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Table 1.1 List of Fatigue sacrificial specimens.

(a) Fatigue Monitoring Sensor!®:1? : by Hiroshima Univ. and Japan Technomate.

el (SRR
(t=0.5mm)

(Size) L0 x W30 x T0.5 [mm]

(Sensitivity) 30 [MPal

(Installation) Gluing both ends by epoxy resin.
(Measuring) By microscope

(Application ex.) Highway bridges

(b) Fatigue Damage Monitoring Sensor!®:1-9 : by BMC.

70

S

(Size) 1270 x W50 x T0.5 [mm]

(Sensitivity) ab. 20 [MPal

(Installation) Gluing both ends by epoxy resin.
(Measuring) By microscope, replica or crack gauge.

(Application ex.) Highway bridges, Railroad bridges

(¢) Sacrificial Test Piece!1? : by Osaka Univ.

Tig-plate
10 & 06
T
e

= [

J

Fig.2 Sacrificial Test Pieces with Jig-plate

(Size) L440 x W100 x T22.5 [mm]
(Sensitivity) ab. 20 [MPal
(Installation) Fixation with jig-plate.
(Measuring) By crack gauge.
(Application ex.) Unknown

(d) CrackFirst:1V : by TWI

(Size) L ab.50 x W ab.20 [mm]
(Sensitivity) ab. 90[MPal
(Installation) Fixation with bolts.
(Measuring) By crack gauge.
(Application ex.) Unknown

(e) Fatigue Damage Sensor!12:119 : by Kawasaki Heavy Industries.

(Size) L12xW7xT0.25 or L19xW9.5xT0.35 [mm]
(Sensitivity) 40 or 25[MPal

(Installation) By instant glue or micro-spot welding
(Measuring) By replica or microscope.

(Application ex.) Bridges, Rolling stocks ,Ships, etc.
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\ —
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Fig.2.1 Fatigue Damage Sensor (FDS)
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FDS application
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d el
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il Ty
Measurement of Aa of 'y
FDS

2

Evaluation of FDS
fatigue damage, Ds

Evaluation of fatigue
damage to welded joint,
D

+

Estimation of
remaining life

LN r

Fig.2.2 Flow of fatigue life evaluation using FDS.
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o=Dwl Ds=Ng N=(Cs(Aa)! Ac)/(Cwl Ac™) (2.3)
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1.0
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©

04 |
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Fig.2.3 Crack growth length of FDS to loading cycles.
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Fig.2.6 Test beam model schematic.
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Fig.2.7 Test beam model under three point bending.
Table2.1 Loading phases and conditions.
Phase Static Cyclic 1 Cyclic 2
PUrDOSE Stress distribution Remaining life Verification of fatigue
P measurement at welds | prediction by FDS cracks
: 5.0 x 10°~ 5
No. of Loading 1 17 % 10° 3.5x10
Load/load range 294 kN 294 kN 294 kN
Load ratio R** 0.1 0.1

*2.1 R : minimum

load over maximum load
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Fig.2.8 Location of strain gauge and FDS stuck near weld.
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Fig.2.9 Fatigue crack predictions and actual results.
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Fig.2.10 Steel bridge applied FDS.
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Fig.2.11 Locations of FDS to steel bridge.
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Table2.2 Fatigue life evaluations of welded joints.

No. @® @ © @ ®
Joint types *2.2 *2.2 *2.3 *2.4 *2.4
Strength categories E E G G G
Fatigue life evaluation by
19 1.8 11 15 70
FDS™25
Fatigue life evaluation by
33 0.79 13 9.5 36
stress measurement2>
*2.2  Cruciform welded joint (Complete penetration)
*2.3 Joints with fillet welded cover plate
*2.4 Welded joints with copes
*2.5 unit : year
1000
. .
® 100 ' 4
™ o
- .
o]
2 e
i @
® 10 ®
2 :
ks
LL s
ks s
5 ® /7 —ee- Y=2X
=) 1 ’ n
S Y=X
m
— = Y=XI2
01 4.7
0.1 1 10 100 1000

