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Chapter 1

Introduction

1.1 Research background of size dependent plasticity in small scaled

metallic pillars

The enormous development of experimental fabrication processes with advanced

operating and viewing equipment brings the processing of material in critical

dimensions down to micron- and nanometer level into existence. In the past decade,

this development of experimental equipment and characterization methods has greatly

affected the investigations on mechanical characters and microstructure evolution of

metallic materials, especially for the area of structural materials. Differing from

relying on the classical strengthening techniques applied on bulk scaled metallic

specimens, the precise system for small scaled specimens can achieve the

experimental characterization at micron and nano scales. It is possible to design the

appropriate small dimensions of specimens in order to enlarge the effect of the

intrinsic and extrinsic structures on the mechanical characters, which will result in the

possibility of the vastly superior properties than the current bulk materials. Recent

computational modeling such as molecular dynamics has the capability to achieve the

simulation and prediction of the material behavior at the same small scaled

dimensions. These aforementioned developments provide us some deep
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understanding of mechanical characters and deformation mechanisms with reduced

dimensions.

For the case of polycrystalline materials and metallic glasses, surface/boundary of

the specimen influences the dislocations motion, nucleation or interaction, or the

propagation of shear bands, respectively. As the bi-crystalline material is one most

simple case in their polycrystalline form, the interaction between dislocations and

grain boundary (GB) is of interest in recent studies. In the bulk polycrystalline metals,

the GBs are regarded as obstacles to hinder dislocation motions which form a

classical Hall-Petch relation describing the increasing yield strength accompany with

decreasing obstacle distance down to the grain sizes of ~40nm [1-3]. However, the

interaction between the dislocations and GBs such as dislocations transfer across the

GB in bi-crystalline or polycrystalline materials, is widely involved in the plastic

deformation of such materials [4-7]. Furthermore, when the grain sizes are reduced to

~40nm, the multiple lattice dislocations cannot be generated from GBs, and

grain-boundary sliding, partial dislocation emission and absorption at GBs can be

found [8-20]. When the grain sizes become below 20nm, the Hall-Petch relations are

performed as “inverse” Hall-Petch, which goes through softening with decreasing

grain size resulting from the activation of grain boundary-assisted deformation.

Although the grain size and the dislocation-related grain mechanism is one

controversial kind of the plasticity mechanism in nanocrystalline metals, the GB

affecting dislocation motion and evolution is still one effective research view in

micro-scaled and nanocrystalline metals, as shown in Figure 1-1 [21].

In recent years, another size effect different from the size-dependent plasticity has

been reported: the strength of single crystalline materials inversely accompanies with

external geometrical specimen dimensions of micro- or nano- pillars. The material
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strength of such material may be due to the defect interactions with free surfaces [22,

23]. For the size effect of micro-samples, the strain gradient plasticity does believe

that the inner local strain gradient stores a number of geometrically necessary

dislocations in small local zone and constraints the plastic strain, and this means the

plastic strain needs larger back stresses to be activated [24-28].

Figure 1-1. Strength of polycrystalline materials as a function of grain size: Hall–

Petch relation and transition to “inverse” Hall–Petch [21].

However, uniaxial compression with a flat punch methodology first introduced by

Uchic et al. where the flat punch was used to compress the micro-scaled pillars in

order to strictly control the average deviation of strain gradient has been widely used

to study the micro the no strain gradient size effect [22]. More recently through

uniaxial flat compression experiments, understanding of plasticity in small volumes

has been enriched for different kinds of fcc single crystals including Ni [29, 30, 31],
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Au [32-35], Cu [36-43] and Al [44, 45], micro bi-crystalline Al [46] and Cu [4],

nano-crystalline metals (Ni [47,48] and Cu [49]), and micro and nano scaled metallic

glass [50-66]. It is found that the uniaxial compression strengths are much higher than

those of bulk forms [29-45, 67-75]. Moreover, the single crystalline micro- and

nano-pillars exhibit a stress-strain curve with intermittent discrete random strain

bursts, which is also a different deformation mechanism from bulk. This size effect

includes the following information that the plastic response is related to the external

geometrical gain size or specimen size, and the microstructures such as defect is

boundary-inside. It suggests that the interplay of the internal defects and external size

has the probability of relate new deformation mechanism. This is developing the

understanding of size effect.

For some simple kinds of polycrystals such as bi-crystal, the size effect in micro- or

nano-pillars is link to the GB influence and the interplay of the internal defects and

external size like single crystalline pillar. For the amorphous material, the research of

size effect is few, and the reports about size effect of micro-scaled pillars are conflict

whether the size effect is similar to or completely contrary to that of the crystalline

materials [51, 52, 54, 55, 76]. And furthermore, the rapid cooling from liquid state to

crystallization makes the lattice into the amorphous state [77] and the obvious GB

with two different orientations couldn’t be found. Therefore, the deformation

mechanism and its relationship with external size may be the key factors for the size

effect. This methodology is similar to the investigation of size effect of single

crystalline micro- and nano-pillars. Thereby, the size effect of micro- and nano- scaled

materials can be regarded as the intrinsic and extrinsic character length size effect.

The physics of this size effect is the significant extension for the understanding of

deformation mechanism.
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This dissertation presents a trial on the interaction between relevant length scales

and size effects on crystalline and amorphous metallic pillars. Relevant intrinsic

characteristic length effect is regarded as a function of decreasing grain size of a pure

single crystal or polycrystalline materials, characteristic length of internal defects of

the crystalline materials, and shear transformation zones in metallic glasses. Apart

from the recent studies on this field focusing on the superior mechanical properties

resulting from the interaction between the internal defects and the external dimensions

of the metallic materials by experiments, how this phenomenon could be understand

physically and be mathematically described is also centered on here. The question of

what is the maximum effective factors on the size dependent superior plastic

properties of engineering metallic materials is concentrated on.

1.2 Related research on the size dependent plasticity

1.2.1 Yielding for small scaled crystalline materials

Proposal of efficient models for explanation of size effect on the single crystalline

(SC) material from the physics view has been a subject of interest for a long time.

Two decides before, the strain gradient plasticity did believe that the constraint of

plastic strain results in the size effect: the inner local strain gradient makes a sum of

geometrically necessary dislocations be assembled in small local zone, and the strain

gradient plasticity implies that the dislocations need stronger image back stress to

active the constraint of inner local strain gradients [24-29]. However, recent

experiments have challenged the strain gradient plasticity as the process of the

experiments has strictly controlled the average deviation of strain gradient [29-45].

Therefore, the theory of dislocations starvation firstly provided that dislocations

tended to move towards to the surface under the effect of image forces and annihilate
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there [30]. Some discrete dislocation simulation results have proved that the quasi

ideal SC micro-pillars (SCMs) exhibit much greater strength and hardening relative to

the defective ones at an equivalent diameter [78]. However, the strain rate in the

simulation is so high that dislocations have no time to form the dislocation group, and

the dominant effect is from the GB. Recently, it is shown that viable route that can

smoothen the plastic flow of SC materials is by increasing the density of preexisting

defects, such as dislocations [79-81] and solute atom clusters [82]. These

aforementioned results indicate that the deformation of SC pillars can become more

controllable when dislocations are trapped inside them. Therefore, intentionally

preventing mobile dislocations from annihilation such as introducing (several) defect

clusters into small-scaled SC pillars to hinder the dislocation motion should induce a

fundamentally different mechanical performance. From this view, the dislocation

pile-up effect initiated by inner dislocation source was provided for describing the

size effect in SC pillars for exploring the relationship between the number of

dislocation sources and the effect of dislocation pileup [83, 84]. And these studies

explicitly expressed the size effect resulting from the source exhaustion [83, 85-87].

In addition, disperse dislocation dynamics simulation focused on the dislocation

source truncation on the plastic strength [88], treated the improvement of strength as a

result of the small scale constrains of the length of dislocation sources [89, 90].

Therefore, the dislocation source exhaustion, dislocation pile-up and length of

dislocation sources are important factors for the size effect.

The stochastic nature of the plastic deformation corresponding to the

size-dependent yield strength mentioned above is explained by low dislocation

content or dislocation source number in the microcrystal, so that the usual mean-field

conditions for forest hardening are destroyed [30, 91]. In these models, the



7

boundary/surface of the micropillars plays a key role in the size effect because it not

only determines the dislocation source lengths but also acts as a sink for dislocations.

It has been shown that the boundary/surface of the micropillars can significantly

affect the measured stiffness values [92]. Moreover, Fan et al. have inserted

boundaries inside solid pillars to construct a model of hollow pillars in

three-dimensional discrete dislocation dynamics simulations, and the results have

shown that the boundary condition affects the strength of the hollow pillars via the

wall thickness [93]. Until now, however, there have been almost no experiments

conducted on hollow pillars. Recently, the physics of the surface energy has been

considered in the description of the surface effect of nanowires and naonosprings [94,

95]. In crystalline materials, the surface energy/stress on yield point, phase

transformation and pseudo-elastic behavior has also been reported [96-104]. But, at

present, little work has been done to link the size effect of SC micro- and nanopillars

to the surface energy, and few studies have been done on hollow pillars.

The other interest in crystal strength has been focused on a single crystal yield

surface for plastic deformation [105-115]. A smooth single yield surface for a

crystalline material reduces the computational ambiguity and also overcomes the

problem of multiple slip systems in the crystal plasticity case. The initial single crystal

yield function proposed for a single crystal was expressed as a power type yield

function [105] and it has been modified to the simpler current logarithmic-exponential

configuration recently [115]. The yield function proposed by Gambin [110, 112, 113],

which considered the degree of the nonlinearity of the yield function, was defined by

the stacking fault energy (SFE) of materials. Then, a rigid plastic computational

function was developed for Gambin’s single crystal yield surface [116]. Recently,

Zamiri et al. [114, 115] introduced an optimization method to establish an

javascript:void(0);
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elastic–plastic integration function for this single crystal yield function with a small

modification for the Gambin’s single crystal yield surface model, and this model

improves the simplicity and efficiency of single yield function. All these

phenomenological yield functions based on the single crystal plasticity can be easily

used to describe the actual metal forming processes [116]. Although all these single

crystal yield functions have been very successful in representing the characteristics of

crystals, they are all expressed as a phenomenological form. Micro and nano-sized SC

material shows the strong size effect which is affected by the inner defect effect, such

as dislocation starvation [30], source exhaustion [85] and dislocation pile-up [83]. To

describe the size effect and also to physically explain the effects of dislocations, a

single crystal yield function considering the dislocation physics should be considered.

1.2.2 Constitutive of crystalline plasticity

Constitutive laws, kinematics, homogenization, physical analyses, and multiscale

calculations in crystal plasticity finite-element (CPFE) modeling are widely used to

describe elastic–plastic deformation of anisotropic heterogeneous crystalline matter

[117-122]. The CPFE model can describe both shape changes (symmetric part) and

lattice rotations (skew-symmetric part) [119, 123]. The CPFE model might be

improved by using the extensive knowledge gained from experimental and theoretical

studies of single crystalline deformation and introducing the further development of

continuum field theories [118, 120]. Therefore, the CPFE method can be used to

investigate the size-dependent plastic behavior of single crystalline micropillars

(SCMs) by considering lattice deformation and the crystallographic system.

In terms of the plasticity of SCMs, the size-dependent mechanical response (size

effect), including extremely high strength and unsmooth hardening [29, 31], should be
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considered. There are some micromechanisms of size-dependent yield strength of the

SCMs, which are commonly based on the inner defects, such as source truncation [40,

41], dislocation starvation [30], source starvation and inner dislocation pile-up [83,

85]. According to these considerations, prediction of the yield strength for the SCMs

has been studied and these theories, such as the single-arm source (SAS) model, are

different from conventional scale-free solid mechanics [83, 85]. These considerations

can be extended to describe the plastic flow based on the evolution of the

corresponding defects such as dislocations. The geometric necessary dislocations

(GNDs) is also used to describe the size dependent plasticity. However, the size effect

found by uniaxial compression test with a flat punch tends to be resulted from the

dislocation truncation, dislocation starvation, source starvation and inner dislocation

pile-up. As known, the CPFE method has also been used to describe the anomalous

hardening by adding experimental data, such as the recent studies of displacement

burst [124-127] and dislocation starvation [128-131]. However, the hardening model

and constitutive laws used in these studies did not involve any physical

size-dependent considerations. If the inner defects considerations are combined with

the hardening model, the physical hardening can be linked to the constitutive law. The

physical hardening model can affect the constitutive law because of the mechanical

effect on dislocation motion. Therefore, it is necessary to build the CPFE framework

by combining the physical model of the yield stress and the dislocation-based

hardening model to obtain the constitutive law with the size effect. The size

dependent plastic flow of single crystalline and bi-crystalline micro pillars will be

described in Chapter 4, and the deformation mechanism will also be discussed.

1.2.3 Size dependent plasticity of metallic glass
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Metallic glass (MG), also known as amorphous alloy, is manufactured with rapid

cooling from the liquid quasi-static state, so the regular crystalline lattice cannot be

formed [77, 132]. The metallic glass has extracted board attention due to the interests

in fundamental study of superb combined mechanical properties [133] and great

potential for the applications in the future [134].

Some tensile and compressive experiments have been conducted to study the

mechanical properties of bulk metallic glasses (BMGs). At room temperature, BMG

represents extremely high elastic limit (around 1600MPa) with 2% strain limit (much

higher yield strength than crystalline materials) [135]. At high temperature (>0.7Tg, Tg

is the glass transition temperature), the elastic limit decreases down to several

hundred MPa. For the deformation as known [136], their deformation behaviors are

classified into two forms, namely homogeneous deformation at high temperature

(>0.7Tg) and inhomogeneous deformation at low temperature (<0.7Tg) [137]. At room

temperature, metallic glasses are found to exhibit negligible macroscopic plastic strain

before the formation of localized shear bands, which is followed by rapid propagation

and catastrophically fracture during deformation [138]. The local shear bands are

affected by the aspect ratio [139] and the reducing size [59, 101]. When the

temperature is near to the Tg, the viscoplastic deformation behaviors can be obtained

[136, 140]. The modulus and yield strength (elastic limit) at high temperature are

much smaller than them at room temperature, and the plastic elongation can reach

more than 40~50%. Therefore, the yield strength and plastic deformation should be

studied.

Like the characteristic of the strength in crystalline materials, the strength of

metallic glass also shows size dependence to some extent. If the sample size is

reduced to 100nm, Zr-based MG pillars attain high strength of 2.25GPa, and the yield
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strength (100~1000nm) presents slightly similar tendency as SC “smaller is stronger”

[59, 136]. They correlated the shear band propagation stress with the pillar size by

analogously applying Griffith’s criterion. The size dependent strength below 100nm is

described by utilizing atomic simulations and provided the model with

Mohr-Coulomb criterion [141]. Experiments of Pd40Ni40P20 and

Zr41.2Ti13.8Cu12.5Ni10Be22.5 using pillars 2-20m and 0.3-3m in size, respectively are

conducted and concluded that the yield strength is insensitive to the pillar size [142,

143]. It is argued that the yield stress of pillars over 1m may follow the “smaller is

stronger” tendency derived by a Griffith-like model, but the experiments showed yield

strength would slightly increase with the increase of pillar size [59]. The size effect of

the yield strength in metallic glasses is still an open issue

Computational studies of the plastic deformation of the MG at high and room

temperature have received considerable attention in the last years. The description of

the plastic deformation in metallic glasses has been reported by introducing the

concept of free volume and shear transformation, which is regarded as the potential

defects promote yielding and plastic deformation [144]. Because of the non-regular

structure in amorphous material, the motion of atomic defects in the shear

transformation zone (STZ) accompanies with the variance of volume [144, 145]. And

this local Spaepen’s free volume is introduced as special kinds of “flow defects” and

related to the formation of shear bands [136]. Based on the creation and annihilation

of the above free volume, the constitution of elastic-plastic mechanism deforms the

phenomenon of STZ of metallic glasses [145-149]. Meanwhile, the metal yield

criterions such as Mises (VM) criterion, Tresca criterion, Drucker-Prager criterion and

Mohr-Coulomb criterion have been tried to link with elastic-plastic mechanics

[150-153]. However, few current plasticity can describe both the mechanical
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deformations at room and high temperature. Furthermore, the research on the plastic

behavior of small scaled BMGs is also absent.

1.3 Objectives and scopes of this research

The objective of this dissertation is to have an insight into the size dependent

plasticity of the crystalline materials and amorphous materials. The intrinsic defect

scales, external geometrical scales, interaction of GB and defects and “flow defects”

will be investigated to understand the physics of the deformation mechanism. The

main tasks of this dissertation are (i) to study the relationship among the size

dependent yielding (surface), defects and surface in pure single crystalline

micro-pillars; (ii) to develop the dislocation-nature-base plasticity to describe the

plastic deformation of single-crystalline and bi-crystalline micro-pillars, and study the

deformation inside the pillars and near the GB; (iii) to summarize the size effect of

crystalline material and amorphous material, preform the temperature-based

constitution to study the plastic deformation without classical dislocations motion.

The present dissertation is composed of 6 chapters. The dissertation flow chart is

shown in Figure 1-2. Firstly, general introduction has been present in this Chapter 1.

Then Chapter 2 provides the detailed experimental procedures employed in this

dissertation, and experimental results of single-crystalline, bi-crystalline, and metallic

glass micro-pillars by uniaxial compression test with a flat punch. In Chapter 3, the

physical model considering dislocations pile-up, source starvation, and surface energy

is established to explain the size dependent yielding shown in Chapter 2. The size

dependent crystalline yield surface is provided in order to understand the size effect

well. In Chapter 4, a dislocation-based constitution is provided by combining the

dislocation physics with the crystal plasticity to describe the plastic flow of
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single-crystalline and bi-crystalline micro-pillars in Chapter 2. Grain boundary effect

on the slip deformation is studied from simulations. In Chapter 5, the size dependence

of yielding in metallic glass is examined based on the results in Chapter 2. The size

effect of crystalline materials and amorphous materials is summarized and compared.

The constitution based on free volume theory is provided to study the plastic

deformation of metallic glasses. The relationship between the formation of STZs and

plastic response (yielding, flow) is discussed in Chapter 5. Finally, the entire research

works are summarized in Chapter 6.

Chapter 1: General Introduction

Chapter 2: Experiments

Chapter 3:

Physical modeling on

size dependent yielding

and yield surface on

crystals

Chapter 6: Summary

Chapter 4:

Dislocation-based

constitutions of plastic

flow of single- and bi-

crystalline micro-pillars

Chapter 5:

Size effect on metallic

glasses; description of

plastic flow at room

and high temperature

Figure 1-2. Flow chat of this doctoral dissertation.
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Chapter 2

Uniaxial Compression Tests on Single Crystalline,

Bi-crystalline and Metallic Glass Micro-pillars

In this chapter, uniaxial compression test will be conducted on the single crystalline,

bi-crystalline and metallic glass micro-pillars by the flat punch. The background and

objective the uniaxial flat compression, the procedure of the experiments, and results

will be introduced in the following. In the Chapter 3, 4 and 5, the theoretical

explanations, descriptions and discussion will be applied on these experiments.

2.1 Research background of mechanical properties in uniaxial

compression tests

2.1.1 Single crystalline micro-pillars

In the last 10 years it was ubiquitously demonstrated that at the micron- and

sub-micron scales, the sample size dramatically affects crystalline strength, as

revealed by room-temperature uniaxial compression experiments on a wide range of

single-crystalline metallic micro-pillars with non-zero initial dislocation densities [1,

2]. In these studies, cylindrical micro-pillars were fabricated mainly by the use of the

Focused Ion Beam (FIB) with some FIB-less methodologies, as well, and remarkably,

the results of all of these reports for face-centered cubic (fcc) metals show the

increasing strengths accompanying with the decreasing diameter of the micro-pillars
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[3, 4], which was called size effect of micro-samples.

For the size effect of micro-samples, the strain gradient plasticity did believe that

the constraint of plastic strain results in the size effect: the inner local strain gradient

makes a sum of geometrically necessary dislocations be assembled in small local zone,

and this means that the dislocations need stronger image back stress to active the

constraint of strain gradients [5-9]. However, uniaxial compression with a flat punch

methodology to study small-scale mechanical behavior was first introduced by Uchic

et al. where the flat punch was used to compress the micro-scaled pillars in order to

strictly control the average deviation of strain gradient. The stress-strain responses

and shape deformation are shown in Figure 2-1a, b, c, the strengths in small diameter

micro-pillars are larger than those in large diameter micro-pillars. The flat punch and

the test sketch is shown in Figure 2-1d, the diamond flat punch is parallel to the

surface of the micro-sample. The result in Uchic’s experiment challenged the strain

gradient plasticity theory as there are no geometrically necessary dislocations cross

the slip planes, or nearly no active dislocations inside the pillars. More recently,

understanding of plasticity in small volumes has been enriched for different kinds of

fcc single crystals through uniaxial flat compression experiments, including Ni [4, 10,

11], Au [12-15], Cu [16-23] and Al [24, 25]. For the Ni, Au and Al samples, the nano-

and micro-scale pillars have been investigated to study the size dependent mechanical

response. However, for the Cu samples, few micro-scale pillars were conducted in the

uniaxial compression tests.

Therefore, in this chapter some micro-size Cu pillars (1-10μm) will be produced by

FIB, and compressed by a flat punch to receive the mechanical response. The size

dependent strength and plastic flow will be further studied on Chapter 3 and 4 based

on these experimental results.
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Figure 2-1. Mechanical behavior at room temperature for pure Ni microsamples

having a〈134〉orientation. (A) Stress-strain curves for microsamples ranging in size

from 40 to 5μm in diameter, as well as the stress-strain curve for a bulk single crystal

having approximate dimensions 2.6 × 2.6 × 7.4 mm. (B) A scanning electron

micrograph (SEM) image of a 20μm-diameter microsample tested to ∼4% strain. The

circle milled into the top surface of the microsample is a fiducial mark used during

sample machining. (C) A SEM image of 5μm-diameter microsample after testing,

where the sample achieved ∼ 19% strain during a rapid burst of deformation that

occurred in less than 0.2 s. (D) The sketch of the uniaxial compression test on micro

samples by using a diamond flat punch.

