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Abstract

The aims of the work presented in this dissertation are to understand the emer-
gence and the development of prosocial helping abilities in infants and to repro-

duce it into robots. The ensuing main objectives of our studies are:

e To propose a general motivation mechanism that explains how infants may
acquire prosocial helping abilities via the design of a computational model

to reproduce such behavior in robot.

e To construct an assistive robot capable to fluently and efficiently interact

with others in the context of joint tasks collaboration.

We propose a robotic model that build representations of its environment
based on predictive learning and perform actions to help others motivated by
the minimization of prediction error. By doing so, our systems become capable
to develop cognitive and prosocial abilities such as helping behavior or collabo-
ration, similarly to what infants are capable to do. We performed two studies
that describe major steps from the development of prosocial helping abilities to

efficient human-robot collaboration.

1. The first study presents a general mechanism explaining the emergence
of prosocial helping behavior based on goal understanding. Traditional
theories suggest that empathy and emotion contagion play capital roles in
the motivation for early prosocial helping behavior. However, recent stud-
ies have shown that infants can similarly help simple animated shapes to
achieve their goal, implying that another mechanism, more general, may
be involve in the emergence of prosocial helping behavior. We suggest
that when observing others actions, infants are capable to predict their

goals based on self-experience and to perform actions if the goal is not



achieved. In other words, infants help others to minimize prediction er-
ror. To evaluate our hypothesis, we design a computational model based
on psychological studies and implement it in real and simulated robots.
Our experimental results demonstrate that our robots could spontaneously
generate prosocial helping behavior by being motivated by the minimiza-

tion of prediction error.

2. The second study focuses on how to use previously described abilities to
generate efficient and fluent human-robot interactions. We address the
question of whether and when a robot should help to minimize prediction
error during collaborative human-robot task execution. Based on our pre-
vious model, we design a robot capable to autonomously perform table-top
manipulation tasks while monitoring the environmental state and human
activity. To evaluate our system, we implement three different initiative
conditions to trigger the robot’s actions. Robot-initiated reactive help
triggers robot assistance when prediction error is high; robot-initiated
proactive help makes the robot help whenever it can, even with low pre-
diction error; human-initiated help gives control of the robot action timing
to the user; Our user study results (N=18) give us significant proofs that
proactive robots perform best, while users prefer to be in control rather

than interacting with the reactive robots.

Together, these two studies describe mechanisms explaining how a robot
can develop prosocial helping behavior based on prediction error minimization
and perform efficient and fluent collaboration. Our results contribute to the
field of developmental science and robotics by proposing a general and likely
mechanism for the development of prosocial helping abilities that can be used

to create efficient assistive robots.
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Chapter 1

Introduction

The ability to act prosocially and to help our conspecifics is viewed by many
researchers as the roots for the development of higher social capabilities such
as concern for others, collaboration and altruism [27) [82]. Human infants start
to prosocially help others from their second year of life. From 14 months of
age, they have been shown to help in simple scenario, for example giving an
experimenter out-of-reach objects [00]. Later in their second year of life, as
their cognitive and motor maturity increases, infants gradually start to help
others in achieving more complex goals. They become able to, for instance,
open a closet to allow an experimenter to store books or stack boxes correctly
on a pile [88] [89] [66, (0, [73, [OT] (see Fig. .

Why being social? Why is it important for humans (and robots) to behave
prosocially toward our conspecifics? One obvious advantage is that it allows
us to be part of a society in which we can count on each other’s; help and
being helped. If humans were not social, we would have no reasons not to be
secluded, and we would fail to create the bonds that allow us to live, work and
stay together. Then why humans, contrary to most other animal species, have
abandoned selfishness and individual thinking when in a group and started being
social? According to Darwin [I§], being prosocial is part of an evolutionary
process to deal with threats or increase reproductive capabilities. This theory
of evolution can explain the epigenetic changes leading to more social humans,
but not why infants are capable to help other from as early as 14 months of age.

The emergence of prosocial behavior observed in the early development of

14



Figure 1.1: Example of helping behavior shown by 18-month-old infants [88].
(a) The infant opens the cabinet door after seeing the adult trying to put a stack
of book inside. (b) The infant hands a clothespin to the adult trying to reach
for it. (c) The infant stacks boxes that the adult “accidentally” misplaced.

infants has, for many years, intrigued and still fascinates scientists in the fields
of psychology, cognitive and developmental sciences, and neuroscience. To find
out why and how infants become prosocial (or if they are from birth), scientists
have performed a large number of psychological experiments. Some concluded
that prosocial acts of help are based on the ability to differentiate self needs
and emotions to others’ and that infants help to alleviate perceived distress [4].
Some claimed that infants are biologically predisposed to empathy and altruism
[42]. Others argued that immature self-other differentiation and goal contagion
are responsible for the emergence of prosocial behavior [50].

This interest and hypotheses resulted in a number of theories, or models,
proposed to explain why and how infants help others. For instance, the emotion-
sharing model suggests that an early form of empathy, in the form of emotional
contagion, could be the primary behavioral motivation for infants to act proso-
cially [90] 20, 21]. In other words, infants help others to alleviate shared distress
[4]. On the other hand, the goal-alignment model proposes that infants do not
need to feel another person’s distress, but in fact align their goal with others

through a contagion process and are prompted to achieve them [49] [50] (see
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Chapter [2| for more details).

These theories are based on solid and thorough evidences, but limitations
unable us to propose concrete and clear mechanisms for the emergence of proso-
cial helping behavior. The emotion sharing model is based on the ability to
differentiate self from others, which means that being able to recognize someone
else’s mental state is required to help him [69]. However, some studies showed
that helping emerges from 14 months of age, which is before the age at which
infants acquire mental state differentiation [90]. The goal alignment model does
not depend on mental state recognition, but fails to propose any motivational
mechanism to explain why infants perform actions after aligning their goals with
others. While these theories provide useful insights on prosocial behavior, the
underlying mechanisms and the motivation to help are still largely debated and

are not clearly defined.

1.1 Prosocial Behavior in Robots

Let us now come back to the question asked at the beginning of this introduction
on why being social, but this time from the point of view of robotics. In the mid-
dle of the 20th century, robots became common tools in the factories, providing
incredibly accurate and efficient help for hard labor and brain-less tasks. In the
last two decades, robots started to become more and more sophisticated and
allowed for even faster and more precise industrial production. At this point,
robots also started to leave industry and enter into our household in the shape
of vaguely autonomous toys like Aibo or tools like Roomba [311, [83]. However,
we are still very far from having prosocial robots that help and assist humans
such as those who inspired many robotics like Astro-boy, R2D2 or Wall-E.

To design artificial agents capable to interact with us socially and help ef-
ficiently, it appears necessary that they acquire human-like social capability.
To make this possible, scientists have recently proposed computational models
and algorithms capable to learn similarly with humans. An example is machine
learning, which is a part of computer science in which agents are no longer
pre-programmed, but learn models of the world by interacting with it. In par-
ticular, a subfield called cognitive developmental robotics (CDR) [2] aims to
design robots that can learn and develop cognitive abilities based on human

development. Progress in this area has allowed in the last years to develop
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more prosocial robots that are becoming a step closer to their science-fiction
counterpart. Some examples of these new types of robots can learn to predict
the effect of their actions on objects [86, [85] or acquire the ability to imitate
others’ intended goal [14].

In addition to create robots that are becoming more and more helpful and
social, CDR may help psychologists and cognitive scientists to better understand
human development. Indeed, studies in CDR are strongly inspired by infant
development and propose bio-plausible robotics models for the emergence of
cognitive and prosocial abilities. Therefore, we may be able to better understand
humans by proposing infant-inspired model that replicate the different phases

of our development.

1.2 Targets and Key Ideas of our Study

The development of prosocial helping behavior in infants is a fundamental step
of their learning and integration into our highly social environment. Even if
the evidences of its early emergence are plenty, only few theories have tried to
explain infants’ motivations to act prosocially and the mechanisms or the cog-
nitive functions that foster its development. The main target of our work is to
understand why and how infants become capable to perform prosocial helping
behavior from early in their second year of life. To that end, we designed a
cognitive developmental robotics system that replicates infants’ development.
Furthermore, we want to know when and how such system should generate
prosocial helping behavior in order to be efficient during human-robot interac-
tion and collaboration.

To achieve these research targets, we propose the three following issues to

be solved in our study:
1. What is the motivation for infants to help other?

2. What is the role and effect of cognitive maturity on the development of

prosocial helping behavior?
3. How to design an efficient autonomous helping robots inspired by infants?

Our key idea and hypothesis is that infants are motivated to help others by

the minimization of the prediction error between predicted and observed goal.
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We assume that infants first learn their sensorimotor model through experience
with the world. Due to immature cognitive abilities and the absence self-other
differentiation, others’ action goals are assimilated by the infant. Finally, infants
would be prompted to perform an action in order to minimize the prediction

error and achieve the assimilated goal if others failed it.

1.3 Overview of the thesis

In this dissertation, we proposed an infant-inspired computation model that
replicates the emergence of prosocial helping behavior observed in infants. We
used a model based on predictive learning (see Chapter that learns from
experience and acquires infant-like cognitive abilities. We then performed a
series of experiments with robots to evaluate our ideas and hypothesis. Our first
results demonstrated that our infant-inspired systems could acquire prosocial
helping behavior based on the prediction error minimization (see Chapter. We
also showed how the robot’s performances changed in human-robot collaboration
when varying the initiative variable during helping, and how these different
behaviors are perceived by users (see Chapter [5). We finally summarized our
contribution and introduced our future work the conclusion (see Chapter @

This thesis is composed of six chapters summarized below:

e Chapter 1 - Introduction
The aim of this study is to understand and reproduce the emergence of
prosocial helping behavior in infants. In this chapter, we showed why being
able to help others is important for the development of infants and how it
scaffolds their insertion into our society. We then suggested the advantages
of replicating such behavior into robotic systems, both to create more
efficient and social robots and to better understand human development.
Next, we introduce the main targets of our work and our key ideas based
on the minimization prediction error. Finally, we gave an overview of our

contributions and the expected implications of our results.

e Chapter 2 - Related work
We first review the most significant psychological and developmental stud-
ies related to the emergence of helping behavior in infants. We then detail

the achievement in the field of infant-inspired assistive and helping robotics
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agents. To finish this chapter, we show how other scientists tackled the

problem of social human-robot collaboration.

Chapter 8 - Predictive learning to understand infant development

Predictive learning describes how agents can learn and build a model of its
environment through experience. By interacting repeatedly on the world
in various context and with different behavior, the agent becomes able
to learn a sensorimotor predictor that estimates the effect of its actions
on the environment. In this chapter, we introduce predictive learning
and present our general model to explain the underlying mechanism of

prosocial helping behavior.

Chapter 4 - Prediction Error Minimization for the Emergence of Helping
Behavior

In this chapter, we suggest that infants are capable to predict others’
goals based on self-experience and to perform actions if there are not
achieved. In other words, infants help others to minimize prediction error.
We evaluate our claim with two experiments showing how a robot can

acquire helping behavior similar to what is observed in infants.

Chapter 5 - From the emergence of helping to efficient collaboration

Based on our model for the minimization of prediction error, we show
how and when a robot should help during collaboration with human to
be perceived efficient. We present three initiative conditions to trigger
the robot’s help: Robot-initiated reactive help triggers robot assistance
when it detects high prediction error; robot-initiated proactive help makes
the robot help whenever it can, even with low prediction error; human-
initiated help gives control of the robot action timing to the user; The
result of our user study showed that proactive robots perform best and
are perceived more efficient and natural that the robot reacting to high
prediction error. However, reactive and prosocial robots elicited fewer
face gazes than the human initiated ones, which may suggest that the

interactions were less natural.

Chapter 6 - Conclusion
In this final chapter, the main contributions are presented. We suggest
that prediction error minimization can account for the emergence of proso-

cial helping behavior based on our experimental results. We show that

19



cognitive maturity, and in particular the ability to understand actions,
directly affected the robot’s helping performances. Next, we prove that
users interact better with a robot if it helps proactively rather than when
it reacts to high prediction error values. The chapter is concluded by the
enumeration of our model’s limitations and the presentation of our future

work.
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Chapter 2

Related Work

In the introduction, we showed the importance of infants’ prosocial development
for their integration into our society. We highlighted the remaining issues that
prevent us from fully understanding why and how infants help others early in
infancy. In this chapter, we review the literature related to these points. We
start by looking at evidences and theories about when and why infants start
to perform prosocial helping behavior. We then present studies that replicate
infants’ behavior and endow robots with the ability to perform helping and
collaborative tasks.

In Fig. the main findings related to the emergence of prosocial helping
behavior and the development of related cognitive abilities are summarized.
We show when infants become able to help in different scenario and when the

corresponding required cognitive capabilities develop.

2.1 Prosocial Helping Behavior in Infants

In this section, we review the work orbiting around the emergence of prosocial
helping behavior, especially when and why it develops. Additionally, we look
at the development of action understanding, which is described by some as the

minimal cognitive requite for helping.
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HEIp'ng ab'“ty Birth 6 months 12 months 18 months 24 months
Out-of-reach 0 i
[90] and [24]
Physical obstacle
[89, 90]

Wrong result*
[89, 90]

Wrong means** i I
[89, 90] i |

Cognitive
capabilities Birth 6 months 12 months 18 months 24 months

Action
understanding [94] i i

S/O assimilation

[9, 28] 1 1

S/O differentiation
[9, 28, 69]

No evidence in favor Few evidences in favor Strong evidences in favor

| I

Figure 2.1: Time-line for the emergence of prosocial helping behavior and the
parallel development of cognitive capabilities. S/O: “self-other”. *Wrong result:
represents scenario in which an action has a different outcome from what can be
expected. **Wrong means: represents scenario in which the action to achieve a
predictable goal is not adapted. The gradient represent the stage of acquisition
of the helping ability or cognitive capabilities. Light gray is equivalent to no
evidence in infants. Dark gray represents small evidences or low maturity. Black
represent strong evidence of high maturity of the ability or capability. This time-
line is based on the work of Paulus et al. [69], Dunfiel et al. [24], Woodward
[04], Warneken et al. [89, [90], Fein et al. [28] and Brownell et al. [9].

