody>
</table>

* A lattice parameter of α-Al(Ag) is derived data from XRD analysis (Fig. 2.3).
** cubic: $V_\text{c} = a^3$; hexagonal: $V_\text{c} = a^2 c \sin(60^\circ)$

analysis about relationship between geometry of nanostructure and density [27], porous structure from α-Al and γ-Ag₂Al can be classified as disordered nanoporous structure and cylindrical pore structure, respectively. The high concentration of Ag in γ-Ag₂Al leads to this close-pore structure. This result has also been proved in another research about dealloyed structure from the Al-60Ag precursor [28].

2.4.5 Ligament coarsening and assessment of surface diffusivity of Ag

Fig. 2.16 exhibits the example of measurement method for ligament (fibrous connecting parts of Ag junctions in the nanoporous structure) size. The ligament size was taken as a average value on over 20 parts in each dealloying time. The growth of ligament as a function of time can be clearly identified in Fig. 2.17. The size scale of ligament is increased in accordance with the coarsening mechanism which is controlled by the surface diffusion of MN elements [29]. The ligament size of

![ligament size of Ag nanoporous](image)

- average: 43.41 nm
- standard deviation: 4.26 nm

Figure 2.16 The example of ligament size measurement for Ag nanoporous structure which is dealloyed for 70 min.
nanoporous Ag was gradually increased from 25 ± 5 nm to 113 ± 22 nm with the increase of dealloying time (Fig. 2.17(f)). The size scale and growth rate of nanoporous structure seems to be proportional to the surface diffusivity of MN element [4,30].

Many researchers have shown the linear relationship between columnar radius and fourth root of time, $t^{1/4}$, at the Au columnar structure and electrolyte interface [31–33]. They have expressed the time dependence of the radius of columnar structure using equation 2.5:

$$r(t)^4 = \frac{2 \gamma a^2 D}{k_B T} \times t$$ \hspace{1cm} (2.5)
where \(r(t) \) is the radius of columnar structure at time \(t \), \(\gamma \) is the surface energy, \(a \) is the lattice parameter, \(D_s \) is the coefficient of surface diffusion at temperature \(T \) and \(k_B \) is the Boltzmann constant (1.380648 \times 10^{-23} \text{ J/K}). Qian and Chen [34] attempt to explain the coarsening behavior of Au nanoporous structure and calculate the surface diffusivity of Au in electrolyte during the dealloying using this relationship. And it also has been used for the expression of coarsening behavior of Ag [3] and Cu [24] nanoporous structure. For the calculation of surface diffusivity of Ag in HCl during dealloying process, the given parameters in Equation 2.5 were replaced by dealloying parameters, where \(r(t) \) is the radius of ligament at dealloying time of \(t \), \(\gamma \) is the surface energy of Ag (1.24 J/m²) [35], \(a \) is the lattice parameter of Ag (0.4088 nm), \(D_s \) is the coefficient of surface diffusion of Ag and \(T \) is the dealloying temperature.

Fig. 2.18 is shown the mean radius of ligament as a function of fourth root of time, \(t^{1/4} \). The given values show relatively good linear relationship. The linear fitting was conducted using the least square regression method. The slope of the fitting line is correspond to \((2\gamma a^4 D_s/kT)^{0.25}\), so the \(D_s \) of Ag can be calculated. The calculated value of \(D_s \) of Ag in 2 M HCl at room temperature was \(2.34 \times 10^{-17} \text{ m}^2/\text{s} \). This value shows two orders of magnitude higher than Au (\(D_s = 2.0 \times 10^{-19} \text{ m}^2/\text{s} \)) at the similar dealloying temperature (298 K) [35]. It shows good agreement with the general difference of the \(D_s \) between Ag and Au [36]. In the same precursor system, our result shows quite low value in comparison with the calculation value of the \(D_s \) of Ag (\(4.85 \times 10^{-16} \text{ m}^2/\text{s} \)) in the dealloying of Al-15Ag in 5% HCl at 363 K [3]. It seems that the \(D_s \) is influenced by dealloying temperature. The temperature
dependence of D_s can be seen in the fabrication of nanoporous Au from Au-Ag precursor. The nanoporous structure is more and more coarsened and D_s is also increased with the increasing of dealloying temperature [35].

2.5 Overall description on the dealloying behavior of bi-phase Al-Ag precursor

Fig. 2.19 shows the schematic diagram about the sequential dealloying reaction of bi-phase Al-Ag precursor in the HCl. The dissolution of Al from the surface and IGC were occurred in the early stage of reaction. The electrolyte penetrated into the alloy through the channel, as shown in Fig. 2.19 (b), and open-pore, as shown in Fig. 2.19(c), and the dissolution of Al was accelerated due to the increase of contact area between the alloy and the electrolyte. The EDS result, as shown in Fig. 2.8(c) confirms this, which is shown a significant decrease of Al concentration for 10-20 min.

It is not sure whether α-Al is preferentially dealloyed than γ-Ag$_2$Al due to the galvanic effect or α-Al and γ-Ag$_2$Al is simultaneously dealloyed from the observation of microstructure. But the dealloying rate of α-Al was about 20 times faster than γ-Ag$_2$Al in HCl. So, α-Al was transformed into

![Figure 2.19](image_url)

Figure 2.19 Schematic diagram of Al dissolution and Ag nanoporous structure formation sequence of the bi-phase Al-Ag alloy during the dealloying: (a) initial state, (b) intergranular corrosion and Ag cluster formation at the precursor/electrolyte interface, (c) formation of the 3-dimensional Ag nanoporous structure form α-Al, (d) formation of the Ag pored-wall structure from γ-Ag$_2$Al and (e) plane figure of the pored-wall structure (dotted area in d).
the Ag nanoporous structure, as shown in Fig. 2.19(c), and then the residual γ-Ag$_2$Al was dealloyed, as shown in Fig. 2.19(d). The reason of the formation of pored wall structure from γ-Ag$_2$Al was mentioned above. Zhang and Zhang [37] concluded that the diffusion distance of NM elements during the whole dealloying reaction was not sufficient to migrate across the channel. For this reason, the initial grain/boundary precipitates structure was kept in the shape, as shown in Fig. 2.19.

2.6 Conclusion

The Ag nanoporous sheet was fabricated using dealloying method from the Al-Ag precursor alloy. The dealloying behavior of Al-20at% Ag ribbon under free corrosion condition with 2 M HCl has been investigated. The fabricated Al-Ag ribbon using melt-spinning was consisted of α-Al (main matrix) and γ-Ag$_2$Al (grain boundary precipitate and Widmanstätten structure). A considerable amount of γ-Ag$_2$Al was suppressed by the rapid solidification, 5.6% of γ-Ag$_2$Al was precipitated. In the early stage of dealloying, the preferential attack on the Ag depleted zone caused the formation of deep channel at the grain boundary. The dealloying rate of α-Al was faster than it of γ-Ag$_2$Al, so α-Al was preferentially formed Ag nanoporous structure. The Ag nanoporous structure with the size scale of 113 ± 22 nm was obtained through the free corrosion dealloying in HCl for 720 min.

References

References

Chapter 3

Solid-state thermo-compression bonding using Ag nanoporous sheet

3.1 Introduction

In the fabrication of the requisite nanoparticle paste, various organic substances including solvents, capping molecules, and binder have been adopted to adjust the final properties of the paste [1], as mentioned in Chapter 1. After the joining process, any residual organic material or coffee-ring effect can induce unexpectedly large voids or gaps in the joint area [2,3]. It also showed that the problems of void formation and hindrance of sintering caused by the evaporation of solvent and residual surfactant of nanoparticle [4–6]. To address these problems, this chapter focuses instead on the nanoporous metals [7], and proposes that solid-state nanoporous bonding (NPB) can be achieved using a Ag nanoporous sheet without the need for any solvent, organic substance or flux.

In this study, the Ag nanoporous sheet fabricated by dealloying method from the Al-Ag precursor alloy was applied as a bonding material for the die attach. The microstructure and shear strength of the resulting joint were characterized. The effect of bonding temperature on joint strength, formation of sintered Ag layer and fracture behavior of Ag NPB process with an electroless Ni/immersion Au (ENIG) surface finished Cu disk in air condition was evaluated. Owing to clearly assess the changes of shear strength results and fracture behavior of Ag NPB joint with various bonding temperatures, Ag NPB process in N₂ was also conducted for the comparison.
3.2 Experimental

3.2.1 Preparation of Ag nanoporous sheet

The Ag nanoporous sheet (thickness = 90-100 μm, ligament size = 110 nm) was fabricated by dealloying a melt-spun Al-Ag precursor alloy in a 2 M HCl solution for 3 h at 75 °C. The appearances of Al-Ag precursor and dealloyed Ag nanoporous sheet and microstructure of Ag nanoporous sheet are shown in Fig. 3.1(a,b). The phase change from the α-Al(Ag) and γ-Ag2Al of the Al-Ag precursor to a single Ag phase of Ag nanoporous sheet as a result of dealloying could be confirmed in Fig. 3.1(c). As shown in Fig. 3.2, an electron probe micro-analyzer (EPMA) mapping results of Ag nanoporous sheet dealloyed at 25 °C for 12 h exhibited residual Al signal, namely the dealloying of Al was not insufficient. The residual Al was significantly reduced in case of the Ag nanoporous sheet dealloyed at 75 °C for 3 h. Afterwards, Ag nanoporous sheet for bonding material (in Chapter 3-5) was prepared using dealloying at 75 °C for 3 h.

3.2.2 Ag nanoporous bonding process

The ENIG finished Cu disk as a test specimen, as shown in Fig. 3.3(a), was used to evaluate to strength of NPB joint. The thickness of Ni(P) and Au were about 2 μm and 80 nm, respectively. A cross-section of ENIG finish was observed using owing to confirm initial quality of ENIG surface finish with a scanning electron microscope (SEM, SU-70, Hitachi) and a transmission electron microscope (TEM, JEM-2100F, JEOL) before the bonding process. The TEM sample preparation of ENIG finish was prepared by the in-situ lift-out method using a focused ion beam (FIB, JIB-4500, JEOL). Prior to FIB milling, thin Au-Pd (approximately 50 nm) and C (approximately 2 μm) were deposited on surface of ENIG for the preservation from the damage of very thin Au layer by a Ga ion beam. As shown in Fig. 3.3(b-d), uniform ENIG layer was formed without any defect. The ENIG finished Cu disk was immersed in acetone and then degreased using an ultrasonic cleaner for 5 min, in order to remove any surface contamination. From a selected area electron diffraction (SAED) pattern, Ni(P) plating layer showed an amorphous structure, as shown in Fig. 3.3(d). The Ag nanoporous sheet was then applied to the surface of the test specimen. The ENIG finished Cu disks were bonded using a thermo-compression bonding system in both air and N₂ atmosphere for the comparison. An applied pressure of 20 MPa was used, and the bonding temperatures varied from 200 °C to 400 °C. The temperature profile of the bonding process is shown in Fig. 3.4.
3.2.2 Ag nanoporous bonding process

![Image](image_url)

Figure 3.1 (a) Optical image of melt-spun Al-Ag precursor and dealloyed Ag nanoporous sheet, (b) scanning electron microscopy (SEM) secondary electron (SE) image of Ag nanoporous structure, and (c) phase constitution of Al-Ag precursor and the dealloyed nanoporous Ag.

![Image](image_url)

Figure 3.2 SEM SE images and X-ray mapping results of Ag L and Al K on the dealloyed Ag nanoporous sheet (a) at 25 °C for 12 h and (b) at 75 °C for 3 h.
Figure 3.3 (a) Schematic diagram of the electroless Ni/immersion Au (ENIG) finished Cu disk, (b) SEM SE image of focused ion beam (FIB) milled cross-section of ENIG finished Cu, and (c, d) transmission electron microscopy (TEM) bright field (BF) images of ENIG surface finish. Inset selected area electron diffraction (SAED) pattern in (c) indicates that Ni(P) layer is an amorphous structure.

Figure 3.4 A temperature profile of Ag nanoporous bonding process.
3.2.3 Characterization methods

The maximum fracture load of the NPB joint was measured using shear tester (STR-1000, Rhesca) with a shear rate of 1 mm/min and a shear height from the surface of 0.2 mm, where we obtained an average value of the shear strength of five samples. The cross-sections and fracture morphologies of the NPB joints were observed with SEM using an acceleration voltage of 5 kV. The interfacial reaction between Ag and ENIG was investigated using energy-dispersive X-ray spectroscopy (EDS, JED-2200, JEOL) on the scanning TEM (STEM) mode with the probe size of incident beam of 1 nm. Cross-sectional samples were polished using an Ar ion beam with a cross-section polisher (CP, SM-09010, JEOL) using an acceleration voltage of 5 kV, in order to prevent any distortion of microstructure of NPB joints or any particle embedding which can be arisen by the general methods for the metallurgical sample preparation [8]. The distribution of each element on the fracture surface was measured with an electron probe micro-analyzer (EPMA, JXA-8530F, JEOL) using an acceleration voltage of 15 kV, in order to perform image analysis of the fracture mode. The thickness and porosity of the porous layer and area fraction of fracture mode of Ag NPB joint were evaluated using a commercial image analysis program, Image-Pro Plus (Media Cybernetics).

The chemical states of the elements at the fracture surface were examined using X-ray photoelectron spectroscopy (XPS, AXIS-165x, Kratos) with monochromatic Al Kα radiation. The scan range of the survey spectra was 0 - 1000 eV and the scanning step of the binding energy (BE) was 0.1 eV. High-resolution spectra of the Ni 2p3/2 core-level (the range of BE = 851 - 859 eV), the O 1s core-level (the range of BE = 527 - 535 eV), the Ag 3d5/2 core-level (the range of BE = 365 - 371 eV) and the Au 4f7/2 core-level (the range of BE = 81 - 87 eV) were obtained with the scan step of 0.05 eV. The data acquisition and the XPS peak analysis were conducted using the Kratos Vision program. The subtraction of background from the core-level XPS spectra of the selected elements was performed using the Shirley algorithm [9], and the peak fitting was conducted using the Gaussian distribution function.

3.3 Joint formation of Ag nanoporous bonding

3.3.1 Microstructural characteristic of Ag layer

Fig. 3.5 shows cross-sectional SEM and TEM images of the NPB joint created. These images reveal that the Ag layer has a dense/porous sandwich structure, wherein the dense layer provides
interfacial bonding between Ag layer and ENIG, and the porous layer can play a role in relaxing stress due to it having a lower elastic modulus than the bulk metal [10,11]. The origin of this unique structure lies in the partial deformation of the Ag nanoporous sheet by compression, as shown in Fig. 3.6. Near the surface area, initial Ag nanoporous structure was collapsed and contacted each other. Consequently, this direct contact of collapsed Ag can lead to densification of collapsed nanoporous structure during joining process, as shown in Fig. 3.6(b). On the other hand, the internal region of the Ag nanoporous structure was not fully deformed; as a result, the densification of internal area was insufficient. The formation of porous Ag layer resulted from the partial densification and thermal coarsening [12] of porous structure by surface diffusion in order to reduce the surface area of the

Figure 3.5 (a) SEM back-scattered electron (BSE) image, and (b) TEM BF image of nanoporous bonding joint bonded at 300 °C on air. The dotted line and broken line indicate the borderline of porous Ag layer/ dense Ag layer and the interface of Ag/ENIG.