Evaluated Fatigue Life by Strain Gauge X

Fig.2.12 Evaluated fatigue life comparison of FDS with stress measurement

method.
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Fig.3.2 Storm shapes composed with block loads.
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Fig.3.4 Wave data @ using storm waveform.
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Fig.3.5 Time-varying changes of alternate tensile and compressive stress ranges

under consecutive standard storm waveform loads excluded whipping vibration.
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Fig.3.6 Time-varying changes of alternate tensile and compressive stress ranges

under consecutive storm waveform-A loads excluded whipping vibration.
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Fig.3.7 Time-varying changes of alternate tensile and compressive stress ranges

under consecutive storm waveform-B loads excluded whipping vibration.
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Fig.3.8 Results of fatigue tests for FDSs under tensile and compressive standard

storm waveform loads comparing with their equivalent nominal loads.
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Fig.3.9 Results of fatigue tests for FDSs under alternate tensile and compressive
standard storm waveform loads comparing with tensile standard storm waveform

loads.
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Fig.3.10 Results of fatigue tests for FDSs under tensile and compressive storm

waveform-A loads comparing with their equivalent nominal loads.
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Fig.3.11 Results of fatigue tests for FDSs under alternate tensile and compressive

standard storm waveform loads comparing with tensile storm waveform-A loads.
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Fig.3.12 Results of fatigue tests for FDSs under tensile and compressive storm

waveform-B loads comparing with their equivalent nominal loads.
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Fig.3.13 Results of fatigue tests for FDSs under alternate tensile and compressive

standard storm waveform loads comparing with tensile storm waveform-B loads.
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Fig.3.14 Fatigue test specimens for welded joints.
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Fig.3.15 Results of fatigue tests for welded joints under tensile only or alternate
tensile and compressive standard storm waveform loads comparing with their

equivalent nominal loads.
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(2) Compressive loading for a round weld on a heel of a header.

Fig.3.20 Photo of the fatigue test for a large structural model at laboratory.
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Fig.3.21 Fatigue test results for a large structural model under standard storm

tensile load.
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Fig.3.22 Fatigue test results for a large structural model under standard storm load

alternately tensile and compressive.
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Table 3.1 Comparison of obtained fatigue lives.

Fatigue Life [step]

Test Piece Observation FDS Strain gauge

5%Drop | Penetrating | Design | Mean | Design | Mean

Tension-Type 25 75 21 83 23 89

Tension
' 22 105 24 93 28 108
/Compression-Type
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Fig.3.23  Example of a part of stress waveform.
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Fig.3.24 Time-varying changes of alternate tensile and compressive stress ranges

under consecutive standard storm load included whipping vibration.
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Fig.3.25 Results of fatigue tests for FDSs under alternate tensile and compressive
standard storm loads included whipping vibration comparing with that of excluded

whipping vibration.
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Fig.3.26 Modified results of fatigue tests for FDSs in consideration of the
difference about equal stress range between the waveform of included whipping

vibration and that of excluded whipping vibration.
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Fig.4.2  FDS failure life comparison of experimental and simulation results for

Storm Waveform-A and B.
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Table 4.1 Material properties of weld joints*3 .
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Fig.4.3  FDS failure life comparison of experimental and simulation results for

several storm waveforms.
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Table 5.1 Voyage plan of the storm model.