2.1.1 When does Prosocial Helping Start?

In the past decades, experimental studies have provided a large amount of ev-
idences showing infants performing prosocial helping behavior at the end of
the sensorimotor development stage (24-month-old according to Piaget [71]).
Progressively, psychologists tested younger and younger infants to find out the
earliest age at which they can help others (see Fig. for a summary of our
evidences).

At the end of their second year of life, children are known to help others in
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fairly complex situations. Dunfield et al. for instance showed that at this age,
infants had no difficulties helping adult that try to grab out for reach objects
[24].

Even earlier, Warneken et al. [89 [88] showed that 18-month-old children
could help others spontaneously in various situation. For instance, their studies
showed children opening the door of a cabinet to allow an experimenter to put
books inside, or correctly stacking boxes on a pile when an adult accidentally
misplaced them. Over et al. [66] also showed that same age infants would more
often and spontaneously help others in need when shown photographs evoking
affiliation, showing the importance of the social factor.

Finally, Warneken and Tomassello recently performed a new set of experi-
ments to show if even infants at 14 months of age were capable to be prosocial
[00]. Despite the fact that cognitive maturation is very low at the beginning
of their second year of life, infants surprisingly were still capable to help oth-
ers. When the experimenter reached for a paper ball and failed to grab it, the

toddler spontaneously gave him the targeted objects without hesitation.

2.1.2 Why do Infants Help Others?

While we now know that infants can help from 14-month-old, their cognitive
maturity as such a young age is very limited and therefore the mechanism that
triggers adult help cannot be applied. To solve this puzzle, we introduced two
models theorizing about the emergence of infants’ prosocial behavior in the pre-
vious chapter. In this section, we review more in details these theories and
highlight their limitations and issues yet to be solved (see Paulus et al. [69] for
more complete review). To further clarify our argumentation, the cognitive de-
velopment evidences presented in this section are reported in Fig. alongside

the emergence of prosocial helping behavior.

Emotion-Sharing and Shared Distress

Emotion-sharing models suggest that an early form of empathy, in the form of
emotional contagion, could be the primary behavioral motivation for infants to
help [90} 20} 21]. Studies related to emotion-sharing models indeed posit that
infants are primed to generate prosocial behavior in order to alleviate others’

distress [95] 25]. This requires the ability to actually “feel” another person’s
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emotional state, which is often called emotional contagion and represents “an
automatic response resulting in a similar emotion being aroused in the observer
as a direct result of perceiving the expressed emotion of another” (definition by
Decety [21]). This ability is accepted as one of the lowest forms of empathy [20]
and the cognitive requisite to prosocial helping behavior. Some scientists claim
that infants experience an empathy-based feeling toward individuals in need of
help, and that it serves as the primary motive for prosocial helping behavior
[76, [44]. In practice, Warneken and Tomasello [88, O0] showed that infants
helped others in achieving their goals and postulated that it substantiated the
existence of a prosocial motivation in early infancy, closely related to empathy. It
has been argued that empathetic concern is also independent from self-reflective
abilities [I9] and that empathy may be an innate capacity [43]. Studies have
shown that very young children, before the age at which they develop self-other
discrimination [9] 28], attempted to alleviate the distress of others and showed
empathetic concern [95], and that even 12-month-old infants were concerned for
others in distress and sometimes intervened by comforting them [25].

However, the cognitive abilities required by infants to feel empathetic con-
cern for others, and thus to develop prosocial helping behavior on the basis
of the alleviation of the shared distress remain very controversial. Some scien-
tists have argued that self-other differentiation is required to acquire empathetic
concern for others and to help, which implies that only infants that passed the
self-recognition task would help others prosocially [0 [7, [69, 49]. Nevertheless,
undeniable proofs of prosocial helping behavior have been shown during the
first half of the second year of life, even though self-other differentiation and
self-concept are immature as shown in Fig. On the basis of these findings,
we can assume that another source of motivation, more general in nature, may

provide behavioral motivations to help others.

Goal-alignment and Action Understanding

Unlike emotion-sharing models, which are based on emotional contagion and
empathetic concern, the goal-alignment models propose that more general mech-
anisms, based on the understanding of others’ goals, serve as behavioral moti-
vations for infants to help others. In other words, inferring or feeling others’
mental or emotional state is not required for acting prosocially, but the ability

to understand others’ goals is a sufficient prerequisite. Indeed, Kenward [50]
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reported that 18-month-old infants could help spherical objects with no human-
like body to reach their goals, which may imply that empathy elicited by direct
body matching is not applicable. They postulated that infants may be “primed
by an unfulfilled goal”, which supports the possibility of a general mechanism
different from empathy and concern for others that could motivate infants to
exhibit prosocial helping behavior.

In fact, infants very early in their infancy undergo a developmental process
that allows them to perceive others’ actions as goal-directed. Several studies
have been carried out to reveal when and how infants start understanding goal-
directed actions. A remarkable work conducted by Woodward [03] shows that
infants (5, 6 and 9 months old) with goal-directed action experience react differ-
ently to actors reaching for and grasping objects. Later, Sommerville et al. [81]
studied the impact of 3-month-old infants’ action production on the perception
of others’ actions. The participants of the experiment were 3-month-old infants.
Their findings reflected infants’ ability to detect the goal structure of action af-
ter experiencing object-directed behavior, and to apply this knowledge when
perceiving others’ actions.

In addition, some experimental results tend to show that infants can assim-
ilate others’ action goal as their own through a goal contagion process. This
mechanism is closely related to the mirror neuron systems, which are groups of
neurons that fire similarly when performing or observing a same goal-directed
action [4]. Therefore, infants would be affected by this contagion process and
perform actions to achieve the shared goals when others fail to do so, leading
to what would seem to be prosocial helping behavior.

To explain why infants help others, the goal alignment models suggest that
young children are prompted by unachieved goal. However, even if it has been
shown that infants can assimilate others’ goals, the behavioral motivation ex-

plaining why infants would perform actions in response is not known.

2.2 Helping Robots and Human-Robot Collab-

oration

Given our emphasis on the importance of understanding infant prosocial help-
ing behavior using a computational approach in Chapter [ previous work on

assistive robots and their associated methodology are highly relevant.

26



Akin of our interest, Chung et al. [14] proposed a developmental robotic sys-
tem based on statistical inference of others’ action goal to generate the imitation
of intended goal. Using a Bayesian network, their system learns probabilistic
models of actions through experience with its environment. Then it uses this
learned models to infer humans’ action goals, and finally achieve the predicted
goal. While their work focuses more on the imitation of intended goal than
helping, their approach is highly consistent with ours and provides useful hint
and direction for our study.

Other works by Verma et al. [87] and Grimes et al. [35] also used proba-
bilistic inference of others’ action and goal similar to ours. They showed that
probabilistic model could be used to generate goal-based and action-based im-
itation. Similarly, Gray et al. [34] presented an architecture for action parsing
and goal inference using self as simulator. Based on the well-known simulation
theory, their model uses the same cognitive structure to generate behavior and
simulate others’ mental states when performing actions. The robot presented
in their work is thus capable to anticipate others needs and to offer meaningful
assistance.

Liu et al. [52] proposed a human intention recognition algorithm to allow a
robot to collaborate with a human. They used a finite state machine in order
to allow their system to estimate one’s goal and to guide the robot’s actions.
This method allowed for more efficient interaction, but more importantly co-
operation robust to uncertainty and noise. Similarly, Najmaei and Kermani’s
prediction-based reactive control model for collaboration [62] used neural net-
work to predict an upcoming event based on the current sensory observation.
Based on this prediction, the robot is capable to react and minimize the poten-
tial danger of others’ actions.

In recent years, collaborative robots designed to work side-by-side with hu-
mans have gained momentum in real-world settings. This has fueled a large body
of research on human-robot collaboration, tackling for instance the problem of
task planning for joint human-robot tasks. Shah generates a robot action plan
so as to minimize human-idle time [78]. Another vein of research focuses on low-
level motion planning for the robot within a collaborative context [54] 53| [79],
with an eye towards improving team fluency and the user’s sense of safety.

Researchers have studied other low-level behaviors, besides robot motion,

that impact collaboration and enable coordination of actions during task execu-
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tion [59]. For example, St. Clair and Mataric demonstrated that robot verbal
feedback improves team performance [I5]. Awais proposed mechanisms to mit-
igate breakdowns in the joint tasks [3]. Others focus on the coordination of
micro-interactions that occur during collaboration, such as object hand-overs,
using gaze [58] or adapting timing of motions to the human’s state [46]. Chao
and Thomaz developed mechanisms to coordinate sharing of common resources
during collaboration, such as the speaking floor or part of the workspace that
both the human and the robot need to access [13].

Besides generation of robot behaviors, another key problem in human-robot
collaboration is perception of the human. Preliminary work by Hoffman and
Breazeal suggests that anticipatory perceptual simulation improves efficiency
and fluency in teamwork [41, [40]. With the help of new sensing and human
tracking technologies, many others followed with models of action or motion
anticipation in the context of human-robot collaboration [63, [3] [48] [37].

In the context of human-robot collaboration, one study by Gombolay et al. is
particularly relevant. They investigate decision-making authority in the plan-
ning process and find that people are willing to give control to the robot for the
efficiency benefits [32]. While our assumptions are consistent with theirs, our
study differs in its focus on authority over assistance timing during task exe-
cution, as opposed to authority over assistance allocation during task planning.
Groten et al. looked at shared decision making in the context of haptic collabo-
rations [30]. Cakmak et al. investigated initiative in robot question asking [10].
In addition, the large body of work on mixed-initiative control in the context of
robot teleoperation [29] has some relevance to our work.

Finally, several of the challenges related to fluent and efficient human-robot
collaborations have already been tackled. Some of the main research threads
have investigated ways to compute robot action plans that improve joint task
performance while reducing the workload on the human [3§], tracking and an-
ticipating human motion to enable execution of such task plans [70, [64], and
designing robot behaviors to improve team effectiveness and fluency [23, [13].
Others have given guidelines on the behavior the robot should perform in order
to be perceived as social. For instance, Li et al. [51] suggested that a social
robot should be able to recognize the presence of human, engage in physical
acknowledgment, use physical motions, express/perceive emotions and engage

in some sort of communication.
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Chapter 3

A theory of Predictive
Learning to Understand

Infant Development

To explain the emergence of prosocial helping behavior in infants, we decided to
emulate their development using a computational model. Based on the related
work, we identified the main components required for infant to start helping
others, such as goal understanding or the assimilation of others’ action goal.
To reproduce these cognitive and motor capabilities into a robotic system, we
decided to use a model based on predictive learning.

In the next sections of this chapter, we first introduce the idea of predictive
learning and how it could allow artificial agents to acquire causal knowledge of
the world (e.g., the effect of an action on the environment). We then present
the general model used throughout our experiments that reproduce the cognitive
and motor capabilities of infants that are involved in the emergence of prosocial

helping behavior.

3.1 Predictive Learning

In industry, robotics methods are mostly based on a set of pre-programmed mod-

els and heuristics describing the expected effects of a robot on its environment
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Figure 3.1: Basic architecture for sensorimotor predictive learning proposed
in [6I] that consists of two parts: a sensorimotor system (the lower box) and a
predictor (the upper box). The sensorimotor module performs actions under a
certain sensory states and receives a new state in return. The predictor module
learns to estimate sensory and motor signals, through interaction with the world.
The target of the system is then to minimize the difference between the observed

new state and its predicted value.

and vice-versa. In step planning, a robot would need to compute all the possible
solutions and select the shortest path based on a human-designed cost function.
While these approaches are efficient for repetitive tasks in known situations,
they do not scale to complex and changing environment such as human-robot
joint task collaboration.

To solve these issues, machine learning allows agents to construct models of
the world by interacting with it and to make prediction about future events. Sys-
tems using machine learning are trained through different processes, such as trial
and error or supervised learning, during which value functions are optimized.
This enables agents to make decisions based on new data with a minimum of
pre-programmed behavior.

Predictive learning describes such a technique in which an agent can build
a model of its environment through experience. By interacting repeatedly on
the world in various contexts and with different behaviors, the agent learns to
predict action-state sequences using a sensorimotor model. Predictive learning
allows an agent to learn to make decision by using the knowledge of the effects

its actions to create planning operator. This approach is popular in robotics or
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Figure 3.2: Training: A robot trains to associate an observed current state
(stain), its action (wipe) and the future state (no stain). After training: this

training allows the robot to predict the effect of its actions on the current state.

statistics where it is used for decision making (e.g., gaze shift) [I7], classification
problems [30] or in general to identify the interaction between a set of variables.

Fig. [3:1] describes a basic architecture for predictive learning. The archi-
tecture consists of two main elements that describe a sensorimotor system and
the predictor. The sensorimotor module is the part of the system that inter-
acts with its environment, i.e., the body. It performs an action a;(t) € a(t)
under a certain sensory state s;(t) € s(t), and perceives a new state s;(t + 1)
as a consequence. The predictor module simulates the sensorimotor system and
estimates the next state of the environment and future actions. It learns to
estimate sensory and motor signals, §;(t + 1) and a;(¢ + 1) through interaction
with the world. The target of the system is to minimize the prediction error
noted e;(t + 1), which is the difference between the observed new state and its
predicted value.

To further illustrate our predictive learning model, let us imagine a robot
learning to clean a room (see Fig. [3.2). The robot is trained, either through
demonstration or guided learning, to associate observed states (stain s;(t)),
possible future actions (wipe a1 (¢t + 1)) and future state (no stain s2(t+1)). As
the learning progresses, the sensorimotor model (cf. predictor) is optimized and
the prediction error is minimized. This process allows the robot to then predict

the effect of actions on the current state, for instance, predicting that wiping
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Figure 3.3: Overview for the proposed model. The perception module: allows
the model to perceive and recognizes the scene and to extract any meaningful in-
formation. The predictive learning module: learns sensorimotor model through
learning and predicts future actions and states. The prediction error minimiza-
tion module: estimates prediction error and performs actions that minimize
it.

a stain would remove it (s1(t) — a1(t + 1) — sa(t +1)). As the system learn
sensorimotor association though learning, the robot can learn various behaviors

if training with different experience.

