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1.1 HEx

1.1.1 RU—F A ROFHE

R —F N AXENEHET 5 EERTH Y FEEOHEE 2T ) PER Lt E T,
INT —=FNARFIFAF— R, RTTRE A U RZ IR S, 20 O
HEDRIZEY, ER-RAR, Ri—EmA#R, T - BT, BREE EoE
HilE 2 RHT 51, XU —F o RN ERBARR TENIFETE 572, HxxroF
—TNARELT, =73y, HEE, BBE, 08, KE, ZENDLA 7 T ETHXL

B TR IER LTV B (2],

NRU—=F N 2R LTHRE, T4 A2V —3lEEV 2 — L 4llZpETE B,
T ENOWrE OB % Fig. 1.1 (27

T4 A7 Y — MNIBEMEOR T ThHY, 7V v MK ETEERAG DY TRHHEINS,
T2 N HEBRASDOIF AT RIS RE 72 K S 772, Fig. 1.1la 123359
B ERE TIIEIRIZAT CY — R 7 L— LA SN S, ET- LROEmE ) — K7L
— LI T A v TERL S, T b— L FE LS OEAIT = AR T SRECTE— L REIEE N,
T SERT D,

EY 2 —/VITKE - KEEZHIETHIHETHWL, E—Fr o Zichltikbdsi
FIHEN D, KREEICRT M E AT 5720, Fig. 1.1b IR T X 512, FEEE T
EEIRIZATETE T I v 7 AER EIZESSND, T 2 v 7 AEREBEW S IZATET
BAENnN5, B EOBWENTEMBITIY A V¥ TSN, SMEEN LV TEIES R,
BN TERRT D,

Insulating High temp. solder
substrate Chip Gel

Chip i
High temp. solder Wire

Resin — : 1
000000001
A ALY AT TN D T T T

Heat spreader

Lead frame  Printed circuit board

(a) Discrete power package (b) Power module
Fig. 1.1 Schematic cross-sectional images of power device products.



RPN | xR, MG, BREORIEFIET D, BIXIE. T4 A7 U—RIC
BWT, NU—REREAICHER MBS, EROFEFENBLIZA T ) Vv
MRT =Ry r— R EN T 5[5l £72, RENEW Y PEKRFTE2T 4 AV
U— MEETEEL, 7V MEKR EICEET L2 4 7ofG[6]e, @mBET 1 227 Y
— FNEHEHBAHRICRET HRM[TT LR ESN TV D, ich, $hEZR EREDEEM
AN, PERE T OB - B 2 1A 72 Clx 72 < JE ) TR 2 58T —
Ry r—=UPRHINTNSI8], BB EEKL, E—Fo v 7 —FOEY 2—L
B SN TS, 2ok Hic, RT—F S 2BET SRR EZRT TN D,

112 TAARAZV—FEEV2—NVOREFE

T ARV — b EEY a2 VTHEECHEIO B 72 53 likHCAER D RE 8D,
o T, ENFNICHE LI-REFIEN R LD,

T4 AZ Y — NIZEICHEINARGLTHY , 2, H-o, il iEsnmd Kk
oD, —MRITITEA RN — LI DB THANLTOEND, AR H—TDH:E
AREENT 1 s/chip LU R & FERICEmE TH S [10],

T4 ATV — hOBIETIE, IZATTHIZTIA YL AR LS, U —niZ
BEOTTREBTHA R T —I1Zy FaiLd, U= RT7L—AFF AR H—DE— |
L—r EEESI, 1A OGN, EOIRE E M IS, UV — R7 L —ARFEN
BE TG SN, AR TAY - URURY —R7L—AIHLYTOHND, 22
THERDIIAENE#ML 7 L—o RiZis s s, 7 b—2a RGeS 2idA 263
TaANTGRANRCHRRIZEY 7L — A R URT BN D, FEEE T2 —0
WHEILy MZXVEy 7 &, KFoNEARZ I LA ons, ToE%, U—
K7L —ARte— hL—=UNOHRITHTO, FAERHBABEED, AR T 4 TR
T 5,

AR HE—=TlIL, = b= NTHMOBRILZB T 2725, N2o H2DWME Ne &
He ZIRG LT 74—V T HABHCLND, FF~U Y MBBRROLTWA 72D, &
PRI COBBITFH TE oV, v U & MBIZERBRAT D5 b DD, FHK T OmEHER
FE23 100 ppm HiIE £ THIZ B D LI LRI TWA[11]

—F, BV 2= ET 4 AT U — N XV AEEENDIRND, @l TR S D T
D, BEEYORWREFENRRDOEND, Y 2 VTEHMCEREEN KL TH D =
ENDAIBICRM 2 E L, $EAFFMIEE min ~ 4 10 min/module & 72 %,

Y 2—VORETIE, FATEMIER—AFHDWNEY—F (XL vy ) ELTHES
b, B7 I w7 ZEMKR, IZATE, EEERFEAIL. =R UROMEYE B OIS i
Lo W—HRARERZE, Ve —Fd LIy FIRICERAIN, IZATENE#MT 52 &
T, PEEE LT I v AERDBES SIS,
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BEFHAKIET 4 A2 V) — A TRk Ne 7 +— IV I HARFIHIN D, FFIZ,
RA FREEFSELVEAIT, BETrE2b0lEN 5, Ny FHRTTr—I0 77
2O LTE5A. FHATO 0213 He & ORUGIT & 0 FE ETHE S, S8 ok 2 5
IETx2,

1.1.3 PEERTFESBIF~DER L HK)

PEARR AL ER (V=7 L—2) ZBRITATEHMIZ, Bl - S50 - Basshi 4
v, "L OMRE S EEEE EATHEELRMEITH D, 1IFATEM~OERIZEICLL T O
CEPRFETLND,

—ORIIRERISTHY . BAIZIZ Pb 7V —{LkTH 5, EU Tik ELV 54 (End
of Life Vehicles Directive) * RoHS #54 (Restriction of Hazardous Substances
Directive) (ZfXF I 5 Pb HHIDEI TS N7Z, 25 OHHNICIHBW T, &Ik Pb XA
X, FREEMEREIE LR &0 9 BfipgBE 2 & . HHIBRAME B IS @E M ST,
IS O RLE LR AR . BROMEE OFEFRA G ST Y | fERIICIZZES Pb 7
— (LR DBND,

ZORIMEEM DN ETH S, IXATEMITREFMIEMN S, SiC HHER O SIREMEL D
Tz, PR EOmMERENEZ R LT iz 572w, BATO Si 8kiT 125
~ 175 COERTENMNET 5, AR D SiC FEILTIL 200CH TOEMERRD B D,
BRFE BT DIXAZEAETIL. A ORRISEWVEIRIZEIND, - T, Mk
THEARBOEBRILAMORENBNIATEMBARO NG, £12, 2B LI#
LATE OMREZ IR S W 2720, HERIS AL E T 21X A T2 W BVRE R Ok 2
F LV, —FH, IZATMITBERIZIZ-40°CORIRICER S LD, 6> T IFATEMIZAT =
200°C % 2 HIREZAGICEHIRICIE D [ 2 2T e 672, 207D, BUS TR L
TRIUSEDBODMEIRLETH 5,

U EOBEREZBEGFD Po IZALTIEZ D Z ENEEL W2, FEEA FiR OB’ D
LTS, FMEHE ERROERZWE T 5720 TIEAR T+ THY . BEFD Pb IZAZHR
2 TV DHERE AR 2 MENR H D, MEBFRORIKIE L TUTO=Z8R3ZE T b,

— O BIZIIATZE OB S OHKITHD, T4 A2V — s TlX, JEDEC FEAEINH S
(Joint Electron Device Engineering Council) 2385 ORCHARZBHEL TV D, £
DOBUEITHE, I KIRE 260°C TORMRFENLEE L 72 5[12], ZOHEIX, T4 A2V
—IRT Y MERIZY 7 u —THRE SN DERDOIEEICHKT 5, @l 260CLL T DA
EMCTT 4 A2 U — b &ERT 5 L, 260°CY 7 a0 —BHCIZA AR - IR L, T—L
RBIEAFIBES 5, 20X 5 el A BT 2720, @A 260 CLL EOIXATEM B LEET
bbH, ETAN, @R 232CTHLD Sn Z#FEEKETDH Sn RIFATET, ZOBEMEZG -3
FRUTEN B TOZRY, ZOHIKINZ LY Sn RIFATEICE DT 4 A2V —FD Pb 71U —
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{EREL L CTnd, BV 2a— LR, Ve —TRIZBSNARNT 4 A7 J—FTh
UL, Bl 260°CLL FOIXA M 2B ARETH D,

ToORITERE - "REFEORNTH S, BB E RS O BLER R~ OB E
7L, BlUATEA - G HEETOEFHEATEOMEREE LY, L, T4 A7 U —1
M CIEBEA IR 1 s/chip LAF, FHAKF OBEFEEE 100 ppm, HEIIEOKETELST
XL EMROOND, Y 2 — VAT TIXEIE ~ #% 100 g 2 OKATE TOHESH
HE LWV, MEOBRLBUATRMICEDE, VAR, UAY, — el @URERET
HAGFRETHH Z ENEE LU, VARV THIUIFIEM T, VA ¥ THIUZMEMm T
2 LFHRIMBII RO DD, Flo, T T v IV ATHEETELILENEEF LY, 7Ty
I AEHCNDIEGE, 7T v 7 AREOTRGTREALEL RV BEAWE LR ST L L
Hio, fgEa X FEHL BT D,

“OHIMEOHKI TH L, BEOaRXA NT v T ERITHT-D. Au X° Ag OEEEG
B &% R IR Y M T2l 7 BN E L, MBI O Z 72 537 B Otk ic
WEEEZRNIEBHEBETHD, Pl FHEEMORAZ T4 XERRD > & B NE
ET MBI TR, MEHREERZ i CTH > THa X b ERERRRV, h—F L TOa Rk
HPFETH D,

PLEo X5z, mhos, &, EoRKAE Sz h <, Pb 7V —@EEOH
MLETHY | EEEEOHMNHFE I RD HND,

1.1.4 BESMDOBRAZESRE

Pb IZAEREBEGHEINE LTHRHENTWADIZ, £& LT, AR, BEEEAR.
WARIL B S R Th D, Table 1.1 IZF 7248 (Au. Bi, Zn, Ag, Cu., Sn, Pb) Ot
A BMAEER  fliks A9 [13-14],

EVEERIIEL WIFIC, Bi<Pb < Sn < Zn <Al <Au < CuAg Th s, Pb OEVZERT
KW=, Bi LAOMEICHIUE Pb 1IZATEEZH WD X0 bEWED E B35 & T
x5,

H1 A% 122272 EIC, Zn = Al = Pb < Cu<Sn = Bi << Ag << Au T %, Pb
L0 RMAREBIT DN, Au, Ag DA THRIFRE R A M ERIZILAVWEEZ LR
5o

BRER LM O T, Zn, Al, Cu, Sn #X—R L LIE#EEM~OMEERKE W,
ZID DA DR TRl 260°C % 8 2 DML BRI 2881072 0 15 5,

PUFITHF R HED BT DA EINIC W TER 2R~ 5,



Table 1.1 Characteristics of metals for Pb-free high temperature solder.
Au Bi Zn Al Ag Cu Sn Pb

Meltl(f}%)P omnt 1064 271 420 660 961 1084 232 327
Thermal conductivity
(W/mK) 318 8 116 237 429 401 67 35
Price 5226 2.65 025 026 127 097 287 027
Fg)

(@) AuRiFATE

Au RIFATEHM E LT Au-Sn, Au-Si. Au-Ge, Au-Sb ZOHLIHIATENZE T HN D,
EfAIEERZER 278°C, 356°C. 360°C. &BCT&éo:ﬂE@Auﬁihk
MEMS >N DA I SN TE L EERH D,

Tokuda 5%, SiC /XU —F L 2 —/L|{Z Au-Sn IZAZOmEH ZkaL7-[15], SiC &
DBC FEMROFHAA HEHIZT, 200C x 1000 h 35 LT 250°C x 600 h O &R 5k %2 5%
ML, 77y 70617, Sn-Ag-Cu LV b EEETH D Lik~7z, Chidambaram 5
X, A NE&T AREROIH] KU VT SRIZATM & LT, AuSi & Au-Ge [FATZ
st L7z[16], 300C x 500 h OFERKERBREZEHKL, /ATy T7—va s TH
DIV RE DRI E VIR T T2 2 L2 60 E Lz, AuSi K0 AuGe @
R T2, REMENHIRF & 5 Lk,

Lang 5% SiC /XU —F 34 ZA[ANFIZ Au-Ge 1A 2/ L, 330°CHiRikiE il e £
i L7=[17], Au-Ge 1ZA72 & HEEMR Ni b - & OAADEIZ T, Ni-Ge ZE&RBELEY
DR ENRL, BAMENSEIIKT T2 62H6NnE L, ZoMEIC L, W ik
BAY TIEaEIT D 2 & T, 330°C x 1600 h O#EESSM: T, FMEMK T ORI Lz,
BALIZ, BT I v 2ERICTREMZ (18], BARMICIZ, W KB Y 78 %2380

. REMEIED CIC BSfEkaIER 2 et Lz, BUR ) 24 2@ kv | S
DA FIZED AT,

PLED X H1Z, Au RIZAFITEIRGHEESFFTX 5, 2T, Au SRIFATZED M
N=RYINVE—=THY, O Sn ° Pb RITATE LV HEEEMERNENZ L AEBO
=D ThD, LnLRRL, flilkaZET 2 EPHG~OBEHITEE LV,

®) BiRiTAE
Bi RITATHE LT, Bi-Ag. Bi-Cu. Bi-Sn. Bi-Zn RIFATZMBFET LN D, ik
BEIZENEN, 263°C, 270C, 139°C, 254 CTH %, Sn-Bi HEITAZIFKIRIZA T
ELTCOREEFEBFIIH D0, SiEIFATE L LTO Bl RIZATZOHRIIMEE TE 20,
Lalena 5% Ge Zf{&ASIN L7z Bi-11Ag A& % 5% L72[19], Ge IXimIMEUED =D

-5-



(12 500 ppm LA FORETHMLT-, Yamada 5%, Bi Oags S IZEK L7 EFEMHE~D A
LaRBHT 5720, Bi 12 CuAlMn OJRIRFLIES @R F 2R LICIZATEM 2 at L
[20], [RIEEIZ. FHSIE Bi-25Ag IFATEIC~A 7 8 Cufpy% 14 mass%iS 952 & T,
T & S S H 7= (210,

Song ©i% Bi-2.5Ag LT AE L Bi-11Ag i3RI AZIZ OV T, Cu BEL NI ~D
BArEmeLz[22], Ag U v F O/ TIE, Cu ~OiERMEA E L, Ni ~OfFEhE
WEALT D E L, Niloxh LTk, Mid57e BiNis &BRMEAER L, ik To0E 23K
T+a L L,

Bi RITAZTIX, Mig572 BiNis OEMNBEME~DREREEDO—2>TH 5, KA
IZ Ni Do X %S9, Cu BIFAHMHT 52 & T BiNis OARARERCTE 5, LL,
WHERFE T HEEO A X OVEIX, KBRS AuC Ag, TOTHANI THDLZ ERnZ, A
B FFMNC BiNis AL L, BEEMET T 28E0NH 5, A X VIEOEFEIZITHIKI L
%<0 RERTAVKRDEND,

Wang 513, LA AL D T3 T BiNis o8l 25 L72[23], BilZ 2 ~ 10%? Sn %
WINL, Ni & Cu ER~DHES Z MGt Lz, ZOfEH. Sn 28 5%LL EOMA T, BiNis
TlE72< NisSny BEETAZ EZHALNE LTz, £72. 300 CHEIEMERRIZBNTSH,
BiNis DR 2B, AR TIZ. Sn B RICEV, 260°C Y 7 1 — TORFIFE AL 1Lk
JHNT. T4 7 AU — haFIciEaE A L,

HEI 5 1% Bi-2.6Zn 1T A 2% FW T, BiNis O R EIHIC >V TRt L7z [24], A
FRIXEFERHREE DS 260°CLL FTHh Y JEDEC BUSZTE L2V, A BIE, Bi RIFAT
OIFNMEDES | BYmEROK S, Mid572 BiNis O & W 5 RIE O [F] REiER 4 7 7 72
[25], IZA M TIE2e <, PEEB T LEROA X VEE TR Uz, BRIICE, HER
F1E Si/A— 2 v 7 E/NI/Cu/Sn/Bi, ML Cu Etk/Ag (Do &) O E Lz,
AT Si/A— 3 v 7 B/Ni/Cu/CuSn/Bi/Cu RO & 720 | BiNis OAERKZ M L7,
ZOFER . 260°C Y 7 v —iiitk & -55/125°C x 1000 cycles DIREY A 7 WUZHEIENE B
HE LTz,

Ll b X o1z, Bi ZAZIFEEX eattd 5T, Bi id Sn E@ssT<, &
T Z A~DOLEEEEN DN E LB OETETF = g o TnD EEZLND,
KR ORI T Bi 202229 H oA 08 L0, HEBETD Pb 7 U —{LDFHE
PELIFE EL T3, 260CY 7 a—xtlis, Ni & OIS, BVRE Rt 2 LI
FIHTE 2 FETREITE TR,

(0 FEfEEES
FATRTICRB T 2R ORI Z IR 44 5 A EAr & LT, BERESPBRRT STV 5,
BERS (XA CL T OIREBIZ W TRFILEIC K VR 723 @G - B T 2818 TH D, K

-6-



BRZ2FH L, R, R/ R R O 6 2 [RIRFIC AT D Bl A B
FEHEATH DL, IFAEE LTHRATERVWEMASRBICL2BEL I TE D,

BERGAEEE LT, mils, @EMaiE, BRERMEOBLRND Ag Wi 23 H Sh T g,
BAIOEL Y fHA 1T Scheuermann HIZ L > T En72[26], Ag 7 4 7 —ki 1% Hu,
240°C x 40 MPa OfKiR - @AIETEERM#ES L. NV —F Va2 — A a2ilfE L7z, B
WRDOITAEME VKL, 40/128CHNRNY —H 4 7 LR BRICTIIAEESZ LA
60,000 cycles LA EOFMMBEHND T & 2R LT,

EE#ES 7 o 2AOREE LT, FERRFOBRGICLL2B-E VIR TITRBREIND,
Z 2T, Ide HIFHAIREOMKIRIL & IMELZ BRVIZ, Ag T/ K+ OIRIEBEREEICHE
H L7z, MEJ)5 MPa T Pb XA & RSEOBEGRIEL MR LZ[27], EHXELIXAg T/
i1 DRy OB BERE 2 BLET 5 2 L 2L E Lz[28], AT o Ag )/ ki
TEREEZWOT 2D, Ag T /R RBERFL FIRGMEHZ L 2862 Mt L. A THE
I E&E72, Morita 17 /R Tld7e <. BLERRI I K 2 HEGHMZ B Lz
[29], BEEBFOENZ LY | BRLERN DT VR T a2 AR L, BEREEST 52 L 2R E T 5,

Ag B FBEREHEA I OWT, EifliZe Ag ZFIHT 2L 1 P 1ZA 72 & [R5 O EHlik 1%
FHLE, 22T, Cubi2EH SN TW5D, Krishnan 1%, Cu 7 /K -IZ Xk 582
AxmBEt L, 400°C x 10 MPa CTE:AZ M L7-[30], F7-. Yasuda 5. bk v
DB X DA EEZ LT2[831], CuO K12k V| AgeO R FICVCET 5 B G0 E 2315
bbb ZEzxHone Lz,

LLED X 50z, BErE 2R L 728G BN IE R D S i, MEEm THIfF O T 5
FERPIFONTND, — 5T, F ROk & . DI 9 % 208 B8 ARREE DI M
DEFELZEZ BND,

(d) EEILEES

WAL B A (Transient Liquid Phase Bonding, TLPB) (%, &EfbkIC X v KE T
BA L. BRI AEITS Y2 2 L C #aEoa@a bz EET 58 Th D, Inmds
G, BRlREEIERT 5 a7 & RIRCTOES 2 EZ8 T 2 KEAE R OMAS b T
FHINS, AiE L LT, Au, Ag., Ni, Cu, #%# & LTSn, In BHHShTW\5,

Grummel 5% Au-In RIZ K DHLHEEAS 2 MGt L72[82], SiC Mz SiC/W/TY/Pt/In/Au,
FERANZ SisNo/Cw/W/TY/PtH/Au ZH M L, FFMIO In ZEHE - IS 2 2 &L TG %
2K L7z, Aasmundtveit (%, SU/TYW/Au/Sn/Au & SUTYW/Au OifiAEHE, bW
(2. SUTYW/Au & Au-20Sn [FA7ZE SUTYW/Au O AEHE TS Mt LTz
(33,

Yoon 5% Ni-Sn RIEHEES At L7c[84], BARMIZIE, Sifil, ZEHMIE 1I2 Ni JE
R, SnlTA I X0 IR S & i L7z, -40/200°C x 1000 cycles D E 1 7
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VR CTENTEEEEZHA SN E Uiz, BRSO ITIE8EEE O BERERbICE S 2 Y T
Sn-Ag LA 727E & Ni-Fe RIEMOILHHES A et L72[35], #ED Fe G RO IEMIZT
Bl EBAMILRIENEL D Z L WL E LT,

LRSI B R E _— A b & LT T 2 M0 M 512 k- TR &7z [36],
Cu bt & Sn K1 ARG L7z_—A F&FIH LT, Sn Z¥&Ef S Cu ki1 & L&k
FISEH#ED H 2 &, BEHORBRbEEB L,

WRIIEEE G, BEREEEA LV bIERNMED T u v 2 THH 2 L%, FEV 2 —/LTo
WTIE, BEFOY 7o —F CEETE L ARMENH D, £, Sn LA — A DHLHHE
BOHE, MBI A MIBEFEORAELRITTHY . hoRWEAHIFTH D, —FH T,
fegs7r BB LEmEFIRT 5720, BEECRENTEET D, £, #aHMoeats
PRI R OMBR LI L SNDHT20, T4 A7 J— ORI 2 2 & IXRE -
Hohd,

(e) Zn (-Sn) RIIATE

AR D% X, BURERORmE N L 720 | Zn (-Sn) RIZATEM OBFBHED &
NT&E72, Lee H1E ZnxSn (x =20. 30. 40 mass%) 1ZATZHMIC LD Cu KOS %
Mt L7z[37], Cu IZXF LT, CuZn REBELEMNEHITHE L, Y% Emr Mtk
WS 2L xW e L, xR E ORUSHEORFIATRE &k ~Tz, D%, [F—
TN—70 Kim HI3HEAF L HEROERIZ TiN/Au 52 28y Z LU= 5M 2 /et L72[38],
ZOFER., Zn-Sn 1T TIN & ST, Mig57e CuZn REBHELEY & ERIHIZHEh L
Too BEABEEMEIZOWTIE, -40/125°C X 2000 cycles DIRFEY A 7 /LERBRIC THEE MK
TLAaWZ EE2H6NnE L[39],

S 55 EIREREE COMAMEZRD, Suganuma & I13Hl Zn I(ZA I K 2862 HET L
72[40], Zn & Cu, Ni & OEZMHIT H7-0, SiC Ml FARMAE HIZ TIN =2—7 ¢ >~
7 LTc, £ ORER. -50/300°C & W O B R IREE Y A 7 VRRBRICI 2 D 2 & A 5
&L,

LLED X 1T, Zn RITEAGEMEICHIFRNFEF TS, Zn & Cu, Ni &OIGIZ L DM
WS BELEMOERPNEEFH TH D, BRTIEEaA M2 TIN a—F 17 &0
IR LR SR TV, Zn-Sn RIZHOWTIE 260C TR Z A L5720, F 4 %
7 ) — NZ A TORLA~OHEAIZREETH 5,

® Zn-Al RiTATE

Zn-Al RIFATFE = A b, @EMEE LW ) FERICI A, AR Zn(-Sn)RILA T TR
Do TIN a—7 o VT IRARE L WS BUR TR O RE VI CTH 5, BAIDIREIT,
Shimizu HIZX 5 H DT, Zn-Al-Mg-Ga RITAZTHS[41], ARFTIE, #EAEED
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ERIRABICE SN Y ToH Nz, HAHIEE 382°CTH D Zn-Al RIZ Mg & Ga 2N 25 2 &

. RFERRIRE A2 34TCE TR F &7z, £7. -65/150°C x 1000 cycles <> 85C
/85%RH x 1000 h TRIENAELCRNZ LA HnE Lz, Kim 513 Zn-4~6A1-1~6Cu ®
HPHOAEEIZ DWW T, EAERR - AR E 72 O ONENMEZ A L7z, Al OGFH EOHEIN
PR EFRRR - AHBROME S E 2 2 & fBAUER A B35 2 & R L7=[42],

