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Abstract
In this paper we are concerned with a variational problem fora functional re-

lated to the conformality of maps between Riemannian manifolds. We give the first
variation formula, the second variation formula, a kind of the monotonicity formula
and a Bochner type formula. We also consider a variational problem of minimizing
the functional in each 3-homotopy class of the Sobolev space.

1. Introduction

Let (M, g), (N, h) be compact Riemannian manifolds without boundary. A smooth
map f from M into N is called aconformal mapif there exists a positive function'
on M such that f �hD 'g, where f �h denotes the pullback of the metrich by f , i.e.,

( f �h)(X, Y) D h(d f (X), d f (Y)).

We consider a covariant symmetric tensor

Tf WD f �h � 1

m
kd f k2g

wherem denotes the dimension of the manifoldM, andkd f k2 denotes the energy den-
sity in the harmonic map theory, i.e.,

kd f k2 DX
i

h(d f (ei ), d f (ei )).

(ei denotes a local orthonormal frame onM.) Then f is conformal at x if and
only if Tf D 0 at this point, unless (d f )x D 0. In this paper we are concerned with
the functional

8( f ) D Z
M
kTf k2 dvg,
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720 N. NAKAUCHI

wheredvg denotes the volume form of (M, g), and

kTf k2 DX
i , j

T f (ei , ej )
2.

The functional8( f ) gives a quantity of the conformality off . We give the first vari-
ation formula and the second variation formula for this functional. We also prove a
kind of the monotonicity formula and a Bochner type formula.Furthermore we want
to minimize the functional8( f ) in each homotopy class of maps fromM into N.
Minimizers are expected to beclosestto conformal maps, even if its homotopy class
does not contain any conformal map. To this aim, we adopt the notion of 3-homotopy
in the Sobolev spaces, which is given by White. We consider a variational problem of
minimizing the functional8( f ) in each 3-homotopy class of the Sobolev space.

2. The tensor Tf of the conformality and the functional �( f )

Let (M, g), (N, h) be compact Riemannian manifolds without boundary and letf
be a smooth map fromM into N. In this section we give a tensorT f of the confor-
mality for any smooth mapf . We recall here the following two notions.

DEFINITION 1. (i) A smooth map f is weakly conformalif there exists anon-
negativefunction ' on M such that

(1) f �h D 'g

where f �h denotes the pullback of the metrich by f , i.e.,

( f �h)(X, Y) D h(d f (X), d f (Y)).

(ii) A smooth map f is conformal if there exists apositive function ' on M satisfy-
ing (1).

The condition (1) is equivalent to

f �h D 1

m
kd f k2g,(2)

since taking the trace of the both sides of (1) (with respect to the metricg), we havekd f k2 D m', i.e., ' D (1=m)kd f k2. Then f is conformal if and only if it satisfies (2)
with the assumptionkd f k ¤ 0. Note that f is weakly conformal if and only if for any
point x 2 M, f is conformal atx or d fx D 0.
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Taking the above situation into consideration, we utilize the covariant tensor

Tf
defD f �h � 1

m
kd f k2g,

i.e.,

Tf (X, Y)
defD ( f �h)(X, Y) � 1

m
kd f k2g(X, Y)

D h(d f (X), d f (Y)) � 1

m
kd f k2g(X, Y).

REMARK 1. In the case ofmD 2, the tensorTf is equal to the stress energy tensor

Sf D f �h � 1

2
kd f k2g

in the harmonic map theory. (See Eells and Lemaire [3], p. 392.)

Lemma 1. (a) T f is symmetric, i.e., Tf (X, Y) D Tf (Y, X).
(b) f is weakly conformal if and only if Tf D 0.
(c) kTf k2 D k f �hk2 � (1=m)kd f k4.
(d) Tf is trace-free, i.e.,

Traceg Tf DX
i , j

g(ei , ej )T f (ei , ej ) D 0,

where ei denotes a local orthonormal frame on M.
(e) The trace of Tf with respect to the pullback f�h is equal to the norm of Tf , i.e.,

Tracef �h T f DX
i , j

( f �h)(ei , ej )T f (ei , ej ) D kTf k2.

Proof. (a) follows directly from the definition ofTf .
(b): The argument mentioned above implies thatf is a weakly conformal map if

and only if f �h D (1=m)kd f k2g, which is equivalent to the conditionTf D 0.
(c):

kTf k2 DX
i , j

T f (ei , ej )
2

DX
i , j

�
h(d f (ei ), d f (ej )) � 1

m
kd f k2g(ei , ej )

�2
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DX
i , j

h(d f (ei ), d f (ej ))
2

� 2

m
kd f k2 X

i , j

h(d f (ei ), d f (ej ))g(ei , ej )C 1

m2
kd f k4 X

i , j

g(ei , ej )
2

D k f �hk2 � 2

m
kd f k4C 1

m
kd f k4

D k f �hk2 � 1

m
kd f k4.