3.2 Overview of Our General Model

In this study, we want to create agents capable to acquire infant-like proso-
cial helping behavior using a predictive learning architecture. The general
model structure used throughout this dissertation is described in Fig. and
is adapted the predictive learning model presented in Fig. [3:1} The predictor
remains identical from the general architecture of predictive learning described
in Section The sensorimotor system is separated into two part that respec-
tively perceive states and actions, and act upon the environment. These parts

are distributed into 3 modules presented below:

1. The perception module: recognizes and categorizes the different ele-
ments of the scene, such as observed objects or others actions. All the

perceived elements are factorized into the sensorimotor vectors s(t) and

a(t).
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2. The predictive learning module: purpose is twofold. First it mem-
orizes causal relationship between action-state sequences by building a
sensorimotor model through the interaction with its environment. Sec-
ond, it generates prediction of future state (s(t+1)) or action (a(t+1))
based on the observation made by the perception module (c.f., s(t) and
a(t)). This correspond to the predictor part of the predictive learning
architecture in Fig. [31]

3. Prediction error minimization module: estimates and minimizes the
prediction error based on the perceived and predicted environmental state.
If a predicted state is not achieved, the module will minimize the error by

generating a predicted action.

Together, these modules respectively perform an action predicted under a cer-
tain sensorimotor state by the predictive learning module and receives a new
state in return.

This model is based on evidences related to the goal alignment model for the
emergence of prosocial helping behavior introduced in Chapter [2| According to
this theory, the abilities to build a sensorimotor model of others or to recognize
their intention are not required to help. In other words, this system does not
need to differentiate self from others. In fact, prosocial helping behavior emerges
as a by-product of the minimization of prediction error estimated over the goals

assimilated by the system.
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Chapter 4

Emergence of Prosocial

Helping Behavior in Robots

In the introduction and related work chapters, we reviewed evidences about the
development of prosocial helping abilities in infants. Two theories for the emer-
gence of helping were presented: the goal-alignment and the emotion sharing
models. We found out that the emotion sharing model required the abilities
to differentiate self from others and to understand others’ mental state, which
develop later than onset of prosocial helping behavior. On the other hand, the
goal-alignment model did not require such ability, and seemed to be primed by
a more general mechanism. This ability is known as action understanding and
develops in infants around the age of 5 to 9-month-old [72] [} [75], 03] and allow
them to comprehend action and predict its goal. However, the motivation for
infants to perform prosocial helping behavior based on the prediction of action’s
goal was not clearly defined.

In this chapter we attempt to answer the question of the motivation for
the emergence of prosocial helping behavior based on the ability to understand
action goals. We begin by proposing a hypothesis based on the prediction error
minimization as motivation to help. We propose a system based on predictive
learning introduced in Chapter [3]to emulate how infant might acquire the ability
to help. Next, we present two experiments to test our hypothesis along with
our model, and study the effects of cognitive maturity on the emergence of

prosocial helping behavior. Additionally, we evaluate our claim by endowing a
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humanoid robot with the ability to help other. The chapter is then concluded

by an analysis of our results and a summary of our contributions.

4.1 Hypothesis for the Emergence of Helping

Behavior

To shed light on a possible mechanism for the emergence of prosocial helping
behavior in infants, we hypothesize that helping emerges as a by-product of
the minimization prediction error (hereafter called PE) estimated from others’
action goals. We suggest that infants start by learning their sensorimotor model
though interaction with their environment. This training allows them to predict
the effect of their actions on the environment, namely their action goals. Due
to immature self-other differentiation in early infancy, they may assimilate or
take over others’ actions as their own and predict their goals [50]. Prediction
error then arises when the predicted action goals and the observation mismatch,
regardless of who is executing the action. The prediction error estimated during
this process then triggers infants’ actions to minimize it, which results in proso-
cial helping behavior. An important point of this hypothesis is that infants do
not have any explicit intention to help others by design. Instead, goal alignment
suggests that infants always try to achieve predicted action plans, leading to the

emergence of prosocial helping behavior as a by-product.

4.2 Model for the Minimization of Prediction

Error

Our computational model is based on behavioral evidences of infant development
and attempts to understand and reproduce the mechanisms of the emergence of
prosocial helping behavior in 14-month-old infants. We then assume that our

system has the cognitive and motor capabilities of a 14-month-old infant:

1. Assumption 1: It is capable to learn to predict sensorimotor sequence

through the interaction with their environment.

2. Assumption 2: It can assimilate others’ action. This cognitive capability

is related to the finding on mirror neuron systems, which are a group of
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Figure 4.1: Model for the minimization of PE. The three modules are used to
recognize action primitives and the associated objects (conditions), to predict
the next action primitives, and to estimate PE and to generate the primitive to

minimize PE.

neurons that fire both when performing and observing a same goal directed

action [74].
3. Assumption 3: It is capable to perform object/goal directed actions.

These cognitive and motor capabilities represent the requirements for our model
and are known to be available in infants before the onset of prosocial helping
behavior at 14 months of age.

Fig. [41] shows the overview of our model for the minimization of PE, which
consists of three interdependent modules: the perception, predictive and min-
imization of PE modules. This model is trained by performing various action
with its environment and tested during an observation phase in which the robot
observes others’” uncompleted actions. During training, the predictive module
trains a directed graph, hereafter called an action graph, which represents the
robot’s sensorimotor model (assumption 1). During observation, the minimiza-
tion of PE module estimates the prediction error and executes object directed
actions to minimize it if needed (assumption 3 and main hypothesis). The per-
ception module recognizes objects using color filters and others’ action based
on own sensorimotor model during both training and testing (assumption 2).

More details about the three modules are given in the following sections.
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4.2.1 Perception Module

This module recognizes action primitives (noted A in the next sections) and
objects contained in the scene (noted C' in the next sections). Action primitives
are simple motions that the robot can execute like reaching for a ball, grasping
a mug, covering a marker, etc. Hereafter, a sequence of action primitives is
called “action”. For instance, a “pushing” action contains the action primitives
“reach for” an object and “move” it. Objects, hereafter called “conditions”, are

elements of the scene that can be interacted with like a ball, a mug, etc.

4.2.2 Predictive Module

The predictive module estimates the goal of a motion as the future action primi-
tive based on the current observation. This process is presented below in the ac-
tion prediction paragraph. The prediction is performed using the action graph,
which memorizes the robot’s past experience and represents its sensorimotor
model. In the following parts, we describe how the action graph is generated

and how it is used for the action prediction.

Statistical Action Graph

The action graph uses the robot’s experience with environment to make pre-
diction based on ongoing action. An action graph (G) is made of two kind of
nodes, representing the system’s sensorimotor representation, namely the pre-
viously experienced action primitives and their associated conditions. The two

types of node are:

e The action nodes A that represent action primitives performed by the
robot. The number of times an action node has been performed by the
robot is noted NBy4.

e The condition nodes C that represent the conditions for an action prim-
itive to be executed, namely the object the robot interacted with while

performing action primitives.

Action nodes are connected by directed edges Ea that encode the number of
times a transition between two action nodes was experienced. The number of
times a transition Ea has been activated is noted NBa, ,4,, where A; and A;

are two different action nodes. The conditional relation of condition nodes to
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Figure 4.2: Example of the different steps in the creation of an action graph
after executing two different actions. Action I: “Reach for a Ball, Grasp the
Ball, and then Put the Ball in an Opened Box”; Action II: “Reach for a Ball,
Grasp the Ball, Open a Closed Box, and then Put the Ball in the Opened Box”.
Action I was experienced first, then Action II and finally Action I again. The
small numerals inside the action nodes represent the number of times the action
primitive corresponding to the node was successfully executed, namely NB4.
The small numerals by the directed edge represent the number of times the

connected child and parent nodes were performed successively, noted NBa, 4, -

action nodes is represented by another type of edges noted Ec. The graph is
then represented by:
G = (A,C,Ex,EQ), (4.1)

where all nodes are Boolean variables and can take a value of 1 (active) or 0
(inactive).

Fig. shows an example of how an action graph is generated while expe-
riencing three actions (Action I twice and Action IT once). Action I: “Reach for
a Ball, Grasp the Ball, and then Put the Ball in an Opened Bozx”; Action II:
“Reach for a Ball, Grasp the Ball, Open a Closed Boz, and then Put the Ball
in the Opened Boz”. Action I was experienced first, then Action II and finally
Action T again. In this example, A = {Ay, As, A3, A4} and C = {C,Cs, Cs}.
As is the child node of A;, while A; is the parent node of As. The numerals

inside the action nodes in Fig. [I.2] represent the number of times the primitives
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were successfully executed, noted NB4. For instance, Reach for was executed
during all actions, NB4, = 3, while Open was executed once during Action II,
NBy, = 1. The numerals by the directed edge in Fig. [£.2] represent the num-
ber of times the connected child and parent nodes were performed successively,
noted for instance NB4,_,4,. For instance, Open was performed 1 time after
executing Grasp, thus NBa, 4, = 1.

The action node corresponding to the currently recognized action primitive
is denoted as A;;,) € A, and the condition nodes representing its conditions
are contained in the subset Cy4,(,) C C. n represents the current discrete time
step. In Fig. for instance, the action primitive “Put a Ball inside an Opened
Box” is described by the action node “Put” (Ay(,)) and the condition nodes
“Ball” and “Opened Boz”, which are contained in C4¢n) = {C1,C3}.

In practice, the action graph is constructed when the system executes actions

with its environment. This process is ruled by the following mechanisms:

(i) The system performs a primitive from its action repertoire involving ob-

jects in the scene.

(i) For the executed primitive, the corresponding action node A; and condi-
tion node(s) C4, are added to the action graph. The condition nodes are
connected to the action node by directed edge Ec4,. If an action primi-
tive is performed several times with different objects, multiple instances of
the action nodes are created and connected to the corresponding subset of
conditions. The delay between the onset and the completion of the action
primitive is measured as T4,. The value N Bg4,, representing the number

of times this primitive has been executed, is initialized at 1.

(4) If the node corresponding to the performed primitive with the same subset
of conditions is already contained in the graph (i.e., if the system has
already experienced the primitive before), the delay T4, is averaged and

the value N By, is incremented.

(iv) If two action primitives are performed consecutively within a delay shorter
than a value Ty, (fixed at five seconds in the current implementation),
the corresponding action nodes Ay (,—1) and A;(,) are connected by a di-
rected edge Eap—;. The value NBa, . 4,, representing the number of times

Aj; was executed after A, is initialized at 1 and incremented each time the

41



same transition occurs. If the two action primitives are performed consec-
utively with a delay higher than T},,., the newly performed primitive is
considered as part of another action. Therefore, the two action node are

not connected by any edge.

By performing these learning operations multiple times with different objects
and for all action primitives in the system’s repertoire, the system becomes able

to perform action prediction, which is explained in more details below.

Action Prediction - Goal Understanding

Based on the experience represented in the action graph, the system calculates
the probability of observing a primitive A;(,41) when a node A;(,) is activated.
Aj(n) can either be activated when the system is executing the action primitive
or when it is observing another individual performing the same primitive. This
probability is represented by the conditional probabilities P(A;(,41) = 1|A4;(n)),
which is calculated as follows:

NB4, 4,

P(Ajng1) = HAim)) = th], (4.2)
where N B4, represents the number of times the primitives A; was previously
executed by the system, and NBa, . a; represents the number of times A; was
performed after A;. The sum of the probabilities for a given current state A;(,)
respects:

> P(Ajs = UAiw) = 1; (4.3)
J
The system then tries to find the most likely future action node A(n+1).
To that end, the system detects the node Aj(,41) with the highest probability
P(Ajn41) = 1|A;(n)) and that can be activated. Indeed, if the value of at least
one of its conditions Cx € Ca;(ny1) is 0, the corresponding primitive Aj(,41)
cannot be activated. Therefore, the future primitive A(nﬂ) is:

A1y = argmax(min(Cy (nq1))-
Aj(nt1) (4.4)

(P(Ajn+1) = LAi(n))); VJ.
If two or more nodes have the same conditional probability and if all their
corresponding condition nodes are activated, A(n+1) is randomly selected among
these nodes. If A(nﬂ) = 0, the system remains idle and no future action is

selected.
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4.2.3 Minimization of Prediction Error Module

The minimization of PE module estimates PE signal from observation and pre-
diction and generates actions to minimize it. It is separated in two main parts,

the estimation of prediction error and the action execution.

Estimation of Prediction Error

To estimate PE when primitive /Al(n_,_l) is predicted, two main components are

taken into account:
(i) The conditional probability of fl(n_H), which is hereafter noted Pjqg.

(i) The difference between the delay T4, and the elapsed time (called ¢t.) since

the current node A;(,) was activated.

PE is then measured as Pp;q; discounted by a time dependent function as
follows:
PE = Pprag - B - (1 — e(Tai7te)); (4.5)

where § = 0 when T4, > t.; else = 1. § fixes PE = 0 when the elapsed time
is shorter than the average delay T, of the observed action A;(,). Therefore,
PE starts to increase only as t. becomes greater than T, (,). An example
of PE estimation is depicted in Fig. where a primitive is observed but not
completed, leading to an increase of PE. PE is defined such as its value increases
if a prediction is not achieved within a certain amount of time. This definition
is based on psychological and neuroscience observations, and is simplified to fit

our experimental conditions.

Action Execution

We hypothesize that observing others’ failure in action execution would lead to
the robot performing the predicted action primitive. If PFE is greater than a
threshold (empirically fixed at 60% of Ppsq. in our current experiments), the
PE minimization module executes the predicted primitive A(n+1) as an output
of the system (see Fig. [4.3). For example, when the system observes another
individual trying and subsequently failing to achieve an action (e.g., opening
a Closed Closet), the minimization of PE will lead to the robot executing the

predicted action (e.g., the robot opening the Closed Closet). From the point of
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Figure 4.3: An example of PE estimation. The system observes a primitive
Aj(n) and can predict the next action primitive A(nﬂ). When the elapsed time
becomes greater than T4,, PE starts increasing. Finally, when PE passes the

threshold, the robot performs the predicted primitive to minimize PE.

view of the other individual, this process looks as if the robot helped the person

even though it does not have such an intention.

4.3 Experiment 1- Setup

In this experiment, we tested our hypothesis and studied the effect of cognitive
maturity on prosocial helping behavior. We used a fully simulated environment
to remove any noise coming from the perception module and focus on studying
the relevance of the predictive and PE minimization modules. The perception
module was replaced by a symbolic representation of actions and conditions
instead.