Figure 3.6 Schematic diagrams of (a) the dense Ag/porous Ag sandwich structure by thermo-compression, and formation mechanisms of (b) the dense Ag layer and (c) the porous Ag layer.
nanoporous structure (Fig. 3.6(c)). After the joining process, the dense Ag layer exhibits a sub-micron grain structure and good contact with the ENIG surface. Furthermore, no voids or gaps are evident at the interface, which would otherwise have an adverse effect on the reliability of the joint.

3.3.2 Interfacial reaction between Ag nanoporous sheet and ENIG substrate finish

Fig. 3.7 shows STEM bright field (BF) image of the interface between Ag/ENIG of Ag nanoporous bonding joint which is bonded at 300 °C in air. The interfacial reaction between Ag and ENIG was investigated using energy-dispersive X-ray spectroscopy (EDS) on STEM mode. From the EDS analysis along the dotted line shown, it is confirmed that Au was diffused into the Ag to a length of about 160 nm. Diffusion length of Au into Ag layer during bonding process can be estimated using measured Au diffusivity ($D_{Au} = 1.1 \times 10^{-18}$ m2/s) into Ag at 300 °C, reported by Parknejad et al [13]. They measured D_{Au} into Ag layer through the EDS result of Au at the interface during thermal storage of Ag nanoparticle sintered joint with Au coated substrate at 300 °C. The diffusion length of Au can be estimated.

Figure 3.7 Scanning TEM (STEM) BF image and energy dispersive X-ray spectroscopy (EDS) line analysis of interface between Ag and ENIG layers of nanoporous bonding joint. The inset graph shows the atomic concentrations of Ag, Au, Ni, P, and Cu which is measured along the white dotted line. Nano-sized voids (about 5-10 nm) along the interface between Au and Ni(P) are indicated by a yellow dotted arrow, while white arrows indicate a void (about 20-50 nm) in the dense Ag layer.
calculated using following equation 3.1,

\[x = \sqrt{2Dt} \] \hspace{1cm} (3.1)

where, \(x \) is the diffusion length of Au into Ag layer, \(D_{\text{Au}} \) is the diffusivity of Au and \(t \) is the heating time. The estimated diffusion length of Au was approximately 89 nm. Thus, the diffusion length of Au into Ag layer from the EDS result, as shown in Fig. 3.7, seems reasonable value.

Conversely, however, the diffusion of Ag and Au into the Ni layer is not significant. In general, the flux of atoms in substitutional diffusion governed by the vacancy mechanism is influenced by the energy barrier of atom migration in the crystalline lattice, otherwise known as the activation energy of migration. Furthermore, the activation energy of substitutional diffusion involves the possibility of vacancy being and lattice distortion energy at the saddle point.

The equilibrium concentration of vacancies, \(C_v \), can be determined by following equation 3.12 [14],

\[C_v = \frac{N_v}{N + N_v} = \exp\left(-\frac{E_f}{k_B T}\right) \] \hspace{1cm} (3.2)

where \(N_v \) is the number of vacancy, \(N \) is the number of atom, \(E_f \) is the formation energy of the vacancy, and \(k_B \) is the Boltzmann constant. The calculated formation energies of vacancy of Au, Ag, Cu and Ni through the \textit{ab initio} calculation using local density approximation based on density function theory were used [15], where \(E_f \) of Au, Ag, Cu and Ni are 0.62, 1.03, 1.29 and 1.66 eV, respectively. The evaluated \(C_v \) of Au, Ag, Cu and Ni as a function of the absolute temperature are shown in Fig. 3.8. At 300 °C, the resulting estimate of \(C_v \) for Au is two orders of magnitude higher than that of Ag, and eight orders of magnitude higher than that of Ni. Given that, Ag, Au and Ni share the same crystal structure (face centered cubic), the energy necessary for lattice distortion by atomic migration is proportional to the atomic radius (metallic radius) of each element (\(r_{\text{met},\text{Ag}} = 144 \) pm, \(r_{\text{met},\text{Au}} = 144 \) pm and \(r_{\text{met},\text{Ni}} = 125 \) pm) [16]. Thus, the lattice distortion in the case of Ag or Au migration into vacancy sites in the Ni matrix is higher than the inverse case. It can therefore be concluded that the migration of Ag and Au atoms into Ni matrix unlikely to occur to significant extent over a short process time. This is supported by the reference data for the activation energy of tracer diffusion [17].

Meanwhile, the microstructure of matrix also plays an important role which is related with
the high diffusivity paths, such as grain boundaries and microstructural defects [18]. It is difficult that atoms diffuse into the amorphous matrix, compared with the case of diffusion into the crystalline matrix, due to the absence of grain boundaries or dislocation [19,20]. The dense Ag layer shows sub-micron crystalline structure, so there are many high diffusivity paths which can lead to fast diffusion of Au and Ni into Ag layer. The electroless Ni(P) deposits, however, generally show amorphous or nanocrystalline structure according to P contents [21,22] and have been generally used as Cu diffusion barriers in the Sn-based solder joint to retard the growth of intermetallic compounds [23,24]. In the same manner, it seems that the Ni(P) layer acts as a diffusion barrier of Ag and Au.

After the joining process, nano-sized voids were detected within the dense Ag layer and at the interface between Au and Ni(P), as shown in Fig. 3.6. The former one is generally occurred in the sintering process [2,25]. About the latter one, some reports about the void formation at the Ni(P) metallization of solder joint have been reported. Two possible mechanisms for this void formation have been suggested previously: Kirkendall effect [26], and volume shrinkage as a result of formation of Ni$_3$P from amorphous Ni(P) and Ni-Sn-P contained intermetallic compounds [22,27]. Since no second phases were evident in Ag-Au (solid solution over the whole composition range), Ag-Ni (immiscible) and Au-Ni (spinodal decomposition) systems, volume shrinkage due to interfacial reaction seems improbable in NPB. However, the diffusion of Ni into the Ag region was significantly than the reverse scenario (diffusion of Ag into the Ni(P) region) after joining process, and so, it seems

Figure 3.8 Estimated equilibrium concentration of vacancies of Au, Ag, Cu and Ni as a function of absolute temperature (300-800 K).
likely that the Kirkendall effect is the cause of the nano-sized voids at the Ag/ENIG interface. Nevertheless, these voids have no significant effect on the joint strength in this study.

As shown in Fig. 3.9, the high resolution lattice image of the Ag/Au bonding interface, and corresponding fast Fourier transform (FFT) patterns of Ag side and Au side partially exhibited crystallographic orientation relationships, \((111)_{\text{Ag}}/(111)_{\text{Au}}\). In case of Ag nanoparticle sintering with Au substrate, the mechanism of interfacial bonding between nanoparticle and substrate is the rotation of nanoparticle or partial melting and subsequent rearrangement of lattice along the same crystal orientation with substrate [28]. In case of Ag nanoporous bonding, however, the collapsed nanoporous

![Image](image-url)

Figure 3.9 (a) High resolution TEM (HRTEM) image of Ag/Au interface, and fast Fourier transform (FFT) patterns of dotted region in (a) of (b) Ag and (c) Au, and (d) schematic diagram of atomic arrangement at the Ag/Au interface.
structure cannot seem to rotate or rearrangement because of the large size of collapsed nanoporous structures compared with nanoparticle. Thus, a sintering reaction will be occurred at the Ag/Au interface with random distribution of misorientation angle between Ag nanoporous and Au surface finish at the initial bonding stage. At the partial interface, the epitaxial bonding interface between Ag and Au also can be observed, as shown in Fig. 3.9, because of same crystal structure and lattice parameter of Au and Ag. And then the reducing of high-angle boundary and coarsening of grain structure will be occurred in order to reduce the energy of grain boundaries. Further crystallographic investigation, for example electron backscattered diffraction technique, on the formation of the interface of Ag nanoporous and Au surface finish will be necessary.

3.4 Effect of bonding temperature on shear strength and microstructure Ag nanoporous bonding joint

3.4.1 Shear strength of Ag nanoporous bonding joint

The shear strengths of the NPB joints bonded using the various bonding temperatures and environments are given in Fig. 3.10. The values for the NPB shear strength were approximately 14.4 MPa (in air) and 16.2 MPa (in N₂) at 200 °C, and gradually increased with increasing bonding temperature up to a value of 27.0 MPa (in N₂) at 400 °C. The NPB joints exhibited strengths of more

Figure 3.10 Shear strength of Ag nanoporous bonding joint at the various bonding temperature and atmosphere. The dashed lines indicate the shear strength of Pb-5Sn die attach evaluated according to the Japanese Industrial Standards (JIS Z 3198-5) from the literatures [28,29] for the comparison.
than 20 MPa at bonding temperatures above 300 °C, which are values similar to those of the shear strength of conventional Pb-5Sn die attach joints [29,30]. Although the strengths of the joint bonded in N$_2$ environment were slightly higher than those of the joints bonded in air, the effect of bonding environment (air or N$_2$) on the joint strength was insignificant, except in case of NPB joint bonded at 400 °C. This similar joint strength, irrespective of bonding environments, seems to come from the air-stable characteristics of Ag (the joining material) and Au (surface finish of the substrate).

Generally, there are two main reasons for degradation of the bonding interface or insufficient densification caused by the environmental conditions employed in the sintering process. When adopting easily oxidizable metals in air condition, such as Cu nanoparticles [31,32] or a Cu substrate [33], the effect of environment on the joint strength becomes very significant. This is because the formation of Cu oxide layers at the interface or around the nanoparticles can hinder metallic interconnection in air. A weak interface is formed due to the oxidation of Cu, resulting in a decrease in the shear strength of joint. The other main reason for the degradation of an interface is the different decomposition behavior of the surfactants generally used to ensure the stable dispersion of nanoparticles in the solvent at the different atmosphere [34]. So the sintering behaviors have been affected by the atmosphere due to the different aspect of decomposition of the surfactant of nanoparticle with the different atmosphere in spite of novel metallic nanoparticle. It is also known that the presence of residual surfactant hinder the densification of nanoparticles.

3.4.2 Microstructural characteristics of the Ag nanoporous bonding joint

The microstructures of the Ag nanoporous bonding joint area at various bonding temperatures in air are shown in Fig. 3.11. The Ag nanoporous bonding layers exhibit a dense and porous sandwich structure for all bonding temperatures, where the Ag nanoporous structures had partially collapsed, formed contacts with each other due to compression stress near the surface, and then densified. It appears that these dense and porous layers were formed through mechanisms of densification and thermal coarsening that occurred during the bonding process, as mentioned in Section 3.3.1. As shown in Fig. 3.12(a), the thickness of the total Ag layer and the porous Ag layer decreased from approximately 29 μm to 15 μm and from approximately 28 μm to 12 μm, respectively, with increasing bonding temperature. Besides, the thickness of the dense silver increased from 0.5 μm to 3 μm with increasing bonding temperature. The dense Ag layer may provide a reliable interface between the substrate and the bonding layer. In terms of the role of porous layer, these layers generally
3.4.2 Microstructural characteristics of the Ag nanoporous bonding joint

Figure 3.11 Cross-sectional SEM BSE images of nanoporous bonding joints with the various bonding temperature of (a) 200 °C, (b) 250 °C, (c) 300 °C, (d) 350 °C and (e) 400 °C on air.

Figure 3.12 (a) The variation of thickness of total, dense and porous Ag layers and (b) the measured porosity and estimated elastic modulus of porous Ag layer with the bonding temperature.
show low elastic modulus, as shown in Fig. 3.12(b) which can be estimated from the equation 3.3, that is the relationship between elastic modulus and relative density of nanoporous materials [35],

$$\frac{E_p}{E_b} = C \left(\frac{\rho_p}{\rho_b} \right)^m$$

(3.3)

where, E_p and E_b are the elastic modulus of porous and bulk materials, ρ_p and ρ_b are the relative density of porous and bulk materials, C is a constant of order 1 and m is a constant (2 for perfect porous foam). The porosity of Ag porous layer was calculated from the area ratio of pores in cross-sectional SEM image of Ag NPB joint. The ratio of relative density of porous Ag layer and bulk Ag, ρ_p/ρ_b, was used as a reciprocal value of porosity of Ag porous layer.

The role of the Ag porous layer with a low elastic modulus can be found Bai’s finite-element analysis [36], where a sintered Ag layer with a low elastic modulus was found to reduce stress generation, when compared to an Au-Sn solder using. The mismatch in the coefficients of thermal expansion between a chip and a bonding material or a substrate is the main reason for interconnection failure by cyclic deformation under the thermal cycling condition.

The microstructure of the porous Ag layer became increasingly coarse and dense with increasing bonding temperature, as shown in Fig. 3.11 and Fig. 3.12, due to the proportional dependency of the diffusivity of Ag with respect to temperature. The metallic porous structure generally became coarser with increasing annealing temperature, as reported in the literature [12,37]. A denser and coarser Ag layer with increasing bonding temperature appeared to lead to an increasing joint strength of NPB.

3.5 Effects of bonding temperature and atmosphere on the fracture mode

3.5.1 Image analysis of fracture mode

Fig. 3.13 shows the schematic diagrams of the main fracture modes and their representative features of fracture surface in case of Ag NPB with ENIG finished Cu substrate. There are three main fracture modes which are Ag layer fracture (Fig. 3.13(b)), interfacial fracture (Fig. 3.13(c)) and Au delamination (Fig. 3.13(d)). The surface of Ag layer fracture exhibits elongated feature of Ag porous structure, i.e. a ductile fracture, as shown in Fig. 3.13(b). The Ag side in the interfacial fracture region exhibits collapsed and densified Ag structure, as shown in Fig. 3.13(c). The Ni(P) side of Au
3.5.1 Image analysis of fracture mode

Figure 3.13 (a) Schematic diagram of main fracture mode including Ag layer fracture (cohesive fracture in Ag layer), interface fracture (fracture at Ag/Au interface) and Au delamination (fracture at Au/Ni interface), and SEM images of fracture morphology of (b) Ag layer fracture, (c) interfacial fracture and (d) Au delamination. Inset diagrams in (b-d) indicate aspect of fracture and red lines indicate SEM observed surface.

delamination region exhibits brittle fracture morphology, as shown in Fig. 3.12(d).

Fig. 3.14 and 3.15 show representative EPMA mapping results on the fracture surface of NPB joints with the bonding temperature of 200, 300 and 400 °C and the atmosphere of air and N₂. The variation of fracture mode affected by bonding temperature and atmosphere can be clearly identified using X-ray mapping for the fracture surface. The high Ag and Ni signal region indicate Ag layer fracture and Au delamination, respectively, while the signals of Au and Ni are detected together at the interfacial fractured region due to thin thickness of immersion Au layer under 100 nm (a generation depth of characteristics X-ray = about 1-2 μm). There are no significant differences of aspect of fracture occurrence between air and N₂ atmosphere with the bonding temperature of 200 and 300 °C. These results indicate that the effect of atmosphere on the sintering reaction of collapsed Ag
nanoporous structure and the interfacial reaction between Ag and Au layers are not significant. In case of bonding temperature of 400 °C, they show great difference between air and N\textsubscript{2} atmosphere. The fraction of Au delamination was significantly increased in air condition, whereas it is rarely observed in N\textsubscript{2} atmosphere.

