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RREICAE U 2 BTt AW I > 72 AW K0 RN AT 5 Lk~ T 5, Isacsson
1% AS08 8l &2 FHH\NTH A R 7L — 7 fF = SRR 21TV, I8 597 TRASEm ) b OIEVE BRI -
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R _
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R 20y
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VI ELO I TR LR 2 E B L, BRSOV IZ Mises DY) T16 #AWD 2 L 2#ET
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A2 BN 2,

m| & =I °0.283exp(30_“‘ jdgp (12)
R, ). 0 20
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D& XM BN 5 & B 2 CTHREESRME R 28230 F72, SEE O AREE TR /TR
—ED FTAMEZ T =5BE 0O 242X 13)TE L,

= (1-n)In(l, / 2a,)
* sinh[(1-n)(0, +0,)/ (26 /43)

(1.3)

T 2 TE TR L IO B, n 1T LEALIEE, o, & o (3BTRS T (a, b I35 A %
KL, alb), alFWWARA FE, L ITHHIRA R T®H 5. Thomason (IR A FFEIL23 A
IZHET 5 L0 BANCARA FETORE < CNIT L > THRAS RBRARLEITEERT D5 & B 2 TR
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7 DR S Xz T 2,
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o ;
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Tvergaard IX R EH% DO RA REICAR A1 5 &, R4 REORITEABHICRA Fo— F itk
U, BEEERA REHRET 5 L0 REICEMERIEICES L0 ) BERRICNAZ T, B FEOWA
Wt DEERAENT 2 &, Gurson BT VITHMBLER q,, ¢, 2 BA L TRAUTR TR ZRE L -

34,35)
o

@:(EJ+a%fam{§%5?)—@+%fﬂ=0 (1.5)
o 270
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TIZES CToRAA RORAEICLD DN H S, Chu & Needleman (%, Gurson D REREIEIZ — 7k
A RRAEZBE L, NA NMEERE D df 28 A FERICEDRA FEFERES dfyown & KA
A RREIZEDRA FEFEFEIE S dfweaion P — 23T TR LT,

df = df youn + dfsuctcation (1.6)
A FRREICEDRA FEFERIE dfyown (ZERFEOT B OBy deb IZE > THZ BN D,
Af oy = (1= f)dE", (1.7)
—7F, OFTHIERDO “RAA FREAEICLDRA RMEBERE S FRATELILNS.
fweteaion = FAE, (1.8)
Jp— eq{—l(%_ENI} (1.9)
SN2m 2 S

I THIFHELIEARA ROEME, s 1IAA RBEMEOEERZE, eyldAhA FRBREOTATH
5.

FLAEG | ERBRIC I T DM E B OB ZRHE B2 5, Tvergaard & Needleman |% Gurson 7 /L % &
HltHESEZ (GIN E7 V), BMARARA FlEEZAE L LDMARA MAFER f 3 L OEREHIC
MHr RE ) & 2 5 AR AN A RIRFEE f, 28 AL, AR A MR £ 4 A0 TRSUSR T RERBI%K
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d>:(g) +2q.f cosh(ng—a )—{1+(q1f ) }=0 (1.10)
ZIT, AARA FERR fIIRATREND,

f*:{ f for f<f an

fe+K(f=f) for f>f

fo— 1. -1
K = . fu=— 1.12
Jfe— 1 /i 9 ( .

f=f.0%E1%, X(1.10)1% Gurson-Tvergaard D FFREIEL (K (1.5) IZH L, f=IBWVWTHRA R
A £ OEFEIC L0 BT HRA REFEER/ENLAD S, R(1.10)0 K0 f=F"0 & ZITHE O HE
NWKONDN, fIIRERMEE & D720, EBRD D WITMT THF O - BER A R 4 RIRFES
HFERMWT f=fi DL SITMBNBIEICEDL EERIN TV D,

1.3.3 YA 70RA REEXRIOMMICT T DEEBEET IV

KIASIE, WD/ OTHEREHNS OEMBROIAELERICBITLE— FOEWIIERL,

SR TS A OFEE B AR - EERIRPLDS, SM ORRERMEDAMNCERE L LV ORBTHLND

LN O ZfEfHO DEMFE] IZX S5 2 & & R L7z 2029,

1) HABT S0 ABEMEARREA  TEIREEM] (BIREHMOMTH 5V 5 RRBR TR 5
DUIREED S OIEMEB AR LR RHETOT 7)