The experiment was separated in two phases: the training phase, during
which the robot trained its action graph (or sensorimotor representation) by
performing series of actions; The observation phase (or testing), during which
the robot observed others’ actions and tried to minimize PE. The actions used
during our experiment were inspired by the experiments performed by Tomas-
sello and Warneken [90, [89], in which they showed that infants could help others
trying to reach out-of-reach objects or overcome obstacles (e.g. out-of-reached
cloth pins, and closed cabinet doors).

During the training phase, the robot was trained with several actions in a
randomized order and built an action graph, as presented in Section [£:2.:2] Dur-
ing the observation phase, seven non-accomplished actions were presented to the

system, during which PE was estimated. In order to study the effects cognitive
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maturity on the ability to estimate PE and help, the amount of experience given
to the system during the training was varied, from the execution of one action
to that of all six possible actions. This incremental learning had the effect of
modulating the complexity of the sensorimotor model, and consequently the

ability to predict action goals and emulated the cognitive maturity.

4.3.1 Robots Actions

For this experiment, the system could experience six actions (Actl to Act6) that
are combinations of eight different objects (Ball, Mug, Car, Switch, Opened
Closet, Closed Closet, Opened Box, and Closed Box) and six different action
primitives (Reach for, Grasp, Open, Put, Move, and Flip). The actions the
system experienced are described in Table Actl to Act4d contain “Reach
for” a Ball and a Mug because both objects are present in the environment. As
we assume that our system cannot identify which of the “Ball” or the “Mug” is
the target due to perception ambiguity caused by the objects being too close to

each other, both objects are conditions for the “Reach for” primitive.

Actions
Actl | Reach for a Ball and a Mug, Grasp the Ball, Open a
Closed Box, Put the Ball in the Opened Box
Act2 | Reach for a Ball and a Mug, Grasp the Ball, Put the Ball
in an Opened Box
Act3 | Reach for a Ball and a Mug, Grasp the Mug, Open the Closed
Closet, Put the Mug in the Opened Closet
Act4 | Reach for a Ball and a Mug, Grasp the Mug, Put the Mug
in an Opened Closet
Act5 | Reach for a Car, Move the Car
Act6 | Reach for a Switch, Flip the Switch

Table 4.1: Experiment 1: Six actions the system experienced.

4.3.2 Training and Observation Phase

During the training phase, the robot experienced up to six different actions. All
action primitives were correctly performed. The actions were designed so that

the number of child and parents for the different action nodes varies. In some
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Figure 4.4: Experiment 1: Example of action graph for all possible actions Actl
to Act6 executed once. The red nodes denote conditions, and the black nodes
represent actions. The numbers inside the action nodes denote the number of

times the primitives were observed.

cases, action nodes only had one child and parent node; For instance in Act5,
“Reach for the Car” could only be followed by “Move the Car”. In contract,
some action nodes had several parent or child nodes; For instance in Actl to
Actd, “Reach for the Ball and a Mug” could be followed by “Grasp the Ball”
or “Grasp the Mug”. Fig. [£:4] shows an example of an action graph built after
performing all the actions presented in Table

During the observation phase, other individuals performed seven uncom-
pleted actions (F1 to F7) listed in Table The action primitives and objects
used in actions F1 to F'7 were the same as those used during the training. These

actions could be uncompleted for two reasons:

e QOut-of-reach: Other individuals may fail to reach for an object if it is too
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1D Performed primitives expected primitive

F1 Reach for Ball Grasp Ball
F2 Reach for Mug Grasp Mug
F3 Reach for Ball and Mug Grasp Ball

F4 | Reach for Mug, Grasp Mug | Open Closed Closet
F5 | Reach for Ball, Grasp Ball Open Closed Box
F6 Reach for Car Move Car

F7 Reach for Switch Flip Switch

Table 4.2: Experiment 1: List of others’ failed actions. Expected primitive are

not achieved by others.

far from them. In this case, the next primitives predicted after “Reach

for” (e.g., “Grasp”) cannot be observed (activated).

e Physical obstacle: Other individuals may fail to use or interact with an
object because of a physical constraint (e.g., cannot open a box if the

hands are occupied with balls).

When observing others’ actions, our system tried to predict the most likely
next action primitives. Because some action nodes had several child nodes, the
prediction could be ambiguous. For instance, if F3 was observed and if our sys-
tem had previously experienced Actl and Act3, both the primitive “Grasp the
Ball” and “Grasp the Mug” could be predicted. This is later called prediction
ambiguity.

4.4 Experiment 1- Results

We trained our system for six different conditions, each with a different number
of actions performed during the training. The number of actions performed was
incremented from one in the first condition, to six in the last. During the training
the order of action execution was randomized. We then tested our system
for seven different tasks in which another individual performed uncompleted

actions.
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Figure 4.5: Experiment 1: Column plot representing our system’s acted, helped,

and failed performances. The error bars represent the standard deviations.

4.4.1 Evaluation of Helping Performances

For each trial, we observed whether the system could successfully produce an
action to minimize PE (hereafter denoted as acted). If the acted primitive could
help others in achieving their goals it was denoted as helped. If it did not help
achieving the goal, the action was categorized as failed. In other words, a failed
primitive is a behavior that successfully minimized PE estimated by the system,
but was not helpful from the other’s point of view.

Fig. [4.5| shows the acted, helped, and failed performances of our system
as a function of the number of actions experienced. The sum of helped and
failed values represent 100% of the acted value (acted = helped + failed). The
results show that the performance of our system improved as the number of
actions experienced increases. The helped value got higher than the chance level
of (16.67%) after experiencing three different actions. Some actions could be
generalized better than others as shown by the acted values and the standard
deviations. Indeed, if only Act6 (see Table is experienced, only actions
involving the Switch can be recognized, but if only Actl is experienced, our

system can make predictions for all action involving the Mug or the Ball.
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As the helped value increased, the failed decreased proportionally. However,
the proportion of primitive that unsuccessfully helped others remained high for

two main reasons presented in the following paragraphs.

Effects of Recognition and Prediction Ambiguity

Recognition ambiguity: If multiple objects are located close to each other and
are associated with a same action primitive, which is currently activated, the
system cannot identify the target object of the ongoing action.

Prediction ambiguity: If multiple action primitives are experienced after
a same action primitive (i.e., single parent node connected to multiple child
nodes), the system cannot predict accurately which action primitive should be

executed next.

Effects of Perspective Difference

The action primitive performed by the robot cannot always help others in ac-
complishing their intended behavior due to the perspective difference between
the robot and others. For instance, when others intend to “Grasp a Mug”, the
robot performs the action primitive “Grasp the Mug” after observing “Reach
for the Mug” to minimize PE. This resulted in the Mug in the robot’s hand,

but not in others’ hand.

4.5 Experiment 1 - Discussion

Our first experiment showed that the minimization of PE could explain the
motivation for infants to help others achieve unsuccessful actions. Furthermore,
we demonstrated that cognitive maturity greatly influenced the system ability
to estimate PE and therefore directly affect helping performances. These results
are consistent with evidences presented in Chapter

In most cases, executing the predicted future action primitives could help
others achieve their actions. However, it happened that even though PE was
minimized by the robot, its actions failed to help others. As mentioned in
Section [4.4] we observed different scenarios that could explain why our system
failed to help others: recognition and prediction ambiguity, and perspective

difference. The ambiguity errors can be explained by the lack of training and
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Figure 4.6: Experiment 2: Setting. The blue Car is shown on the right of the
robot, and the red Marker is presented on the left of the robot.

generalization of our model. On the other hand, the perspective taking issues
are more challenging to address and bring additional questions. Indeed, infants
seem to rarely get affected by any sort of perspective between them and the
individual they are helping [88]. The mechanism allowing infants to cope with
perspective differences is not clear and several possible solutions to this problem

will be presented in the discussion.

4.6 Experiment 2 - Setup

The second experiment was designed to demonstrate whether our system could
exhibit similar prosocial helping behavior in a more complex and noisy environ-
ment. For this experiment, we used a humanoid iCub robot (see Fig. . We
used 19 of the 53 degrees of freedom: 7 in each arm and 5 in the head. The
head, the right arm, and the left arm were used during our experiment.

The robotic system is presented in Fig. [£.6l The robot was placed 0.1 m
away from a 1-m-high table on which a black mattress was placed. Two objects
(a toy Car and a Marker) were positioned on the black mat at a reachable dis-
tance from the robot’s arms. The object positioned on the left was manipulated

by the left arm, and conversely for the object on the right. The objects had spe-
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cific affordances: the Car was move-able but not hide-able; the Marker was not
move-able but hide-able. The robot was able to perform four action primitives:
“reach from the side”, “reach straight”, “move”, and “hide”; the action prim-
itives were executed using the YARP Cartesian interface [68]. The primitives
were combined into two actions: push (“reach from the side” and “move”) and
cover (“reach straight” and “hide”). Below, we detail the experiment specific

definition of the perception module and the action graph.

4.6.1 System Implementation

In this experiment, we introduced and tested the perception module using cam-
era images, which was not implemented during the first experiment. Addition-
ally, the predictive module was slightly modified to prevent some experiment

related artifacts. These two changes are presented in the following paragraphs.

Perception Module Modification

The perception uses the RGB camera (640x480 pixels) placed in the robot
left eye to detect the objects and action primitives. Objects are detected by
combining pixels with similar color and (z, y) position (see Fig. (a)-(b)).
We use a set of predefined colors (e.g., blue or red) for the detection. The
objects are then tracked based on their position and average hue (see Fig. |4.7
(¢)-(d)) unless they are not visible for longer than two seconds. The objects are

categorized into three states depending on their position history:
(i) Stationary: the object is stable in position;

(i) Moving: the distance traveled by the object during the ongoing action (no

time limit) reached 50 pixels;

(@) Occluded: the object is not detected for more than 500ms and less than
2s.

Action primitives are recognized by looking at the relative position of the
hand to the objects. The x and y coordinates of the hand in the image are
detected using the predefined skin color like for the object detection (see Fig.
(e)). Our system can recognize two types of reaching, either “reaching for
the side” if the hand is positioned on the side of the object in the z axis or

“reaching straight” if the hand is aligned with the object.
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Figure 4.7: Visual processing. (a). Raw image. (b): Extraction of all colors.
(c): Color extraction without skin color. (d): Object tracking. (e): Hand

recognition.

Predictive Module Modification

For this experiment, the actions performed by the robot could result in no effect
on the targeted objects due to their specific affordances. To cope with this issue,
series of action primitives performed by the robot and the corresponding con-
dition nodes (objects) are memorized in the graph if and only if the performed
action modifies the state of at least one object in the scene. For instance, “reach
from the side” for the Car and “move” the Car would lead to the Car’s move-
ment, and therefore the action is memorized. In contrast, “reach from the side”

for the Marker and “move” the Marker would have no effect on the Marker’s
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state, and thus the action is not memorized.

4.6.2 Training and Observation Phase

The experiment was divided into 10 trials with five subjects, each composed
of two phases: a training phase and an observation phase. The subjects were
chosen from our laboratory and were not familiar with our study.

During the training phase, the robot interacted with the objects presented
in front of it. The robot was instructed to either push or cover the objects on
the left or right side on the table. During each trial, the robot performed all
the four possible actions twice in a random order.

During the observation phase, the robot was placed in front of a subject
and observed his behavior. When the subject performed an action primitive
with an object, the node corresponding to the primitive in the action graph was
activated. The action prediction module then predicted the next primitive to
be executed. If the subject failed in achieving the predicted action primitive
within a certain time, PE started to increase. If PE exceeded a fixed threshold,
a trigger signal was sent to the minimization of PE module, which executed the

predicted action primitive in order to minimize PE.

4.7 Experiment 2 - Results

The results gathered during the training and the observation phases for the 10

trials are presented below.

4.7.1 Evaluation of the Training Phase

The Car and the Marker were randomly placed either on the left or the right
side of the mat on the table. During each trial, the robot performed all the
action presented in Table [.3] twice in a random order. Fig. shows the robot
performing 2 actions learned by our system: (a): “reach from side for” the Car
and “move” the Car and (b): “reach straight for” the Marker and “hide” the
Marker. When moving the Car, the state of the Car switched from “station-
ary” to moving, and when hiding the Marker, the Marker’s state switched from
“stationary” to “occluded”. The action graph after performing all four actions
is presented in Fig. [1.9]

93



Action primitives Objects Status
“Reach from side for” & “move” Car Memorized
“Reach from side for” & “move” | Marker | Not memorized

“Reach straight for” & “hide” Marker Memorized
“Reach straight for” & “hide” Car Not memorized

Table 4.3: Experiment 2: List of action primitives, objects, and status of their

memorization in the action graph

Figure 4.8: Experiment 2: A scene from the robot’s training: (a) Push the Car
and (b) Cover the Marker.

4.7.2 FEvaluation of the Observation Phase

During the observation phase, the robot observed participants trying to push
or cover either the Car or the Marker. All actions were performed once for
each trial. Fig. [£.10]shows the robot’s camera image capturing participants’ ac-
tions and successfully estimating and minimizing PE by executing the predicted

action primitives. This figure shows the followings:

(i) (al, bl): The robot observes the subject and recognizes the action prim-
itives: “reach from side for” (al) or “reach straight for” (bl). After ob-
serving these primitives, the robot predicts the future action primitives
“move” (a2) and “hide” (b2).

(i) (a2, b2): PE increases after our system predicts the future action primi-

tives and the elapsed time is greater than the estimated delay.
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Figure 4.9: Experiment 2: Action graph after experiencing x times “reach from
the side for” and “move” the Car, and y times “reach straight for” and “hide”
the Marker.

Performed primitive Success rate PE Delay (seconds)
“Reach from side for” 80% 0.265173 5.12149
the Car (SD: 0.00063) (SD: 0.25)
“Reach straight for” 100% 0.266002 5.19768
the Marker (SD: 0.00127) (SD: 0.40)
“Reach from side for” 0% 0.0 0.0
the Marker (SD: 0.0) (SD: 0.0)
“Reach straight for” the Car 0% 0.0 0.0
the Car (SD: 0.0) (SD: 0.0)

Table 4.4: Experiment 2: Experimental results. Performed primitive: primitive
performed by the participants. Success rate: percentage of times the robot
successfully helped achieving an action. PE: average maximum prediction error
measured before PE minimization. Delay: time between the recognition of
user’s primitive and the onset of the robot’s action. The standard deviation is
calculated for the 10 trials.