(d):

Traceg T f DX
i , j

g(ei , ej )Tf (ei , ej )

DX
i , j

g(ei , ej )

�
h(d f (ei ), d f (ej )) � 1

m
kd f k2g(ei , ej )

�

DX
i , j

g(ei , ej )h(d f (ei ), d f (ej )) � 1

m
kd f k2 X

i , j

g(ei , ej )
2

D kd f k2 � kd f k2
D 0.

(e):

Tracef �h T f DX
i , j

( f �h)(ei , ej )Tf (ei , ej )

DX
i , j

h(d f (ei ), d f (ej ))Tf (ei , ej )

DX
i , j

h(d f (ei ), d f (ej ))

�
h(d f (ei ), d f (ej )) � 1

m
kd f k2g(ei , ej )

�

DX
i , j

h(d f (ei ), d f (ej ))
2 � 1

m
kd f k2 X

i , j

h(d f (ei ), d f (ej ))g(ei , ej )

D k f �hk2 � 1

m
kd f k4

D kTf k2 (by (c)).

Thus we obtain Lemma 1.

In this paper, we are concerned with the functional

8( f ) D Z
M
kTf k2 dvg.
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This functional8( f ) gives a quantity of the conformality of mapsf . Note that if f
is a conformal map, then8( f ) vanishes.

3. First variation formula

In this section we give the first variation formula for the functional 8( f ). We
define an “f �1T N-valued” 1-form� f on M by

(3)

� f (X) DX
j

Tf (X, ej ) d f (ej )

DX
j

h(d f (X), d f (ej )) d f (ej ) � 1

n
kd f k2 d f (X)

for any vector fieldX on M, whereej denotes a local orthonormal frame onM. The
1-form � f plays an important role in our arguments.

Take any smooth deformationF of f , i.e., any smooth map

F W (�", ") � M ! N s.t. F(0, x) D f (x).

Let ft (x) D F(t, x), and we often say a deformationft (x) instead of a deformation
F(t, x). Let

X D d F

� ��t

�����
tD0

denote the variation vector fields of the deformationF . Then we have the following
first variation formula.

Theorem 1 (first variation formula).

d8( ft )

dt

����
tD0

D �4
Z

M
h(X, divg � f ) dvg,

where dvg denotes the volume form on M, and divg � f denotes the divergence of� f ,
i.e., divg � f DPm

iD1(rei � f )(ei ).

We give here the notion of stationary maps for the functional8( f ).

DEFINITION 2. We call a smooth mapf stationary (for the functional8( f )) if
the first variation of8( f ) identically vanishes, i.e.,

d8( ft )

dt

����
tD0

D 0
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for any smooth deformationft of f . By Theorem 1, a smooth mapf is stationary
for 8( f ) if and only if it satisfies the equation

(4) divg � f D 0,

where� f is the covariant tensor defined by (3). It is the Euler–Lagrange equation for
the functional8( f ).

Proof of Theorem 1. We calculate (�=�t)k f �t hk2 at any fixed pointx0 2 M. The
connectionr is trivially extended to a connection on (�", ") � M. We use the same
notationr for this connection. The frameei is also trivially extended to a frame on
(�", ") � (the domain of the frame), and we use the same notationei . By a normal
coordinate atx0, we can assumerei ej D 0 for any i , j at x0. Since (d F)(t,x)((ei )(t,x))D
(d ft )x((ei )x), we denote them byd F(ei ) simply. Note that

(5) r�=�t (d F(ei )) D (r�=�t d F)(ei ) D (rei d F)

� ��t

� D rei

�
d F

� ��t

��
,

since [�=�t, ei ] D 0. Then we have

��t
kTftk2 D ��t

X
i , j

Tft (ei , ej )
2

D 2
X
i , j

�T ft (ei , ej )�t
Tft (ei , ej )

D 2
X
i , j

� ��t
h(d ft (ei ), d ft (ej )) � 1

m

�kd ftk2�t
g(ei , ej )

�
Tft (ei , ej )

D 2
X
i , j

� ��t
h(d ft (ei ), d ft (ej ))

�
T ft (ei , ej ) � 2

n

�kd ftk2�t

X
i , j

g(ei , ej )Tft (ei , ej )

D 2
X
i , j

� ��t
h(d ft (ei ), d ft (ej ))

�
T ft (ei , ej ) (by Lemma 1 (d))

D 2
X
i , j

� ��t
h(d F(ei ), d F(ej ))

�
T ft (ei , ej )

D 4
X
i , j

h(r�=�t (d F(ei )), d F(ej ))T ft (ei , ej ) (by Lemma 1 (a))

D 4
X
i , j

h

�rei

�
d F

� ��t

��
, d ft (ej )

�
T ft (ei , ej ) (by (5))

D 4
X

i

h

 
rei

�
d F

� ��t

��
,
X

j

T ft (ei , ej ) d ft (ej )

!

(* h(A, B)T ft (C, D) D h(A, T ft (C, D)B))
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D 4
X

i

h

�rei

�
d F

� ��t

��
, � ft (ei )

�
.