2) ST ¢ TNV BUENE R R ¢ THENE OO ) R A AR ) (R BIR & A s
BRERER T b 2 IEMER AT AR O B DIk 11 Z il B AR A7 M)

Fig. 1.1 12, fix OEERMO TR & EME ) B8O HEVEO IS ) SR 2 F & T

L7cb D& R 2239 I K o> TEERRFFEZ R L TER Y, RIS 28 AT L 72 Fr

PZRTEVIREDRH D, S HIT, T OB E RO A G, Fig. 1.2 1IR3 I511/

OFTHREFELN D OFEMERHREAE - ERIEFZ VI 2L —va k) PRIT 22008 EET

VARG LT O, SEMERZIEAEIIE, IR O HRE IO KT Y B O 0 EHE A 0

[RAMECH D Eid1) @ TEIREIEN] (L L JICTRANKET DLWV I Y EEOTH—

ERMZENT 5, Z0%OEHEFERIE, 2GS TOHEGERZZEL T, Gurson €7

NaEBEICL TRES NI RRITRTRIRBEEICES LT 5,



=\2
@:(E) +a1D*exp(a22—_m)—1:O (1.13)
G G

ZIT, DIFAMBREE, o BEW o, IMBERTH Y, BEEDOIE ) ZEEERARE] »6IE
BRECTEDHEVIFRERT 5,

Round-bar tensile specimen
with/without circumferential notch

R1,R1 .i,RZ,Roo
-

V-notch Charpy type
bend specimen

2 OA Méasurement 2 200um Measurement 100pm
o T O |STPT370
© I & | SM490YB
= I & O | X80 class (A)
® 15¢F - A | X80 class (B)
17 [ v |[HT780 (A)
9 i o % O [HT780 (B)
& 1.0f -
o I o
5 I
< 0.5} R
= [
= I
3 I
w OO [ | | | [ | | 1 | 1

04 06 08 08 1 12 14 16 18 2
Stress triaxiality, 6,/

Fig.1.1  Two types of ductile properties of various kinds of steels that control ductile crack initiation
and growth resistance %4>,

Ductile crack initiation

Local strain criterion

£, = constant

Ductile crack growth

Triaxiality dependent damage model

&= (éj +aD exp(a2 2—_’")—1: 0
& 5] )

Fig. 1.2 Damage model for material to exhibit micro-voids initiation controlling ductile failure behavior.



1.4 EMBIRET L Z AWRIRHEICE T 2R DOME & 2 DRE

141 BHREIMOTEMEERKE - ERIEBEFO T

GTN E7 V& AW BEM OEEARER Y I 2 L— 2 U FEORENR L OIZ, Xia b
MHEZE L 72 Computational Z/LET /LB 25 49, Z i, WIRROERER EICPIAR A K RE
#fy, B/LEEI D O Gurson-Tvergaard OFERKBIE (K (1.5)) 1249 HHREZEE L, ZALSOH
BUZIZARA FE2BE L7220 Mises DRARBIBICHE S & L THEMBARKERZ I 2L —v a5
EFNTHD, AMOETICL  BZLROENLORA FEEE £ R EHEAG ORRR A FER
RfAET DL, TORMIMARNEZ R TRANZ O LVOTERTERT 2, BELVET IV
ERWDITE, BAEES D, WIIRA RIEEE f,38 LORRA A MR 0 =S OB e %
RETDMEND D, /@S DITLPRIIIY BRI DB NEAT L L E0RA
JeHBE M ZEAL (Crack Tip Opening Displacement, CTOD) 8, & L CH 225 Z N T 5 4, ¥R
A RIREESE f, LRI A FIREEER £, 1%, FERENERBR A WHBRES o ERBAE W O
boayW=0.5) OIEMRIGERKGIR (R-curve, JEMEBREREA & CTOD X J 57 D]
TA—=ZEOBR) N, ELVET A EHA WY I 2 b —2a VKV BB TEL XS ICRET D,
722 L, BRAEARA REFEE £ 73 Rcurve [ICKITTREBIT/NI VN ERESNTEY, EEOITIEA
R A FEFER f, 2B HERBR OV I 2 —Ya L WikEt b, UEDO XS ICkE LIz T
A =2 & AWT, BRE SLAMER O R 23T O R-curve 2 TIT 2 Z LITEI LTV 5,

