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Abstract
In this paper we are concerned with a variational problemafdunctional re-
lated to the conformality of maps between Riemannian matsfowe give the first
variation formula, the second variation formula, a kind loé tmonotonicity formula
and a Bochner type formula. We also consider a variationalblpm of minimizing
the functional in each 3-homotopy class of the Sobolev space

1. Introduction

Let (M, g), (N, h) be compact Riemannian manifolds without boundary. A simoot
map f from M into N is called aconformal mapif there exists a positive function
on M such thatf*h = ¢g, where f*h denotes the pullback of the metrdicby f, i.e.,
(f*h)(X, Y) = h(df(X), df(Y)).

We consider a covariant symmetric tensor
1
Ts := f*h— = |df|?
f —[dfl’g

wherem denotes the dimension of the manifdld, and ||d f ||> denotes the energy den-
sity in the harmonic map theory, i.e.,

Idf)? = Z h(df(e), df(e)).

(e denotes a local orthonormal frame dWl.) Then f is conformal atx if and
only if Tf = 0 at this point, unlessd(f)x = 0. In this paper we are concerned with
the functional

a(f) =[ 1T 12 dog,
M
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720 N. NAKAUCHI

where dvg denotes the volume form ofM, g), and

ITel? =" Ti(a, &)
i

The functional®(f) gives a quantity of the conformality of. We give the first vari-
ation formula and the second variation formula for this tioal. We also prove a
kind of the monotonicity formula and a Bochner type formukurthermore we want
to minimize the functional®(f) in each homotopy class of maps froM into N.
Minimizers are expected to beosestto conformal maps, even if its homotopy class
does not contain any conformal map. To this aim, we adopt ti®m of 3-homotopy
in the Sobolev spaces, which is given by White. We considear&ational problem of
minimizing the functional®(f) in each 3-homotopy class of the Sobolev space.

2. The tensorT; of the conformality and the functional ®(f)

Let (M, @), (N, h) be compact Riemannian manifolds without boundary andflet
be a smooth map fronM into N. In this section we give a tensdr; of the confor-
mality for any smooth mapf. We recall here the following two notions.

DEeFINITION 1. (i) A smooth mapf is weakly conformalf there exists anon-
negativefunction ¢ on M such that

1) f*h = ¢g
where f*h denotes the pullback of the metricby f, i.e.,
(f*h)(X,Y) = h(df(X), df(Y)).

(i) A smooth map f is conformalif there exists agpositive function ¢ on M satisfy-
ing (1).

The condition (1) is equivalent to
1
2 f*h = = ||df|g,
2 ~[dfIPg
since taking the trace of the both sides of (1) (with respedhe metricg), we have
[df]|? = mg, i.e., ¢ = (1/m)||df||%. Then f is conformal if and only if it satisfies (2)

with the assumptionid || # 0. Note thatf is weakly conformal if and only if for any
point x € M, f is conformal atx or dfy = 0.
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Taking the above situation into consideration, we utilire tovariant tensor

T oo L —ldfl’g,

'MXW@UMMY%—MWWXW

= h(df(X), df(Y)) - Elldfllzg(X, Y).
REMARK 1. Inthe case ofm = 2, the tensoiT; is equal to the stress energy tensor
1
S = f*h—]df|’g
in the harmonic map theory. (See Eells and Lemaire [3], p.)392

Lemma 1. (a) T; is symmetrigci.e, T;(X,Y) = T¢(Y, X).
(b) f is weakly conformal if and only if T= 0.
© IITel® = [ f*h)> = @/m)(df||*.
(d) Ts is trace-fregi.e,

Tracg Tr = Y _d(a. &) Ti(a, &) =0,
i

where ¢ denotes a local orthonormal frame on M.
(e) The trace of T with respect to the pullback *h is equal to the norm of (T i.e,

Tracen Tr = » _(f*h)(e, &)Ti (e, &) = | T¢||.
¥

Proof. (a) follows directly from the definition ofs.
(b): The argument mentioned above implies ttiais a weakly conformal map if
and only if f*h = (1/m)||df||?g, which is equivalent to the conditiofi; = 0.