Thus we obtain

��t
kTftk2 D 4

X
i

h

�rei

�
d F

� ��t

��
, � ft (ei )

�
.(6)

Integrate the both sides of (6) onM, and then we have

d

dt

Z
M
kTftk2 dvg D

Z
M

��t
kTftk2 dvg

D 4
Z

M

X
i

h

�rei

�
d F

� ��t

��
, � ft (ei )

�
dvg.

Let t D 0 and using integration by parts, we obtain the first variation formula.

Take a 1-parameter family't (�" < t < ") of diffeomorphisms onM. Let X be
the smooth vector field onM corresponding to this 1-parameter family. We have the
following first variation formula for ft D f Æ 't .

Theorem 2 (first variation formula).

(7)
d8( f Æ 't )

dt

����
tD0

D � Z
M

(
kTf k2 divg X � 4

mX
iD1

h(d f (rei X), � f (ei ))

)
dvg,

where{ei } denotes a local orthonormal frame on M.

Proof. Theorem 2 follows from the general form of the first variation formula
(Theorem 1). TakeQX D d f (X) as a variation vector fieldX in Theorem 1 for ft D
f Æ 't , and then we have

(8) rei
QX D (rei d f )(X)C d f (rei X) D (rX d f )(ei )C d f (rei X).

We calculate
Pm

iD1 h(rX d f )(ei ), � f (ei )) at any fixed pointx0 2 M. Using a normal co-
ordinate atx0, we haverej ei D 0 hencerXei D 0 atx0, and then we have (rX d f )(ei ) DrX(d f (ei )). Then we get

(9)

4
X

i

h(rei
QX, � f (ei ))

D 4
mX

iD1

h(rX(d f (ei )), � f (ei ))C 4
mX

iD1

h(d f (rei X), � f (ei )).
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We calculate
Pm

iD1 h(rX(d f (ei )), � f (ei )). Let LX be the Lie derivative with respect to
the vector fieldX. We have

(10)

4
mX

iD1

h(rX(d f (ei )), � f (ei ))

D 4
mX

i , jD1

h(rX(d f (ei )), d f (ej ))Tf (ei , ej )

D 2
mX

i , jD1

LX{h(d f (ei ), d f (ej ))}T f (ei , ej )

D 2
mX

i , jD1

LX{h(d f (ei ), d f (ej ))}

�
h(d f (ei ), d f (ej )) � 1

m
kd f k2g(ei , ej )

�

D 2
mX

i , jD1

LX{h(d f (ei ), d f (ej ))}h(d f (ei ), d f (ej ))

� 2

m
kd f k2 mX

i , jD1

LX{h(d f (ei ), d f (ej ))}g(ei , ej )

D mX
i , jD1

LX{h(d f (ei ), d f (ej ))
2} � 2

m
kd f k2LXkd f k2

D LX

(
mX

i , jD1

h(d f (ei ), d f (ej ))
2

)
� 1

m
LXkd f k4

D LXk f �hk2 � 1

m
LXkd f k4

D LX

�k f �hk2 � 1

m
kd f k4�

D LXkTf k2.

Then by (9) and (10), we have

(11) 4
X

i

h(rei
QX, � f (ei )) D LXkTf k2C 4

mX
iD1

h(d f (rei X), � f (ei ))

Therefore we get

d8( f Æ 't )

dt

����
tD0

D d8( ft )

dt

����
tD0

D Z
M
LXkTf k2 dvg C 4

Z
M

mX
iD1

h(d f (rei X), � f (ei )) dvg

D � Z
M
kTf k2LX(dvg)C 4

Z
M

mX
iD1

h(d f (rei X), � f (ei )) dvg
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D � Z
M
kTf k2 divg X dvg C 4

Z
M

mX
iD1

h(d f (rei X), � f (ei )) dvg.

Thus we obtain the conclusion of Theorem 2.

4. Second variation formula

In this section we give the second variation formula for the functional8( f ). Take
any smooth deformationF of f with two parameters, i.e., any smooth map

F W (�", ") � (�Æ, Æ) � M ! N s.t. F(0, 0,x) D f (x).

Let fs,t (x)D F(s, t,x), and we often say a deformationfs,t (x) instead of a deformation
F(s, t, x). Let

X D d F

� ��s

�����
s,tD0

, Y D d F

� ��t

�����
s,tD0

denote the variation vector fields of the deformationF . Then we have the following
second variation formula.

Theorem 3 (second variation formula).

1

4

�28( fs,t )�s�t

����
s,tD0

D � Z
M

h

�
HessF

� ��s
,
��t

�
, divg � f

�
dvg

C Z
M

X
i , j

h(rei X, rej Y)T f (ei , ej ) dvg

C Z
M

X
i , j

h(rei X, d f (ej ))h(rei Y, d f (ej )) dvg

C Z
M

X
i , j

h(rei X, d f (ej ))h(d f (ei ), rej Y) dvg

� 2

m

Z
M

X
i

h(rei X, d f (ei ))
X

j

h(rej Y, d f (ej )) dvg

� Z
M

X
i , j

h(NR(d f (ei ), X)Y, d f (ej ))T f (ei , ej ) dvg,

whereHessf denotes the Hessian of f, i.e., Hessf (Z,W)D (rZ d f )(W)D (rW d f )(Z).