2.1.2 Bi-crystalline micro-pillars

The size effect in the polycrystalline material is well-known as the Hall-Pecth

relationship that grain boundaries/interfaces (GBs) pile up the gliding dislocations,

providing effective barriers to transmission of dislocations from one grain to another.

However, when the external specimen size is in the micro scale similar to the feature

D



28

internal length, the role of GBs differs from itself in the Hall-Pecth relationship in

bulk scale specimen [26]. The interaction between dislocations and GB majorly

affects the slip transfer across GBs and slip systems [26-29]. Physically, the local

plastic deformation will be operated if a Nano-scope indenting applied on the surface

of an individual grain or near GBs. Meanwhile, the mechanical response involving a

sharp stress gradient to indent loading can be developed from the surrounding

long-ranged elastic field [26, 27]. In this way, nanoindenting on the limited volume

sample with a GB should be carried out in order to prevent local gradient effect from

GBs and confirm the process of dislocations motion interacting with the GB under the

more uniform stress condition. To improve in accuracy and avoid the strain gradient

effect, a flat-punch indenter in the nanoindentation tests has been operated on single

crystalline micro-pillars (SCMs) in order to enforce a uniform compression [1]. Even,

thin film or nanometer-sized pillar [10, 30] was conducted in the uniaxial

compression test to increase the effect of the emitted dislocations, which distribute

imhomogeneously in the interior with more unexpected constraint than at the case for

SCMs. Recent experiments [26, 31, 32] reported that Copper (Cu), aluminum (Al) and

nickel (Ni) bi-crystalline micro-pillars (BCMs) containing high-angle GBs vertically

oriented along the pillar axis have shown their strengthening effects of the GB.

However, the BCM with a specific coincidence site lattice boundary (CSL) has been

rarely investigated experimentally and the interaction between local strain and

dislocations.

In this chapter, the Cu bi-crystalline micro-pillars will be compressed by a flat

punch in order to study the interaction of local strain and dislocations near or cross the

GBs.
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2.1.3 Metallic glass micro-pillars

As mentioned in the previous section, the flow stresses and yield strengths of

crystalline metals have been found to be highly size dependent. The strengthening is

attributed to dislocation source-limited behavior in small volumes. Different from

SCMs and BCMs, the deformation behavior of metallic glass (MG) pillars is not

dependent on dislocation dynamics. And there remain conflicts in the literatures about

the size effects on the strength and deformation mechanisms in MGs. When the

specimen size is reduced to 100nm, the tensile strength of Zr-based MG pillar has a

high value of 2.25GPa [33]. The relationship between the shear band propagation

stress and the specimen size compares the Griffith’s criterion, and the critical

specimen size for the localized-to-homogeneous deformation transition is around

30-100nm [33]. The transition from the shear band to homogenous flow occurs at

round 400nm [34, 35]. If the specimen size decreases from 600nm down to 90nm, the

compressive yield stress will leads to a slight decrease [36]. This is one kind of the

size effect but different from the size effect of crystalline material as above statement.

For the micro-scaled MG pillars, the reports of the size effect has some conflicts that

the increase yield strength accompanies with the increasing or decreasing size [36, 37].

The size effect of MG in micro size (over 1m) is still an open issue. In order to

investigate the size effect of MG, a similar uniaxial flat compression should be

conducted like SCMs and BCMs.

In this chapter, we examine the influence of pillar size on the compressive

stress-strain response of micro-pillars (1-10m) of a Zr-based MG (Zr55Al10Cu30Ni5).

The related mechanical properties will be physically studied in the Chapter 5.
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2.2 Experimental setup

2.2.1 Sample preparation

2.2.1.1 Crystalline cell enlargement by recrystallization annealing

99.96% pure Oxygen Free Copper (OFC) plates with length 6 mm, width 3 mm and

thickness 2 mm were prepared in the this experiment for production of SCMs and

BCMs . The samples were annealed at 500 °C for 6 hours in vacuum and cooled down

to room temperature in a converted scanning electron microscopy (SEM, JSM-5130)

with a heat fatigue test device (STH-707S). A thermocouple was attached in the

heating stage to monitor the heat treatment temperature. Above the recrystallization

temperature, the crystalline cell will be enlarged.

2.2.1.2 Crystalline orientation analysis

Information on the crystal orientation, including grain size and the rotation angles

of grain boundaries, was analyzed using the electron backscatter diffraction (EBSD)

technique. The as-annealed samples were electronically polished in a solution

containing 150 mL HNO3 and 350 mL CH3OH at temperature of -35°C for electron

back scatter diffraction (EBSD) analyses. The apparatus of electrolytic polishing is

shown in Figure 2-2. EBSD measurements were carried out using the program TSL

Data Collection ver. 5.31 in a JSM-6510 scanning electron microscope (SEM) (JEOL)

with tungsten (W) gun at accelerating voltage of 15kV. The polishing voltage and the

electric current are 8V and 0.35-0.48A, respectively. The average recrystallized grain

diameter was approximately given as 200μm, the same orientation samples can be

fabricated in one suitable grain. During the EBSD progress, the orientation of each

grain can be obtained, so a special orientation can be chosen to investigate the

javascript:void(0);
javascript:void(0);
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properties of crystal.

Figure 2-2. Experimental apparatus for electrolytic polishing.

2.2.1.3 SCMs, BCMs and MG pillars fabrication

SCMs, BCMs and MG pillars were fabricated by FIB milling in a JIB-4000 (JEOL)

at accelerating voltage of 30 kV with gallium (Ga) ion source. For FIB milling, the

following three steps of fabricating processes were employed to get the more proper

cylindrical pillars. Two sets of larger beam currents of 3.8 and 1.3nA were initially

adopted to mill a tapered pillar as rough finishing. Then, it turned down to the smaller

ion current of 20pA as finer milling to remove the taper of pillar. The final tapering

angle was successfully reduced to be less than about 2°. The grains for BCMs with

almost the same crystallographic orientations were selected along the pillar axis. The

final diameters at the half of height for SCMs, BCMs and MG pillars were 1-10μm

(SCMs: approximately 1.3μm, 4.2μm and 8.7μm respectively; BCMs and SCMs of

grain left (SCM (L) for short) and SCM of grain right (SCM (R) for short):
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approximately 4.3μm and 7μm respectively; MG pillars: approximately 1μm, 2μm,

3μm, 4μm, 5μm 6μm 7μm 8μm and 10μm, respectively). The aspect ratio designed

here was roughly 1:3.5. The milling depths of each sample in the same diameter were

almost the same. The experiments on copper below 1μm have been investigated by

researchers [38]. Therefore, in this study we choose the samples with the diameters

arrange from 1μm to 10μm. Recalling that the FIB damage on Cu has been reported in

recent study [38], the same amount of FIB damage could have been provided to all of

the samples equally.

For the BCMs, the milling depths of two grains were almost same, refer to Hirouchi

and Shibutani’s previous experiment [26], and the similar orientations of two grains as

the case in ref. [26] are shown in Figure 2-3a and b. The same amount of FIB damage

could have been provided to all of the samples equally. The micro-pillars for Figure

2-3 are in the scale of 4μm. In order to avoid the influence of displacement bursts, the

larger scaled pillar (7μm) are fabricated by FIB milling shown in Figure 2-4a and b,

and the orientation information is shown in Table 2-1. The large scale micro-pillars

such as the specimen shown in Figure 2-4 shows smooth plastic flow meanly

representing the hardening of the metallic material. In order to study the grain effect,

the triple crystalline micro-pillars were fabricated by FIB milling shown in Figure

2-4a and c.

Fi
gure 2-3. Inverse pole figures of groups A (a) and B (b) by EBSD shown by arrow.
Also, FIB images of BCMs of Groups A (c) and B (d) [26].
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Figure 2-4. Inverse pole figures of groups C and D (a) by EBSD shown by circle.
Also, FIB images of BCMs of Groups C (b) and D (Triple crystalline micro-pillars)
(c).

Table 2-1 Orientation information for SCMs (L), SCMs (R), BCMs of Groups A-D

Group Size (m)
Normal direction to surface

L R M

A 4 [6 11 5] [-12 13 25] /

B 4 [1 -5 5] [11 21 6] /

C 7 [-25 -16 -9] [4 7 -11] /

D 7 [4 7 -11] [-25 -16 -9] [-5 3 1]

M is shown in Figure 2-4c.

2.2.2 Micro compression test

The micro compression test on the SCMs, BCMs and MG pillars is conducted by a

Nano-indenter G200 (Agilent Technologies) equipped with a designed diamond

flat-punch tip of 20μm diameter. The pillars were compressed in load-controlled mode

at a constant loading rate of 1.0 μNs-1.

2.3 Results

2.3.1 SCM
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The selected copper experimental results of stress-strain curve are shown in Figure

2-4. The information of these yield stresses, normal crystalline orientations, the

maximum Schmid Factor (SF), the corresponding slip system and critical resolved

shear stress (CRSS) is shown in Table 2-2. Compared with the CRSS of each size, the

CRSSs in 1μm, 4μm and 8μm scales are 63.3MPa, 28.6~38.1MPa and 19.2MPa,

respectively. It shows a “smaller is stronger” relationship where pillars with smaller

diameters accompany with larger strength. This size dependent CRSS-d (diameter)

relationship has been reported [4, 10-25]. However, the physics of this phenomenon is

still an open issue. In Figure 2-4a, it is shown that the emission of large strain bursts,

which operate the catastrophically deformation, were observed in the samples with

1μm diameter. In Figure 2-4b and c, the plastic flow strain is involved by

displacement bursts and flow deformation with 4~10μm diameter. For specimen c1,

the plastic flow only represents the hardening influence. That is to say, the

displacement burst is another size dependent characteristic.

(a) Group a
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(b) Group b and c

(c) Group d and e

Figure 2-4. Engineering stress and engineering strain experimental curves of copper
specimens.
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Table 2-2. The details about size, orientation and yield stresses of SCMs Group a-e

During the displacement burst process, the dislocation evolution has a large

earthquake as displacement bursts vibrate the dislocation distribution [39-44].

Recently some continuum models are provided to describe displacement bursts during

the plastic plow stage [40-41], and it has been found that the large strain burst

accompanying with dislocations avalanche produced unstable local strain, which

didn’t distribute along the original slip system. Based on the method of dislocation

simulation provided to describe the variance of the dislocations, it is believed that

dislocations distribution would vibrate when displacement burst happened [42-44].

Therefore, the physical explanations on the relationship between the dislocations

evolution and the macro strain need to include the displacement burst. At present,

understandings on the displacement bursts are limited to the observation method in

which the variance of the inner micro- and nano- structures cannot be seen during the

plastic process. Large displacement bursts always accompany with dislocations

avalanche, which results in unstable deformation and uncertain variance of dislocation

evolution. Thereby large displacement bursts cannot be considered into the dislocation

evolution consideration which would be studied in following.
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The shape deformation of the SEM image of Cu SCMs in 4m is shown in Figure

2-5. It shows that the deformed SCMs with orientations [6 11 5] and [1 0 1] have the

characteristic of single slip with the largest SF. But for the deformed SCMs with

orientations [1 5 5] and [1 12 16], it can be clearly seen that SCMs were deformed

accompanying two different slip planes (two cross slip). When considering the

sequence of these two kinds of slips, the slip nucleated at the upper side preferentially

occurred as the stress of concentration around the surface edge of pillar [26]. The

slide angles of the two slip plane are almost the same, which are the two of the slide

angles with the largest three SFs. This kind of shear failure in the slip planes among

the three largest slide angles, associated with the bursts frequently occurred via the

activation of shear transformation zone [26].

Figure 2-5. The SEM image of the deformed SCMs with normal orientations: (a) and

(b) [6 11 5]-SCM (L) of group A; (c) [1 0 1]-SCM of group b and c; (d) [1 5

5]-SCM of group d; (e) and (f) [1 12 16]-SCM of group e.
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2.3.2 BCM

The stress-strain responses of Groups A, B, C and D are plotted in Figure 2-6a, b

and c, respectively. The solid line, dotted line and point line represent the stress-strain

responses of BCM, SCM (L) and SCM (R), respectively. The stress-strain curve of

4m before the linear stress-strain response involves a nonlinear deformed response

because of the possible existing angular misalignment between a flat punch and the

top surface of the specimen. For the Group A, yield stresses of BCM are around

70MPa, the corresponding yield stresses of SCM (L) and SCM (R) are 60-65MPa.

There is almost no work hardening to be observed for BCMs and SCMs, even though

some small displacement exists just after elastic strain. The large deformation of the

catastrophically large displacement can be found. For Group B shown in Figure 2-6b,

the distinct work hardening are observed during the strain is up to 4%. And the

hardening consists of the repetition of small displacement bursts and hardening. After

that, the SCM still continue this kind deformation until fracture. However, the BCM

represents unstable deformations with large displacement bursts. In Figure 2-6c, the

SCMs and BCMs of 7m only show the plastic flow of work hardening. And

relationship between the size and displacement is still unknown [39-44]. Figure 2-6a

and b, the yielding stresses of BCMs are larger than those of SCMs, and this

phenomenon can also be found in Figure 2-6c. The Triple crystalline micro-pillar

shows not only large yielding stresses but also an obvious work hardening than SCMs

and BCMs. That is to say, the grain boundary (GB) strengths the mechanical response

of the micro-pillars. This phenomenon would be explained in chapter 4.
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(a) Group A in Table 2-1.

(b) Group B in Table 2-1.
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(c) Group C and D in Table 2-1.

Figure 2-6. The stress-strain curve of Group A, B, C and D in Table 2-1. The solid

line, dotted line and point line represent the stress-strain curve of BCM, SCM (L) and

SCM (R) (corresponding SCM to the left side and right side of BCM), respectively.

The lines shows the mechanical responses of Group A (a), Group B (b), Group C (c)

and Group D (c).

Figure 2-7a-h presents FIB/SEM micro-graphs of BCMs and corresponding SCMs

of Group A and B in 4m with the same crystallographic orientations after test from

the lateral view. It is clearly revealed that the slip planes in each side of BCMs are

almost the same as the slip planes of the corresponding SCMs. In Figure 2a-d, the

BCMs and SCMs of Group A have the characteristic of single slip with the largest

Schmid Factor (SF). But for Group B, it can be clearly seen that both BCMs and

SCMs were deformed accompanying two different slip planes (two cross slip). The

slip direction in both Group A and Group B is parallel to the GB, therefore the slip
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band is along the GB. In Figure 2-8, the slip planes of BCM (Group C) are also

almost the same as the slip planes of the corresponding SCMs, but the slip direction is

not strictly parallel to the GB with a very small angle. The slip deformation of a triple

crystalline micro-pillar is also studied shown in Figure 2-8g. The slip direction is

almost along the GB between the left grain (L in Figure 2-8g) and right grain (R in

Figure 2-8g).

Figure 2-7. SEM images of group A and group B after compression with a tilt angle

of 45°: (a) Left and (b) right sides of BCM of Group A, (c) left side of SCM(L), and

(d) right side of SCM(R). (e) Left and (f) right sides of BCM in Group B, (g) left side

of SCM(L), and (h) right side of SCM(R). Dashed lines show the slip lines for

measurements of slip plane ((a)~(d) for group A, (e)~(h) for group B): (a) Left side of

BCM, (b) right side of BCM, (c) left side of SCM(L), and (d) right side of SCM(R);

(e) Left side of BCM, (f) right side of BCM, (g) left side of SCM(L), and (h) right

side of SCM(R) [26].

(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 2-8. SEM images of group C and group D with a tilt angle of 45°: (a) Left and

right sides of BCM of Group C before compression, (b) Left and right sides of BCM

of Group C after compression, (c) left side of SCM (L), and (d) right side of SCM(R)

after compression; (e) original shape of Triple crystalline micro-pillar Group D with a

slide grain boundary (GB) between M side and L side, (f) original shape of Triple

crystalline micro-pillar Group D from the view side of GB between L and R, (g)

deformed shape of Triple crystalline micro-pillar Group D, and (h) middle side of

SCM (M). Dashed lines show the slip lines for measurements of slip plane ((a)~(d)

for group C, (e)~(h) for group D: (a) and (b) BCM, (c) left side of SCM(L), and (d)

right side of SCM(R); (e), (f) and (g) Triple crystalline micro-pillar Group D, (h)

middle side of SCM (M).

When considering the sequence of these two kinds of slips (single slip in Groups A

and C; two cross slip in Group B), the slip nucleated at the upper side preferentially

occurred as the stress of concentration around the surface edge of pillar [26]. The slide

angles of the two slip plane are almost the same, which are the two of the slide angles



43

with the largest three SFs. This kind of shear failure in the slip planes among the three

largest slide angles, associated with the bursts frequently occurred via the activation

of shear transformation zone [26]. Under ultrahigh external mechanical stress, once a

mesoscopic glide plane is formed, local shear can active macroscopic sliding and

result in the evolution of defects, with strain bursts shown in stress-strain curve (see

Figure 2-6). This mechanism operates the evolution of interior microstructures such as

dislocations, the motion of that would result in the variance of the plastic strain [24-28,

41-44].

2.3.3 Metallic glass micro-pillar

The stress-strain responses of different scaled metallic glass (MG) micro-pillars

(1m, 2m, 4m, 6m, 7m, 8m and 10m) are plotted in Figure 2-9a~g,

respectively. The same scaled two or three MG micro-pillars are compressed

uniaxially in order to avoid the dispersiveness from the experiments. Compared with

the results among all the figures, the elastic limits of the micro-pillars in 1m and

2m is around 1200-1400MPa, smaller those of the micro-pillars in 4-10m. This

unobvious size dependent elastic limit tendency is different from that of crystalline

material. The plastic flow of the 1m diameter MG micro-pillar involves much more

elastic stress increase stages and represents more obvious stress increase tendency

globally than that of large scaled MG micro-pillars. In the crystalline micro-pillars

and amorphous micro-pillars, the elastic stress increase always accompanies with the

phenomenon of displacement bursts. The catastrophically unstable plastic

deformation is related to this kind of displacement bursts.
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(a) 1m diameter MG micro-pillars;

(b) 2m diameter MG micro-pillars;
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(c) 4m diameter MG micro-pillars;

(d) 6m diameter MG micro-pillars;
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(e) 7m diameter MG micro-pillars;

(f) 8m diameter MG micro-pillars;
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(g) 10m diameter MG micro-pillars;

Figure 2-9. The stress-strain curve of metallic glass micro-pillars in different sizes: (a)

1m; (b) 2m; (c) 4m; (d) 6m; (e) 7m; (f) 8m; (g) 10m.

In micro-pillars, the MGs also attracts high elastic limit, which is much higher than

the crystalline materials, and obvious plastic flow at room temperature, which is

different from the bulk MGs. The Bulk MGs shows the catastrophic failure after the

elastic limit under tension and compression [33, 45]. However, it has been widely

accepted that plastic deformation of the small scaled MGs such as nano-scaled MGs is

carries by shear transformation zones (STZs) which are clusters of hundreds of atoms

undergoing shear displacements under external loading. The shear bands of MGs are

shown in Figure 2-10a~f. The angles between the shear plane and the loading axis are

all at or very close to 45°. In Figure 2-10, the large scaled (4-10m) MG micro-pillars

have more obvious shear band than the small scaled (1-2m) ones. When the stress

state reaches the yield point, strain concentrates into some small regions. These

localized regions start to propagate together and link to each other, and form a narrow
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shear bands.

Figure 2-10. The SEM image of the deformed MG micro-pillars with different sizes:

(a) 1m; (b) 2m; (c) 4m; (d) 6m; (e) 8m and (f) 10m.

2.4 Summary

In this chapter, the research background of the uniaxial compression test on the

SCMs, BCMs and MG micro-pillars, and the targets of our conducted experiments are

reviewed. The procedure of the experiments are introduced in the following. The

results of SCMs shows strong size dependent mechanical characteristics such as size

dependent CRSS and different plastic flow with varied scaled diameters. The physical

explanations of these phenomenon will be stated in Chapter 3 and 4 based on the

dislocation physics, surface energy theory and crystal plasticity. The BCM

experiments shows the effect of grain boundary on the stress-strain response and slip

deformation. The relationship between the dislocation motion and the grain boundary,
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and the stress-strain behavior will be studied in Chapter 4. The MG micro-pillar

experiments shows an unobvious size dependent elastic limit relationship, which will

be deeply discussed in Chapter 5. The plastic flow will be described based on free

volume theory in Chapter 5, and compared with the experiments in this chapter.
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Chapter 3

Physical modeling on size dependent yielding

and yield surface on crystals

Recent research has explained that the steeply increasing yield strength in metals

depends on decreasing sample size. The size dependent yield strength of single

crystals has been found in Chapter 2, this phenomenon will be physically discussed in

this chapter. First, we consider the effect of inner dislocation motion- “pile-up” effect,

and derive a statistical physical model of the yield strength of finite single-crystal

micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars.

We show that this size effect can be explained almost completely by considering the

stochastic lengths of the dislocation source and the dislocation pile-up length in the

single-crystal micro-pillars. Our quantitative conclusions suggest that the number of

dislocation sources and pile-ups are significant factors for the size effect. Moreover,

we investigated the explicit relationship between the stacking fault energy and the

dislocation “pile-up” effect inside the sample: materials with low stacking fault

energy exhibit an obvious dislocation pile-up effect. And then, the influence of the

surface energy and surface elasticity upon the size-dependent yield strength of

single-crystalline hollow micro- and nanopillars is considered quantitatively. An

analytical expression of the size-dependent yield strength is established that considers

the surface energy and the inner defects and by the principle of minimum potential
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energy. The predicted yield strength of our model as a function of the pillar size is

more precise than that of the well-known single arm source model when comparing

the predictions with the experimental results of pillars made of Al or Ni. Finally, in

order to describe more complicated stress condition, a size-dependent yield function

for a single crystal is developed by considering defect effects, including dislocation

pile-up, dislocation starvation and source exhaustion, especially for micro-pillars.