(©):
ITe 1% = Z Ti(e, &)

2
—Ejmmm)ma»—ﬂmwmaq&

1)
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= Y h(df(e), df(e)))
ij
~ 2 Jaf|2 Y hiafe), df(eate, &) + ldfI* Y gte, &)
i, ij

2 1
= | F*hIZ = Z[df|* + =[df)*
m m

1
= | f*h)?— =|df|*
FEh= = lldf]

(d):
Trace Tr = ) (e, &) Tr(e, )
i

=Y de, e;){h(df(a), df(ey)) - %Ildfllzg(a, ej)}

i
=) _d(e, e)h(df(e) df(e)) - %Ildfll2 D . )

i i
= df|* —|df]?
=0.

ey
Tracen Tr = ) _(f*h)(e, &) Ti(e, &)

i

= Y h@f(e), die)Ti(e, &)
i
1

— 3 hdi(e), dfte){n@f@). dite) - a1 Pgte, o)}
i
= Y n@f(e), dfe)? - = [afI2 Y hf(e), dfe)gte &)
i i
_ * 2_& 4
= £l = ]
T by ().

Thus we obtain Lemma 1.

In this paper, we are concerned with the functional

(1) =/ 1T 11 dug.
M
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This functional ®(f) gives a quantity of the conformality of maps. Note that if f
is a conformal map, thed(f) vanishes.

3. First variation formula

In this section we give the first variation formula for the ¢tional ®(f). We
define an ‘f 1T N-valued” 1-formos on M by

or(X) =Y Ti(X, &) df(ey)
3 ' .y
= Xj:h(df(x), df(e)) df(e;) — —ldfl=df(X)

for any vector fieldX on M, wheree; denotes a local orthonormal frame &h. The
1-form o plays an important role in our arguments.
Take any smooth deformatioR of f, i.e., any smooth map
F:(—e,e)xM —= N st F(@,x)= f(x).

Let fi(x) = F(t, x), and we often say a deformatiofi(x) instead of a deformation

F(t, x). Let
X = dp(i)
at

denote the variation vector fields of the deformatien Then we have the following
first variation formula.

t=0

Theorem 1 (first variation formula).

dd(f;)
dt

= —4/ h(X, dng O'f) dvg,
M

t=0

where dg denotes the volume form on,Mnd divg o denotes the divergence of,
i.e, divgor =Y " (Veor)(@).

We give here the notion of stationary maps for the functiobéf).

DEFINITION 2. We call a smooth magd stationary (for the functional®(f)) if
the first variation of®(f) identically vanishes, i.e.,

do(f)|
dt oo
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for any smooth deformatiorf; of f. By Theorem 1, a smooth map is stationary
for ®(f) if and only if it satisfies the equation

(4) divg o =0,

whereo is the covariant tensor defined by (3). It is the Euler—Lagearquation for
the functional®(f).

Proof of Theorem 1. We calculaté/t)|| f,*h||? at any fixed pointxo € M. The
connectionV s trivially extended to a connection on-£, ¢) x M. We use the same
notation V for this connection. The frame is also trivially extended to a frame on
(—¢, €) x (the domain of the frame), and we use the same notagiorBy a normal
coordinate aip, we can assum¥gej = 0 for anyi, j at xo. Since @ F)q.x((&)¢.x) =
(df)x((e)x), we denote them by F(g) simply. Note that

(5) Vaat(dF(e)) = (Vaat dF)(&) = (Ve dF)(%) = Ve (d':(%))’

since p/at, ] = 0. Then we have
0 9
—[ TP = — > Ti(e, &)
8t ” ft” Bt -~ ft(a J)
0T+ (e, €
=2) :—f‘( ')Tft(a,ei)

5 L Laldfe
h(dfi(e), dfi(e))) m ot

g(e, ei)}Tf1(31 ej)

) 29df 2
S hdfi(e), dft(ej))}Tft(a’ &)~ att

Y g e)Ti(e, &)
]

=2 Z{ﬁh(d F(e), d F(ej))}Tn(a, &)

= 42 h(Vy/at(dF(e)), dF(ej)) Tr (e, ) (by Lemma 1 (a))
i

—a3on(va (aF(5)) i) Tueren oy )
i

- 4Zh<ve (dF(%)), ZTn(a,ej)dft(ej))
i J

(. h(A, B)T(C, D) = h(A, T (C, D)B))
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(s o(3)) o)

Thus we obtain

ol el
©) Tl =43 h(va (dF(a)),o—ft(a)).