North Atlantic Ocean: see Fig.5.1
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(between US and Europe)
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Fig.5.1 Voyage route ; North Atlantic Ocean.
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Fig.5.4 Stress sequence of storm model data No.7, and the crack propagation

analysis result of the FDS.
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Fig.5.5 Stress sequence of storm model data No.7, and the crack propagation

analysis result of the welded joint.
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Fig.5.6 LEFs and maximum stress range for each simulation run under the

storm model.
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Fig.5.7 Simulation results of correlation factors under the storm model.
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Fig.6.3 Comparison of frequency distributions of Ac between storm model data

and normalized data. (Data No.7)

Table 6.1 Relationship between Hs and AG maxs (Data No.7)

H; 17.5 16.5 15.5 14.5 13.5 12.5
AG max,s 195 195 175 175 165 155
H; 11.5 10.5 9.5 8.5 7.5 6.5
AG max,s 135 125 115 105 85 75
H; 5.5 4.5 3.5 2.5 1.5 0.5
AG max,s 65 45 35 35 25 25

Unlt : Hs[m] , Ao max,s [MPa]
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Fig.6.5 Stress range sequence in each short sea.(Data No.7)
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Fig.6.5 Stress range sequence in each short sea.(Data No.7)
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Fig.6.6 Hssequences in storm condition. (Data No.7, Hsmax=17.5, 13.5, 12.5, 11.5)
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Fig.6.7 Comparison of frequency distributions of Hs between storm model data of

all conditions and normalized data of storm conditions. (Data No.7)
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Fig.6.8 Stress sequence of each normalized storm condition (Data No.7).
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Fig.6.8 Stress sequence of each normalized storm condition (Data No.7).
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Fig.6.9 Hssequence of calm sea conditions. (Data No.7)
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Fig.6.10 Stress sequence of calm sea conditions (Data No.7).
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Fig.6.12 Stress sequence of a remaining calm sea condition (Data No.7).
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Fig.6.13 Stress sequence of storm model data No.7, and the crack propagation

analysis result.
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Fig.6.14 Stress sequence of normalized data No.7, and the crack propagation

analysis result of FDS.
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Fig.6.15 Stress sequence of normalized data No.7, and the crack propagation

analysis result of welded joint.
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Fig.6.16 Stress sequence of normalized data of averaged storm model data, and the

crack propagation analysis result of FDS.
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Fig.6.17 Stress sequence of normalized data of averaged storm model data, and the

crack propagation analysis result of welded joint.
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Table 6.2 Outline of frequency distribution data of stress history.
(1) Data No.7

S/M® Normalized
Total number of Ac | >0[MPa] 4,331,233 4,325,727
[cycle] >20[MPal 485,705 476,282
Total number of Hs [count] 4,368 4,368
Total number of Hsmax [count] 25 25
AG max [MPa] 200 195
AG o [MPal >0[MPa] 19.2 19.5
>20[MPal] 38.4 38.3
(2) Average of all data
S/M® Normalized
Total number of Ac | >0[MPa] 4,373,861 4,366,234
[eycle] >20[MPal 471,295 469,942
Total number of Hs [count] 4,343 4,343
Total number of Hsmax [count] 24 24
AG max [MPal] 175 175
AG e [MPal >0[MPa] 17.9 18.2
>20[MPal 36.0 36.0

(*)S/M : Storm Model
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Fig.6.18 Relation between Aomax and Bst or Bwt.
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Fig.6.19 Relation between Acmax and 4.

Table 6.3 LEFs and correlation factors.

Data No.7 Average of all data
S/M® | Normalized | S/M® | Normalized
Bst 4.4 5.3 - 4.7
Bwe 2.4 2.6 - 2.5
ky 1.9 2.0 - 1.9

(*)S/M : Storm Model.
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6 EDBE IR
6.1) Fredhi Agung Prasetyo, Naoki Osawa, Tomohei Kobayashi (2012), Study on
Preciseness of Load History Generation based on Storm model for fatigue

assessment of ship structures members, Proceeding of 22nd ISOPE conference,

vol. IV.
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- GRS, BRSNS

- HE VIR UEMER I S BUR
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Fig.A.1 Fatigue Damage Sensor (FDS) with a pencil tip.