Takaku &% Zn-4Al 72 5N Zn-4Al-1Cu 1ZA IOV T, Cu MM, Ni FEtRicxd
LEEAEE T L7z [48-44], ZOREFE, Ni HACxi LT, R AlNi ReBRIEAY
DO ENENZ L2 R L, B, Zn-Al RIFATZTIE, Zn-Sn RIFATZTHEL I
72 TIN a—7 4 VIR RETH D, FFOEMEAZNVERHERA Z VTEITIHRI
HITND Ni IZxHETE 2 MEN TH D, —FH ., Mk CTITIXIT A M 2R & iFEE
LTOBEA LTV EDREND S, Zn-Al IZAZIE Zn lTATE L0 Bk L9 0 Al
DIMENTEBY | IBNEHREO =D OB RN EE L E2 505,

Yamada 5%, Zn-Al (ZAZZHEOEKERRLEL RF 77 A2 XV RELEHE, Cu &
ARy BT L, Zn-Al ORLf %22 7-[45], ZORER, Btk - AN %EL
72L& LT3, Tanimoto % Zn-Al XA M LSO TR TrEM: O 4 R A 72 [46],
BRI, Hofa o Cu B EIC NI/Cu - & Zfi L, Ho, Zn-Al XA HEEHRE T
A XL H/PEILSEEL, MEICLY Zn-Al ZAEZHULT D HETHD, ¥k
2 ALY, 200°C x 1500 h O EiRAE 72 H NS, -40/200C x 1500 cycles O E Y
A 7 VBRI 2 5 & ik ~7z,

REGIE, HPEMEZ RS Zn-22A1 3EHTIXA T2 %2 O D Bk 7 B A Bl 2 BR g L 7= [47],
FEAIIR R STV WS B BUR I T 5 MPa UL EORGE TIXAZHEZH
X UL oW S B 7%, BlE T CHIR LILHEES IC L WA T 2 HikTh 5, /I
WOHIE, 72T, WEEAMME TJ U7 [48-49], FEAN Ml 722 ™Y &2 o 1
%2 & TIn-Al IZATEOEBUIEZ MBI D Z & Tl EZ fElR L7z,

PLED X HIZ, Zn-Al RIZAZIE, K2 b &EYRE, SEEOBLL TSN &V,
BUEI, TRk, BEa oW ENBETH D L OWMPIENY | ERFHIE T I NGO
BT H D, FEH BRSNS EPETO Zn-Al OFBLARBNETH D,

(8 *oftoBEeEil

WEE S 1%, BEMITEEVAE A2 . BRI S0 Al 222z v, Al ICBRZ 1
JREEDZECREMREZIHART a7 F&RE L7[B0], HEERFLETIv IR
B Al z2 Al-Si %552 HWTEE Lic, SRR S THRWA 53720
JE - R - B OEEIC LD A AL - IR SET- & Lic, BRILBES O —H T
HOHN, HEERIT Al DX ALV T MEGLRLIEGHEINTH D, UL, Al-Si kil
WL BTTCTH Y, RFPBWIRES LD L AU —RERES M & L TRREN
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BT EDENEESND,

B 51 Al-Cu-Si = odbdbiiE (524°C) (TEVWVERLR A 5 M 2 B3 L72A3, ik
FTEARL LTI Em L EAN TRV, BFLIEE5IC, Zn ZFNLE
Al-13.6Cu-2.48i-50Zn OFARLIC THRABFMEE 426°COIRRLR A 5 2 Bi%E L7z[62], &&n
B < JEAE T X 7200 &0 9 R LT, iR RmE G S22 b L, Aok L
7o Al ZHFELTMEICTH LM, Zn & 50% 5 A L THY, Zn RIFATEHMICHETE 5,
Bis. Zn-Al K0 6 AL Y v FIO Zn-Al-Cu-Si 4 Thb, LIzn->T, kil
In-Al RIFATE LD A Y w k « T AV v EBFET D EBEZ LD,

Al [FBMRE RN 237 W/mK TH Y, Zn, Sn, Pb LV EV, #EEME Al TEEHZ
DAL, NI =T A ZAOMWRELEICKRE LS FETIAHEERH L OO, Al ORFLR
660 CMEE L7725, Bl 660 COHIKIZI VRS T AT 4 7T RNE LR D,

1.2 #WHEROEH

Woextge L 72 Pob 7V — @SB GHINILL T O =R#ICH#D 5 s, DAu £, Bi
R, In ROIFATEHEAS, @Ag %, Cu RKiTOREFERES. OSn ROBMILEES TH
%o EIRBEAHN & BEREFEICHT DR % Table 1.2 1273, BURTIIE&TOFEIZ—
BN | Fkx 7285 A TRE 2 TRERBEA M EHIFE L2V, FFlC, T4 A2 Y
— M ORGEIZE L SINERESHIN & LT, BFITAEBEAE M O EAR FITAiE T 5
Au &, Bi &, Zn RIZAE UBRIREERZ20, ZoF T, E@ffiZe Au SRI3A7IE, LA
BT Z ERRETH D, ARV Bl SRITAZIE, 260CY 7 a—ififtt & |
200°CH D ERFHEMEOB S TN R LE, Zn RIZATEOFTY, Zn, Zn-Sn Al
ATEIE, Cu 2 bTNT NI A Z Vg & DORUSZ K = A Tl LEE,

PEo#E#ERICESL &, T AT U — ]k « BV o — Lili 51258 TR CULHME D @
AMIE, Zn-Al RIFATETH D EEZEZ NS, Zn-Al RIZATZOERIZ AT 723X,
FRLICER L 7RV DIR S Th 5, Pt 0BG 258 0 TR TLd 5 JriaE & st

Z ZTARIETIE, Zn-Al RITATFEE2~N—2 L L, EMICET Pb 7V —&EEHEAH
OBFEHE LTz, Zn-Al OF{EXIRE LT, Zn & Al 258k T 20 TixR, 77
v FEEREIC K O LIeM Bt 2B R Lc, AMEHT. Fig. 1.2 1273 X912 Al &% Zn
ST IGATTAE LSS 5, AMEIOIEARa 27 NI, OB LTV Al Z#NEIC
B UiA® 2SI L 0 et 2 et 32 2 &, Ok ibpit <825 2 L TlA
e LTHRESE D Z L Th D, AMEIORARRS X OEAEEEZI LM T 5k
T, Zn-Al [ZATZ OB EZ PR3 2 & & bic, ERICE > MEHIGE L, Pb IZAED
RPN AREZ2 MR E BHEE L7,
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Table 1.2 Advantages and disadvantages of new bonding technologies.

Pb-Sn Zn-Al Zn(-Sn) Au-Ge Bi-Ag siniegr;ng (sg.lﬂl;?e "
Melting point (@] (@] A (@] A (@) (o]
Oxidation-resistance (o] X X (o] (0] (@) (@)
Bonding pressure-free (@] (@] (0] (@] o X X
Precious metal-free (@) (@) (@) X (@) X (@]
Flux-free (o) X X (@] (@] (@) (o]
Pb-free X (@] o o o (o] (o]
Thermal conductivity A (o) (e} (o] X (o] A
Long life-time A (@] (@] o ®) () A
Heat resistance A O X O X O O

Matter of concern conf;ti)r_ling wet]t?;flla(;li ty rein{s::rtlce Mzgesrtial Brittleness Migesrtial Brittleness

o: Good, A: Fair, x: Poor

=

Zn \Nv —
Aliiiill----

Zn

Fig. 1.2 Cold-Cladding image to fabricate Zn/Al/Zn clad solder.

1.3 FCHERK

AL O Fig, 1.312737, 1 ®ETIE, FEOE R E HIUIZOW TR, 5 2
BECIX Zn/AVZn 7 7 v RMEREL, 20387 M aMEE Lz, BRI, imhuE,
WRAEE), BEAMEZH O L, IZATEE LTComEAREMEEZ R Lz, 5 3 = TIL.
In/AlZn 7 7 > SMOISHIE Th % ALEAFR Zn/Al/Zn 7 7 v itz v, #2678 Al b
DAt MEGEE, #AEEELRE L, 8 4 =TI, 258 Zn/AVZn 7 7 > i
R L, HEEMEICKRITHASRMEZRE L, o Ro iV AR T 5720, &
%z Cu THFE L 7oA EHT DWW TR AT 2 5 L 72, 55 5 B Cid, FERIHEZAE L7k
B, HAMEOBLE T, Zn, Al Cu OEMEDOR#ELZIHV, Cu/Zn/AVZn/Cu 7 Z
v RO Cu/AVZn/AYCu 7 7 v R#f % bt L7z, 55 6 B Cld, Cu/Al/Zn/Al/Cu 7
T v RMIZOWT, BAEEN, BEEREZHRT 5L L b, NU—8ERy Fr—v
A EL Ph IZA MO MR A MR LT, & 7 B TIR, AWMETE O IVl R 2 fe
L7z,
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H1E e
v
W23 In/AlZn 7 T v i Ok EE
v
%3 Al Zn/Al/Zn 7 5 v Nkt
v

FA®m In/AlZn 7 T v R OEAMEICRITTHEASM O
v

HH5E CufffBZn/Al 7 7 v R
v

%63 CuwAlZn/Al/Cu 7 T v M o8& EHE M
v

i o

Fig. 1.3 Chapter structure.
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H2E Zn/AllZn 7 5 v R OIS

2.1 =S

PIERSET L ERE R CITALIL, EXN, B, BRI 2y " OFHEM:
AT HEEREM Th D, MFHIFIATIE, Pb 2 FRSrET 5 Pb 1A MIE L F
HEIN T, Po IZATZOERIX, ZiiT, EWBEFRRL, FrEO#EAEEMEZ LR
TEXAHZLTHDH, EZAD, P ITALIE., RE~DOEE & SEFILOERIZHED /2,
Pb ci/ufi&:ﬁzoZo%ﬁ%ﬁ%é\&mf\@EQhﬁi > T2,

Pb 1A 7B & LT, Zn-Al [ZAFE~ORHIRE, ZOE7- 5B ML, 221,
BN, A CH D, EONME., Zn-Al (ZATZREOBALITER L7ziE oK S 1%
BHEEHA~DOREREETH D,

AR CHMBIO THRIZ LV | Zn-Al 1ZA7 OIS ES RA 5, Zn-Al 1ZA7° O
ot FEDOH T, Al [ TRE R BARBIE AR T 522 L TMbhD, 20 Al OFEER
In-Al IZATEOIEAVEIRTOEER EE 272, o> T, Zn-Al [ZATZOREIC Zn 245
L Al O bz P51 TE UL, matEnm T2 R d 5, ZE550 5 L, Al OMH
I In ZWET LT TIIATL L LTHREET 2 & B 2T, REZITHEW, Zn/AlZn =J3
77y R ERE Lz, 6, Zn/Al/Zn 77 v Rto a7 Mx, QAL O % Zn
THE L, Al ORLEAEECH<Z &, @Yt 2 IR S E 2 2 &L TIIAE
ELTCHHT A2 L CThd, RETIE, Zn/AliZn 7 T v RMOEE A =X 5, Bk,
BAMEEREIL, a7 ME Y ITHRET D MREE L 7=,

2.2 FERFGE
2.2.1 Znm/AVZn 7 7 v F#f (ZAZ)

In/AlZn 7 7 v N8 (ZAZ) OWrmiEXXK % Fig. 2.1 (27, ZAZ IINED Al, 448
2 Zn THERLS AL, Al ROMHE%Z Zn R CEAATMME Y 7 v RIEREIZ X 0 ERL 7=,
ZAZ 1T IRIZATED K 9 I fa& Tk Me BB CTh 5, Zn, Al &JEORIUN
ITZNZEI 420°C, 660 CTEIRIZATZEE LTEETE 5, L, ZAZ % Zn-Al %
DOILEIRE £ THIR L72ZRFIZ, Zn/Al 7 Z v N5 CHALREfE T 5 2 & TR K 0 IKIR o
32CTIFATZ L LTHIHTE D EMIFF LTz, ZAZ 13 Al B Zn B CHESIN TS T2
W, ZAZ BHRIE LIt ORE . ke, AR REEOMEATIZ Al 2OV Sl
b3 Z 2SI ENTED, BAFD Zn-Al IZATZTIE Al R FICHARICIESIND Z
LB ZAZ I TIENENSET D E IR LT,
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/n t,,

Al ta |H

/n th

Fig. 2.1 Cross-sectional schematic of Zn/Al/Zn clad solder.

20/150/20 30/45/30 45/15/45
wt.%
C 10 30 40 50 60 70 80 85 95
?00 6610 1 1 P | i | " L i L i L
-“"'h._
600 \\1‘\«“\_‘_
500 N ——
- \ --.\_‘
o 419
400 il N 382 IN |
858.7 [ 97.¢
____...--'—""“--.,_‘ / (05) | (99) B
300 = \\, 9.“1
200 // e f?sj 99.-:%
100
0

0 10 20 30 40 S50 60 70 80 90 100
Al at.% Zn

Fig. 2.2 Zn-Al binary phase diagram and example of clad structure
and composition [53].

ZAZ OFERL - HEIIL T O TRHRETE 2,
Y= Dty
2D,,t;, + Dyt
P xD, H
" xD,, +(100-x)D,,
Z I T, x 1T ZAZ BENER LTG0 Al OFRE (mass%). Dal & Dz iZZF 1 E4 Al
L In OEE, ta k tm (FENZENAL & Zn OfFEE, HITHMEIORETH S, 728, fElk
FIEFER R E Uiz, SCkE V. Dail 2700 kg/m3, Dzn i3 7130 kg/m3 T& 5 [53],
KQDTRBIND LI, [ZATHAIE Al & Zn OEEIZE > TRES LD, iz
X, tar23 15 um T tza 23 45 pm O & X x 13X 5.9 mass.% & KD B, 1FIFILALHLAL & 72
2o
—J7, R2.2X V., Al NEDOEIIIATMEK E ZAZ ORIZIZL > TRDBND, x
Z 6 mass%, H%Z 100 um &35 &, ta & tzlZZNEI 144 um & 42.8 uym ERH B
N5,

x100 (2.1)

(2.2
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ARETII=FED ZAZ = HE Lz, JEHAIT, 45/15/45 pm. 30/45/30 pum,
20/150/20 pum O =FETH Y | MER T X CTEMT 2 HE THKICET L. ThTh
Zn-5.9Al, Zn-22Al, Zn-58.6Al [ZHHY T %, FMEIOALEDIT % Fig. 2.2 @ Zn-Al 7t
FIRRER BIZRT, 45/15/45 pm @ ZAZ D3 AREAICALE L, 382°C D M fhiREE & THNEL
THZET, MEFEENERT 5 LM s, —J5. 30/45/30 pm & 20/150/20 pm @
ZAZ 13, MLV S Al Uy FTHD, ThEi, 500C, 580 CETHIET LI &
TEBMT 2 EEZA6N50, 400CHTE THEET 558, ALXEITKS LTINS,

TER U7z ZAZ @ Zn/Al 7 7 v RREIZHOWTIEERAE FHMSE (TEM,
Transmission Electron Microscope, Hitachi H-2000) & = /L —/75380 X M0 Hrik
%+ (EDX. Energy Dispersive X-ray Spectroscope) (T & U #Hif#k % o#T L7, TEM
R 7R A A A4 v B — AN T4 #E (FIB, Focused Ion Beam, Hitachi
FB-2000A) (2L VWIIT L, Mo A v ¥ = EIZEE LT,

ZAZ \ZkFT B Iighs & L C. 0.1 mmt @ Zn-6Al (XA 72, i Zn ZA 7. Pb-5Sn-1.5Ag
IIATE— M EHE LT, Zn-6Al [ZATE T — NI, REF CTEHIAAT Zn-6Al L7
T LV ER U7z, Ml Zn 1ZATE S — MIW=7 2 8OME 99.99% D £ 2 H
VW=, Pb-5Sn-1.5Ag (FA 72— MITFESRE TEROMEN & =,

2.2.2 Zn REREORIVERR L & BUIRERIE F ik

In ~O AL, Zn-Al © 27 Z > FMb, 72 5 NCRmAFE DN RIVWEIC RIE T EZ I 6
WET DD, Ml Zn, Zn-6Al, ZAZ (45/15/45 pm) OFENERERE LT O 5% CHEHE
L7z, SMEY— & 4 mmO ORFTH LS ABGBREEZFR L, YE%eREEr
#4000 = A U —fK Tz g L2 L. RPEOHEZME L, (MAlDEs, 7E k
VIR TCTHEE R LD BB LT, M%EEZ NVAu H- & Cu B RIS, R+
FRONEMFEIZEEAN L, Ne R T CHIR S W72, Zn fEi1% 425°C. Zn-6Al & ZAZ 1% 385C
FETENENFAIR L, 3 min PREFZ, 280 LTz, BBRIZOIRIVAN U 2 SEARBMEE C8lE
L7z,

SJREOREMPBILIEE LA — Y =B oot2iE (AES, Auger Electron Spectroscopy.
SAM-670, 7/ N7 7 7 A JIEEE : 10 kV, REFER : 20 nA, B— A%
100 nm@, A A Ff : Art, A A VIEEE 2 kV, =y F 7 L— bk (SiO2 #25H) -
4 nm/min) ZHWTHMT L7z, o7 VIZREME L7z Zn-6Al, Hfl Zn, ZAZ &, KH
KAFEED ZAZ % E Uiz, BLBEREIZ 0 T 7 A7 a7 7 4 V% SiO i H TR L7z,

2.2.3 WREEEMBERFIELERFE
ZAZ DIERFENZRAET 5720, ZAZ ZRINRINBF I A L, 100C/min O F-iEH#
BT 200°C. 300°C, 375°C. 385C % CHILS®T-, FrEDIREREBERZICY T LA lE
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DHEDH L, KEICLY A L, 385 COLMTIE, YR E T 10 s AT 5540
LRE L, b oW I idEERE S (SEM, Scanning Electron
Microscope., Hitachi S-4800 field emission SEM) & EDX (2 X 0 2347 L7z,

F v TIEBRF ORI % Fig. 2.3a 2T, AROMFEL LT OHE 7 ot AT
BT, ZAZ %#4000 = A U —HCTHIE L, 7 b g CRBERET 2 i Lz, Y%
ZAZ % Ni/Au > & Cu B EIc#E, SiFv 7L 0.8 g (0.4 kPafi) OB H Y ZJE
\ZHEE LTz, AR 7V ERIMEINBYFIZHEA LTz, SFNIC Ne T AZE L, BEFRIRAEDN
10 ppm F T F L72H AT, 100°C/min OH-JEEHE T 385CE THIE L7z, 385CT
3min fREF L=, MMEEEIE L, No HATHEI LT, (BB LW P L oBE Wi
SEM/EDX CH#l£ L7,

Fig. 2.3b (T8 AW Ok F1X, ZAZ, Zn-6Al, Pb-5Sn-1.5Ag +— hZ T,
Fig. 2.3a OfkF L RO T 2 A TR LTz, 72720, #EEAM TR O 720
Ni/Au > & Cu H# & Ni/Au ® - & 42Alloy M % v 7=, Pb-5Sn-1.5Ag (ZA7ZICD
WU, #EARNCT A U —#COMBEILERE T, #AIEET 360 CICRRE Lz, AW
ABRIE Fig. 2.4 1R T XL 912, Fig. 2.3b OfFFD Cu M Z [EE L, 42Alloy FIHA %
5 mm/min OEE THHEZI LiAA, HAWTRE Z]E L=, BohizT — X i3 LHEE
2 NRFTA=HIALTNT Oy NCT 4T 47 &8, 2B, WIEICHW-zr— KELD
kR F. 100 MPa 2 27 —Z ITFHIIC&E o 7o, #2497 — %13 100 MPa TOAHT
HEIY 7 —% & U TRAHEEIEICHAAIRL, TATNNT A—=Z 28 LT,

Si 42Alloy/Ni/Au
5X4X0.3 mm 05 mm X2 mm
— Solder Solder
CuNi Yo
10X 10 X2 mm $6mm X 6 mm
(a) ()

Fig. 2.3 Shape and material of joints for (a) bondability tests and (b) shear tests.

0.3 mm
- Press jig

/|
@ Cross head speed:
5 mm/min

]— Joint specimen

Support jig

Fig. 2.4 Shear test setup.

-16-



2.3 RRLEBZ
2.3.1 Zn ReRBEOHRIERER

Fig. 2.5 |2t Zn, Zn-Al, ZAZ (45/15/45 pm) OIENIERERTS O FZIKBAMSES 27,
Fig. 2.5 D& XD s O T, EEAETOXATEE O TEZ R T,

Fig. 2.5a |[Z/RTH Zn (2 DOWC, MHEBOFMEICEDL ST, L7 Zn 23 Ni/Au -
Cu B EICEIADR T2, BIEHBIIME L7 Zn OB, HLENIKREL o7,
Fig. 2.5a-1 TR TRMEDOLA . SN Zn FEITIZTHROBEED MR TX 72, 2k
FRLIE &R, Wl Zn 1XBEAREMEEE, & L IMBVIZERE L2 B b a E ik
RECYARL L. BLREASBN 720 B IR BITIE AN o 72 B2 6 25, BRI R
RIS 725 Z 2T ne®, LORIEFE LI EEZEZ DD, WHEIC X 0 IEIEES L
RLUEDOE, FFEEIC L0 BEHOBILESHNCT < 2oz Z LICRINT D EE XD,

(c-1) Without polish (c-2) With polish
(0) ZAZ —

Fig. 2.5 Optical images of (a) pure Zn solder, (b) Zn-6Al solder, and (c) ZAZ after
wettability testing in N2 atmosphere on Ni/Au-plated Cu substrates. Zn solder
was heated to 425°C, and Zn-6Al and ZAZ was heated to 385°C; (a-1), (b-1), and
(c-1) without polish before heating, (a-2), (b-2), and (c-2) with polish before
heating.

2 mm
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Fig. 2.5b {2777 Zn-6Al 1%, WHEOHMEICE L O TIRIVAN Bl oiz, Tr LA, Sk
TG Lz, oA EIRT | BEE L7- Zn-Al A DEELT-Z b, &K<
BEAINRholoZ ERHATH o7, BE L7 Zn-Al OREIZHROBENTRD S i
2 Enh, BREICBICENSGFELE B D0R% Y TH D, Ml Zn OBFE L ITRR
0. ZORLIENSE E e o T Te DIz ENR ot B D,

Fig. 2.5c \Z/”"T ZAZ 1%, BFEOHEIZEDL HF, ER EICKE FENIRR ST,
Fig. 2.5¢c-2 IR TWE L7 ZAZ OFFHR, mEMEN LY K&, o, REIHKROB
/e, ZVEBNRMAE BN, ZAZ X Zn-6Al L REOME TH B ICH b 5T,
Zn-6Al DIFIEEZ RE < BEIS Z &R TE T2,

Fig. 2.6, Table 2.1 IZ&#EID AES 541128k 2 O 7' 7 7 A 1 & SiO2 #E DR LI
JEZ2RL, A RIETRRILIED B SN TERT S, OOk E. BRI
ZAZ (CRAFEE) < #iZn (BFEE) < ZAZ (BHEE) << Zn-6Al (#fEE) DIATEL 257,
Bl b, ZAZ IS 5 2 & CTREIENELS 72 b L E 25, AES i Cid—xiz, MY
HZK L, Ty T 7O ERDMENEL, RS FMOSMRENMET 5, AREFTTIX
MFEEIZ L0 REHFTHNTZZ & T, AT OBILIENELS ol B2 bbb, - T, &
BROBAVIEIEIT ZAZ (WHEE) . ZAZ CROFEE) . # Zn (WFEE) & 12, 10 nm REOD Zn
HARBLIEAFE LT & B2 bD,

60

= == 7n-6Al with polish

50 -=-=-Zn with polish

S : “:‘-.., Zn-6Al (Polish) i = o]
T 40 | Seo = 7ZAZ without polish
i) - e o
§“§30 E \ """"'--...___
8 5 "N\ ZAZ (Polish) Se-g
© 820 | ol
£ i O
§ 10 5 ZAZ \‘._\‘-'\s-_‘

. (PolisB-~__ " S~eao__

o T o o o el e SRR
0 9] 10 15 20 25 30

Sputtering Time (min)
Fig. 2.6 AES oxygen depth profiles of various materials.

Table 2.1 Oxide thickness of various materials. The thicknesses were measured
as the full-width-at-half-maximum of the O profiles assuming an equivalent
sputtering rate of SiOz.