(#i) (a2, b3): The robot performs the predicted action primitives to minimize
PE, namely “move” the Car (a3) and “hide” (b3) the Marker.

After 10 trials (training and observation), we measured:
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Figure 4.10: Experiment 2: This figure depicts the successful cases during which
the robot minimized PE after observing an unachieved action. The black and
gray lines represent the distance between the human and the robot’s hand to the
targeted object, respectively. The red filled line denotes the estimated PE, and
the dashed line indicates PE threshold above which the robot performs an action
to minimize PE. Here, the robot successfully estimates and minimizes PE. (al,
bl): The subject reaches for the red Marker and the blue Car, respectively. (a2,
b2): The estimated PE reaches the threshold, and the robot starts its action to

try minimizing PE. (a3, b3): The robot’s action successfully minimizes PE.

e Performed primitive: the action that the participant was doing.

e Success rate: the amount of time the robot successfully achieved the par-

ticipants’ goal.

e PE: the average PE at the moment of the robot’s primitive onset (PE
fixed threshold is 60% of the probability of the next primitive).

e Delay: the elapsed time between the first detection of the subject’s prim-

itive and the onset of the robot’s action.

These results are summarized in Table {4l
Results show that the robot could reliably achieve the predicted goals of
the participants (success rate: 80% and 100%) within a relatively short five

96



seconds delay (SD = 0.25 and SD = 0.40). This was only true if the observed
actions were previously experienced and had visible effects on the associated
objects during the training. It shows that the system could cope with the noisy
perception and generate action to minimize PE. In fact, the robot failed once
because the participant removed his hand while PE was getting greater than the
threshold and tried to perform another action, leading to a robot performing

the previously predicted primitive instead.

4.8 Experiment 2 - Discussion

The second experiment intended to show if our system could also exhibit proso-
cial helping behavior in more complex and noisy environment while interacting
with real participants. These new conditions led to variable interaction pat-
terns with the robot. For instance, when asked to try reaching for an object,
some participants repeated several times the same primitives to try enacting
the robot’s action. In contrast, other participants maintained their hand in the
same position. These different behaviors generated multiple PE estimation dy-
namics throughout the experiment. Even with these new challenges, the robot
succeeded in helping others achieve their actions by minimizing PE. The results
support our hypothesis that the minimization of PE can be used as a behavioral

motivation to help others.

4.9 General Discussion and Future Work

The emergence of prosocial helping behavior in infants from 14 months of age is
one of the key milestones of their prosocial development. In past decades, several
theories, such as the emotional-sharing models and the goal-alignment models,
have been proposed to explain the evolution of prosocial tendencies, but few of
them clearly described the motivations and mechanisms allowing infants to help
others. In this study, we attempted to explain the emergence of prosocial helping
behavior in infants based on goal alignment by proposing PE minimization as
a behavioral motivation. It can be argued that PE minimization is not the
only possible motivation for early prosocial helping behavior, but because of
the generality and central role of PE in the brain (see [61] 22]), we chose to

mainly focus on this mechanism. To demonstrate our hypothesis, we conducted
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two experiments to examine to what extent PE minimization could provide a
possible motivation for prosocial helping behavior. In addition, we analyzed the
effect of action experience on helping.

Our first experiment analyzed the effect of the system’s own action expe-
riences on the emergence of prosocial helping behavior. We first showed that
prediction error minimization could indeed lead to the emergence of prosocial
helping behavior in our robot. We also showed that as the system got more ex-
perience, it became able to more efficiently predict action goals and help. The
behavior generated by our system was, in some aspects, similar to the comport-
ment observed in infants in Tomassello’ and Warneken’s experiments [90, 89)].
Indeed, their experimental results showed that 14-month-old infants are good
in helping “out-of-reach” actions, where the others’ goals are easy to predict,
whereas older infants could help in more complex and non-transparent situa-
tions. Based on these evidence it is evident that the ability to help others is
strongly dependent on the robot’s (or infant) experience with the involved ac-
tions. Therefore, as the robot (or infant) acquires more experience through the
interaction with its environment, its ability to understand actions will improve
and more extensive prosocial helping behavior will emerge.

In the second experiment, we integrated our model into a humanoid iCub
robot and showed that the robot could also perform prosocial helping behavior.
This result was not evident as the second experiment with human participants
brought a whole new spectrum of challenges. Indeed, due to variable interaction
patterns between the human and the robot, the estimated PE was not always
stable and could have led to lower success rate. In addition, using the robot’s
camera images added noise to the detection of objects and others’ action. Even
with these new challenges, the robot succeeded in generating action to help oth-
ers in achieving their actions. Results once more showed that the minimization
of PE could explain the emergence of prosocial helping behavior.

Based on these two experiments, we confirmed our hypothesis and proved
that minimizing PE is a possible behavior motivation to account for the emer-
gence of prosocial helping behavior in robot. Our result cannot prove that our
hypothesis also valid for infant development, but can serve as a guide for psy-
chologist to refine their theories and perform new meaningful experiments. We
do believe that such results can greatly contribute to the understanding of the

development of prosocial tendencies in infants, but also help the creation of
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more social robots that can be used in our household and in industry.

Despite these promising results, our experiments also showed that the actions
performed by our system to minimize PE were not always able to efficiently help
others in accomplishing their actions. Indeed, the prediction of the future action
primitive was sometimes incorrect, leading to non-appropriate robot response, or
the prediction was correct but the robot’s action failed to help others achieving
their goal. An issue is that, due to the lack of self-other differentiation in our
system, the robot does not take others’ perspective and executes the predicted
action primitive to minimize PE and achieve its own goal, regardless of whether
it helped the other achieving his goal. Some literatures show that infants at
14- or 18-month-old are actually able to help others even when the perspective
difference should affect their behavior [88, 90] (i.e. handing over an out-of-
reach object instead of keeping it). In fact, infants may change their visual
perspective while observing others performing actions. This cognitive ability is
noted by Tomassello [84] as a socio-cognitive need for infants’ prosocial helping
behavior.

Moll [57] showed that 24-month-old infants required the perspective-taking
ability in order to help others achieve unsuccessful goal-directed actions. How-
ever, self-other differentiation, which is needed to perform such perspective-
taking, is not yet acquired by 14-month-old infants [57]. Another possible so-
lution, which does not need change in perspective, is to estimate PE in terms
of states and not in terms of actions. Instead of predicting the future action
primitive, our system will predict the impact of the observed action on the
environment, and minimizing PE would mean achieving the predicted state.
Some researches indeed showed that infants first perform actions that help in
achieving the goal rather than imitating the means of an action with no pre-
dictable goal [12] [67]. Furthermore, it is strongly suggested that infants, from
the age of 3 to 5 months, can represent actions in terms of goals, independent
of the spatio-temporal properties of the target [80], which supports the idea of

employing state prediction over action prediction.
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Chapter 5

From Helping to Efficient
Human-Robot

Collaboration

In the previous chapters, we showed how psychology and neuroscience can give
us the theoretical tools to build system capable of acquiring social-cognitive
abilities. In Chapter [4] we demonstrated that a robot could develop helping
behavior by assimilating others actions as its own and being motivated by the
minimization of prediction error.

Here, we use the previously developed mechanism to create a robotic system
capable to perform efficient task-oriented collaboration with humans. Instead of
trying to unravel issues on the nature of cognitive development, this chapter fo-
cuses on demonstrating when and if a robot should minimize prediction error to
help others, or if it should wait for being requested to help. Indeed, robots able
to efficiently help others will improve productivity and the quality of everyday
tasks while reducing the workload. Although such interactions come naturally
to human-human teams, achieving similar fluency and comfort in human-robot
teams poses many challenges.

Past work introduced in Chapter [2| provided useful insights into how a robot
should help as part of joint human-robot interaction and what behavior it should

display to be perceived social [38, 4T, [70] [64] 23] 13, 51]. However, the question
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Robot, can
you help me?

robot helps human when robot helps human reactively robot hel{)s human proactively
help is requested when it detects help is needed whenever it can help

Figure 5.1: Different initiative models for robot assistance during collabora-
tive task executions: human-initiated help (left), robot-initiated reactive help

(middle), and robot-initiated proactive help (right).

of when a robot should help and how it impacts the participant’s perception of
the robot was not clearly answered. To shed light on this point, we investigate
the factor of initiative in robot assistance during joint task execution. We

ask two questions:

e Should the robot take initiative by spontaneously minimize prediction

error, or let the human control the robot’s participation in the task?
e When should the robot take initiative?

In the following sections, we first introduce a task representation for joint
table-top manipulation and the interaction scenario. We then propose an im-
proved predictive learning model for collaborative robot using a joint task execu-
tion system capable of autonomously performing a number of object manipula-
tion tasks as well as monitoring end-to-end human task executions. The different
mechanisms for triggering robot assistance in the context of joint table-top ma-
nipulation tasks are explained. Next, we perform a user study and evaluate the
subjective and objective performances of our system. We complete this chapter

with a discussion and analyze our results, contributions and limitations.

5.1 Task Representation and Scenario

In this study, we focus on joint preparation tasks. This category of tasks shares
many properties of tasks previously studied in the context of human-robot col-
laboration (e.g., circuit building [38], Lego model assembly [77], food prepara-
tion [23], industrial assembly [64]), including partially ordered action sequencing
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and shared physical space. More specifically, we consider food tray preparation

with n objects, m tray locations and three non-overlapping table regions. .

mska [a][b] [d] TASK #2 p
L4 L2 L3 Ls OBJECTS FINAL STATE
! BF YF
(XZ)ORC
4 { X B
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Figure 5.2: (a) Goal states for the two task categories used in our evaluation.
(b) Pictorial description of a sample task instance (category Task B), used for

explaining the task to participants in the user study.

Objects can be uniquely recognized and their location is represented as a 2D
coordinate on the table. For each object, we also represent its relation to other
objects and targets with the three predicates is-on(object), is-at(position),
and is-in(region). Note that is-on(object) is inferred based on the task knowl-
edge, while the two other predicates are detected directly through the perception
module. The table is split into three regions based on who is allowed to manip-
ulate in them. These zones, depicted in Fig. are: robot-only (near robot),
human-only (near human), and both-allowed (middle). Task goals are repre-
sented as a conjunction of instantiated predicates; i.e., the set of relations that
need to be true.

Our experiments involve six specific tasks from two task categories (Tasks A
and B) in slightly different domains. All tasks in the same task category have
the same set of predicates in their initial state and goal descriptions; however
specific tasks differ in the particular objects and locations with which the task is
instantiated. Task A involves four objects to be placed in four target locations
on the tray. Task B involves six objects to be arranged on two locations on
the tray. The two task categories are described in Fig. [5.2h and individual task
instances are shown in Fig. |5.3

Both the human and the robot are assumed to perform one task-relevant
action: pick-and-place(object, x, y). The x and y coordinates can be
anywhere on the table, including particular tray locations or on other objects.

The action is applicable for an agent (human or robot) only on objects whose
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Practice task Task A

Final state Initial state

Final state Initial state

Figure 5.3: Particular instances of the tasks used in the user study: (a) prac-
tice task, (b-d) three instances of Task A, and (e-g) three instances of Task B

performed by participants in the three different conditions.

current location is within the regions allowed to the agent. For all our tasks,
one object is initially placed in the robot-only region for both tasks; two objects
are placed in the human-only region for Task B.

The scenario for each task is then the same: pick all objects individually and
place them to their given final position as shown in Fig. [5.2p. For instance, in
Fig. [.3h, the task can be achieved by picking the yellow ball and placing it to
the “L” position; and picking the blue ball and placing it to the “R” position.

5.2 Joint Task Execution Model

To study different helping trigger mechanisms, we develop an end-to-end sys-
tem for joint task execution that allows a robot to perform object manipulation
actions as well as monitor the execution of the same actions by a human. This
model is based on the idea of predictive learning and the general model intro-
duced in Chapter [3] In this section we present the details of our system.

The joint task execution model is improved based on insights from previous

63



| RGBD sensor image | Perception module w
ser reques

Action selection
module
State (S,)
J State (S,)
4 Predicted
| Predictive module states (S, ... S)
————— » Sensory inputs >
o “ 4 Predicted
Inter module
communication ?e ig) actions (4, ... A,L
Action on o g
> environment A “) ; Action
J v (Ao)

Figure 5.4: Model for collaborative robots based on predictive learning. It
recognizes the current environmental state, predicts the possible future states
using a dynamic Bayesian network and generates actions to achieve the desired

end-states.

research presented in Chapter [4] which showed that instrumental helping could
be generated using prediction error minimization. We suggested that due to
self-other correspondence, referred as the like-me hypothesis [56], the robot can
project its own task state onto others performing similar acts due. This mech-
anism allows our system to assist users in achieving their tasks based on the
minimization of prediction errors.

The overall system for joint task execution is illustrated in Fig. At the
core of this system are three modules for (i) perceiving the state of the environ-
ment, (ii) tracking the state of the task and anticipating future actions, and (iii)
selecting a robot action based on the observed and anticipated states accreting
to different help strategies. A more detailed description of these modules is

given in the following sections.

5.2.1 Perception Module

The robot can segment and recognize tabletop objects using the point cloud
obtained from the robot’s RGBD sensor. It uses the Point Cloud Library im-
plementation of tabletop segmentation, which detects the table plane with the

RANSAC algorithm. It then extracts a point cloud segment corresponding to
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each object on the table. If an object is inside or in contact with another ob-
ject, they are segmented as one object with possibly multiple colors. The robot
represents and recognizes objects based on their color, location on the table
and size extracted from the segmented point cloud. Color is discretized into
six values (red, blue, yellow, green, pink and orange) and size in three values
(small, medium and large).

The robot then estimates the current environmental state as the combination
of all object states in the scene. The state corresponding to each recognized
object is represented by the 3-tuple (Color, Size, Location). The “Location”
variable contains one or several of the predicates is-on(object), is-at(position)
and is-in(region) presented in Section For instance, if a “small red cup”
at the location [; and a “medium blue plate” in the “human-only” region are
recognized in the scene, the object states are noted s; = (Red, Small, is-at(l1))
and sz = (Blue, Medium, is-in(human-only)) In the case the “small red cup” is
on the “medium blue plate” at the location [y, the corresponding state is noted
s3 = (Red, Small, is-on(Blue, M edium, is-in(ly)).