Fig. 3.16 shows the image analysis results on the area fraction of fracture mode of the joint after the shear test with the various bonding temperature and atmosphere. The area fractions of interfacial fracture of NPB bonded at 200 °C in the air and N\textsubscript{2} atmosphere were 18.8% and 12.4%, respectively, and they gradually decreased with the increase of bonding temperature.

The interfacial fracture seems to weak inter-atomic connection between Ag and Au. Namely, the sintering reaction between Ag nanoporous structure and Au surface was insufficient at 200 °C.
3.5.1 Image analysis of fracture mode

Figure 3.15 SEM SE images and results of X-ray elements mapping (Ag, Au and Ni) of fracture surfaces which are bonded at the 200, 300 and 400 °C in N\textsubscript{2} atmosphere. High level of Ag region indicates fracture within Ag layer. The red and green arrows indicate interfacial fracture and Au delamination, respectively.

Figure 3.16 Area fraction of Ag layer fracture, interfacial fracture and Au delamination with various bonding conditions.
Besides, the Au delamination was occurred from the bonding temperature of 300 °C, and fraction of it was significantly increased at the bonding temperature of 400 °C in air. Generally, the cause of Au delamination of ENIG finish in solder and wire bonding joint is known as a black pad defect formed during ENIG plating process [38,39]. Zeng et al. [38] argued that spikes that existed in cross-section of ENIG finish are clear evidence of the black pad defect. These spikes act as crack initiation sites and can lead to Au delamination [39]. As shown in Fig. 3.3(b-d), however, there was no evidence of the black pad defect in ENIG finish used in this time, and it seems reasonable that the cause of Au delamination comes from bonding process rather than the black pad defect. The degradation mechanism of NPB joint bonded at 400 °C in air will be mentioned afterwards. We can infer that the fracture mode can directly affect bonding strength of NPB joint.

3.5.2 Fracture morphology of Ag fractured region

SEM images of the fracture surface of Ag fractured regions with various bonding temperature in air are shown in Fig. 3.17. The fracture of NPB mainly occurred at the Ag layer, with an area fracture of over 75 % for all bonding conditions, and the fracture morphology of the Ag layer affected the shear strength of NPB. The traces of plastic deformation in the Ag layer caused by shear stress became evident with increasing bonding temperature. Although the low magnification SEM images of the fracture surface appear to show a brittle fracture, as shown in Fig. 3.14 and 3.15, the elongated feature and local necking of the Ag porous structure can be observed in the high magnification image, as shown in Fig. 3.18. The microstructural ductile fracture of the nanoporous structure has previously been reported [37,40].

3.5.3 Ni oxidation of Au delamination region

The EPMA mapping results of Ni and O of NPB joint which are bonded at 400 °C on air and in N\(_2\) atmosphere are shown in Fig. 3.19. The high O signal was detected in the Au delamination region in the case of bonding in air. In the case of the joint bonded in N\(_2\), a very small amount of Au delamination was observed and the O signal was also barely detected. From the EPMA results and the image analysis of the fracture modes, we can conclude that Ni oxidation is the main cause of Au delamination in the case of bonding temperature of 400 °C in air.
3.5.2 Fracture morphology of Ag fractured region

Figure 3.17 SEM SE images of fracture morphology of Ag layer fractured region with the bonding temperature of (a) 200 °C, (b) 250 °C, (c) 300 °C, (d) 350 °C and (e) 400 °C on air.

Figure 3.18 Magnified SEM SE image of fracture morphology of Ag layer fractured region with the bonding temperature of 300 °C on air.
The XPS spectra of the fracture surface of the NPB joint which is the same fractured sample that was bonded at 400 °C in air (upper side sample in Fig. 3.19) are shown in Fig. 3.20. XPS is a powerful technique for the analysis of the chemical states of target elements, with a surface sampling depth of a few nanometers. As shown in Fig. 3.20(a), all of the interest (Ag, Au, Ni, P and O) were detected due to the large scanning area of the X-ray irradiation, of approximately 1 mm2. The peak values of adventitious C 1s (BE = 248.8 eV) and Au 4f$_{7/2}$ (BE = 83.8 eV) were utilized for energy-scale calibration for peak identification. There are three distinct peaks in the Ni 2p$_{3/2}$ spectrum in Fig. 3.20(b), including metallic Ni (852.7 eV), NiO (853.7 eV) and Ni$_2$O$_3$ (855.6 eV), and four peaks in the O 1s spectrum in Fig. 3.20(c), including two Ni oxides, O existing in the defective sites (like vacancies or grain boundaries), and O-containing adsorbates, in good agreement with the literatures [41–44]. While the spectrum of Ni 2p$_{3/2}$ on the fracture surface in Fig. 3.20(b) shows distinct evidence of Ni oxidation, the Ag 3d$_{5/2}$ in Fig. 3.20(d) and Au 4f$_{7/2}$ in Fig. 3.20(e) spectra show only their single metallic peaks ($\text{Ag}_{\text{met}} = 368.1$ eV, $\text{Au}_{\text{met}} = 83.8$ eV) [45,46]. There are not any peak shift related with the oxidized Ag compounds ($\text{AgO} = 367.3$ eV, $\text{Ag}_2\text{O} = 367.7$ eV) in the Ag 3d$_{5/2}$ spectrum [46].

We can infer from the XPS spectra that the O detected in the Au delamination region exists in the form of two Ni oxides, as shown in Fig. 3.20(c), in agreement with the EPMA mapping results in Fig. 3.19. The oxidation of Ni caused Au delamination, and this region exhibited brittle fracture
Figure 3.20 (a) X-ray photoelectron spectroscopy (XPS) survey spectrum and the core-level spectra of (b) Ni 2p₃/₂, (c) O 1s, (d) Ag 3d₅/₂ and (e) Au 4f₇/₂ of fractured surface which is bonded at 400 °C in air. The deconvolution of multi peak core-level spectra (Ni 2p₃/₂ and O 1s) were indicated colored thin lines. The dotted data and black thick lines indicate raw data and fitting result of XPS spectra, respectively. The abbreviations of C adv, met, O ads, and O def indicate adventitious carbon, metallic, oxygen-containing adsorbates and oxygen existing at defective site, respectively.

Figure 3.21 SEM SE image of fracture morphology of Au delamination region of bonded at 400 °C on air, where the ductile fracture of Ag layer fractured region and brittle fracture of Au delamination region can be confirmed.
compared to the ductile fracture of the Ag layer fractured region, as shown in Fig. 3.21. These results imply that Ni oxidation at the interface of Au and Ni caused by the infiltration of O through the Au layer is the main reason for degradation of the shear strength of NPB joint bonded at 400 °C in air.

3.6 Conclusion

In this chapter, the joint strength and fracture behavior of the nanoporous bonding (NPB) using an Ag nanoporous sheet are investigated. The effect of the bonding temperature can be distinguished through the comparative study of fracture behavior of the NPB joint at different bonding environments (air and N$_2$). The joint strength exhibited by NPB was approximately 14.4 - 27.0 MPa, under various bonding conditions. The joint strength of the NPB joint increased with increasing of bonding temperature, and the effect of bonding environmental was insignificant up to bonding temperature of 350 °C. A thicker and dense Ag layer plays the role of forming a sound interface at increased bonding temperature. The porous Ag was gradually coarsened by the high diffusivity of silver at the higher bonding temperature. In case of the 400 °C/air condition, the NPB joint strength was lower than the joint bonded in N$_2$ environment at same temperature by Ni oxidation. Consequently, it is possible that sound Ag NPB joint can be achieved with the bonding temperature range for NPB in air condition is from 250 °C to 350 °C with ENIG finished substrate. In this bonding temperature range, the results of shear strength NPB joint show similar joint strength with that of conventional Pb-5Sn solder alloy. The insufficient sintering reaction in the Au/Ag interface at a bonding temperature of 200 °C or Ni oxidation in the Au/Ni interface at a bonding temperature of 400 °C in air can lead to degrade joint strength of NPB.

References

3.6 Conclusion

Chapter 3 Solid-state thermo-compression bonding using Ag nanoporous sheet

References

Chapter 4

Microstructure evolution of Ag nanoporous bonding joint during thermal storage

4.1 Introduction

In Chapter 3, Ag nanoporous bonding is successfully achieved by thermo-compression bonding process which exhibits similar bonding strength with conventional Pb-5Sn solder die attach at the bonding temperature of 300 °C. In this chapter, thermal stability of Ag nanoporous bonding joint with bare Cu and electroless Ni/immersion Au (ENIG) finished Cu substrates during thermal storage test at 250 °C was investigated. An objective of thermal storage test in microelectronics lies on the investigation of thermally activated degradation of joint related with various phenomena, including the oxidation, the diffusion-induced void formation, and the formation of intermetallic compounds [1–5]. Specifically, the fracture behavior of Ag NPB joint and the microstructural change induced by interdiffusion and oxidation during thermal storage test were examined in order to reveal the relationship between the microstructural characteristics at the bonding interface and joint strength of Ag NPB joint. A comparative study on the effect of substrates, including bare Cu and ENIG finished Cu, was also conducted.
4.2 Experimental

4.2.1 Preparation of Ag nanoporous sheet

The Ag nanoporous sheet (thickness = 90-100 um, ligament size = 110 nm) was fabricated by dealloying a melt-spun Al-Ag precursor alloy in a 2 M hydrochloric acid solution for 3 h at 75 °C. Detailed information on the fabrication of Ag nanoporous sheet and characteristics of Ag nanoporous structure can be found in Section 3.2.1.

4.2.2 Ag nanoporous bonding process and thermal storage test

An oxygen-free bare Cu substrate and the ENIG finished Cu substrate were used as test specimen. Disk type sample configuration and microstructure of ENIG finish have been given in Fig. 3.2. Before the bonding process, bare Cu disk was polished using abrasive papers with grit number of 400, 1200 and 2000 and diamond paste with particle size of 9, 3 and 1 μm in order to remove Cu native oxide, and then degreased using an ultrasonic cleaner dipping in acetone. ENIG finished Cu disk was degreased in acetone in order to remove surface contamination. The Ag nanoporous sheet was then applied to the surface of the test specimen. The Ag NPB process was conducted using a thermo-compression bonding system under N₂ atmosphere. An applied pressure of 20 MPa was used, and the bonding temperature was 300 °C. The temperature profile of the bonding process has been given in Fig. 3.3.

Thermal storage test of Ag NPB joint was conducted at 250 °C in the convection oven for the storage time up to 1000 h under air atmosphere. It is performed according to the Joint Electron Device Engineering Council (JEDEC) standard for the high temperature storage life (JESD22-A103D), test condition E (storage temperature condition of +250 °C) [6].

4.2.3 Characterization methods

Die shear strength of Ag NPB joint was measured using die shear tester (STR-1000, Rhesca) with a shear rate of 1 mm/min and a shear height of 0.2 mm at room temperature. Elements distribution on the fracture surface was measured using an electron probe micro-analyzer (EPMA, JXA-8530F, JEOL) with an acceleration voltage of 15 kV. Fracture morphology of Ag NPB joint after thermal storage test was observed using a scanning electron microscope (SEM, SU-70, Hitachi) with an acceleration voltage of 10 kV, and a focused ion beam (FIB, JIB-4500, JEOL) with an acceleration
voltage of 30 kV. Microstructure and chemical distribution of the interface of Ag/Cu and Ag/ENIG after thermal storage test were investigated using a transmission electron microscope (TEM, JEM-2100F, JEOL) with an acceleration voltage of 200 kV. The TEM sample preparation of ENIG finish was prepared by the in-situ lift-out method using the FIB. Elements distribution at the interface was measured using an energy dispersive X-ray spectroscopy (EDS, JED-2200, JEOL) detector on the scanning TEM (STEM) mode with a beam probe size of 1 nm. A high resolution TEM (HRTEM) observation on the interfaces of Ag/Cu and Ag/ENIG was conducted. TEM image acquisition and image transform of HRTEM image, including fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT), were performed using DigitalMicrograph (Gatan). The phase identification for the diffraction patterns of metals and compounds was performed on the basis of the International Centre for Diffraction Data (ICDD) powder diffraction files (PDF) crystallographic data.

4.3 Metallic bonding at the Ag NPB with bare Cu and ENIG finished Cu substrates

4.3.1 Lattice structure at the Ag/Cu interface

Fig. 4.1 shows microstructure and lattice fringes of Ag and Cu at the Ag/Cu interface of Ag NPB joint with bare Cu disk. A lattice image of Ag/Cu interface in Fig. 4.1(b) indicates that Ag and Cu crystal lattices exhibit no coherent interface due to large misfit of lattice parameters between Ag (PDF no.: 01-071-4613; cubic symmetry; space group: Fm-3m; a=4.0880 Å) and Cu (PDF no.: 01-071-4610; cubic symmetry; space group: Fm-3m; a=3.6170 Å). In order to form strain-free coherent interphase interface between two different phases, two phases should show almost same lattice parameters, or an interplanar angle, \(\theta \), of two phases should shows certain value [7]. In case of Ag and Cu should be satisfied follow relationship (equation 4.1).

\[
\theta = \cos^{-1} \left(\frac{d_{hkl,Cu}}{d_{hkl,Ag}} \right)
\]

The calculated interplanar angles for strain-free coherent interphase interface between (111) \(_{Ag}\) and (200)\(_{Cu}\) and between (200)\(_{Ag}\) and (200)\(_{Cu}\) are 39.96° and 27.74° from the reference data, respectively. These values show slightly different with measured interplanar angle from fast Fourier transform (FFT) patterns in Fig. 4.1(c). A reciprocal space image calculated by FFT from the HRTEM image of Ag/Cu interface exhibits two different diffraction patterns of Ag and Cu.
Fig. 4.2 shows regional FFT patterns of Ag side, Cu side and Ag/Cu interface which are denoted in Fig. 4.1 shows clear diffraction pattern of Ag with along the [011]_Ag direction, as shown in Fig. 4.2(a), strong pattern of {200}_Cu, as shown in Fig. 4.2(b) and mixed patterns of Ag and Cu, as shown in Fig. 4.2(c). It is possible to obtain distinct images of lattice fringe through the Fourier mask filtering of particular patterns with the spot masks and subsequent inverse FFT calculation as shown in Fig. 4.2. Detailed information on the Fourier mask filtering on the HRTEM image can be found in Appendix 2.