3.1 Effect of dislocation pile-up on size-dependent yield strength in

finite single-crystal micro-samples

3.1.1 Model

In the micro-pillars, the critical resolved shear stress (CRSS), which can be treated

as the initial yield strength when considering macroscopic plasticity, predominantly

depends on the stress required to initiate and to maintain dislocation multiplication

[1-4]. Plastic flow of the micro-pillars requires the CRSS to be initiated by activating

the dislocation multiplication from the weakest dislocation source[1-3, 5, 6], and then

to be maintained by hardening stresses [3, 4, 7]. Finite micro-pillars contain

double-pinned Frank–Read sources and/or SAS, which occurs because finite

micro-pillars have much larger volume than nano-pillars, in which there are nearly no

dislocation sources. Mobile dislocations can move from the interior of the sample to

the surface, according to the single arm source (SAS) model by Parthasarathy et al [1,

8]. These dislocations can annihilate at the free surface, possibly causing “starvation”

of mobile dislocations[9, 10]. In the SAS model, however, the pile-up mechanism is

not considered, and the strength (CRSS) includes the friction stress 0 , back stress

back , and activation stress activate of the dislocation source, which can be expressed

as [1]
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0 back activate activate 0
max

CRSS 0.5s
bb        


        , (3.1)

where 0 0.5s b     represents an field stress on the slip plane including 0

and back ,  is the total initial dislocation density,  is the shear modulus,  is

Poisson’s ratio, b is the magnitude of the Burgers vector,  is the dislocation source

length shown in Figure 3-1, and max is the average longest effective length [1].

Figure 3-1. Schematic of dislocations piling up behind obstacles in a cylindrical

micro-pillar in a critical configuration. (a) Illustration of the primary slip plane in a

cylindrical pillar: the dislocation sources are distributed randomly on this slip plane

with width dr ; (b) dislocation configurations and stress states with a pile-up already

formed on the slip plane: the external stress  provides the applied field stress s ,

the activation stress activate , and/or the applied shear stress  to the dislocation pile-up

on the slip plane; (c) a sketch of the pile-up field.

As the basis for our investigation, we use the SAS model’s configuration

accompanying the already-formed pile-up. First, consider a compressed cylindrical

pillar with radius R, as shown in Figure 3-1a, and a primary slip plane oriented at an
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angle  with respect to the loading axis. Figure 3-1b shows a pile-up already formed

on the slip plane and the critical shear stress required to activate the SAS (initial

yielding state). The external stress  provides the applied field stress s , activation

stress activate , and applied shear stress  on the dislocation pile-up region on the slip

plane. In the SAS model, because there is no pile-up field, the CRSS is given by Eq.

(3.1). In Figure 3-1c, under an applied shear stress , an inner defect or junction

caused by slight crystal rotation can be regarded as an obstacle at x=0. Here, the

obstacle represents a local resistance to motion of mobile dislocations on the slip

plane. Some mobile dislocations stop gliding and pile up behind obstacles on the slip

plane, as shown in Figure 3-1c. N is the number of pile-up dislocations, and L is the

length of the dislocation pile-up, as shown in Figure 3-1c). According to dislocation

elasticity theory [11], the critical stress p at the tip of the dislocation pile-up and L are

p N  , (3.2)

2 2
0

0 ( )
2 (1 ) 8 2 (1 ) 8

p
N

a N b bL x a
   

      
   

 
. (3.3)

The value of L is difficult to define, even using in situ microscopy. However, L is

proportional to the specimen geometry R [12], and the statistical value of the

dislocation source length  is ~0.3 times as long as the radius according to a

simulation by Parthasarathy et al [1]. Thus, in Eq. (3.3) the length L can be assumed

to be ,  ( 0)L m m  . In terms of a pile-up SAS model, ,  ( 0)L m m  is used to

describe the pile-up effect in the following analysis.

The dislocation sources distribute randomly on the slip plane, and the number of

sources is related to dislocation density and the volume [1]. The obstacles inside the

pillars may be the junctions caused by rotation of the crystal or the dislocation source.
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The motion of mobile dislocations at the position of obstacles has two possibilities:

first, they bow and continue going through the obstacle, or they stop behind the

obstacle. Both of these possibilities are shown in Figure 3-2. When a dislocation

passes through the obstacles or climbs to another slip plane, the back stress and the

stress to activate the dislocation source are considered in the SAS model [1, 8].

However, if the mobile dislocation stops behind the obstacle, there are two cases for

pile-up: first, when there is a dislocation source near the tip of dislocation pile-up,

which is shown as Case 1 in Figure 3-2; second, when that dislocation sources are far

from the tip of pile-up, which is shown as Case 2 in Figure 3-2.

Figure 3-2. Schematic comparing the physical background between the SAS model

and proposed model, showing the relative positions of the dislocation source and

pile-up. The motion of mobile dislocations at the position of obstacles has two

possibilities: first, the mobile dislocations bow and continue going through the

obstacle or climb to another slip plane, which is considered by the SAS model [1, 8];



58

second, the mobile dislocations stop behind the obstacle. If a dislocation source is

near the obstacle or is regarded as the obstacle, the concentration shear stress at the tip

of the dislocation pile-up would activate the dislocation source, as shown in Case 1 of

the proposed model. If the dislocation source is far from obstacles, the back stress

from dislocation pile-up pu would affect the field stress [13, 14], as shown in Case

2. As there will be almost no dislocations in the low-dislocation-density field, 0L  ,

leading to a back stress from the low-density field of su 0  .

In the following analysis, we consider the SAS model’s configuration

accompanying the already-formed pile-up. Derived from the original Eq. (3.1), we

propose two kinds of contributions of the already-formed pile-up: first, in Case 1

where the stress concentration caused by the pile-up activates the dislocation source

close to the pile-up; second, in Case 2 where the pile-up contributes to the CRSS of

the dislocation source far from the pile-up as the back stress.

A. Case 1:

First, we consider a single arm dislocation source on the slip plane. If the

dislocation source is near the tip of the dislocation pile-up, the stress back of the

pile-up B [12] is the stress behind the last dislocation of the pile-up, which is similar

to the back stress back in the SAS model associated with a prior surrounding

dislocation density s , which is extremely small for a micro-pillar ( 0s  ). As shown

in Figure 3-2, the applied shear stress  to the dislocation pile-up region provides the

concentration stress at the pile-up tip, and the concentration stress can be the

activation stress activate . In Case 1 (Figure 3-2), the CRSS should overcome the

friction stress and back stress, so it provides the applied shear stress  to form the

stress concentration at the dislocation pile-up tip, which activates the dislocation

source. Thus, the CRSS can be expressed as
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0 back 0CRSS 0.5 sb            . (3.4)

According to Eq. (3.3) and ,  ( 0)L m m  discussed before and according to the

literature [1, 12], the applied shear stress to the dislocation pile-up region can be

expressed as

0.5 0.5 ,  ,  2
32 (1 )y pk Ak A k b

m
    


    


. (3.5)

where k is equivalent to the strengthening factor of a polycrystalline material,

yk Ak . Actually, CRSS s   .Then, Eq. (3.4) can be expressed as

0.5 0.5
0CRSS 0.5 s s yb Ak k           . (3.6)

In Eq. (3.6), a Hall–Petch-type relationship, which is strongly affected by the

dislocation source length, is observed even in single crystals. The Hall–Petch effect

does operate in polycrystalline materials and leads to yield strength scaling as 0.5d  ,

where d is the grain size.

Some experts believe that the SAS plays a more important role than other sources

in the multiplication of dislocations in micro-dimensional samples[1-3, 5, 6, 8, 15, 16].

The critical stress required to activate the SAS can be taken as C
b


 [1]. In the

SAS model, the SAS is activated by the applied stress on the slip plane in Eq. (3.4)

( activate  ) with activate C
b 


  , and mobile dislocations do not pile up. We accept

the SAS condition in the present study. In Eq. (3.6), the CRSS is a function of p ,

and p is much larger than the applied stress in this field. In finite single-crystal

micro-pillars, p should equal the critical stress C ( 1)p
B b B 


   , if a
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dislocation source is near the tip of the dislocation pile-up and this source becomes

the weakest source to be activated, as shown in Figure 3-2. The statistic mechanics

theory [8] calculates max the maximum distance from these sources to the surfaces,

and it uses max to replace  . Thus, the critical stress should be written as C
max

b


 .

Substituting C
max

p
b 


  into Eq. (3.6), we obtain

1
0 1

max
CRSS 0.5 ,

16 (1 )s
bb

m
     


   


. (3.7)

B. Case 2

If dislocation sources are far from the tip of the dislocation pile-up on the slip plane,

the pile-up exerted is applied on the back stress back [16-19]. The stress to activate

the dislocation source is the applied stress, similar to the condition of the SAS model

shown in Eq. (3.1). By considering the critical condition here, CRSS need not

consider  because it does not affect the activation of the dislocation source. Thus,

as shown in Case 2 (Figure 3-2), the CRSS includes 0 , the back stress from pile-up

pu , the back stress from surrounding dislocations su ( back pu su    ), and the

activation stress activate :

activate 0 back activate 0
max

CRSS s pu su
b       


         . (3.8)

where the back stress back is the surrounding stress applied on the slip plane[16, 19].

The whole region of the slip plane is divided into two parts: the

high-dislocation-density field (the field of dislocation pile-up in this study, with a

dislocation density of H ) and the low-dislocation-density field (dislocation density

of L ), as shown in Figure 3-2. Thus, we discuss the average effect of the pile-up

and treat the pile-up field as a high-dislocation-density field according to the

literatures [20, 21]. From this analysis, the average applied field stress s on the slip
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plane can be expressed as in the literature [20, 21]:

(1 )s H H H Lf f     , (3.9)

where H is the applied field shear stress in the high-dislocation-density field, L is

the applied field stress in another region, and Hf is the average area fraction of the

high-dislocation-density field ( / 2Hf L R ) [20]. The shear stresses of H and L

are related to their local dislocation densities [21], which can be obtained according to

Feaugas et al. as follows [20]:

0 0.5H Hb     , (3.10)

0 0.5L Lb     . (3.11)

Eq. (3.9) can be rewritten as

0 0(1 )0.5 0.5s H L H H su puf b f b               . (3.12)

It refers 12 20 10 / mL  : , 12 15 210 10 / mH  : [21]. There are very few

dislocations inside micro-pillars: perhaps one, two, or few. If this limited number of

dislocations piles up behind the obstacle, there will be almost no dislocations

elsewhere. We set 0L s   and H  , and Eq. (3.12) can be rewritten as

0 0 pu0.5s H Hf b         . (3.13)

In Eq. (3.13), pu is the back stress of dislocation pile-up in small volumes regarding

length scale effects, the formulation of which is similar to literatures [16, 18-20]. Thus,

Eq. (3.8) can be expressed as

max
0 back activate 0

max
CRSS 0.5 ,

2H H
b mf b f

R
      


       . (3.14)

C. General CRSS model to describe single-crystal micro-pillars

When considering one pillar, it is hard to determine whether the obstacle on the slip

plane is near the dislocation source. Here, we wish to obtain a general statistical
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model to describe the pile-up effect in micro-pillars of one material. By examining a

series of micro-pillars of one material, we can consider the average behavior of

dislocation pile-up. Thus, we consider both constitutions Eq. (3.7) and Eq. (3.14).

When we assume the percent of specimens with dislocation sources far from the

obstacle is p (the CRSS is described in Eq. (3.14)), the percent with a dislocation

source near the obstacle becomes 1−p (the CRSS is described in Eq. (3.7)). In this

study, we try to describe the average CRSS of this series of micro-pillars of one

material. And the general CRSS model can be shown as

max
0 1 1

max
CRSS 0.5 [(1 ) ] , ,

16 (1 ) 2H H
b mpf b p p f

m R
      


      


. (3.15)

In finite single-crystal micro-samples, which have dimensions on the same order of

magnitude as the length of the dislocation sources, the longest source length

max determines the CRSS required for initiating plastic strain or dislocation

multiplication. This effect has been observed in micro-samples[1-3, 5, 6]. As shown in

Figure 3-1a, the slip plane is an ellipse with the major axis 1= / cosR R  and the

minor axis R. If the dislocation pins are distributed randomly on this slip plane with

width dr (the width of the shadowed area), the statistical mechanics method in the

SAS model can be used. Thus, the mean and standard deviation of the longest

effective source length can be given as [1]

max max max max0
= ( )d

R
p    -1max 1 max

max0
1

( - )( - )= [1- ]
R nR R

R R
  




max 1 max
max

1

[( - ) ( - )]( ) dR R n
R R

   



 .
(3.16)

max

22 1/2
maxmax max max0

22 -1 1/2max 1 max max 1 max
maxmax max0

1 1

=[ ( )d - ]

( - )( - ) [( - ) ( - )]      =[ [1- ] ( ) d - ]

R

R n

S p

R R R R n
R R R R

    

       
 






 .
(3.17)
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where the number of pins n depends on the sample dimensions and the initial

dislocation density [1], and n can be given by

2

=Integer[ ],  =mob mob
seg

R hn
L s
   . (3.18)

where  and mob are the total and mobile initial dislocation densities, respectively,

h is the specimen height, Lseg is the average length of the dislocation segments, and s

is the number of slip systems. We selected =51  for the loading axis direction of

[126], s=12 for face-centered cubic (fcc) crystals, Lseg=R, and h=2.5R [1, 8, 15].

Moreover, to distinguish micro-pillars from metal whiskers that contain fewer

dislocations and can be treated as ideal crystals, we assumed the samples had a

dislocation density of 1012–1013 /m2 and took the lower bound for n to be unity.

3.1.2 Discussion for pile-up effect

Because of the concentrated stress around the tip of pile-up dislocations, the stress

at the tip p is larger than the applied stress  on the slip plane. In Case 1 of our

model, p will activate the SAS and is C
max

p
b 


  . In this case, the applied stress

 is smaller than
max

b


because of the stress concentration. According to Eqs. (3.4),

(3.7), and (3.15), the parameter m must be over 0.28 because dislocation pile-up must

be effective in the samples: in the condition 1
max max

[(1 ) ] b bp p  
 

   , then 1 1  ，

m 0.28 , where
max

b


is the stress to activate the dislocation source in the SAS

model in Eq. (3.1) [1, 8]. If m 0.28 , the SAS model should be considered.

At first, we used a least-squares method with Eq. (3.15) to simulate the

characteristics of Au, Cu, Al, and Ni and found the values of (p, m) for them with the
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conditions of 0 1p  and m>0, where p is the percent of of specimens with

dislocation sources far from the pile-up. From Eqs. (3.15) and (3.16), we get the

functions of max max ( )R  and maxCRSS CRSS( , , )p m  , respectively. Thus, we

get CRSS CRSS( , , )p m R . The least-squares value y can be obtained as

2(CRSS( , , )-CRSS )i i
i

y p m R
2

=Integer[ ],  =mob mob
seg

R hn
L s
   , (3.19)

where CRSSi is the experimental data and iR is the corresponding radius of the

experimental data. Then, (p, m) can be obtained using the following method:

0
,  0 1 and 0

0

y
p p m
y
m

    
 

. (3.20)

We selected the parameters used here from the literatures [1, 3, 8, 10, 22-27]:

12 2=4 10 /m  ; 0 = 11 MPa (Ni), 13 MPa (Au), 10 MPa (Al), 12 MPa (Cu); =0.3 ;

s=12; h=2.5R; =76 GPa (Ni) , 27 GPa (Au) , 48 GPa (Cu), 32.7 GPa (Al) ; b=0.24

nm (Ni), 0.288 nm (Au), 0.283 nm (Al), 0.361 nm (Cu). The obtained (p, m) are Au

(0.47, 1.62), Cu(0.58, 0.89), Al(0.67, 0.35), and Ni(0.99, 0.002). Figure 3-3 shows the

relationships between the stacking fault energy (SFE) [3] and the parameters m and p.

For fcc crystals, materials with low SFE more easily exhibit dislocation pile-up. This

behavior suggests that a smaller SFE corresponds to a larger m in Eq. (3.15), as shown

in Figure 3-3a. Because Au has a lower SFE (0.06 J/m2) than Ni (0.40 J/m2), the

dislocation pile-up effect is more likely in Au than in Ni, and this suggests there

would be more dislocation pile-ups in Au than in Ni. The value p of Au should be

smaller than that of Ni, which is shown in Figure 3-3b. In Figure 3-3 the value p of Ni

is 0.99 nearly equal to 1, and m is much smaller than 0.28; that is, there is no source
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near the pile-up and almost no pile-up effect inside the pillar. Experiments by Frick et

al [28]. showed no evidence of dislocation pile-ups in compression studies of Ni

micro- and nano-pillars ranging from 160 nm to 2000 nm in diameter. In other words,

Eq. (3.15) cannot be applied to Ni; the SAS model should be used. Consequently, the

pile-up SAS model of Eq. (3.15) can be used to describe the yield strength of a

material with a strong dislocation pile-up effect, especially for materials with low SFE

such as Au and Cu. In Figure 3-3a, there is a line at m=0.28. If the material has a

larger m, the pile-up SAS model should be used; if not, the SAS model should be used.

From the previous discussion, once these formulations of the proposed model are

established, their parameters (p, m) must be fixed when applying the models to the

specific material, and we believe that the results obtained in Figure 3-3 support the

applicability of our proposed model.

Fig. 3 Relationship
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Figure 3-3. Relationship among the stacking fault energy and the parameters m and p;

(a) the corresponding relation of the dislocation pile-up parameter m; (b) the

corresponding relation of the probability of the source being far from the pile-up p.

3.1.3 Size effect of the single crystal micro-pillars

Figure 3-4 plots the experimental data reported so far [10, 22, 23], the predictions

of our pile-up SAS model shown in Eq. (3.15), and those of the original SAS model.

The predicted critical results were based on max , and the upper and lower bounds

were based on ( max −
max

S ) and ( max +
max

S ). Equations (3.13) to (3.15) indicate that

the CRSS for a finite micro-sample depends on the number of pins n, the length of

dislocation pile-ups L, and the initial dislocation density  . The influence of the initial

dislocation density  has been sufficiently discussed in the literature [1, 8, 15]. In

Figure 3-4a, our pile-up SAS model agrees better than the original SAS model with

the experimental data; that is, our pile-up SAS model gives a more precise prediction.

Also, compared the computational results of Au, the interval predicted by our model
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is narrower than that predicted by the original SAS model. For Au, our pile-up SAS

model is more suited to describing the size-dependent strength of the micro-pillars. As

shown in Figure 3-4a and 3-4b, the size-dependent CRSS depends on the number of

dislocation sources and the effective length of dislocation source. When the size is

large enough, the effective length of the dislocation source would become large, as

shown in Figure 3-4b, making the CRSS constant according to Eq. (3.15). For Ni, the

original SAS model should be used, as demonstrated in Figure 3-4c and d. In

micro-pillars, the pile-up field can form in the Au specimen, but hardly in the Ni

specimen.

Figure 3-5 shows the predictions from our pile-up SAS model and the original SAS

model for Al and Cu micro-pillars. For the Cu specimens, our pile-up SAS model

agrees better than the original SAS model with the experimental data, showing that

our pile-up SAS model gives a more precise prediction. The effective length of the

dislocation source affects the size-dependent CRSS in Figure 3-5b and 3-5d. For the

Al specimens, there is little difference between our pile-up SAS model and the

original SAS model.
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Figure 3-4 Experimental data of Au and Ni with 0.2% plastic strain and the yield

stress predicted by our proposed model. The mean, upper, and lower bound curves

correspond to max , ( max −
max

S ), and ( max +
max

S ).

Figures 3-4 and 3-5 show sudden drops in the CRSS at a sample radius of ~1.2 µm.

According to the models shown by Eqs. (3.15), (3.16), and (3.18), the number of pins

stays at unity at a sample radius below 1.2 µm. Figures 3-4 and 3-5 show that the

strength obviously increases by decreasing the radius below 1.2 µm. In other words,

the size effect is obvious when the radius is below 1.2 µm, but not obvious when the

radius is more than 1.2 µm. However, in Parthasarathy’s model [1], the integer

number of dislocation pins was not obtained, so there was no sudden drop in their

plotted curves. Compared with the predictions in Figures 3-4 and 3-5 based on our

pile-up SAS model, the size effect of the yield stress is more obvious when the

number of pins is unity. Figures 3-4 and 3-5 indicate that, with increasing sample

radius, the number of dislocation sources increases and the yield strength deceases.

Thus, the size-dependent yield stress depends on the number of sources. According to

Eqs. (3.13), (3.14), and (3.16), the number of dislocation sources decreases as the
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sample size decreases, so the starvation of dislocation sources is one reason for the

observed size effect. Moreover, with fewer dislocation sources, dislocation

multiplication becomes more difficult, and dislocations will tend to slip to the surface.

This discussion agrees well with dislocation starvation theory [1, 8, 10, 24].
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Figure 3-5 Experimental data of Al and Cu with 0.2% plastic strain and the yield

stress predicted by various models. The mean, upper, and lower bound curves

correspond to max , ( max −
max

S ), and ( max +
max

S ).

When the dislocations distribute near the surface, the image stress would drive the

dislocations to the surface. This is one explanation of the theory of dislocation

starvation. For micro-pillars, it is reasonable that plasticity commences via the

activation of internal dislocation sources [1, 8] (i.e., single-arm or Frank–Read
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sources) rather than surface sources [29, 30]. Sun et al. investigated the small-scale

effect of image force and showed that the image stress for dislocations within 20–30

nm from the free surface is stronger than the applied stress [4]. Thus, most of

dislocations inside the micro-pillars are less affected by the image stresses.