Zn-6Al Zn ZAZ
(Polish) (Polish) ZAZ (Polish)
120nm 16nm 9nm 19nm
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Zn-6Al [ZHOW T, ERLEEIX 120 nm TH Y, Zn OF 10 nm LY &IEWERLIED e
WTE /-, Fig. 2712 AES H#TI2 L 5 Zn-6Al ® Zn, Al, O D77 7 A L%&RT, Zn
RSN TICONTEEIZEE 7228, Al & O OffifEL< —& L. [F U TR
T LM b, AlD | Zn-6Al DX AT Al BR b FIR L c& 7o, 6o
T, Zn-6Al (3K OEL E 72 Al BRLIE2Y . Zn-Al ik & 5o & o B2 1517, ik
DELNIhoT2 B2 b5, —F., #ilZn B XN ZAZ 13F 102 Al BRLBENFE L7
W, Zn FRLIESEET D3 T2 TRERFHC A D 12, Zn-6Al L0 bigiuENTE
ni-eEEZLNS,

Zn & ZAZ OFENEBESHEIC L 0 JER Lok, BB L 2BLIRE O EL Tidie <,
WS K0 BALIE A2 < W SN T K ol Z EICERT D EE 2 5,
Zn-6Al TiE, ZOEBLHELILRWINE EBLIENE > TeifE ThoTo LB X D,

PLEDFERIZESE | Zn-Al 1ZATEORAWEITH Zn 1ZA 72 OFINEIZS Y | EOER
AL LI TH D Z EARBE NIz, BT, TAL BRLIEOAFAE L7\ Zn-Al 1ZA72] 28
FBLTE UL, IRAVEITHELR SN D ATREME D @V, RFaSCTiE, TAL BB FE Lk
In-Al 1 ZA7E] 1TV ZAZ B L T\ 5, Zn/Al/Zn #5512 T, Al ZNEIZEA UiA
WIFER, EEICHRAVENSET 5 2 L 2R L, IREILARIC T, ZAZ OFMMmG%
HED 5,

S
o

Atomic Concentration (atomic%)
w
o

20 \
-
10 — A |
e 71
0 PSS IS S TN [ T SO S S (NN SO S TN VRS SR U VO T [ Y Y ST NS (R N )
0 5 10 15 20 25 30

Sputtering Time (min)
Fig. 2.7 Zn, Al and O depth profiles of Zn-6Al.
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2.32 Zn/AUVZn 7 7 v F¥ OMHEE

TERL U7z ZAZ ORGIREEIZOWTH b &35, Fig. 2.8 12 45/15/45 pym O ZAZ ©
Zn/Al 7 7 v RimZ s ik TEM 84 7~4, Zn/Al 7 7 v RFHEICHBECAR A RiX
BEINT, BICIE-ST Zn & Al DIREEENE LN TV, Zn & Al OfESRI
Zn/Al 7 7 > RFHED 58 500 nm OHIPFHANICEW T, ZOHPHI LD A TH -7,
77y NEEIZL 2@ LA2@ U T, 77y NFRmTE CRRidnlZ K Dk ahiiei b3 4
7o RetEn & %,

Table 2.2 |Z Fig. 2.8a |Z/~ L7245 mUCEIT D EDX oMk a2 ~d, RoOoiERL v,
Point 6 /X Zn & Al OftHENR Y% TH Y | Zn/Al AEE LICHY T8 EB2 615,
F72. Zn D Point 2 T Al 28 1.8 at.%. Al ] Point 8 T Zn 7% 1.0 at.%fRH S 7=,
Point 6 @ Zn/Al RE 512, Zn & Al 23 HUMZ 200 nm ~ 300 nm 58 L 7= &I ¢ &
%o Z OMAIEHISII S & O I RER R EIRIC IR H TR Y | ARG e & —
BT 5L Thote, MIKHTHREN B > 72BN TORH, Zn & Al BIEHL
TeABEMERZ 2 B D,

Fig. 2.8b (Z231F % Point 11 & 12 ® EDX 754k % Fig. 2.9 (2777, Zn, Al, O LA
ST Mo & Ga B Sz, ZFNEil, Mo A v 2 b Ga A A BE—AICHkT 5,
Point 111X Zn/Al 7 7 v FRETHDH LB 2 B 5, Point 12 ZHu0E T 5 ERE 20 nm
OHKEFERIXTELT7 7 A THY, EL L TAL & O B3 Ehiz, E->T, ARfEikix
Al TH D, BIETX72 3 pm IBOFEK T, Point 12 D X 512 O ZE e A0II Mz
D LAV Tz, Point 12 ([T > T2EMIT. 7 7 v RIEIERTO Al SOFEMEIC
FAET 2 BB LIk L, EIEIZ LV IEIT S, sra el Ex oind,
ZAZ TIE, Al BBEIED 30105 SIEIX S ARG R, 1ZIERT Al BB EITA T,
Zn & Al BipemicEE SN Wk D,

U EOFRERIZESE, 77y FEIEIC IV ER LU ZAZ 13, Al WEEO Al Bk
DIEIEETHRESN, Bo, Zn AMEIZE D Al NEOHBIEDR LS 2EETH D &
MW T D, o Ty BEFED Zn-Al 1ZAZITHR LT, Al B D2 % 1) 8E L =4k
ERBETEEEEZLND,
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Al 2

(b)

Coarse grains

Fine grains

Coarse grains

Fig. 2.8 Bright-field TEM images along the zone axis of Al in 45/15/45 pym ZAZ
near the Zn/Al clad interface: (a) over-view near the Zn/Al clad interface and (b)

magnified view of the red rectangle in (a).
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Table 2.2 EDX measurement results obtained at each point indicated in Fig. 2.7a.

Point Zn Al
1 100 0
2 98.2 1.8
3 94.0 6.0
4 89.3 10.7
5 83.7 16.3
6 48.9 51.1
7 3.8 96.2
8 1.0 99.0
9 0 100
10 0.1 99.9
at. %
S
<
2
§
g
bl selambbosi e
Energy (keV)
(a)

Spectrum: 4-1
Cursor=_3.300 ket' 0 cpbe

Range:20 keV

Total Counde=3726 LUnear Ayto-yS=120

Al

Intensity (A. U.)

ﬁner@ (keV)

(b)
Fig. 2.9 EDX measurement results at (a) point 11 and (b) point 12 indicated in
Fig. 8b: (a) identified as Zn/Al interface and (b) identified as Al oxide.
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2.3.3 ZIn/AVZn 7 7 v NH OEREE)

ZAZ OFIR - WRETR OB Z 6 E 5, Fig. 2.10 (2 45/15/45 pm O ZAZ OFH-
B oW s & ST YRR 2o, Fig. 2.10a (2R3 ZAZ OWIHREETIZ, Al N
JEIX Zn SMBIZ X - THE SFL, BB Tl 72 X 9 ICHBEe EO RN AE T TNz &
NoMND, Zn BIZIZER 100 nm FEE O [R5 57E LTz, AHHR I Fig. 2.10 12
AL TEM BTSN RNWI Enn . WimifE% O Zn REIZERIZAER LT Zn
fefbin &k S %,

Fig. 2.10b (27”79 X 912 200°C £ TOHIETIX, WIHNMRAE L DFEWIIFED Sz o T,
Fig. 2.10c 12779 £ 912 300°CE THIR L=V 7Tk, Zn/Al 7 7 » FRmED S 2 um
FEEE OHFIPAT AL BRI LT-, ZOMEKTIZ AL & Zn BH SN2 L b,
Zn/Al O FEABERIC X 0 A UT-a-ALHTH 5,

R0 ST Fig. 2.10d (239 375°CHOV 7 VTRV BEEICEATS, BARKIZIE,
a-Al 723 6 um JEITHER Lz, @iREREE T Zn & Al O AEIBOEIT LR TH 5,
Al ~O Zm OPEHUT 275 CLLETIEE L7z L5 2 5, 72 11X, Zn-Al —IoRINEEX] X
V. 275 CLL LW T, Al ~® Zn OEERPIEKRT 5026 Th b, Table 2.3 I
Fig. 2.10d 127”450 EDX o#riE R4 ~9, Point 14 & 151X Zn & Al DN E
D, TNENZn Vv TFaoAltHE Al U v Fa-Al FHEZ X HND, 708, Zn U v Fa-Al
JECIEER 1 um BREORIKEAOR T3 R TE 72, Ziux, 7% 375CHhLHH
T LB, Zn-Al OBEEIFERENOHTH LI EZEZ BN D,

Fig. 2.10e (27T X 912, 385 CE CTHIE LAK L=HE. A Lz Al ORIz Z A
FARO Zn-Al LEFEPFHER CTE 72, 2, EEIEEO 382°CT Zn/Al St T ih ftfiE
FIGWNAECT-Z 2R LTS, &5(2, Fig 2.10fIZ/RrT XL 912, 385°CT 10 s fREFL
TR, ZAZ BARDERB UT-, — S, IRARERSEUL BICHIRT 5 & 1 s DN AR
W9 2, — MBI AT T 5 & ZAZ IR EIC R 2 29, ZAZ 1%
Zn/Al FUE CHEEAES A E > T D, AR LIZEIRE . Zn B - Al J8 & O BIRIERIZ R
MRMERTDTH D, LLARNG, f@sE Lo 385CTH 10 s LINIZaER L Tk
v, EAEtoicERICEmRT DMECH D,

UL EDOFERICHS & ZAZ OFRFFOEE L RO 5, ZAZ OFRERIL, Zn/Al fikE
ZPEE In & Al OMAILHAAE T D, BlURE T £ CORE CIXEMIEBIcAE T 572
D, NED Al 8 Zn FEICE T L2V, Al X Zn ICHB SN £ £, L L2RVIR
RECIRIEES LD, 382°CLL ETIE, Zn/Al 5l CHEEAES LA E T, R T Zn-Al @ik
B LTS, ZORIENAER LZBERIT Al AL L TR ST, Al BtV —0
In-6Al XA T2 L UCHERET D728, ZAZ DIFERMERER W= EEZ BN D,
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oAl @Poifip 14
®point 15

@ Point 16

Zn—A'_l' eutectic

Zn-Al eutectic

Zn-Al eutectic

50 um 5 um

Fig. 2.10 Cross-sectional SEM images of 45/15/45 um ZAZ heated to various
temperatures at a heating rate of 100°C/min and quenched: (a) initial, (b) 200°C, (c)
300°C, (d) 375°C, (e) 385°C and (f) 385°C for 10 s.
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Table 2.3 EDX measurement results obtained at each point
indicated in Fig. 2.10d.

Point Zn Al
13 100 0
14 76.31 23.69
15 32.63 67.37
16 0 100

mass %

2.34 Zn/AVZn 7 7 v RHIZ X BEE

Fig. 2.11, 2.12 |ZJ@HER DR 5 =FEHHD ZAZ & Zn-6Al Z W TIERIL 7= Si F v 7/
FEMGHE TR O Wy i i & 20”97, Fig. 2.11a |Z/”T Zn-6Al (2 X A WrE Cld., BEAEIC
OB AR S, RIVERBROMREZEEZ 2. T HORMIT Zn-6Al DFEHE

H T DBLIEIC X > TAE U alREMER @, Fig. 2.13 12 Zn-6Al IZ L 86 OHEE
AR = AN RS, In-6Al REEITITVMAIC Al 2 EKE T 2MALBENFET D,
Zn-6Al 23RS F THIR SRR T MBI A BR < Zn-6Al FEAHITIHEL) T Zn-6Al
ARICEAL T 5, ZORE, BEIESRE CTH 5720, BRI —E L2y S e,
Zn-6Al BRIZEALIIZAE Uiz @ T L, Fy 7 L ERoOREHEZFEDS T, K
DI S TZBLIEO KE 7L, #REIZh-> TEOE FERMET 5, Zn-Al Bk, Fv
7L HMROFME AIRIVAN B3, Al L3 L Cidifnic < < BEREICRERA T
Do LEDOT v 2 &R T, Fig. 2.11a lZ7-T A ORI ERE T 2B TR S 1L
EEZLND,

—J7. 45/15/45 um O ZAZ TH:A L7c#ER% Fig. 2.11b, 2.12 127" 7, Zn-6Al &35
B0 HEEREICHREPRD e o T, BAEIZT A TR Zn-6Al AR TH 72,
WK O Ni A Z Vg EICHK) 500 nm JEDOEWEERLEMENER L T\, Z04
BEIEAIT EDX & X BREFTC X 208 C AlsNiz & [AE Lz, #EESR T, BEkR
REGHFEH BT, i AlsNis @RGP HER X L2 iE 2. ZAZ \2XV
7Ty 7 ATRAREG ZFEBRTET,
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Cu/Ni/Au

CuNIAT™

Fig. 2.11 Cross-sectional SEM images of chip-to-substrate joints formed using
various bonding materials, after bonding at 385°C for 3 min under an applied
pressure of 0.4 kPa: (a) Zn-6Al, (b) 45/15/45 pm, (c) 45/30/45 pm, and (d)
20/150/20 pm.

Fig. 2.12 Magnified view near bonded interface of the joint formed using the
45/15/45 um ZAZ shown in Fig. 2.11b.
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YL bR 2B E 2. Fig. 2.14 (2 45/15/45 pm O ZAZ \Z L DA OHEEA =X L%
Y, ZAZ O Al NIBIEFRP, AMRICIR ST E ki L2, SR Zo/Al Rk 2 B
HEABIEHSHEETT U, ShiiR IS T Zn/Al S CHEMBARSOG 2 2 9, B 5
HIZAE U Zn-Al @iEs e REZFEO L, FRFICERELEMEZ IR T 5, ZAZ
DOFEMENIT Zn BRBALERSTFIET 203, SEB OB A~ OB IR C ITHER
TERV, Zn-6Al LA DOIRE 72 A RE LI AT O3 < BEE NI L 72
e EEZ D, TS 4 B CTHEGRT D,

wIZ, Fig. 2.11c, dIZ/~7 30/45/30 pm & 20/150/20 pm O ZAZ OEAFERIZONT
WA, fiivh, HBEEEOFRIC AlESEE L, Al EEICo-Al &, Zn-Al 348 250
LT, #EGH L DBENE SN, Fig. 2.2 \ZR L7-X 912 45/15/45 um O ZAZ 134
AL L Zn-6Al 55 HHARIZ 72 %5 CTH D43, 30/45/30 um, 20/150/20 um & 12, i
ML b Al Y v FREHERTH D, i, SEENIZIERIEE XY 100°CLL B
BN L 25, ARETCIIEGIREZ 385CL LTRY, /IEE LRV, ZAZ O Zn 4
JEIZAT Zn-6Al @K DAERICTHE S4v, IO Al BRI ToRER. Fri o
WENEBLINTZ LB XD, AMECHLEABICRESFEE T, XA E L THaIo#
BELT-LE A D, AL LTOREAKEICEE LT, 8 Al BATEHTHZ LT, #
B JEOBMREROYCELEFMEN L2 EOZRIHIF SN D, Al FFD ZAZ 2OV T
I35 3 ECHEAICMATT 5,

=) I l J ni 1 r.\\‘;\ 5 aA
/_gap |

TR R

%}X\X IEBM Zn-Alliquid |i>
o |

=
[Substrate | |

Initial Melting & oxide film  Zn-Alliquid outflow Zn-Alliquid flow Final
partial fracture through gaps along chip and substrate

Fig. 2.13 Melting and bonding behavior of Zn-6Al solder.

[ SRR AT
Zn Above| A, A, Al

Heat| Ay Ay,  Ay]382°C| v v iV [Hold

(at (— Zn-Alliquid
c5 P ), e )
7n vV v IMC
[Substrate | [ | | |
Initial Zn/Al solid diffusion Eutectic melting Overall melting
& liquid/solid diffusion & bonding

Fig. 2.14 Melting and bonding behavior of ZAZ.
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T, 45/15/45 um O ZAZ L Zn-6Al, Pb-5Sn-1.5Ag (22 CH AWHRE
ZHE L=k % Fig. 2.15. Table 2.4 (27”7, Pb (XA 7ZOH)E AWERE XL X+
30 MPa Thole, VA7 V7 vy FOMETHS m fliX 12.79 Tho7o, m EITTHRE
EHOZFZRIMHETHY ., REWVWFZEETSDED/NEN,

—J7. Zn-6Al XA DO AMIRE LY 2 MPa & IEFICIEWVEZ R L, m fEIX
0.75 L/hEL, ELOENKEL ooz, Zn-6Al 1T X DA IIARLE TRIFRBEANS
BNTWARWEE 25, Zhid, Fig. 2.11allrm Lz L o, #EEET oK. BHERML
RO T 5L EZ HiLD,

SHRRENZ, ZAZ OF AWHREIL 95 MPa TH Y, Pb IZATE, Zn-6Al IZATZ LY b+
DTz, In-Al 5408 P IZATEEE& LY bEMETHY . B, Al BMLEED KR
BTN ETHEANBRENEE - EBEZBND, DT, mfElX 12.58 T Pb A
EERBEDIILSE Thole, ZTNHMIMIKOEELZITTIC, BE L THEETEM
RThorBEzbN5,

99.9 | — 7 T

7n-6Al

W

ZAZ

01— @ ZAZ
00s || A Pb-Sn-Ag / |

0.03 . [ | Zn-6Al
09211 = Censored data|[| 7/ '

0.01 /

1 10 100
Shear Strength (MPa)

Fig. 2.15 Shear strength of joints formed using various bonding materials, after
bonding at 385°C for 3 min under an applied pressure of 0.4 kPa.

Cumulative fracture probability (%)

o

o

7

2

>
0Q

—

-28-



Table 2.4 Weibull parameters and average shear strengths of the bonding materials
shown in Fig. 2.15.

Shape parameter Scale parameter  Average shear

m n strength (MPa)
ZAZ 12.58 98.58 94.6
Zn-6Al 0.75 1.75 2.09
Pb-5Sn-1.5A¢g 12.79 27.68 26.59

Fig. 2.16 |2 Pb IZA T2 L ZAZ OffFOMmEBIEME R4 ~7, Fig. 2.16a, b 277 Pb
IXATEOEE . Region A IZH.GND L 9IZ, MEEIZE DRERT 4 VT ANRRD LI
Too JEPERY LRI Co D 2 E MBI LN TH B,

—J7. Fig. 2.15c-e |77 T ZAZ Tlx, ZHOOMIEEFEEN RS Hi7-, Region B TI3h
EAFHETHY, EDX Wik D Ni & Al Sz, iE- T, Zn-Al L& BE/IMC
FiE CTOmMWr TdH 5, Region C TIEMKEH DMK E <, EDX o487 Tlid Zn & Al 23K
iz, - T, Zn-Al HFEBEBANTOMKI TH 5, Region C TII/NI T 4 TN
DHERO BV, ENIEMER Th o7 B X b5, Zn-Al A4I1% Pb IZAEICHARD &
B AMERBREREE TH 2 RIRIC T, MEITEWAEEMENE VW2 D, MRV &
IFATEE LTORE TR, BIBRE T TOY U —7I2 L 5 8ZLERZIH T 5 e
MWERHDHZEEREBLTWD, TNHIZ Zn-Al A4 (ZAZ) (2 X 5/EFi1E. Pb IZAZL
FOEREEEEZBETAIRT Uy LV EAET S LR END,

P EORERICESE | ZAZ 1 IHMAIRIZ X 0 IZATZ E LCTRIARIEETH Y . Zn FHE M
Al Ot ZPilkd 252 & T, BEEMEHR T2 WI a7 MREFES N, ZAZ %
M2 &ETT7 7 v 7 22 MMAEFICmMBER Zn-6Al fkF2R B TSI,
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Shear direction Region A

(a) )

(©) (@

10 pm

(e)

Fig. 2.16 Optical and SEM micrographs of the fracture surface of a joint formed using
Pb-5Sn-1.5Ag and 45/15/45 um ZAZ: (a) optical image of Pb-5Sn-1.5Ag, and (b) SEM
image of Region A in (a); (c) optical image of ZAZ; (d) and (e): SEM images of Regions
B and C in (c), respectively.
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2.4 #EE
Zn-6Al DIFEIWEZSET 5720, Al % Zn THE L, ILEEAESOSIZE D IZATEE L

THIAT % Zn/AVZn =87 7 v RM &% L, UM EIOMREL Zn-6Al, Zn, Pb-

5Sn-1.5Ag & kG L., LN OfSim & 1570,

(1) Zn-6Al ®FHIZIE Zn @ 10 fFLL LD 120 nm EO Al BRLIENTFAE L, iBaEs Y,
Al ZWNEIZEH CiAD T2 ZAZ IZRE O Zn FERLIEAHE Zn 1TA 72 L RO 10 nm T
HU | ImIUVEICEND,

(2) ZAZ @ Zn/Al 7 F v RREITIAEINHES S, ALBRIEMIIFE EFE LRV,

(3) ZAZ @ Al NJEIX Zn AMBIZ L v . 382°CHOMFIRELL T THGA~D BB DILH#ES L
%o ZAZ 13 382°C THLMITIER L., FDOBRMICIT Al B (kWA 55 4 L7V Zn-Al
HREEAE T D,

(4) ZAZ \ZBETFD Zn-6Al1 X° Pb-5Sn-1.5Ag Mk L CEN A2 RIET 5, ZAZ OF
AWTRELT Pb 1ZATZDK 3 5 THY , HEAREITL XL P 1AL LRBRETH
%o In-Al HEA B ITEIRIC CTHEMTENEEZ A,

(6) ZAZ O Al DEIENRZWGE, BEEEORIIC AL EPRET 5, AEECIIE#EGEO
FEVE R BN RE S N D,

ARETIL, ZAZ OAa w7 NERGE LT, ZAZ HiEIC XY Zn-Al ZATZ0 Al ©

b VWO REEFRL, BAMELETEL 22 L, AMBHZ LD Zn-Al %7

MUTEAR T ¢ v TREBLOATREMEN B LT,
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w38 AR Zn/AVZn 7 5 v N

3.1 s

NRU—FEVa—/VITHBE, §hE, 7 7 SRR S, 10 £ 50T
10 FEICEDFEENER SRS, NU—F V2 — VOBEIM OF T, ZAEMITE
IR OEIRFE IR U, S RREGEICER T 2 8US ) i+ 2% H 2 ]Ri-d, Alb,
FATEMITR BENLSCT WEEREM O—2Th b, IZATLEAEOEEEEZHRT I
(T, MPBHERRIZOC K V. BEEREDRE T 1 7 7 A R0, ZATEEOBE R L, bhx 2285
DOFRERLETH 5,

FRLOBEICH LTARE TR, XU —E Yo — LI ENBEAM E LT, —onay
v B s Al R Zn/AlZn 77 v #f (R-ZAZ. Residual-Al Zn/Al/Zn clad
material) ZAEFTT D, AMEO—D>HOD LTRIL, Zn-Al 1ZAZEHEAL LT AR
v &) B L, MR CldZe < AEE TR L 2B <7, 7 T RIEIEIC X 0 —JEts
EOMBIZRA L2 £ Th D, AfEEDILE ﬂ%ﬁﬁ%ﬂ%bf Zn-Al BRRZ 564 S
AL EBT 5, “HOHOLRIT, HAEH%IC Al BE2EITHERRGHT K28 LW
t5Th s, BEMIZITEESEOM S BIIC X 284 EEER B0, BERE Al kic
BVREROMN ETHDH, AMELORA A B =X L, Bk, AN, #AEEEICSWT
L7z,

3.2 EBHIE
3.2.1 AlZERFR In/AlVZn 7 T v F#t (R-ZAZ)

Al F-A78 Zn/AVZn 7 5 v F#F (LLF. R-ZAZ) OWEAEXKB LS ot 20
Y7 R, R BONC Zn-Al TOnRIREER A Fig. 3.1, 3.2 IZENEIURT, RZAZ 1T Zn
JE. Al B, Zn JB%IEICHE Ltﬁﬂf%é R-ZAZ % NEAT % & Zn-Al @IS
382 CHMA T2 5C Zn/Al 7 7 » Rt bR E T 5, RREICEL LTz
Mﬁ@ZmM%Wiﬂw%:iM#M%LTmﬁwk%z%ﬂ Al OFBUIERNFET D
In-Al [ZA TR A TR - A EOUENHIfFCX 5, BEL Zn:AliZn 723 3:11:3 T
HIVEMEI RSB 228, Al BOEIG) 3:1:3 L0 HEWEA. Al BRI ED &
Ez 0,

Al BEHEABIZET AV v MIEICUTO S ThH5, —2lE, MEWEom EThs,
BURERN In LD HREW Al 2ABOTHREL L T52 LT, #ABOEGITHR
W ET 5 EHfEShD, o —2i BEEOHM ETHD, F v T E2IFIAMTTHERIC
BEEZHWRWES, Fig. 3.83a ODLIZT v 7P Z e n3H 5, HEEOHEWEALIC
JEHER L, RANER LT <%, Fig. 3.3b IORT XD ICHARBIC Al B2 EFESYE
HZETT v 7OMEE A CTE, FEMEOR EICENRL EEXT-, 72, o600 Al
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[ Chip

H@H:&

[ Substrate

(a) Initial (b) Interdlffusmn (c) Eutectic melting (d) Bonding (e) Finish
Fig. 3.1 Conceptual bonding behavior of R-ZAZ.

[Eutectic liquid

wt%

C 10 3040 50 60 70 80 85 95
700 =
600
\
500 \ \\
419
400 382
« L / 88,7 97,6
300 a 95) | (99)
98.55
275 59.4
200 // 7% 094
100 |
0

0 10 20 30 40 50 60 70 80 90 100
Al at% Zn
Fig. 3.2 Zn-Al binary phase diagram [53].