TAETLVORRIE, HORBABIRICONVWTNT A—% (BLFEE D, YIHIAA FEEE f,
BRI A FIEFER f) ZRETENIE, ZROEMERME S L TRERROBEM O R-curve %
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Fig. 1.3  Hierarchical approach to correlate multi-scale characteristics i.e. micro-structural
characteristics, mechanical properties of steel and structural performance with respect to
ductile crack growth resistance.
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Fig. 1.4 Structure of this research work.
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Fig. 2.1 Approach for predicting ductile fracture behavior/limit of two-phase steel.
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Fig. 2.2 Procedure for drawing the Voronoi tessellation.
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Fig. 2.3 Voronoi tessellation.
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(c) 3D two-phase model (d) 3D two-phase FE-model

Fig. 2.4 Procedure for creating 3D two-phase FE-model.
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Fig. 2.5 Examples of crystal grains created by proposed method.
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Fig. 2.6 Frequency distribution of volume fraction of second phase of 3D two-phase FE-model.
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Fig. 2.7 Various grain size models.
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Fig. 2.8 Various volume fraction of second phase.

Fig. 2.9 High aspect ratio model.
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Fig. 2.10 Proposed damage model to simulate ductile damage evolution.
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opening displacement, V,

1
! Aag,

>

Ductile crack growth, Aa Equivalent plastic strain of notch tip, &

np

Fig. 2.11 Procedure for predicting critical local strain.
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Fig. 2.12 Procedure for predicting stress triaxiality dependent ductility.
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Fig. 2.13 Proposed models to predict two types of ductile properties.
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Table 3.1 Chemical compositions of SM490YB steel used (mass%).

C Si Mn P S Cu Ni Cr Mo \ B
0.17 0.33 1.37 0.018 0.018 0.01 0.07 0.06 0.008 0.002 0.0001

N Thickness direction

Rolling direction
C” Transverse direction

Fig. 3.1 Microstructures of SM490YB steel used.
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I 500 |

= r

o 400 F

73

5300
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5 200

g 100 | Smooth RBT (¢6)

=z C D ]:I
0'....|....|....|....

0 0.1 0.2 0.3 04

Nominal strain, € (G.L.=36mm)

Fig.3.2 Nominal stress - nominal strain curve obtained by smooth round-bar tensile test for SM490YB

steel.
Table 3.2 Mechanical properties of SM490YB steel used.
HV
Oy (MPa) oT (MPa) YR €T (°/o) El (°/o)
Ferrite Pearlite
344 540 0.64 17.6 31 198 276

ov: Lower yield stress, or: Tensile strength, YR: Yield-to-tensile ratio = oy/or
er: Uniform elongation, El.: Elongation (G.L. = 36mm, Dia. = 6mm), HV: Vickers hardness (Load: 25gf)
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(a) Type A specimen (b) Type B specimen

Fig. 3.3 Configurations of micro-tensile specimens.
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Fig. 3.4 Testing machine used for micro-tensile test.
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C,H;OH +

] Observed 5% HNO;
! $ section $
| _ \
! 1 1 Specimen ﬁ
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Fig. 3.5 Procedure for observing cross-section of the micro-tensile specimens.
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Fig. 3.6 Stress-strain curves for Type A specimen obtained by experiments.

(a) Whole view (b) Magnified fracture surface

Fig. 3.7 Fracture appearance of Type A specimen.
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Fig. 3.8 Ductile damage evolution from specimen center for Type A specimen.
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Fig. 3.9 Stress-strain curves for Type B specimen obtained by experiments.
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Fig. 3.10 Fracture appearance of Type B specimen.
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Fig. 3.11 Ductile damage evolution from notch root surface for Type B specimen.
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Fig. 3.12 Meso-scale 3D FE-models of notched micro-tensile specimens.
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Fig. 3.13 Configuration of smooth round-bar tensile specimen.
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Fig.3.14 True stress - true strain curve obtained by experiment and equivalent stress - equivalent plastic
strain curve.
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Fig.3.15 Equivalent stress - equivalent plastic strain curves of the constituent phases of the two-phase
steels.
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Fig.3.16 Micro-structural model to evaluate macro- scopic stress - strain curve for SM490YB steel.
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Fig.3.17 Nominal stress - nominal strain curves obtained by smooth round-bar tensile test and
FE-analysis using micro-structural model for SM490YB steel.
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Fig. 3.18 Configuration of circumferentially notched round-bar tensile specimen.
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Fig.3.19 True stress - true strain curves of round-bar tensile specimens with/without circumferential
notch.