3.2 Surface energy effect on the size dependent strength

3.2.1 Modeling on the surface energy

All of the recent experimental and theoretical research on the size effect of micro-

and nanopillars show that the critical resolved shear stress (CRSS) results from inner

defects, including back stresses from the interactive effect among the dislocations and

the activation stress of dislocation sources [3, 16, 22, 31-34]. The CRSS that is the

main result of inner defects, as reported in the literature [1, 31], is usually represented

as the inner stress, inner . Besides all of the inner defect factors, the surface energy

can also play a role in the yield stress of micro- or nanopillars, where the stress

induced by the surface energy is expressed as surface [35], and a schematic of this

physical description is shown in Figure 3-6. For the case of uniaxial stress state, the

total stress  ( CRSS / SF  , SF is the Schmid Factor) equal to the external stress

is the summation of inner and surface . Thus, the total stress can be written as

= inner surface   . (3.21)

If the external stress is equal to zero, surface can be regarded as the residual stress

that influences inner defects. In conventional solid mechanics, the yield strength is

determined by the phenomenological theory [31], which doesn’t involve the defects

inside the pillars. Recently, inner has been expressed by the inner defects in the

SAS model as [1, 15, 31, 36]. Even the pile-up SAS model has been reported by Pan

et al [3] and stated in Chapter 2, in this section the original SAS model will be chosen
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in order to estimate the surface energy effect and compare with the existing

theoretical models:

0 0
max

( 0.5 ) / ,  
16(1 )

inner b b SF     


   


, (3.22)

where  is the shear modulus, ν is Poisson’s ratio, b is the magnitude of the Burgers

vector, 0 is the Peierls-Nabarro force, max is the longest of the effective average

lengths of dislocation sources ( ), and 0 is the initial dislocation density. The SAS

model has included the characteristic length of the defects max inside the pillars,

which leads to the size-dependent mechanical properties. This model can be treated as

an effective method to explain the size-dependent inner in micro-pillars [3, 31]. The

detailed process used to obtain max is given in Ref. [1, 3], and the number of pins, n,

is related to the sample dimensions and the initial dislocation density [1, 3].

Figure 3-6. Schematics of the micro-pillar model. (a) Components of the stress state

that considers the effects from both the surface and the inner defects. (b) Cylindrical

hollow pillar with diameter d and thickness t.

In Figure 3-6, the length of the pillar in a longitudinal direction is l0 and the current

length of the deformed configuration l1 is equal to 0l l  , where l is the small

elastic deformed increment of the length, and so the engineering strain can be

expressed as 1 0 0 = ( ) /l l l  . As shown in the schematic sketch of the hollow pillars in
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Figure 3-6b, the tensile rigidity D0 should be considered as follows:

2 2
2

0 0
( 2 )= (2 )
4

d d tD EA E E Rt t   
   , (3.23)

where E is the elastic moduli, A0 is the initial section area, d is the pillar diameter, R

(=d/2) is the pillar radius and t is the thickness.

The yield stress is the critical stress between the elastic response and the plastic

response of a material. Therefore, just before the critical yield condition, the material

responses the linear elastic deformation and the strain energy can be written as a

quadratic form. The total potential energy is estimated by , which is

e sU U W    , (3.24)

where eU is the elastic strain energy, sU is the surface energy and W is the work

done by the external force P. The elastic strain energy is estimated by

2
0 00

1d d
2

ij

e ij ijv
U v D l


     , (3.25)

where v is the volume of the specimen in current state. And the total surface energy is

approximated by

sU S , (3.26)

where  is the surface energy density and S is the surface area. Because the surface

area is described by 0 0 0 (1 )S S l     under the isotropic assumption, following

Ref. [35], Eq. (3.26) can be developed as

0 0 0 (1 )SU S l      . (3.27)

where O0 is the perimeter of the initial cross-section and S0 is the initial surface area.

The work done by the external force P is given by displacement u

0W Pu P l  . (3.28)

By substituting Eqs. (3.25), (3.27) and (3.28) into Eq. (3.24), the total potential energy
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can be expressed as

2
0 0 0 0 0 0

1 + 1
2

D l S l ( ) P l          . (3.29)

Based on the principle of minimum potential energy, the final equilibrium state is

determined by / 0    with ignoring the high order small term including 2 ,

according to the framework of Figure 3-6, the strain  here can be expressed as

0
0 0

0 0

(1( (1 )) / PP EA
EA EA

 
  


    

）. (3.30)

If the deformation is elastic, the term ( 0/P A ) is considered as the total external

stress , and Eq. (3.30) can be rewritten as

0

0

(1
E EA

 


 
）. (3.31)

If  = 0, the strain in Eq. (3.31) will be in a compressive state owing to the residual

surface strain. Based on Eqs. (3.23) and (3.31),  can be obtained as

 = Eε + γO0(1−ν)/π(2Rt−t2). In this study, the compressive strength and tensile

strength are assumed to be equal ( compressive tensile    ).Because the surface

energy is independent of the elastic strain energy, the surface stress is equal to

γO0(1−ν)/π(2Rt−t2), and the first term E , therefore, represents the inner defects

inner of Eq. (3.21). The term inner has been represented as that shown in Eq. (3.22)

when the material is in the yield state, and the final model would be

0
0 0 2

max

(1 )= ( 0.5 ) /
(2 )

inner surface b b SF
Rt t

      



    


. (3.32)

This demonstrates that the yield stresses would be affected by n, max and surface .

According to Cammarata [36], the surface stress tensor surface
ij is related to the

surface energy density  and the surface strain tensor surface
ij by
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surface
ij ij surface

ij

 



 


. (3.33)

The surface stress tensor can also be expressed in an alternative definition of the

surface elasticity that is consistent with Eq. (3.33) [37, 38]

0surface
ij

surface surface
ij ij ijkl klsurface

ij

S


  
 


  


, (3.34)

where ijklS is the fourth-order surface elastic tensor, which can be determined by

atomistic simulations or experiments [38, 40]. For the uniaxial deformation of micro-

and nanopillars, the stress component mainly related to the external force is only the

normal stress to the surface, and so the surface stress tensor in Eqs. (3.33) and (3.34)

can be expressed as the scalars:

surface
surface
 




 


, (3.35)

0surface
ij

surface surface
ij ij ijkl klsurface

ij

S


  
 


  


, (3.36)

where sE is the surface elastic modulus in the crystalline orientation direction

normal to the surface of the pillar. In Eq. (3.32), the surface stress can be expressed

as surface = γ[O0(1−ν) /π(2Rt−t2)] = γB1. Linking this equation to Eq. (3.35), we can

obtain

1 surfaceB  



 


. (3.37)

Therefore, the surface energy density can be obtained as

1( 1) surfaceBCe   , (3.38)

where the C is a constant of integration. Before the external force and/or damage is

applied on the surface, the residual surface strain 0
surface is related to the initial
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surface energy density. Inserting Eq. (3.38) into Eq. (3.36) and taking the surface

strain to be in the state of the initial condition without external outside damage, we

can obtain the parameter C such that

0

2 1( 1)( 1)

s surfaceEC
B B




 
, (3.39)

where B2 = exp [(B1−1) 0
surface ]. In this way, the surface energy density can be

expressed as

1( 1)0

2 1( 1)( 1)
surface

s surface
BE e

B B
 

 
, (3.40)

where the parameters sE , 1B and 2B are only geometric and material

characteristics, and have no relationship with the external force and/or damage.

3.2.2 Inner defects and surface stress of hollow pillars

The parameters for Cu pillars used in Figures 3-7, 3-8 and 3-9 are selected from

Refs. [32-35] and are summarized in Table 3-1, and the crystallographic orientation

normal to the pillar surface is set to [1 2 6] [3]. Figure 3-7 shows the relationship

between the yield stress given by Eq. (3.32) and the thickness t of a Cu pillar whose

radius R is 0.35 m. As derived from Eq. (3.32) for a pillar with a constant diameter,

it can be observed that the stress is larger with a small value of t than that with a large

value of t. The same mechanics can be found in Figures. 3-8 and 3-9, which show

identical plots of the CRSS (=･SF) as a function of radius for Cu hollow micro- and

nanopillars with varying wall thicknesses, wherein the CRSS decreases as the pillar

radius R (=d/2) increases and a particularly sudden drop in the CRSS can be seen at a

radius of approximately 1.2 to 2 µm. Examining the detailed process used to obtain

max [3], Figure 3-8a also plots the number of dislocation sources in the pillars, which
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remains at unity until the sample radius is greater than the critical size 1.2 to 2 µm.

Therefore, this discontinuity is due to the transition from the unity to the continuous

change. Further, Figure 3-8b shows that, when the radius reaches the critical size 1.2

to 2 µm, the max suddenly increases, which is caused by the same reason.

Table 3-1. Parameter values used in the simulations

Parameters Values

0 (MPa) 7 (Al)1, 11 (Ni)2, 12 (Cu)3

 0.33

 (GPa) 26.25 (Al)1, 76 (Ni)2, 48 (Cu)3

b (nm) 0.25 (Al)1, 0.24 (Ni)2, 0.26 (Cu)3

 (J/m2) 1.2 (Al)1, 90 (Ni)2, 1.6 (Cu)3

0 2×1012 /m2

1Ref. [8, 26, 38, 41, 42]; 2Ref. [2, 3, 43]; 3Ref. [32-35]

Figure 3-7. Theoretical relationship between yield stress ( ) and thickness (t) of a

Cu hollow micro/nanopillar. The mean, upper and lower standard deviation curves
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correspond to max , ( max −
max

S ), and ( max +
max

S ), respectively, where
max

S is the

standard deviation [1, 3].

Figure 3-8. Relationship between the critical resolved shear stress (CRSS) and

dislocation source number and effective length as a function of pillar radius. The

effect of the inner surface (t) and size (R) of a hollow Cu micro/nanopillar upon its

CRSS plotted along with the varying (a) number of dislocation sources and (b)
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effective dislocation length of the dislocation sources. Solid marked lines represent

CRSSs with different thicknesses t, and hollow marked lines represent the number of

dislocation sources and effective length of dislocation sources with different

thicknesses t, respectively.

Figure 3-9. Relationship between the CRSS and the surface CRSS as a function of

pillar radius. The critical resolved shear stress (CRSS) and the surface CRSS as a

function of the pillar radius for (a) varying hollow pillar thicknesses and (b) varying
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surface energy densities. Solid marked lines represent CRSSs and hollow marked

lines represent the surface CRSSs ( Surface CRSS surface SF  ) accompanying with

different thickness t in (a) and with different surface energy densities  in (b).

In Figure 3-8a, the pillars with a small value of t have fewer dislocation sources (n)

than those with the same radius and larger t values. The variance of t (in the surface

stress term) is accompanied by an across area variance, which means that the

distribution of dislocation sources in inner will be varied according to Ref. [3]. In

Figure 3-8b, as was previously discussed, the increase of t is accompanied by a

decrease of CRSS and an increase of max , wherein the increase of max can cause

a decrease of the inner according to Eq. (3.32). The boundary/surface can truncate

double-pinned Frank-Read sources and transform them into the single-arm sources,

where the length of  is the distance from the pin (dislocation) to the nearest surface

[3]. When t is small, the two adjacent surfaces can effectively shorten the length of

 , which is to say, the boundary of the pillars limits the space to distribute  .

According to the discussion above, the variance of t affects the inner defects including

n and max and acts on inner . As a result, the variance of surface resulting from

the varying t changes both inner and  , which is the reason why the yield stress of

hollow pillars is larger than that of solid pillars, as shown in Figures 3-7 and 3-8.

Figure 3-9a shows that increasing the surface area of the Cu hollow pillars (i.e.,

decreasing t) corresponds with an increasing value of surface , which comprises 4 to

6% of the total stress (i.e.,  of Cu solid pillars) in pillars with radius values of R =

1 to 4 m with the value of  = 1.6 J/m2 [35]. In the subsequent comparison of these

numerical results with experiments (refer to Figure 3-10), surface is found to provide

nearly 10% of the total stress for Al solid pillars whose surface energy with R = 1 to 4
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m has a recommended value of  = 1.2 J/m2 [41, 42], and can provide over 50% of

the total stress for the Ni solid pillars whose surface energy with R = 1 to 4 m has a

recommended value of  = 90 J/m2 [43]. That is to say, surface is important for

describing the size-dependent yield stress. At present, there are less studies employed

on the surface energy measurement of micro- and nanopillars to provide the exact

values. Some studies focus on the surface effect by setting the surface energy

empirically such as ref. [35, 43]. Actually, the surface energy densities of Ni between

Refs. [41] and [43] are different. Therefore, the sensitivity analysis of surface energy

densities is conducted to study the trends of surface energy effect in Figures 3-9b and

3-10. In Figure 3-9b, it is obvious that the surface stress value of the Cu hollow pillars

can be made large by increasing the surface energy and, when the radius approaches

10 m, all of the CRSSs for different surface energies are around the same value. All

of these results mean that the proposed model can express the size-dependent

characteristics of micropillars. The percent of surface stresses corresponding to total

stresses of the Cu pillars whose radii R = 0.5, 2 and 10 m are shown in Table 3-2,

where it can be seen that the surface stress in small specimens has a large value and

comprises nearly 10% of the total stress for R = 2 m. If the surface energy density

has a value five times the lowest value of  = 1.6 J/m2 [35], the surface will

comprise up to nearly 20% of the total stress.

Table 3-2. surface ,  and their ratio for different Cu pillar sizes and  .
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Figure 3-10. Comparison of the theoretical (lines) and experimental (points) results of

the shear stress of solid pillars considering the surface energy effect. The numerical

results use various surface energies for (a) solid Al pillars and are compared with

experimental data [8, 42]; and for (b) solid Ni pillars and are compared with

experimental data [2, 35].



84

3.2.3 Comparisons with experimental results of Al and Ni pillars

After discussing the relative characteristics of the proposed model, the necessary

comparisons with experimental results should be made to prove the efficiency of the

proposed model. Figure 3-10 shows the comparison of experimental results for solid

pillars [2, 8] with these numerical results by considering the surface energy predicted

according to Eq. (3.32) by setting t = R (that is, solid pillar). The parameters of Al and

Ni used for Figures 3-10 and 3-11 are obtained from Refs. [2, 3, 8, 26, 38, 41-43] and

are tabulated in Table 3-1, and the direction of the loading axis is chosen as [1 2 6] in

the simulation [3]. In Figure 3-10a, the numerical yield stresses of Al with different

surface energies are plotted and compared with the experimental results [8], where it

is shown that the calculated yield stress becomes larger as the surface energy

increases from the case with no surface energy. The recommended calculated surface

energy density of  = 1.2 J/m2 [41, 42] is chosen as a reference value and provides

very little increase in the calculated yield stress from that with no surface energy, and

the calculated curve is still far away from the experimental data for pillars whose radii

are in the hundreds of nm range. In order to understand the trends of the surface

energy effect, the sensitivity analysis of surface energy densities is conducted to

describe the effect of surface energy. When  is in large value, the numerical results

can better express the yield stress for radius values in the range of hundreds of nm.

When the radius becomes large enough, all of the calculated yield stress curves are

almost constant and approach the same value because the surface stresses resulting

from surface energy are very small. Similar results are obtained for Ni pillars, as

shown in Figure 3-10b, where the numerical results using the recommended empirical

surface energy density of  = 90 J/m2 [43] match the experimental data with the

radius below 2 m better than those without any surface energy effect. Based on the
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calculation of sensitivity analyses of different surface energies, the large surface

energy density makes the theoretical curve fitted better with the experimental data

when considering the strength of micro- and nanopillars. Actually, for the case with

no surface effect, Eq. (3.32) becomes the SAS model, and it suggests that the

proposed model considering the surface energy provides a better prediction than the

SAS model.

At present, there are practically no experiments focusing on hollow pillars to

examine the size effects, though Ng and Ngan have conducted compression

experiments on micron-sized Al crystalline pillars with a loading axis direction of [3

1 5] to examine the effects of trapping dislocations [26], where some hollow pillars

were used for comparison in their studies. The experimental pillars produced by

focused-ion beam (FIB) milling have the radiuses of ∼3, 1.1 and 0.6 m. The

calculated yield stresses (calculated by Eq. (3.32)) and experimental data of pillars are

shown in Figure 3-11 by setting  = 1.2 J/m2 (for Al solid and hollow pillars) [42],

and it can be seen that the experimental and numerical results for the yield stress of

the solid and hollow pillars both reveal size-dependent characteristics. In Figure 3-11,

the experimental values for solid pillars are smaller than those for hollow pillars

whose thickness t is R/3, and the numerical results exhibit a similar tendency.

Compared with the predicted curve with  = 1.2 J/m2 shown in Figure 3-10a, the

difference between them in Figures 3-10a and 3-11 results from the thickness of the

hollow/solid pillars. The surface energy effect is amplified by increasing the area of

the surface when a central hole that runs deeply along the pillar axis is added up to the

hollow pillar. There are still some differences between the experiments and numerical

results shown in Figure 3-11, because the experiments were conducted in a high strain

rate that may, in addition to the thickness, have an influence on the yield stress.
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However, thickness is only the varying factor in the experiment. Therefore based on

the discussion above, the thickness actually plays an important role in the

size-dependent yield stress of hollow pillars. As discussed in section 3.2.2, the two

adjacent surfaces of the hollow pillars can effectively shorten the length of  . When

the internal surface increases, the thickness t and effective dislocation length in Eq.

(3.32) would decrease, thus the total stress increases in our model. This conclusion

agrees with the experiments of Ng and Ngan [26].

Figure 3-11. Comparison of the theoretical (lines) and experimental (points) results of

the total stress in solid and hollow Al single-crystal pillars. The theoretical data are

from this work, and the experimental data are taken from [20, 26].

According to the comparison of theory and experiment, the surface stress induced

by the surface energy with the consideration of a hollow pillar is important for the

size-dependent yield stress. In the above comparison, the thickness variance would

also affect the yield stress, which results from the inner defects discussed above.
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The present model in section 3.2 shows the surface energy plays an effect on the

size dependent strength of the single crystalline micro-pillars. Compared with the

original SAS model without consideration of this effect, the present model shows an

advance than the original one. Linking to the content in section 3.1, the dislocations

pile-up inside the pillars also results in the influence on the size dependent strength.

That is to say, the inner and external physics both affects the size effect.

3.2.4 Surface energy

It is suggestive that a large surface energy should be used for micro- and

nanopillars, even 45 times that of the bulk specimen [42, 43]. We note in closing that

the surface properties of micro- and nano-scale specimens appear to have received

scant attention. In particular, exact values of the surface energy in micro- and

nano-scale specimens are not given in literature. However, a surface energy on the

outer layer owing to external damage will generate an available effect on the strength,

and Eqs. (3.38) and (3.39) show this relationship between the surface energy and the

surface strain. The parameters sE , 1B and 2B are related only to the geometry and

the material and are not a function of the external force/damage, and thus these

parameters determine the surface energy affected only by the material and the

structural dimensions. In Eq. (3.38), if the residual surface strain 0
surface is varied

because of external damage, the surface energy will be changed, which means that

external damage plays a role in the variance of the surface strain. If the external

damage provides compressive damage on the surface and the residual surface strain is

also in a compressive state in a small scale, the external damage will increase the

compressive stress. Figure 3-12 shows the variances of the surface stress and surface
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energy density corresponding to the effective surface strain 0
surface surface    , where

the surface energy and stress will be proportional to the effective surface strain. The

machining process in the preparation of pillars by focus-ion-beam, for example,

would input additional energy on the surface of the pillar specimen and thereby affect

the surface strain, and in this way the surface energy and stress will be varied.

Figure 3-12. The relationships between the surface stress vs. effective strain and the

surface energy density vs. effective strain. The effective strain is given

as 0
surface surface    .

3.3 Size-dependent yield function for single crystals with a

consideration of defect effects

3.3.1 Dislocation-based model of single-crystal yield surface

In order to describe the mechanical response of the small scaled micron crystalline

material under complicated loading conditions besides uniaxial tension or

compression, the corresponding yield function should be provided. The above

sections have further studied the physical factors influencing the size dependent
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strength of the single crystalline materials. In this section, the general yield function

of single crystalline materials with size effect will be provided.

3.3.1.1 Single-crystal yield function derived from combined

constraint optimization method

The plastic deformation after initial yielding in a normal isotropic material can

usually be defined by a single smooth yield function; however, in some materials, like

soil and rock, the deformation is expressed by several smooth yield surfaces, which

intersect non-smoothly [44, 45].

In a single crystal, the overall plastic deformation consists of a series of shear

strains as a result of dislocation slips on multiple slip systems. Considering the case of

crystal plasticity, as the overall plastic deformation has to bypass multiple slip planes

where the plastic behavior is defined by several yield surfaces, the yield function

depends on the number of slip systems in the crystal. Assuming the validity of the

Schmid law for the plastic deformation of a single crystal, then for any slip system a

yield function can be defined as

:
( , ) 1,

CRSS



  f
σ P

σ q (3.41)

where q is a vector containing the internal variables that affect the yield surface, σ is

the Cauchy stress tensor, CRSS is the critical shear stress on the slip planes,  is the

number of slip planes, and P is a matrix showing the orientation of a slip system as:

1
2


   
      P (s m m s ), (3.42)

where s and m are the unity direction vector normal to the slip plane and the

unity sliding direction vector in the  sliding system.  ,  is represented as the

active slip system and 1
 
   em m F ,  

  es F s , where eF is the elastic

deformation gradient tensor.
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In single-crystal plasticity, the increment objective function l(x) of the plastic work

and released internal energy in the [j, j+1]-th step is solved by the following

constrained minimization solution [46]:

1 1

( ( ))
( ,  )

 :  ( , ) 0,  1,...,
σ q

σ qj j

Min l
Subject to f s  


   

x
. (3.43)

where x contains the variables related to the objective function l(x) denoting the

incremental release of elastic stored energy due to the plastic work and the

incremental plastic work. Both should be minimized to find the equilibrium point. The

constraints in Eq. (3.43) correspond to the yield function shown in Eq. (3.41).