Integrate the both sides of (6) dd, and then we have

d/ 0
— Tft 2dv =/ — Tft Zdv
gt [ ITl?dvg = | T dg

= 4/M Xi:h(va (dF(%)), oft(a)) dug.

Let t = 0 and using integration by parts, we obtain the first vanmafiormula. []

Take a l-parameter family; (—e <t < &) of diffeomorphisms onM. Let X be
the smooth vector field oM corresponding to this 1-parameter family. We have the
following first variation formula forf, = f o ¢.

Theorem 2 (first variation formula).

do(f o¢y)

) at

=- /M {”Tf I? divg X — 4 " h(df(Ve X), af(a))} dug,
t=0

i=1
where {g} denotes a local orthonormal frame on M.

Proof. Theorem 2 follows from the general form of the firstiaion formula
(Theorem 1). TakeX = df(X) as a variation vector fiel& in Theorem 1 forf, =
f o ¢, and then we have

(8) Ve X = (Vg df)(X) + df(Ve X) = (Vx df)(g) + df(Ve X).

We calculate) " | h(Vx df)(g), o (&)) at any fixed point, € M. Using a normal co-
ordinate atxo, we haveVe € = 0 henceVxe = 0 atxo, and then we haveMy df)(e) =
Vx(df(e)). Then we get

42 h(Ve X, o1 (&)

©) m .
=43 h(Vx(df(e)), o1(8)) +4 Y _ h(df(VeX), o1(8)).

i=1 i=1
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We calculate) ", h(Vx(df(e)), o(a)). Let Lx be the Lie derivative with respect to
the vector fieldX. We have

4% " h(Vx(df(e)), o (a))

i=1

=43 h(Vx(df(a)), df(e)Ti(a, )

ij=1

23" Lxih(df(e), df(e))Ti(e, &)

ij=1
m

~2 Y Lxih@fe), df(e,))}{h<df(a) dfep) ~ I ole, eJ)}

i,j=1

m

=2 Lx{hdf(e) df(e)ihdf(), df(e)

i,j=1

~ 2 jary? 3 Llh@f(e). dfe)lge. )

i,j=1

(10)

m 2
Z Lx{h(df(e), df(e))*} — E||df||2£x||df||2
,j=1

— {Z h(df(e), df(e,))z} - —£x||df||4

i,j=1

= Lx|| f*h[|* = E£x||df||4
1
— *WI2 _ df 4
Ex{llf hi* = —lldf]
= Lx|| T+ %
Then by (9) and (10), we have

(11) 42 h(Ve X, ot(&)) = Lx|Tel|? + 42 h(df(Ve X), o1 (e))

i=1

Therefore we get

do(f og¢) _do(fy)
dt o dt iy
/ LTl dug +4 S h(df(Va X), o1(e))
M i=1

[ I 2Lx(dug) + 4 [ S h(df(Va X), o1(e) dug

Mi=1
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m
— _/ 1T ]12 divg deg+4/ 3" h(df(Ve X), 01 (&) dv.
M Mi=1

Thus we obtain the conclusion of Theorem 2. O

4. Second variation formula

In this section we give the second variation formula for thactional ®(f). Take
any smooth deformatior of f with two parameters, i.e., any smooth map

F:(—&,€&)x(=8,8)xM >N st F(0,0,x)= f(x).