[ 717
[T]

33
Detail of notch

R2

l/

] (unit : mm)

Fig. 3.20 Axi-symmetrical FE-model of round-bar tensile specimen (R2-specimen).
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Fig. 3.21 Stress triaxiality dependent ductility of the SM490YB steel.
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Fig. 3.22 Damage properties of the two-phase steels and the constituent phases.

Table 3.3 Damage parameters identified for Ferrite and Pearlite phases.

a4 a Dy D. K
Ferrite 1.45 1.06 0.0001 0.001 4
Pearlite 1.28 1.47 ' ’
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Fig. 3.23 Stress-strain curves obtained by experiment and simulation for Type A specimen.
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Fig. 3.24 Ductile damage evolution behavior obtained by simulation and experiment for Type A specimen.
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Fig. 3.25 Stress-strain curves obtained by experiment and simulation for Type B specimen.
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Equivalent £ ENTTITTEN | Stress ;5 ITTITTEM | Damage D' /D,
plastic strain " 0.0 0.85| triaxiality ~™ 0.0 1.0] ratio (%) 0.1 1 10 100

Micro-structural heterogeneous model

Homogeneous material model

observed region

Fig.3.26 Distributions of equivalent plastic strain, stress triaxiality and damage ratio obtained by
simulation for Type B specimen at Level O in Fig. 3.23.
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Fig. 3.27 Ductile damage evolution behavior obtained by simulation and experiment for Type B specimen.
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Table 4.1 Chemical compositions of steels used (mass%).

C Si Mn P S Al N O others
F-steel 0.015 0.26 135 0.005 <0.001 0.03 0.003 <0.001
DP-steel 0.09 0.26 1.35 0.005 <0.001 0.03 0.003 <0.001 V, Nb, Ti
M-steel  0.26 0.26 1.35 0.005 <0.001 0.03 0.003 <0.001

<—> Rolling direction

(a) F-steel (b) DP-steel (c) M-steel

Fig. 4.1 Microstructure of steels used.

PSS O P SRS IRRBRIC K 0 5 S N B O AFRIS ) — AFROT 2 #i# & Fig. 4.2 2R
T FTo, KOS Table 42 (2 F & D TRT, & HABE KO DP 8+ O & FH O S
%, v~ A 7y — AR L0 RS SREL Y +0/h <722 KD ITHFE 100 gf T 20
~30 SHEL, TOVHEERDZ, DP SFOKMOM XX, TNENOEEMEMOM S & 1F
FERILThotz, 2D XIIT, FR L7 FHEMEMIS LM HARGHIZ, DP AT 2 &M L1
FREOREERT L2 b0 LTSNS,

Smooth RBT (¢6)
[T—]

V : Max load

DP-steel

] PPN AR AT AR SR R
0 005 01 015 0.2 0.25 03
Nominal strain, e=AL/L,, (G.L.=25mm)

Nominal stress, 6=P/A, (MPa)

Fig. 4.2 Nominal stress - nominal strain curves of steels used obtained by smooth round-bar tensile tests.
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Table 4.2 Mechanical properties of steels used.

co2 (MPa) o1 (MPa) YR (%) et (%) VE (J) . w .
Ferrite Martensite
F-steel 305 454 67.2 15 >300 177 -
DP-steel 292 587 49.7 18 206 166 347
M-steel 584 968 60.3 5.9 10 - 358

Gy, 0.2% proof stress, o;: Tensile strength, YR: Yield-to-tensile ratio = 6, /07
€r: Uniform elongation, vE: Charpy absorbed energy at room temperature,
HV: Vickers hardness (Load:100gf)