To avoid singularity and computational ambiguity, a combined constraint

optimization method is proposed. To explain the combined constraint method, the

following optimization problem with several inequality constraints ( ( ) 0,  xif 

1,...,i s ) is considered:

( ( )) ( ( ))
  

 :  ( ) 0,  1,...,  :  ( ) = - ( ) 0,  1,...,
x x

x x xi i i

Min g Min g
or

Subject to f i s Subject to y f i s
 
     

. (3.44)

The constraints of Eq. (3.44) can be combined and replaced by an equivalent single

constraint function h(x) defined as [47]

1 1

1 1( ) ln{ exp[ ( ( ))]} ln{ exp[ ( ( ))]}x x x
s s

i i
i i

h f y 
  

      . (3.45)

where  is a parameter related to the SFE, and determines the closeness of h(x) to

the smallest inequality, min[ ( )xif ]. h(x) is usually known as the KS-function. h(x) is

always convex and always more positive for any positive  . Compared with the

cases of Eq. (3.43) and Eq. (3.44), the constraints in Eq. (3.45) can be written as

:
( , ) ( , ) 1 0

CRSS



   iy f
σ P

σ q σ q . (3.46)

Therefore, the combined constraint function h( ,σ q ) can rewritten as

1 1

:1 1( , ) ln{ exp[ ( ( , ))]} ln{ exp[ ( 1)]}
CRSS




 

 
  

     
s s

h f
σ P

σ q σ q . (3.47)
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Then, the equivalent optimization problem for the crystal plasticity in Eq. (3.43) will

be

1 1

1

(  ) 1  ( ) { [ ( 1)]} 0
CRSS

x
σ q σ P

σ q
sj j

Min( l( ))
,

Subject to : h , ln exp







 




 

   



: . (3.48)

The parameter  is introduced into Eq. (3.47) to give additional flexibility to the

shape of the yield function [45].

Based on the combined constraint optimization method, a new single-crystal yield

function is established with the final form defined as:

1

:1( , ) ln{ exp[ ( 1)]}
CRSS
σ P

σ q
s

h





 

   . (3.49)

where for most cases one may consider that  = 1 [45].

3.3.1.2 Dislocation-based single-crystal yield surface

Let us consider the yield function of a plastic case:

1

:1( , ) ln{ exp[ ( 1)]} 0
CRSS
σ P

σ q
s

h





 

    . (3.50)

With some simple manipulations of Eq. (3.50), the following relationship can be

obtained:

1

:
exp[ ( )] exp( )

CRSS
σ Ps 



 
 

 . (3.51)

Based on the model of Zamiri and Pourboghrat [45], the following approximate

relationship between the closeness parameter  and the SFE of the material is

suggested:

C
b



 ， (3.52)
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where  is the SFE of the material and C is a geometrical parameter. Considering

the pile-up SAS model shown in Eq. (3.15) and surface energy effect shown in Eq.

(3.32), the single-crystal yield surface model based on the physics of dislocation is

finally given by

01
0 1 2

max

:
exp[ ( )] exp( ).(1 )0.5 [(1 ) ]

(2 )

σ Ps

H
bpf b p p SF

Rt t





 
     

 





    


 (3.53)

Eq. (3.53) can describe arbitrary stress conditions and slip systems.

3.3.2 Yield surfaces of different materials

As an example application of the proposed model, we first consider the case in

which  3 aligns with the (0 0 1) orientation. A plane stress condition (  ， ，x y xy )

allows a straightforward evaluation of the effects of the yield function parameters

shown in Eq. (3.53). The problem is simplified by setting the principal stress space

( 
2

，1 ) to overlap with the crystalline axis, while the directions of 1 and  2 are

set to align with the (1 0 0) and (0 1 0) orientations, respectively. Therefore, Eq. (3.53)

becomes a function of the undetermined parameters ( 
2

，1 ):

1 2
01

0 1 2
max

:
( , ) exp[ ( )](1 )0.5 [(1 ) ]

(2 )

                  exp( ),

σ Ps

H

k bpf b p p SF
Rt t





 
     

 








    





(3.54)

If the combination ( 
2

，1 ) can be made to satisfy the inequality     -3
1 2( , ) 1 10k ,

a simple yield surface with principal stress space can be obtained as shown in Figure

3-13.
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Figure 3-13. Shape of single-crystal yield surfaces for micro-pillars of different

metals: (a) Nickel; (b) Copper; (c) Gold; (d) Aluminum. The yield surfaces are

for single crystals with {1 1 1} slip systems.

In the following example, we select parameters the same as Sections 3.1 and 3.2:

   12 24 10 /m ; C = 0.6372;  0 = 11 MPa (Ni), 13 MPa (Au), 10 MPa (Al), 12 MPa

(Cu);  = 0.3; s = 12; h = 2.5R;  = 76 GPa (Ni), 48 GPa (Cu), 32.7 GPa (Al); b =
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0.24 nm (Ni), 0.288 nm (Au), 0.283 nm (Al), 0.256 nm (Cu);  = 2.0 J/m2(Ni), 1.2

J/m2 (Al), 1.6 J/m2 (Cu), 1.5 J/m2 (Au). The values of (p, m) are Au (0.47, 1.62), Cu

(0.58, 0.89), Al (0.67, 0.35), and Ni (0.99, 0.002), obtained by fitting the experiments

using a least-squares method [3]. Figure 3-13 shows the shapes of the proposed

single-crystal yield surfaces for fcc crystals. The proposed yield surfaces show Tresca

yield-criterion-type shapes, in agreement with refs. [45, 48-57]. The edge value for

each side of the yield surface is determined by the CRSS shown in Eqs. (3.51) and

(3.53), and is not only material-dependent but also size-dependent. By considering the

dislocation pile-up effect, the CRSS of the pile-up SAS model shown in Eq. (3.15)

and surface energy effect shown in Eq. (3.32) can more effectively describe the

size-dependent strength than the original SAS model [1], especially for materials with

low values of the SFE. For fcc crystals, materials with low SFE more easily exhibit

dislocation pile-up. The surface energy can provide some few percent of the total

strength if the surface energy density is in small value. However, if the external

damage enlarges the initial surface strain, the increasing surface energy will improve

the influence of the surface stress, which has been discussed in section 3.2. That is to

say, the yield function combined with the considerations in sections 3.1 and 3.2 can

describe the size-dependent characteristics of single-crystal materials, as will be

discussed in the following section.

If the stresses 1 and  2 are normalized by the CRSS as shown in Figure 3-14,

the differences among the yield surface shapes can be found. First, the yield surfaces

of Ni and Al, with large values of the closeness parameter  , display larger and

sharper edges than those of Au and Cu. Meanwhile, the surfaces of Ni and Al are

coincident because their closeness parameters  are almost identical. Figure 3-15

shows the effect of the closeness parameter  on the shape of the proposed Cu
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single-crystal yield surface. With increasing  , the yield surfaces dramatically

change their shape and display sharp vertices. With sufficiently small  , e.g.,  = 5,

the yield surface resembles the Mises yield-criterion-type shape and displays small

edges. Above all,  is dominant for the yield shape.

Figure 3-14. Non-dimensionalized shape of the proposed single-crystal yield surface

for different materials. The yield surfaces are for single crystals with {1 1 1} slip

systems.

Figure 3-15. Effect of  on the shape of proposed Cu single-crystal yield surfaces.

The yield surfaces are for single crystals with {1 1 1} slip systems.
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3.3.3 Relationship among SFEs, and (m, p)

Quantitative analyses of the relationship among SFEs,  and (m, p) were

conducted, as shown in Figures 3-3 and 3-16. In the pile-up SAS model, the value of

m, related to the dislocation pile-up length, is used to estimate the magnitude of the

dislocation effect [3]. A large value of m indicates a large dislocation pile-up length.

Meanwhile, as mentioned above, the CRSS is determined by the activation of the

weakest dislocation source. The stress concentration resulting from the pile-up zone

may affect the weakest dislocation source, which will in turn affect the CRSS. The

value of p represents the extent to which the pile-up is ineffective on the weakest

dislocation source. That is, the parameters (m, p) represent the effect of dislocation

pile-up. For fcc crystals, materials with low SFE more easily exhibit dislocation

pile-up. This behavior suggests that a smaller SFE corresponds to a larger m in Eq.

(3.15), as shown in Figure 3-3a. Because Au has a lower SFE (0.06 J/m2) than Ni

(0.40 J/m2), the dislocation pile-up effect is more pronounced in Au than in Ni. In

Figure 3-3b, the value of p for Ni is 0.99, nearly equal to 1, and m is much smaller

than 0.28; that is, there is no source near the pile-up and almost no pile-up effect

inside the pillar [3]. Experiments by Frick et al. [28] showed no evidence of

dislocation pile-ups in systematic studies of Ni micro- and nano-pillars ranging from

160 nm to 2000 nm in diameter. Here, the SFE and (m, p) represent the extent of the

influence of dislocation pile-up on the CRSS of SCMs.
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Figure 3-16. Relationship among the stacking-fault energy (SFE), the parameters (m,

p), and the closeness parameter ; (a) SFE as a function of the closeness parameter

 ; (b) the relationship between the dislocation pile-up parameter m and the

closeness parameter  .

In Figure 3-16a, increasing values of SFE are accompanied by larger  , even

though Cu and Ni have nearly identical values of  . According to Eq. (3.52),  is
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defined by the SFE, therefore the SFE is related to the shape of the yield surface.

Specifically, materials with high SFE, such as Al, have yield surfaces with sharp

vertices, related to the high mobility of the dislocations [56]. Conversely, for

materials with low SFE, such as silver, the yield surface displays rounded corners as

per the Mises yield criterion [56, 58]. The plots in Figures 3-14 and 3-15 are therefore

consistent with these principles. This is illustrated by Figure 3-3a, which shows that

the dislocation pile-up affects the shape of the yield surface. The corresponding result

for  is shown in Figure 3-16b, in which m increases as  decreases. That is, the

dislocation pile-up rounds the corners and contracts the edges of the yield surface.

3.3.4 Size effect on yield surface

For SCMs, the CRSS varies with the pillar diameter, which is an example of the

size effects found in previous studies [2, 22-24]. In the SAS model and pile-up SAS

model, the CRSS depends on the effective length of the dislocation source and the

number of dislocation sources, as described by Eqs. (3.16) and (3.17). ( max − max
S )

and ( max + max
S ) give the upper and lower bounds, respectively, of the CRSS. In Eq.

(3.53), the yield surface is also related to the effective length of the dislocation source

max and the number of dislocation sources n. Therefore, the yield surface is also

size-dependent, as shown in Figure 3-17. It can be seen that, with decreasing size, the

edge of the yield surface of the SCMs increases. As the SFE and material parameters

(, b) are not size-dependent, the shape of the yield surface is size-independent given

a constant  for a particular material. In Figure 3-17, the edge of 8.2 m is close to

that of 10.4 m. As discussed in ref. [3], when the diameter size is large enough ( >

10 m), large values of max reduce the extent to which activate , which is dominant
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for the size effect, determines the total CRSS. In this case, the proposed yield surface

becomes the original yield surface, without the consideration of defects introduced by

this study, and it describes the bulk SC material in the same way as other yield

functions [45, 48-57].

Figure 3-17. Yield surfaces of Cu single-crystal micro-pillars with different

diameters. The yield surfaces are for single crystals with {1 1 1} slip systems.

3.4 Conclusion

In summary, we consider two physical factors the inner dislocations pile-up effect

and external surface energy effect to explain the size dependent strength of single

crystalline micro-pillars. We first provide pile-up SAS model to describe the pile-up

effect, and establish a mixed model combining the surface energy and inner defects to

describe surface effect. At least, we provide a size dependent single crystalline yield

function to describe the size dependent strength under complicated loading condition.

First, our proposed pile-up SAS model provides a dimensional model that can be

used to better understand the size effect in crystals in a physical framework that

incorporates dislocation pile-up and size-dependent plasticity effects. Our model

agrees well with experimental data, showing that it can effectively describe the

size-dependent strength in finite micro-pillars. Our pile-up SAS model agrees better
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than the original SAS model with the experimental data, especially for Au and Cu.

Our results reveal that the Hall–Petch effect can be observed even in the single

crystals, and that the length of dislocation pile-up is an important factor in the CRSS.

Moreover, the number of dislocation sources greatly affects the observed size effect,

which makes the size effect more obvious in smaller samples. Our pile-up SAS model

can be used to describe the yield strength of materials that exhibit strong dislocation

pile-up effects, especially for materials with low SFE.

Secondly, we have established a mixed model combining the surface energy and

inner defects to describe the yield stress of hollow micro- and nanopillars based on the

principle of minimum potential energy. The experimental results show good

agreement with these numerical results, and the proposed model is seen to provide a

better prediction than the SAS model, which does not consider the surface energy.

Therefore, the main influences on the size-dependent yield stress results from both the

surface stress, which is mainly dominated by the geometry and the surface energy,

and the inner defects arising from the effective dislocation length and the number of

dislocation sources. Meanwhile, an analytical form of the relationship between the

surface energy and the surface strain is obtained. The surface energy is determined by

the geometric structure, the surface modulus and the surface strain, though the

machining process in the preparation of pillars would input additional energy on the

specimen surface to affect the surface strain, and in this way the surface energy and

stress will be varied.

Finally, the size-dependent yield surface of a single-crystalline micro-pillar was

developed with a logarithmic-exponential form by considering defect effects,

including dislocation pile-up, dislocation starvation and source exhaustion. Our

proposed model provides the following results: materials with low stacking-fault

energy exhibit clear dislocation pile-up effects and their yield surfaces tend to display

rounded vertices, as per the Mises yield criterion; those with high stacking-fault

energy show typical Tresca criterion-type yield surfaces displaying sharp vertices. It

is concluded that the dislocation pile-up rounds the corners and contracts the edges of

the yield surface. We also show that this yield function can completely describe the

size-dependent yield surface by considering the stochastic lengths of the dislocation

source and the dislocation pile-up length in single-crystalline micro-pillars.
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Chapter 4

Dislocation-based constitutive model of crystal

plasticity for the size effect of single crystalline and

Bi-crystalline micro pillar samples

In the last chapter, the size dependent yielding has been investigated physically. In

this chapter, a constitutive model with the CPFE framework that accounts for

dislocation physics is developed to describe the size-dependent deformation of single

crystalline or bi-crystalline micro pillars. The relationship between the dislocation

density and the plastic strain is derived based on the Orowan equation and the

principle of Bergstrom dislocation evolution, and the physical model of yield stress is

provided from the SAS model and the crystalline material yield function. We then

redefined the original Peirce, Asaro, and Needleman (PAN) hardening model by

considering the effective dislocation length and dislocation evolution. Finally, the

yield stresses and redefined PAN model are included in the CPFE model. The

dislocation evolution parameters are determined by fitting to the experimental data,

and they are used to describe the size-dependent characteristics of plastic flow.

Further discussion about the friction effect between the punch and the top surface of

the pillar under uniaxial compression is given based on the stress–strain response and

shear band deformation inside the pillar.
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4.1 Description of plastic strain based on dislocation evolution

4.1.1 Relationship between plastic strain and dislocation density

under uniaxial compression

The total dislocation density can be expressed as

total mobile trapped    , (4.1)

where total is the total dislocation, mobile is the mobile dislocation and trapped is

the trapped dislocation. The rate of plastic shear strain  p& in any slip system can be

expressed according to the Orowan equation as

mobile p bv& , (4.2)

where v is the average velocity of dislocations and b is the Burgers vector.

Assuming that the mobile dislocation density is not dependent to time because of the

dislocation movement in a short time, Eq. (4.2) can be integrated simply according to

time. By averaging the quantities for the whole single crystalline pillar with one or a

few active slip systems, Eq. (4.2) is reformulated using the uniaxial plastic

compressive strain  p of the whole single crystalline pillar and the average total

length of mobile dislocation mL as follows:

mobile p mbL , (4.3)

mL can be expressed by the average length of the mobile dislocation and the number

of mobile dislocation as [1]

mobile/  m mL nd n , (4.4)
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where n is the number of mobile dislocations and md is the average length of the

mobile dislocations. n is related to the sample dimensions and initial dislocation

density for the case of micro-sized pillars [2]:

2
0Integer[ ] 


Rn

s
, (4.5)

where R is the radius of the pillar specimen, and s is the number of slip systems. In

this paper, the parameters are selected to be s = 12 for face-centered cubic (fcc)

crystals. In this case, by substituting Eq. (4.4) into Eq. (4.3), the following equation

can be obtained:

2
mobile ( / )  p bn . (4.6)

According to the principle of Bergstrom dislocation evolution [1], the trapped

dislocation density can be expressed as

0 2
trapped 2

*1 { * }
exp( / 2)







 
  p

k
k . (4.7)

where 0 is the initial dislocation density, and *k and  are the parameters of

dislocation evolution on the increase of trapped dislocation and the dislocation

annihilation, respectively. We assume that the initial dislocation is only the initial

trapped dislocation, because there are very few initial mobile dislocations for the

micro pillars [2, 3].

Therefore, the total dislocation density can be obtained by substituting Eqs. (4.7)

and (4.6) into Eq. (4.1):

02 2
total mobile trapped 2

*1( / ) { * }
exp( / 2)


   




    
 p

p

k
bn k . (4.8)

The dislocation evolution parameters (k* and  ) are determined from the



110

experimental data, which will be introduced in the next section.

4.1.2 Initial yield stress and constitutive equation of the extended SAS

model

According to the theory of dislocation starvation and exhaustion, the statistical

behavior of dislocations is used to describe the strength [2, 4-7]. Based on this view,

the SAS model derived from statistical mechanics can be used to describe the

size-dependent strength of SCMs [2].

The critical resolved shear stress (CRSS) of micropillars is related to the effective

dislocation source length  . Thus, it can be expressed as the SAS model [2]:

0
SAS 0 0

max
0.5 ,   


  

bb (4.9)

where  is the shear modulus, 0 is the Peierls–Nabarro stress,  is the constant and

max is the effective average longest length of the dislocation sources (remind that

max is dependent to the radius of pillar, as written in ref. [5]). Equation (4.9) is used

to describe the initial yield stress accounting for the initial dislocation density 0 .

If the subsequent plastic process is represented, the SAS model can be extended to

express the function of the dislocation density  and the plastic strain  p instead.

In this case, Eq. (4.8) should be used to describe the evolution of dislocations in the

micro pillars according to the plastic strain. Therefore, substituting Eq. (4.8) into Eq.

(4.9), the shear stress on the slip plane is

0.52

02
SAS 0 2

max

*10.5 ( / ) * ,
exp( / 2)

     
  

             

f
p

p

k bb bn k (4.10)

where max can be simulated using the statistics method [2].
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The 0
SAS and SAS f values are used to describe the CRSS and the subsequent yield

shear stress of the micro pillars, respectively. The 0
SAS in Eq. (4.9) agrees well with

experimental data [2]. However, the values of the parameters k* and  in Eq. (4.10)

are still unknown. In the following, the values of these parameters will be determined

by fitting to the experimental data.

4.1.3 Determination of k* and 

By substituting Eq. (4.10) into the equation SAS  fM under uniaxial

compression, where M is Taylor-like factor which phenomenologically links the local

shear stress to the global uniaxial stress [8, 9], the hardening ratio  can be expressed

by differentiation as

trapped trapped
total total

2 ( / ) ( * )
4 4

       
  

     m t
p

p

M b M bd nb k
d nb

. (4.11)

m and t are the hardening rate affected by mobile dislocations and the hardening

rate affected by trapped dislocations, respectively. That is,

total

2 ( / )
4

 


m
p

M b nb
nb

, (4.12)

When 0 p ,  y is the hardening rate at the initial yielding, which can be obtained

as  ( 0)   y p . Thus,

0( * )
4
   y

M b k , (4.13)

Differentiating Eq. (4.7) with respect to plastic strain  p , it gives
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trapped
trapped trapped*


 


 

p

d
k

d
. (4.14)

Integrating Eq. (4.14), the relationship between the plastic strain and the trapped

dislocation density is

*
trapped0

*
trapped total

2 2ln ln
  


    

   
    
      

y
p t

k
k

, (4.15)

where

trapped

total

exp( )
2

 
 


  pt

y . (4.16)

The stress  can be obtained by substituting Eqs. (4.16) and (4.12) into Eq. (4.11)

and then integrating:

trapped 2
0

total total

2
= [1 exp( )] ( / )

2 4


    
  

   y p
p

M b nb . (4.17)

where 0 is the experimental initial yield stress. Equations (4.8), (4.11), and (4.17)

can be used to obtain the dislocation evolution parameters (k* and  ) by fitting to

the experimental data with the least-squares method.

The fitted results of SCMs are shown in Figures 4-1 and 4-2. In Figure 4-1, Eq.

(4.17) was used to fit the Ni experiment data [10, 11] with the least-squares method,

and the determined parameters are given in Table 4-1. In Figure 4-2, the same method

was used to obtain the parameters of Cu by comparing with the experiments for the

pillars with diameter d ~ 1 m and d ~ 4 m [12], and the results are also given in

Table 4-1. In Figures. 4-1a and b, the hardening flows for d ~ 10 m and ~ 20 m

involving a series of small strain bursts are close to that of the bulk material [10]. In

Figure 1c, the hardening flow for d ~ 5 m specimens includes obvious strain bursts,



113

and the hardening process shows different evolution of dislocations from the bulk

material, which is the size effect of hardening flow [10]. In Figure 4-2, the hardening

flow for d ~ 1 m is more than twice as strong as that for d ~ 4 m. In Table 1, the k*

and  values for d ~ 10 and ~ 20 m in Ni are nearly the same. Meanwhile, the k*

value for d ~ 5 m in Ni is larger than that for d ~ 10 m, and the  value for d ~ 5

m in Ni is smaller than that for d ~ 10 m. The same conclusion can be obtained by

comparing the data of Cu in Table 4-1. That is, the material of the smaller micro

pillars has a larger k* value and a smaller  value, which suggests more active

dislocation evolution.