5.2.2 Predictive Module

Our system uses Dynamic Bayesian Networks (DBN) to predict future states
and robot actions that lead to those states. DBNs are multi-time-slice Bayesian
networks where variables are connected to one another over adjacent time steps
as well as within the same time step. They are computationally efficient gener-
alization of hidden Markov models and have been used to model multi-modal
robot behavior in uncertain environments (e.g., work by Huang et al. [45] [14]).

For this study, each time-slice of the DBN contains an object state and an
action node, corresponding to two multinomial discrete random variables S and
A. S can be one of all possible states {sg, s1, ..., sy} that are distinct according
to the defined predicates for a finite set of objects and named locations. Two
states in which an object’s position is different but both positions are not at a
named location are considered the same discrete state. The variable A is one of
all possible action instances {ag, a1, ..., apr} that involve the combination of all
objects and named locations in the environment, regardless of whether they are
available to the human or the robot. S(t) represents the current observed object
states in the scene, and S(¢+1) the predicted states at time t+1. Within a single

time-slice, the state influences the action. Between consecutive time-slices, the
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Figure 5.5: Examples of task knowledge represented as states transition. Object
01 can be one of two states: s1; or sio if positioned in I or [, respectively.
Object 05 can be one of two states: sa1 or sog if positioned in I or [, respectively.

The initial environmental state contains two object states: s;; and so;.

state and action from the previous time-slice influence the next state.

The DBN encodes the task knowledge in the conditional probabilities noted
P(A(#)|S(t)) and P(S(t + 1)|S(¢t), A(t)), which represent the action policies
the robot could use if it were to execute the task on its own. Since the
tasks are known a priori in our scenario, these conditional probabilities were
computed based on the known task structure (Section , assuming each
path for completing the task is equally likely. The conditional probabilities
P(S(t+ 1)|S(t), A(t)) encode the environment and action dynamics and were
determined empirically. Future states and actions are predicted by computing
the marginal probabilities P(S(t+1)) using Bayesian inference. The action A(¢)
to perform in order to transit from S(t) to S(¢ 4+ 1) is inferred by maximizing
the conditional probability P(S(t+1)|S(t), A(t)). The predictions are then sent
to the action selection module.

To illustrate this mechanisms, let us imagine a simple task in which a table
containing two objects should be cleaned (see Fig. [5.5). The robot’s task knowl-
edge, known a priori, contains the necessary information to represent task. The
two objects are “small red cup”, noted o1, and a “medium blue plate”, noted
02. The table is separated in two discrete locations: I3 = “dirtyZone” and

lo = “cleanZone”. Therefore, the possible object states in this example are:
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(a): Good object recognition (b): Bad object recognition
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Figure 5.6: Examples of object detection likelihood estimation. The value in-
creases if the object is recognized and decreases when it is not. If the object
detection likelihood decreases below the detection threshold, the object is lost.
s11 = (red, small, is-in(ly)),
s12 = (red, small, is-in(l3)),
s21 = (blue, medium, is-in(ly)),
S22 = (blue, medium, is-in(l3)).
The initial environmental state contains two object states s;; and ss;. The
robot can perform pick and place actions, noted a; and as, to move the “small
red cup” or the “medium blue plate”, respectively, from [y to ls.

The transitions between the different object states as described in the task
knowledge are illustrated in Fig. When s1; and s91 are initially recognized
by the robot, marginal probabilities P(S (¢ + 1)) are calculated individually for
each object state. As we assume all paths for completing the task are equally
likely for this task, we obtain: P(S(t+1) = s11) =0, P(S(t+ 1) = s12) = 0.5,
P(S(t+1) = s91) = 0 and P(S(t + 1) = s32) = 0.5. The system then infers
what action to perform in order to achieve the predicted environmental states
by maximizing the conditional probabilities P(S(t+1)|S(t), A(t)), which are in

this case equal to:

P(S(t+1)=s12|S() = s11,A(t) = a1) =1,
P(S(t+1) = 512|S(t) = s11, A(t) = az) = 0,
P(S(t+1) = s92|S(t) = 821, A(t) = a1) =0,
P(S(t+ 1) = 522|S(t) = 821, A(t) = az) = 1.

Here also, conditional probabilities are calculated individually for each object
state.
In this example, the robot estimates that it can perform a; or as in order

to reach s15 or sq9, respectively, from the currently observed object states si1
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and so;. When a new state is reached, the robot reiterates the same inference
process until it can no longer predict new states.
When to perform an action and which action to execute is decided by the

action selection module presented in the next section.

5.2.3 Action Selection Module

The action selection module implements a policy that specifies what the robot
should do at each time step. If the robot were to execute the task completely on
its own, this module would directly return one of the possible actions predicted
by the DBN immediately after every action. During joint task execution, on
the other hand, the robot’s policy needs to account for the human’s direct input
or their actions that result in changes in the world state. We implement three

policies that differ in terms of when a robot action is triggered.

¢ Robot-initiated Reactive Help (R): Robot actions are initiated by
the robot when it estimated prediction error higher than a fixed threshold.
The robot monitors the human’s task execution and detects when one of
the next states predicted by the DBN is not reached within an expected

time window, indicating a delay or difficulty in the task progress.

¢ Robot-initiated Proactive Help (P): This policy involves performing
actions whenever they are possible, even when low prediction error is es-
timated. However, different from a robot-only task execution, the robot
needs to take into account human actions that might be in progress be-
fore a stable environmental state is reached. If at least one executable
action exists that does not conflict with the human actions, the trigger is

initiated.

e Human-initiated Help (H): This policy gives complete control of robot
actions to the user. The robot performs an action only when the user

explicitly says “Robot, can you help me?’ and ignores prediction error.

Mechanisms behind the robot’s behavior for each policy are similar, but differ
in some fundamental aspects. When the system observes object states S(t), it
predicts future object states S(¢+ 1) that have non-null marginal probabilities.
Object states are noted s;;, where 7 is the object number and j represents the

number of states the object can be on. Actions on the objects i are noted a;.
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To decide which action should be performed by the robot, several values are

estimated.

e Firstly, for each possible future object state, an object detection likelihood,
noted Ls;;(t+1), is calculated. The value is initialized at 0.6 and increases
linearly while the object is recognized (max 1). This value represents how
well an object corresponding to a predicted state is recognized by the
perception module. If the object is momentarily not perceived, Ls;;(t+1)
decreases linearly. If Ls;;(t + 1) becomes lower than 0.4, the object is
considered lost. For instance, if a user repeatedly touches an object in
the scene, the corresponding Ls;;(t + 1) will be low because the object
recognition will be noisy. Examples of object detection likelihoods for

good and bad object recognitions are represented in Fig. [5.6

e Secondly, a prediction error, noted PEs;;(t + 1), is estimated for each
possible future object state. The value of PEs;;(t + 1) is a function of
Ls;j(t + 1) and of the elapsed time, noted t., since the current environ-

mental state S(¢) has been first recognized.

A prediction error PEs;;(t + 1) triggers an action when it gets higher than
a threshold (0) fixed at 0.8. The robot then executes the corresponding action

a;. The prediction error is calculated as follows:

e In condition R, when possible future states are predicted, the prediction
error values are calculated as function of the elapsed time t. and the

corresponding object detection likelihood as follows:

2T — ¢,
PEsij(t+1) = 0.3 x Lsij(t +1) x (1= =——); (5.1)

where T is the estimated action duration, fixed at 4 seconds empirically.

If one prediction error gets higher than the threshold 6, it triggers a robot
action. If two or more prediction errors are higher than 6 at the same time,
the one with the action on the closest object to the robot is activated. The

distance between the robot and an object is noted d;.

e In condition P, when possible future states are predicted, the prediction er-
ror values are calculated as function of the corresponding object detection
likelihood only:

PEs;j(t+1) = Ls;;(t + 1); (5.2)
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The prediction error is therefore maximum as soon as objects are detected

with enough certainty.

If one prediction error gets higher than the threshold 6, it triggers a robot
action. If two or more prediction errors are higher than 6 at the same

time, the prediction error with the lowest d,; is activated.

e In condition H, when a user asks the robot for help, the trigger signal
with the highest object detection likelihood Ls;;(t + 1) value is activated.
If two or more trigger signals have the same object detection likelihoods,
the trigger signal with the action on the closest object to the robot is

activated. The distance between the robot and an object is noted d;.

The robot always uses the gripper closest to the object of the executed action.

Let us now consider the example where our system and a user jointly collab-
orate during a task, as presented in Section (see Fig. . At first, the robot
detects the current environmental state, noted S(t). The tasks state prediction
module then predicts possible future object states S(t+1) = sy or S(t+1) = s4.
The action to reach ss is estimated to be a;. The action to reach sy is estimated
to be az. When the states are predicted, the robot estimates for each of them
an object detection likelihood value Lsy(;41)(01) and Lsy(s41(02).

In all conditions, if the next state is correctly reached by the robot or by the
user, the tasks state prediction module predicts new future states. In this exam-
ple, if s, is reached, the new predicted states will be S(¢t + 1) = s4. Conversely,
if s4 is reached, the new predicted states will be S(t 4+ 1) = ss.

In the R condition, if the predicted states are not achieved within few sec-
onds, prediction errors will increase. If the user performs an action before any
of the prediction errors reach the threshold, the robot does nothing. Else, if
one of the prediction error reaches the threshold, the robot performs the cor-
responding action. In the P condition, the robot perform an action as soon as
possible, namely when one of the object detection likelihood corresponding to
predicted states is higher than the threshold. It is similar to the R condition
with a much lower threshold. In the H condition, the robot will not perform

any of the action until it receives a command.
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5.3 Experimental Setup

In this section we present the details of our experiment and user study conducted

to analyze the effects of initiative on human-robot interaction.

5.3.1 Platform

Our system is built around the PR2 robot platform (see Fig. |5.1). PR2 has
two 7 degrees-of-freedom arms giving it a large workable space for tabletop
manipulation tasks. Each arm has 1 degree-of-freedom parallel-finger gripper
that can grasp objects up to a width of 8cm. PR2’s arms are passively balanced
and actuated with low-power motors, making it safe to work around humans.
For perception, it has a Kinect sensor attached to the head that has a high-speed
pan and tilt motion. Note that most of the system was designed independently

of the platform while the action execution part was designed for and with the
PR2.

5.3.2 Robot Actions

The robot’s pick-and-place actions are parametrized with an object to be picked
and a location at which the object is to be placed. The actions are defined as a
sequence of poses relative to the object (pre-grasp, grasp, and lift poses) followed
by poses relative to the target location (transfer, lower, and drop poses). While
the overall action templates remain the same, some of the poses in the actions
are tuned to the particular object being manipulated. The actions were trained

using a learning by demonstration approach developed by Alexandrova et al. [1].

5.4 User Study

The help trigger mechanisms described in Section [5.2.3| are expected to yield
different joint task execution dynamics. Furthermore, each mechanism on its
own can result in a wide variety of behaviors depending on the particular user.
For example, when interacting with the human-initiated policy, users may re-
quest help at every step or only when they need it. When interacting with the
robot-initiated proactive policy, they might select their own actions such that the
robot has many opportunities to help or they might (unintentionally or inten-

tionally) block the robot’s actions. The differences across and within each policy
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can reflect on objective task execution measures, as well as the user’s subjective
attitude towards the robot. To investigate these differences, we performed a
user study that allows us to (i) characterize people’s behaviors while interacting
with each policy, and (ii) compare the alternative policies for triggering robot

help.

5.4.1 Study Design

We performed a within participants study with one independent variable (robot
helping behavior) with three conditions: H, R, P (Section [5.2.3)). In each con-
dition, participants performed two tasks with the robot, one from each category

(Task A and B). The order of the three conditions were counterbalanced.

5.4.2 Study Setup

The robot was placed in front of a 68cm high table. Participants sat across
the table. The table top was separated into three zones as shown in Fig. [5.3]
Participants were asked not to touch objects that are in the red zone (near the
robot). Similarly, the robot could not enter the blue zone (near the human).
Both were allowed to manipulate objects in the middle zone. In the middle of
the table there was a tray with four target positions.

Tasks were explained to participants with a one-page pictorial description
involving (i) the set of objects and targets involved in the task and (ii) the final
state of the tray when the task is complete. An example task description is
shown in Fig. [5.2b. An additional small table was placed to the right of the
participant. Printed task descriptions were placed on this table, together with
a tablet for logging task steps and a laptop for responding to our questionnaire.

The complete setup can be seen in Fig.

5.4.3 Procedure

Participants were recruited from a campus and nearby neighborhoods through
mailing lists. Interested individuals signed up for a 45 minutes time slot in
advance. When participants arrived at their scheduled study time, we first
explained the purpose of the study and asked them to sign a consent form.
Then they were taken to the participant seat, introduced to the robot and the

workspace, and given an overview of the procedure.
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Next, the robot was activated and participants performed a practice task
(Fig. [5.3h). They were explained what the task is using the corresponding
pictorial description. The robot made a specific sound to indicate that it was
ready. Participants were told that they can start the task when they hear this
sound. They were told to perform one step of the task and then log the step on
the tablet. The logging was done throughout the study as a mechanism to space
human actions apart and give the robot an opportunity to detect intermediate
states of the task. Each log required indicating who performed the step (human
or robot), the two letter identifier for the object involved (as indicated in the
task description), and the one letter identifier for the target position where the
object was placed. The second step of the task was performed by the robot
to familiarize participants with the robot’s motion. The robot made another
sounds when it detected the task completion. Participants were told that they
will perform similar tasks together with the robot in three conditions where the
robot’s behavior will be different.

Next we moved on to the actual study. For each condition, the experimenter
first gave condition specific instructions. In the human-initiated help (H) con-
dition, participants were told that they can request the robot’s help by saying
“Robot, can you help me?” This was done in a wizard of Oz fashion and with-
out using a microphone. As soon as users asked for help, the experimenter
discretely pressed a button. In the other conditions (R and P), they were told
that the robot will decide when and how to help out with the task. Then the
experimenter set up the initial state of the first task, told participants to start
when they hear the robot sound, and left them alone with the robot. The ex-
perimenter came back to set up the next task after the robot detected that the
task was complete. After completing both tasks in the same condition, partic-
ipants were asked to respond to the condition-specific questionnaire. After the
three conditions were complete, participants responded to additional questions
drawing comparisons between the three conditions. At the end participants
were thanked for participating and given the promised compensation of 10 USD

equivalent gift card.