99



A2 EFEUVOBE
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—T7 == | Interfoil bonding
B
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./

7 Py,
%y a VoY ///

Fig.A.2 Construction of FDS.
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A3 EHEUIDOFE

W57 Y ORGHUTA DX TR SN D S BB T7 & R () 2H)) %
FIRH L, Teb bl o0 & JERFEIIIRIZAEE ) 73T X — 2 OIS TIIERR K
THAlENS.

da/dN = C(AK )" (A.1)
Z T, da/dN: = ELEREAE
Cm: BPRRES
I SWVAEIONY - ¢ il

& 55 IR AR )T LT3 D 2 B OB R TE T S TV D DT,
J5 DR ICHE 5D 2 S IC X o THOHT BHFE S T4/ S SRR
DOTHNR—=RJEEI L TR UV BIURET 5 DT, 5 o~ DA RRILZENL
KER L 70 D

Fig A3ITRT k97, A HATHES 2L OERFRO MY — 7222507 d 2 x4
BT ENCAER S B2 35A OIS IEREE K i, (A2RXLA3)XD LB EHE S
ITAKAE L7 AD),

% 4 °

2L

d

Fig.A.3 Infinite width plate with a length of 2L and a infinite crack parallel to

edges under uniform displacement d.

Ed
K=—=EsJ/L (plane stress) (A.2)
N P
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ES = Eg\/E (plane strain) (A.3)
(1— 1% )\/I 1-v

ZIT, Er PuUE

v: RT Uk
gl AFROT A

ZIT, EHEUONEEWSREE THEK SN TWAOTErEIGREEEZ b, F
72 FigAd DL O v HEOBIREREE 25 &, WitV KRG F I T
A TEINDILEEZOND.

i S 4
L1
Lt
2| 2Le) = N
L1
W

Fig.A.4 Configuration of FDS.

K=F(@W,t,t,L,L,) Es/L (A.4)
IIT, ar FREX
W BB EE
t: HREOES
t: JEREIORES
L@ HAHORES
Lo JEREDOE S

AT OB G5 FFana IS SR D B 25 T IRIG O #EIH (EFTIREE) =4V > 7 HifH
Z#hZE L, Table A1 IR T 2 FIHDISH#EPARE ORI RRFES N, b
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W55k oD K ORIRE F 2504 5729, 2 koo EFRLE T 7 7 F 4 (SURFES
version 4.0 A7) & W TEAEMENT LT, f#ATET L Ol % Fig. A I d . X200
DEFGENL K OTREEN RO D L O FAfERD 5 2+l Uiz, B3
DEHE S LIEOEIG a/W LIEHREE F OB%% Fig A6 (TR, & HEICA 5T
DOFTHB—ETHIUE, a/W 28 0.2 205 1.0 OFEFATE U HEO KIXIEE—E & /72
5, —HFTEREINEOVEKRTIE K Z—ETIERWVWOT, ZOHSERET5 XD
B CHEICZEH O COMMAY v M a2 T,

Table A.1 Types of FDS.

Type Aot [MPa] | Length X Width X Thickness [mm]
A (KFS025F, High sensitive ) 25 19X9.5%0.35
B (KFS040F, Normal sensitive ) 40 12X7.0X0.25

Ao’ Threshold stress range on steel.

Prescribed

. displacement }
T vz

Yo

LI Y
////lﬁ'escrl ed %
displacement
Fig.A.5 BEM analysis model for shape factor.
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Type_A
Initial Notch (Type_A) /°
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30 ./’./T 0—0—0—0—0—9—9—g ¢ _¢_0o o
- /-/
~ /. m TypeB
\Uﬁ 20 / ././.’l——I—I—I—I—I—I—I—I—I—I—I——-I—‘.
N (e
I
L — ] Initial Notch(Type_B)
_
1.0
0.0
0.0 0.2 04 0.6 0.8 1.0 1.2

a/W

Fig.A.6 Calculated shape factor versus crack length.