There is an interference of (111)_Ag and (200)_Cu lattices which is called a mixed moiré fringe, as shown in Fig. 4.2(c). This can be foamed through the interfering two sets of lattice plane with the different direction and interplanar distance. The moiré fringe is evidence of overlap of different two crystal lattices. The general expression on the spacing of the moiré fringe (d_m) can be given by following equation 4.2 [8],

$${d_m} = \frac{1}{h + k + l}$$
4.3.1 Lattice structure at the Ag/Cu interface

\[d_m = \frac{d_{111,Ag} d_{200,Cu}}{\sqrt{d_{111,Ag}^2 d_{200,Cu}^2 \theta^2 + (d_{111,Ag} - d_{200,Cu})^2}} \] (4.2)

where \(d_{111,Ag} \) and \(d_{200,Cu} \) are interplanar spacings of (111)\(_{Ag}\) and (200)\(_{Cu}\) lattices, and \(\theta \) is misorientation angle in radian between (111)\(_{Ag}\) and (200)\(_{Cu}\) lattices. The measured interplanar spacings of (111)\(_{Ag}\) and (200)\(_{Cu}\), and misorientation angle between (111)\(_{Ag}\) and (200)\(_{Cu}\), and moiré fringe spacing from Fig. 4.1 and Fig. 4.2 are 0.237 nm, 0.181 nm, 32.78°, 0.334 nm, respectively. An estimated \(d_m \) (0.327 nm) using equation 5.2 exhibits similar value with the measured \(d_m \) from filtered IFFT image of (111)\(_{Ag}\) and (200)\(_{Cu}\) in Fig. 4.2(c). Li et al. [9] also shows mixed moiré fringe between (200)\(_{Ag}\) and (200)\(_{Cu}\), using HRTEM in Ag nanoparticle sintered joint with Cu substrate, where they suggested some intermediate layer formation by overlapping of Cu and Ag lattices.
4.3.2 Epitaxial interface between Ag and Au

Fig. 4.3 shows microstructure and lattice fringes of Ag and Au at the Ag/Au interface of Ag NPB joint with ENIG finished Cu disk. A lattice image shows epitaxial interface between \((111)_{\text{Ag}}\) and \((111)_{\text{Au}}\) due to the same crystal structure and almost similar lattice parameters of Ag \((a=4.0880 \text{ Å})\) and Au \((\text{PDF no.: 01-071-4073; cubic symmetry; space group: Fm-3m; } a=4.0789 \text{ Å})\). The corresponding FFT pattern, as shown in Fig. 4.3(c) also exhibits only one pattern of Ag/Au along the \([011]_{\text{Ag/Au}}\) direction. The partial FFT pattern of Ag side, Au side and Ag/Au interface also exhibit same crystallographic orientation, as shown in Fig. 4.4. This relationship between Ag and Au lattices can be found elsewhere [10]. Ogura et al. [11] explained that this epitaxial relationship between Ag and Au comes from the reorientation of Ag atoms at the surface of Au in order to reduce surface energy using molecular dynamic simulation.

![Figure 4.3](image-url)

Figure 4.3 (a) TEM BF image on the Ag/ENIG interface of as-bonded Ag nanoporous bonding joint with ENIG finished Cu substrate, (b) high resolution (HR) TEM image of lattice fringe of Ag/Au interface magnified in the box in (a), and (c) the corresponding fast Fourier transform (FFT) pattern on the (b).
4.3.2 Epitaxial interface between Ag and Au

4.4 Thermal degradation of Ag NPB joint

4.4.1 Change of Ag NPB joint strength during thermal storage

Shear test results of Ag NPB joint with ENIG finished Cu and bare Cu disk during thermal storage test are shown in Fig. 4.5. The results of shear test of as-bonded Ag NPB joint with ENIG finished Cu and bare Cu substrates show 25.7 and 26.6 MPa. Similar shear strength results of as-bonded Ag NPB joint, irrespective of substrates (ENIG finished Cu and bare Cu) indicate that Ag NPB formed good metallic bonding with Cu and Au surface. These values exhibit higher than it of Pb-5Sn die attach reported in the literatures [12,13] and die strength requirement for electronics defined in MIL-STD 883G [14].

The effect of substrate on the shear strength became significant with increasing of thermal storage time. In case of bare Cu substrate, the shear strength gradually decreased with increasing of thermal storage time, and it showed 11.4 MPa with the thermal storage time of 1000 h. Contrariwise,
the shear strength of NPB with the ENIG finished substrate increased to 32.2 MPa for 100 h, and then gradually decreased. After 750 h, the shear strength showed 25.3 MPa, which is similar value with the initial shear strength of NPB. These results may arise from the different oxidation behavior of bare Cu and ENIG finished substrates.

4.4.2 Macroscopic element distribution in the fracture surface

EPMA mapping on the fracture surface was investigated in order to reveal reason of joint degradation during thermal storage test. Through the examination of both of upper and lower fracture surfaces, it is possible to confirm where the fracture is occurred at the joint. As mentioned in Chapter 3, the variation of fracture mode is closely related with shear strength of Ag NPB joint.

Fig. 4.6 and Fig. 4.7 show changes of element mapping results on the Ag NPB joint with Cu and ENIG finished Cu after the thermal storage test. The shear direction and cross-circled mark for sample position are indicated based on the lower samples. The fracture of as-bonded samples of Ag/Cu and Ag/ENIG was occurred mainly Ag layer, regardless of substrate. This result supports the shear test results, as shown in Fig. 4.5 that the as-bonded Ag NPB joints with bare Cu and ENIG finished show almost same values. Furthermore, it can be concluded that this Ag NPB process is suitable not
on the ENIG finished substrate but also the bare Cu substrate. Only small portion of interfacial
fracture (Ag/Cu interface of bare Cu substrate and Ag/Au interface of ENIG finished Cu substrate)
was observed, as indicated with green arrow in Fig. 4.6a and Fig. 4.7a. There are no Ag signals; and
high intensity of Cu and Au in both of Cu and ENIG finished Cu substrate at the interfacial fracture
region.

In case of Ag NPB with bare Cu substrate, as shown in Fig. 4.6, O signal significantly
increased in the same position with Cu after thermal storage test. This indicates that Cu surface is
oxidized after thermal storage. The area fraction of fracture at the Cu oxide gradually increased with
increasing thermal storage time up to 250 h. After 500 h, the main fracture location of joint is
transferred to Cu oxide layer. The Cu oxide layer fractured area displays a tendency to low O level at
the fracture surface next to Cu side, which is indicated by _orange arrow_ in Fig. 4.6, and high O level
at the fracture surface next to Ag side, which is indicated by _blue arrow_ in Fig. 4.6.

In case of Ag NPB with ENIG finished Cu substrate, as shown in Fig. 4.7, an aspect of
changes of the fracture surface after thermal storage test is more complicated compared with bare Cu
substrate. After thermal storage time of 100 h, a fracture occurrence at the interface of Au/Ni
appeared. As mentioned in _Chapter 3_, Ni oxidation can lead to a brittle fracture at the Au/Ni interface.
The portion of fracture at the Au/Ni interface gradually increased with increasing thermal storage
time. Unlike the bare Cu substrate, ENIG finished Cu substrate exhibits mixed fracture mode of Ag
layer fracture and Au/Ni interfacial fracture even up to thermal storage time 1000 h, as shown in Fig.
4.7(e). The Au/Ni interfacial fractured area next to Ni(P) side, which is indicated by _blue arrow_ in Fig.
4.7, presents Ag, Au, high O and very low Ni signals. On the contrary to this, it next to Ag side, which
is indicated by _orange arrow_ in Fig. 4.7, presents high Ni and high P signals. This means that the Au/
Ni interfacial fracture is occurred at the interface of Ni(P)/Ni oxide.

Fig. 4.8 shows the variation on area fractions of each fracture modes of Ag NPB joint with
Cu and ENIG finished Cu substrate with thermal storage time. The fracture location of Ag NPB joint
after thermal storage test can be divided in three types from the fractography; Ag layer, Ag/Cu
interface and Cu oxide layer fracture in case of bare Cu, as shown in Fig. 4.8(a), and Ag layer, Ag/Au
interface and Au/Ni interface in case of ENIG finished Cu, as shown in Fig. 4.8(b). The variations of
fracture mode significantly are different with substrate after thermal storage test. The area fraction of
Cu oxide layer exhibits over 60% up to 250 h. After 500 h, it sharply drastically increased that exhibits
over 95%. Besides, the Au/Ni interfacial fracture gradually increased with increasing thermal storage
Figure 4.6 Electron probe micro-analyzer (EPMA) element mapping results (Ag, Cu and O) on upper and lower surface of fractured sample of Ag nanoporous bonding joint with bare Cu substrate after thermal storage test at 250 °C: (a) as-bonded, (b) 100 h, (c) 250 h, (d) 500 h, (e) 750 h and (f) 1000 h, and (g) fracture positions of Ag layer fracture, Ag/Cu interfacial fracture and Cu oxide fracture. Inset cross-circles indicate sample direction, where U and R indicate upper and right based on the lower sample, respectively. Upper and lower sample surfaces exhibit mirror plane relationship.
4.4.2 Macroscopic element distribution in the fracture surface

(d) TS for 500 h

(e) TS for 750 h

(f) TS for 1000 h

(g) Ag/Cu interfacial fracture

Figure 4.6 (continued)
Figure 4.7 EPMA element mapping results (Ag, Au, Ni, P and O) on upper and lower surface of fractured sample of Ag nanoporous bonding joint with ENIG finished Cu substrate after thermal storage test at 250 °C: (a) as-bonded, (b) 100 h, (c) 250 h, (d) 500 h, (e) 750 h and (f) 1000 h, and (g) fracture positions of Ag layer fracture, Ag/Au interfacial fracture and Au/Ni interfacial fracture. Inset *cross-circles* indicate sample direction, where U and R indicate upper and right, respectively. Upper and lower sample surfaces exhibit mirror plane relationship.
4.4.2 Macroscopic element distribution in the fracture surface

(d) TS for 500 h

(e) TS for 750 h

(f) TS for 1000 h

(g) Ag layer fracture
 Ag/Au interfacial fracture
 Au/Ni interfacial fracture

Figure 4.7 (continued)
time. The cause of this difference may come from the different oxidation mechanism between bare Cu and ENIG finish. Oxidation behavior of Cu and ENIG finish during thermal storage test will be presented in Section 4.3.4.

4.4.3 Morphology of fracture surface

In order to understand an effect of thermal storage on the fracture behavior of Ag NPB with different substrates, the fracture morphology after the shear test were investigated with SEM observation. Low magnification SEM images in Fig. 4.9 and Fig. 4.12 are the same images with SE images in Fig. 4.6 and Fig. 4.7, respectively. The observed positions of high magnification images are denoted using white squares in low magnification images.

Fig. 4.9 exhibits fracture morphology of Ag NPB joint with bare Cu substrate on the as-bonded and after thermal storage for 250 h and 1000 h. The Ag layer fracture region, as shown in Fig. 4.9(b), which is a main fracture portion of as-bonded sample with bare Cu substrate, presents an elongated Ag porous structure. As mentioned in Chapter 3, this feature is an evidence of ductile fracture of Ag porous structure. Although the crack is partially propagated along the Ag/Cu interface, as shown in Fig. 4.9(c), the very small portion of this fracture mode is not effective on the shear strength. After 250 h, main fracture mode is transferred from the Ag layer fracture to the Cu oxide layer fracture. The Ag fracture region exhibit slightly coarsened compared with as-bonded joint, as

![Figure 4.8](image-url)
shown in Fig. 4.9(e), due to the coarsening of Ag porous structure during thermal storage [4,5]. The fracture mode in Cu oxide appeared intergranular fracture along the boundaries of Cu oxides, as shown in Fig. 4.9(f). After 100 h, almost of fracture was occurred in the Cu oxide layer, where an intergranular fracture along the Cu oxide grain in Fig. 4.9(h) and a void in Fig. 4.9(i) can be observed. The oxidation of Cu surface could induce the brittle fracture of Ag NPB with bare Cu substrate; as a result, it became a cause of joint strength degradation after thermal storage test.

Figure 4.9 Scanning electron microscopy (SEM) secondary electron (SE) images of fracture surface of Ag nanoporous bonding joint with bare Cu substrate after thermal storage test: (a) macroscopic feature of fracture at Ag layer dominant, (b) elongated Ag porous structure and (c) partial Cu/Ag interfacial fracture, of as-bonded Ag NPB joint surface; (d) macroscopic feature of mixed fracture modes at Ag layer and Cu oxide, (e) elongated Ag porous structure and (f) intergranular fracture at Cu oxide, after 250 h; (g) macroscopic feature of Cu oxide dominant, (h) intergranular fracture at Cu oxide and (i) pull out of Cu oxide, after 1000 h.
Fig. 4.10 Tilted focused ion beam (FIB) SE images on the Cu oxide layer fractured regions (both of Ag side and Cu side) after thermal storage test for (a) 250 h, (b) 500 h and (c) 1000 h.

Fig. 4.10 exhibits FIB milled cross-sectional images underneath fracture surfaces along the Cu oxide layer, where the included angle between the observation plane and the Ga ion beam column was 38°. Accordingly, the length scales along the horizontal and vertical direction are slightly different. The actual length along the horizontal direction is same with inset scale bar, while the actual length along the vertical direction is 1.27 times longer than inset scale bar. The images of Cu side and
Ag side are represented the fracture surface of Cu oxide in the vicinity of Cu substrate and Ag bonding layer, respectively. Cu oxide layer of Ag side were thicker than that of Cu side, regardless of thermal storage time. The thickness of Cu oxide of Ag side gradually increased with thermal storage time. Besides, the Cu oxide of Cu side was very thin compared with that of Ag side. The fracture surface morphologies of Ag side and Cu side also exhibited considerable difference. The fracture surface of Ag side was shown relatively flat morphology, while, it of Cu side was shown rugged morphology. This rugged morphology was seemed to come from the presence of voids in the vicinity of bare Cu substrate. The size of voids gradually increased with increasing of thermal storage time.

Fig. 4.11 shows EPMA mapping results on the Cu oxide layer fractured region after thermal storage for 1000 h.

Ag side are represented the fracture surface of Cu oxide in the vicinity of Cu substrate and Ag bonding layer, respectively. Cu oxide layer of Ag side were thicker than that of Cu side, regardless of thermal storage time. The thickness of Cu oxide of Ag side gradually increased with thermal storage time. Besides, the Cu oxide of Cu side was very thin compared with that of Ag side. The fracture surface morphologies of Ag side and Cu side also exhibited considerable difference. The fracture surface of Ag side was shown relatively flat morphology, while, it of Cu side was shown rugged morphology. This rugged morphology was seemed to come from the presence of voids in the vicinity of bare Cu substrate. The size of voids gradually increased with increasing of thermal storage time.

Fig. 4.11 shows EPMA mapping results on the fracture surface (Cu side) of Cu oxide layer fractured region after thermal storage test for 1000 h. The non-oxidized Cu underneath of Cu oxide at the void position can be confirmed. The Ag precipitate in Cu oxide layer was also detected, which will be mentioned in Section 4.3.4.

Fig. 4.12 exhibits fracture morphology of Ag NPB joint with ENIG finished Cu substrate on the as-bonded and after thermal storage for 500 h and 1000 h. The feature of Ag layer fractured surface of as-bonded Ag NPB with ENIG finished Cu substrate in Fig. 4.12(a) and elongated Ag
pores in Fig. 4.12(b) exhibit similar results with the fracture surface of bare Cu substrate, as shown in Fig. 4.10(a,b). The collapsed Ag was partially observed, because of the insufficient interfacial reaction between Ag and ENIG surface, as mentioned in Chapter 3. The elongated Ag porous structure by shear strength was gradually coarsened with increasing of thermal storage time, as shown in Fig. 4.12(b,e,h). The Au/Ni interfacial fractured region exhibited plane, as shown in Fig. 4.12(f,i).