REMARK 2. Note that the first term in the right hand side vanishes iff is a
stationary map for the functional8( f ).



728 N. NAKAUCHI

REMARK 3. The last term of the right hand side in Theorem 3 is equal to

� Z
M

X
i

h(NR(d f (ei ), X)Y, � f (ei )) dvg.

Proof of Theorem 3. The connectionr is trivially extended to a connection on
(�", ") � (�Æ, Æ) � M. We use the same notationr for this connection. The frameei

is also trivially extended to a frame on (�", ") � (�Æ, Æ) � (the domain of the frame),
and denoted by the same notationei . Take and fix any pointx0 2 M, and we calculate
(�2=(�s�t))k f �s,t hk2 at x0 for sD t D 0 (for simplicity, we abbreviate the notation “sD
t D 0”). Using a normal coordinate atx0, we can assumerei ej D 0 for any i , j at
x0. Since � ��s

, ei

� D � ��t
, ei

� D 0,

we see

r�=�s(d F(ei )) D rei

�
d F

� ��s

�� D rei X,(12)

r�=�t (d F(ei )) D rei

�
d F

� ��t

�� D rei Y.(13)

We see

(14)

�2

�s�t
kTfs,tk2 D �2

�s�t

X
i , j

T fs,t (ei , ej )
2

D 2
X
i , j

��2T fs,t (ei , ej )�s�t
Tf (ei , ej )

�C 2
X
i , j

�T fs,t (ei , ej )�s

�T fs,t (ei , ej )�t

defDW I1C I2.

We have
(15)

I1 D 2
X
i , j

�2

�s�t

�
h(d fs,t (ei ), d fs,t (ej )) � 1

m
kd fs,tk2g(ei , ej )

�
Tf (ei , ej )

D 2
X
i , j

� �2

�s�t
h(d fs,t (ei ), d fs,t (ej ))

�
Tf (ei , ej ) � 2

m

�2kd fs,tk2�s�t

X
i , j

g(ei , ej )Tf (ei , ej )

D 2
X
i , j

� �2

�s�t
h(d fs,t (ei ), d fs,t (ej ))

�
Tf (ei , ej ) (by Lemma 1 (d))

D 2
X
i , j

� �2

�s�t
h(d F(ei ), d F(ej ))

�
Tf (ei , ej )

D 4
X
i , j

{h(r�=�sr�=�t (d F(ei )), d F(ej ))}T f (ei , ej )

C 4
X
i , j

{h(r�=�s(d F(ei )), r�=�t (d F(ej )))}Tf (ei , ej ) (by Lemma 1 (a)).
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We get

(16)

r�=�sr�=�t (d F(ei )) D (r�=�sr�=�t d F)(ei ) D (r�=�srei d F)

� ��t

�

D (reir�=�s d F)

� ��t

� � NR

�
d F(ei ), d F

� ��s

��
d F

� ��t

�

D rei HessF

� ��s
,
��t

� � NR(d f (ei ), X)Y.

Then by (12), (13), (15) and (16), we have

(17)

I1 D 4
X
i , j

h

�rei HessF

� ��s
,
��t

�
, d f (ej )

�
T f (ei , ej )

� 4
X
i , j

h(NR(d f (ei ), X)Y, d f (ej ))Tf (ei , ej )

C 4
X
i , j

h

�rei

�
d F

� ��s

��
, rej

�
d F

� ��t

���
T f (ei , ej )

D 4
X

i

h

�rei HessF

� ��s
,
��t

�
,
X

j

Tf (ei , ej ) d f (ej )

�

� 4
X
i , j

h(NR(d f (ei ), X)Y, d f (ej ))Tf (ei , ej )

C 4
X
i , j

h(rei X, rej Y)T f (ei , ej )

D 4
X

i

h

�rei HessF

� ��s
,
��t

�
, � f (ei )

�

� 4
X
i , j

h(NR(d f (ei ), X)Y, d f (ej ))Tf (ei , ej )

C 4
X
i , j

h(rei X, rej Y)T f (ei , ej )

D 4 divg �F � 4h

�
HessF

� ��s
,
��t

�
, divg � f

�

� 4
X
i , j

h(NR(d f (ei ), X)Y, d f (ej ))Tf (ei , ej )

C 4
X
i , j

h(rei X, rej Y)T f (ei , ej ),

where

�F (X) D h

�
HessF

� ��s
,
��t

�
, � f (X)

�
.
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On the other hand we have

I2 D 2
X
i , j

��s

�
h(d fs,t (ei ), d fs,t (ej )) � 1

m
kd fs,tk2g(ei , ej )