JE@RTF > TIHERE OBUS S OfEFIE & L CTHRET 2 Z & THAEEMED M L3 2 "lRe ks
b,

A TIX Zn/Al/Zn = 30/45/30 pm. 20/70/20 pm. 28/80/28 pm. 20/110/20 pm.
20/150/20 pm DJE S THEAL L 72 M B Z BEHI Wiz, KMt o gt & L T,
Pb-5Sn-1.5Ag [T A 72 (mass%. 0.1 mmt, T{E4)E L) %2 H\i-,

3.2.2 BMRERFE T

R PR OBEAMITHEVRFERER S b, RETIRET 2 2@k oEAEIC
DONT Y, PYREROFM A ME L 72D, RZAZ W54 Tk Fig. 3.1 12737 X9
2, AT Al B, ZOM{il%Z Zn-6Al LB THEN AEEAE Lz, £ 2T,
Zn-6Al/Al/Zn-6Al ZJE#f & | Zn-6Al GBS OIMREREZHE Lz, B8RRI, s
ERAELEE (EFiE, AT 7/ av—7y Rh—tR) ZHNT, EFECTHEL
72, EFEEIZEM ORR 2B, EEHZ2HHIT D 2 L TEEMOIERIFEICIRE AR %
BT, BUREEIREE, U NVENSCBYREREZNET HHIETH D, BAEMIZITTR
DA E MW=,
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0- 1) o

2T, Q WHFEiEE, N WmRKIFEVAER AT KIEREZE, Ax mITREVETH

5o

AHRIZEDMEITENT, @RERMEMEZG 2 2 DIITHBORERTIA R b
5mm YL ENMEL ZND, RZAZ OJEAT 0.2 mm BETHY, HENHELY, =2
T Zn-6AVAl/Zn-6Al %@ IOV Tid, R-ZAZ Z AV CERNE, By A L2 HE
L7z, BARBIIZIE, Zn-6Al 8T Al IRARESE 2 2 & T Zn-6AVAlZn-6Al ZJEH %
ERL L 72, Mi%Z @13 10X10X5 mm OH A K280 H LEES > 7 & Uiz, %E
MO Al RDOEAL 0.5 mm, 1.0 mm. 1.5 mm, 2mm E2H L7z, ¥ 7z
A RBREUTTD, BMREREMIEN M E L /o7, 22T, Y7o RA FEEZ X
HRFER > D O ZAELAEE THIE Lz,

3.2.3 BT A - MhWMERBR L - AT - (BENERBRFE

R-ZAZ OVEREFEN 2R D720, ER L7 R-ZAZ OF 053 LT 20/70/20 pm @
R-ZAZ |z >\ COrzEf# &l E (DSC, Differential Scanning Calorimetory, U %7 |
DSC8240) (it L7z, RZAZ X4 mm@ DR FTHHEE, KEAH TRIE LT,

R-ZAZ ORI ARIMRINEE (SMT-Scope SA-8000, [LFGHE T) % Hvi=,
R-ZAZ (20/70/20 pym) % 4 mm@ OKR L FTHHHF W%, Ar 7T A< PEHFRB LT &
N REERPEAC LV BIE L. NYVAu o> & Zfi L7z 10X10X2 mm O Cu HITEHE L
7zo Ne HAZFIIFH T, 100°C/min OHEET 385°CE THMEAL 2%, 3 min FREFL,
=X —ZUOBAILTZ, £, #BET L L EOBNFEMAE L, IELME LBk
PR D SN L7o, MERAVHERER I, R-ZAZ (27 Ak 10 g (8 kPa) OB H Y %A
WZHE, BRRERARICINZA L, i L7z, mEE, U7 ARERE LT, BREo 7
JVDIB/AVAD Y & FRBAMEE TR L, IRAVURD YV mfE A7l L7=, R-ZAZ &HARE D
EAERRBIL, CutRDIFEMN G EF I REEEE (SAT, Scanning Acoustic Tomography,
Hitachi FS300) 7z M CaFAfi L 7=,

BAIED RZAZ OF#NZH G E T 572D OMBGHERER A2 Ehi L7-, Ni/Au o &
Cu # k2 R-ZAZ (30/45/30 pm) %i%E L. 100C/min O T 150C, 250°C, 370°C
F ML, FRETH TNV EFNGIY L, KE A2 E— I —IDKE S EEm
L7z, F7z. 380°CELERAKM., 725N 385 CEER 2 min, 5 min fREffE e —% —%
B mHA LG CHOMBY TN EER LTz, ZO&RMETIE, RZAZ % Ni/Au o X
Cu & 4X4X0.3 mm O Si F v 7ITRAHIAALT 1 g (0.6 kPa) OB H Y 2l
100°C/min TMEA L=, ZH bW v 7O Wik EERE 7KL (SEM,
Scanning Electron Microscope, Hitachi S-4800) (2 X W #z21 7=,
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YA 7 VRBRH OMTIX, Fig. 3.4a (ZRd Si Fv 7L 5 mm@ X
2mmt O Ni Hox A N—fE 10X10X2 mm @ Ni H-& Cu % R-ZAZ

(28/80/28 pm). & L < i Pb-5Sn-1.5Ag IZA7-Z HWTHA LIERLL 7=, ZAZ 13#4000
T A Y= CERmMEZMEL, 7 b onh CHEEHRES Lz, 4i% ZAZ % Ni H-> X Cu
W ECHE, 3= & 30g (24 kPa) OBV ZAICHE -, FHad N ZBHK E L,
100°C/min O#E T 390°CE TMEL 7=, 5 min fRFftk, b —X—%U)vY, 50CE T
5min OMEE CTHEI LA Z7E T Lz, ks LToO Pb-5Sn-1.5Ag |2 X 2/kFiE. 1A
TEEREIC 10%ICHR LI ~F v 7 A2 (THERBL¥E) 8L 360C X 1 min
RFFLCHEA Lz, RZAZ ZAWEEA L IXR2D | P IZATZIXEIMECEA Lz, 2
AUTIEIZ KD Po IZATEDREEH OIS 2 2 L 2B E, #ERBELHRT 2720 T
Ho, BAESKTIZI NI VAT 7 —F—/L & L7=#%. -55°C (12 min ££F) /150°C

(12 min 8 OWEEY A 7 VRBRICHE U, BB OY v 7 U3 =R 5 Siafiisa] (4
AFYNT 180, =7 -7 7 U Y) I[TIRELEEZRE L%, 5 mm/min OBE THA
Wrsh 2 0E Lz, F72. Vo 7V BHRICHEDIAL, Wiz v H L%, EEHEko
By A — AR A RE LT,

R A E R O FiX, Fig. 3.4b (277 5X20X1 mm @ Ni H - & Cu T
4 mm@ [ZF B2 RZAZ (20/70/20 um) & L < 1%, Pb-5Sn-1.5Ag A%z kA, #5
L7z, BASEI LR ERETH D, o 7T 250°C TArE OERIRE L7-%. 519EE
WIS, o —AEEARIE LT, By —AMEOSRELE LT, ME 99.5%D
Al Zn 725 TNZ, Zn-6Al # HE L7z, EiE4L, 385C, 425°C, 385°CT 5 min fRr¥F
#%. Z2y (50°CE T 5 min 2 THAD L7z,

Chip

ILRRRRR RN S e e e N B B B W)
Solder
L g g g N N T T T T T T
_I Substrate

(a) Conventional solder (b) R-ZAZ
Fig. 3.3 Cross-sectional schematic of effect of reducing chip tilting by residual Al layer.

Resin
Invar/Ni [CwNi |
Solder | |

(a) For thermal cycle test (b) For aging test

Fig. 3.4 Shape and materials of joints.

-35-



3.3 fERLELE
3.3.1 Al ZFHESEOBYRERIEE

RZAZ X2 HBAHMORBERERLZHET 272D, Zn6Al 447k 5 QI
Zn-6AVAVZn-6Al 2@t OBREROWEZ FMi L=, Zn, Al, Pb, Sn OIMREFR T
kLW =N 113 WmK, 237 WmK, 34.8 WmK, 65 WmK T& %[53],

Je9. Zn-6Al BEDEVREREZ EFIECLVRE Lz, ZOREEIX 106.7 WmK Th
572, Pb X0 Sn OBAEHR LY E RERMETH Y, Zn-6Al 23T —T A 2D & EL
AR EBffFSL D,

Wiz, AlJE% 0.5 ~ 2.0 mm £ TEIL S ¥ 72 Zn-6AVAlVZn-6Al 2 & OBRE SR %
E LTz, TORE%E Fig. 3.5 ICAHITYry L7z, A1/£0.5 mm, 1.0 mm, 1.5 mm,
2.0 mm DY 7 EfAN G 89 ~ 100 WmK O] Th -7, Zn-6Al A4 L B xER
WKL, Fo, AR EBREROMEENRSEONeh o7, ZOMBELFTEERT 5,

e it O 522 A S U ISR R S R O BB B K Y | Zn-6Al/Al/Zn-6A1 £
@M DBYRERIT TR OXNTEHAETE 5,

A= ! (3.2)

X a1 X zn-6.41

A, x100 A4, ., *x100

Z Z°C, dan Aal Azneal IZENENZEM OBVAEREW/mK), Xal, Xzneal (31 7 VR
(2% Al Zn-6Al DJELDOEIE(%)TH 5,

K (3.2 Al DEMEER 237 W/mK & Zn-6Al DEER 106.7 WmK # AL, £/E
MOBMREREZHA LT RE Fig. 3.5 ICHBRTRT, RN D, Al BOFIG X
DITHEV, S OB I T 2 FHRRE RDG D vz, LRC o FHIME & 138722 2 %

RllpoT-,
A Measured
© Corrected
=0~ Calculated
0/150/20
0/100/20
20/10/20 20/50/20
A

A A

250

[\
(=]
(=]
I
|

—
W
(e

—
(=]
(=]

Thermal conductivity (W/mK)
3

(=)

0 20 40 60 80 100
Althickness ratio (%)

Fig. 3.5 Relationship between Al thickness ratio and measured, calculated,

and corrected thermal conductivity.

-36-



(a) Zn-6A1 (b) Al: 0. 5 mm (c) Al: 1.0 mm
(0%) (11.8%) (28.8%)

(AL 1.5 mm  (e) Al: 2.0 mm
(30.3%) (26.7%)
Fig. 3.6 X-ray transmission images and measured void ratios of Zn-6Al and

various Zn-6Al/Al/Zn-6Al ingots.

(3.2 & EHEDOENEH LN E T 5720, BYERHEY 70 X Hikiag
e Lz, ZOfE5%. Fig. 3.6 12737 K 91T, Zn-6Al A&IZIIARA RBEENRVD,
Zn-6AVAVZn-6Al ZEMITITARA RR—ERZRZENTNWDLZ ENbroTe, ZOKRA R
NEMRE RO FERNE & FHRAE Tl L 72 N EHEE L, A1 ROREZZE L CEHIUfED
MIEZF Uiz, fEOORA RO ETFEHMIEGFICEE L WS REL T, Fio
XN CEMREE LM E LT,

1 1 1
/’?“all (Ametal + Avoid ) /1 A j“ A

‘metal “ “metal void “ “void

T 2T, Xany Ametals Avoid [TMEIZ, BURERFZHEW/mK), £ 8 H O YR T L4 EE
(WmK), R A FOBZERWmMKI TH Y . Avid 1FH8 A FFE(%), Ametal IZFERA FF
(1-Avoia) (%) TH 5,

RA ROBYREER Avoia ITERDOEMRE SR 0.025 W/mK % A\ [54], X #iEiREGE»OH
H L7 Avoids Ametal 2 TNZNRETRA L, BYRERFIEME Ametal 23R D72, T O
£% Fig. 3.5 ICOFITT By b Liz, ZEMOEMAE MR & 3 5MH MR8 L7,
> T, RA RBFIE LT IUE RZAZ 2 X 28ATE 0B85 20(3.2) TRt &
REL W2 D,

FIZT, RA FBRRWEHET, RGB.2DZFA L THEAEOBREROFHEH 21 RrT
%, RZAZ 12 X #4872 Zn-6AVAVZN-6Al 725k 2 L{RE L. £ O H MR
20/10/20 pm, 20/50/20 um, 20/100/20 pm, 20/150/20 pm (272 > 7= 38 OEYRERDF
B4 Fig. 3.5 TICORITF my b LIz, Bz, B 20/50/20 um O BRE R
150 WmK TH Y, Zn-6Al IZxf L TEYRERN 1.5 FF THINT 5 & FHIS LD,

UL EOBEHCES & | Zn-6Al OBEERAK 107 WmK Thod I L, £,

(3.3
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Zn-6AVAVZn-6Al D% JEHETE OPMRERNKXGB.2) 2 AW THEE R FTRETH 5 Z L 23D
Molz, Zn-6Al DFVRERIT P IZATZD 35 TH D03, ZAZ 6 R-ZAZICTEEZHZ 5
L THICHBMEZ D LR NH D LW TE D,

3.3.2 Al BEFEH Zn/AVZn 7 T v R OB

R-ZAZ (20/70/20 pm) OIFAUVHEIZ RAZTIMEDOZEZ G L1z, Fig. 8.7 (2B
Brth D o T NSMBLO LT BAMEUS . SAT 4k LOWrmo SEM 4% 7~ Fig. 3.7a-1
\RT X D ICINE T RZAZ RS E7-856 . Zn Al BRIZIENR EISIBIVULDS 720
o7z, Fig. 3.7a-2 ® SAT 4 1V . R-ZAZ B F CIIKHHn B REG ZRTHGH Th o7z
D, RFTCITEN 2 R T RBEAHN A b, SAT 40 A @IS 5 AL O W
% Fig. 3.7a-3 ¥, Write L. R-ZAZ 1T HIC Al JE. Z ORI Zn-Al JEHMF
ETDHZENbholz, £/, RZAZ LR EDOMICHBEI N E > Tz, - T,
R-ZAZ I3 HEMEHESICREYS L E2 N5,

—J7. Fig. .70 1 IR T X 21T, FEEME LR OIEN LSE . Zn-Al @i R -
WARAVRD > T, EOHEFEICK L TR 1.6 fFOiEN 3 E b7, Fig. 8.7b-2 273 SAT
%LV, RZAZ ETRETHERRA Rb{#EASNTZ LR bho7z, Fig. 3.7b-3
AT L DT, FAREBEORmEICIIBRFIX/2 <. Zn-Al @R ER EARo LTnh 2 &
DHERTE T2,

UL EO#ER % TEIC, R-ZAZ OENFENCHOWTELET 5, @HOIZATE ThHILUL, 1X
ATERBED IR L 72 D T2 DR G IR BITEIRR 5, —F . RZAZ 13 Al AR L.
MEFERDN RS T AT DENE S D720, EINEEAMEBROGS . AR L7 &
FMR & OV R PRI B AA U7 bR, KRR X0 5RfF Al BRI LR B2
5, TLT, b Z LD ROERNEMR & il 20 kbbb, ZO/RE. RITIC
IZ Zn-Al BliE & FERNBEND OO, KD Zn-Al @liRiE Al JEENTBRNTZEE &0
ERA~DENB AR5 oTc b B2 D, —HOMERIVERR CIX. 10 g O
METIIH D0, REENC L D5F Al BORE 08z 5, DEO Zn-Al @iE TH %
AWML, WhaRTEeBEz b5,

R-ZAZ 1% Al Ot 20 -7 7 7 v FHEENVRAICHERE L. 4T 5 Zn-Al Bl
DOIEIVEIZ RV, BEAICEEL L, Al BORE B30 280 L, @ik 2 ez &b c Befik
SHLZOIT, —EOMENLETH D,
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™ ’ e | M L ) 300um

. ¥ .
(a-1) Optical image (a-2) SAT imag
(a) Without pressure

Fully bonded

25.0kV x150 300um

(b-1) Optical image (b-2) SAT image (b-3) SEM image 100 um
(b) With pressure of 8 kPa
Fig. 8.7 Optical, SAT, and cross-sectional SEM images of R-ZAZ (20/70/20 pm)
after wettability testing heated to 385°C held for 3 min on Cu/Ni/Au substrate in
N2 atmosphere.

e
% .
5L N
3 Onset Offset
= | 381.3C 387.4C
s |
s
s L Peak
E - 3839C |
300 350 400 450 500
Temperature("C)

Fig. 3.8 DSC traces of R-ZAZ (20/70/20 um) at a heating rate of 10°C/min in
air atmosphere.

3.3.3 AlZEBFA Zn/AVZn 7 T v R OBER - BEEZ2H)

R-ZAZ (30/45/30 pm) O FIRN O/, HEEIZE L2 EHITOVTHREF Lz, &I
DSC HEDFERA Fig. 3.8 1T, R-ZAZ 13#) 380°C TS AL Uiz, 382°CH
Zn-Al OIS THY | BHEE CHEWR M LAY D 2 L 2R T, -7,
R-ZAZ (335 AU EOIRE CHEATRETH D,

WIZ, HERIZEDETO RZAZ OMIRZELZBlE2 L=, Fig. 3.9 I[ZHIRE CoWrmii
k> SEM #d6 L OV EDX #Roptri R4 ~d, 67, Fig. 3.9a-d (245 B LSRRI OB
SONTRRD, $ 7T 100C/min THIEE £ CTHIEH%, AKm L7z, Fig. 3.9a [TJE4E
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%D RZAZ TH VU | Fig. 3.9a-1 LV Zn OFEBRIARIT 10 ~ 20 um Th o7z, Zn/Al i
(2 SEM THIZZ L15Doum A4 — & — DI E T Y 7= 6 7e o Tz,

Fig. 3.9b (2”7 150CE TME L 729 0 7 TIERE 2 ZBLIT R S22y > 1208,
Fig. 3.9c ® 250°C £ THIEA L 729 > 7 /L Cld Zn OfESERIAITH X% 100 um (ZH AL L
TWe, MBMC R VSIS EBEZ BN D, Zn/Al FUEIZITRE & I3 R 20K
1pum EOERAER Lz, EDX o4 SREK LV . Yi%EIE Al 12 Zn S EE L 7ca—Al #H
TH D, Fig. 3.9d ® 370°C TIEYi%aAl JBIE 2 um FIZE L-, 20X o1z, 250°CH

I BILBNEFRALT D 2 & Rl LT,

N T, R-ZAZ OVFRERT D EEE OB REIZ OV TR~ %, Fig. 3.9e i3 R-ZAZ
DYRFUERTD 380°CE THEAL, W L7V 7L Ths, SEM LIC THREIK AN Al,
BHIK (alii 7N Zn Td 5, SEM o= b5 A b & EDX #oMriE 2B E 2 5 &, Zn/Al
277w FREEEHZITA 5 pm EOMHBILBIE RS S TND Z &Rl bholz, O
HILHJE S AL AN 15 pm FREE, FrkIcHIKEOEED R T2 (WP AKAD, A
DOFERL IR > T, Zn DEEYER L 72EML72 8 B 2 b 2 b,

Flg 3.9f 1% 385°CC 2 min 5 L7V 7V O CTH 5, AT RITITIHW

Y Al B L, B Al B & EROBE R EIL, 7 A TRO Zn-Al LfEfEET LT
i Ze < #25 Sz, 0.6 kPa OIRMME CRAFCHES TE 2 2 &nbinotz, BfF Al B

1530 um ECTHY . oD Al AIE 45 pm 75 15 pm JkA L7, WA Zn J8 & X
Ji U Zn-Al SEEMIZEL LB 2 b b, EDX BOoNTER LV . 717 Al BIZIEIEM
Al Th o7z, AlJE & Zn-Al 348 O FEIZITH 10 pm DJE S Da-Al BATER L T2,

Fig. 3.9g |2 385°CC 5 min {#FF L=V > 7L oWrm#ik 4 <4, A% 5 min Tl
Zn-Al SR & AL JEIZ 31T D R0 Ie8 DI & HITHEIT L, oAl @725 20 um F2EELC
R L7z, Al JE8lX, FRESOHM Al Tho7ony, KEDIE Zn MIEEBL, a-Al 1T
b L7z, RIS, AR OEKITHEW, AlBOMMENENT 2 Z Lnbh o7z,

PLEDfERIC S E . R-ZAZ OEEAETITHOWTIHE D, R-ZAZ 1% 250°CHITH & BE
PSS, Zn & Al OMHAIEBIETT 5, 382 COILMIRE T Zn/Al 7 7 v RitmE
VLD B ISR IZ L VAR L, 0.6 kPa OIEATE CHAFEE 725, BEAMARITT
FUIZT Al EEEL, E T4 Zn-Al LB CROME L 0D, HRoO Al B~THEA R O
HRIZHE Zn OIEEAETT 5, Al BIXBESHEIRFO IS JIFEMES L ONREY A 7 v T
DICTIFERMZ -T2 b D TH Y | i%mw@ Al BCThDZ EEMFL TS, Zn DL
BEITT 2 &0 BEERILICEY Al BAE L LSRR S EN S, # Al JE845%T
oI, AR OEREF L, £/, AUEORERILDBGH TH L EEX LD,
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(a-1) Over view  (a-2) Magnified view

(b-1) Overview _ (b-2) Magnified view
(a) As cladded (b) 1

O°C

(d-1) Overview (d 2) Magnified view
50 ——" (d 3 & 2 Jum

K }g/}

Analysis line w30l
nalysis line EDX Counts (A. U) >
(e) 80°C (Magnlfled VleW and EDX analySIS)

(c-1) Overview  (c-2) Magmﬁed view
c) 250°C

Al

*
N
m 5

A l 1
nalysis line EDX Counts (A. U) >

(f-2) Magnified view and EDX analysis
_ (f) 385°C fo_r 2 min

-

Analysis line EDX Counts (A. U)
(g-1) In the vicinity of interface (g-2) Magnified view and EDX analysis
(g) 385°C for 5 min
Fig. 3.9 Cross-sectional mlcrostructures and results of EDX analyses of Si-to-

Substrate joints formed using R-ZAZ of 30/45/30 um heated to various temperatures
at a heating rate of 100°C/min in N2 atmosphere: (a) As cladded, (b) 150°C and
quenched, (c) 250°C and quenched, (d) 370°C and quenched, (e) 380°C and quenched,
(f) 385°C for 2 min, and (g) 385°C for 5 min.
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3.3.4 AIBEBFE In/AVZn 7 7 v RMOBEET A 7 Vit

R-ZAZ (28/80/28 um) DiEEY A 7 Vit % Pb-5Sn-1.5Ag LA 7Z &bk LTz, HE
P A 7 IVRBRICE T 58 AMREOHBE % Fig. 3.10 (2”9, R-ZAZ OFHI5ERE LR
75 MPa T ¥, Pb IZAEDK 2.5 (5 Th o7, R-ZAZ, PbiZAZE bIC, BES A2
JLERBR OFGEIT LRV, FREE DS HLRICIR L7z, 1100 cycles #1238\ T, Pb I A 13474
BRI DN D 60%IK T4 525, R-ZAZ IZWIHIFRED B 40%(K FICRE £ - 72,

Fig. 3.11 |[ZBERIEEIC L DI A 7 ViR C o BB 474, Bafln
HERICHEA SN TWDENL, AN RA Fan LARERT CH D, RZAZ, Pb iTA
72E i, B RANERT D Z L5, Fig. 3.12 12 SAT @b RO -84
HEE (BOMOmEEE) OME/BREEZRT, 1100 cycles %I Pb XA OHAHESR
1359 B0%IE T L7z, R-ZAZ OEATRMERITN 1T% K T £ -7, ME L AR,
WG OBLEN S, RZAZ X Po IZATE LD LIREY A 7 VEHEENRE W EWVWZ S,

ZZC, Pb IFALITHEAEMR TR LMERTENMZIEIFNCTH D, HEMENES
R & BIBIRICH D E WV D, &2 AN, RZAZ ITHAEMIK TEIN 17%., FEEK
T 40%Th v, HEAEMICH L TREDIK TR RE W, 1o T, BREERL RIZHR
FERMEF LTS LT 5,

90
80+ T
~ o—
2 20 !\I Zn/Al/Zn
% 60 1 l\i 'l' '44%
S 40 T l .
2 o -
Z L °
5 30 le- ~\\| T -62%
S 50 @ @ py "
7 el —-— ---.. """"""""""""" ;
01 Pb-5Sn-1.5Ag 1
0

0 200 400 600 800 1000 1200

Number of thermal cycles (cycle)
Fig. 3.10 Changes of shear strength of Invar-to-Cu/Ni substrate joints using R-
ZAZ of 28/80/28 um and Pb-5Sn-1.5Ag through thermal cycle test between -55°C
and 150°C.
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. Crack
] |
(a-1) 0 cycle (a-2) 100 cycles (a-3) 725 cycles

(a) Pb-5Sn-1.5Ag

(b-1) 0 cycle (b-2) 100 cycles (b-3) 725 cycles
(b) R-ZAZ
Fig. 3.11 SAT images of Invar-to-Cu/Ni substrate joints formed using R-ZAZ of
28/80/28 pm and Pb-5Sn-1.5Ag after thermal cycle testing between -55°C and

150°C.
100‘!!!! —

S .

~ 80} ii ________ Zn/AVZn

s 1 F ] e

gef L .

g ~~~~~~~~~~~~ ' v

% 40 i Pb'5sn-1.5Ag -529%

o

=)

=}

m 20t L
n=8~24

0

0 200 400 600 800 1000 1200
Number of thermal cycles (cycle)

Fig. 3.12 Changes of bond area ratio of Invar-to-Cu/Ni substrate joints formed using
R-ZAZ of 28/80/28 pm and Pb-5Sn-1.5Ag through thermal cycle test between -55°C
and 150°C.
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Invar/Ni

(a) Overview (b) Magnified view

Fig. 3.13 Cross-sectional microstructures of Invar/Ni-to-Cu/Ni substrate joint
formed using R-ZAZ of 28/80/28 um after thermal cycle of 300 cycles.