Let fsi(X) = F(s,t,x), and we often say a deformatiofg(x) instead of a deformation

F(s t, x). Let
X=dF(i) , Y=dF(i)
s/ |st—o ot

denote the variation vector fields of the deformatien Then we have the following
second variation formula.

s,t=0

Theorem 3 (second variation formula).

o d
= —/ h(Hess.‘: (—, —), divg Uf) dg
st=0 M Js ot

+/ > " h(Ve X, Ve Y)Ti (8, &) dug
M55

132 (fsy)
4 9sot

+ / Z h(Ve X, df(ej))h(Vq Y, df(g;)) dug
1]

+ [ 3 h(ve X, d(e)ni(e). Ve Y) dug
1]

2

_E/MXi:h(VaX,df(a))Xj:h(VeJY,df(ej))dvg

- /M Y h("R@f(e), X)Y, df(e) T (e, &) dug,
iyj

whereHess denotes the Hessian of, f.e., Hess(Z,W) = (Vzdf)(W) = (Vwdf)(2).

REMARK 2. Note that the first term in the right hand side vanished ifs a
stationary map for the functionab(f).
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REMARK 3. The last term of the right hand side in Theorem 3 is equal to

_/M Y_h(R(df(@), X)Y, o1 (e)) dug.

Proof of Theorem 3. The connectiovi is trivially extended to a connection on
(—&, €) x (=6, 8) x M. We use the same notatidn for this connection. The frame
is also trivially extended to a frame or-{£, ¢) x (=6, 8) x (the domain of the frame),
and denoted by the same notatign Take and fix any poinky € M, and we calculate
(9%/(0sat))|| f&hl|? at xo for s =t = 0 (for simplicity, we abbreviate the notatiors =
t = 07). Using a normal coordinate aty, we can assum&ge; = 0 for anyi, j at

Xg. Since
3 9
=|—,e|=0,
EREES
we see
3
(12) Vaas(dF(@)) = Ve (d F(a_s)) _ VX,
3
(13) Vam(dF(@)) = Va (d F(ﬁ)) A
We see
2
2 __ T 2
prerd LA blevers Z (8, )
(14) — 8 TfSt(a eJ anst(a eJ)anst(a el)
22 st @8 +22 at
def |1 |2
We have
(15)

2

= ZZ, %{h(a fo(@), disc(e) — = ldfaclPote, e,»)}me, &)

2 9%||d s

82
- 2;{@h(d foi(e), dfs,t(e,-))}Tf(e, &) -2

o 296, e)Ti(e, &)
i

2
- 22{%% fst(e), dfs,t(ej))}Tf(el, ) (by Lemma 1 (d))

—22{a AR, dF(e)] Ti(e. &)

=4 Z{h(va/asva/at(d F(e)), dF(e)} Tr (e, &)
i
+ 4Z{h(va/as(d F(&)), Voo (dF ()} T (a, €) (by Lemma 1 (a)).
i
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We get

0
VasasVasar(dF(&)) = (VajasVasar dF)(@) = (VaasVe d F)(a)

(16) = (Ve Va/ade)(%) — NR(d F(a), dF(ais)) dF(%)

9 9
=V, H —, — | = "\r(df X)Y.
. ess:(as, at) @f@), X)

Then by (12), (13), (15) and (16), we have

I, = 4X:h(Va Hes&(ais, %) df(ej))Tf(G, &)

iyj
— 4% h("R(df(e), X)Y, df(e))Ti (e, &)
ihj

(o (2) 5 o(3))

]
- 4Zh(va Hes&(ais, %) > Tile, ej)df(ej))
i i

— 4% h("R(df(e), X)Y, df(e)Ti (e, &)
ihj
+4) h(VeX, Ve Y)Ti(e, &)
(17) ij

= 4Zi:h(ve Hess:(ais, %) crf(a))

—4Y h("Rdf(e), X)Y, df(e))Ti(e, &)
i
+4) (Ve X, Ve Y)Ti(e, &)
¥
= 4di 4h(H 990 i
= Vg BF — ( es&(a—s,a), |vgof)
—4Y h("Rdf(e), X)Y, df(e))Ti (e, €)
i
+ 42 h(Ve X, Ve, Y) Tt (&1, &),
¥

where

Br(X) = h(Hes& (ais %) Uf(X))-
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On the other hand we have