Fig. 4.3 [I5 OB L ~ VT oA RRTERLZEDTH Y, Fig. 4.3(a) LR EFF
M (0.2 %It F1 0y, B L OBI5EH X oy) , Fig. 4 3(b)IEFEIREE YR (= 0p./0p) BEL O Ve, TH D,
M HLAH S 0D 58 BE 13 F HEAR S 1 L~ T 0.2 %Il /) 0, THI 195, 513RIR & op THI 2.1 fiF (B S L (= 2.0)
CIEIEFL) THY, DPEIPT OIS CRERMEELHL TN D,

9
= A‘I 200 & 100 Smooth RBT (06) 40 c
A S 0 %oz = © YR [———— 1435 =
= 21000 [ o e S 80 o5 g
S - QI‘E 30 3
@ £ o S
256000 e .= g 204
= C © [ ] Q
5 & 400 £ 2 E
o @ - o c 10 Ioe)
Q% 200 [ Smooth RBT (¢6) a8 20 o
L S : —71 & 5
N = [ T <
o oL,y ke oL . v 10
0 20 40 60 80 100 g 0 20 40 60 80 100
Volume fraction of martensite, VM (%) Volume fraction of martensite, VM (%)
(a) 0.2% proof stress and tensile strength (b) Yield-to-tensile ratio and uniform elongation

Fig. 4.3 Effect of volume fraction of Martensite on mechanical properties of DP-steel.
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4.3.1 FHEFE
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06
153 [102| 33  |10.2]| 15.3
%o < 84 >
p— 1 A4
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R=0.25 y
A 06 \¢10
45°\ |2 _ 18 |75 33 |75 18 _
< 84 >
(unit : mm) (unit : mm)
(a) V-notched bend specimen (b) Round-bar specimens
Fig. 4.4 Configurations of specimens for identifying two types of ductile property.
F 7, EMEARE B DR RS O 2 LIS N LWL 2 FE T 572012, Mises

DFERGAFITHE © FRIBME FEM T 21T - 72, BIR & #3087 12>\ T Fig. 4.5@)IR 7 & 9
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Detail of notch root

\ Rigid body

(Unit : mm)

(a) V-notched bend specimen

R2 Detail of notch

v > d i
T % > .
f > 3| Central
A5 : i axis
L,/2=12.5 (Unit:mm) Gy

(b) Round-bar specimen

Fig. 4.5 FE-model of specimens for identifying two types of ductile property.
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Fig. 4.6 Equivalent stress -equivalent plastic strain curve corrected by Davidenkov equation for DP-steel.
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Fig.4.7  True stress - true strain curves obtained by smooth round-bar tensile tests and equivalent stress
- equivalent plastic strain curves for FE-analysis.

PLEd X 91 U CReb7= FEARS, M BEAISH I K OVDP #f O #0245 77 — #8248 O™ 2 il R %
PR HAESRRBR CAE LN BN —BHOT A E & BICFig.4712F LD TURLT,

432 YIREEM

DP #fl O )R & g 1T 3ER CH DAV E — fof R AL R 2 Fig. 48 1ZR7, £/, EMEARE
SAa LW EAENMORERZ Fig. 49 27, HHPICE, WMEAZENMD 34 mm O & & OREH R
Wi DB ERER L TR LTCND, 72T A4 b3 —=F 4 h M & RERIC, EPERZE S Aa 78 50 um
DL EREMBIFEELERT DL & L, EHEABADBREET HMENENMIT 26 mm Th-o
72

20
- DP-steel

[ V-notched

L bend specimen

15 |

Load, P (kN)

¢ Unload

0||||I||||I||||I||||I||||
0 1 2 3 4 5

Load point displacement, u (mm)

Fig. 4.8 Load - load point displacement curves of V-notched bend specimen for DP-steel.
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Fig. 4.9 Critical load point displacement for shear-slip mode ductile initiation for DP-steel.
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Fig. 4.10 Critical local strain for ductile cracking with shear-slip mode for DP-steel.
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Fig. 4.11 Critical true strain for ductile cracking obtained by round-bar tensile tests of steels used.
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F-steel

DP-steel

M-steel

Fig. 4.12 Fracture surface of smooth round-bar specimen of steels used.