Z DFERIZHONTELT 5, Fig. 3.13 12 300 cycles Wil OWrHBIZEAE R 2T, #E
EAZITFRAT Al B & Zn-Al A8 O R EITHAE LcorAl JB8iE, HICBE L 72, Fig. 3.2
WORTIREER LV Zn-Al A4:iE. 275°CLL LR EE IR CHRE D B rp 2 B~ — ka5 B
ERTRTHD, ULUSIZ L Voata-Al BRAEUTEEX NS, BEY A 7 VEEBRIC
KF0ERTIRAT., ata-Al B L Zn-Al LREORmAZER L T\, ata-Al & &
Zn-Al 35 E O R EIZH N T, JEOME S OEWIZ K DG HEFRC, Zn & Al OFEBIZHES
JRFZE IO LT X0 . MR ED R BT > THDAREMENRE 2 Hivd,
ZOD, UERENBEERRE L 725 LRI, BREOERL TWRWELO
ata’-Al E/Zn-Al BREOBE LML IR T LZEEZ D25, O, HEHEE
BORTLU IR TFREDK TNAELT-EEZ D,

YL EOFERICH-SE | R-ZAZ 1% Pb-5Sn-1.5Ag (TA 2L 0 b @ASERENIE EiRE T
O REYA 7 OVEEEMER R, AMEHT Pb IZA OB & LGl A T & D kel
Wb, —J5, FF Al X, REcoBZERAFRT 2EEEL/ELMNT I LD
oz, —ICBINTIIATENEZED 2 & Zaitt s LIoBEMRE N shd, 2052
KT UE, R CoORSMER 2B T 2 HERF AT OLENR D D, HIZIE, Al JED
I KX DBIUS S DF/IMER EOXRPMLE L EZ HID,

-44-



40
= Zn/Al/Zn
=W
\E_/ 30 !\
= N
§ 20 | \\ Pb-5Sn-1.5Ag
; ------- x\N
s emmmmme-- -}
n=5
O 2 2 2 2

0 200 400 600 800 1000 1200
Aging time (h)

Fig. 3.14 Changes of shear strength of Cu/Ni-to-Cu/Ni joints formed using R-ZAZ
of 20/70/20 um and Pb-5Sn-1.5Ag through aging test at 250°C.

3.3.5 Al&EFE Zn/AVZn 7 7 v FHM O&ERmM

R-ZAZ (20/70/20 um) & Pb-5Sn-1.5Ag (XA 72D 250°CIHEAMEIZ DWW TR 5,
Fig. 3.14 (2 250°C AR E BRI T 58 AWHRE OHES 2R3, Pb XA 72 I3 HA5REE
30 MPa Tod o7z, 235 h #RiEH%IZIRE 2SI LT L 72, 1000 h £ TR (258
FEME T L7z, R-ZAZ O¥ AW IMHIEE 40 MPa O IRA IR T T 56 DD,
1000 h #&I2H VT 30 MPa Z#EFE L7z, ZOfEIX, PbIZAZWIHITRE L FRETH Y,
1000 h %@ Pb (XA TZOFREED 3 5@\

Fig. 3.15 Clﬂ‘ﬁﬁfﬁﬂf’rﬁi%ﬂ—?'ﬁ— S OE T EDX 12X B EESHTICTHEE L=, Pb
IZATENZ DN T, #EEBOVHIRIEICIB W T Ph XAZ/NL Do X RmoflbawiEix
0.1 pum uﬂ:ﬁim L72L. 235 h FaBl A CTIEAZD Sn & Ni - &2 LARKR L
72 NisSna JEDNEE 2 pm F TRMIZAKET S & & HIZ, NisSny/Ni Do & FHIZAA N
DERPRD Hivie, ZORERA ROAERPEABBEDR TOEK LE2 D, X
512 760 h FREZICITEASAm SR TRA RAEET L L 51T, NI HoXRE-bNS
K ORRERFA RHFAEL TV, NisSna DEAIT 235 h Kl LT E A EED L2 0
23, ZAUE NisSna/Ni RE O R A RIiZ kv Ni OB He7=, (L& E R IH S vz
TdiEeBEZ N, £, ALEMENZALL72WIZ 0 0b b3, FmAA RidsEhnL
TWNDHZ D, BERA NMEEMLOREEMICER T2 & O TIX2R < JRHoH 2
WK Lo —7r o HVRA RREL 5 EHETE 5,
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(a-2) 235 h (a-3) 760 h
(a) Pb-5Sn-1.5Ag

(b-1) Initial (b-2) 290 h (b-3) 1000 h 2 um

(b) R-ZAZ
Fig. 8.15 Cross-sectional microstructures in the vicinity of bonded interfaces of the
joints formed using R-ZAZ of 20/70/20 um and Pb-5Sn-1.5Ag after aging test at
250°C.

—Ji. R-ZAZ 12, #5%OMWRMEIZIT R-ZAZ ® Al & Ni o ARG L7Z 0.5 pm
JED AlsNiz &JEEU LA AR L Tz, 290 h 72 5 N2 1000 h #2128V T, AlsNie
{bEWEOESIK 1.5 pm (ZHfl Sh, #EEREIZRA NERD bR o7, Pb X
ATEDYE O NisSng &l LT, AlsNiz OFLEN Y TR B E <. 250°CICB W T H 2
A A RESEIDRPBFONT LB BND,

VL EOfERIZES X, SiC FHOmiREMEZME L7z 250°CEREE FIZB\W\W T, Pb (ZA
TRV E 15T B R AR A RS EICAER L, BHEEZHER TSRV E NI D, —J7,
R-ZAZ X, Rii7e b NCEBHBIIEECBWTHLLETH 72, Blb, RZAZ 1T Pb
XA % EAD 250 CIME DG & L CEH CT&E 2 TR B 2,

3.3.6 BTF Al BOomiRRRZEL

Al EORELA 2R T 5720, Eyh—AMELZF L-, P, HATO Al J81x
23 HV Th o=, #A#%IL 156 HV TH Y, fli Al LRBEICHRILL W=, 77 v K
JEAEIZ J 0 INTAE L L T AL, BESREOMB TR SN &Ex b5,

Fig. 3.16 12-55/150°C DIREEH A 7 LakER 73 & ONT 250°C S AERERIC BT 5 Al JB
O S OREFERZ 7T, RESA 7 VEBRICEW T, AlEIFBEAER O 15 HV 2Bk
FZHEA L 300 cycles #1289 20 HV L 722> 7=, BEY A 7 LV iRER O SR OE T Al
JEWIZ Zn 23ERCL . BEEEILIC K D EiE L7 & B X i,

—J7. 250 CHEiRALERERIZI VT, Al BEiE 250 h #Ri% Iz 55 HV £ TKIEIC EF L
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oo ZOfEIZZn ® 25 HV X, Zn-Al 356540 28 HV LV &< 2o/, Fig. 3212
NTUREER L D . Al ~D Zn DOFEERIZ 150°C T 8 mass%iZkt L. 250°C Tl 22 mass%
LRV, 250°COEIREREE F T, Al 8~ Zn NEEICEZBICIER L, Bk LizE bR
%, 750 h fiE ek COME EFIFTRE 2N LD, Zn 13 250 h 0T Al OFIRIR £
T LT- TR Z 2 bV D,

UL EDORBRFHZE D . Al BIZEIRRE T CREBICHE I N T2 B LhE o7,
R OEEERFHI BN TIE, ALEOMMEA LS ZE LR T TR 6720,

3.3.7 Al EFA ZIn/AlVZn 7 T v ¥ OFLH

REOWFT, RZAZ OIEAVEREZ MR L7 /E R, Ui EHE Pb 7 U —1XAZE LT
HLETHD LW T, LonLans, BRENKEZERT LA, SEER FTo Al
J& ASRRIFZEAL T 2 OMBHEERR G R S D, Al B 25 S Bk EH HEH A AERE L 72
WO, ERROBBEE RIS D BRI - A M KBT 5 2 ST LV, b ifE e
R TIEIL, 26 2 ORI L7z Al BAERF S0l ZAZ #8IRT52 & Th o,

F72. RZAZ 3HAITHUIMTEZ LB LT 5 5, MRS L W R a#sa, U
—EVa— N ORET A NTHEARETH LB, T4 A7 U — bORET A LA
L,

PLEO(EHME E O m ORI IS &, Al R L0 & IEA ZAZ HMEAL & f)
WrCT& %, RENLILEH ZAZ ITER L, BifztEd

AN
S

)
=

[S—
<

Vickers Hardness (HV)
[\
S

00 100 200 300 400 500 00 200 400 600 800 1000
Number of thermal cycles (cycle) Aging time (h)
(a) Thermal cycle test (-55/150°C) (b) Aging test (250°C)

Fig. 3.16 Changes of hardness of residual Al layer through reliability test.
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34 ®=S

=
=)

i Po 7V —13AZe LTHIFRFCE 2 Zn-Al 1ZA7ZIC, Al ORRERGLE, (SR

W EORER 52> 7 AL (P Zn/AVZn 7 7 v FEICOVWTHRML, BUFO
A B,

ey

&)

3

4

Zn-6Al A4 OB EHIT 106.7 WmK Th 5, Al HFE Zn/AVZn 7 7~ RHIZ X
DR SN DA OBMRERIL, Al J8ORELIINZENERT 5,

Al A7 Zn/AVZn 7 7 > REIE 250°CAHED B REST S 41, Zn/Al S CRIFEILH
AT, 382CD Zn-Al A THEMT 2, BINETITRNMELHER TERWA,
0.6 kPa OMESTHAENWREL 722, HEABIIESE TR D Al J&, oAl JE.
In-Al 8, PEAMI LR b BABENE LN D,

AR OB EN, Al JE~0 Zn HEAET L. Al A{bT 5, Al &
45 pm TERFFIFRHE 5 min TIEEEGLIC M AL AR L, Al EA &I 721
. BIZIE ALJE 70 pm, {REFEER] 3 min 72 &, Al J8OJERE0BEA R 0O 4R
fERENEBZBND,

-55/150°C DIRFEY A 7 VFRBRIZ T Zn/AVZn 7 7~ FHF1E Pb-5Sn-1.5Ag (ZA 72X
LRFMCTH D, £72. 250 CHIRERE FCHEERENLETH D, Pb IZALEDONR
BB I OEREWEISEAM & LCHIfFc& 5, — . @IRIREE T Tk Al J8OfRRE
b, B L Va-Al JE/Zn-Al i JE R oS bantite, ARBEOMRRIZIZ, R-ZAZ T
X<, R ZAZ NN TH D,

VI EOFGmICHE D & . RELIRIT IR BHIAL D it 2 e 5,
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AT Zn/AVZn 7 7 v R OBEHICKIZTESSHOREE

41 H=S

% 2 B|ICTC, Zn/AVZn s (ZAZ) 21V In-Al A&x28EaME L CRIALED Z &
ZHBMNEL, 8 3 BICTRERE THS Al 55 ZAZ ORT ¥ v bR L, Al %77
RN B HEMERG LORBES MRS TV AT, R ZAZ 1T/ . BiiteiEd 5,

PERE A OBEAIL, BERHCITY 7o —3E S LA R A=AV b5, (i
NOGESD Ne b LLIE NotHe 74— I VI W AR TESINDSZ EN—HIITH D |
PR IRERCHAREMITE ORPEAMNICINE 2 X 2 IcHlf &S5, AR, K, &
PHAITBEA WS L EEEICRE BT D, ZAZ ZAVEESICBOTYH, BREFARES
PEONDEASIHAEZARICT S Z ENEETH D,

ZAZ OEASAFIIL. MAAF U Zn-6Al (ZA7 L R— &N, L2 A0, it
KD Zn-6Al 1XATIEEL O BN A NNEETH 72720, Zn-6Al (TATE DAL
HREHLZHHL LR TV, ABFFETR%E L- ZAZ 12XV, FIH T, @HOIX
AMIERHTF 7 a e A COBAEFZTMECE 5, £ 2 TRETIE, &84 ZAZ Z#HWTC,
ZAZ T LT #EAIRE, BAFHEKOLMEHALNCT A E2AME Lz, £2, B
FHZ LD B LD o T E O iR 2 i A T,

4.2 ZEBRIE
42.1 77 v F# (ZAZ, CZAZC)

EHZH W2 Zn/AVZn 7 7 > N8 (ZAZ) & Cu/Zn/Al/Zn/Cu 7 7 v F¥f (CZAZC)
PUFERAN % Fig. 4.1 1077, Fig. 4.1a lo7F & 512 ZAZ [ZA@78 Al. #M@78 Zn ©
MRS D, Al ROMfll%Z Zn F£TERAALMM 2 7 v FELIZ I VIER L, Bk
1% 45/15/45 um DOILEEM ZAZ 2 -,

Fig. 4.1b 2R T L 91T ZAZ Rifi %z Cu Jg THE L7 18 CZAZC %Z [FIFRICHTHEIE T
TERL U 72, JEHERRIE 1/41/16/41/1 um & U7z, ZAZ X Al NJ@% Zn M@ T, Al O
{bZ2B SHENCH 5705, Zn SMEIZIE Zn BIREILIEZ 5, CZAZC 1%, Zn OfE{k% Cu
BIZXOIET 2 Z LS TMEITH D,

CZAZC @ Cu/Zn 7 7 > FHEITEEEF#HMEE (TEM, Transmission Electron
Microscope. Hitachi H-2000) & = /L —/23#M X #OoM# 2 (EDX. Energy
Dispersive X-ray Spectroscope) (T X U kA% % 53471 L7z, TEM H# Y2 7L 13U
WA A v — AT 2E (FIB, Focused Ion Beam, Hitachi FB-2000A) (Z X Y nT.
L. Mo #* v v = BIZHEE L,
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Cu
/n 7n
lar | lar |
/n
/n o
(a) (b)

Fig. 4.1 Cross-sectional schematic of (a) Zn/Al/Zn clad solder and (b)
Cu/Zn/Al/Zn/Cu clad solder.

Si 42 Alloy/Ni/Au

5X4%0.3 mm? g &5 mm X2 fhm

8 ldor (S——2 i

Cu/Ni Cu/Ni/Au

10X 10X 2 mm? 26mm*s
(a) )

Fig. 4.2 Shape and material of joints for (a) shear tests and (b) bondability tests.

ZAZ (2R A E LT, 0.1 mmt @ Zn-6Al (ZATS, #i Zn AT ZHE LI,
7Zn-6Al 1ZA71E. KR TEHIAAT Zn-6Al /L7 ZHMFIETY — MRICERIE L. 1F
U7 W Zn 1T AR = T o oM 99.99% DR B V-,

422 BEHFE

Fig. 4.2a (AW O FHEXX 2R 7, AEFIZLL T oS e AI2 X0 E
BTz, B9 ZAZ 13#4000 = 2 Y — % AW CREREME L, 78 b wh TS
Vel o LV ARG L=, Mi%fE % NVAu - & Cu RO EIC#it, Ni/Au ® - % 42Alloy
ML 0.3g Db Y (0.33 kPa tHY) A% LICIAICHEE Lz, AV 7 & aRoMnes
JFFNIZERE L, Ne WA ZWT 2 & CHRBKHPOMAZREEL 10 ppm LA FIZ T2, €0
%, Ne HAZFELIZEE, b L<IE Netd%He H AIZHIY 2, 100°C/min ORI
T, 385C, 405C, 415C, 425C, 435C, 445 CE CTHiL L., 3 min, 5 min, 7 min
REF%, WAL, B8 %25 T Lz, NetHe W AZFLIZEAE, He & O BUG L, &
PR OBFREITD<ES 1 ppm LFTETER N2, D EOFIETHER LY T
L OWmFEARIL SEM & EDX 2 HW Tt L, HAMEERE O mEIZ >V T X #RlE]
P38 (XRD., X-ray Diffraction Analysis) (2 & 0 FFfi L 7=,

Fig. 4.2b ICHEGMZFHET 2k PR 2~ AEFIL LFL L RO 7 r & 212k
DIERL L7z, 7272 L, $HEAMIC OV TIE NI - & Cu R E . FKFEHIC Ni/Au A Z L
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0.3 mm
—)|<-— Press jig

/]

Cross-head speed:
5 mm/min

]— Joint specimen

Support jig

Fig. 4.3 Shear test setup.

EEHT2 Si Fyr e, BREKTOMRBRET N iEZFHEL, 1 ppm 15
200 ppm F CTHRE L=, ER L7 FIXIE T ES (SAT. Scanning Acoustic
Tomography. Hitachi FS300) (Z XV /34T L7=,

CZAZC (2 X 28 AWRABA OMTIT ZAZ LRBEO T v ATHEM L, =721,
ZAZ L3570 CZAZC ORIMITAEEFICHEA I LTz,

B AWEERIE Fig. 4.3 12”7 X 912, Fig. 4.2b OffFO Cu MHRMAIZEE L. 42Alloy
M % 5 mm/min OHEE TIREZH LiAZ, A MR 2 & L7,

4.2.3 Zn/AVZn 7 7 v RhF &M Zn (X AT OIRIERER T 1k

ENMRBRIILL TOFIETHER Lz, Zn, ZAZ % 4 mm@ DR F TH OIS ER L
7TeME# % . Ni/Au - & L7z Cu S5k BICHET, 206 0% 7L 2 JRAINER I
FAL, Ne RS L <% Ne+He RS FCTELEI 425°C, 385 CETH IR L, 3 min
TRFFE, 220 Uiz, FERBAMER & 4R BMERIC X 0 IR imfl & #efid 2 J1E Lz,

4.3 FRERLEBE
4.3.1 BERRE LBEGRHEOREE

ZAZ OBESMEICRIETEARE L AR 2 3Hli 35, Fig. 4.4 |2 ZAZ # VTS
Lic¥ o oW AWRERER R 2~ T, BEERMIITHEEAIRE 385C 5 445C, frff
BEfE] 3 min 7205 7 min, FREEE 10 ppm LLFD N FHKRTH D, D=0,
Pb-5Sn-1.5Ag (XA 72D AWIRE 30 MPa D7 1 > Z{fFt L7z,

T, Fig. 44 PIZORITY r v b L72#E M 3 min OGAIZOW TR~ S, #E51R
JE 385°CH> 5 435°CO#IFE THAMIHRE 60 MPa UL L& Sz, Z OfEiX Pb iZA7ZD
HAWIREDOI L E 2 G LORMBETH D, Zhld Zn-Al 54 & Pb A<@DIRE D7EIC
ERTDEEZD, £ZAN, BARIBE 445°CTHEAWIRE L, 131 0 MPa (2% F L7,

T, Fig. 4.4 TIZARITY 7y b LSRR 7 min OLEIZOWTHRR S, 4
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IRE 415°CTliE, #AKH 3 min OFA L RERIC, HAWTHE 60 MPa DL & etk L7z,
L AN, BEAIRIE 425CLL ETIZ 0O MPa IR T L., 3BENE N> T,

120 —
n=3 @3 min

- 100 - 75 min [ ]
£ .
E 20 ; A7 min| |
= T *
1Y,
5 60
&
5 40
27 [PossulsAg I

20

11,
0 1 1 1 1 i 1 ‘ L .

380 390 400 410 420 430 440 450
Bonding temperature (°C)

Fig. 4.4 Shear strength of joints formed using various bonding temperatures
and times.

(a) (b)
e o |
Tk point2 N + Point 6

+ Point 4

P

IOEm

(0) (d)
Fig. 4.5 Cross-sectional SEM images of Ni/Au-plated 42 Alloy-to-Ni/Au-plated Cu
joint formed using ZAZ, after bonding at 425°C for (a) 3 min, (b) magnified view of
(@), (¢) 5 min, and (d) 7 min.
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Table 4.1 EDX results obtained at each point indicated in Fig. 4.5.

Point Zn Al Ni Cu Fe
1 67.5 7.14 1191 4.66 8.79
2 6.63 5526 2932 731 149
3 76.46 223 1538 5.93 -
4 923 5539 278 7.59 -
5 58.04 112 623 2453 -
6
7
8

8.21 58 30.71  3.08 -
76.78 - 145 871 -
63.6 - 1.35  35.05 -

at. %

ZZETORRMNG ZAZ OHESREIT, SR CTRIFFMET S LB T D LRl s
b, HERDIZD, #AFM A 5 min & L, #AIEE 425°CL LR % Fig. 4.4 120
FIc7my b L7z, ZOFRMETHE, K 40 MPa OREZMR L= 7 e, 0 MPa &
TIRF L72H U NBAE Lic, MR NG oEB R L Wi cx 5

BEAIRE, HANE., CAWMMBREOBEKRE ST 270D, BHMEMkE 8L LT,
Fig. 4.5 [ZHARE 425°C THEAMRZ 3 min, 5 min, 7 min & 2L SE7-5E OWE
kA ~3, £7-. Fig. 4.6 12 425°C X 3 min OEEICKT % XRD 40 Hr it 5.
Table 4.1 (2 Fig. 4.5 D& 5UZxtd % EDX 0¥ & v Z2hn, Fig. 4.5a, b 2R
BEAIRE 425°C. #2453 min QWM CIE. #AEIL Zn & Al B EN5K
30 um D Zn-Al L ESHEGR TE 72, YUdtiE & Ni o X g & O mic Ni & Al 23
BHEENS 0.3 ~1 pm JERREORE & Al & Au BBHE S5 0.3 um AT O A @R 153
W T&E, Fig. 4.6 O XRD OWfEREZHE 2 5 &, RIEIIWHEEAEM NI boE D Ni &
ZAZ O Al B LAER LT AN BELEME CTh D, BEIIHEEGM N1 o % |k
D Au o E L ZAZ O Al BRUE LARK Lz AuAl &BRIEAMTH 5, 7k, A%
DE DI In-Al B L AE D AN @B EWE L F & T 2T, BaiRE
385CX° 400°C72 & mgRE MG DN DIRERMF TIIEGRMIUK S TBIR SN ETH D,

eV T, Fig. 4.5¢c, d OEEAIREE 425°C, #A WM 5 min, 7 min OWEIZ- OV Tk~
Do THHOFRMTIE, #AMBOBEN—E L, BEMICIEZ, 72 TR0 Zn-Al 3t
AR CTE T, OO RRIEHOBELED T T v 7 0RA KPR TEZ, &5
2%, A MEmICAFE L T2 Ni JBAER L, Cu 72\ L 42Alloy RHHEI R DILT
Wiz, Table 4.1 (2777 EDX EEAHEFR LV, AR LKL, ZAZ O Zn, Al &,
WA DO Ni, Cu. Fe NS LT-@BRLEMTH S,
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1500

o
(=1
o

Intensity (cps)

500

Fig. 4.6 XRD pattern of the fracture surface of Ni/Au-plated 42 Alloy-to-Ni/Au-
plated Cu joint using ZAZ bonded at 425°C for 3 min.