(a) diameter d ~ 20 m
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(b) diameter d ~ 10 m

(c) d ~ 5 m

Figure 4-1. Parameter determination of dislocation evolution from the experimental

results of Ni with (a) diameter d ~ 20 m, (b) d ~ 10 m, and (c) d ~ 5 m [10, 11].
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(a) diameter d ~ 1 m

(b) d ~ 4 m

Figure 4-2. Parameter determination of dislocation evolution from the experimental

results of Cu with (a) diameter d ~ 1 m and (b) d ~ 4 m [12].
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y [MPa] k* [m−1] 

Ni (5 m) 276 56.2 20.3
Ni (10 m) 85.7 45.6 25.6

Ni (20 m) 129 47.1 23.3
Cu (1 m) 1420 176 12.5

Cu (4 m) 394 68.2 17.4

4.2 Continuum Crystal plasticity model

The kinematics of FCC crystals described below is well-established and the

detailed formulations are given in literature [13]. The total deformation gradient

tensor F can be decomposed into the elastic tensor eF , and the plastic tensor pF :

 e pF F F , (4.18)

where eF represents the rotation and stretching of the lattice, pF represents the

plastic shear of the materials that do not change the lattice orientation and spacing.

The plastic velocity gradient is defined as

1 1 * *

1


 



 



      
n

p e p p eL F F F F s m , (4.19)

where s and m are the unity normal direction vector and the sliding direction

vector in the  sliding system, and

* 1
 

  em m F , (4.20)

*
  es F s . (4.21)

The symmetric tensor P and the skew-symmetric tensor Q are introduced here.

Table 4-1 Dislocation evolution parameters fitted to experimental data.
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* * * *1 ( )
2


      P s m m s , (4.22)

* * * *1 ( )
2


      Q s m m s . (4.23)

The plastic stretching tensor 
pD and the plastic spin  pω can be represented as:

1

 






 
n

pD P , (4.24)

1

 






 
n

pω Q , (4.25)

in which the strain rate  in the  sliding system is shown in the Eqs. (4.24) and

(4.25). The Eq. (4.19) can be expressed as

  p p pL D ω . (4.26)

The Jaumann stress rate σ̂ can be expressed as

1

ˆ  






  
n

:σ L ε Γ , (4.27)

in which

       :Γ C P Q σ σ Q ,   ijmn ijmn ij mnL C (4.28)

where C is the elastic modulus tensor, σ is the Cauchy stress, and ε is the strain

rate tensor. The constitutive equation can be represented in Eq. (4.27). The mixed

shear component of Kirchhoff stress  on coordinates which convert the lattice:

* *

1
( ) 

 





    
n

:m L ε Γ s (4.29)

4.3 Hardening law accounting for the size effect in fcc pillars

The strain hardening is characterized by the evolution of the current resistant
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strength c for describing the variance of the dislocations on that slip system:

1

 




 


 
n

c h (4.30)

where hαβ is the hardening modulus and the sum includes all activated slip systems.

The diagonal components hαα and the off-diagonal components hαβ represent the

self-hardening and latent-hardening effects, respectively. Accordingly, the gliding

dislocation under the action of the resolved shear stress  is obtained by the

Schmid’s law:

   :P σ (4.31)

For FCC metals, one commonly-used phenomenological hardening law is the

Pierce-Asaro-Needleman (PAN) model suggested by Pierce, Asaro and Needleman

[14]. In this model, the hardening modulus hαβ takes the form:

1( ) ( ) ( )
2

   
    

   h H β P β P (4.32)

where

     β Q τ τ Q (4.33)

In this model, the hardening matrix H in Eq. (4.32) takes the form

( ) ( )[ (1 ) ]      H H q q (4.34)

where

2 ( )0
0

10

( ) sech ( ) and  




  
  

 
 

n

p
s

HH H . (4.35)

Here, q describes the latent hardening effect and is assumed to be 1.0 for coplanar and

1.4 for non-coplanar slip systems [13]. In this study, we chose q = 1 to describe the

micro pillars according to the recommendation of ref. [15]. H is a symmetric tensor,
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and in their model, 0H is the initial hardening modulus, n = 12 for fcc materials, 0

is the initial value of the yield stress, and  s is the saturated shear stress at the stage

of finite plastic deformation. A number of experimental compression tests on micro

pillars have found that their stress–strain curves appear to remain in the easy glide

stage throughout the tests, and this is supported by the observation of postmortem

transmission electron microscopy of nickel specimens [16]. It thus seems to be

appropriate to use the strain hardening model to characterize the experimental

stress–strain curve. The PAN hardening laws for bulk materials have been widely

discussed [17]. However, there is no physical analysis of the hardening at the

microscale.

In the PAN model, 0 and  s are provided by the experimental data without any

physical parameters related to the size, and they cannot provide a physical

understanding. The values of the current strength and the initial yield shear stress are

provided in an appropriate way, such as based on experimental data or simulation

definitions [3, 15]. However, the hardening behavior in the micro pillars is different

from the bulk material, including multiplication of dislocations, boundary annihilation

[18, 19], and displacement burst [15, 20]. Here, we attempt to add the effect of

dislocation evolution and size-dependent yield stress into the hardening model.

In the PAN hardening model,  s is the saturated shear stress at the stage of finite

plastic deformation. If we replace 0 and  s by 0
SAS and SAS f , SAS f should be

the saturated shear stress of the micropillars, and then  p s , where  s is the

strain corresponding to  s . The revised form of the PAN hardening model can be

written as

2 0
0 0

SAS SAS

( ) sech ( )


 


f

HH H . (4.36)
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00 2
SAS SAS 02

*1=0.5 ( / ) * 0.5
exp( / 2)

 
     

 

        
    

f
p

p

k
b bn k b (4.37)

In Eq. (4.37), the hardening model includes the dislocation evolution parameters

(those are k* and  ). The initial yield stress is replaced by 0
SAS , which can express

the size-dependent properties. The difference between 0
SAS and SAS f in Eq. (4.37) is

shown in Figure 4-3 by setting k* and  constant to examine the effect of n.

Figure 4-3. Comparison of 0
SAS and SAS f for different R values.

When R > 10 μm, the difference between 0
SAS and SAS f is nearly constant

because the value of n is large enough to make the term 2( / ) p bn be nearly 0. This

presents that the hardening modulus is size independent when the diameter is

sufficiently large. In this range, the original PAN hardening model without

considering the size effect is reasonable. However, if R < 10 μm, the size-dependent

difference of 0
SAS and SAS f makes the hardening modulus size-dependent as the
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value of n is small in the range of 100~101.

From Eqs. (4.36) and (4.37), the hardening modulus is related to the dislocation

evolution parameters. The parameters are selected from the articles of [2, 5, 8], and

they are given in Table 4-2. Figure 4-4 shows that the hardening modulus of Cu is

affected by the characteristics of dislocation evolution by k* and  . The parameters

of the original PAN model are 0H = 56.8MPa, 0 41.1MPa  , and 01.53 s [20].

In Figure 4-4a, the original PAN hardening model is compared with the revised PAN

hardening model with different k* and  = 17.4. Figure 4-4b shows the hardening

modulus of Cu with different  values and k* = 68.2 m−1. The dislocation

evolution parameters result in different hardening modulus, as shown in Figure 4-4.

As shown in Table 4-1, k* and  are size dependent. That is, the hardening modulus

should be different to account for the different size by using different values of k* and

 .

(a) the effect of k*
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(b) the effect of 

Figure 4-4. Effect of dislocation evolution on the hardening modulus for (a) different

k* and (b) different  .

Table 4-2 Parameters used in the extended SAS model and CPFE
Parameters Values Parameters Values

0 [m−2] 2×1012 b [nm] 0.255

0 [MPa]
Eq. (4.10)

12
k* [m−1]

176 (d = 1 m)
68.2 (d = 4 m)

 [GPa] 48

 0.3 
12.5 (d = 1 m)
17.4 (d = 4 m)

4.4 Finite element model of Cu single crystalline micro pillar

compression test

We performed finite element (FE) analyses using a user material subroutine

(UMAT) in the commercial code ABAQUS/Standard (2012). In UMAT, initial yield
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stresses and subsequent yield stresses, which are introduced in Section 4.1.2, and the

present redefined hardening model, which is introduced in Section 4.3, are

implemented in the CPFE framework introduced in Section 4.2. The normal micro

pillar axes are set to the [6 11 5] and [6 1 5] surface orientations, which are the same

as experiments [12]. In the calculations, we performed the compression tests with a

flat punch, which is treated as the rigid body, as shown in Figure 4-5. In addition,

isothermal conditions were assumed and the specimens were kept at room

temperature. Pillars with diameters of 1 and 4 μm were simulated, and the

height-to-diameter aspect ratio was fixed at 2.5 in all of the simulations. For

simplicity, the FE model consisted of a single 8-node brick-type element (C3D8). The

displacements were applied along the y direction associated with a constant strain rate

of 1.0×10−4 s−1. A base material at the bottom of the pillar was included to simulate to

the real boundary condition of the samples.

Figure 4-5. Finite element model of micro pillar and the boundary conditions.

The material parameters used in the simulations are given in Table 4-2. The elastic

moduli [21] and the related parameters of the FEM simulations are given in Table 4-3.

The CRSS was chosen as 0
SAS in Eq. (4.9), which is dependent on the scale. The

Basexz

y

Pillar

Flat punch
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initial hardening moduli 0H was determined using a similar approach to a previously

published method [15, 20].

Parameters Values

11c [GPa] 168.4

12c [GPa] 121.4

22c [GPa] 75.4
 s 0.3

0H [MPa] 283.8 (d = 1 m), 78.5 (d = 4 m)

4.4.1 Stress–strain responses

Figure 4-6 shows the relationship between compressive stress and plastic strain

obtained from the FEM simulations using the original PAN hardening model and the

revised PAN hardening model. Because the size-dependent yield stress is based on the

initial distribution of dislocations, the initial yield stress might not agree well with the

experimental results. Therefore, we compare the net stress 0
SAS  . Compression of

Cu pillars was performed for the samples with diameters of d ~ 4μm for the [6 11 5]

surface axis and d ~ 1μm for the [6 1 5] surface axis using the dislocation evolution

parameters k* = 68.2 m−1 and  = 17.4, and k* = 176 m−1 and  = 12.5,

respectively. The original PAN hardening model chooses 01.53 s [20]. In Figure

4-6, the flow stress of the original PAN hardening model is almost the same as that of

the revised PAN hardening model when the strain is small. However, the flow stress

of the original PAN hardening model is larger than that of the revised PAN hardening

model when the strain is large. The reason is that the original PAN hardening modulus

is much larger than the revised PAN modulus when the strain is large, as shown in

Table 4-3 CPFE parameters.
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Figure 4-4. Compared with the curves of revised PAN model in Figures 4-6a and b,

the flow stresses are quite different because of the different sets of k* and  , as

shown in Figure 4-4.

Figure 4-6. Comparisons of the hardening flows between the revised PAN and the

original PAN models for the compression tests of [6 11 5] and [6 1 5] copper pillars

with diameters of (a) 1 μm and (b) 4 μm, respectively.

In the CPFE model, size-dependent hardening is dominated by the
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dislocation-based hardening model (Eq. (4.36)). In Figure 4-2, the hardening flows of

the experiments show several bursts, which have been studied by the FEM analyses

[15]. However, it is very hard to determine the time when a displacement burst will

occur and the magnitude of the displacement burst. How to provide the exact response

considering such a displacement is still an open issue, which needs more investigation.

In this study, the average value of the plastic response is used for discussion.

Figure 4-7a shows the stress–strain responses with different k* values and  =

17.4. The stress with a high k* value is larger than that with a small k* value.

Compared with Figure 4-4a, a higher hardening modulus results in a larger

stress–strain response. Similar results were obtained with different  values and k*

= 68.2 m−1 because the larger stress–strain response is dominated by the hardening

modulus (see Figure 4-7b). In this part, the friction between the flat punch and top

surface of pillar is considered by setting the friction coefficient f equal to 0.2. The

influence of friction coefficient will be discussed in section 4.4.3.
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Figure 4-7. Dislocation evolution effect on hardening for (a) different k* and (b)

different .

4.4.2 Shear deformations inside the pillar

Figure 4-8 shows a comparison of the scanning electron microscopy (SEM) image

of the compressed pillar with the crystalline orientation [6 11 5] and the FEM

deformed mesh image. In the FEM deformed image, the color represents the scaled

magnitude of displacement in the micropillars for displaying. The slip band in the

SEM image has an angle of around 50° with respect to the normal axis and occurs

along the (1 1 1 ) [0 1 1] slip plane, which is the crystalline system with the maximum

Schmid factor. The deformation band is similar to the experimental results.
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1.39×10-6

3.41×10-1

2m

Figure 4-8. Comparison of the SEM image and the FEM deformed mesh image

(displacement image) at normal compressive strain of = 0.134. The color of the FEM

image indicates the scaled magnitude of displacement in the micro pillar.

Figure 4-9. Shear strains ( ) p in Eq. (4.35) on different slip planes with orientation

of [6 11 5] at normal compressive strain of  = 0.134.

Figures 4-9 and 4-10 show the shear strains ( ) p in Eq. (4.35) on 12 slip planes
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with crystalline orientations of [6 11 5] and [6 1 5], respectively. In Figure 4-9, the (1

1 1 ) [0 1 1] slip plane has the maximum Schmid factor (0.431) and the maximum

shear strain. The shear band is clear and the same as the experimental SEM image in

Figure 4-8. In Figure 4-9, there is a shear strain on the (1 1 1) [0 1 1] slip plane with

the Schmid factor 0.296. Compared with shear strain on the (1 1 1 ) [0 1 1] slip plane,

its shear strain is smaller than that of the system. In other words, the shear

deformation is uniformly distributed on the slip plane with the maximum Schmid

factor.

Figure 10. Shear strains ( ) p in Eq. (4.35) on different slip planes with orientation

of [6 1 5] at normal compressive strain of  = 0.134.

A similar phenomenon is seen in Figure 4-10. In Figure 4-10, the (1 1 1) [1 1 0] slip
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plane has the maximum Schmid factor (0.461) and the maximum shear strain. Strain

localization can also be found on the slip plane with the second largest Schmid factor

(0.395), but the value is much smaller than that on the (1 1 1) [1 1 0] slip plane. In

summary, the shear band in the micro pillar is mainly on the slip plane with the largest

Schmid factor. The shear strains on the other slip planes can also be found because the

crystal orientation would change during deformation, but they are still small.

4.4.3 Friction effect on shear band and hardening

Most of the previous simulations of micropillars [15, 20, 22] did not include the

friction between the flat punch and the top surface of the pillar. Shear deformation

inside the pillar with the non-friction condition was discussed in Section 4.4.2. As

mentioned before, the shear band in the micropillar was mainly on the slip system

with the maximum Schmid factor. If the friction effect is considered in the model, the

deformed image of the pillar with [6 11 5] surface orientation in Figure 4-11 also

shows the shear band, which is slightly different from that in Figure 4-8. Figure 4-12

shows the distribution of the nonzero shear strains in the slip planes with the largest

three Schmid factors, and the information about the slip systems is given in Table 4-4.

Except for the slip planes shown in Figure 4-12, the shear strains on the other slip

planes are almost zero. In Figure 4-12, the local slip deformations in green or light

blue on the #5, #10, and #11 slip planes are activated by external compression. In

Figure 4-9, the shear strain is only on the slip plane with the maximum Schmid factor.

However, the shear band shown in Figure 4-11 is due to multiple slip planes.
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Figure 4-11. Slip system and displacement deformed shear band image at normal

compressive strain of  = 0.134.

The friction between the flat punch and the top surface of the pillar makes the local

deformation near the punch different from that in the middle of the pillars [10, 23].

Accompanied by global plastic strain, dislocations near the punch would pile up and

climb from the maximum Schmid factor slip plane to the other slip planes [5, 22]

which are the green parts near the punch on the #5 and #11 slip planes shown in

Figure 4-12. The constrained deformation resulting from the local dislocation pile-up

and climb makes the external compression activate the other slip planes. Because the

dislocations on the slip plane with maximum Schmid factor might move to the surface

and form the single slip bands shown in Figure 4-8, the non-friction case in this study

is reasonable.

Figure 4-12. Friction effect on shear deformation on the slip plane at normal

compressive strain of  = 0.134.

Table 4-4 Slip system in FEM
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Figure 4-13 shows the results of the stress–strain responses of the pillars with

Coulomb’s friction model. The friction coefficient f was set to 0, 0.3, or 0.5. The

results show that the hardening stress versus plastic strain curve is steeper for the

largest friction coefficient (f = 0.5) than without friction (f = 0). In the friction case,

constrained deformation resulting from local dislocation pile-up and climb makes the

external compression activate the other slip planes. According to the Schmid law of

:   P σ , the shear stress  on a slip plane with small a Schmid factor needs a

larger external stress than that with the maximum Schmid factor. Moreover,

dislocation pile-up and climb alter the crystalline structure and even distort the crystal

lattice, and this increases the h term in Eq. (4.32). The distorted crystal lattice

results in the multiple slip planes being activated when the plastic strain is generated.

However, activating and generating multiple slip planes requires more stress, which

represents more obvious hardening [3, 13]. The experiments also show that multiple

slips are more difficult than a single slip [12]. To understand this phenomenon, the

effect of friction on the hardening modulus h is shown in Figure 4-14. The results

show that the h value in the simulation considering friction is larger than the value

without friction, and h for the large friction coefficient (f = 0.5) is larger than that

for the small friction coefficient (f = 0.3). This means that the hardening stress with a

large friction coefficient would be large, which agrees with the results shown in

Figure 4-13.
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Figure 4-13. Effect of friction on the hardening stress of micro pillars with the

crystalline orientation [6 11 5].

Figure 4-14. Friction effect on the hardening modulus. The friction between the

punch and the pillar constrains rotation of the pillar, which affects the hardening flow

increments during the simulation.
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4.5 Finite element model of Cu bi-crystalline micro pillar

compression test

We performed finite element (FE) analyses of the Bi-crystalline micro pillar (BCM)

using a user material subroutine (UMAT) in the commercial code ABAQUS/Standard

(2012). In UMAT, initial yield stresses and subsequent yield stresses, which are

introduced in Section 4.1.2, and the present redefined hardening model, which is

introduced in Section 4.3, are implemented in the CPFE framework introduced in

Section 4.2. The orientations of BCM are defined based on the experiments in

Chapter 2, the Group C in Table 2-1. The FEM model and the corresponding

experimental pillar are shown in Figure 4-16. The SCMs of each grains with the

orientations [ 25 16 9 ] (SCM (L)) and [4 711 ] (SCM(R)) are simulated as described

as Section 4.4 for comparison. In addition, isothermal conditions of the simulation of

BCM were assumed and the specimens were kept at room temperature. Pillars with

diameters of 7 μm were simulated, and the height-to-diameter aspect ratio was fixed

at 3.5 in all of the simulations. For simplicity, the FE model consisted of a single

8-node brick-type element (C3D8). The displacements were applied along the y

direction associated with a constant strain rate of 1.0×10−4 s−1. A base material at the

bottom of the pillar was included to simulate to the real boundary condition of the

samples.



135

Figure 4-15. The SEM image of the BCM in Group C in Table 2-1, and the FEM
model defined based on the experimental information.

4.5.1 Stress-strain response of BCM and corresponding SCMs

The material parameters used in the simulations are given in Table 4-5. The elastic

moduli [21] and the related parameters of the FEM simulations are given in Table 4-5.

The same method introduced in Section 4.1.3 is used to determine (k*,  ). Eq. (4.17)

is used to fit the experiments of SCMs (L) and SCMs (R) of the same grains of BCM

simultaneously to obtain the average value of the dislocation evolution parameters of

the corresponding BCM. Finally, the fitting parameter can be obtained with the

approximate value (62 m−1, 20.2). The initial hardening moduli 0H was set as 68.4

MPa. The friction condition is considered here and the friction coefficient is set to f =

0.2.

Table 4-5 Parameters used in the extended SAS model and CPFE
Parameters Values Parameters Values

0 [m−2] 2×1012 b [nm] 0.255
0 [MPa]

Eq. (4.10)
12

k* [m−1] 62 (d = 7 m)
 [GPa] 48
 0.3  20.2 (d = 7 m)



136

Figure 4-16 shows the comparison of the FEM simulated results based on the set

value of (k*,  , f, 0H ) shown in Table 4-5 and 4-6, and the experimental results

shown in Figure 2-6. It is shown that the simulated results compare well with the

experimental results. That is to say, the values of (k*,  , f, 0H ) are reasonable for

SCMs. In the following, the same values of (k*,  , f, 0H ) are applied for the

BCM with two orientations shown in Figure 4-15.

Parameters Values

11c [GPa] 168.4

12c [GPa] 121.4

22c [GPa] 75.4
 s 0.3
f 0.2

0H [MPa] 68.4 (d = 7 m)

Figure 4-17 shows the comparison of the FEM simulated results and the

experimental results of BCM in Table 2-1. Because the size-dependent yield stress is

based on the initial distribution of dislocations, the initial yield stress might not agree

well with the experimental results. Therefore, we use the net stress 0
SAS  (call it

“stress” for short in Figure 4-17) to describe the effective stresses of the mechanical

response. It is shown that the simulated results are nearly coincident to the

experiments at the beginning of the plastic flow, and a little bit smaller than the

experimental data when the plastic strain is above 3%. The rotation of the slip plane

and the possible variance of dislocation configuration may change the local stress

field and result in the larger stress-strain response. Globally, the FEM method based

on the revised hardening model and crystal plasticity can describe the mechanical

response of the BCM effectively.

Table 4-6 CPFE parameters.
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(a) SCM (L) of Group C

(b) SCM (R) of Group C

Figure 4-16. The comparison of the FEM simulated results and the experimental

results of the SCMs of Group C: (a) SCM (L) and (b) SCM (R).
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Figure 4-17. The comparison of the FEM simulated results and the experimental

results of the BCM of Group C.