Figure 4.12 SEM SE images of fracture surface of Ag nanoporous bonding joint with ENIG finished Cu substrate after thermal storage test: (a) macroscopic feature of fracture at Ag layer dominant, (b) elongated Ag porous structure and (c) Ag side at the Ag/Au interfacial fractured region, of as-bonded Ag NPB joint surface; (d) macroscopic feature of mixed fracture modes at Ag layer and Au/Ni interface, (e) elongated Ag porous structure and (f) Au/Ni interfacial fracture, after 500 h; (g) macroscopic feature of mixed fracture modes at Ag layer and Au/Ni interface, (h) elongated Ag porous structure and (i) Au/Ni interfacial fracture, after 1000 h.

porous structure in Fig. 4.12(b) exhibit similar results with the fracture surface of bare Cu substrate, as shown in Fig. 4.10(a,b). The collapsed Ag was partially observed, because of the insufficient interfacial reaction between Ag and ENIG surface, as mentioned in Chapter 3. The elongated Ag porous structure by shear strength was gradually coarsened with increasing of thermal storage time, as shown in Fig. 4.12(b,e,h). The Au/Ni interfacial fractured region exhibited plane, as shown in Fig. 4.12(f,i).
4.5 Interfacial reaction and microstructure evolution at the interface

4.5.1 Interfacial reaction at the Ag/Cu interface

Fig. 4.13 shows STEM/EDS mapping and line analysis results at the Ag/Cu interface of as-bonded Ag NPB with bare Cu substrate. The Ag/Cu interface exhibits a distinct interphase interface. A small amount of Cu (approximately 5 at.%) was detected in Ag matrix, besides, Ag was rarely detected in Cu matrix, as shown in the composition profile in Fig. 4.13(c). This feature at the interface is a typical composition profile of diffusion couple of eutectic system below the eutectic temperature [15]. Ag-Cu binary system is an eutectic system (eutectic temperature = 779.1 °C) with limited mutual solubility [16]. The thermodynamic calculation method will be necessary in order to estimate the accurate mutual solubility of Ag-Cu diffusion couple at 250 °C.

Fig. 4.14 and 4.15 show EDS mapping and line analysis results at the Ag/Cu interface of Ag NPB with bare Cu substrate after thermal storage for 500 h and 1000 h, respectively. The Cu near the bonding interface was fully oxidized; and Cu oxide phase exhibited nano-crystalline through the oxidation induced recrystallization [17]. A demarcation of Ag phase and Cu oxide phase maintained obviously even after temperature storage from the EDS line analysis results, because of non-mixed phase between Ag-Cu binary system. Interestingly, an isolated Ag phase in Cu oxide matrix was observed. The Ag diffusion along the grain boundary of Cu matrix has been reported [18]. It seemed that this Ag precipitate in Cu oxide matrix was formed by the formation of nano-crystalline Cu oxide and subsequent grain boundary migration of Ag along the Cu oxide matrix.

4.5.2 Oxidation of Cu surface

Fig. 4.16 shows low magnification STEM/EDS mapping of Cu/Ag interface after thermal storage for 1000 h. Table 4.1 shows the EDS point analysis where marked in Fig. 4.16. Cu oxide layer contains two oxides, including thick Cu$_2$O with thickness of approximately 3.56 μm (spectrum number 4 in Table 4.1) and thin CuO with the thickness of approximately 0.16 μm (spectrum number 2 in Table 4.2).

Generally, there are two stable oxides, Cu$_2$O and CuO, in Cu-O system [19]. Cu oxidation behaviors of thin film, porous structure and nanoparticle with various annealing temperatures have been extensively studied using X-ray diffraction (XRD), where Cu$_2$O is a dominant oxide foam at low temperature (below 300 °C) and CuO appeared at elevated temperature (above 300 °C) [20–22]. These
Figure 4.13 (a) Scanning TEM (STEM) BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface for as-bonded Ag NPB sample with bare Cu substrate, and (c) energy dispersive X-ray spectroscopy (EDS) line analysis along the dotted line in BF image.

Figure 4.14 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 500 h, and (c) EDS line analysis along the dotted line in BF image.
4.5.2 Oxidation of Cu surface

Figure 4.15 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 1000 h, and (c) EDS line analysis along the dotted line in BF image.

Figure 4.16 Low magnification STEM BF image and corresponding elemental mapping results of Ag L, Cu K and O K on the Ag/Cu interface of Ag NPB sample with bare Cu substrate after thermal storage at 250 °C for 1000 h. The EDS point analysis is performed on the marked points.
results come from that Cu$_2$O is more thermodynamically stable than CuO at low temperature [20]. As shown in Fig. 4.16 and Table 4.1, Cu oxidation layer exhibits the dual layer of Cu$_2$O and CuO, through the two sequential oxidation reactions as following [23]:

$$4\text{Cu} + \text{O}_2 \rightarrow 2\text{Cu}_2\text{O}$$
$$2\text{Cu}_2\text{O} + \text{O}_2 \rightarrow 4\text{CuO}$$

Fig 4.17 shows TEM BF images on the Ag/Cu interface after thermal storage time for 1000 h. The observation positions for the magnified images of Fig. 4.17(b-d) and for the HRTEM images of Fig. 4.17(e,f) were indicated in Fig. 4.14(a). The borderline of CuO and Cu$_2$O was inevident, as shown in Fig. 4.17(b). The formation mechanism of voids in the vicinity of Cu (Fig. 4.17d) is seemed Kirkendall void. As mentioned in Section 4.5.1, small amount of Cu can migrate into Ag matrix, besides the Ag was can rarely migrate into Cu matrix, because of difference of mutual solubility between Ag and Cu at 250 °C. As a result, the concentration of vacancies will gradually increases in Cu side, and then the accumulation of vacancies leads to formation of Kirkendall voids in Cu side. The two oxides, CuO (PDF no.: 01-076-7800; monoclinic symmetry; space group: C2/c; a=4.7940 Å, b=3.3620 Å, c=5.2280 Å and β=99.790°) and Cu$_2$O (PDF no.: 01-078-2076; cubic symmetry; space group: Pn-3m; a=4.2670 Å), can confirm by HRTEM images and corresponding FFT patterns, as shown in Fig. 4.17(e,f).

<table>
<thead>
<tr>
<th>Spectrum number</th>
<th>Chemical composition (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag</td>
</tr>
<tr>
<td>1</td>
<td>97.15</td>
</tr>
<tr>
<td>2</td>
<td>4.53</td>
</tr>
<tr>
<td>3</td>
<td>83.47</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 4.1 EDS point analysis results on the marked points in Fig. 4.16.
Figure 4.17 TEM BF images of (a) Ag/Cu interface after thermal storage for 1000 h, (b) interface of Ag/Cu oxides, (c) Ag precipitates in Cu$_2$O layer, (d) void formation near the interface of Cu$_2$O/Cu, and HRTEM images and corresponding FFT patterns of (e) CuO and (f) Cu$_2$O.

4.5.2 Oxidation of Cu surface
4.5.3 Interfacial reaction at the Ag/ENIG interface

Fig. 4.18 shows STEM/EDS mapping and line analysis results at the Ag/ENIG interface of as-bonded Ag NPB with ENIG substrate. Unlike the distinct interphase interface between Ag and Cu in case of bare Cu substrate, as shown in Fig. 4.13, the interphase interface between Ag and Au was ambiguous. It came from the interdiffusion of Ag and Au due to the mutual solubility in whole composition range of Ag-Au binary system [24].

Fig. 4.19 and 4.20 show EDS mapping and line analysis results at the Ag/ENIG interface of Ag NPB with ENIG finished Cu substrate after thermal storage for 500 h and 1000 h, respectively. From the EDS line analysis in Fig. 4.18-20, it can be confirmed that the Ag and Au layer was gradually mixed with increasing of thermal storage time. After thermal storage, the oxygen signal was detected at the underneath of Au layer, and it was seemed to form Ni oxide between Au and Ni(P) layer. The diffusion of Ag and Au into Ni(P) layer were not occurred even after thermal storage time for 1000 h, from the EDS line analysis in Fig. 4.18-20.

4.5.4 Formation of NiO and Ni$_3$P at the Au/Ni interface

Magnified STEM/EDS results shows Ni oxide layer and P-rich layer at the Au/Ni interface after thermal storage for 1000 h. P K signal is also detected in the Au region, as shown in Fig. 4.21; however, it is due to peak overlap of P K line and Au M line, as shown in Fig. 4.22. The energies of characteristic X-ray of O, P, Ni, Cu, Ag and Au are shown in Table 5.3 [25]. The energy differences between P K$_\alpha$/K$_\beta$ line and Au M line are 0.109 keV and 0.016 keV, respectively, which are smaller value than the energy resolution of EDS analysis. A typical energy resolution of Si(Li) detector for X-ray spectrometer is approximately 0.15 keV [8]. Further analysis with the high energy resolution will be necessary to resolve Au and P peak, for example, wavelength dispersive X-ray spectroscopy (WDS) or electron energy loss spectroscopy (EELS).

As shown in Fig. 4.23, the HRTEM image shows two phases, including NiO (PDF no.: 01-078-0423; cubic symmetry; space group Fm-3m; a=4.1790 Å) and Ni$_3$P (PDF no.: 01-074-1384; tetragonal symmetry; space group: I-4; a=8.9540 Å, c=4.3860 Å), were formed at the Au/Ni interface. A spotty FFT pattern of NiO, as shown in Fig. 4.23(b), indicates that NiO is nanocrystalline. The corresponding FFT pattern on the P-rich layer in Fig. 4.23(c), including a diffraction pattern of Ni$_3$P and a ring pattern of Ni, indicates that this layer consists of the mixture of Ni$_3$P and amorphous Ni.
4.5.3 Interfacial reaction at the Ag/ENIG interface

Figure 4.18 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface for as-bonded Ag NPB sample with ENIG finished Cu substrate, and (c) EDS line analysis along the dotted line in BF image.

Figure 4.19 (a) STEM BF image and (b) correspond elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 500 h, and (c) EDS line analysis along the dotted line in BF image.
Figure 4.20 (a) STEM BF image and (b) corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 1000 h, and (c) EDS line analysis along the dotted line in BF image

Figure 4.21 High magnification STEM BF image and corresponding elemental mapping results of Ag L, Au L, Ni K and O K on the Ag/ENIG interface of Ag NPB sample with ENIG finished Cu substrate after thermal storage at 250 °C for 1000 h. The EDS point analysis is performed on the marked points.
Table 4.2 EDS point analysis results on the marked points in Fig. 4.21.

<table>
<thead>
<tr>
<th>Spectrum number</th>
<th>Chemical composition (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag</td>
</tr>
<tr>
<td>1</td>
<td>60.01</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>6.72</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Figure 4.22 (a) X-ray energy spectrum for the EDS mapping of Fig. 4.19 and (b) deconvolution of P Kα and Au Mα peaks on the energy level of 1.8 - 2.4 keV, denoted range as grey box in (a).

Table 4.3 Energies of characteristic X-ray (K, L and M lines) of O, P, Ni, Cu, Ag and Au [27].

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic number</th>
<th>Energies of characteristic X-ray (in keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kα</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>0.5429</td>
</tr>
<tr>
<td>P</td>
<td>15</td>
<td>2.0137</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>7.4782</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>8.0478</td>
</tr>
<tr>
<td>Ag</td>
<td>47</td>
<td>22.1629</td>
</tr>
</tbody>
</table>
The Ni(P) layer shows mixture of nanocrystalline and amorphous Ni, as shown in Fig. 4.23(d). Measured values on the interplanar spacing of NiO in Fig. 4.23(b), Ni₃P in Fig. 4.23(c) and crystalline Ni in Fig. 4.23(d) from the HRTEM lattice images show good agreement with the reference data (ICDD PDF) on them.

4.5.5. Comparison of oxidation behavior between Cu and ENIG finish

The thicknesses of NiO layers formed at the Au/Ni after thermal storage for 500 h and 1000
h exhibit approximately 24.5 nm and 35.6 nm, respectively, as shown in Fig. 4.24. Zhao et al. argued that the oxygen can permeate through porous Ag layer at relative high temperature. Their result indicated that there was no oxidation of Cu substrate at 150 °C up to 960 h, while Cu substrate was oxidized at 250 °C for 72 h [5]. Cu surface can be directly exposed to the air (permeated oxygen through Ag porous layer) during thermal storage test at 250 °C; besides Ni surface (covered with thin Au layer) is not exposed to the air directly. As a result, the growth rate of NiO is dependent on the oxygen permeability through Au layer, which is called as internal oxidation. The oxygen permeability in bulk Au (approximately 1.47×10^{-33} m2/s at 250 °C), according to the temperature dependence of oxygen permeability reported by Kawamura et al. [26],

Figure 4.24 (a) TEM BF image of Ag/ENIG interface and (b) HRTEM image of NiO layer after thermal storage for 500 h. (c) TEM BF image of Ag/ENIG interface and (b) HRTEM image of NiO layer after thermal storage for 1000 h.
can be negligible. It can be infer that oxygen diffusion in Au lattice is frozen at 250 °C; and can be classified type C kinetic regime according to Harrison’s classification for diffusion kinetics in polycrystalline materials [27]. In this regime, oxygen can migrate only along the grain boundary of Au layer. The immersion Au layer exhibits columnar grain structure with grain size of tens of nanometer scale [28], which can act as a diffusion path of oxygen and Ni through Au layer. Unfortunately, there is no report on the kinetics of internal oxidation through the grain boundary of Au layer at low temperature.

From the results of this study, ENIG surface finish can impede the degradation by oxidation at the interface compared with bare Cu substrate; however cannot completely prevent the oxidation. For the better stability of Ag NPB joint at high temperature, an electroless nickel/electroless palladium/immersion gold (ENEPIG) is seemed to be possible solution to prevention of oxidation due to the presence of amorphous Pd interlayer. The amorphous Pd interlayer successfully act as a diffusion barrier of Ni or O at 150 °C for 200 h, because of the lack of grain boundaries [28].

4.6 Microstructure evolution at the Ag/Cu and Ag/ENIG interfaces

As shown in Fig. 4.25, it is possible to describe comprehensively on the microstructure evolution at the interface of Ag NPB joint after thermal storage test, from the change of microstructure and elements distribution at the interface of Ag/Cu and Ag/ENIG (Fig. 4.13-4.24). After thermal storage test, the interface of Ag and Cu are distinct due to limited mutual solubility between Cu and Ag. The CuO and Cu2O were formed at the surface of Cu substrate. Kirkendall voids in the vicinity of Cu was heavily formed. The brittle Cu oxide and Kirkendall voids act as a weak point to propagate the crack easily. Meanwhile, Ag and Au in case of Ag with ENIG finished Cu substrate, Au was dissolved into Ag layer by thermal storage test. The diffusion of Ag and Au into Ni(P) layer was limited due to the limited solubility of Ag and Au in Ni(P). The NiO and Ni3P were formed between Au and Ni(P) layer. Small amount of voids, which is seemed Kirkendall voids, were also formed at the interface of NiO and Ni3P. The interface of NiO and Ni3P act a weak point. Consequentially, the oxidation of substrates (Cu; and Ni in ENIG finish) and the formation of Kirkendall voids are seemed the cause for the degradation of Ag NPB joint.
4.7 Conclusion

The change of shear strength, fracture morphology and microstructure evolution of Ag nanoporous bonding joint with bare Cu and ENIG finished Cu during thermal storage test at 250 °C were investigated. The aspect of fracture varied with increasing thermal storage time, where the area of Au layer delamination in case of ENIG and interfacial failure in case of bare Cu increased. The results of shear test of as-bonded Ag NPB joints with ENIG finished Cu and bare Cu substrates show 25.7 and 26.6 MPa. The effect of surface finish became significant with increasing of aging time. In case of bare Cu substrate, the shear strength gradually decreased with increasing of thermal storage time, and it showed 11.4 MPa with the aging time of 1000 h. Contrariwise, the shear strength of NPB
with the ENIG finished substrate increased to 32.2 MPa for 100 h, and then gradually decreased. After 750 h, the shear strength showed 25.3 MPa, which is similar value with the initial shear strength of NPB. The effects of substrate on the degradation rate of Ag NPB joint were slightly different. These results arise from the different oxidation behavior of bare Cu and ENIG finished substrates. The oxidation of Ni and Cu seem to lead the Au delamination of ENIG finished Cu joint and interfacial fracture of bare Cu joint.