(18)
T (8, €
l,=2) :ais{h(dfs,t(a), dfsi(ep) %”dfs’t”zg(e“ ej)}w
i

ot

ans,t (a 1 € )

d
= 2Z{a—sh(d F(e), d F(e,—))} o

Zalldfst” Z o(e. 8Tf (e )

m

T , €
=2 Z{a—s h(dF(e), dF(e; ))}—f&';? e)
i
(209(e,€)aTy, (e,6))/9t=(3/9t)(3; ; (& ,€))Tr, (&,€;)) =0 by Lemma 1 (d))

a 0 1
=25 {a_sh(d F(@). d F(ej))}ﬁ{h(d foe(@). dfse(e) — = dfuclP(e, ej)}

1 9||dfs]?
=ZZ{B%h(dF(Q),dF(ej))}{%h(dF(e.),dF(eJ))—Ea” att” g(a,ej)}
1]

- ZZ{B% NAF(@). dF(e) {5 NAF@), dF ()}

3| dfsel?
ot

T m Z{—h(d F(e), dF(eJ))}g(a e)
= 2;{8—S h(dF(e), dF(Ej))}{ah(d F(e), dF(e,-))}

N % Z{ais h(dF(e), dF(a))} Z{%h(d F(e)), dF(ej))}
i J

(. 9fldfse[?/0t = (3/0t) 3o; h(dse(ey), dfsi(ey)) = 32;(8/3t)h(d F(ey), dF(g)))

=:l3+ l4.
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I3 =2 {h(Vaas(dF(e)), dF(;)) + h(dF(e), Vias(dF(e))}
i

x {h(Va/at(dF(e)), dF(e))) + h(dF(e), Vit (dF(€))))}

=2 h(Vaps(dF(&)), dF(e))h(Va/u(dF(e)), dF(e;))
i
+2)  h(Vas(dF(a)), dF(e))h(dF(a), Va/a(dF(e))))
i
+2 Z h(dF(e), Vaas(dF(e))))h(Vyai(dF()), dF(e;))
i
+2 Z h(dF(e), Vi/as(dF(ej))h(dF(e), Vit (dF(ey)))
i
=4 Z h(Va/as(dF(e)), dF(ej))h(Va o (dF(e)), dF(ey))
1]
+4)  h(Vips(dF(a)), dF(e))h(dF(a), Va/a(dF(e))))
(by iéi(Changing the indiceisand j)

e or(3) s )

N

(s () arep(orn. ()

b

(19)

=4 " h(Ve X, df(e))n(Ve Y, df(e)))
]

+4 Z h(Ve X, df(ej))h(df(e), Ve Y).
N

On the other hand by (12) and (13), we get

o= 2 3 h(Vass(dF(@), dF(@) 3 h(Van(@F(ey), dF(e;)
i i

(20) = —% Z h(va (dF(ais)), dF(a)) ,Z h(vej (dF(%)), dF(ej))

8
=—— § :h(VaX, df(e)) § h(Ve, Y, df(e))).
i j

731
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Note (92/(9s 9t)) D(fs1)lsi—o = [y (0%/(0s 91)|| Tr, lI?|st—o dvg. Integrate (14) oveM
and use (17), (18), (19) and (20), and then we obtain the secaration formula. []

5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula &ationary maps.
We assume the following weak notion of stationary maps.

DEerFINITION 3. Let f be a smooth map frolM into N. We call it is stationary
for ©(f) with respect to diffeomorphisms on N

d
_@ 3
dt (fow) o 0

for any l-parameter family; of diffeomorphisms onM.
Note that the notion of stationary maps in Definition 3 is werathan that of sta-
tionary ones in Definition 2, sincd;(x) = f o ¢(x) is a deformation in Theorem 1.

Under the above weaker condition, we give the following folan

Theorem 4 (quasi-monotonicity formula). Let f be stationary ford(f) with re-
spect to diffeomorphisms on M. Let m be the dimension of Mn Ttheatisfies

d ,
i {e02”p4‘m [ IT11? dvg} > 4% p*™(¢/(p) + C19(p))
Y B, (%o)

where B(xo) denotes the open ball of a radiys with a center ¥ € M, and G, C;
are constants. Here

0= oo ()2

and o¢ is defined by(3).