��T fs,t (ei , ej )�t

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

��T fs,t (ei , ej )�t

� 2

m

�kd fs,tk2�s

X
i , j

g(ei , ej )
�T fs,t (ei , ej )�t

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

��T fs,t (ei , ej )�t

(*Pi , j g(ei ,ej )�T fs,t (ei ,ej )=�tD(�=�t)
�P

i , j g(ei ,ej )Tfs,t (ei ,ej )
�D0 by Lemma 1 (d))

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

� ��t

�
h(d fs,t (ei ), d fs,t (ej )) � 1

m
kd fs,tk2g(ei , ej )

�

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

�� ��t
h(d F(ei ), d F(ej )) � 1

m

�kd fs,tk2�t
g(ei , ej )

�

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

�� ��t
h(d F(ei ), d F(ej ))

�

� 2

m

X
i , j

� ��s
h(d F(ei ), d F(ej ))

�
g(ei , ej )

�kd fs,tk2�t

D 2
X
i , j

� ��s
h(d F(ei ), d F(ej ))

�� ��t
h(d F(ei ), d F(ej ))

�

� 2

m

X
i

� ��s
h(d F(ei ), d F(ei ))

�X
j

� ��t
h(d F(ej ), d F(ej ))

�

(* �kd fs,tk2=�t D (�=�t)
P

j h(d fs,t (ej ), d fs,t (ej )) DP j (�=�t)h(d F(ej ), d F(ej )))

DW I3C I4.

(18)
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We have

(19)

I3 D 2
X
i , j

{h(r�=�s(d F(ei )), d F(ej ))C h(d F(ei ), r�=�s(d F(ej )))}

� {h(r�=�t (d F(ei )), d F(ej ))C h(d F(ei ), r�=�t (d F(ej )))}

D 2
X
i , j

h(r�=�s(d F(ei )), d F(ej ))h(r�=�t (d F(ei )), d F(ej ))

C 2
X
i , j

h(r�=�s(d F(ei )), d F(ej ))h(d F(ei ), r�=�t (d F(ej )))

C 2
X
i , j

h(d F(ei ), r�=�s(d F(ej )))h(r�=�t (d F(ei )), d F(ej ))

C 2
X
i , j

h(d F(ei ), r�=�s(d F(ej )))h(d F(ei ), r�=�t (d F(ej )))

D 4
X
i , j

h(r�=�s(d F(ei )), d F(ej ))h(r�=�t (d F(ei )), d F(ej ))

C 4
X
i , j

h(r�=�s(d F(ei )), d F(ej ))h(d F(ei ), r�=�t (d F(ej )))

(by exchanging the indicesi and j )

D 4
X
i , j

h

�rei

�
d F

� ��s

��
, d F(ej )

�
h

�rei

�
d F

� ��t

��
, d F(ej )

�

C 4
X
i , j

h

�rei

�
d F

� ��s

��
, d F(ej )

�
h

�
d F(ei ), rej

�
d F

� ��t

���

D 4
X
i , j

h(rei X, d f (ej ))h(rei Y, d f (ej ))

C 4
X
i , j

h(rei X, d f (ej ))h(d f (ei ), rej Y).

On the other hand by (12) and (13), we get

(20)

I4 D � 8

m

X
i

h(r�=�s(d F(ei )), d F(ei ))
X

j

h(r�=�t (d F(ej )), d F(ej ))

D � 8

m

X
i

h

�rei

�
d F

� ��s

��
, d F(ei )

�X
j

h

�rej

�
d F

� ��t

��
, d F(ej )

�

D � 8

m

X
i

h(rei X, d f (ei ))
X

j

h(rej Y, d f (ej )).
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Note (�2=(�s �t))8( fs,t )js,tD0 D RM (�2=(�s �t))kTfs,tk2js,tD0 dvg. Integrate (14) overM
and use (17), (18), (19) and (20), and then we obtain the second variation formula.

5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for stationary maps.
We assume the following weak notion of stationary maps.

DEFINITION 3. Let f be a smooth map fromM into N. We call it is stationary
for 8( f ) with respect to diffeomorphisms on Mif

d

dt
8( f Æ 't )

����
tD0

D 0

for any 1-parameter family't of diffeomorphisms onM.

Note that the notion of stationary maps in Definition 3 is weaker than that of sta-
tionary ones in Definition 2, sinceft (x) D f Æ 't (x) is a deformation in Theorem 1.
Under the above weaker condition, we give the following formula.

Theorem 4 (quasi-monotonicity formula). Let f be stationary for8( f ) with re-
spect to diffeomorphisms on M. Let m be the dimension of M. Then it satisfies

d

d�
(

eC2��4�m
Z

B� (x0)
kTf k2 dvg

)
� 4eC2��4�m('0(�)C C1'(�))

where B�(x0) denotes the open ball of a radius� with a center x0 2 M, and C1, C2

are constants. Here

'(�) D Z
B� (x0)

h

�
d f

� ��r
�

, � f

� ��r
��

dvg

and � f is defined by(3).