5.4.4 Measurement

The study was recorded with two cameras; one mounted on the robot’s head

and another overseeing the workspace together with the robot and the partic-
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ipant. In addition, we logged the progression of tasks and robot actions with
timestamps throughout the study (see Appendix|.1|for complete questionnaire).
The extracted data was used to evaluate three main components: the quality of
interaction and the system performance.

From the study logs we extracted the task completion time and the number
of actions performed by each agent. From the videos we extracted quantitative
measure that characterized each participant and the robot behaviors. These
measures included times when the robot and the human were moving alone or in
concurrence, their idle times and the number of s the participants performed to
the face of the arms of the robot during the joint task execution. The coding was
performed by two coders (IRREIZ 0.72), including one without prior knowledge
of the study.

To compare the three conditions subjectively from the user’s perspective, we
administered several questions after each condition as well as at the end. First
we asked an open ended question to elicit the participants own description of the
robot’s assistance behavior. Another question asked them to describe their strat-
egy. Then we asked a set of Likert scale questions, similar to those commonly
used in human-robot collaboration research [39]. These questions addressed the
user’s perception of: the robot’s helpfulness, its awareness of the human and
task progress, its contribution to the task, team fluency and efficiency, and nat-
uralness of the interaction (see questions in Fig. . Additional questions at
the end asked a forced ranking of the three conditions and open ended questions
about perceived distinction between the two robot-initiated conditions and how
different behaviors would be combined in an ideal interaction. The complete

questionnaire and answers are provided in the Appendix

5.5 Experimental Results

Our study was completed by 18 participants (9 females, 9 males, and ages
18 to 35). This section presents our findings based on data collected from
these participants. A one-way ANOVA was conducted to compare the effect
of conditions H, R and P on the different objective metrics. We performed
post-hoc tests (two-tailed paired-t-test) to explore differences between pairs of

conditions.

LCohen’s kappa.
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(a) Condition H - Participant 9 (b) Condition H - Participant 16

Participant’s Participant’s
gaze gaze
Participant’s Time Participant’s
behavior behavior
Robot’s Time Robot’s
behavior behavior
Time
(c) Condition R - Participant 7 (d) Condition R - Participant 15
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Figure 5.7: Examples of interactions.

To analyze the experimental data, we segmented each interaction between a
participant and the robot into temporal action sequences. These actions could
be of 3 types for the participants: acting (upon the table), logging or idling;
and 2 types for the robot: acting or idling. Based on these temporal action
sequences, we could also extract concurrent actions between the participants
and the robot. Additionally, we segmented the different gazing patterns of the
participants to the robot’s face and arms. Two examples of interactions for each
of the three condition during the Task B are shown in Fig. a—f).

5.5.1 Objective Metric

We first examine common task and collaboration metrics. Fig. shows the
average number of task actions performed by the robot in each condition (Task
A: F(2,51) = 15.35,p < .001; Task B: F(2,51) = 13.24,p < .001) and Fig. [5.8p

shows the overall task completion times by the human-robot team (Task A:

()



F(2,51) = 2.20,p = .12; Task B: F(2,51) = 6.15,p < .005).

Fig. a—d) show the breakdown of task completion times into robot-only,
human-only, concurrent, and no motion segments and Fig. e—f) separately
show the human idle time and robot idle time. The results of the ANOVA
for results in Fig. are as follows: (a): (Task A:F(2,51) = 7.64,p < .005;
Task B: F(2,51) = 12.62,p < .001); (b): (Task A: F(2,51) = 10.51,p < .001;
Task B: F(2,51) = 0.61,p = .55); (c): (Task A: F(2,51) = 4.41,p < .05; Task
B: F(2,51) = 2.79,p = .07); (d): (Task A: F(2,51) = 4.78,p < .05; Task B:
F(2,51) = 6.97,p < .005); (e): (Task A: F(2,51) = 2.73,p = .070; Task B:
F(2,51) = 9.22,p < .001); (f): (Task A: F(2,51) = 5.32,p < .01; Task B:
F(2,51) =5.61,p < .01).

Finally, Fig. a—d) shows the number of times the participant looked
and the robot’s face and arms and the average duration of the gazes. The
results of the ANOVA for results in Fig. are as follows: (a): (Task A:

F(2,51) = 1.99,p = .14; Task B: F(2, 51) = 8.14,p < .001); (b): (Task A:
F(2,51) = 5.19,p < .01; Task B: F(2,51) = 4.75,p < .05); (c): (Task A:
F(2,51) = 5.68,p < .01; Task B: F'(2,51) = 2.61,p = .084); (d): (Task A:
F(2,51) = 1.31,p = .28; Task B: F(2,51) = 3.32,p < .05).

45 P<0 001 BMHuman MRobot-initiated B Robot-initiated
4 p<0 001 initiated ~ Reactive Proactive
3.5 p<0.001 r&!
. — 140 <.005 p<.05
é zz P o =0 T
e =100
5 2 L 80
15 5 o
1 40
0.5 20
0 0
(a) Task A Task B (b) Task A Task B

Figure 5.8: (a) Number of actions performed by the robot for each task category
in each condition. (b) Task completion time for each task category in each

condition. Error bars represent standard deviation.

Proactive Versus Reactive

First we focus on the comparison of robot-initiated help strategies. Proactive

help results in the robot having a greater contribution to the task, as indicated
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Figure 5.9: Breakdown of task completion times into (a) robot-only, (b) human-
only, (b) concurrent, and (d) no motion time segments. These include only
motion related to the joint task. (e) Human idle time. This excludes the
time during which the human is performing their secondary task of logging
task actions. (f) Robot idle time.

by the significantly higher number of actions performed by the robot (Task A:
p < .001, Task B: p < .001) (Fig.[5.8n). This is also reflected in the significantly
lower robot idle times for the proactive robot (P) as compared to the reactive
robot (R) (Task A: p < .001, Task B: p < .05) (Fig.[5.9f). The average number of
actions performed by the reactive robot was around 1 (Task A: M = 1.17,SD =
.38, Task B: M = 1.56,SD = .76), which is the minimum number of actions
required by the robot. Whereas, the proactive robot performed around 2 (Task
A) and 3 (Task B) actions (Task A: M = 2.17,SD = 48, Task B: M =
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3.00, 5D = .82), which are about half of the actions needed to complete the task.
This finding is expected and confirms that our model produced the intended
behavior.

Despite the difference in the number of robot actions, there was no signifi-
cant difference in the total task durations in Task A (Task A: p = .12) and little
difference in Task B. A potential reason for this could be lack of parallelization
between human and robot actions. However, the significant increase in the con-
current human-robot motion (Fig.[5.9c) in the proactive condition indicates that
parallelization did indeed happen at least in Task A (Task A: p < .005). In addi-
tion, the total task durations appeared to be greatly influenced by the difference
in human and robot action speeds as humans are several orders of magnitude
faster at pick-and-place actions. Hence they were not slower in completing the
overall task in the reactive condition. Despite this difference, human idle times

were not significantly higher in the proactive robot condition (P) (Fig. [5.9).

Human-initiated versus Robot-initiated

Next, we look at comparisons between the human-initiated help (H) condition
and robot-initiated help conditions to characterize how people chose to get help
from the robot when they had control. From Fig. [5.8h, we see that the number
of actions performed by the robot in the H condition was about half of all task
actions, as in the P condition. The number of actions performed by the robot
was significantly higher than in the R condition (H-R - Task A: p < .001, Task
B: p < .001). It resulted in significantly higher concurrent motions in Task
A for the H condition compared to the R conditions (H-R - Task A: p < .05)
(Fig. ) We believe that it is because participants asked for help and then
started doing their own actions as soon as they understood the robot’s intention.
This is similar to the P condition, where participants briefly waited until they
recognized what the robot was doing and then acted. The added waiting time
in the H condition was reflected in overall task completion times (Fig. [5.8b),
which was significantly higher than in the R condition for Task B (H-R - Task
B: p < .005) and in the P condition for both tasks (H-P - Task A: p < .05, Task
B: p < .05). This was also reflected in the human idle times (Fig. [5.9¢) which
was highest for the H condition in both tasks (H-R - Task A: p = .27, Task
B: p < .001; H-P - Task A: p < .05, Task B: p < .01). We noticed that one

participant made the robot do all actions for Task 1; two participants made the

78



robot do all possible actions for Task 2 in the H condition. This contributed to
the high human idle time and task completion time, while making the variance

in this condition high.

Gaze toward the Robot

Figure 5.10: Gazing zones: The face gaze zone (purple line) is situated on the
robot’s “head” part. The arms gaze zone (red line) is situated on the lower

body part of the robot.

We then look at the participants’ gazing patterns toward the robot during
the different tasks. Two gazing targets were analyzed: the robot’s face and
arms zones, which are shown in Fig. The number of times the participants
looked at each zone and the duration of each gaze were extracted from the video
recording of the experiment. The gazes to the robot’s arms were only counted
when the robot was moving its arms.

The number of gazes to the face and arms of the robot are described in
Fig. 5.11p and Fig. .11p, respectively. The average duration of each gaze
to the face and arms of the robot are described in Fig. .11k and Fig. p.114,
respectively.

The participants gazed significantly more to the face of the robot in the H
condition compared to the R and P conditions during Task B (H-R - Task B:
p < .05; H-P - Task B: p < .001) (see Fig. |5.11a). The average gaze duration
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Figure 5.11: (a) average number of gaze to the face of the robot; (b) average
number of gaze to the robot’s arms; (c) average duration of each gaze to the

face of the robot; (d) average duration of each gaze to the robot’s arms.

was also significantly longer in the H condition during Task A (H-R - Task A:
p < .005; H-P - Task A: p < .005) (see Fig. [5.11). This can be explained by
the participants having to vocally command the robot when needing the robot’s
help. In fact, the participants almost always gazed to the robot’s face when
asking for help and kept gazing until the robot would start its action.

The number of gazes to the arms of the robot is significantly greater for the
H and P conditions compared to the R condition in Task A (H-R - Task A:
p < .05; R-P - Task A: p < .001) and greater in condition P compared to the
R condition in Task B (R-P - Task B: p < .001) (see Fig. [5.11p). This result
is strongly correlated with the number of actions performed by the robot (see
Fig.[5.8h). Indeed, gazing at the robot’s arms allows the participants to identify
its actions and to log them as part of the task. Therefore, if the robot executes
more actions, the number of gazes should increase proportionally.

Finally, the average gaze duration to the face and arms is significantly longer
in the H condition compared to the two others in Task B (H-R - Task B: p < .05;
H-P - Task B: p < .05) (see Fig.[5.11d). The average gaze durations appear to

be correlated to the tasks average completion times (see Fig. [5.8b). In case of
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face gazes, this can be explained by the fact that users looked at the robot’s
face after asking for help and kept looking until the robot started moving. On
the other hand, the reason for the larger duration of gazes to the arms in the
H condition can only be hypothesized to be due to a higher willingness of the

participants to verify the effect of their commands on the robot.

5.5.2 Subjective Metric

Participant responses to the Likert-scale questions are summarized in Fig. [5.12
The inter-condition differences were analyzed using the Wilcoxon signed rank
testﬂ which is a standardly used non-parametric test. As suggested in [1I]
and to avoid family-wise errors, we grouped the seven scales into two sub-scales
representing the quality of interaction (Fig.[5.12h) and the system performance
(Fig. ) There were no statistically significant differences between the
human-initiated help (H) and proactive robot (P) conditions in any of the sub-
scales, despite the differences observed in objective metrics (e.g., the task com-
pletion time shown in Fig. [5.8b) between these two conditions. Subjective
ratings of the quality of interaction appeared to be correlated with the num-
ber of actions performed by the robot (Fig.[5.8h), rather than the overall task
efficiency (Fig. [5.8b). The reactive robot (R) condition was rated significantly
lower than the other two (H and P) conditions, indicating that participants
agreed significantly more that the quality was better in the H and P conditions
(see Fig. [5.12h). Whereas the significant differences were observed in the qual-
ity of interaction, participants did not rate differently the system performance.
It seems they did not attribute the robot’s behavior in the R condition to its
inability to perceive the human or keep track of task progress. In the forced
ranking question administered at the very end of the study, 72% of participants
(13/18) indicated P as their most preferred behavior, while 22% (4/18) indi-
cated H and only 6% (1/18) indicated R. 78% of participants (14/18) indicated
R as their least preferred behavior, with 17% (3/18) for H and 6% (1/18) for P.
The question yielded a clear ranking of the three conditions as P > H > R from
most preferred to least preferred.

Furthermore, in a separate two-choice questions, 67% of participants (12/18)
indicated they prefer letting the robot take initiative, while the remaining 33%

said they preferred having control over the robot’s actions. These results demon-

2We also conducted parametric tests and obtained similar results.
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Figure 5.12: Mean Likert-scale ratings in questionnaire responses. Significant
differences according to Wilcoxon signed rank tests are indicated with p-value

ranges.

strate that although there were no significant differences between the H and P
conditions in the Likert-scale ratings, people are more likely to prefer P over H
in favor of the improved objective metrics (Section [5.5.1]).

Perceived differences of robot strategies

An open-ended question asked participants to describe the differences between
the two conditions R and P in which the robot decided when to act, if they
noticed any difference at all. All participants reported that they noticed a
difference. The reactive robot was perceived as “slow” and characterized as
“lazy” and “hesitant” by some of the participants. The proactive robot, on the
other hand, was perceived “fast” and “pro-active”. Descriptions of the perceived

robot behaviors were accurate; for example:

e M, 35: “... [P] felt more natural to have unprompted collaboration while T
was performing the task, rather than the robot waiting for me to finish as
it did during [R]”.
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e M, 20: “/P] was more proactive in its help ... [R], by contrast, would

only complete actions that I was unable to complete”.
o M, 22: “[In P] the robot took the initiative a lot more than [R]”.

These answers clearly highlight that the participants understood how the
robot was behaving in the P condition, but did not felt that the robot was
very motivated to help in the R condition. This understanding of the proactive
robot’s “mind” may be the reason why participants rated this condition as their

favorite.