4.5.2 Shear deformation inside the BCM

Figure 4-18 shows a comparison of the scanning electron microscopy (SEM) image

of the compressed BCM with the crystalline orientation [ 25 16 9 ] left side of BCM

(BCM (L)) and [4 711 ] right side of BCM (BCM (R)) and the FEM deformed mesh

image. In the FEM deformed image, the color represents the scaled magnitude of

displacement in the micro pillars for displaying. The slip band in the SEM image has

an angle of around 50° with respect to the normal axis and occurs along the (1 1 1 ) [1

0 1] slip plane of BCM (L) and (1 1 1) [1 0 1 ] slip plane of BCM (R). The

information of the slip systems of the BCM is shown in Table 4-7. The red words

represent the slip plane with the maximum SF. The FEM displacement image of the

BCM shows the BCM exists shear deformation along the maximum SF slip plane and

parallel to the GB. This result is the same as the shape deformation of Group A in

Table 2-1, and is similar to the shape deformation of Group C shown in Figure 4-18.
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The red arrow in Figure 4-18 shows the global slip deformation in the BCM, and it

represents the shear deformation is almost along the GB. It can be found that few

dislocations transfer across the GB. This compares the results shown in FEM.

Figure 4-18. Comparison of the SEM image and the FEM deformed mesh image

(displacement image) of BCM at normal compressive strain of  = 0.134. The color of

the FEM image indicates the scaled magnitude of displacement in the micro pillar.

Table 4-7 slip systems of the BCM

Figures 4-19 and 4-20 show the shear strains ( ) p in Eq. (4.35) on 12 slip planes

with crystalline orientations of [ 25 16 9 ] (BCM (L)) and [4 7 11 ] (BCM (R)),
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respectively. In Figure 4-19, the (1 1 1 ) [1 0 1] slip plane has the maximum Schmid

factor (0.461) and the maximum shear strain. The shear band is clear and the same as

the experimental SEM image in Figure 4-18. In Figure 4-19, the (1 1 1 ) [1 0 1] slip

plane has the maximum Schmid factor (0.462) and the maximum shear strain. Strain

localization can also be found on the slip planes with the second largest and third

largest Schmid factor (0.339, 0.319), but the value is much smaller than that on the (1

1 1 ) [1 0 1] slip plane. The flat punch touches the top surface of the BCM, the

dislocations may result in the pile-up zone and crystalline rotation [5, 7]. The local

deformation represents the touch effect of the uniaxial compression test. Above all,

the shear deformation is uniformly distributed on the slip plane with the maximum

Schmid factor.

A similar phenomenon is seen in Figure 4-20. In Figure 4-20, there is a shear strain

on the ( 1 1 1) [0 1 1] slip plane with the Schmid factor 0.316. Compared with shear

strain on the (1 1 1) [1 0 1 ] slip plane, its shear strain (the order is ~10-3) is smaller

than that of the (1 1 1) [1 0 1 ] system (the order is ~10-1). There are also some local

deformation on the ( 1 1 1) [0 1 1] slip plane and the (1 1 1) [1 1 0] slip plane. In

summary, from the outside view, the shear band in the micro pillar is mainly on the

slip plane with the largest Schmid factor. The shear strains on the other slip planes can

also be found because the crystal orientation would change during deformation, but

they are still small. However, the deformation near the GB is still unknown. In the

following, the ( ) p near the GB of different slip planes of BCM (L) and BCM (R) is

discussed.
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Figure 4-19. Shear strains ( ) p in Eq. (4.35) on different slip planes of the left side

of the BCM with orientation of [ 25 16 9 ] at normal compressive strain of  = 0.134.
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Figure 4-20. Shear strains ( ) p in Eq. (4.35) on different slip planes of the right side

of the BCM with orientation of [4 711] at normal compressive strain of  = 0.134.
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The deformation near the GB is shown in Figure 4-21 and Figure 4-22. They

provide the information of the local deformation of different slip planes in BCM (L)

and BCM (R), respectively. In Figure 4-21, the slip band is also clear on the

maximum SF slip plane ((1 1 1 ) [1 0 1]), but the third largest SF slip plane shows

some shear deformation. The value of the shear strain on (1 1 1 ) [1 0 1] slip plane is

maximum in the order of ~10-1, and much larger than the local deformation on other

slip planes. In Figure 4-22, the slip band is clear on the (1 1 1) [1 0 1 ] slip plane, and

value of the shear strain is maximum in the order of ~10-1. It is much larger than the

local deformation on other slip planes. The second largest SF ( 1 1 1) [0 1 1] slip

plane also shows some shear band, but is not obvious compared with that on the (1 1 1)

[1 1 0] slip plane.

Compared with Figures 4-21 and 4-22, the shear deformation only exists on one

side of the GB, and no deformation on the other side. That means there are no

dislocations transferring across the GB on this kind of the GB. However, on the #2 (1

1 1 ) [0 1 1] and #6 (1 1 1) [1 1 0] slip planes, there are some small value of

deformation on both sides of the GB. And the positions of the existing deformations

are corresponding to each other. That means few dislocations transferring cross the

GB. The transferring motion doesn’t exist on the maximum SF slip plane. Meanwhile,

there are some local deformations found at the bottom of the BCM, and localized

deformation also deeps into the base of the BCM. This is the effect of the base of the

pillars. The base can limit the deformation of the BCM and also localize the

dislocation motion. From this view, the modeling here considering the base effect is

reasonable.
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Figure 4-21. Shear strains ( ) p in Eq. (4.35) on the cross section in different slip

planes of the right side of the BCM with orientation of [ 25 16 9 ] at normal

compressive strain of  = 0.134.
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Figure 4-22. Shear strains ( ) p in Eq. (4.35) on cross section in different slip planes

of the left side of the BCM with orientation of [4 711 ] at normal compressive strain

of  = 0.134.
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According to the molecular dynamic simulation result [24-26], the dislocations

emitted from sources can traverse the grain interior and be absorbed by GBs or just

only stay in grain interior. In micro scale sample, once the strain burst occurs, the

newly generated immobile dislocations can be transformed into mobile dislocations,

absorbed by GBs and/or annihilated at free surface [27, 28]. According to the model

of statistical absorption of dislocations by GBs (SAD), the probability of a dislocation

being absorbed by the GBs, disP , can be expressed as

3
0( )[1 (1 ) ] {1 [1 exp( )] }

SFbv
N J Jd

dis
B

G bP p
k T

  
       , (4.37)

where 3
0exp( ( ) / )Bp G b k T    is the probability of an atom successfully jumping

into the GB/surface in a single attempt; N is the number of attempted jumps by

dislocation core atoms to the GB/surface during a given time; J is the total number of

atoms on the dislocation core jumping into the GB; G is the activation energy for

atomic migration (or dislocation nucleation), varying within the range of ~0.6–0.95

eV [27]; kB = 1.38×10-23 J/K is Boltzmann’s constant; T is temperature;  is strain

rate; v is Debye frequency; 0 is resolved shear stress; b is Burgers vector; d is the

grain size/diameter of sample. The case 1disP  means GBs are transparent, and do

easily absorb dislocations to transfer across them. In contrast, 0disP  implies that

GBs are opaque and inhibit mobile dislocations traverse the GB. By using

0 =11MPa, b=0.2556nm, T=300K, v=7.2×1012Hz [27], d=sample diameter

(3500~8000nm), J=6.5d [27], G =0.73eV [28],  =0.08/s. We can obtain the

probability 0disP  shown in Figure 4-23. For BCMs Cu pillars, upon loading, the

lower is the probability of dislocation absorption disP , the more dislocations pile-up

against the barrier. Moreover, 0disP  makes the dislocations difficult to transfer

across the GB. As known, GB can be treated as the barrier to inhibit the dislocation
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motion which is shown in Figures 2-7, 2-8 and 4-18. The external loading cannot

make the dislocations bypass the GBs like them in single crystalline. Therefore, the

GBs in BCMs of 3500~8000nm size inhibit the dislocations transfer and slide across

the GB, and result in the slide direction along GB. When the strain burst occurred in

the plastic deformation, the  would be higher as the tip of the sample suddenly

escaped from the flat-punch. In Figure 4-23, it is obvious that the disP will be lower

at a higher  . That means the GB provides a barrier wall to inhibit the instable

dislocation evolution in the near filed of GB, and decreases the probability of

dislocation transfer across the GB. In this case, the dislocations just pile-up or slide

along the grain boundary. However, some special local energy conditions make some

local parts in the state of 1disP  , which is the reason of that some few dislocations

transfer the GB shown in Figures 4-21 and 4-22.

Figure 4-23. The probability disP of dislocation absorbed by GBs as a function of d
or .

4.6 Conclusion

In this chapter, we propose a physical constitutive model with the framework of the
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CPFE method that accounts for the dislocation physics to describe the size-dependent

plastic deformation of single crystalline and bi-crystalline micro pillars. To predict the

variation of the plastic state owing to size-dependent internal microstructures, such as

dislocation sources, dislocation source length, mobile dislocations, and trapped

dislocations, information about these defects is introduced by providing dislocation

evolution based on the Orowan equation and the principle of Bergstrom dislocation

evolution , and the extended SAS model. Our conclusions are as follows:

(1) The present formulation suggests that the dislocation evolution equation

includes both mobile dislocations and trapped dislocations, and the total dislocation

density is a function of the plastic strain, the number of dislocation sources, and the

dislocation evolution parameters.

(2) Based on the SAS model, a revised PAN hardening model is proposed that can

describe size-dependent hardening flow.

(3) The physical constitutive equations combined with the SAS model, the revised

PAN hardening model, and CPFE framework can describe the size-dependent plastic

flow of single crystalline and bi-crystalline micro pillars.

(4) Size-dependent dislocation evolution is related to the hardening modulus of the

micro pillars, and this makes the stress–strain response vary with the micro pillar size.

(5) The friction between the flat punch and the top surface of the pillar affects the

stress–strain response of the plastic flow and the shear band deformation of the micro

pillars. Hardening with friction is greater than that under the non-friction condition.

Friction makes the shear strain on the slip plane much more complicated.

(6) The GB in bi-crystalline micro pillars can inhibit the dislocation transfer across

the each grains, and dislocations pile up after the GB and slip along the GB on the

maximum Schmid factor slip planes of the each sides of the bi-crystalline micro pillar.
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(7) The model of statistical absorption of dislocations by GBs is provided to

explain the dislocation motion near the GB. It is found that the GB effect on the

dislocation motion is related to the size of the specimen: the small size make the GB

become transparent.
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Chapter 5

Size dependent plasticity of metallic glass materials

In this chapter, the size dependent elastic limit of MG micro-pillars will be studied

experimentally first. And then the explanation of this size effect will be provided

based on the shear band energy theory. The comparison of the size dependent

strengths of the metallic glass (MG) and the crystalline material is conducted to study

the mechanism of the size dependent strength. Moreover, the plastic deformation of

MG bulk/micro-pillars at room temperature and near the glass transition temperature

will be described by establishing the FEM framework based on the free volume model

and Drucker-Prager model. The homogeneous and inhomogeneous deformation

mechanism will be studied by the “flow defects”. The propagation of shear bands is

dominant for the deformation form and strength presentation.

5.1 Size dependent elastic limit of metallic glass micro-pillars

5.1.1 Experimental results of the size dependent elastic limit of

metallic glass micro-pillars

The uniaxial compression tests on the MG micro-pillars with a flat punch have

been conducted and their result has been shown in Chapter 2. The experimental elastic

limits of the MG micro-pillars are collected in Figure 5-1. It is shown that the

specimen in small scale has a smaller elastic limit than those in large scale. The elastic
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limits in 1m and 2m are in the value of 1200MPa. And then their values of largely

scaled pillars increase nonlinearly. Over 6m, the values hold around 1700 MPa,

which is close to value of 1650MPa of the bulk [1, 2].

Figure 5-1. The size dependent elastic limits of Zr-based metallic glass micro-pillars.

5.1.2 Explanation on size effect of metallic glass micro-pillars

The value of the yield strength of metallic glass pillars shown in Figure 5-1 turns

out that there is slight increase dependence of the yield stresses on diameter

increasing tendency. But as is well known, the high yield strength is due to the lack of

an “easy’’ flow mechanism like “dislocation sliding’’ in the crystalline materials. As a

consequence measured from experiments shown in Figure 5-1, in the metallic glass,

one cannot express a “smaller is stronger’’ relationship observed in the micro- and

nano- crystalline materials due to dislocation nucleation, multiplication control,

dislocation starvation and source starvation mechanism. The strength of metallic glass

is essentially affected by the inter-atomic bonding. Until now, for the MG pillars at

Value of bulk
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the nano scale, the surface stress is used to explain the strength variance. However,

the experimental data to prove the theoretical prediction and simulation test has not

been found as the limitation of the experimental facility. For the MG pillars at

sub-micron and micron scale, shear banding is the dominant plastic deformation

mechanism, and an energetic model is provided to evaluate the stress for the shear

band propagation [1, 2]:

E
D




2 2 . (5.1)

where  is the shear band energy density per unit area, E the Young’s modulus,

D diameter of the sample and  the aspect ratio of the sample, respectively. For the

load-controlled mode in this study, the strain energy of one displacement burst stage

accumulated in the volume is uV, where V is the volume ( /D L 2 4 for a cylinder

specimen), u is the strain energy density, for uniaxial deformation ( )i i iu    1 ,

i being the stress of the ith burst, i , +1i being the strains before and after the ith

burst. The generation energy of shear band ( /D 22 4 for a cylinder specimen) is

released from strain energy [2, 3]. When a burst occurs under compression, the energy

released is approximately

= ( )i i i L    1
2
2

. (5.2)

where L is the specimen size (height of a cylinder pillar scaling linearly with the

diameter (=  D)). And the strain resulting released shear band energy can be

expressed i i i   1 , thus the strain before the and after ith burst involves two

parts: the ideal elastic strain 0 for each deformation condition without any shear

bands corresponding to the elastic stress c 0 , with the form
i

i i
i

  




 
1

0
1

. For the
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initial yield stress  , it can be regarded as the stress 1 involving the elastic stress

without any shear band and the component stress to active the first burst, Eq. (5.2) can

be expressed as

= ( )c L   0 1 0
2
2

. (5.3)

In Eq. (5.3), c 0 and 1 are both in the elastic state, thus = /c E 0 0 and

= / E 1 1 , E the Young’s modulus. Therefore, we can obtain

= c
c

E
L
 


1 0

0

2 . (5.4)

If the initial shear band is controlled by the shear stress, the propagation of shear

band is governed by the release of the stored shear band energy of a nearly 45°angle

unique sliding [2]. For the high temperature case and nano-scaled case, the

homogeneous deformation is derived by the multiple small cross shear bands with

different angles or no release of stored elastic energy. Averagely, the homogeneous

condition (with the multiple small cross shear bands and no shear bands) implements

the few release of shear band energy. If we also use Eq. (5.4) to describe this

homogeneous condition with few release of shear band energy,  is defined as h

for the homogeneous deformation condition. Correspondingly,  is defined as i

for the absolutely inhomogeneous condition of large-scaled samples with at least one

obvious single shear band generated through the surface. The shear band energy 

can be redefined in a general form:

= ,  i i h h i h         1 , (5.5)

where i , h are the percent/probability of the inhomogeneous and homogeneous

condition, respectively. As shown in Figure 2-10, the deformations in the samples at
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1m and 2m are totally in the homogeneous condition =h 1 , and for the samples in

the size larger than 10m and bulk sample, the deformations are totally in the

inhomogeneous condition =i 1 . From the 2m to 10m scale, it is assumed that the

deformed samples are in the transitional condition between the homogeneous and

inhomogeneous condition with a linear increase value of = 0~i 1 . Therefore, Eq.

(5.4) can be expressed as

[ ( ) ]c i i i h
c

E
L

     


   0
0

2 1 . (5.6)

According to the definition of shear band energy  , h is much smaller than i ,

with the value nearly 0. The theoretical predicting of the transitional state

(2m~10m) is shown in Figure 5-3. Here, 0C =1.2 GPa, Young’s modulus E is

taken as 78GPa and the aspect ratio  as 2.5 from our simulations, while

i =80J/m2. Compared with the experimental data, the theory provided here can

effectively describe the tendency of the size dependent elastic limit.

For micro scaled MG pillars, the volume is large enough (compared with

sub-micron MG pillars) and the shear band generation energy can be absorbed by the

adjacent parts. As shear band formation is attributed to a required critical strained

volume [2]. Thus, for the small MG micropillar, the strain volume is inefficient for

propagation of single shear band. The more strain energy in large samples can be

provided as the propagation energy of shear band. That means the propagation energy

shear band is related to strain volume corresponding to size of micropillars, thus shear

band in large scaled micropillar with efficient strain volume needs more stress to

activate as shown in Eqs. (5.4) and (5.6). The change from shear band to



158

homogeneous deformation with decreasing pillar size results from the size (strain

volume) dependent propagation of shear band.

Figure 5-2. The comparison of the experimental data and theoretical predicted results.

5.1.3 Further discussion on size dependent strength

The present reported investigations of size dependent strength in fcc crystalline

micro- and nano- pillars have resulted in the general agreement: the increase of

strength accompanies with the decrease of the specimen size so called ”smaller is

stronger ” tendency. Several theories have been provided to explain this size

dependent phenomenon, but no agreement to establish a unified plastic model to state

the physics inside the pillars. Two prominent deformation mechanisms have been

proposed at present: one is the single arm source model, the other is the dislocation

starvation with the surface dislocations nucleation. In the SAS model, the double

pinned Frank-read dislocation sources are truncated into single arm sources, the

truncated sources interplay the dislocations motion and source activation. For the
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dislocation starvation theory, the surface nucleation of dislocations appear to be taken

place in the small scaled pillars, and the dislocations annihilate at the free pillar

surface. However, these mechanisms seem to be competing, both of them take place

at different micron sizes from the inner defects view and surface influence view. This

is also our origin to think about this problem, thus we consider the pile-up mechanism

(defect distribution affects stress concentration) and surface energy effect (physics of

surface) to further explain the size dependent strength.

However, there are no agreement of the size dependent strength of MG pillars, even

for the tendency whether the strength with decreasing size is slight increase or

decrease showing in Table 5-1. Then of course, there are no sufficient discussions on

the plasticity to explain this uncertain phenomenon. Figure 5-3 shows the selected

tendency of size dependent strength of MG pillars. It is shown that it is much more

complicated than that of fcc crystalline materials. For the metallic glasses, the yield

strength is determined by the cooperative shear motion of atomic clusters (also related

to the shear transformation zones (STZs)) [14] and defect flows [15, 16]. But this

local deformation doesn’t build the direct correlation with the onset of the plastic

deformation. A defect flow is a cluster of STZ and its propagation strength is

controlled by the STZ nucleation stress (yield stress) but not directly related to size.

And this local defect motion is relevant to the temperature, strain rate and even the

alloying constituent [17]. The present reported studies have shown that the shear band

energy, potential energy and surface energy may be effective on the strength of MG

pillars. All these increase the complexity of understanding the size effect of MG

materials. Our study focuses on exploring the size effect of MG pillars by experiments

and trying to provide our explanation of this problem. Our results agree that the size

effect of MG pillars results from the propagation of shear bands.
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Figure 5-3. Schematic illustrated tendency of the size effect in MGs in three different

size regimes, namely the size independence regime in bulk MGs [2, 3].

Besides the intrinsic factors like defect flow, there may be some extrinsic factors

effective on the size dependent strength. One generous factor is the FIB damage. In

the section 3.2, the surface energy effect is introduced by defining the initial surface

strain. The FIB milling damage can affect the initial surface strain, and then change

the surface energy. In this case, the FIB damage can be considered for the description

of size effect of fcc crystalline materials. For the amorphous materials, the 3-4 nm

FIB disordered thickness can generate a constrained shear bands [5]. But this

unconstrained shear band cannot run away largely, or even cannot be observed as the

limited energy damage. For the small volume pillars such as nano-pillars, the FIB

damage should be discreetly considered. Another generous factor is the strain rate. For

the crystalline materials, the effect from strain rate on the size effect has few reported.

But for the amorphous material, the strain rate vastly affects the strength and

deformation mechanism. Based on the free volume theory [18], the high strain rate

would make the material tend to form the propagation of shear band, and extend the
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elastic deformation. Generously, the strain rate should be controlled under 10-2/s in

order to avoid the influence from strain rate.

Table 5-1. Literature overview size effects in metallic glasses

References Mode transition inhomogeneous Strength size dependence with
increasing size

Lee et al. [4] No Dramatic increase
Lai et al. [5] No Dramatic increase
Volkert et al. [2] Yes Slight decrease
Zhou et al. [3] No Slight increase
Schuster et al. [6, 7] No Slight increase
Dubach et al. [8] No No change
Jang and Greer [9, 10] Yes Slight increase
Bharathula et al. [11] Yes Slight increase/slight decrease
Chen et al. [12, 13] Yes No change

5.2 Elastoplastic constitutive models for plastic deformation of

metallic glasses

In this section, we will try to quantificationally describe the plastic deformation of

MG pillars shown in section 2.3.3, The free volume model and the Drucker-Prager

(DP) model will be linked to the the constitutive formulations for the room

temperature and high temperature (>0.7Tg, Tg is the glass transition temperature)

conditions. Even though the size dependence of the plastic deformation in MG pillars

is still an open issue, the theoretical description combining factors of the temperature

dependence and size dependence is necessary to have an insight into the deformation

mechanism. In this section, we implement the constitutive models into the finite

element method (FEM) to simulate the deformation process under the uniaxial

compressive test condition. The propagation of shear bands and the evolution details

of the mechanical properties and free volume behaviors will be examined. We hope

these trials can provide some help to understand the plastic deformation phenomenon

of MG pillars.
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5.2.1 Constitutive Theories

5.2.1.1 Yield criterion [19]

An alternative way to consider the hydrostatic stress ( )p tr
1
3

 or the volume

dilatation effects through the Drucker-Prager (DP) model has been proved to be

effective to describe the plastic deformation of MG pillars [20, 21]. The yield function

can be expresses by the term of hydrostatic component of the stress,

2 16
f J I k
   , (5.7)

where 2 = / 2J s s with = - ps I is the deviatoric stress tensor, I is the identity tensor,

( )tr1 I is the first invariant of the stress tensor, and  represents the stress

dependence. The relationship between the yield stress  0 (described in Eq. (5.6)

theoretically) and k is shown as

0 k  , (shear) (5.8)

0
3

1 / 2
k





, (tensile) (5.9)

0
3

1 / 2
k


 


, (compressive) (5.10)

From the yield function (Eq. (5.7)), we can similarly define an equivalent stress, or
DP stress  as

2 1

2 1 1 2
6 31 6

3 6

J I
J I


  




    


. (5.11)

5.2.1.2 Associated flow rule

The flow rule is obtained by directly taking the stress derivative of the yield
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function, namely associated flow.The plastic strain rate p
ij is then defined by the

associated function 

p
ij

ij

 






 , (5.12)

where  is the proportional coefficient providing the magnitude for the flow and

ij is the stress tensor.