REMARK 4. If '(�) satisfies the condition'0(�)C C1'(�) � 0, then

eC2��4�m
Z

B� (x0)
kTf k2 dvg

is monotone non-decreasing.

Proof of Theorem 4. We use the argument by Price [4]. (See alsoXin [9], p. 43.)
Let X be a smooth vector field onM, which is supported compactly inBr (x0). Take
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a 1-parameter family't (�" < t < ") of diffeomorphisms onM corresponding to this
vector field. By Theorem 2, we have

(21) 0D d8( f Æ 't )

dt

����
tD0

D � Z
M

(
kTf k2 divg X � 4

mX
iD1

h(d f (rei X), � f (ei ))

)
dvg.

Let r D r (x) denote the distance function betweenx0 and x, and let�=�r be the
gradient vector field of the distance functionr . We can take an local orthonormal frame
ei such thatem D �=�r . We adopt here a smooth vector field

X(x) D � (r )r
��r D � (r (x))r (x)

��r
in a coordinate neighborhoodU of x0, which vanishes outsideU . The function� (r ) is
defined later. We see, for 1� i � m� 1,

rei

��r D
m�1X
jD1

Hess(r )(ei , ej )ej ,

where Hess(r )(X, Y)D (r dr )(X, Y)DrX(dr (Y))�dr (rXY) denotes the Hessian of the
function r . Indeed, notedr (ej )Dg(�=�r,ej )D0 ( j D1,:::,m�1) andg(�=�r,�=�r )D1,
and then we have

rei

��r D
mX

jD1

g

�rei

��r , ej

�
ej D m�1X

jD1

g

�rei

��r , ej

�
ej C g

�rei

��r ,
��r
� ��r

D � m�1X
jD1

g

� ��r , rei ej

�
ej D � m�1X

jD1

dr (rei ej )ej D m�1X
jD1

(r dr )(ei , ej )ej ,

since

0D rei

�
g

� ��r , ej

�� D g

�rei

��r , ej

�C g

� ��r , rei ej

�
,

0D rei

�
g

� ��r ,
��r
�� D 2g

�rei

��r ,
��r
�

.

We have

r�=�r X D r�=�r

�� (r )r
��r
� D (� (r )r )0 ��r ,(22)

rei X D � (r )rrei

��r D � (r )r
m�1X
jD1

Hess(r )(ei , ej )ej (1� i � m� 1).(23)
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By the comparison theorem of Hessian, we know

(24)
1

r
g(ei , ej )(1� C1r ) � Hess(r )(ei , ej ) � 1

r
g(ei , ej )(1C C1r ),

where c is a constant which depends on the upper and lower bound of thesectional
curvature ofM. We calculate divg X and

Pm
iD1 h(d f (rei X),� f (ei )) in the first variation

formula (21). By (22), (23) and (24), we have

(25)

divg X D m�1X
iD1

g(rei X, ei )C g

�r�=�r X,
��r
�

D � (r )r
m�1X
i , jD1

Hess(r )(ei , ej )g(ej , ei )C (� (r )r )0
� (m� 1)� (r )(1� C1r )C (� (r )r )0
D � 0(r )r Cm� (r ) � (m� 1)c� (r )r .

We also get by (22), (23) and (24),

(26)

mX
iD1

h(d f (rei X), � f (ei ))

D m�1X
iD1

h(d f (rei X), � f (ei ))C h

�
d f (r�=�r X), � f

� ��r
��

D � (r )r
m�1X
i , jD1

Hess(r )(ei , ej )h(d f (ej ), � f (ei ))C (� (r )r )0h�d f

� ��r
�

, � f

� ��r
��

� � (r )(1C C1r )
m�1X
iD1

h(d f (ei ), � f (ei ))C (� 0(r )r C � (r ))h

�
d f

� ��r
�

, � f

� ��r
��

D � 0(r )rh

�
d f

� ��r
�

, � f

� ��r
��

C � (r )

(
m�1X
iD1

h(d f (ei ), � f (ei ))C h

�
d f

� ��r
�

, � f

� ��r
��)

C C1� (r )r
m�1X
iD1

h(d f (ei ), � f (ei ))

D � 0(r )rh

�
d f

� ��r
�

, � f

� ��r
��C � (r )

mX
iD1

h(d f (ei ), � f (ei ))

C C1� (r )r

(
mX

iD1

h(d f (ei ), � f (ei )) � h

�
d f

� ��r
�

, � f

� ��r
��)

.
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We have by Lemma 1 (e)

(27)

mX
iD1

h(d f (ei ), � f (ei )) D mX
iD1

h

0
�d f (ei ),

mX
jD1

Tf (ei , ej ) d f (ej )

1
A

D mX
iD1

mX
jD1

h(d f (ei ), d f (ej ))Tf (ei , ej ) D kTf k2.