Collaboration enhancing human behaviors

The differences in the objective and subjective task metrics can be further dis-
sected by examining the occurrence of certain events. Firstly, we saw that
concurrent motion was significantly higher in the P and H conditions for Task
A (Fig. 5.9c), which shows better team work took place in these conditions.
Secondly, in Task B, two objects (a container and a ball) were placed in the
human-only zone. We observed that most people intuitively encouraged collab-
oration by starting tasks with objects that were in the human-only region of the
table. Indeed, in the H and P condition, only 3 participants in average did not
start with the ball in the human-only zone. In the R condition, 7 users started
with one of the balls placed in the both-allowed zone, showing lower collabora-
tion. Participant descriptions of their strategies, in a free form question in the

questionnaire, reflected their intent to enhance the collaboration; for example:

o F. 22: “[In R] I chose objects closest to me or that were obscuring the
place of the objects needed to be. I also moved slower than I would without

the robot to give it time to help”.

e M, 19: “[In H] I first wanted to set up the two bowls on the table before
putting any of the balls in. This was to ensure that [the robot] would not

attempt to put a ball in a space without a bowl”.

e F. 24: “[In P] I Moved the bowls and objects from the blue zone first and
then help fill them [the bowls] one at a time”.

One participant placed the objects from this zone into the common central zone
to make the robot perform the task actions while he would perform the logging

task. He described his strategy as:
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e M, 19: “/In P] I moved objects from the blue zone into the collaboration

zone, and placed objects in-between logging and [the robot’s] actions”.

5.6 Discussion and Future Work

We implemented three initiative conditions to evaluate the robot’s performances
during joint task collaboration with humans. The first condition, robot-reactive
help enables the robot to help when the prediction error of a predicted state
is higher than a large threshold, which is similar to our hypothesis for the
emergence of prosocial helping behavior in Chapter |4l The robot-proactive help
condition initiates actions as soon as possible, which is similar to reducing the
prediction error threshold to 0. Finally, the human-initiated condition gives the
control of the robot’s actions to the human.

In all conditions, the robot successfully helped the human to accomplish the
different tasks it was given. In addition to the results presented in Chapter
it shows that prediction error minimization can allow a robot to help others.
However, this study did not focus on explaining the emergence prosocial helping
behavior, but on whether and when a robot should help to be perceived efficient
and helpful.

On the question of whether a robot should take initiative, our results demon-
strate that the answer depends on the robot’s behavior. People were happy to
give away control if the robot is proactive, but they would rather have control
if it is reactive. Given its other benefits in terms of objective task and team
metrics, this suggests that collaborative robots should be designed to always
be proactive. In practice, this might not always be possible. Challenges such
as partial task knowledge and uncertain perception might reduce the robot’s
ability to help the user when it is actually possible for it to help. While the
simplistic help request used in our experiments would not be sufficient, enabling
users to ask for particular types of help by commanding actions could result in
more effective collaboration in such circumstances.

Our study also demonstrate that the behavior of the proactive robot was
similar to the behavior people asserted when they had control over the robot’s
actions. In turn, the similar high subjective rating of the proactive and the
human-controlled robots could be partially ascribed to this similarity. Further-

more, we believe that the behavior that was common in these two conditions is
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similar to how a human would collaborate in the same role. Participants indeed
described the robot’s behavior during the proactive condition much better than
for the reactive one, attesting of a better understanding of the robot’s “mind”.
They then indicated that the collaboration was most natural.

On the natural aspect of the interaction, we show that the proactive or
the reactive robots receives less gazes to the face than the human-initiated
robot. It is argued by psychologists that face-gaze (or eye-gaze) is an important
component of social interactions [26], [16] and mutual understanding [84] 60],
which contribute to fluent and natural interactions. Therefore, in scenarios
where a robot is expected to interact socially and naturally with humans, the
proactive and reactive robots may be less appropriate than the human-initiated
one.

The overall implication of our study is that mixed-initiative help triggers
seems to be ideal for collaborations in realistic settings. We suggest that the
robot should be first help in response to human request or reactively and slowly
become more proactive. We believe that increasing pro-activity over time, after
observing the user’s collaboration preferences (e.g., [64]) might improve the
collaboration, while benefit from the social aspect of the early human-initiated
behavior. This mix-initiative process seems similar to human development, in
which infants start helping to minimize prediction error and slowly help more
pro-actively as they acquire higher social motivations.

Finally, the model used in this chapter answered the question asked in Chap-
ter [ on whether or not state prediction would solve the issue of perspective for
helping scenario. The results of this experiment indeed showed that the per-
spective taking is no longer affecting the robot’s behavior if only the state of
the environment is predicted. However, the system is no longer to directly take
into account the actions of the user, which in definitive can be disadvantageous
for the interaction. We would therefore argue that predicting both the environ-
mental state and others’ action would solve the issue of perspective taking while

adding the user in the prediction loop.
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Chapter 6

Conclusion

6.1 Summary of our Study

This dissertation aim was twofold. First, we attempted to explain how human
infants are capable to help others prosocially from as early as 14-month-old.
Second, we wanted to replicate the development of prosocial helping behavior
into an artificial agent and design an eflicient assistive robot. To reach these

objectives, we performed a series of experiment to answer the following issues:
1. What is the motivation for infants to start prosocially helping other?

2. What is the role and effect of cognitive maturity on the development of

prosocial helping behavior?

3. How to design an efficient autonomous assistive robots inspired by infants’

development?

To address these points, we first reviewed the literature in psychology, cogni-
tive developmental science, but also robotics in chapter 2] The work related to
infant development gave us useful insight on when and how infants start to help.
The theories we introduced highlighted the possible mechanisms thought to play
roles in the emergence of prosocial behavior, such as the emotion-sharing and
goal alignment models. In addition, similar robotics studies guided our choice
of tools to use in order to design a robotic system that could closely replicate

infants’ development and perform efficient interactions.
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In chapter 3] we introduced our general model based on predictive learning,
which describes a learning paradigm for artificial systems. It suggests that by
interacting repeatedly with the world in various contexts and with different
behaviors, an agent can learn to predict action-state sequences by building its
sensorimotor predictor. The system then becomes able to foresee the effect of
its actions on the environment and to perform meaningful actions that minimize
prediction error.

Based on predictive learning, we proposed a general motivational mechanism
to explain the emergence of prosocial helping behavior in infants in chapter
We suggest that due to low self-other differentiation in early infancy, infants as-
similate others’ action as their own and used they sensorimotor model to predict
the outcome of observed actions. We hypothesized that infants may be moti-
vated to help others to minimize the prediction error that is then estimated over
the assimilated others’ goal. Our experimental results validated our hypothesis
by showing that robot endowed with the same cognitive and motor capabilities
as a l4-month-old infants could spontaneously help others, motivated by the
minimization of prediction error. In addition, we showed the importance of cog-
nitive maturity, and especially the positive effect of action experience on action
understanding for the emergence of prosocial helping behavior. This answered
the first and second aforementioned question.

In chapter [5| we showed when and if a robot should take initiative help
others during joint task human-robot collaboration. We implemented three ini-
tiative conditions: robot-initiated reactive help, robot-initiated pro-active help
and human-initiated help. The reactive robot triggered help when the esti-
mated state prediction error was higher than a large threshold (reactive to error
in prediction). On the other hand, the proactive robot initiated actions as soon
as possible, even when prediction error was low. Finally, the human-initiated
condition waited a user request to trigger helping and ignored prediction er-
ror. We performed a user study and showed that the robot taking initiative
proactively, without waiting for high prediction error, had better performance
and was preferred by users. However, it appeared that the human-initiated
condition resulted in larger number of gaze toward the robot’s face than during
both the reactive and proactive robot. According to some studies [51], it may
represent an important component of social interactions. The number of gaze

to the robot’s face seems to be related to the fact that users had to verbally
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address the robot, making the social hypothesis more plausible. These results

addressed the third question stated above.

6.2 Contributions

The work presented in this dissertation and summarized above, contributes to a
field known as cognitive developmental robotics, which is at the intersection of
engineering and science. It attempts to study and widen the understanding of
infant development though the conception of artificial systems, themselves de-
signed based on scientific evidences. Our experiments involved solving original
and novel technical challenges along with suggesting new hypothesis and mech-
anisms to explain the emergence of prosocial abilities in infants. Our specific
contributions are separated into two categories and described in the following

paragraph.

Scientific Contributions

To help understanding infant development, we suggest a model based on predic-
tive learning that emulated the development of prosocial abilities. In particular,
we suggested a motivation mechanism based on the minimization of prediction
error to explain the emergence of prosocial helping behavior. Through our ex-
periments, we showed that an artificial agent could spontaneously help others
by assimilating their action goal and to minimize prediction error. Additionally,
we showed that cognitive maturity, and in particular the ability to understand
action based on oneself sensorimotor model, directly affected the variety and
efficiency of helping behavior. Our results were similar to what was observed in
infant studies by Tomassello and Warneken [90} [89]. Namely, that 14-month-old
infants are good in helping others when goals are easy to predict, whereas older
infants can help in more complex and non-transparent situations. By taking
advantage of such result, we hope that our work can help or guide psycholo-
gist toward revising and/or improving the current theories on the emergence of

prosocial helping behavior.

Engineering Contributions

The conception of an infant inspired robotic agent able to prosocially help other

required to overcome a certain number of challenges and resulted in several en-
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gineering contributions. We proved that predictive learning, and in particular
the minimization fo prediction error, could endow a robot with the ability to
help and collaborate with others. In addition, our model did not use a “model of
others” as done in other studies [34]. We then showed that proactive robots help
others more efficiently, naturally and fluently in joint task collaboration, com-
pleting insight from other human-robot interaction studies [3] [63, [47]. Finally,
we showed that even if proactive robots are preferred by users, the human-

initiated robots led to more natural interactions with more face gazes.

6.3 Limitations and Future Work

As summarized above, our studies provide great insights on how infants may
acquire early prosocial helping behavior through the minimization of prediction
error. It also suggests tools and guidelines to design efficient and fluent collab-
orative robots, fit to interact with humans. However, our work only scratched
the surface of infant development and robotics design, and is limited in some
aspects. Firstly, while our proposed mechanism can provide hint to support
the goal alignment model presented in Chapter [2] we cannot provide any proof
strictly validating our claims. In addition, the proposed mechanism only ac-
counts for the emergence of prosocial helping behavior and does not provide
insight on other prosocial abilities such as imitation, sharing and caring. Fi-
nally, the task and interaction performed by the robot in our experiments were,

to some extent, limited and have little concrete application in real world.

6.3.1 Extension of our Model

Our model focused so far on explaining the emergence of instrumental helping
behavior. However, not only infants can help others in need, but they are known
to display a wide range of prosocial behavior. They can comfort distressed
persons, imitates their motions or intended goals (see [55]), share food with
their caregivers, etc. While these behaviors are also observed very early in
infancy, alike prosocial helping behavior, the motivation to perform them is
unclear.

We suggest that prediction error minimization might also be involved, to
some extent, for their development. Indeed, imitation might be explained as an

attempt to minimize the prediction error by executing a perceived motion and
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improve the sensorimotor predictor. To prove our theory right, we will perform
new experiments in which the system will interact with other, not only after
learning its sensorimotor model, but also while learning it. We expect to see
the emergence of imitating behavior as well as helping behavior as a byproduct
of the minimization of prediction error along with other motivational mechanism
such as curiosity [33], 65].

Additionally, we shortly highlighted in Chapter [ the important of having
social assistive robots for companies or household. However, while our system
was capable to efficiently and fluently interact with users, the complexity and
range of its capacity was limited. By allowing our system to acquire a wider
range of prosocial abilities, but also to train longer with more actions in more
complex environments, we hope to observe the emergence of robust behavior
usable in real situations.

Finally, we will attempt to collaborate with psychologists and cognitive sci-
ence teams to perform a new experiment to prove our hypothesis. By carefully
designing the conditions in which we expect to see infants to help others, we
expect to be able to prove that the prediction error minimization can explain

the emergence of prosocial helping behavior.
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Chapter 7

Appendix

.1 Appendix A

In the following pages, we attached the logging questionnaire used by the par-
ticipants of our user study during their interaction with the robot. As each
participant performed a total of 6 tasks with the robot, the questionnaire is
divided in 6 sections from “Task #1” to “Task #6”. For each section and step,
the user indicated who performed the action, with which object (object ID) and

to what location (location ID).
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Task Log

Task Log

*Required

1. Participant ID *

Practice task

https://docs.google.com/forms/d/1GvlveixcLPav...

2.STEP 1
Performed by:

Mark only one oval.

Robot

Human

3. Object ID:

4. Target ID:

5. STEP 2
Performed by:

Mark only one oval.

Robot
Human

6. Object ID:

7. Target ID:

Task #1

1of11

20164068078 14:11



Task Log

10.

11.

12.

13.

14.

15.

16

17.

20f11

.STEP 1

Performed by:

Mark only one oval.

Robot

Human

. Object ID:

Target ID:

STEP 2
Performed by:

Mark only one oval.

Robot

Human

Object ID:

Target ID:

STEP 3
Performed by:

Mark only one oval.

Robot

Human

Object ID:

. Target ID:

STEP 4
Performed by:

Mark only one oval.

Robot

Human

https://docs.google.com/forms/d/1GvlveixcLPav...

20164068078 14:11



Task Log

3ofl1

18.

19.

Object ID:

Target ID:

Task #2

20.

21.

22.

23.

24.

25.

26.

27.

STEP 1
Performed by:

Mark only one oval.

Robot

Human

Object ID:

Target ID:

STEP 2
Performed by:

Mark only one oval.

Robot

Human

Object ID:

Target ID:

STEP 3
Performed by:

Mark only one oval.

Robot

Human

Object ID:

https://docs.google.com/forms/d/1GvlveixcLPav...

20164068078 14:11



Task Log

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

. Target ID:

STEP 4

Performed by:
Mark only one oval.

Robot

Human

Object ID:

Target ID:

STEP S

Performed by:
Mark only one oval.

Robot

Human

Object ID:

Target ID:

STEP 6

Performed by:
Mark only one oval.

Robot

Human

Object ID:

Target ID:

Task #3

40f11
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