ED ORBFHC L AUE, Zn-Al 1IZA 72 %2 W THEAIRSE 420°C, #AFE 5 min O 54t
T Ni bo&&2#A LESE, REIC AN &BEELEVBNERT 228, BEAIEE
450°CTlE AlsNig ﬁﬁﬁﬁﬁfﬁé\%@ﬁi Ni ®o &EKmNOIFHEL ., Ni-Zn @BERILEY (v
) DAERKT D E LTWBHIE5], oF 0, BE EFRICEWEEEHM O NI LRI 5rHk
DAL S Zn 2B T 5 EER 5, #OOFERIT, 1 mm JED Ni FERZHWTWD 0,
AFEBRTIE 4 pm EOFE N Ni HO->ZEZHNTND, 20D Ni JEOEWRE S OFER LA
TR TOBEAMBOBNIHNTZ LEZZ OGN D, BEMICE, AFERTH. AN &F
M LAY E OBt L Ni-Zn & BRELAE O LRSS E U3, /IS Ni & 23 H
I, NiZn £ERICHEE ST, Cu X° 42Alloy RHFHE Zn, Al EDOKIGEHEITLTIZ &
2 bivd, FOME, BHEOTLENG R DERBFEULEMHENZE TR ST,

—RITITA T IIZZ D3 < PERFRE T & ER & ORIZRIREGEICR R 3 2 BUS ) & 6%
T 5, #AEOGRBELEMNIELS JET 2 LICIfEMEN KDL, @R LEWE
PERF I Ty I BAD T EDNMLNTWS[56-58], RFEFRTARK L7 Zn, Al
Cu, Ni, Fe 6725 &EM AW Mads LHELZ S, BERIREDDERE TOMEITE
CHBUSHEWINCTE P, ALAMIC T T 73 RE LTI EZbND, TOME, kT
JE 0 MPa £ CTIK T L7z,

*:T\L%@mﬁ%m&ao CHER TOER &R BDIEED L VEIZOWTELET

o TREEERBROMER, HEAIE 415 CCITHEATRE MM CTE 20, H#AIRE 425°CTIX
Ref ORIV FRAE L7, 20HMTH D 420 CE 5T L72BIG D2 LA Ee b
b, 22T, 420CIE Zn OFUSTH S, 420°CLLFTIiE Zn M CiARIZ c& 3, %9
In-Al @ik & UCHEET D, ZOFE, Zn TE72a< AL 2S Ni & UG L, AlNi & BRI LA
MBS %, —J. 420CLA LTI Zn BT H @ LIS 5. Zn (XATEH Zn & Ni &
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DILEWZEARRT H XL 51, BRI 420°CLL ETIE Zn-Al @ik CTH->TH Al 25 &7
Zn BT Ni & ORIENR E - FRENRE 2 Db,

UL EOFERICEESE | ZAZ & Ni/Au - = Cu 720 L 42Alloy & OGS A 1 = XA
LIFOREZEZOND, T, ZAZ W2 ICAER LTz Zn-Al @ik o Al 256 M i
KD Au &S L, AR L7z AueAl 23EEPICERET 5, Au BT 720, RN
WEWHEIND, KRIT, Audb > FTHIO Ni o & & Zn-Al gk o Al 23505 L. AlsNiz 4
BEICAME EERT 5, BEAEEN 420°CLL FThiu, Y omEITELS . Zhil
FORISITEE OIXA AT RN TIEAE U, LT, SEAIREN 42002825 L.
420°C £ TIZAER L= AlsNie & BHELEWIE D R4 12 Zn-Al BliRHIZE#ES 5, £ LT,
Zn-Al iR O In & Ni Do ZEOARIS L, Ni-Zn LG ERKT D, 2@ Ni-Zn {b&
W% AlsNie £V &R EV, NI Do ZERAEE SRS T &, Zn-Al @D Zn &
Cu RI#f. 42Alloy RMDROG L, MESH 2 @8O EWE AT 5, OGP ETT 2 &R
A4 RHBFICHIAT 5, AR LT LEDE I HARCRANAY, mEL RS KT
HERE 72D,

U EomMGET 2B E 2. ZAZ 2RI 5BROBA AL, 382C5 420CL 352
EREYTHD, AH, Zn-Al FEEIEENS Zn OREOHPANTH 5,

4.32 BEEFEXTOBRREDE

ATETE TiX 10 ppm LT OHITRWIEERE O N RPHK T T, ZAZ IC L 56 %5E
BTz, AN, BEZEETSHE, No W AZHWTEEZREE L2 10 ppm L4 F I
T5HZ LiE, BEEERESHREOBATH LY., 22T, BIRERESMEZ EOBRERMT
ELMERLNET DD, HEAVECRITTRERIREOREL R 5,

Fig. 4.2b (TR THkEFTA ZAZ ZHWTC, AR 385°C, #AKH 3 min, #EAE
0.4 kPa O T, N RFHKH OEFIREZ (LS TER L7z, Fig. 4.7 3BAFHEX
DERFRIE L A K2 ~7, Fig. 4.8 1LkET O SAT BoREFZRL, MFORA
HAEEAEE, BEINRA ROHBEFEOXKETH Y | HRONAERT v 7 O 2R,
BEAXR=EIX, Ty 7ABOEBICHT 2 HEHOE G ZFH L, BREER
100 ppm BLFCIEEAKIGHEIT 10%L T THY | NEREROBA RBRFEDHLNLDLHOD
DO, BEREIZLOT EOHESRENER I N L WVWZ D, —FF, BHARE 100 ppm
EHZDH L, BAEKRMGEDN 30 ~ 40%ZBkI ENVEEATENMET Lz, A KRMIT/NS
IRARA RNSEIEZ D X9 I BRETIX < F v TANER Akl R & 3 2 RGP % i
L7z R34 LT,

Fig. 4.8b TR T A KMOWEMEE Fig. 4.9 (2”7, AERTOKRMEIIESE LT
HENH OB RO KRG TH > 72, HALIC L - Tk, “HORMIHEE S, ThTh,
T TR TR & BRI TR E LT, ZOXRMOEEIX, % 2 ¥ Fig. 2.11a

-55-



R REAERL LT Zn-6Al XA TZOEEMA &L L Tz, Zn-6Al 23R D Kk
AR LTZOIE, Zn-6Al REEOBILIEORETH D, 1> T, 100 ppm ML EDOE#ESR
BEFRIHR T ZAZ Dk OXRMEAR L7-DiEL, FUSBLENERE LIz Thod L
Ezbhb,

AREBRTIL, BEERIC ZAZ FHEZWHE L., Zn OPIHBLIEOREIZE DT, L,
R 100 ppm LA EOFRHK TMET % = & T, Zn BMLENKE L, B>, ALz
BRI b LT B A bD, 2D OB THEAEICIILIES Y LA N
KFLZEEBZOND, ZAZ 1T Zn ANEIZE D Al NEDOE(LEBGSHA, =V U AR K
D, Zn X Pb LV LML LT WZ E¥bonb (53], ik, ZAZ 1T Pb IZAZIZHART,
FERIREICK LTI CTH D, Al DA LT Zn ORI B AR NBMETH 5,

U EDFER NS ZAZ WA 70 2BV T, Ne BIK T OMESH&IT
100 ppm L F23@EIETH Y . Zn OfE{bEZET L5 L. FRRRVIEKI MR o RELEZ
Do

100
90
80
70
60
50
40
30
20

he 8% e . ,

0 50 100 150 200 250

Oxygen concentration (ppm)

Defect ratio (%)

Fig. 4.7 Relationship between atmospheric oxygen concentration under N2 and
defect ratio of Si chip-to-Ni-plated Cu substrate formed using ZAZ, after bonding
at 385°C for 3 min under an applied pressure of 0.4 kPa in N2 with various
oxygen concentrations.

()
Fig. 4.8 SAT images of Si chip-to-Ni-plated Cu substrate formed using ZAZ, after

bonding at 385°C for 3 min under an applied pressure of 0.4 kPa in N2 with
oxygen concentrations of (a) 25 and (b) 125 ppm.
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Stripe defect

Air gap
Zn-Al
Ni
Cu

20.0kV x500 SE(M)

Fig. 4.9 Cross-sectional SEM images of Si chip-to-Ni-plated Cu substrate formed
using ZAZ, after bonding at 385°C for 3 min under an applied pressure of 0.4 kPa
in N2 with an oxygen concentration of 125 ppm.
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Fig. 4.10 Shear strength of joints formed using ZAZ, after bonding at 385°C for
3 min in N2 with <10 ppm Oz and in N2+4% Ho.

4.3.3 EEFHEITAEDRE

BHETRAZBEET D &, Ne T AZ AW THRBAKH ORERIE 2 K3 2 (S TR 4 2
L, BEEMETT 5, Tht, BERELZSERIKTSES720, NetHe 74—
THAANLIEUIERAWSND, £ 2T, Notd%He FIHK TD ZAZ DA Z it LTz,
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15.0kV x2.00k

(a) (b)
Fig. 4.11 Cross-sectional SEM images of Ni/Au-plated 42 Alloy-to-Ni/Au-plated Cu
joint formed using ZAZ, after bonding at 385°C for 3 min in (a) N2 and (b) N2+4%
Hoe.

Fig. 4.10 1T ZAZ % A\ No+4%He HZPHER T 385°CE CTHIE L. 3 min {#£F LIERI L /-
HFOFAWRBREREZ, Ne FHKOLA LR LR TH D, N RHHR L 1ZR20
No+4%Hs ZFH &K TOH AR 10 MPa mitk £ T F L7z, Fig. 4.11 12 Ne FHE% &
No+4%Hz RS OBEA WA EZ ~ 7, NeRHEK CTIE Zn-Al 36885 R & s K72
<EEGENTz, —J7, Netd%He FEFHR TIX, B26 T8 O5H b i E THRR O KHa022 23
FEL Tz, ZOXRMPBERTOEREEZEZ b,

PRI L0 R, N E DL BROBMEZIRD 572, ZAZ &l In IZATEZ AW
ToiE R ER 2 550E L 7=, Fig. 4.12 (2 ZAZ % Ni/Au - % Cu t EiZ#H+t, No7Zzu L
No+4%H2 FHA C 385°CE THEL L. 3 min 57 L7 0 FEARBEMSI G 277, Ne FDH
LTI U= ZAZ 13EMR RSB ERN 572, —F . Netd%He FHSTIE, WL 7~
ZAZ L HERE ORIV —ETIIE N, WRATOBEOF A X0 HUUHE L=, 8%,
A DS B0t LIRAVA S D 2 & TROZFAF =R/ M S5 23, Ne+d%He FRFAX
D ZAZ [IRNE & ERNEN 2D o 7728, Zn-Al @R A B OEHE T3V X — % F/Mb
L, LB x o5, ZOX)ICHEMARENEESI 2 b, FREKICE D ZRmNET
HTENH LN T,

WIT, M Zn 1T ATEOWENMEERE O FERBAMEHS & Wi o4 R BMEHE I L DIRiLA
HER K %E Fig. 4.13, 4.14 IZENENRT, Ml Zn ZEESE 5720, HBRIBEIT
425C L L7z, Fig. 4.18a 127”77 &£ 912 Ne FRPHK CTIIH Zn 1T A 72IEEER EIZ K& <iHh
IR 5Tz, REIZHHNDO0OFINT L S ZREERIL, Zn 1ZAERE OBRILEOMN TH
%, VEERHZ R O (REH) AOOEIR., B> SRk (AKEH) BBl X
)R EE AR L CWb, —J, Fig. 4.13b (25”37 Net+d4%He 5P TOREBRTIL, #
In [ TRAIVAR 7= b DD, Ne FFK LY iR/ NS < 2 of, RKimlEBe b & 7
bNDVUNEREFH > TEY, BEROOHINIIME CE o7,
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(a) ()

Fig. 4.12 Optical images for wettability test of ZAZ heated up to 385°C for 3 min in
(a) N2 and (b) N2+4% Hs. The spread area ratio is 197% for (a) and 72% for (b).

(@) (b)
Fig. 4.13 Optical images for wettability test of pure Zn solder heated up to
425°C for 3 min in (a) N2 and (b) N2+4% H2. The spread area ratio is 369% for
(a) and 219% for (b).

(@) | (b)
Fig. 4.14 Cross-sectional microstructure of wettability test samples heated up to
425°C for 3 min in (a) N2 and (b) N2+4% H2. The contact angle is 19° for (a) and
49° for (b).

-59-



Fig. 4.14 (TR Zn IZATZOBHBIE LV . Ne FERXTIIARALA 197 (23 L,
Ne+4%Hs RIS TITIRILA 497 Tholo, D, fll Zn ZATZHE TS No+d%Hs 770
KCOWMNNE D Z L BHERTE T,

mhCBET v 7o, kA TrRIND,

O, =0, +0,cos0 (4.1

Z 2T, Osg. Ol Olg VEMAID, Hok & FRPHAUH], @liR & Sapi . il & 5% lﬂﬁ@%ﬁi
FNX—ThH b, RERIZTEAREELEZT-TETTIRAANED T2 LW ) FHIL, KF
K& RRIR O R = H L ¥ —o1g S N2 5P & No+d%He R TR D Z & %/Tﬂﬁ‘a“é
0 BARMIZIE Ne TSR E Y b Netd%He FRPHRICIB VT, FRHA & @ik o2 m— 1
INX—olg NRELoTob Wz D, @x4%D Ho HANED LI 970 A = AL THRE T
FNX =T EE H 2 TODOPIZOWTIEH LTIV, 3Eh Zn ~0 H BERESCE
H~DOW TR EOBRPEEL TV D AREMENE 2 b5 [69],

U bEofatz o, BATHKICL D ZAZ OHEESA A =X 22>\ T Fig. 4.15 12
Y. AEIOERTIE, #EHNC ZAZ RmabE L, RimoBARBEEE —HEREL T
Wh, LovL, #ABMETOXA LT 7LD, FHIZIE Zn BLENFAET D, Kif
DERLIEIL ZAZ R OERFEIZRIC E VM srans EBE2 bbb, T2 ETOH
GUIFARICEK 72, 2 2T, Ne FEFA T, Zn-Al Bl OF = 2L X — 3 ME<TH
AUVEDS RUNZ 8D R IT 0 W S VT2 B VIR OB 2> D BB ITTRAIVA D D, Z DR T,
H3 W SAVTE AV AR TP 0 L, A IR R RIS T R RBEEDE LN D,

7. No+a%He FIAR T, Zn-Al AR OFE = R LX =08 <, 3EAEREN, kS
NIZBALIE DRI D Zn-Al 23GedH LIC < < e L72@IRIZ DWW T b A+
WCRGIITENAN D nWEE 2 b5, %ODFS'E W ST EIEIERIR O £ £, B2

B O5E O E THfgE Lo KMl L THEAIICEE T 5, £072OIC, #EmENSEH
Nz neE&Ex bbb,

PLEDORERICHSE | ZAZ 1208 L7126 AUIE No+4%He FHHK TlE7ze <. N2 F5PH
RTH D Lt 5D, Netd%He SR TOBNMEL TEZIL, Zn-Al 1 TA7Z—#K
WZOWTHTUTED L EZBND, He AN Zn-Al @R OREN & Bl I D RAFRIA I
T BT AW, ZAZ RO Zn FELIEDR AR T 5 2 & THEAMENK
5,
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[
& » mm [Cool m
Doy 2y
gl =\
Initial Eutectic melting Zn-Al liquid outflow Bonding
& oxide film fragment through gaps & oxides dispersed

(a)

Hc at

E>

|_Su'bstrate
Initial Eutectic melting Partial liquid outflow Bonding Final
& oxide film fragment through gaps & oxides dispersed
(b)

Fig. 4.15 Estimated bonding mechanisms using ZAZ in (a) N2 and (b) N2+4%Ho.

4.3.4 CuwZn/AVZnCu 7 7 v FHIZ X DA H%E

ATE E COMFHERICES & ZAZ OBE1E Netd%He FFAKITHESRE S 077, N2 &
AT, Ho, BIHKHFOBERE %L 100 ppm LA RIS 2T UER 5700, & 2 A0,
BEBREEE LGB, REFTERATRETCIES 20D, #7 M A LAEORRT
TR LNV, EHEE CTRRFZREZR T SE570120F, R0 No+d%Hs A2 OF| )
IFE LW, MEMIO TRIZE Y No+d%He FRPHEICRIG S, BEMEZUGET 5 2 & BT
TWCTH D,

AIEICHI D& L7 L 912, Netd%He FHEKIC L 5 ZAZ OBAMWHEIIX, ZAZ i
O Zn FRALIEAVERMBZIC B ERICEE LT D Z EBNFKEEZ 6N D, /- TC, Zn BR
{ERERFAE LR WA BT o X, Netd%He RHXICE N TH G2 R T 5 AlRetk
NbbHEBZT,

TV A AKEZRTE, Zn & Al OFEMIE He TIESLTE 7205, Cu Bbix
BILTCE D, £2C, ZAZ FmIZ Cu 82 ilT5 2 & C, Zn OW{bA RIS HiE %
ER LT, BRIICIE, Cuw/Zn/AVZn/Cu 7 F v F#f (LT, CZAZC) Th b, AtEET
X, REHED CuJ@ANED Zn & Al ORRLEBIIE L, Cu BLMIZEAREKD Hall
EVEBETTLZENTED, b, B OIEE L2\ Zn-Al-Cu BIR DN ER LTG5,

S, fER L7z CZAZC Oz H4& L7z, Fig. 4.16, 17 (2 SIM, TEM (X%
CZAZC O EEIZREE, WOIC EDX 12X % Cn/Zn Rt EDX s f%z ¢
NIRRT, Fig. 416 1ZR"T SIMB LY, Culgd Zn BORIIK 1.7 um RO SE N
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L TWD Z Enbholc, ZOEIL, Fig. 4.17 ® EDX %ﬁfk%ot V. 40 at. %D
Cu & 60 at. %D Zn 7 HAERL STV 7=, Fig. 4.18, Table 4.2 |2 U454 OE R EIHT14:
L ZDFNTRE R A T, AFERICESE . YeREbAYWEIX CusZns THDH LFRIEL
oo MM, 77y REERFONMTEICELY Cu & Zn BDISLAEK LT EEZ NS,
&Iz, Cu/Zn 77y FFREIIZ CuZn (LEMBOERDPFRD bbb DD, MELD
BRIMIZIE 700 nm JEOH Cu E23EFL TRV, Cu BIZX D Zn, Al JEOREDRIT
HEFFS N T D LT TE 5,

RIZ, Net+4%H2 FRPHEICIIT D CZAZC DA MEIZ OV TG L7/ R % Fig. 4.19 (1
R, gl LT, Ne FHA & Netd%He RIAK CHEA L ZAZ OWEZ G LT,
No+4%H2 FRPHKUZ I 1T D CZAZC ORI 85 MPa Th -7z, Net+d%Hs 5P
D ZAZ 1ZxF L TRIBIC ER L, N2 FHR D ZAZ CZIERBEThH -7, Fig. 4.20
No+4%Hz FZHAKCHEA LTe CZAZC Mk FoOHEA WMk c =3, #EEICHE Kb
s n, BRIFREAGIRETH > 72, No+a%He BIHKD ZAZ I2 L DT TIIHAEIC
BRI NFAE L7122, CZAZC TN Ul orzlzdbic, BAMENHE TEZLE
bbb,

CZAZC 13 Zn WAL Z A S 72 WM BT 5, CZAZC 78 No+4%Hse 55 2B T

LA TER WY FEHEIT, Fig. 4.15 (TR L2 X 912, Notd%He FFHS FTD ZAZ O
BREEAN TS Zn AV LI OBEATEIRFICEIRN T 2 & W) A =X L% KT 5,

PLEDFERICHAS & ZAZ 12 Cu fRiEE 2B 5 2 & T, Net+d%Hs ZZFHXIZ BN T
LGOI TR ZENTE D El’¥bholz, fiE>T, CZAZC 1E Ne+d%Ha FRHH
K[ATHEATEAMETHY ., ZAZ LV L EERICEND EEZ BN,

Cu-Zn

Zn . = .

i - & {
l' " - - P " 500 nm

-

Fig. 4.16 Cross- sect1onal SIM image of CZAZC
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«— Point 2 Cu: 39 at%, Zn: 61 at%

«— Point 3 Cu: 38 at%, Zn: 62 at%

Fig. 4.17 Cross-sectional TEM images of CZAZC and EDX results obtained at each
point.

110 211

Fig. 4.18 Diffraction pattern obtained at Point 3 indicated in Fig. 4.17.
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Table 4.2 Diffraction pattern analysis results at Point 3, identified as CusZns.

Measured Calculated
Index . .
spacing (nm) spacing (nm)

110 0.451 0.4439

2-11 0.364 0.3624

1-21 0.365 0.3624

120

n=3
F 100 -
— -
Z ¢
=
1)
= 60
e
>
. 40
]
@
=
¥ 5] 20 ;

0 1 |
YAV/ YAV/ CZAZC
No Nao+4%H Nao+4%Ho

Fig. 4.19 Shear strength of joints formed using each material, after bonding at
385°C for 3 min in N2 with <10 ppm Oz and in N2+4% Ho.
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\Zn—'Al'-(-jli?

Ni-plated Cu

25.0kV 15 1mm x500

Fig. 4.20 Cross-sectional SEM image of Si Chip-to-Ni/Au-plated Cu joint formed
using CZAZC, after bonding at 385°C for 3 min in N2+4% Hoa.

4.4 ¥ES
ARETIL ZAZ OHEAVECRIETHEARMEORBIZ OV TRG LZ, £/, BEMEEH
E L. Ne+d%He RIHR COHE %I T D CZAZC [Z oW THEAMEEZ R L, LT O
Eik s e
(1) ZAZ ORI 72281, BEAIRE 385CHh 5 420C O CER SN D, HEAMIE TR
AR 425°C, AWM 7 min OS5 T 0 MPa £ TR FT 5, Ziud, &iEFFCH
PEAR D Ni A X V@D ZAZ O In LG LilEET 2 Z & C©, $EGHM R E Zn A
miRICeBEEEYET 2 Z E R RKRTH D,
(2) ZAZ O BAF728:51F, Ne R CHRFEE 100 ppm UL F TiERIND, mEEEE
TliX Zn & Al OFMEIC XY . KIESEINT 5, 72, Ne+d%He PR TlE, Zn-Al
AR DIFIVER (LT 5 2 & T, BAEICERXMAA T, BEERENME T 5,
(3) ZAZ | Cu {##)E Z 51 L 7= Cu/Zn/Al/Zn/Cu #1ETld, Zn & Al Ofg{k% Cu @A
PET 5, ZORER, Ne+td%He FIHRICIH N TS, B R#EEEFEBTE D,
UL EOREORER, MEtOBFE#EMAME TEET S & ZAZ IR+ THY . CZAZC
BHERE SN D LG b b,
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®5%E CullBZn/Al 7 5 v Rt

51 =

AT E COMFHI T, ZAZ |2 Cu 2458 L7z CZAZC &S CTEPEICHE L7- No+4%H:
TR COBEENAREEL 72D Z EBNR &z, & ZAMN, Cu #E bIEE 2 7= Raf%ic
OWTIIRBFCTH S, HlxiX, Yamada HiE, Zn-6Al $LfITAZIC Cu Z2H0m LT,
Cuw/Zn-6Al/Cu (ZATZH ZAER L TV 560l HizbfBHE Zn-6AL IXATZIC Cu & ANy ¥
U7 CHREEULER L Z E RS Tn5, ﬁﬁfi B A b, RS RTREME 205 0R
L. SEBLAMREZefiE & pllr L7 Cu/Zn/Al/Zn/Cu 7 7 v Rt & Cu/Al/Zn/Al/Cu 7 7 > R
MO ZFEEOMBHZOWT, MEHE L TOZYSMHEZ T 5,

PO EERE L LT, Cu #EBORWIRMER & . SERIRE S A Not+td%He R TOHE
BMENET D, Cu FEOREMENER SN D WM, MM R & ik T8 Tl

L. IREZRT, PEERE TR IGICRIESND £ TOMM &, FERE TR THIZT
RE SN, FART 4 ISR ETOHMZEDLEHHTHY , Dl L
1 FICEVEE LW ERDOND, —FH, RBRRESAH Netd%Hs F2FHX CTOHE
BZONWT, Ny FHFREANDE AR =5V 2 — VEEE IR L 2 b0, AR F
—ZHWT 4 A7) — MNUETEBETLILERND D, XA RN H—TlL Ne+d%He 7
Az =& LT, 50 ~ 100 ppm F2EEDFEFRIRAITRET H L7800,

AKETIZ, Cu ANy XY v 7 T L7 Depo-Cu/Zn/Al/Zn/Cu &
Depo-Cw/AlVZn/Al/Cu & —FEHEOMEHZ DWW T, iS5 MR EEREZ BRI LTz, £z,
7 7y RELETHERLE L7z Cu/AlZn/Al/Cu 1IZ225W T, TEM (2 X 9Bt oS 2R L
7o £DOET, 77y REETHE L2 Cu/Zn/AYVZn/Cu & Cu/Al/Zn/Al/Cu 12O\,
EIRRIRE S A Netd%He R TOHEG MG L, Cu BOREMERIZ OV TEE LT,
Fo. BERZEENE SN CW/AVZn/Al/Cu ([2OW T, $25TE & BTG 2 R4
L7z,

Cu Cu
7n Al
A | — o
7Zn
Cu é}l
(a) CZAZC (b) CAZAC

Fig. 5.1 Schematic images of Zn/Al/Cu clad materials.
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5.2 EBRAGIE

5.2.1 ARy % Cu g Zn/Al FFHE#HF (Depo-CZAZC. Depo-CAZAC)
MEM#EIEE E(L D72, Zn/AlZn 7 Z v N8 (ZAZ). AlVZn/Al 7 Z v R (AZA) |

Cu ZANRy XY v 7 THRET MBI A RIE LT, ZAZ, AZA 2 EZEZ /Ny 2@ | THE

L., BbliEZbrE L7ck, Cu R L7z, Cu/Eix 350 nm & L7z,

5.2.2 Cu#ftf& Zn/Al 7 7 v F#f (CZAZC, CAZAC)

CWZn/AVZn/Cu 7 Z > Rt (LR, CZAZC) B X Cuw/AlV/Zn/Al/ICu 7 7 v F¥F (LA
T. CAZAC) oMt % Fig. 5.1 IZ7”F, AMEHEL Zn &, Al %k, Cu 07 T v
RIEIEIC L0 & L7z, CZAZC OJEIEHIE CuZniAlZn:Cu=1:41:16:41:1, CAZAC O
R CuiAlZn:Al:Cu=1:8:82:8:1 & L, #JEIIfI s 0.1 mm & L7z, MEHRERZ
Cu CIRi#ETHZ LT, Zn & Al WA FZBKUTRES W2 L2 W E LT,

fES L7z CAZAC @ CwAl 7 7 v NFmEIZZIEME F##E (TEM, Transmission
Electron Microscope, Hitachi H-2000) & = x/L¥—/2p#i8 X #Rodrikss (EDX,
Energy Dispersive X-ray Spectroscope) (Z & 0 Ak % 58 L7z, TEM HER ¥
AT FI A A B — 2N TEE#E (FIB, Focused Ion Beam, Hitachi FB-2000A) |
EVMTL, Mo A v = RICHEE LT,