References

Chapter 5
Reliability of Ag nanoporous die attach under temperature cycling

5.1 Introduction

Automotive electronics are exposed to various detrimental environments, such as extreme temperature fluctuation, corrosive atmosphere and vibration. Reliability of electronics is generally defined as the life-time while maintaining its functions during usage under these environments. A temperature cycling test has been generally performed in order to examine the durability of die attach for high temperature electronics on the thermal stress induced by coefficient of thermal expansion (CTE) mismatch between the dissimilar materials under temperature fluctuation. So, it is necessary to investigate on the long-term reliability of Ag NPB joint under temperature cycling for the replacement of high temperature Pb-5Sn solder.

The temperature cycling tests on the Sn-based solder joint have been extensively carried out under various temperature swing conditions, where dealt with from the determination of life time of solder joint to failure mechanism [1,2]. The failure criterion of solder joint for the electrical interconnection has been established in industrial standards. Specifically, the “failure” is defined the first event of exceeding electrical resistance over 1000 Ω in IPC-9701 standard [3]. Meanwhile the failure criterion of die attach is not established clearly. A principal function of die attach is a mechanical bonding between semiconductor and substrate, as mentioned in Section 1.2.2. It also can
be act as a thermal pass for the dissipation of heat generation from the Si/SiC power semiconductors in order to reduce the junction temperature. Thus, the joint strength and thermal conductivity of joint can be the evaluation factors for the assessment of die attach reliability [4].

In this chapter, the reliability test of Ag NPB joint with bare Si chip on an active metal brazed (AMB) Cu Si$_3$N$_4$ substrate under temperature cycling from -55 °C to 150 °C up to 1500 cycles was performed. The long-term reliability of Ag NPB joint was estimated in terms of shear strength change after temperature cycling. The comparative consideration on the variation of shear strength after temperature cycling test from the literatures on the high temperature solders and Ag nanoparticles sintered joint was also presented.

5.2 Experimental

5.2.1 Ag nanoporous bonding process

Ag nanoporous sheet was fabricated by dealloying method in 2M hydrochloric acid solution from Al-20at.%Ag precursor. The dealloying treatment was conducted for 3 h for 75 °C. The detailed information on the microstructure, phase constitution of Al-Ag precursor and dealloyed Ag nanoporous sheet has been given in the Chapter 2 and Chapter 3.

The schematic diagram of Ag NPB process with Si chip and AMB Cu Si$_3$N$_4$ substrate is shown in Fig. 5.1. The bare Si chip (3 mm × 3 mm × 0.4 mm) with the backside metallization of Ti/Ni (P)/Au, and Si$_3$N$_4$ substrate (10 mm × 10 mm × 0.635 mm) with the double-side AMB Cu electrodes (8 mm × 8 mm × 0.3 mm) with electroless Ni/immersion Au (ENIG) finish purchased from Denka were used for the examination of temperature cycling test, as shown in Fig. 5.1(a). The thickness of Ti, Ni(P) and Au in the backside metallization of Si chip were 100 nm, 2 μm and 50 nm, respectively, and the thickness of Au and Ni(P) in the surface finish of AMB Cu Si$_3$N$_4$ substrate were 50 nm and 2 μm, respectively, as shown in Fig. 5.1(b). Ti, Ni(P) and Au were adopted as an adhesion layer, a diffusion barrier and an oxidation prevention layer, respectively.

Before the bonding process, Si chip and Si$_3$N$_4$ substrate were rinsed with acetone for 5 min in order to eliminate surface contaminations. The Ag nanoporous sheet was inserted between Si chip and AMB Si$_3$N$_4$ substrate. A graphite rubber sheet was placed on the top of joint to avoid the damage to Si chip resulting from the applied pressure during bonding process. The Ag NPB process was performed by a thermo-compression bonding system with double-side graphite heating plates at 300
°C for 30 min, as shown in Fig. 5.1(c). The applied pressure was 20 MPa, which was controlled using an air compressor. The final appearance of Ag NPB die attach with the Si and the AMB Si\textsubscript{3}N\textsubscript{4} substrate was shown in Fig. 5.1(d).

5.2.2 Temperature cycling test

Temperature cycle test was carried out in the temperature test chamber (VCS 7027-15, Vötsch) up to 1500 cycles in accordance with the joint electron device engineering council (JEDEC) standard for temperature cycling (JESD22-A104E), test condition H (temperature cycle from −55 °C to 150 °C) [5]. The nominal minimum soaking temperature (\(T_{\text{min}}\)) and maximum soaking temperature (\(T_{\text{max}}\)) were -55 °C and 150 °C (temperature variation, \(\Delta T = 205 \text{ °C}\)). The nominal soaking time at \(T_{\text{max}}\) and \(T_{\text{min}}\) was 10 min and; the heating and cooling rate was 15 °C/min. The temperature profile on the nominal and the measured temperatures during temperature cycling is shown in Fig. 5.2. The nominal and measured temperature cycling conditions are given in Table 5.1. The measured
temperature variation well meets the tolerance temperatures (+10 °C for T_{max} and -10 °C for T_{min}).

5.2.3 Characterization methods

In order to examine an occurrence of some defects, such as voids or cracks, at the Ag NPB joint by thermal stress, a nondestructive inspection of die attach was carried out using scanning acoustic tomograph (SAT, FS300III, Hitachi) with a high frequency transducer (frequency: 200 MHz,
focal distance: 6.9 mm) before and after temperature cycling test. The position of the interface between two dissimilar materials with different or air gap can be detected through the ultrasonic reflection intensity (acoustic impedance) as a function of time, called as A-scan mode, as shown in Fig. 5.3. The first reflection signals on the Si wafer denoted as a green colored box and Ag layer denoted as a red colored box in Fig. 5.3 were selected for the 2-dimensional plane scanning images,
called as C-scan mode. The typical Si wafer reflection images by SAT inspection, as shown in Fig. 5.4, can provide information on the damage of Si wafer (Fig. 5.4(a)) or the fracture of Si wafer (Fig. 5.4(b)) and tiny surface contaminations on the Si surface. The Ag layer reflection images were affected by these defects of Si wafer as shown in Fig. 5.4(a,b). The unattach or delamination at the interface also can be confirmed, as shown in Fig. 5.4(c).

Shear strength of Ag NPB joint was measured using die shear tester (STR-1000, Rhesca) with a shear rate of 1 mm/min and a shear height of 80 μm from the surface. The fracture surfaces of Ag NPB after temperature cycling test was examined using an electron probe microanalyzer (EPMA, JXA-8530F, JEOL) with an acceleration voltage of 15 kV, a scanning electron microscope (SEM, SU-70, Hitachi) with an acceleration voltage of 10 kV and focused ion beam (FIB, JIB-4500, JEOL) with an acceleration voltage of 30 kV.

5.3 Stability of Ag nanoporous bonding layer after temperature cycling

5.3.1 Non-destructive inspection on the Si wafer and Ag layer

There are two possible causes of crack propagation in the Si chip. One is the excessive pressure during the bonding process. The non-uniform or excessive compression stress can cause the crack of Si due to the fragile nature of Si wafer. Another one is crack propagation in the Si chip induced by thermal stress during temperature cycling test [6]. During the temperature swing, a large stress is generated at the joint, resulting from the CTE mismatch between the Si wafer and the bonding material/substrate. There was no evidence of crack occurred in the Si chip, despite after temperature cycling up to 1500 cycles.

Meanwhile, the bonding layer reflection image using SAT inspection can provide information on the void or crack propagation after temperature cycling, as shown in Fig. 5.5. In this time, the bonding layer reflections exhibit partially different contrast, regardless of number of temperature cycle. In the case of as-bonded condition, the white area was seemed to be observed due to the porous part of Ag layer, as mentioned in Chapter 3. Before 1000 cycles, as shown in Fig. 5.5(a-d), there was no clear evidence of Ag layer delamination before 100 cycles. After 1000 and 1500 cycles, as shown in Fig. 5.5(e,f), the delamination of bonding layer was partially observed at the corner of bonding layer. Mei et al. [7] have been reported that the maximum thermal stress of Ag sintered joint induced by temperature cycling is mainly generated at the corner of joint using finite
5.3.1 Non-destructive inspection on the Si wafer and Ag layer

Figure 5.5 SAT 2-dimensional plane scanning (C-scan) images on the Si wafer and Ag layer reflections of the Ag nanoporous bonding joint of (a) as-bonded; and after temperature cycling test for (b) 100 cycles, (c) 250 cycles, (d) 500 cycles, (e) 1000 cycles and (f) 1500 cycles. *Inset white arrows* indicate the delamination at the Ag bonding layer.
element method. Navarro et al. [6] have also been showed that the maximum normal stress is generated at the corner of bonding interface; and it sharply decreased to get closer to the center of joint at 275 °C. It seems reasonable that the fracture at the Ag porous bonding layer initiates at the corner of joint. Nevertheless, the delamination of Ag layer was not significant up to 1500 cycles.

5.3.2 Shear strength of Ag NPB and fracture mode after temperature cycling

Fig. 5.6 shows the change of shear strength of Ag NPB joint after temperature cycling test. The shear strength of as-bonded Ag NPB joint exhibits approximately 22 MPa. It is almost same value with the shear strength of Ag NPB with ENIG finished Cu disk, as shown in Section 3.4.1, and it of Pb-5Sn die attach [8]. They show no significant change on the average value of shear test results up to 1500 cycles compared with it of as-bonded Ag NPB joint. Furthermore, there is no serious crack propagation in the Ag layer. It can be judged that the Ag NPB joint can withstand under temperature cycle from -55 °C to 150 °C up to 1500 cycles, from the SAT inspection (Fig. 5.5) and shear test results (Fig. 5.6). The individual shear test results are also presented as a dot and classified according to fracture mode of each samples. The crack was mainly propagated along the Si, metallization of Si and Ag layer, as shown in Fig. 5.7.

The typical fracture surface images on the substrate side of Ag NPB joint after temperature cycling are shown in Fig. 5.8, where the samples in the upper row numbering by odd number exhibited higher shear strength and the samples in bottom row numbering by the even number exhibited lower shear strength for each number of cycles. The fracture mode was determined by the area fraction of each fracture location. The criterion of area fraction for classification was 5%. For example, the area fractions Ag layer fracture, Si fracture and metallization fracture of sample 1 exhibit 5.71%, 21.02% and 73.27%, respectively, as shown in Fig. 5.8(a). So, it can be classified in Ag/Si/metallization mixed fracture. In case of sample 2, the area fractions of Si fracture and metallization fracture exhibit 2.85% and 97.15%, respectively, as shown in Fig. 5.8(a). So, it can be classified in metallization dominant fracture.

The fracture mode could be classified into 5 types, including Ag layer dominant (indicated as black squares), metallization dominant (red circles), Ag/Si mixed (blue triangles), Si/metallization mixed (green diamonds), Ag/Si/metallization mixed (pink stars), as shown in Fig. 5.6 and Fig. 5.8. The fracture modes of as-bonded Ag NPB joint exhibit almost Ag layer dominant fracture. The samples which demonstrate Ag layer fracture, Ag/Si mixed fracture or Ag/Si/metallization mixed
5.3.2 Shear strength of Ag NPB and fracture mode after temperature cycling

Figure 5.6 The variation of shear strength of Si die attach on the AMB Cu Si$_3$N$_4$ substrate after temperature cycling test. *Inset number marks (1-10) are corresponding with fracture surface images in Fig. 5.7. The odd and even numbered sample exhibit higher and lower shear strength for each temperature cycling, respectively.*

fracture, tend to show higher shear strength compared with the average value. Besides, the samples which demonstrate metallization layer delamination or Si/metallization mixed fracture, tend to show lower shear strength compared with the average value.

Figure 5.7 Schematic diagram of fracture modes of Ag nanoporous bonding joint after temperature cycling test: (a) Si fracture, (b) metallization fracture and (c) Ag layer fracture.

5.4 Fracture behavior of Ag NPB after temperature cycling test

5.4.1 Macroscopic element distribution in the fracture surface

Fig. 5.8 and 5.9 show typical EPMA elemental distribution (Ag, Ag, Ni, Ti, Si and O) at the fracture surface of substrate sides and Si sides after temperature cycling test. The high Ni and Ti
Figure 5.8 Electron probe micro-analyzer (EPMA) element mapping results (Ag, Au, Ni, Ti, Si and O) on the fracture surface (substrate side) of Ag nanoporous bonding joint after temperature cycling for (a) 100 cycles, (b) 250 cycles, (c) 500 cycles, (d) 1000 cycles and (e) 1500 cycles. The sample numberings are correspond with marked in Fig. 5.6. The marked regions on the SE images with A, S and M indicate Ag layer fracture, Si fracture and metallization delamination, respectively.
5.4.1 Macroscopic element distribution in the fracture surface

<table>
<thead>
<tr>
<th>(d) after 1000 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e) after 1500 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Figure 5.8 (continued)

<table>
<thead>
<tr>
<th>(a) after 100 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) after 1500 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

1 mm shear direction low high

Figure 5.9 EPMA elemental mapping results (Ag, Au, Ni, Ti, Si and O) on the fracture surface (Si side) of Ag nanoporous bonding joint after temperature cycling for (a) 1000 cycles (sample 2) and (b) 1500 cycles (sample 10).
signals and very weak Si and O signals are detected in metallization fractured region on substrate side from the EPMA results on the sample 3, 4, 6, 8, 9 and 10, as shown in Fig. 5.8. Besides, high Si signal and very weak Ti signal were detected on metallization fractured region Si side as shown in Fig. 5.9. From the EPMA results on the both fracture surfaces of substrate side and Si side, it was confirmed that the metallization fracture was occurred along the Si/Ti interface. Unfortunately, it was unclear whether the Si backside metallization was degraded or not during temperature cycling. Further study on the interfacial reaction between Si chip and backside metallization after temperature cycling will be needed, in order to reveal a cause of metallization fracture and its effect on the shear strength of Ag NPB joint.

5.4.2 Stability of Ag layer after temperature cycling

Fig 5.10 exhibits the cross-sectional FIB images underneath fracture surface after temperature cycling for 1000 cycles (Fig. 5.10(a), same with sample 8 in Fig. 5.8(d)) and 1500 cycles (Fig. 5.10(b), same with sample 10 in Fig. 5.8(e)). The stability of Ag layer after temperature cycling could be confirmed from the cross-sectional images of the edge part of Ag NPB joint. The Ag layer exhibits porous structure, as reported in Chapter 3. There was no crack propagation in Ag layer after 1500 cycles. It seems that Ag NPB layer shows good stability under temperature cycling, because of the ductile property of Ag and the low elastic modulus due to porous structure.