A4 FEFE T OREM
Table A.1 (27”9957 & Y Type A (GIEEEARL) OB I 2 i /)i H 0 B TR
fEAcwm 1% 26MPa Th 5. ZiUd AR EH 2 (JSSC) 23917 L TV S HifiEmIc
XD W AR FHREF A8 DR TR D THRAKNLO H ik O —E RIS /14T8) 0 IRFUZ
TFRHE L TWDAD, F7-, Type B (BEUER!) DAcm iX 40MPa C, JSSC #5734 7
fREED FERIIZIFERIE LTS, 7238, FERIT—RNOREEME L Ao D fr
AR BT IO LT BEERTH D .
A1) Table A1 FRfi D357 > 9% 2006 HEICBAFESE T L, 4FED JSSC HEF77% 5
fEEt (1993 H3817) TORIKMELERIT H S ThH 7. ZDH% D 2012 FIZKGT S
A7z JSSC ¥ F7a% atHE#H T D FARTREE ML T /% T, H ik L 0 ARWER AN B 72 125%
EINTNS.

Fig A.71Z, WY SHARBRICAS L, —EDOMR LIS 28I /EH S8z
Lo ORI YOS FEREOF 24, OHEHIRT YO AW E2H LD
L, BRI NN T, N3 IS G L7as ik LS, Neldg %t > 34%
DYz & o9, 2O X DI Y O S REREE T ERE SITKL T
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WZIFE—EE 2D, ZHUTRTEI TR 2 1EF B0 K REEE ST LTI
—ETHDHZ EITHESL. ZORMEICE Y, BEMICI ST Vo ERE S
5 IEREAHERAS O 7RIS FE 2 PRI CTHE T 5.

1.0
Stress Range : Ao=100MPa
08 Stress Ratio : R=0,j,/Omax=—1
0.6
=
©
0.4
OO Fatigue Damage Sensor
0.2 ¢ (Type B : Ao, =40MPa)
OO 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

N/N g

Fig.A.7 Crack growth length of FDS to loading cycles.
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Ab51 Fy FARy MRS

TR G O Fr AL, WHEILIRICAN SN DMV R LIS ORE SITIKFET 5.
FHALEG I, BE— FBRoT ¥ =By R Ul k0, FEFICEW RSN AEL
TWDHR, ZTOIRNZEMD Z LIZREETH Y, FEHMEORR LA s LTiX
fili 2 72\,

PTG TIE, Ay ARy M) (HSS) oManEHsh s, Fig.A.8
R T K 91T, HSS 1385 KRR AET D & SN D BB CO RPNt e %
BROEREER S L TR NET E L TERTE S, HSS 220 TE, 1<
DRI FER SILTVD A, 0.3¢ 15 AYAMDITERMEEZ b D, 0.3¢1EE1L, BE
1E¥wEBIRE ¢ O 0.3 [5DOHBE A BN /- COIS A4 HSS L T2 —RiHlliETH 5.
Z DRI Y ML, R T ORI L S nIi@Eo S — N iz L v
BB TR RN 209 7 PR B EE R A FT BRI 72 5 . BRJS S AL7- LUl NRL 2295 55 2 o &
B8 2 IIHEERUS NEFDRAE L TNDE, TRbBA Yy hAR Yy A~ ATRE & 72
DG bd 5. ek, WEN/NS HSS OMBICHf TERWEAIE, ARG R4
I R T 5 2 & CIHMEZATEECTH B,

Stress concentration
due to weld bead
Hot spot stress

\ |
Sub plate \

Main plate

- Structural stress concentration

i

Weld bead

Fig.A.8 Geometric stress and Hot Spot Stress.
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A52 FEHFEUVVICXDEFFEMEE
TRPAEIEN) D Faa AR, 95 97 TR EE SRRk He-D < ek T D9 97 5 EE 0D el 2 WA B

D EHREFICE oY R Loy A%, SHOBRRESZEFHIT 5. FigA9

ZRT L9, B IO E a0 & L, FHIEIM TsOMDOEHOMO%EAa &7

Ll vrVoEpBEEITIALRXTEINS.

f'_\_/_\_’
aO

A
Y

Aa
w
Fig.A.9 FDS original width and crack growth.

Aa (A5)

Z T, D=0 TG L, 1132~
PREBEAICESSHEEE AN TERINS.