For simplicity we set

A

�
d f,

��r
� WD h

�
d f

� ��r
�

, � f

� ��r
��

.

Then by (26), (27), we have

(28)

mX
iD1

h(d f (rei X), � f (ei ))

� � 0(r )r A

�
d f,

��r
�C � (r )kT f k2C C1� (r )r

�kTf k2 � A

�
d f,

��r
��

.

Therefore by (21), (25), (28), we get

0D Z
M

(
kTf k2 divg X � 4

mX
iD1

h(d f (rei X), � f (ei ))

)
dvg

� Z
M
� 0(r )r kTf k2dvg Cm

Z
M
� (r )kT f k2 dvg

� (m� 1)C1

Z
M
� (r )r kT f k2 dvg

� 4
Z

M
� 0(r )r A

�
d f,

��r
�

dvg � 4
Z

M
� (r )kT f k2 dvg

� 4C1

Z
M
� (r )r kT f k2 dvg C 4C1

Z
M
� (r )r A

�
d f,

��r
�

dvg,

i.e.,

(29)

� Z
M
� 0(r )r kTf k2 dvg C (4�m)

Z
M
� (r )kT f k2 dvg C C2

Z
M
� (r )r kT f k2 dvg

� �4
Z

M
� 0(r )r A

�
d f,

��r
�

dvg C 4C1

Z
M
� (r )r A

�
d f,

��r
�

dvg,
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where C2 D (m C 3)C1. Take and fix a positive number", and let ' be a smooth
function on [0,1) such that

'(r ) D '"(r ) D �1 if 0 � r � 1,
0 if 1C " � r

and

'0(r ) � 0.

We define

� (r ) D ��(r )
defWD '� r�

�
.

We can verify

� 0(r )r D �� d

d� � (r ).(30)

SincekTf k2 is independent of�, the above facts (29) and (30) imply

� d

d�
Z

M
� (r )kTf k2 dvg C (4�m)

Z
M
� (r )kTf k2 dvg C C2

Z
M
� (r )r kTf k2 dvg

� 4� d

d�
Z

M
A

�
d f,

��r
�� (r ) dvg C 4C1�

Z
M

A

�
d f,

��r
�� (r ) dvg.

Let " tend to zero, and then, since� (r ) converges to the characteristic function for the
ball B�(x0), we have

� d

d�
Z

B� (x0)
kTf k2 dvg C (4�m)

Z
B� (x0)
kTf k2 dvg C C2�

Z
B� (x0)
kTf k2 dvg

� 4� d

d�
Z

B� (x0)
A

�
d f,

��r
�

dvg C 4C1�
Z

B� (x0)
A

�
d f,

��r
�

dvg.

Multiply eC2��3�m to the both sides of this inequality, and we have

d

d�
�

eC2��4�m
Z

B� (x0)
kTf k2 dvg

�

� 4eC2��4�m

�
d

d�
Z

M
A

�
d f,

��r
�

dvg C C1

Z
M

A

�
d f,

��r
�

dvg

�
.

Thus we obtain the formula.

6. Bochner type formula

In this section we prove the following formula.
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Theorem 5 (Bochner type formula). For any smooth map f from M into N, the
following equality holds:

(31)

1

4
1kTf k2 D div � f � h(� f , div � f )C 1

2
krTf k2

CX
i , j ,k

h((rek d f )(ei ), (rek d f )(ej ))Tf (ei , ej )

CX
i , j

h

 
d f

 X
k

MR(ei , ek)ek

!
, d f (ej )

!
Tf (ei , ej )

�X
i , j ,k

h(NR(d f (ei ), d f (ek)) d f (ek), d f (ej ))Tf (ei , ej )

where

� f (X) D h(� f (X), � f ).

Here � f is defined by(3), and � f D tr(rd f ) DP
j (rej d f )(ej ) is the tension field of

f in the harmonic map theory.(See Eells and Lemaire[2], p.9.)

REMARK 5. Note that the first term in the right hand side is of divergence form,
and hence the integral of it overM vanishes.

REMARK 6. Note that the second term in the right hand side vanishes iff is a
stationary map for the functional8( f ).

REMARK 7. The last two terms of the right hand side in Theorem 5 are equal to

CX
i

h

 
d f

 X
k

MR(ei , ek)ek

!
, � f (ei )

!

�X
i ,k

h(NR(d f (ei ), d f (ek)) d f (ek), � f (ei ))

respectively.

Proof of Theorem 5. We have

(32)

1kTf k2 D 1X
i , j

Tf (ei , ej )
2

D 2
X
i , j

(1Tf )(ei , ej )T f (ei , ej )C 2
X
i , j

X
k

(rek Tf )(ei , ej )
2

defDW I1C I2.
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We get

I1 D 2
X
i , j

(1Tf )(ei , ej )T f (ei , ej )

D 2
X
i , j

�
h((1d f )(ei ), d f (ej ))C 2

X
k

h((rek d f )(ei ), (rek d f )(ej ))

C h(d f (ei ), (1d f )(ej )) � 1

m
1kd f k2g(ei , ej )

�
Tf (ei , ej )

D 4
X
i , j

h((1d f )(ei ), d f (ej ))Tf (ei , ej )

C 4
X
i , j ,k

h((rek d f )(ei ), (rek d f )(ej ))Tf (ei , ej ) (by Lemma 1 (a) and (d)).