5.4.3 Fracture morphology of Ag layer and metallization fractured regions

The features of fractured Ag porous layers by shear test and by temperature cycling after 1500 cycles were drastically different, as shown in Fig. 5.11. These fracture morphologies were observed near the corner of Ag NPB joint (substrate side). The fractured Ag layer by shear test, namely no crack propagation during temperature cycling, exhibited clear ductile deformation (necking) along the shear direction, as shown in Fig. 5.11(a). Besides, the fractured Ag layer during temperature cycling exhibits no evidence of necking, as shown in Fig. 5.11(b).

Meanwhile, the metallization fractured region after temperature cycling test for 1500 cycles exhibits cleavage fracture, which was a typical feature of brittle fracture, as shown in Fig. 5.12. It seems that brittle fracture of metallization layer leads to lower joint strength of Ag NPB compared with Ag layer dominant fractured cases.
5.5 Comparison of shear strength variation after temperature cycling

5.5.1 Comparison with high temperature solder joint

Fig. 5.13 exhibits a comparison of shear strength change after temperature cycling test between Ag NPB joint, which was conducted in this study, and high temperature solder joints from their reports [9,10]. Kim et al. [9] and Suganuma et al. [10] have been reported on the change of shear strength of high temperature solder joints, including Pb-5Sn, Au-20Sn and Zn-30Sn, with the Si chip and AlN DBC substrate after temperature cycling from -40 °C to 125 °C ($\Delta T = 165$ °C) up to 2000 cycles.

Figure 5.10 Focused ion beam (FIB) secondary electron (SE) images of tilted view of fracture surface (substrate side) and FIB-milled cross-sectional view on the edge parts of Ag nanoporous bonding layer under the fracture surface after temperature cycling for (a) 1000 cycles (sample 8) and (b) 1500 cycles (sample 10).
Figure 5.11 Scanning electron microscope (SEM) SE image of fracture morphology on the Ag layer fractured region after temperature cycling for 1500 cycles: (a) fractured by shear test and (b) fractured during temperature cycling. The observation positions are indicated with the *white arrows* in inset low magnification image.

Figure 5.12 SEM SE image of fracture morphology on the metallization fractured region after temperature cycling for 1500 cycles. The observation position is indicated with the *white arrow* in inset low magnification image.
cycles. They have adopted the diffusion barrier of TiN on the substrate finish in order to improve durability of Zn-30Sn and Au-20Sn solder joint under temperature cycling.

The shear strength of Au-20Sn and Zn-30Sn solder joints were relatively stable after 2000 cycles and exhibited higher values than it of Ag NPB. Kim et al. [9] argued that TiN is effective surface finish for the Zn-30Sn solder joint for the improvement of temperature cycle stability by means of retardation of the intermetallic compound (IMC) growth at the bonding interface and prevention of crack propagation between solder and IMC layer. Meanwhile, the shear strength of Pb-5Sn solder gradually degraded as increasing of the number of cycles despite the lower temperature variation ($\Delta T = 165 \, ^\circ C$) compared with this study ($\Delta T = 205 \, ^\circ C$). The Pb-5Sn solder joint exhibited sever cracking in the solder layer after temperature cycling test, and it became the cause of degradation of shear strength. For the comparison of Pb-5Sn joint, it can be concluded that the Ag NPB joint is stable under temperature cycling enough to substitute for Pb-5Sn solder.

5.5.2 Comparison with Ag nanoparticle sintered joint

Fig. 5.14 exhibits a comparison of shear strength change after temperature cycling test between Ag NPB joint and Ag nanoparticle sintered joint from the literatures [11,12]. The detailed
component of Ag sintered joint and temperature cycling conditions of each cases are given in Table 5.2. For the case of I, II, III and IV, the shear strength of Ag nanoparticle sintered joint were gradually degraded with increasing of number of cycles.

For the case of IV and V, Bai et al. [12] have been reported on the reliability of Ag sintered joint with SiC on the two direct bond copper (DBC) Al₂O₃ and AlN substrates under temperature

![Figure 5.14](image)

Table 5.2 Chip and substrate materials and conditions of temperature cycling test in the literature [11].

<table>
<thead>
<tr>
<th>Case</th>
<th>Chip / backside metallization</th>
<th>Substrate / surface finish</th>
<th>Temperature swing condition</th>
<th>Temperature range (ΔT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Si / Ag</td>
<td>AlN DBA / Ni</td>
<td>-55 ~ 250 °C</td>
<td>305 °C</td>
</tr>
<tr>
<td>II</td>
<td>SiC / Ag</td>
<td>Al₂O₃ DBC</td>
<td>-45 ~ 250 °C</td>
<td>295 °C</td>
</tr>
<tr>
<td>III</td>
<td>Si / Ag</td>
<td>Cu / Ag</td>
<td>-40 ~ 150 °C</td>
<td>190 °C</td>
</tr>
<tr>
<td>IV</td>
<td>SiC / Ag</td>
<td>AlN DBC / Au</td>
<td>50 ~ 250 °C</td>
<td>200 °C</td>
</tr>
<tr>
<td>V</td>
<td>SiC / Ag</td>
<td>Al₂O₃ DBC / Au</td>
<td>50 ~ 250 °C</td>
<td>200 °C</td>
</tr>
<tr>
<td>VI</td>
<td>Si / Ag</td>
<td>Al₂O₃ DBC / Ag</td>
<td>-40 ~ 150 °C</td>
<td>190 °C</td>
</tr>
</tbody>
</table>
cycling from 50 °C to 250 °C (ΔT = 200 °C). They also performed the comparative study on the effect of surface finish (Ag and Au) together. This report presented that the DBC AlN shows good thermal stability compared with DBC Al₂O₃, since AlN exhibits lower CTE than it of Al₂O₃. In detail, shear strength of them maintained up to 2000 cycles and gradually decreased with increasing of number of cycles. They concluded that Ag sintered die attach with Ag- and Au-coated DBC substrate can withstand up to 4000 cycle and 6000 cycles, respectively, with an assumption that failure criterion is 50 % drop of the shear strength.

5.6 Conclusion

In this chapter, the long-term reliability of Ag NPB joint with the Si chip and AMB Cu Si₃N₄ substrate under temperature cycling from -55 °C to 150 °C was investigated. The shear strength of as-bonded Ag NPB exhibited 22 MPa, and the change of joint strength of Ag NPB after temperature cycling was not significant in average values. The Ag NPB layer also showed good stability with the limited crack propagation along the Ag layer up to 1500 cycles. The fracture occurrence at the Si backside metallization, especially Si/Ti interface, was shown tendency to decrease shear strength; however, it is uncertain whether the degradation of Si/Ti interface resulting from the temperature cycling is occurred.

References

6.1 Summary

In this dissertation, solid-state bonding method using Ag nanoporous sheet for high temperature die attach as substitution of Pb-5Sn solder was presented. Objective of this research was the development of Ag nanoporous bonding for high temperature die attach without any organic substances for bonding process as a substitution for high Pb-containing solder. The fabrication of Ag nanoporous sheet, and Ag nanoporous bonding method and its reliability assessment were presented.

In Chapter 1, the immersing issues on the increase of demand for electric-powered vehicle and consequent power electronic devices were summarized. The recent research trends on the power electronics packaging materials which can endure for a long time at severe service conditions and research objective of this research were also presented.

In Chapter 2, the fabrication of Ag nanoporous structure from the Al-Ag precursor alloy using dealloying method was conducted. The microstructural characteristics and its related dealloying behavior in hydrochloric acid of Al-Ag precursor were presented. The fabricated Al-Ag precursor using melt-spinning was consisted of α-Al (main matrix) and γ-Ag₂Al (grain boundary precipitate and Widmanstätten structure). A considerable amount of γ-Ag₂Al was suppressed by the rapid
solidification, 5.6% of γ-Ag$_2$Al was precipitated. In the early stage of dealloying, the preferential attack on the Ag depleted zone at the grain boundary caused the formation of deep channel. The dealloying rate of α-Al was faster than it of γ-Ag$_2$Al, so α-Al was preferentially formed Ag nanoporous structure. The Ag nanoporous structure with the size scale of 113 ± 22 nm was obtained through the free corrosion dealloying in HCl for 720 min.

In Chapter 3, the thermo-compression bonding using Ag nanoporous sheet with electroless Ni/immersion Au (ENIG) finished substrate was conducted. The effect of bonding temperature on the microstructure, shear strength and fracture behavior of Ag nanoporous bonding joint were presented. The bonding process was conducted under air and N$_2$ conditions for the comparison. The microstructure of resulting joint exhibited a dense/porous layered sandwich structure, which originated from the simultaneous partial deformation and densification of the nanoporous structure and thermal coarsening. Over the entire interfacial area, there were no large voids or gaps observed. The shear strength of Ag nanoporous bonding joint shows about 15-28 MPa with various joining conditions which was similar value with that of conventional Pb-5Sn solder alloy. The shear strength of Ag nanoporous bonding joint increased with the increase of bonding temperature and the effect of atmosphere was not significant. The atmosphere effect was remarkable only in case of joining temperature of 400 °C.

In Chapter 4, the microstructural evolution and its influence on the shear strength of Ag nanoporous bonding joint with bare Cu and ENIG finished Cu substrate during thermal storage at 250 °C in air condition up to 1000 h were investigated. The results of shear test of Ag nanoporous bonding joint with ENIG finished Cu and bare Cu substrates show 25.7 and 26.6 MPa. The effect of surface finish became significant with increasing of aging time. In case of bare Cu substrate, the shear strength gradually decreased with increasing of thermal storage time, and it showed 11.4 MPa with the aging time of 1000 h. Contrariwise, the shear strength of Ag nanoporous bonding joints with the ENIG finished substrate increased to 32.2 MPa for 100 h, and then gradually decreased. After 750 h, the shear strength showed 25.3 MPa, which is similar value with the initial shear strength of NPB. The formation of two Cu oxides and Kirkendall void at the Cu/Ag interface in case of bare Cu substrate, and formation of brittle NiO and Ni$_3$P at the interface of Au/Ni in case of ENIG finished Cu substrate were the causes of degradation of Ag nanoporous bonding joint under thermal storage test.
In Chapter 5, the reliability assessment on the Ag nanoporous bonding joint with Si chip and active metal brazed Cu metalized Si_N\textsubscript{4} substrate under temperature cycling from -55 °C to 150 °C up to 1500 cycles were investigated. The change of joint strength of Ag nanoporous bonding joint after temperature cycling was not significant in average values. The Ag NPB layer also showed good stability with the limited crack propagation along the Ag layer up to 1500 cycles. The fracture occurrence at the Si backside metallization, especially Si/Ti interface, was shown tendency to decrease shear strength.

Consequently, the solid-state thermo-compression bonding method using Ag nanoporous sheet was successfully demonstrated in this research. Initial shear strength of Ag nanoporous bonding joint which was bonded at 300 °C for 30 min with applied pressure of 20 MPa exhibited similar shear strength with it of Pb-5Sn solder joint. Moreover, the long-term reliability of Ag nanoporous bonding joint was superior to Pb-5Sn solder joint. From these results, it can be concluded that Ag nanoporous bonding method strong candidate for the substitution of Pb-5Sn solder for high temperature die attach.

6.2 Environmental assessment on Ag nanoporous bonding

As mentioned above, Ag nanoporous bonding method can be Pb-free die attach method for high temperature electronics with similar bonding strength and superior reliability under temperature cycling compared with Pb-5Sn solder die attach. Besides, other factors should be considered for the practical use, for example environmental aspect and cost. In this section, fabrication process of bonding materials, including Pb-5Sn solder paste, Ag nanoparticle paste and Ag nanoporous sheet were summarized. And qualitative evaluation on the environmental assessment of the bonding process was also performed.

6.2.1 Fabrication process of bonding materials

Typical fabrication process of Pb-5Sn solder paste, Ag nanoparticle paste and Ag nanoporous sheet are shown in Fig. 6.1. Pb-5Sn solder is generally applied as a paste which is a mixture of Pb-5Sn solder powder and additives, as shown in Fig. 6.1(a). The micro-sized Pb-5Sn solder powder is fabricated by gas-atomization from the molten solder from 350 – 500 °C. And then, some additives, such as a flux for enhancing wettability of solder and a diluent for controlling the viscosity of paste, are
Ag nanoparticle was fabricated by reducing silver nitrate (AgNO₃) with sodium citrate dihydrate (Na₃C₃H₅O₇·2H₂O). AgNO₃ and sodium citrate dihydrate was used as a raw material and reducing agent. The reducing process was conducted at 90 °C. Detailed information on the fabrication of Ag nanoparticle paste using reduction of AgNO₃ can be found in the literature [2]. Ag nanoporous sheet was fabricated by dealloying method from the Al-Ag melt-spun precursor alloy. Detailed information on the fabrication of Ag nanoporous sheet was given in Chapter 2 and Chapter 3.

Figure 6.1 Schematic diagrams on the fabrication process of bonding materials, including Pb-5Sn solder paste [1], Ag nanoparticle paste [2] and Ag nanoporous sheet.
6.2.2 Comparative consideration on environmental assessment of bonding materials

The qualitative environmental assessment on the fabrication process of bonding materials, including Pb-5Sn solder, Ag nanoparticle paste and Ag nanoporous sheet, in terms of energy consumption, waste fluid, toxicity of bonding materials, additional materials for bonding process and cost are summarized in Table 6.1. Fabrication of Pb-5Sn solder paste shows good in terms of environmental and economical perspective. As mentioned in Chapter 1, however, usage of Pb should be eliminated in order to response environmental regulation. Ag nanoporous sheet have an advantage for bonding material by the elimination of usage of any organic substances. Energy consumption for the fabrication process of Al-Ag melt-spun precursor and waste fluid after dealloying process, however, still remain problems should be solved for the practical use. The quantitative evaluation on the energy consumption, waste fluid and cost of fabrication process of bonding materials also should be necessary.

6.3 Future work

6.3.1 Improvement of bonding process for practical use

In this dissertation, the applied pressure of 20 MPa for Ag nanoporous bonding method was adopted. This value is high for the Si/SiC die attach. An excessive pressure can lead to fracture and damage of Si/SiC chip and electric circuit on the surface of chip. The applied pressure of Ag nanoporous

<table>
<thead>
<tr>
<th>Assessment items</th>
<th>Pb-5Sn solder paste</th>
<th>Ag nanoparticle paste</th>
<th>Ag nanoporous sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption (process temperature)</td>
<td>○ 350 - 500 °C for melting</td>
<td>◎ 80 °C for reduction</td>
<td>△ 750 °C for melt-spinning</td>
</tr>
<tr>
<td>Waste fluid</td>
<td>◎ -</td>
<td>○ NaNO₃</td>
<td>✗ chloride solution</td>
</tr>
<tr>
<td>Toxicity of bonding materials</td>
<td>✗ toxic ban from RoHS</td>
<td>○ concern on toxicity of nano material</td>
<td>◎ -</td>
</tr>
<tr>
<td>Additional material for bonding process</td>
<td>△ flux</td>
<td>△ solvent vehicle</td>
<td>○ -</td>
</tr>
<tr>
<td>Cost</td>
<td>◎ cheap</td>
<td>△ expensive</td>
<td>△ expensive</td>
</tr>
</tbody>
</table>

◎ excellent ○ good △ need to modification ✗ bad
bonding method should be lowered as low as possible.