-55-




A0 AN N

(a) Smooth specimen (b) R1.5 specimen

Fig. 4.14 Observation of damage behavior below fracture surface in the middle of round-bar specimen.
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Fig. 4.15 Two types of ductile property for steels used.
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Fig. 4.16 Three-point bend specimen model to predict critical local strain for DP-steel.
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Fig. 4.17 RVE model to predict stress triaxiality dependent ductility for DP-steel.

NLZBE T TOAMITET NVRE~OOSMMAEICLY G2, 2>% =2 (SFTEARTREIE)
DEAFDO T TELSE T,

442 BEDOEE/INSA—FDRE

FHHOBE ST A—HOWEE, MEICTT=TA k=T N ZFBHOBE AT A —4 %
PRIE LT HIEERRICAT o T2, T72b b, HEGIRRER TH b I AR AR OT 2 (&)
D 80 %D O Fr L~V BBERFOT A (B & L, RQNERED L TH LN BERA 0T AL
DFED " FhEBRBRTITONTRD, ZNEDORBRENERDLITNATA—F o, BEL W a, B
E LTz, T27T, M BAESIC DUV TIRIEPEREE U723 23 S EB M OB Th o 723, B ER
ROFHRIFIDRL L L~EFWEOT ALV EVETHD L EZ, ~EHWELZRISHBLIY
R2ZMDFEREHNT AT A—=ZERE LI, IRELTZAT A—=F 2T, QYT XLV —EIE
DZWE T TAR 22T 7258 O HMMOBERAMEE, Z3FEDDIC DP#HOLDLHD
T Fig. 4.18 [/RT, £72, KM OEE /T A — 4 % Table 4.3 IZ/R7,

-59.-



n
(&)

— Zm
2 (Ep)i B Aexp[B?const.J
Y A- 2 1, (1=Do)D,
. aa, (1-D;)D,
15| .,

DP-steel

o
(&)

[ M-steel

Equivalent plastic strain, €,

0 0.5 1 1.5 2
Stress triaxiality, c,,/G

o

Fig. 4.18 Stress triaxiality dependent ductility of the steels used.

Table 4.3 Damage properties of F-steel, DP-steel and M-steel.

ai a Do D. K
F-steel 0.96 1.24
DP-steel 1.75 1.42 0.0001 0.001 4
M-steel 1.80 2.43
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Fig. 4.19 Prediction of critical local strain for DP-steel by the proposed method.
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Fig. 4.20 Damage evolution along with equivalent plastic strain of RVE model for DP-steel.
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Fig. 4.22 Two types of ductile property for DP-steel obtained by experiment and simulation.
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Fig.5.2 True stress - true strain curve and ductile cracking behaviors of SM490YB steel for notched
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Fig. 5.3 Two types of ductile property of SM490YB steel.
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Fig. 5.7 Damage evolution along with equivalent plastic strain for RVE model of SM490YB steel.
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Schematic illustration of the history of plastic strain and stress triaxiality ahead of crack-tip up to
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Fig. 5.10 Schematic illustration of macro-scopic damage model*”.
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Fig. 5.11 Macro-scopic simulation method for predicting ductile crack initiation and growth.
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Fig. 5.12 Configurations of three-point bend specimen with pre-crack.
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Fig.5.13 Load - clip gage opening displacement curves obtained by experiment for three-point bend
specimen.

Fig. 5.14 Ductile crack growth on the mid-thickness of pre-cracked three-point bending specimen.
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Fig. 5.15 Ductile crack growth resistance curve (CTOD-R curve) obtained by experiments.

-76 -



5.3.3 MBI A—FDRE

(@) 67— 09 HHHR

FRATIZ TN 2 40 24058 ) — FE Y B O i, R 7 v & F O 7 BB IR AR AT CF%
SN — O AR (Fig.3.17) MHIRE L, 7, —HREOLL FOOT A TIE, A
PRIG T o— BROT el 22, NGOIC LV EIS T s —EOT 5 e lIMRICE#HR L 72 b O 2 Hviz,

{s:aﬂ+£) 5.6)

e=In(l1+¢)

— R OCARE D FE Y S5 S — RS M ONF Al R I oW T, R ONEE OIS — O A R
ZEHEL, —RMBOD 12 06 —EHOE TCOER T —BEOT iR 2, ko Swift O TiEk
HICEYZ L CE LR E vz,