L (A.6)

Z 2T, nilIeHEHAc DARIRIE, NS 1EHAc TR 5 oMl d 5 A

W Td 5. FHARE 75 TOWEMFOBREGE Dy ZFREROE GRAD) 2L 5.

D, :i+:|_z+...zz% (A7)

Z 2T, NS HH A THAEEF MBI 2 BB TH 5. MIZHOW T L

— —
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X B ARHIEE S O T RFHEH TREN TV DRFTHO S — N&EXK % AV 2 23,
Fig. A10 IZR"T KO, M7 T 7 L TR EEEEFO S — N#iFROE & 1T

FCIZ7 > TWDEDT, (AN Y > TN,
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) .
£ Aol B N WV,
a hS
7 Ac 7_:32 \NSZ \‘.N 2
5} 2 5%
= o
W N
&O& O’!/O\?‘
%,
Cycle N
Fig.A.10 S-N curves of FDS and weld joint.
N,
—Sl=q, : —E (A.8)
N,
L7=moT
n. D
D, = =% D, =aD (A.9)
s izakNi a, W ks
ERY, WERT ORI I,
T:T_S (A.10)
DW
LRIND.
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FDS (High sensitive type)

FDS (Standard type)

Strain gauge

Life Time Sensor (LTS)

Fig.B.1 Life Time Sensor attached FDSs and strain gauges.

Fig.B.2 Life Time Sensor attached to upper deck of a FPSO.
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1st inspection LTS RFC/FDS=1.28

at frame PS :
tst inspection I LTS RFC/FDS=0.82
at frame SB : ; ;
2nd inspection I LTS RFC/FDS=126
at frame PS : 3 |
2nd inspection | LTS RFG/FDS=0.68
at frame SB : | |
I | LTS RFC/FDS
WLTS FDS mean : 1.01
B OLTS RFC standard deviation : 0.30
Fatigue life of actual deck : 85years
0 2 4 6 8 10
Fatigue life [year]
Fig.B.3 Comparison of fatigue life estimations.
16k B DS 3CHR

B.1) Takaoka, Y., Nihei, K., Vargas, P., Aalberts, P., and Kaminski, M.L., Application
of Fatigue Damage Sensors in the Monitas System, Offshore Technology
Conference, 3-6 May 2010, Houston, Texas, USA, OTC-20870

B.2) Aalberts, P., Cammen van der, J., and Kaminski, M.L., The Monitas system for
the Glas Dowr FPSO, Offshore Technology Conference, 3-6 May 2010, Houston,
Texas, USA, OTC-20873
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Fig. C.1 Fictitious routes in North pacific and North Atlantic Ocean.
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Fig. C.2 The Weibull plotting of F{Hs) at point 1064 (40°N 160°E) in winter season.
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Fig. C.3 Definition of equivalent triangular storm (ETS) and its duration.
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Fig. C.4 Correlations between d; and Hmax;of Hshistories for North Atlantic route.
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Fig. C.5 Relative frequency distributions and regressed normal distribution of d,;

for North Atlantic route.
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distribution with A=4.6 and £k=1.483.

4.5

44
4~ FHWP o(Hw)

w
o

w
L

p'(Hw)/P ex(Hw)

15 A
Weibull parameters:
k=1.483

A=4.6

25 30 39

20
Hyw (m)

(c) The relation between Hs and £ Hs)/ Pox(Hs).
Fig. C.6 Approximation of the tail of Hs's long term probabilistic distribution.
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Table C.1 Determination procedure of the 7-th class 2G storm profile.
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(b) Comparison of the determined occurrence probabilities for various short sea

durations and that derived from JWA's hindcast data.

Fig. C.7 Occurrence probability of storm classes (Data point 1064, 40°N 160°E).
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Fig. C.8 Areas where wave direction’s occurrence probability is examined in North

Atlantic Ocean.
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Fig. C.9 Wave direction’s probability distribution % obtained by hindcast data of
the North Atlantic Ocean (spring season).
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