REMARK 4. If ¢(p) satisfies the condition’(p) + C1¢(p) = 0, then

€20 o / 17412 dvg
Bp(XO)

is monotone non-decreasing.

Proof of Theorem 4. We use the argument by Price [4]. (SeeXilsd9], p.43.)
Let X be a smooth vector field oM, which is supported compactly iB, (xo). Take
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a 1-parameter family; (—e <t < ¢) of diffeomorphisms onM corresponding to this
vector field. By Theorem 2, we have

do(f o)

(21) 0= —

_ /{”Tfn divg X — 4Zh(df(VaX) af(a))} dvg.
t=0

i=1

Let r =r(x) denote the distance function betwerniand x, and leta/ar be the
gradient vector field of the distance functionWe can take an local orthonormal frame
g such thate,, = 9/9r. We adopt here a smooth vector field

X( = §0)r - = E( 0 ()

in a coordinate neighborhodd of xg, which vanishes outsidg. The function&(r) is
defined later. We see, for4i <m-—1,

m-1

- Z Hess()(e, gj)e;,
j=1

where Hess()(X,Y) =(Vdr)(X,Y) = Vx(dr(Y))—dr(VxY) denotes the Hessian of the
functionr. Indeed, notelr(ej) =g(d/0r,e;)=0 (j =1,...,m—1) andg(d/adr,d/dr) =1,
and then we have

R 9 = 9 3 9\ 9
Ve — = Ve—, € |gf = Ve —. € )€ Ve —, — | —
& or ;g(aar ’)’ jZIQ(aar ')'Jrg(aar 8r)ar

m-1 m-1 m-1

=—Zg(§-vael)el Zdr(vaej)eJ =Z(Vdr)(a,ej)ej,

j=1

el il

o= {o(ir-)) =o(%gr-o) + ol oo
J 0 a 0

o= %ol )} = 5(%oar-30)

(22 VoaX = Vo (»;f(r)r ) =€

m-1

(23)  VaX =£()rVes- _g(r)rZHess()(a g)e (L<i<m-1).
j=1

since

We have
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By the comparison theorem of Hessian, we know

@8 lofe.e)i-Ci) < Hessa. ) < Jala. €)1+ Cur),

wherec is a constant which depends on the upper and lower bound o$dbgonal
curvature ofM. We calculate diyX and )" h(df(Ve X),0¢(g)) in the first variation
formula (21). By (22), (23) and (24), we have

m-1

0
Vg X = Ve X Viar X, —
divg ;g( 5 ,G)+g( a/ar ,ar)
m-1

(25) = &(r)r Y Hesst)(e, &j)d(ej, &) + (E(r)r)

ij=1
= (M—1)&(r)L—-Cur) + E@)r)
=&'(r)r + mé(r) — (m—1)cs(r)r.

We also get by (22), (23) and (24),

h(df(Vg X), o¢(a))

-

Il
=

_ Téh(df(va X), o1 (e)) + h(df(va/af X), o1 (%))

m-1
= £()r 3 Hesst)(a, ephd (e, ar(@) + GOy n(at (). oo ))

ij=1

m—1
< 601+ Cir) 3 h(df(e), or(e)) + E()r + S(r))h(df(g), o1 (%))

i=1

(26) = E’(r)rh(df (;r) ot (%))

+§(r){mzl h(df(e), ot(a)) + h(df({;ir)' ot (g;ir))}

i=1
m—-1

+CiE(N)r Y _h(df(e), or(e))

i=1

=eom(at(5). o1 (55 )) + €0 2t or(e)

i=1

T+ CiE()r {il h(dt(e), o1 (@) — h(df(%), ot (%))}
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We have by Lemma 1 (e)

i=1 i=1 j=1

Zh(df(e) oi(&)) =Zh(df(a),ZTf(e,ej)df(ej))
(27) : .
> h(df(e), df(e))Ti(e, &) = [Te >

i=1j=1

o) oo (2)

Then by (26), (27), we have

For simplicity we set

> h(df(Ve X), ot (e))
(28) =1

<& @ra(dh o)+ €OITIE+ Caeor (1T 1E - Ad1 1) ).