6:C(1+§—Pj (5.7)
o

O MO Y IE T 6 — MBI O A2 g, thirz, NEMMIZREET T VO B 5] RE
BT THF B NI AFRIE T o— B OT Arethifit & 6598 T Fig. 5.16 (12777,

(o)

o

o
T

600

G-€ curve

g,

400

200

Nominal stress, ¢ (MPa)
Equivalent stress, ¢ (MPa)

L PR TN SR TN TR S N S
0 02 04 06 08 1
Nominal strain, ¢
Equivalent plastic strain, g,

o

Fig.5.16 Equivalent stress - equivalent plastic strain curve obtained by nominal stress - nominal strain
curve obtained by FE-analysis using 3D micro-structural model.

(b) EBE/INFX—%

THESR O THEMEERE] 1X, 52 BB WTAY A= LT Fu—F TTHILZSH O (Fig. 5.8)
ZHAWE, ZRLORMENS, v~ a0 A=A T a0 —FITHNERRT A= ERET D,

DRI FTAR M BBPE O B TE A ) IS B R R AT IR AR G BV O 2 (8% )er 1T, /IR = it 1T

-77 -



Table 5.1 Parameters predicted by meso-scopic approach.
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Fig. 5.17 3D FE-model of three-point bend specimen for damage simulation.
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Fig.5.18 Comparison between load - clip gage opening displacement curve obtained by experiment and
simulation.
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Fig.5.19 Comparison between CTOD-R curve obtained by experiment and simulation.
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Fig. 5.20 Comparison between ductile crack extension profiles along specimen thickness for three-point
bend specimen obtained by experiment and simulation.
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Fig. 6.2 Micro-structural model for discussion of the effect of micro-structural morphology on
macro-scopic strength and ductile properties.
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Fig. 6.3 Mechanical properties of each phase for case study.
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Fig.6.4 3D meso-scale FE-model for analyzing the effect of micro-structural morphology on
stress-strain curve of two-phase steel.
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Fig. 6.5 Schematic illustration of method for creating layered model.
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Fig. 6.6 Nominal stress - nominal strain curves obtained by FE-analysis for random model and layered
model.
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Fig. 6.7  Three-point bend specimen model to predict the effect of micro-structural morphology on
critical local strain
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Fig. 6.8 RVE model to predict the effect of micro-structural morphology on stress triaxiality
dependent ductility.
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Fig. 6.9 Damage simulation to estimate the effect of micro-structural morphology on critical local strain.
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Fig. 6.10 Distributions of equivalent plastic strain, stress triaxiality and damage ratio for three-point
bending specimen model at V, = 0.2 mm.
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Fig. 6.11 Ductile crack growth behavior obtained by damage simulation at V, = 0.8 mm.
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Fig. 6.12 The effect of micro-structural morphology on damage evolution along with equivalent plastic
strain of RVE model.
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Fig. 6.13 Distributions of equivalent plastic strain, stress triaxiality and damage ratio for RVE model at
(E) =04 .

-90 -



1 Critical local strain Stress triaxiality dependent ductility
o 5
10 — )
- r Layered (E) =AeXp(B?'” ]
£ L (E,) —— const
s 1 ——Om-
® 1.0F Random
O -
17
«
o
E - .'~_
& 0.5 i .
©
= r
=) L Random
o L
w 0 1 " 1 " 1 " 1 " 1 "
0.4 0.6 08 10 12 14 16 1.8

Stress triaxiality, 6.,/

Fig.6.14 The effect of micro-structural morphology on macro-scopic ductile properties.
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Fig. 6.15 3D FE-model of three-point bend specimen for case study.

Table 6.1 Parameters obtained by meso-scopic simulation for macro-scopic damage simulation of
three-point bending specimen.

(&) a az
Random 1.10 2.28 1.15
Layered 1.22 2.34 1.11
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Fig.6.16 The effect of micro-structural morphology on ductile crack growth resistance of three-point
bending specimen.
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Fig. 6.17 The effect of micro-structural morphology on CTOD for ductile crack initiation from pre-crack
tip of three-point bending specimen.
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Fig. 6.18 The effect of micro-structural morphology on dd/dAa,,,, as a function of Aa,,, of three-point
bending specimen.
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