CAZAC O R mMILEE %2 4 — Y = 7 tEE (AES. Auger Electron
Spectroscopy., SAM-670, 7/ Ny 7 75 A JEEELE 10 kV, #EHER : 20 nA, E

20100 nm@, A A FE  Art, A A IEELE 2 kV, =y F 7 L— | (SiO2
%) 4 nm/min) ZHAWVTCTOMNT L7z, CAZAC [TE G L7V 7V HlE Lz, &
JLALER Y CAZAC % N2+4%Hz F5PH5 T 300°C £ THIEAL 2 min PREFT DU TH 5,
AT LY Cu OEPMEEIRNOHREIRICEIL L2 Lnb, Cu MNETINTZ L
HIWr Lad L, oIt L7z, IZEoollBR e LHEE £ TIERKICIR SN D, eds, ks L
T, B2 F TR LT Zn-6Al IqhITA TS, MiZn 1 ZATE, ZAZ OoTiEREOFRL L7,

5.2.3 BEITIEL MERESIE

SiFv7 (5X4X0.3 mm) %77 v Nif& Niwho X CutkZIAICEN, 0.8 gDF
b ZHA T, FRAMRINEVE Z FHV, PN Ne WA Z i L, BRI 10 ppm £ T
T L72FER T, Net+d4%H2+0~100ppmO2 FRFHSIZEI Y £ 2. 100°C/min @ F- 7 # & T
385CE THIEAL 7=, 385°C T 3 min fRRF L7218, MMEAZIEIL L, Ne WA THAI LT, 1E
BT 7V OBEA W 1L SEM/EDX TEIZE L7z,

A RmBlEH O 7L, ERE EEMR NI-P Do& Cutid L, EOMDEMIT

FITHER LT,
SREEHIERH OV 7 1 id, Ni/Au - X 42Alloy A E N/Au o> & Cu FARK % [FlkE
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D7 ATHEA Lz, ALY 7T Cu MM EZEE L., 42Alloy FHAI %
5 mm/min OHE TIHEAZM LiAA, FAWREZNE Lz, FohicT — X I3 LHEE
2 NRTGA—RIALTANT Oy NCT 4T 47 S/, o, WEICHNW-a—RELrD
ftEk £, 100 MPa 22 57 — X X CE 2o o7oiod, 4T —XI3AHHU 0 o
F—2 L LT, UATNVHEIHERANLT,

5.3 RERLEE
5.3.1 Zn - Al - Cu OFEBIERF & RE D BIR

7Zy RTHREE L7z Zn/AVZn & AVZn/Al \IZxFf L C, Cu Jgz A Xw X 7 CEE L
7z Depo-CZAZC & Depo-CAZAC % HE L. HEEMIED Z M2 550 Lz, S48
Z Cu BUEALERIE . BRI EHZET v — ZIRE Lz, 1000 HRZICHERZ D L.
EREMBEIC I VBIZE LR E Fig. 5.2 12”7, 1000 HfXiE#%. Fig. 5.2a (27
Depo-CZAZC 122\ TiE, MEEED Cu OEBAKbIL, REIZEILL TV, 20
BOEAGITRIES 1 AR ZANDRO vz, —F, Fig. 5.2b 12777 Depo-CAZAC
IZ2WVWTIE, 1000 H# S Cu OEBENRZDE £ - Tz,

DL E O 72 EBRAE R L 0 . MEMAE OB Tl AIE THRETL72 CZAZC DX H i
Zn |12 Cu #FEE T 2 HEOZ YN D & &b, AlIZ Cu ZfEE3 5 CAZAC O
VEMERRD bivlz, LLTFOHIZT, 77 v FTHIE L7 CAZAC DM iR+ 2 &
&bz, CZAZC & CAZAC OYEREEIZ DWW TIRETT 5,

(a) Depo.-Cu/ZAZ/Depo.-Cu (b) Depo.-Cu/AZA/Depo.-Cu
4 mm

Fig. 5.2 Optical images of 350 nm-thick Cu deposited Zn/Al/Zn and Al/Zn/Al
stored in vacuum desiccator for 1000 days after deposition.

-68-



5.3.2 CwAVZn/AlCu 7 T v B Of#EtERE

ATEIC CHREE 2 bz CAZAC 27 7 v RIEMECIERI L, BROMENEI ST
WH ) ERFEELT-, Fig. 5.3 I CAZAC @ Cu/Al 7 J v FRETED TEM 144757,
CAZAC OFREIZITH 1 pm JED Cu @0 EFE L, Cu BEEWREEINATWSZ &%
MR L7z, £72. CwWAl FEICHEEIR G T, BRI THEBNITHESE I TV & HET
X7,

Fig. 5.3b (2 CwAl R0y kE. Table 5.1 (2 Fig. 5.3b D450 EDX Y-7E &5y
Wik Rz 7779, Point 1 ~ 4 DR T Zn 23 at. it S 525, FIBINLIZ LV ATEL
74y & # 2%, Point 4 X Al Th D, Point 1 (ZE LD Cu RHFE & IXE@ENR R 52
CuThsb, K Cutlix CWALZ 7 v RFEIZH - TEFEL TR Y, Al & OFL T il
ML LD REROTHPEBINTNDIHEEEZ D,

Point 2 1% Cu & Al 2342 S, D Cu el Al ROREEEZEZ LNDH, BFR
BOTIIRH &7, 77 v RIEIERNICFE LT Cu & Al O HARBRUIRIZ, JEHEL Y +
SIAHOS WIS, Cu & Al BRI EZ N S TICEA SN L B2 bbb, [EERTORE
fti%, A Eo TEM SEHEREFA T d 5 Hum OMEER CIIfER T & o 7oAy, fi—Eh
OREIIRAET D5, RHAHNICIEBIE R LIRS B 2 b b,

Point 3 Tix Cu & Al 234 D, RHAH & 1T E AR DHMAFEE LTz, YEZAHIZAR L 72Vl
WMHGFIE LD, KT 200 nm ODEATH -7, Point 3 OFEFHREITE & Z DorHrs
K% Fig. 5.4 & Table 5.3 ICENEIRT, EHTROSHTIZE D, HiZtHiT AlCu &R H]
bEMmERESNTZ, 7T v NEZOBIMTIC L DT Cu & Al 2EH LA L2
WS D, mBiFED CZAZC T, Cu/Zn FHEIZAEKT 5 CusZng 139 1.7 um ETH
~72, CAZAC OHA D AlCu 13K TH 200 nm FEETHY, Cu & AliE, Cu & Zn &
D HEISLIZK WREEZ BN D,

feW T, AESIZ RV fe i @ Cu UIRE A3~ 7-, Fig. 5.5 (XM ELOBFE DT 7 A
7'va 7 57 A )L, Table 5.3 12 AES 73#71#E R b OB LIEHERE R 2 2 Ehvrd, 5 2
T L7z Zn R° Zn-6Al 1Tt~ % &, CAZAC @ Cu JE ORVIEIEIZ 1 nm TH Y IEFIZ
M LD, E5I12, CAZAC % Hotd%He FPHR T T 300°C £ TIMEL L 7-#1213.
FRLAEIE S 1 nm LA FICH#EL 225 Z b oTz, He WA XD Cu BMEBEIE T Sh
HTEERLTND, 2B, MMBULEZICKGIZIEL TWDED, BB LTEEE B,
B IR DI TIESERITE T SN TO T ATREMER E W,

VL EokshHc - x, CAZAC 13FRmN Cu TEDLOND & &bz, Cw/Al FmmlTBEAi
et S Av, Al ORI 72 < & b BIEHBNTHEELRWZ EbhoTz, KiEO Cu
BRI S +0ici#< . He HAFTOMBIC LV BZRITETAHETH 5, > T, CAZAC
X, B AFE L7 Zn-AlCCw) @ik & 28 LIS 2 BT 5,
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20m_

(b)

Fig. 5.3 Bright-field TEM images near the Cu/Al clad interface of CAZAC: (a)
over-view near the Cu/Al clad interface and (b) magnified view of Region A in (a).
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Table 5.1 EDX results obtained at each point indicated in Fig. 5.3b.

Point Al Cu Zn Identified
1 58 918 24 Cu
2 442 508 5.0 interface
3 486 490 24 AlCu
4 976 1.0 1.4 Al

at. %

Fig. 5.4 Diffraction pattern obtained at point 3 indicated in Fig. 5.3.

Table 5.2 Diffraction pattern analysis results at point 3, identified as AICu.

Measured Calculated
Index . .
spacing (nm) spacing (nm)
401 0.309 0.298
11-2 0.217 0.206
3-13 0.217 0.201

-71-



60

e a 7Zn-6Al with polish
O Zn with polish
\ . .
;\3\ s v" ~ = = «7AZ with polish
Lé’ \\\‘\ Soaa ~ =7 AZ without polish
S 40t “‘ Seeo _Zn 6Al (Polish) ——CAZAC without polish
g ‘\ ik - —Deoxidized CAZAC without polish
o e -
8 \‘ had
© -
‘E 30 ‘§ == S~ XXX
8 ‘\\?\ S- - - -
é I \\\ N
o 207 N~ ZAZ (Polish)
g Sl TSNS
< - AZ . = -
10 "\‘~ S- ~<
[ \CAZAC ™
-z (COTEI ~ee__
- \"“~------——-__::_.__ﬁn---
o 1 I 1 1

0 5 10 15 20 25 30
CAZAC (Deoxidized)  Sputtering Time (min)

Fig. 5.5 AES oxygen depth profiles of various materials.

Table 5.3 Oxide thicknesses of various materials. The thicknesses were measured
as the full-width-at-half-maximum of the O profiles assuming an equivalent
sputtering rate of SiOz.

Zn-6Al Zn ZAZ CAZAC
(Polish) (Polish) ZAZ (Polish) CAZAC (Deoxidized)
120 nm 16 nm 9 nm 19 nm 1 nm <1 nm

5.3.3 CutB Zn/Al 7 7 v F# D Cu {R#EHER

Zn. Al. Cu OB L AR OBREEE NSO RIFTEEB IO TR,
CZAZC B LN CAZAC ZH\W, Si Fv 7L Cu/Ni/Au BERZEHES Lz, BEARER
No+4%H,, Np+4%H,+50ppm0,, Np+4%H,+100ppmO, & Ak SH7z, #EGWIE O SEM (1T X
HEEFE R % Fig. 5.6a. b I T, Fig. 5.6a. b ORHVEMARIALEIC, T v N5
PRI I CHED RN L D h iz, ZOXRKMR S L IRIREOBIRE Fig. 5.60 125,
CZAZC IFBAFREOHIME & LICKNEL 20, #AENELT D Z En¥bh o7z,
—J. CAZAC IZ2oW\WTl, KME SICRIETHBEREDOEEN/ NS WD ERbhoTz,
ZOXRMITRTE E TORMBEEE X, B THD EEZX LMD, BILEORFIZOWT
I3, Cu BEEHIE Hy P COMBUC K VBT SND 20, IR LT Zn & Al O
AL TR TH D EEZDBND, Zn LV bRIEWINLIER Al OBALEAETH 5 A6
PEASEN,
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700 —@-CZAZC|— A2
€ 600 - CAZAC| ¢

0 50 100 150
Oxygen concentration (ppm)

(c) Effects of atmospheric oxygen concentration and clad structure

Fig. 5.6 Cross-sectional microstructures of Si-to-Cu/Ni substrate joint formed using
CZAZC and CAZAC bonded at 385°C for 3 min in each N2+4%H2+02 atmosphere,
and relation between defect length and atmospheric oxygen concentration of each
clad material.
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" (a-3) 380°C (a-4) 385°C -3 min

(a-1) 25°C T (a-2) 250°C,
(a) CZAZC

(b-1) 25°C (b-2) 250°C (b-3) 380°C (b-4) 385°C -3 min
(b) CAZAC 9mm

Fig. 5.7 Optical images of surface of each clad material with heating rate of
100°C/min in N2 atmosphere.

Cu: 23at.%
Zn: 77at.%

(a) CZAZC (b) CAZAC 10pm

Fig. 5.8 Cross-sectional microstructures and results of EDX analysis of each clad
material; (a) CZAZC heated up to 250°C with 100°C/min and held for 3 min, (b)
CAZAC heated up to 380°C with 100°C/min and quenched.

WIZ, CZAZC, CAZAC OFIBFRFOZFER L OVENMEZI LT 570, &8E% Cu
/Ni/Au AT ETIEL . FiE 2B L7-, Fig. 5.7 12 CCD /1 A 712 L 5 REBEH B E T~
¥, Fig. 5.7a-1, b-1 |{ZRTHIROIRAEIZ T, CZAZC, CAZAC & HIZHKIFEIIHEAD Cu T
i TWiz, Fig. 5.7a-2, a-3 1277 K 912, CZAZC FKifil 200°CHHED Bk 2 IR IS
AL LA, 250°C THRMmMEMRMDIKEAICZEAL Lz, Fig. 5.7a-4 (ORT X912, 382CE#ER
% & CZAZC IIVAERL LM BITIRAVUAR 7=, —F . CAZAC I, Fig. 5.7b-3 [Z7-T L 91
3Q2CDOIARERTE CREIIHB O ZHERF L TV /2, Fig. 5.7b-4 (TR T X9, 382CEHZ
% & CAZAC DIRFUZ LB ABTEAR L, IUE L2, ZER EIZENERN 572,

=~
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MEMRR O OO E DT 5728, CZAZC 3 LU CAZAC 2 FIRZICHAIL, Z O
fikLRk A SEM 2 W CTBIZR L=, = Ok % Fig. 5.8 127”7, Fig. 5.8allRT L 91T, #*
AR NI L L7z CZAZC 13, FmICHE Cu BIXA DR o7, &EHOEIL EDX 47
Btk v, Cu & THID Zn IS LTz CuZng THH EE X HIVD, #iE-> T, Fig. 5.7a C
R LTe, FHRPICERE DS B IKEICE(LT 2 BG0E, # Cu ORI XY CuZng O
ERRTH D, BB, CZAZC 1IMBUC XY Zn DEERRICEN TS, —FH. CAZAC (22
WL, Fig. 8b (R T X 91T, Zn-Al OIAEFE T O 380CE TMEAL TH, KifilZlE Cu
JEBBTFEET D Z Lo oTz, - T, CAZAC [ZTIRFIFE T Cu J872% Zn & Al O[5
T oEER-Z LTS EVNZ D,

IO DILEEFEB OFENIOWTELRET 5, &8 OIEBIERZ FitoXa HVRE L,

X =~/12Dt (5.1
D=D, exp(— %) (5.2)

T 2T X ITIERREEEE, ¢ (IRERE. D ITIEBRE. Do lEIREECH, Q 1TEM b= R ¥ —
RITRMES, T IXHxHEE CTH D, 380°CT 1 min JIEAT 2D LE L, Table 5.4 |29 3C
BRAIE A R\ PR 2 33 L7245 % Fig. 5.9 1R, 83, Culg~d Zn £7213 Al Ok
BRI B 1.5 nm TH Y, CulliE 380°CRRE DIRE Tl A L & BAEL 5
Nizo WIZ, Zn JEOHIZ Cu 13K 1.8 pm IEE L. Al JEOFIZ Cu 134Y 0.3 pm FEHT 5 &
AL bz, 6> T. CZAZC (IZ2WTIE, Cu BOHIZ Zn PEHL L 72D TIE/2< | Zn
JEOHIZ Cu WHRELSIEH LIZFER, FBHIZ Zn DNBEHT 5 E@ATE 5, —J. CAZAC
WZOWTIE, ALEOHIZ Cu BDIERT 2 S8 Zn IZH_THEWY, Bl Al S Cu DL
NYTEE L THIELTWS, TOMRIZED, CAZAC % 382CE THEL TH Cu 8%
JEIZER F LI eEZ oD, RIS CRLIZEY . Cu BELIEIE N+4%H, RS TS
D720, CAZAC IEF LN TFAE L2V IRRE CIARL 2 L iIfF T & 5,

Table 5.4 Diffusion parameters of each solute and matrix [53].

Prefactor Activation energy
Matrix Solute )
Dy (m?/s) Q (kJ/mol)
Cu 7/n 3.40E-5 191
Cu Al 1.31E-5 185
/n Cu 2.20E-4 124
Al Cu 6.50E-5 136
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Cu 1.5nm Cu 1.6nm

1789nm
/n

(a) CZAZC (b) CAZAC
Fig. 5.9 Calculated diffusion distances of each layer at 380°C for 1 min.

UL EDOFERICHES & | IEBEFEENEA I KT TR OWTELET 5, CZAZC X5
JERFIC, Cu 2’ Zn FUCHEBL L, RMIC Zn (Cu-Zn LAY NBEHT D, Zor &, FHEK
FOMBRENENE, BH L Zn BNEOHICIMLIN D, Z ORRLBIIEE BN
T 272, #HAREPHESEBEEZR TS E2ER L VG5, —F. CAZAC (3,
Zn-Al OIS TH D 382CETHEMAIC Cu BFRTFET D, Cu O HIRE LI IHEA TP & T
D HIZEVIETEIND, - T, 382°CT CAZAC MNILAEE L, Zn-Al @12 Cu 23
it Lo B AR, BRLIEORIEAFAE L2 WEMEZR Zn-Al-Cu Bl AR SN D B2 Hivd,
At . TP M~ DR D DG, BERIREA 100 ppm & LRI
WIS THBILORELZITII< L, BREOHFENTOND LBEZBILD,

5.3.4 CwAVZn/AVCu 7 7 v R OBEAM

R TR L IR U N T DN -8 G A /R L7z CAZAC IZOW T, BTl 2 i
L7z, Fig. 5.10, Table 5.5 (2K EHCIERL L 7= Cu/Ni/Au-42Alloy/Ni/Au #TF0H AWr
MEATA TN T a ey DTEBLIEERE VA TART A =2 OFHEMERE T,

ZAZ 1 IFEEZMEL, Ne BHEKTEA LIz v IV Th D, ZAZ X, - AWrhE
1% 95.4 MPa, m fil% 18.4 & 72> 7=,

CZAZC [FHHERLER 72 LT, Not+d%He FHK TG L7 7V Th %, CZAZC 13
PIRRIEN ZAZ £V 10 MPa FREK< e o723, m fllX 28.9 LA TFREL< 2D, 6D
EDNNE LR DDA E T2, Netd%He R DRIV THFEELEE 72 L D ZAZ 1%
WE) 10 MPa &+ 0BRGN NZ LD o TWH A, CZAZC IR ToRE

BICHLELLT RREGHEN GO, ZAZ £HEIZ Cu IREEZMET 52 LT,
BPE CITHEEL LEEWIFEBALE 2 EIE T 5 L &b, He EAFARICBWTHEATE S
ZERbh oz,
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@®ZAZ with polish at N3 (n=11)

B CZAZC without polish at No+4%Hs (n=3)
A CAZAC without polish at Na+4%Hs (n=7)
—Censored data

99.9

- VIR o - — __

CAZAC -

; ZAZ
3 (polish)

P

0.3

=]

LA e
T —
Fl-.__-

0.02

0.01 d

10 Shear strength (MPa) 100

Fig. 5.10 Weibull probability plot of shear strength of Cu/Ni/Au-to42Alloy/Ni/Au
joint formed using various clad solders at 385°C with 0.33 kPa for 3 min.

0.05 ----------:5}::- PbSnAg l
0.03 L ;1
|

Cumulative fracture probability (%)
—t

Table 5.5 Values of each Weibull parameter and each average shear
strength in Fig. 5.10.

ZAZ CZAZC CAZAC
Shape parameter: m 18.39 23.91 24.67
Scale parameter: 1 98.25 88.86 103.32
Average shear strength  95.44 86.86 101.1
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CAZAC (22 TIE, ZAZ L0 HEAMTREAK 5 MPa AL, mfED 24.7 & K&
{7pol, - T, CAZAC 1%, CZAZC L RIERIC, WFEWEEZ < He A RHR CHESL
ARETCHY . Ho, o 220N EL @REOMFNRGELND Z LN bhoTz,

ZAZ \ZH~, CZAZC, CAZAC ORBEIT SO XN/NEL o -HHIE, Zn BLIED
MWL FEEICKD ZAZ ORAENEDIZ LSS ORBLZ A CEX /0 THEEEZD
b, CAZAC O AMIREN ZAZ % LRl>7-BH & LT, Cu OEFRINIZE Y Zn-Al
BENTLEIND Z L0, Bk D 7e AR LT ATREER S 2 b5 [61],
F7-. CZAZC DX AWREN ZAZ % Tl 720X, MEGEHIZ Cu A HK L, Kil
WML Zn DBEL7-Z EICERT A EE X OND, FEICL Y ZmEIZHMOH 5
ZAZ L13E, BFEE L7a\ CZAZC 13¥)—72 Zn BRLIES A3 5 2 & T, BRLIROERY
BINZAZ L b RESHEARRENRE 2 b D,

VL EogiHo 3% CAZAC DERRIE R D N R EMEOBLE TG TEICEN 28K
ThbHI L,

5.3.5 CwWAVZn/AVCu 7 T v FHIZ X 5 B AR
AT C CAZAC OFEATREENENZ E ARS8, BEE FL i ORI L~ L TPz

AIRBEZ MR T D, AREITRY . FEHDO Ni b o S ITEEMNI-P HoEx & Lz,

Fig. 5.11, 12 |[ZEEME Ni-P o & & fii L7z Cu ik E Si Fv 7 a2 e L= 7L
D EAN T O TEM B3R R4 ~T, #6%H% 385°C, 3 min fR¥F Toh 5, Fig. 5.11
R TIAREHE L D | Zn-Al #E8 T8 & Ni - RBO#EA R EITFE & KR/ #AEESNT
WA Z ENboT-, Fig. 5.12, Table 5.6 [Z#EA R im0 HAADF-STEM #£8 X
EDX it R & v g, #AMMBIE NI Do X2 D, P & Cu ZEDTE A Ni & Al A3
45 at. WEEE NG DH 50 nm JEDOE (Point 2). #il T, Al 2349 60 at. %. Ni & Cu
2359 20 at. %755 100 ~ 400 nm JEDOE (Point 3 ~5), &5, ZnxE L LAl L
Cu #4910 at. % B LIFATZRHEN OB S ND Z b o7, PRI TN
DL, RO NI Do EZMWEMNI-P & LD TH D,

Fig. 5.13, Table 5.7 (2 Point 4 OEF#REIFTE & OMENTHER %<7, Point 4 1%
AlsNig OfE i & 5 &7z, EDX oM ofE Rz k425 & Point 3 ~ 5 OALEICHHE
Y42 100 ~ 400 nm EDJE L, AlsNiz D Ni D458 Cu & &H# L 7= Als(Ni,Cw)2 TH 5
EBEZLND, 2O Culdy 7y RMERHORERB K TH D,

Ni ® - ZJEMD 50 nm JEDJZ 2OV T, Point 2 DALE TIEFE BRI RHAKBETH Y |
BB G Do T2, BIOHEE OFE - HREPTHE T, AlsNiz Off S Th
5 AP TE Iz, 15T, Point 2 OffkIL. EDX OFER B E 2, Cu OEHEN D
VN AlsNie EHEE L7-,
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Ni plating

Reaction
layer

Zn-Al(-Cu)
eutectic layer

Fig. 5.11 TEM images near the interface between Zn/Al eutectic layer and Ni
plating of Ni-plated Cu substrate-to-Si chip joint formed using CAZAC.

Ni plating

Reaction
layer

Zn-Al(-Cu)
eutectic layer

rrrerroerrnd

HF-2210 200kV ZC 300nm

Fig. 5.12 HAADF-STEM images of Region B in Fig. 5.11.
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Table 5.6 EDX results of each point in Fig. 5.12.

Point Al P Ni Cu Zn Identified

1 1.5 231 745 0.1 0.8 Ni

2 430 41 450 40 3.9 Al(Ni,Cu),
3 58.3 - 223 185 09 Al;(Ni,Cu),
4 60.1 - 194 196 09 Al(Ni,Cu),
5 58.5 - 185 21.1 1.9  Al3(Ni,Cu),
6 39.9 - 102  17.0 329 Interface
7 9.2 - 0.7 11.5 78.6 Zn

at. %

Fig. 5.13 Diffraction pattern obtained at Point 4 indicated in Fig. 5.12.

Table 5.7 Diffraction pattern analysis results at Point 4, identified as AlsNis.