It is seemed that the lowering of applied pressure can be achieved by fine tuning of Ag nanoporous structure. It can be achieved by two different ways, including suppression of \(\gamma \)-Ag\(_2\)Al in Al-Ag precursor \cite{3} and change of precursor alloy composition \cite{4}. Detsi et al. reported that the fine tuning of Ag nanoporous structure with the ligament size of approximately 30 nm can be achieved by the suppression of \(\gamma \)-Ag\(_2\)Al \cite{3}. They prepared Al-Ag precursor alloy with the single phase of \(\alpha \)-Al through the heat treatment at 546 °C and subsequent quenching to 3 °C of cold-rolled Al-Ag sheet. Meanwhile, Wang et al. reported that the ligament size of Ag nanoporous structure from Al-Ag precursor alloy gradually decreased with decreasing concentration of Ag in Al-Ag precursor \cite{4}. These are effective methods on the fine tuning of Ag nanoporous structure. And it can be possible to lower the applied pressure of Ag nanoporous bonding process by means of fine tuning of Ag nanoporous sheet.

6.3.2 Large-area bonding

One of the expected advantage of Ag nanoporous bonding technique is same bonding quality at the same bonding condition regardless of bonding area, because it is not necessary to remove any organic substances during the bonding process. In this dissertation, small-area substrates and chip were applied for the solid-state Ag nanoporous bonding. In detail, ENIG finished Cu disk with a radius of 3 mm was used for solid-state bonding in Chapter 3 and thermal storage test in Chapter 4; and Si chip with 3 mm \(\times \) 3 mm was used for temperature cycle test in Chapter 5. As a next-step, the large-area die attach above 10 mm \(\times \) 10 mm by Ag nanoporous bonding technique will be necessary for the practical use.

6.3.3 Surface finish selection for high reliability

As presented in Chapter 4, ENIG surface finish of Cu disk can impede the thermal degradation by oxidation at the bonding interface compared with bare Cu substrate; however cannot completely prevent oxidation under thermal storage in air. The oxygen was permeated through Au layer, and then reacted with Ni. This Ni oxidation can lead to degrade the shear strength of Ag nanoporous bonding joint. Thus, another surface finish will be considered for the complete oxidation prevention for higher reliable joint. Li et al. showed the electroless Ni/electroless Pd/immersion Au (ENEPIG) can prevent the Ni migration to surface and the oxygen permeation due to no diffusion path of amorphous Pd layer \cite{5}. ENEPIG can be accepted as a potential candidate of surface finish for high temperature electronics.
6.3.4 Reliability assessment under temperature cycling and power cycling

In Chapter 5, the reliability of Ag nanoporous bonding joint under temperature cycling from –55 °C to 150 °C test was conducted. The Ag bonding layer showed good stability without any significant crack propagation during temperature cycling. The junction temperature of power device gradually increases from the advance in the integration and high performance of power semiconductor, thus, extreme temperature swing with higher maximum temperature (over 200 °C) compared with temperature swing condition in Chapter 5 will be necessary.

Meanwhile, power cycling is a comprehensive reliability test generally adopted for the lifetime assessment of power device. A failure of power device during power cycle test can be judged as a voltage increase by 5% or 20% resulting from the wire bond lift-off or a thermal impedance increase by 20% resulting from the thermal fatigue of die attach. Difference between temperature cycling and power cycling is a method. Temperature is varied by temperature controlled chamber during temperature cycling, namely external heating and cooling. In contrast, the power device is heated by the power loss of power semiconductor and is cooled using heat sink during power cycling, namely internal heating and external cooling [6]. The power cycling can offer the similar temperature swing with the practical application. Thus, the additional reliability assessment on the Ag nanoporous bonding joint under power cycle condition will be necessary.

References

A1.1 TEM analysis and sample preparation

A transmission electron microscopy (TEM) is a powerful analysis technique for the characterization of materials, and is becoming much more important with the growth of nanomaterials [1]. It can offer meaningful information on the microstructure of materials at high resolution as well as a chemical composition using an energy dispersive X-ray spectroscopy (EDS) and an analysis on the crystal structure using a selected area electron diffraction (SAED) or high resolution lattice image [2–5]. The major advantage of the TEM based X-ray spectroscopy is a great improvement of spatial resolution compared with the scanning electron microscopy (SEM) based X-ray spectroscopy, because of a very fine probe of electron beam (around 0.5-2 nm in STEM mode) and a narrow electron trajectory due to the thin sample. A typical spatial resolution of EDS analysis on TEM with a field emission gun (FEG) can be achieved is approximately under 10 nm [1]. Moreover, the crystallographic information via diffraction related analysis techniques, such as a selected area electron diffraction or an atomic resolution image, can be obtained at the coincident position with EDS analysis [3,5,6]. In this dissertation, the TEM technique has been also widely employed in order to acquire more detailed information on the various phenomena occurred at the nanoscale.

There are several sample preparation techniques for the TEM observation, such as, replica, ion
A proper preparation method should be selected to the materials or objective of analysis. Among these, the FIB technique has been widely employed in the microelectronics field, due to its possibility of site-specific TEM sample preparation [3,5,9]. The maskless milling and deposition in the interesting area can be achieved in FIB. However, there are still some problems of FIB method, for example a surface amorphizing by ion beam induced damage and Ga contamination [7,9,10]. Some researchers have adopted additional surface cleaning method, such as Ar ion beam milling [5] or plasma cleaning [11], in order to avoid this problems.

A1.2 Procedures of in-situ lift-out method

The TEM sample was prepared using a multi-beam FIB/SEM system (JIB-4500, JEOL) equipped with two beam columns (electron beam and Ga ion beam) for the milling and observation, two gas injection nozzles (tungsten and carbon) for the deposition and one micro-manipulator (AutoProbe 300, Omniprobe) for the in-situ lift-out, as shown in Fig. A1.1. The procedures of in-situ lift-out method can divide three steps: (1) preparation of wedge-shaped sample, (2) lift-out and mounting to TEM grid, and (3) thinning to the final thickness.

Figure A1.1 Schematic diagram of arrangement of Ga ion beam and electron beam columns of multi-beam FIB/SEM system. The angle between Ga ion beam column and electron beam column is 52°. Two gas injection nozzles (tungsten and carbon) and a micro-manipulator are also installed.
The required thickness of TEM sample was varied with the analysis method and acceleration voltage of electron gun. For the general observation or EDS analysis with 200 kV TEM, the required thickness is approximately 100 nm. For the high resolution TEM observation or electron energy loss spectroscopy (EELS), the required thickness should be under 50 nm. Meanwhile, thick sample with micro scale thickness can be observed using a high voltage TEM (the acceleration voltage over 1 MV) [12]. The minimum thickness which can be achieved using FIB milling is approximately 100 nm, which is suitable for the general TEM observation. The additional milling process, such as a precision ion polishing system (PIPS) [5], in order to obtain more thinner sample for HRTEM or EELS.

(1) Step 1: Preparation of wedge-shaped sample by rough-milling (Fig. A1.2)

Before the loading the sample into the FIB chamber, the surface of bulk or cross-sectioned sample was coated with carbon or palladium-gold by sputtering for the protection layer. As a first step, the carbon layer was deposited with the thickness of 1.5 - 2 μm in the interesting area (height = 5-7 μm, width = 15 - 25 μm), as shown in Fig. A1.2a. Next, the periphery of the target area was milled using the rough Ga ion beam (an acceleration voltage of 30 kV and a current of 1000 pA), except for the bridge.

(a) Carbon deposition on the target position

(b) Wedge-shaped sample preparation

Figure A1.2 Preparation of wedge-shaped sample by rough-milling: (a) carbon deposition on the target position and (b) wedge-shaped sample preparation by rough-milling.
Figure A1.3 Procedures of in-situ lift-out: (a) micro-welding on the tungsten probe of micro-manipulator via tungsten deposition and in-situ lift-out, (b) lift-out from the bulk specimen, and (c) transferring and (d) mounting of wedge-shaped sample to molybdenum TEM grid.
part connected to the bulk sample, as shown in Fig. A1.2b. The trench parts should be sufficiently deep and wide to lift-out except the bridge part.

(2) Step 2: Lift-out of wedge-shaped sample and mounting to TEM grid (Fig. A1.3)

Next step is lift-out of wedge-shaped sample from the bulk specimen using micro-manipulator. The micro-manipulator can precisely move in three-dimensional direction (X, Y, and Z axis). The wedge-shaped sample was attached to tungsten micro-manipulator by means of tungsten deposition (Fig. A1.3a). And then, the bridge part was cut in order to separate wedge-shaped sample from the bulk specimen (Fig. A1.3b). The sample stage was changed to molybdenum TEM grid mounted holder (Fig. A1.3(c)). The wedge-shaped sample was mounted on the tip of molybdenum TEM grid by means of tungsten deposition. Finally, the connection between wedge-shaped sample and micro-manipulator was cut using FIB milling (Fig. A1.3(d)).

(3) Step 3: Thinning to the final thickness by fine-milling (Fig. A1.4)

The final step is thinning to the final thickness for the fabrication of electron-transparent sample. In order to minimize the surface damage induced by ion beam, a fine Ga ion beam with the current of 10 pA was adopted for final thinning.

References

Appendix 2

Fourier mask filtering of HRTEM image

A2.1 Relationship between HRTEM image and corresponding FFT pattern

Fig. A2.1 shows a mathematical relationship between the HRTEM lattice image and the fast Fourier transform (FFT) pattern, where the HRTEM image and the FFT pattern are correspond with real space and reciprocal space, respectively [1]. FFT patterns generally exhibit same results with a selected area diffraction (SAED) pattern. The real space (HRTEM image) can be converted to reciprocal space image (diffraction pattern) using the FFT, and reverse conversion can be achieved by using inverse FFT (IFFT). It is possible to identify crystal structure from the HRTEM image using this FFT calculation [2].

A2.2 Fourier mask filtering and its practical use

Detailed information on the Fourier mask filtering technique has been reported by Kim et al [1]. The designated periodical signal (lattice plane of crystalline material in this case) in HRTEM image only remained through the Fourier mask filtering and subsequent IFFT calculation. As a result it is possible to reduce the noise and to remove particular signal from the HRTEM image on the specific area. This technique has been widely utilized to reveal the dislocation [3] and to reduce the noise of HRTEM image [4,5].
Fig. A2.2 and A2.3 exhibit examples on the utilization of two Fourier mask filtering methods using array mask and spot mask on the HRTEM images. Image processing of HRTEM images was performed using DigitalMicrograph (Gatan), in this dissertation. The noise reduction of HRTEM images can be obtained using an array mask filter on the diffraction patterns and subsequent IFFT calculation, as shown in Fig. A2.2(a) and A2.3(a). Meanwhile, the lattice fringes on the particular plane can be obtained using the spot mask filtering on the particular pair of diffraction patterns on subsequent IFFT.

Figure A2.1 Mathematical relationship between (a) HRTEM image (real space) and (b) corresponding FFT pattern (reciprocal space).

(a) array filtering

(b) spot filtering

Figure A2.2 The mask filtered FFT pattern and corresponding IFFT image on the HRTEM image of α-Al (Ag) precursor using (a) array filter and (b) spot filter.
calculation, as shown in Fig. A2.2(b) and A2.3(b). The more accurate measurement of interplanar distance of particular planes also can be achieved using the Fourier mask filtered lattice fringe image, as shown in Fig. A2.4. From the filtered image (Fig. A2.4(a)), the intensity of brightness along the designated line (Fig. A2.4(b)) can be obtained. This technique can reduce the measurement error on the determination of interplanar distance compared with the direct measurement from the raw HRTEM data.

Figure A2.3 The mask filtered FFT pattern and corresponding IFFT image on the HRTEM image of Ag/Au bonding interface using (a) array filter and (b) spot filter.

Figure A2.4 (a) The spot mask filtered (220) plane image of α-Al(Ag) precursor and (b) the intensity profile on the brightness along the designated line in a.
References

Research achievements

I List of publications

Peer-reviewed journal articles

Conference proceedings

II List of presentations

International conferences

Domestic conferences

1. 松永 香織, Min-Su Kim, 西川 宏, 斎藤 美紀子, 水野 潤, “Au ナノポーラスシートを用いた接合部のせん断強度評価”, 平成26年スマートプロセス学会春季総合学術講演会, 大阪, 2014年5月.
2. 松永 香織, Min-Su Kim, 西川 宏, 斎藤 美紀子, 水野 潤, “Au ナノポーラス接合の接合材表面構造と接合強度の関係”, 第24回マイクロエレクトロニクスシンポジウム, 大阪, 2014年9月.

3. 松永 香織, Min-Su Kim, 西川 宏, 斎藤 美紀子, 水野 潤, “ダイボンディング用の Au ナノポーラスシートの作製”, 第21回「エレクトロニクスにおけるマイクロ溶接・実装技術」シンポジウム, 横浜, 2015年2月.

Acknowledgment

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Hiroshi Nishikawa, for his support and academic guidance throughout my doctoral course. I would also like to appreciate members of doctoral committee, Prof. Shinsuke Yamanaka, Prof. Michihiko Ike and Prof. Akio Hirose, for their insightful comments and helpful discussion for this dissertation. I would also appreciate staff of Joining and Welding Research Institute, Assoc. Prof. Makoto Takahashi, Mr. Kenji Asano, Mr. Makoto Murakami and Mr. Takuya Ogura, for technical supports.

I would like to express the appreciation to members and alumni of Nishikawa Laboratory, Ms. Kimiko Ikkai, Dr. Myong-Hoon Roh, Dr. Omid Mohktari, Ms. Kaori Matsunaga, Mr. Xiangdong Liu, Mr. Siliang He, Mr. Jun Tajima, Mr. Jun Matsunobu, Dr. Li-Ngee Ho, Mr. Keiichi Niwa, Mr. Kunio Ueda, Mr. Shinya Kubota, Mr. Makoto Ujino and Mr. Shinya Ojima, for their kind support.

I would like to express the appreciation to members and alumni of Osaka University, Dr. Kwang-Woon Jung, Dr. Su-Jin Lee, Dr. Sun-Woog Kim, Dr. Youngseok Kim, Dr. Se-Min Park, Dr. Jung-Nam Bae, Dr. Eun-Jun Chun and Dr. Jong-Uk Park., for their warm encouragement and invaluable friendship.

I wish to express my thanks to members of Micro-Joining Center of Korea Institute of Industrial Technology, Dr. Jung-Han Kim, Dr. Jong-Hoon Kim, Dr. Chang-Woo Lee, Dr. Jun-Ki Kim, Dr. Sehoon Yoo, Dr. Jung-Hwan Bang and Dr. Yong-Ho Ko, for their useful advice on my research.

Finally, I would like to express my sincere appreciation and love to my parents and sister, for their careful concern, moral support and dedication.

Min-Su Kim
Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering
Department of Smart Green Processing, Joining and Welding Research Institute
Osaka University