According to the yield criterion shown in Eq. (5.7), the plastic strain rate p
ij can

be shown in the following:

2

1
2 6

p
ij ij ij

ij

f s
J

   


 
      

  . (5.13)

Thus, the proportional coefficient   can be expressed as

2 1

2 1 2 1

3
6

6 6

p p
J I

J I J I


  
 


 

 

   . (5.14a)
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2 1

26
13

6

p p p
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J I

J I



   
 

  
 

  
 

   . (5.14b)

Above all, the strain rate ij can be written as

2

1 1{ }
2 2 (3 2 ) 2 6

e p
ij ij ij ij ij kk ij ijs

J
        

   

 
         

     . (5.15)

where  and  are Lamé constants.

5.2.1.3 Free volume theory

The defects in amorphous are often described by the free volume model [20]. Based
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on the free volume model, the plastic deformation of amorphous metal occurs by the

superposition of the shear localized groups of atoms, often referred as flow defects on

STZ [22]. During the process of the superposition, an additional volume dilatation is

formed and the moving atoms is accommodated accompanying with the increase of

volume. This mechanism expresses the plastic strain

0 0 0 02 sinh
2

p
f f

B

c k
k T

    
        

 , (5.16)

where  p is the plastic strain rate on STZ,  the stress on the shear band,  the

atomic volume, Bk the Boltzmann’s constant, T the absolute temperature which is

used to describe the condition temperature, the product 0 0  is the activation volume

of the process, fk the temperature-dependent rate parameter and fc defect density.

If the multiaxial stress condition is considered,  and  can be replaced by the

equivalent stress  and the corresponding plastic strain p [18]:

0 0 0 02 sinh
2

p
f f

B

c k
k T

    


        
 . (5.17)

fk and fc can be expressed as

exp
m

f
B

Gk J
k T

 
  

 
, (5.18)

*

expf
f

c
v
 

   
 

, (5.19)

where J is the vibrating number of atoms,  mG the Gibbs energy of activation, 

a geometrical overlap factor between 0.5~1, fv the average free volume per atom

and the density fluctuations with volume being greater than a critical value * . The

relationship between the free volume fv and defect density fc is shown in the
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Figure 5-4, where the increase value of fv makes fc close to 1.

Figure 5-4. Relationship of defect density and free volume

The process of density evolution includes the generation and annihilation of the

defects, the rate of which can be described as

    
f ffc c c . (5.20)

According to Eq. (5.19), the free volume fv can be expressed as

*

ln f
f

v
c


  , (5.21)

and

 
*

2
ln 

f f

f f

v c
c c


  . (5.22)

The deformation-driven creation of defects can be modeled through the free volume

theory by considering the density fluctuations with volumes just smaller than the

critical size * . The resulting expression for the creation of free volume is
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 , (5.23)

in which

 3 1-


ES . (5.24)

Linking Eq. (5.24) to Eq. (5.22),

 
* *

0 0 0 0
22 cosh 1

2 ln
B

f f f f
f B f f

k Tv = c k c
S v k T c  c

                 
  , (5.25)

and generation rate of defects density can be obtained by considering the main

process of the increase evolution

   32 0 0
*

1
6 ln cosh 1

2
f B

f f f
B

k k T
c c  c

E k T
   


    
    

  
 . (5.26)

The annihilation of the defects during structural relaxation takes place by a

bimolecular process. The bimolecular nature is the annihilation occurs by the joining

of two dangling bonds. The researchers have shown that during isothermal annealing

at temperatures close to the glass transition temperature Tg, the viscosity of the

amorphous metals reaches a saturation value. Since the viscosity is inversely

proportional to the defect concentration fc , the defect concentration then reaches a

metastable equilibrium concentration ，f egc [18]. The annihilation rate of the defect

density 
f

c can be described as

2  f r fc k c , (5.27)

where is the parameter of structural relaxation rate. The above equation cannot

describe the equilibrium point with the value 0，f egc . Therefore, Eq. (5.27) can be

rewritten as
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 ,f r f f f eqc k c c c   . (5.28)

The relationship between 
f

c and fc is shown in Figure 5-5.Thereby, the rate of

density evolution can be written as

     32B 0 0

B

1
6 ln cosh 1

2
f

f f f r f f f,eq*

k k T ν ε ω σc = c  c k c c c
E ν k T

   
     

  
 . (5.29)

Figure 5-5. Relationship between structural relaxation rate and defect concentration.

5.2.2 Model and parameters

We performed finite element (FE) analyses using a user material subroutine

(UMAT) in the commercial code ABAQUS/Standard (2012). In UMAT, yield stresses

or yield strengths, which are shown in Eq. (5.6) introduced in Section 5.1, and the

yield strengths are shown in Eqs. (5.8~5.10), are implemented in the CPFE

framework introduced in Section 5.2.1. The room temperature (300K) and high

temperature (around 655K) conditions of MG bulk specimens and MG micro pillars

are simulated by FEM. In the calculations, we performed the compression tests with a

flat punch, which is treated as the rigid body shown as Figure 5-6. In addition,
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isothermal conditions were assumed and the specimens were kept for each

temperature. Pillars with diameters of 8 and 10 μm were simulated, and the

height-to-diameter aspect ratio was fixed at 2.5 in all of the simulations. For

simplicity, the FE model consisted of a single 8-node brick-type element (C3D8). The

displacements were applied along the y direction associated with a constant strain rate

of 1.0×10−4 s−1. A base material at the bottom of the pillar was included to simulate to

the real boundary condition of the samples.

Figure 5-6. Finite element model of micro pillar and the boundary conditions.

As the experimental facilities cannot provide efficient high temperature conditions

for micro uniaxial compressive test on the MG pillars, the bulk experiments

conducted by Yoshikawa [23] are used to determine the simulation parameters which

can be obtained by the method introduced by Mima [24]. The parameters for high

temperature conditions obtained from bulk specimens is used to describe the

deformation of MG pillars at high temperature. The parameter for room temperature

condition obtained from bulk specimens can provide some reference for the similar
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temperature case of MG pillars. The loading form and bulk specimen fracture shape is

shown in Figure 5-7. The parameters of constitutive law fitted to experimental data of

bulk specimens using DP yield criterion are shown in Table 5-2. And the results of the

comparison between the experimental data and simulation curves are shown in Figure

5-8. It is shown that the selected parameters in Table 5-2 can make the simulation

compare well with the experimental data. That means that the constitutive framework

with these parameters can provide effective physics to describe the deformation of the

bulk MG specimens. For the room temperature, the specimen shows no plastic

deformation from experiments and extremely high elastic limit. But the specimen can

also provide good plastic flow when the temperature is close to Tg. That is the reason

for the name origin of metallic glass. The simulations holds that the constitutive

framework in this thesis can not only provides room temperature simulations but also

high temperature simulations. And the simulations can well fit the real conditions of

the experiments. In this thesis, we focus on the study of the deformation behavior of

MG pillars. Thereby, the further discussions on bulk specimens will not be shown

here.

Figure 5-7. Fracture shape of Zr55Al10Cu30Ni5 BMG by (a) tensile test and (b)
compressive test [23].
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Table 5-2. Parameters of constitutive law fitted to experimental data of bulk

specimens using DP yield criterion [24].

Parameters Units 300K 645K 655K 667K

Ω [m3] 13.2×10-30 13.2×10-30 13.2×10-30 13.2×10-30

T [K] 300 645 655 667

kf [s-1] 2.10×10-1 5.10×106 1.39×107 9.94×107

ε0ω0 [m3] 106×10-30 106×10-30 106×10-30 106×10-30

E [GPa] 80.9 7.1 5.1 6.5

ν 0.3 0.3 0.3 0.3

γν* [m3] 9.00×10-30 5.10×10-28 7.10×10-27 1.04×10-26

kr [s-1] 5.15×105 1.00×1010 1.10×1010 1.70×109

cf,eq 2.00×10-15 2.00×10-15 2.00×10-15 2.00×10-15

(a) T=300K (b) T=645K
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(c) T=655K (d) T=667K

Figure 5-8. True stress-true strain curve fitted to Zr55Al10Cu30Ni5 BMG for tensile test
using DP yield criterion [24].

In order to describe the plastic deformation of the MG pillars which has been

shown in Chapter 2, the FEM model is established as shown in Figure 5-6. The Table

5-3 shows the selected parameters of the MG pillars, which are referred from the

parameters of bulk specimens shown in Table 5-2. Even though the MG pillars

fabricated by FIB milling is affected with the surface damage or energy injection, the

pillars with large scale make them similar to the bulk specimen. Or the external effect

can be ignored by considering the surface/boundary effect averagely. For the

micro-pillars with the diameter smaller than 10m, the plastic flow can be obtained

even at room temperature from the experiments. The plastic flow of micro-pillars

shows some obvious small bursts, which is similar to the deformation of crystalline

micro-pillars. It is different from the plastic behavior of bulk specimens. We redefine

some parameters according to the experiments in Chapter 2 and those of bulk

specimens in Table 5-2.
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Table 5-3. Parameters of constitutive law fitted to experimental data of MG pillars

using DP yield criterion

5.2.3 Results and discussions

Figure 5-10 shows that the simulated results of MG micro-pillars compare well

with the experiments at room temperature (300K). That is to say, the selected

parameters are reasonable for this simulation case. The simulated result of bulk pillars

shows soften flow after the elastic limit, but in the experiments the bulk specimen

shows fracture on the shear band. The experimental SEM deformed image in Figure

5-9 also provides shear band propagation with plastic flow except rather than the

sudden fracture. The FEM deformed images tell us that the equivalent strain and the

equivalent strain rate provide the shear band similar to the experiments. Compared

with the FEM results of micro-pillars and bulk specimens, the small size avoids the

softening or fracture during the plastic deformation. Linking to the FEM deformed

images in Figure 5-9, the equivalent strain rate affects this phenomenon directly.

According to Eq. (5.17), the equivalent strain rate is relate to the defect density the
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evolution of which may be changed largely.

Figure 5-10 shows the evolution of the defect densities of micro-pillars and bulk

pillars. The rapid increase of the defect density accompanying with the plastic

deformation results in the softening for the bulk pillars or specimens. The defect

density of micro-pillars doesn’t represent rapid increase accompanying with the

plastic flow. This tendency avoids obvious softening or sudden fracture. We have cut

the deformed pillars into pieces, the small scaled pillars shows that the center part of

the pillars cannot generate the shear band which is resulting from the free volume

(defect flow). The smaller the pillar is, the homogeneous part is larger. That means the

slow speed of the defect evolution to propagate the shear band slow down the

softening process or even avoid the fracture.

Figure 5-11 shows that large plastic flow of MG pillars at high temperature (655K),

and the yield strength is much smaller than that at room temperature. Accompanying

with the development of plastic flow, the softening tends to be slowed down. The

equivalent strain image doesn’t show an obvious shear band as shown at room

temperature. According to Eq. (5.17), the defect density image should present the

similar tendency. In order to compare with the difference of the deformation at room

temperature (300K) and high temperature (655K), the mechanical responses of them

are shown in Figure 5-12. In Figure 5-12, it is obvious that the plastic deformation at

room temperature shows hardening tendency, but the case at high temperature

provides softening process even though the softening rate is slowed down during the

development of plastic deformation. The homogeneous deformation at high

temperature shows some cross narrow shear bands but not obvious as the single shear

bands along nearly 42°direction at room temperature.

In order to study the deformation mechanism, the defect density fc images of
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micro-pillars in 300K and 655K response to the points in Figure 5-12 is shown in

Figure 5-13. For the room temperature case, the defect density distributes

homogeneously when the strain is elastic as shown in Figure 5-13a. And then defects

form and flow along the single shear band along nearly 42° direction during the

plastic deformation as shown in Figure 5-13b and c. For the high temperature case,

the defect also distributes homogeneously at elastic stage as shown in Figure 5-13d.

But when the plastic deformation, defects first concentrate along some shear lines

alone the same direction as shown in Figure 5-13e, and then some cross multi narrow

shear bands form and evolve as shown in Figure 5-13f. These net shear lines make the

deformation homogeneous globally. Moreover, the parts near the base have obvious

defects distributions. It means that the base constraints the compressive deformation

generate along the pillar, as the FEM images shown in Figure 5-9. This may be one

reason for that there is no rapid decrease softening stage in the micro-pillars.

If the strain rate is set as 2.8×10−4 s−1 and 1.0×102 s−1, the stress-strain responses are

varied as shown in Figure 5-14. The stress at high strain rate is much larger than that

at low strain rate. According to Eq. (5.17), the increasing strain rate is equal to the

decrease of the temperature. The increase of temperature can decrease the stress

response, certainly the decrease of temperature can increase the stress response. The

defect density evolution is shown in Figure 5-15. The defect of high strain rate case

increases faster than that of low strain rate case, and then decease rather than the

following increase as that of low strain rate case. Therefore, the stress-strain response

of high strain rate case shows more obvious softening than that of low strain rate case

at first. The equivalent strain and defect density condition are presented in Figure 5-16.

The shear band of high strain rate case is much clearer than that of low strain rate case

as the equivalent strain images showing. The reason is that the defects flow along the
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shear band much more obviously. That means low temperature/high strain rate

promotes the propagation of shear band.

Figure 5-9. FEM and experimental results of micro-pillars of metallic glass

Figure 5-10. Defect density of micro-pillars and bulk-pillars at room temperature
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Figure 5-11. The relationship between the normal strain and normal stress at 655K,

the equivalent strain image and defect density image of MG pillars.

Figure 5-12. Stress-strain responses and FEM images of micro-pillars in 300K and

655K
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Figure 5-13. Defect density fc images of micro-pillars in 300K and 655K response

to the points in Figure 5-11.

Figure 5-14. The stress-strain response of MG pillar with different strain rate.
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Figure 5-15. The defect density evolution of MG pillar with different strain rate.

Figure 5-16. Equivalent strain  and defect density fc images of micro-pillars at

different strain rate at 22 =0.16 .

5.2.4 Further discussion on plastic flow

The present reported investigations of plastic in fcc crystalline micro- and nano-

pillars have resulted in the general agreement: the dislocation motion results in the

plastic deformation; the crystalline orientation determines the propagation of the

single or multi shear bands. The dislocation evolution play an important role on the

plastic behavior which has been stated in Chapter 4. The interplay among the
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dislocations, GB and surface is also significant for the generation of plastic

deformation. The GB constraints or stores the defects, and varies the original defect

distributions and the stress field. This part has also been studied in Chapter 4. The

plastic deformation of micro-pillars represents strong hardening behavior and a series

of small displacement bursts, which are size dependent and also different from the

case of bulk specimens. These size dependences have been widely discussed and still

a questionable topic for the researchers. We have presented our understanding on this

topic and provided a trial to describe these size dependence physically. Even though

the dislocation physics combined with solid mechanics is one choice for effective

description, the inside local evolution of defects is still unknown by this method. The

further study on this topic needs more physical considerations and experimental

support.

Similar to the study on the size dependent plasticity of crystalline micro- and nano-

pillars, the “flow defect” model (free volume theory) is considered. The atomic

studies of metallic glasses provide their explanations of shear band propagation and

extremely high strength. However, the global mechanical response of them is scarce

to provide proof of mechanical design. The plastic behavior of MG is different from

the crystalline specimens, holding not only size dependence but also temperature

dependence. The flow defects influence the generation of shear bands largely, and

dominantly. Even though the amorphous crystalline lattice makes the MG exhibit no

crystalline orientations, the shear band without Schmid laws can be formed as necking

effect in polycrystals. The classical strength theories are used to explain the shear

localization. At present, DP model is much acceptable but still questionable. Some

commons can be found by both considering the crystal plasticity and amorphous

plasticity: the plastic deformation is based on the defects no matter that they are
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dislocations or “flow defects”; size dependence is determined by the inner defect

evolution. The further study may focus on the physical origin of “flow defects”,

which is the key to understand the physics of the plastic deformation.

5.3 Conclusions

In this chapter, the size dependent strength of MG micro-pillars are summarized by

experiments, and explained physically based on shear band energy theory. And then,

the plastic deformation of MG bulk/micro-pillars at room temperature (300K) and

high temperature near the glass transition temperature (655K) are described based on

the FEM framework combined with the free volume model and Drucker-Prager model.

Moreover, the homogeneous and inhomogeneous deformation characteristics are

simulated by the “flow defects” in the above constitutive framework. The following

conclusions can be obtained

(a) The micro scaled Zr-based MG pillars present a slight increase of elastic

limit accompanying with the increase of specimen diameters based on the

experimental data.

(b) The above phenomenon is not only related to the size variance, but also

relevant to the generation energy of shear band.

(c) The different size dependent strength of MG micro-pillars from that of

crystalline materials results from different physics: the truncated sources interplay the

dislocations motion and source activation, and the small volume forms the starvation

of dislocations in the crystalline micro-pillars; but in the MG micro-pillars, the “flow

defects” in the globally homogeneous form or inhomogeneous shear localization

affects the propagation energy of shear bands, which results in the size dependent

strength.

(d) The plastic flow of MG bulk/micro-pillars can be well described in 300K and
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655K. And the homogeneous and inhomogeneous deformation can also be presented

by the current constitution based on the free volume theory.

(e) The size dependent plastic deformation is related to the defect evolution.

(f) The plastic deformation of MG specimens is related to the size, temperature

and strain rate.
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Chapter 6

Summary

In this dissertation, the focus is applied on providing an insight into the size

dependent plasticity of the crystalline materials and amorphous materials.

In chapter 1, size dependent plasticity of crystalline materials and amorphous

materials is reviewed. At present, there are some challenges to understand size

dependent plasticity: (a) For the crystalline materials, even though there are some

theories providing some trials to explain the size dependent yield strength, the

physical origin of this size dependence is still a questionable topic, and some intrinsic

length related to this size dependence is still few studied. (b) Meanwhile, the physics

of the size dependent plastic deformation is still unknown for most cases. (c) Whether

the yielding of small scaled metallic glasses (amorphous materials) is size dependent

or not is still controversy. The experimental verification and theoretical explanation

are both scarce. (d) The plastic deformation of metallic glasses is more questionable

than that of crystalline materials in the case of size dependence and deformation

mechanism. Summarizing these, the intrinsic defect scales, external geometrical

scales, interaction of GB and defects and “flow defects” are necessary to be

investigated to understand the physics of the deformation mechanism. The results and

findings are shown in Chapter 2-5, respectively.

In chapter 2, the research background of the uniaxial compression test on the single

crystalline micro-pillars (SCMs), bi-crystalline micro-pillars (BCMs) and metallic

glass (MG) micro-pillars, the targets of our conducted experiments and the procedure

of the experiments are introduced. The experimental data presents strong size
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dependent mechanical response of SCMs and BCMs, interplay of grain boundary

effect and strain-stress response of BCMs, and size dependent plastic response of MG

micro-pillars. It provides the basis of study on the physics and mechanics of these

phenomenon, stated in chapter 3, 4 and 5, respectively.

In chapter 3, we first propose pile-up SAS model in crystals in a physical

framework that incorporates dislocation pile-up and size-dependent plasticity effects.

And then we establish a mixed model combining the surface energy and inner defects

to describe the yield stress of hollow micro- and nanopillars. Our pile-up SAS model

and mixed model with surface energy agree better than the original SAS model with

the experimental data. That means that the size effect is mainly dominated by the

inner defects evolution and surface energy/stress. At least, we provide a size

dependent single crystalline yield function to describe the size dependent strength

under a multiaxial stress state by considering defect effects, including dislocation

pile-up, dislocation starvation and source exhaustion. Our proposed model provides

the following results: materials with low stacking-fault energy makes their yield

surfaces tend to display rounded vertices, like the Mises yield criterion; those with

high stacking-fault energy show typical Tresca criterion-type yield surfaces

displaying sharp vertices.

In chapter 4, we propose a physical constitutive model with the framework of the

CPFE method that accounts for the dislocation physics to well describe the

size-dependent plastic deformation of single crystalline and bi-crystalline micro

pillars. And dislocation evolution factors are used to extend the SAS model and revise

the hardening model. It is shown that size-dependent dislocation evolution is related

to the hardening modulus of the micro pillars, and this makes the stress–strain

response vary with the micro pillar size. The GB in BCMs can inhibit the dislocation
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transfer across the each grains, and dislocations pile up after the GB and slip along the

GB on the maximum Schmid factor slip planes of the each sides of the bi-crystalline

micro pillar.

In chapter 5, the size dependent strength of MG micro-pillars is summarized by

experiments, and explained physically based on shear band energy theory. It is shown

that the micro scaled Zr-based MG pillars present a slight increase of elastic limit

accompanying with the increase of specimen diameters based on the experimental

data. The above phenomenon is not only related to the size variance, but also relevant

to the generation energy of shear band. The size dependent strength of MG

micro-pillars different from that of crystalline materials results from different physics:

the truncated sources interplay the dislocations motion and source activation, and the

small volume forms the starvation of dislocations in the crystalline micro-pillars; but

in the MG micro-pillars, the “flow defects” in the globally homogeneous form or

inhomogeneous shear localization affects the propagation energy of shear bands,

which results in the size dependent strength. And then, the plastic deformation of MG

bulk/micro-pillars at room temperature (300K) and high temperature near the glass

transition temperature (655K) are described based on the FEM framework combined

with the free volume model and Drucker-Prager model. The plastic deformation of

MG specimens is related to the size, temperature and strain rate.

All the above experimental and theoretical trials provide our understandings on the

size dependent phenomenon of crystalline materials and amorphous materials based

on our best knowledge. As this topic is still controversial, further insight needs more

studies and discussions.
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