Since by Ricci formula,

(1d f )(ei ) DX
k

(rekrek d f )(ei ) DX
k

(rekrei d f )(ek)

DX
k

(reirek d f )(ek)C d f

 X
k

MR(ei , ek)ek

!

�X
k

NR(d f (ei ), d f (ek)) d f (ek)

D rei � f C d f

 X
k

MR(ei , ek)ek

!
�X

k

NR(d f (ei ), d f (ek)) d f (ek),

we have

(33)

I1 D 4
X
i , j

h(rei � f , d f (ej ))T f (ei , ej )

C 4
X
i , j

h

 
d f

 X
k

MR(ei , ek)ek

!
, d f (ej )

!
Tf (ei , ej )

� 4
X
i , j ,k

h(NR(d f (ei ), d f (ek)) d f (ek), d f (ej ))T f (ei , ej )

C 4
X
i , j ,k

h((rek d f )(ei ), (rek d f )(ej ))T f (ei , ej ).
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Furthermore we get

(34)

X
i , j

h(rei � f , d f (ej ))T f (ei , ej ) DX
i

h

 
rei � f ,

X
j

Tf (ei , ej ) d f (ej )

!

DX
i

h(rei � f , � f (ei ))

DX
i

divg � f �X
i

h(� f , divg � f ).

By (32), (33) and (34), we obtain Theorem 5, since I2 D 2krT f k2.

7. Minimizers in homotopy classes of the Sobolev space

In this section we utilize the notion of 3-homotopy in the Sobolev spaces, which is
given by White, and consider a variational problem of minimizing the functional8( f )
in each 3-homotopy class. For any two mapsf and g from M into N, these maps are
k-homotopic (k 2 N) if they are homotopic to each other onk-dimensional skeletons
of a triangulation onM. By Nash’s isometric embedding, we may assume thatN is a
submanifold of a Euclidean spaceRq. Let

L1,p(M, N) D { f 2 L1,p(M, Rq) j f (x) 2 N a.e.},

where L1,p(M, Rq) denotes the Sobolev space ofRq-valued Lp-functions onM such
that their derivatives are in Lp. Then White proved that the notion of the [p � 1]-
homotopy is compatible with the Sobolev space L1,p(M, N), where [ ] denotes the
Gauss symbol, i.e., [r ] is the maximum integer less than or equal tor .

Theorem S (Theorem 3.4 in White [8]. See also White [7], Schoen and Uhlenbeck
[5] and Bethuel [1]).
(1) The[ p� 1]-homotopy is well-defined for any map f2 L1,p(M, N).
(2) If f j converges weakly to f1 in L1,p(M, N), then fj and f1 are [ p� 1]-homotopic
for sufficient large j .

The functional8( f ) is defined on L1,4(M, N), in which the 3-homotopy is well-
defined. Then for any given continuous mapf0 from M into N, we want to minimize
the functional8( f ) in the following class:

F D { f 2 L1,4(M, N) j f is 3-homotopic to f0 and k f kL1,4(M,N) � C0},

whereC0 is a given positive constant. We may assume that the spaceF is not empty
for sufficiently largeC0.

Theorem 6. There exists a minimizer of the functional8( f ) in F .
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If a 3-homotopy class contains a conformal map, then the conformal map is a mini-
mizer. Minimizers are expected to beclosestto conformal maps, even if its 3-homotopy
class does not contain any conformal map.

REMARK 8. When M is 4-dimensional and�4(N) D 0, any continuousmini-
mizer is (freely) homotopic tof0 in the ordinary sense.

Proof of Theorem 6. Take any minimizing sequencef j for the functional8( f )
in the spaceF , i.e., 8( f j ) converges to the infimum inF . We may assume that
f j converges weakly to a mapf1 in L1,4(M, N), sincek f kL1,4(M,N) � C0. Since the
weak convergence in L1,4(M, N) preserves the 3-homotopy by Theorem S (2),f1 is
3-homotopic to f j for sufficiently large j , hence to f0. FurthermoreTf j converges
weakly to Tf1 in L2, since for any covariant 2-tensorS,Z

M
hTf j , Si dvg D

Z
M

�
f �j h � 1

m
kd f j k2g, S

�
dvg

D Z
M

�
f �j h, S� 1

m
hg, Sig� dvg,

where h , i is the pointwise pairing for covariant 2-tensors. Therefore we have

8( f1) D kTf1kL2 � lim inf
j!1 kTf j kL2 D lim inf

j!1 8( f j ).

Then f1 is a minimizer inF .
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