Therefore by (21), (25), (28), we get

0= / {”Tf” divg X — 4Zh(df(VaX) of(a))} dg

i=1

z/ s’(r)r||Tf||2dvg+mf £ dug
M M

_<m_1)c1/Ms(r)r||Tf I dvg

) 9
—4/M £ (r)rA(df, 5) dvg—4/M E)Tel|? dug

—acy [ OrITiIP dug+ 40 [ é(r)rA(df, i) dug,
M M ar

—/ E' (s ||2dvg+(4—m)/Mé(r)||Tf ||2dvg+C2/M E)r I Te |? dug

M
/ 0 9
> —4/M 3 (r)rA(df, §) dvg +4C1/M é(r)rA(df, a) dvg,

(29)

735
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where C, = (m + 3)C;. Take and fix a positive number, and lety be a smooth
function on [0,00) such that

1 if o<r<1,
“’(r)_“"’(r)_{o if 14e<r

and
¢'(r)<0.

We define
def r
f0) =60 = (L),
1Y

We can verify

, d
(30) EOr =—p 0.

0

Since || T¢||? is independent op, the above facts (29) and (30) imply

d
p%/ME(r)||Tf||2dvg+(4_m)/Mé(r)”TfHZdUg‘FCZ/MS(I’)r||Tf||2dvg

d Bl 0
> 4,0@/';' A(df, a—r)f;‘(r)dvgJ +4C1,0/M A(df, a—r)é(r)dvg.

Let ¢ tend to zero, and then, sinéér) converges to the characteristic function for the
ball B,(xp), we have

1T 1% dug + Cap / 1T 11 dug

d
pa- [ TP duy+ @ m
P JB,(x) B, (o)

B/, (XO)

d 9 9
> 4p— A(df, —) dvg + 4C p/ A(df, —) dvg.
do Js,x) or ) " Je, 00 or) 0

Multiply e€“2# %™ to the both sides of this inequality, and we have
d { Cop 4
aplerom [ i)
dp B, (xo) ’

d ad d
> 4ec2pp4_m{% / A(d f, 5) dvg + le A(d f, a) dvg}.
M M

Thus we obtain the formula. L]

6. Bochner type formula

In this section we prove the following formula.
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Theorem 5 (Bochner type formula). For any smooth map f from M into Nhe
following equality holds

1 _ : 1
7 AT I? =divas —h(ze, divor) + SIVTi I?

+ ) h(Vedf)(@), (Ve df)(e))Tr (e, )
i,j.k

+ Zh<df(2 "R(e, e«)eK), df(ej))Tf(a, €j)
i k

— > h("R@df(g), df(a)) df(a), df(e))Ti (e, &)
i,j,k

(31)

where

at(X) = h(o+(X), 7¢).

Here o is defined by(3), and s = tr(Vdf) = Z,—(Ve, df)(e;) is the tension field of
f in the harmonic map theorySee Eells and Lemair], p.9.)

REMARK 5. Note that the first term in the right hand side is of divemgeform,
and hence the integral of it ovév vanishes.

REMARK 6. Note that the second term in the right hand side vanishdsif a
stationary map for the functionab( f).

REMARK 7. The last two terms of the right hand side in Theorem 5 areleigu

+ Zh(df(ik: "R(e, eK)eK). frf(a)>

- h("Rdf(e), df(a)) df(a), o1 (e))
i,k

respectively.
Proof of Theorem 5. We have
AlTel? =AY Ti(a &)
i
(32) =2) (AT, e)Ti(e, &) +2) ) (VaTi)(a, &)
i ij ok

def
=11+ Io.
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We get

lh=2) (ATi)(e, &) Ti(e, &)
i

= 2Z{h((Adf)(a), df(e) +2>  h(Vedf)(e), (Ve df)(ey))
ij k

+ (@), (3d(e) - - AlldfIPg(e. &) Ti(a, &)

=4 h((adf)(e), df(g))Ti(a, &)

i

+4) h((Vedf)(e), (Ve df)(€))Ti(a, ) (by Lemma 1 (a) and (d)).
i,jk

Since by Ricci formula,

(Adf)(@) =) (Ve Vedf)(@) =Y (Ve Vedf)(a)
k k

= (Vo Ve df)(a) + df (Z “Ree, eK)eK)
K k
- Y "R(@f(a), df(e)) df(e)
k

= Vg1t +df (Z "Ree, eK)eK) - "R@f(e), df () df(e),
k

k

we have

l1=4) h(Vers, df(e)Ti(e, &)
i

+4)° h<df (Z “R(e, @)@), df(ej)) Ti(e, &)
i k

—4%) h("R@df(e), df(e)) df(e), df(e))Tr(e, &)
i,j.k

+4) h(Vadf)@), (Ve df)(e))Tr (e, &)
i,jk

(33)
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Furthermore we get

}jm%nxﬁﬁ»nmeo=2}<%wh§ﬁwqqmﬂqﬂ
j

i i

(34) =) h(Vetr, o1(a))
i
= divgas — > h(zy, divg o).
i i
By (32), (33) and (34), we obtain Theorem 5, singe=l2||VT¢ 2. ]

7. Minimizers in homotopy classes of the Sobolev space

In this section we utilize the notion of 3-homotopy in the Slely spaces, which is
given by White, and consider a variational problem of minzimg the functionald(f)
in each 3-homotopy class. For any two mapsndg from M into N, these maps are
k-homotopic k € N) if they are homotopic to each other ¢gndimensional skeletons
of a triangulation onM. By Nash’s isometric embedding, we may assume th&as a
submanifold of a Euclidean spa@. Let

LYP(M, N) = {f e LYP(M,RY) | f(x) € N a.e},

where [1P(M, RY9) denotes the Sobolev space Rf-valued LP-functions onM such
that their derivatives are in L. Then White proved that the notion of the | 1]-
homotopy is compatible with the Sobolev spackP(M, N), where [] denotes the
Gauss symbol, i.e.r] is the maximum integer less than or equalrto

Theorem S (Theorem 3.4 in White [8]. See also White [7], Schoen and bihéek
[5] and Bethuel [1]).
(1) The[p — 1]-homotopy is well-defined for any mapefLP(M, N).
(2) If f; converges weakly to.fin L1P(M, N), then f and f,, are [p — 1]-homotopic
for sufficient large j.

The functional®(f) is defined on E4M, N), in which the 3-homotopy is well-
defined. Then for any given continuous mépfrom M into N, we want to minimize
the functional®(f) in the following class:

F={feLM,N)| f is 3-homotopic tofo and | f [ 14 ny < Col,

whereCy is a given positive constant. We may assume that the spatenot empty
for sufficiently largeCy.

Theorem 6. There exists a minimizer of the function&( f) in F.
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If a 3-homotopy class contains a conformal map, then theoccordl map is a mini-
mizer. Minimizers are expected to loosestto conformal maps, even if its 3-homotopy
class does not contain any conformal map.

REMARK 8. When M is 4-dimensional andrs(N) = 0, any continuousmini-
mizer is (freely) homotopic tofy in the ordinary sense.

Proof of Theorem 6. Take any minimizing sequenefor the functional ®(f)
in the spaceF, i.e., ®(f;) converges to the infimum iF. We may assume that
f; converges weakly to a map, in LY%M, N), since || f || zsu Ny < Co. Since the
weak convergence int%(M, N) preserves the 3-homotopy by Theorem S (8), is
3-homotopic to f; for sufficiently large j, hence tofo. FurthermoreTy converges
weakly to Ty in L?, since for any covariant 2-tens@;

1
/ (Ty;, S)dvg = / <fj*h — —||dfj %g, S>dvg
M M m

1
_ /M<fj*h, s- g, S)g> dug,

where (, ) is the pointwise pairing for covariant 2-tensors. Therefare have

®(foo) = [Trolle < liminf|| Ty ||z = lim inf &(f)).
J]—o0 ] —0o0

Then f,, is a minimizer inF. ]
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