Measured Calculated
Index . .
spacing (nm) spacing (nm)
100 0.351 0.349
012 0.204 0.200
-112 0.204 0.200
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L EORERIZHEESE . CAZAC ([T X DA mIE, MR L~ nTd RAFICHE
HLTWDZ Enbholz, CAZAC ® Cu fR#ERIZLY . Zn & Al OFR{LAPSIE S L7
e, MRS #EALILEE RS, $o. R OISEIX, 100 ~ 400 nm [E D
Als(Ni,Cu): TH Y, Ni A Z/LJEE CAZAC @ Al & Cu NRIG LA TH S Z &0
bhotz, DFD ., In-Al-Cw & Ni Do & EDORINIT Al X ETH Y, Zn 2’5 L TV
R, ZORISBIXER D EN D, FEE EOBREN NS EHRE SRS, —. Al
ZEFERD Zn(-Sn)ITATETIX, Ni A V@ L1E Zn UG T 5[62], Zn-Ni fb&#i1EE
B CEBICRET 2720, REARA RO s 7 v 7 OREER & FEEOKTIC
ERoEEZE2bND, BHOIX Zn-Ni AbLEWDOIERZ I 2 5729012 TIN OFiER (RS
DLEELIRRTWBH[63], CAZAC 1T, Al NEENDT20, Efi7e A% T4 X HnTic
Ni A Z Vg & OIbEEEZIfc &, RRC, Al BB OB E%E Cu #7312 XV [HkE
T5HZ LT, RHICEMRERMTEEBITX 5,

54 RS
AETIE Cu BB IEDEIELZ G L. MBI OREN, SBEERFK T TO#EEMED
B35 C Cu/Zn/Al/Zn/Cu & CwAVZn/Al/Cu % gk L7-, Cuw/Al/Zn/Al/Cu (2 2W i, #7
Bt 7 Z o R b NS, #6% OFE F i ORMREE &0 L7z, BLF O RZ 1572,
(1) ZnlZ Cu %Ay & U2 7T 350 nm fflE L7284, 1000 B ORE FIZ Cu B2
MR (BAb) 72528, AL ISR L2541 72 < &b 1000 AREIZIE-T Cu
JEDHERF SN D, MEIOREMEDBIR T, CAZAC HIEN FF S5,
(2) 7T v REFEIC X0 8 L72 CAZAC [Z2W T, MPEHRHEIIL Cu B TEbiL, CwAl
77y FREITEEMICES SO D, 2. CwAl SHEICEREIEIEERD Hid,
K 200 nm JED AlCu ML EWHBAERT D, KED Cu ELIEIL T nm TH Y |
Hy, RS OB X0 52l Esnd S b,
(3)  CwWAlZn/Al/Cu 7 T v REIFIHERD Cu 2% Zn & Al OfE{LZBGIEL, THO Al
JE7Y Cu OILBIEABIILE & L CHIEET 5, 2O, BEIRE 100 ppm D
Ny +4%H, 5P T b BAFR#BE 18G5 5,
(4)  CwAVZn/AVCu 7 7 v R D Ny+d%H, FZHHSK TOEAREIX 100 MPa %, 7R
XL OEDNNIWEE LTEEAP S LD,
(5)  CwAl/Zn/Al/Cu 77y RHtE Ni ho& Cu FEREDBEA R EICIL, AL(Ni,Cu), 48 MAL
BT Do Cu RSB ITHES % | MZAICE £NLLSMNT Zn-Al IZATERARNIC
EE T DR L7275,
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E6E CuthiEZn/Al 7 7 v R oS M

6.

—

%

AT TOMFHI T, CAZAC ZhciE /oMt LTREL, 7T v 7 AT He GAT
lwfmmﬁf@A% #hk L7z, CAZAC 3BI{TO Pb IZAEZRET D -0I2id, #4
SHEMED Pb IZATEERIETH D Z EBRRIEEMETHY . EE LT P iZAZZ EFS
RETH D,

Si ERIE, KERSHILD Z & THRIT D, Rifo A = NG TR FRmN
175 CREEE T EAT5, SiC X GaN O{LEW-EIKIEL 200°C A 8 2 5 i ED 1%
SNTWVWD, BHRENEIRIZRDIFEE, IZATEEEMIIONLBUSINTIREL R, &
FHERMEES N D, Fo. @RI EREISHET L, S oG X0 e E b
Do Pb ITATZTS 2, 200C % 2 2 BREE CTOEHMEMIRIZIER IZEE L vy, Table 6.1
I AT R & BUEBRBE IR S 2 O [FIARIREE 2 >R D 7o i e 2 on 3, sl 298°C o Pb 13 A
2% 200CEREECRIMT 2 Z i, 1050CHY = v b= VBT Tibin 5 @lus
1350°CD Ni A& LV bEELWIRI EHEE SN D, Tkt LT, @hsl 382CoH
Zn-Al [ZA72% 200 ~ 250 CERETHIHT 25 Z L1E, BLWERE TIEH 2523, 150 CERER
THW PhIZATE ERIL~L EHEECE | BHEMEEZ R T 2 REERS 5,

ARFETIL, FEROBEIERE 2 AR 2@ EEE L . BUTIRAEH OB S B2 2 18E
LIZIRET A 7 MEHEMEIZ L W, CAZAC TIERLL7-MkFZ2FHE L, Pb IZATE S x

TREME AR L7-, S 512, CAZAC ZHWT/RU =k Sy r—D 2 E L, #E
DRRNTHEZHER LT,

Uull

Table 6.1 Homologous temperature.

Environmental Temperature (°C)
150 175 200 250 1050
. 298 0.74 0.78 0.83 0.92 2.32
Melting
Point 382 0.65 0.68 0.72 0.80 2.02
O
O 1350 0.26 0.28 0.29 0.32 0.82
6.2 EBRHFIE

6.2.1 #&6#% (CAZAC. Pb-5Sn-1.5Ag)
RGO 720, CuW/AVZn/AYCu 7 7 v F#F (LUF, CAZAC) &Mz, JE/REi
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CwAlZn:Al:Cu=1:8:82:8'1 &+ L. #/EIX 0.1 mm & L7-, MEHEEMmEZ Cu THR#ET S
Z LT, Zn & Al G ZFHKUCTES 2N L2 E LT,
thigpt & LT, Pb-5Sn-1.5Ag IZA 72 (B4 0.1 mmt, T{ESRE L) Z M,

6.2.2 BEEITIE L BB Sk

EAFHIAIC SiF v 7 L R E W, Si Ty T OSHEIL 5X4X0.3 mm ThDH,
WO~HEIZ 10X 10X2 mm T, F#IZ Ni(4 um), Au(0.06 pm)% H-> & L7z, Ni(XEX
Nivw->&Thsb,

Bt o S TARINEINEYE  (SMT-Scope SA-8000, LIS T) Z MVMERIL 72, K
iz, CAZAC £721% Pb-5Sn-1.5Ag IZA7Z, SiF v 7, BH Y 0.8 g #IHICEA, I
WIZERE L7z, FFNIZ No T AZ L, BRBREN 10 ppm £ T T LA T,
Ne+4%Hs 57 Z128) 0 #5272, 100°C/min OF-E#E T 385°C (Pb XA 721% 360°C) £ T
INEN L 72, Y34 T 3 min fREF L 72, MEEIFIE L, Ne WA THHAILTZ,

CAZAC & Pb IZATEDOERMZ MM CRHMiT 2720, #Aa LTI ride h 7R
7 7 —F—/L FCHR#EE T, -55/150°C (PREFIFH] 12 min) OIREEH A 7 LB & |
300°C D EIRERBRIC M Lz, REg OV 7B SR IEEREE (SAT, Scanning
Acoustic Tomography. Hitachi FS300) ¥ KX O'E#A®E M8 (SEM. Scanning
Electron Microscope, Hitachi S-4800) (Z & Y /o4 L7=,

FRILITEWERE COEHEM S BT — 2R 5720, kit 7 g =R % Ut
ThRI VAT 7—F—/L K L7tk -55/150°C (FRFFFERH] 12 min) OIREV1 7 L akBRIC
L7, ALK OV T VA EE Fig. 6.1 (Z/x9, Pb IZA7Z1E 2000 cycles,
CAZAC % 6000 cycles & Taklifz ik L7-, BIZLERTOBEZIX, Fig. 6.2 (TR 7 5k
TH T NEIML UER Lz, BERICIE, REY A 7 VB, £—L NBIEEZ 7 U4
NRUFTROVIY , =V FEIEENEHOY U TLE2 G LT, b1, FyTaEr
v NTEED Z L THRELE, 20X 5 2B mic L0 SS0E R O RS2 15
DT TICEHRI LN TE S, BHLBZLEREZ SEM IC L VB LT,

10 mm

(a) )

Fig. 6.1 Transfer molded Si chip-to-Cu/Ni/Au substrate joint; (a) top view, (b)
back side view.
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Si E:>§$3’=

Fig. 6.2 Dismantling process of transfer molded joint in Fig 6.1. Surface-
exposed region is crack propagated surface, and chip remained region is non-
cracked region.

Cu |

Cu Alloy flame (heat sink)

Fig. 6.3 Cross-sectional schematic image of SiC TO-220 package formed
using CAZAC.

6.2.3 NU—HEERy F—TUORME

NU RNy =D ORI, FEER L LT, SiIC ¥ A —FEHE L,
J—FZ7Lb—=A1& LT, TO-220 Ny 7 —YHDO Ni ho& Cu &7 L—LhxHELE,
K % CAZAC IZ X VAT, Fig. 6.3 (SR HEED /U —8 k< r— V%R
fEL7=, %29°, CAZAC 12XV, Ni ho% Cu &7 L—2ak SiC 41 4— FEHEA L
72o WIZ, SiIC REOEME 7 L —LETA YL VR LT-, &kiZ, hF A7 7
—E—/VRICEDEIEL, Ny Fr—YERERE T,

6.3 FEREEBE
6.3.1 iR

CAZAC TIER L7k T % 300°CmiREstBRicft L7, ke LT, Fig. 3.15 1R L7
Pb-5Sn-1.5Ag 1ZA 72 TIERL L 7=k T 250°CmiIR L ERSAE R % Fig. 6.4 ([CFHBT 5, Pb
XA ETIZARE D NigSny JBONVERFE TR L7z, & 512, NisSng B & Ni - BRmIC
T —rr o EIVIRA RPERRT D Z & T NisSny BORENIEE -7, REOLIENKEL,
Pb XA 21T 250°CEREEICIN 2 DRV E S 25,

—J . CAZAC TIER L 7-#kF % 300CHIRMEMER LK% Fig. 6.5 277,
Fig. 6.5a (Z7R"T X 912, #AERZICB T 2BERmOMEWEIT 450 nm JETH -7, &
T S R ] OB RIZAE ME B OJE AT HEFICHN T 5 £ O D, 1000 h ZOFEAIEL 2 um
WZEFE o7z, ALEMORED 250°CEREED Pb IZATE L TR, £z, Rmich—4r7 v
FNRA REGEbID X9 7ehA RIEZRO LT, #EEREBIILZELTND I Enbho
7=
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(c) 500 h (d) 760 h 1 pum

Fig. 6.4 Cross-sectional SEM images in the vicinity of the bonded interfaces of
Ni-plated Cu substrate-to-Ni/Au-plated Cu substrate joints formed using Pb-
5Sn-1.5Ag bonded at 360°C for 1 min, after aging at 250°C.

Zm-Al-Cu

(c) 500 h (d) 1000 h 1 pm

Fig. 6.5 Cross-sectional SEM images in the vicinity of the bonded interfaces of
Si chip-to-Ni/Au-plated Cu substrate joints formed using CAZAC bonded at
385°C for 3 min under an applied pressure of 0.4 kPa, after aging at 300°C.
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2500

¢ CAZAC-300°C |
B Pb-Sn-Ag-250°C
2000 +—— m =
i}
g i
S
#1500 - ;
y =1.1329x + 332.35
% R2=0.8579
£1000 = -
o y =0.7959x + 298.25
= * R2 =0.9531
500
0 . T
0 500 1000 1500 2000

Aging time (s~ 1/2)
Fig. 6.6 IMC growth at Ni/solder interface during aging. Joints formed using

CAZAC were aged at 300°C, and joints formed using Pb-5Sn-1.5Ag were aged
at 250°C.

Fig. 6.6 {2 250 CEREETD Pb IZATZ L 300 CERE TD CAZAC DILEMEDOHER %2 7~7,
Pb IZATEDOHE . T 28 A FOZETILEMRENIEEDL Z L 2BET L L. bEW
WEEEIZZ 7 7 OE L0 bV, CAZAC OBE, 7oy bAEMRICE->TEY ., 1k
BIEDRFR D 172 FFIZHBI LTz, KRERTORMRER f“;’c BB DOBFFED Zn-Al-Cu (XA
728 Ni EWROLGEOILEW R EFRE L 1ZIER UfETH - 72[64], CAZAC [ZX VAL
TS, EH O Zn-Al-Cu IZATZTES LIZEF LB DORRITEWIZ RN Z L3 5 75
Lotz

U EOBFHI S &, CAZAC 12X 0 1ER L 7=/ET 23, XA TIEERTE o0
300°CE B F COMmMWRAIZE.EZA L, SiC miREEEAHIRFTE 5,

6.3.2 BBV 7 Vi & R RE

CAZAC & Pb-Sn-Ag IZATZDOIREN A 7 VEHEMEEZLET 5, Fig. 6.7 [ZIEREV A 7
NVRBUETRIC T DA B OB E RGBS R A T, MNOBEHAESHEK, Aai
WARA Ripn LBSHERE 2~ 7,

Fig. 6.7a |27~ 7 Pb LA ZTiX, BADNESHHLNEICHIT CHERET D & &I
WP DA ET DR A F‘75§§tﬁjw“%.’>jiﬁﬂ WZHHERE L2, Fig. 6.7b (Z/r9 CAZAC Tl
T TR B ~ENT CTREMER Lo, WEORA Fafa s LBIaERITRS
nighnoiz,

Fig. 6.8 12 SAT %/ &3 L7 5 R OHERE 2 3, CAZAC X Pb IXA 2T~
TRIGERPEWN EXbhoTo, HEEHEN 50%FE TIR F LR REFHEMEEZ D &
CAZAC X P IFAIZ L WA RHMTH D L AL bl
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(a-1) 0 cycle (a-2) 266 cycles (a-3) 438 cycles

(a-4) 666 cycles
(a) Pb-5Sn-1.5Ag

b-1) 0 cycle b-2) 266 cycles b-3) 438 cycles

b-4) 666 cycles
(b) CAZAC

2 mm

Fig. 6.7 SAT images of Si chip-to-Ni/Au-plated Cu substrate formed using Pb-
5Sn-1.5Ag and CAZAC through after thermal cycle test between -55°C and

150°C.
100
l\ ‘ ® Pb-Sn-Ag L
g 80 | mCAZAC
=
: e
[
-
= 20
aa]
0 .
0 500 1000

Thermal cycle (cyc)

Fig. 6.8 Bonding area ratio changes of Si chip-to-Ni/Au-plated Cu substrate
formed using Pb-5Sn-1.5Ag and CAZAC through after thermal cycle test
between -55°C and 150°C, measured using SAT images in Fig. 6.7.

VT, RNy = VR EFRRICEFEE R T R T 7 —F—/L RTHE LT2RRE
T-55/150°CIREH A 7 Wik &2 EJii L7-, Pb 1T A 72 % 2000 cycles, CAZAC %
6000 cycles * CTitBr L., 2R E 4 SEM ([C X W #BI L2k R % Fig. 6.9 (277,
Fig. 6.9a (2" T Pb (ZAZOBZGERE Tk, EMBOMRERES MR TE /2, JiuxA
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A= aThY, P IFATLEOBADEMRMICER L2 E 2T, ARTA=
—2 g DOy FITK 120 nm THhotze AR TAZ—2 3 OWUNLAED 60 nm, &
250 60 nm FEE S IZIFEMBO “ARROBETH D Z LM TH -T2,

—7J7. Fig. 6.9b (27”3 CAZAC THEA LY7oV ThH, AhTIAf—T g
PR T& 1=, CAZAC IZL 584 Pb XA L AHICIEMAICBZER L2 L2
binot-, EMERICHEET S Z 213 Pb IZATZOREMEIE LTEE LWHETH S, A
oA —a U EyFiEH 40 nm ThoTo, HOBRITIETITR L, WrsBBHK
10 nm, &2256 L2330 nm & FRERISITWVIZIRTH 5 Z EBFHETH » 7,

ARNTA =2 a LV OIRNOEET HRLER A 1 =X 2% Fig. 6.10 IZ7-7, b,
BRI E U 2ROV A X rp i3 6.1 KThH 2 b b(65],

2
; :L(EJ RN
2x\ oy

ZIZT, ovIERIRIES, KISIHERIRE TH 5, (6.1)E 0 | BV rp IZFERIE T2
INEWEREL D Z ERDND, BN K EWITE LA OEH)F L OZEROFEAE D
IREFHTAELD, BN RKE SHERET S(65], Zn-Al XA TEL W Ph 1TAI
BEARISTI DN SN2 sD | BIPEIGN S < | AL OEB) N AHIPICAE L 2 B2 bND, £z,
Pb IZAIFEIETHZ V=T LT WM TH D, - T, miENHEIE, X OKE
DO EIRASOIREZETAEL I8 TENENIRL B & | IRED B TRERO EH 5
TH 60 nm BEDOKRE BN ERBICERLIZEE 25N 5, 1 cycle Hiz v D&k
JBEEREDR R & W, BEEEOBZMERNELS , FOnElltolz B2 b b,

—J. In-Al EIZHONTIE, BIRREDE < B/ S WEBZIbRD, £,
IR CE V<, MY HE/INT 2 LHEET D, 207D, &miR) DIRIE~OIREZE(LRE
(213K 10 nm & DOFRBLIGERICE £V | KRS mE~OIREZ(LFIZ, £ 30 nm
BHRDEATOTIH WD EHET D, ZOX I RIBETHEEIROA N T A =—2 a3 0
LI EEZ D, MUOEERTE P ALY bBRZGERBEENE, Blb,
1cycle &72 0 DBEHERN/ NI, FMNE ol B b5,

P EOFERICESE . RRBREMICB W TIE, CAZAC X Pb 1TA 7S & RIERICEEMERIC
L, Ho, Pb IZATE LY b BEERENPE N & DBMRE Iz, CAZAC O FO&
FHERDEVOIX, 1 cycle 7 OBRFLEREHNEVLLTHY . 2L Zn-Al 4%
DRERIENBENZ LR T D B2 5,
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Crack Propagation Direction

Y
x

Average pitch:
Approx#120 nm

Average piteh:
Approx."40 nm

200 nm

20 pm _:'

(b-2) Low magnified view (b-3) High magnified view
(b) CAZAC after 6000 cycles

Fig. 6.9 Optical and SEM images of fracture surface of Si chip-to- Ni/Au-plated

Cu substrate joint using Pb-Sn-Ag and CAZAC of thermal cycling between -55°C

and 150°C.
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Stress direction

At high temp. From high At low temp. From low to At high temp.
to low temp. high temp.

(a) Pb-5Sn-1.5Ag

=
‘-

At high temp. From high At low temp. From low to At high temp.
to low temp. high temp.
(b) Zn-Al

Fig. 6.10 Estimated crack propagation mechanism during thermal cycling.

6.3.3 FEEK Ny r—VDORIE

Fig. 6.11 IZ58Wf% D /3y r— VA8l %~ 7, Fig. 6.11 12777 &L 912 CAZAC T
Wy —=UPRBLTHND Z L ZfER LTc, ANy —3Hi £ TICKREF L Si
v 7 TIER< SiC F vy 7 EHAWER, SiC T v 7 oEn 7 EORMBEITRE Lo Tz,
SiC izxt L T#H CAZAC A PHETH - 72,

PAELTZ/ Ny =%, il S 200CHEOIREE CHX A 4 — e LTHETHZ &
TR L7z, CAZAC 1% Si Y&k Xy r—y 0 Pb 7V —{b » @iEEILOAL 5T, SiC
DEIREEIC b T E LG HEAHM TH D LT 2,

10 mm

Fig. 6.11 SiC TO-220 package formed using CAZAC.
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6.4 FEE
AR#ETIE CuW/AVZn/AUCu 7 T v RHOEIREREN, BEY A 7 W EHEE IOV T
L. T oftme e,

(1) CwAVZn/AUCu 7 T v FMIZ K ZEEERHE D ALNL @ BFIEEMIL, 300CERE T
IZBWTHREHENEN, £72, REICT—7 R A RBPELT, ZERS
AL MR T2 D o

(2)  CwWAVZn/AVCu 7 T v R CTHe LTk TE-55/150°C D EH A 7 VBRI IV T
Pb-5Sn-1.5Ag IZA 7LD L FEMBE,

(3)  CwAlUZn/Al/Cu TIERL7-fkFORIIEL, AT =— 3 2B LR bR
L. JEVERICREE S T, A R T A =—3 3 By FIX Pb IZATEDOK 13 Th D,
1 cycle 70 D EZE R IEEEN 012, CAZAC DIREV A7 VMmN,

(4)  CwAVZn/Al/Cu % H o/ T =88Ry fr— D ORI TR FEBRATRETH D,
Cu/AwZn/Al/Cu 1E SiC #7335 LOEREIEIC RS FRECTH 5,
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KL T, AU —EREAHOEEE Pb 7 U —#AM OB 2B E Lz, &ilt
ROFIREE SIC 734 RZxHn TR @ E M2 2. Ao, PLHMEICEN 7 2Ll 7e
B FBLF R BREROMEN 2 2 MIEND Zn AL IZAEIZEH Lz, Zn-Al 1A
PIKIBAVEAME LS . BE AN El CH D, £ 2T, IBRARROEKNTHD Zn &
Al OfE{b% Zn, Al, Cu ®7 7> RMEIZKVEGEEL, ¥ T v R & 3amii S w5
ZETIHATEME LTERT 227 F2RE LT, AMEIORERRHER L OS2 D
=ALEMRIAL, MESBEZHED D Z L TP AL 2N LSS ENCBIF 72,

B 1 BTN —ERES XL OEIRIT AT 2T & RPUS OV TR R72, Pb IZAT
REHEAM OMFZEIL, Au R, Zn %, BiRIZAT, Ag R, Cu REEMEHEA. Sn RiLEE
HEPLICED DI, RTOMHI—E—ERNH 28R E R LIz, FRCT 4 A7 U —bFdD
RUVE 3 TRE R AN EREATE L LR, BAREROMENIIR OGNS, TOH T Zn-Al %
FAIIE 2 A b, BB, mEE, 260C Y 7o —(iftkz i cx oMl chr 2 L &
R~ 7z,

92 B Zn-AL IZATEOFENZFMT 5 & & bIZ, Zn/AVZn 7 7 v R E4RE L,
R, U, BEAMEARGE LTZ, Zn-Al IZAZIEREO Al BLIEOFE TR
FHZEEWLMNC LT, Zn/AVZn 7 F > RMIE, Zn SMEIZ LD Al WEOEMEZRL<
HEIEIZ RV | Zn-Al ZATEOBAESE L S 1M BN Ch D, Zn/Al/Zn 7 7 v R,
77 v RIEIEC X0 REAEEICES S, Al NE IR TIcREFEShD 2 L 2R
L7z, Zn/AVZn 7 7 v R, Zn-Al XA 2% L Ciiauit, #AMEA 2 L. Pb-58n-
1.5Ag 1A TE % BRIZ @i E O FERHEONDL Z L2 LN LT,

%3 ETIX, HEAEIC Al BXEFT D Al A Zn/AVZn 7 7~ R OFEARRE & 32
AEEMEIC OV TR L7z, ZnAl 64850 BEYREROE W Al #8881k T 2 & T,
BEREOEBEMbE EBRTE D Z L &R Lic, ALERAFR Zn/Al/Zn 7 7 » RHIEU M E
EAGTAHIETHEATELIZEEZHALNE L, £72, 250 CHEIEMEREF X
-55/150°CIREE YA 7 /LERBRIZ T, Pb-5Sn-1.5Ag IZA 72 & A% UL E OB AE MM A Tels:
TELWREMA TR LT, —F., @IREE CHGEORFE(MIC L 5MEIRT & IRETA
7 NV CRAENRE 2 EET HMEEA S hE Uiz, AREIIES 6 U< (St~
DREEA T 21T, Al D3RAFE L2V Zn/AlZn 7 7 v R &[T <& L ots
tafEoR Lz,

¥4 mTIE, LR In/AVZn 7 Ty RHICKRY . BIFREA NS DN EASIEENA
Hve Uiz, BARRICIE, #AEEHPE 382CTH 5 420C, HARMR Noy HHKH O
FRRIRIE 100 ppm LA TN Z#R Lc, —FH . #6 5D Netd%He TIIHES TE W2
ExRRM L, ZOFKIE, Hel X5 Zn-Al B OWEN DI TIC L Y, Zn/Al/Zn 7 5
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v MO Zn HIIBALIED R T 2B THL Z LWL E L, #EATESERE LT,
Zn/AVZn 7 7 v F¥f&Rm% Cu THE -7 CuW/Zn/Al/Zn/Cu 7 7 v R EFRIELT-, Dk
Ao Not+4%He FRURK TR LB 2150 2 LTk L,

%5 WX, MBtoREME | SEEFRIRE NetHe XK T CTOHEG MO T /s
MEMEE A BT 5720, Cuw/iZn/AVZn/Cu 7 7~ N¥f & Cuw/AVZn/Al/Cu 7 7~ Nif %
g U7z, Cw/AVZn/AUCu 7 7 v RO 7 7 v RREIXEEMICEA SN TS Z L %
el L7z, CWZn/AlUZn/Cu 7 7 v FifidE, SREHREROCHIRRIZ Cu JE§2Y Zn 8 &
FOSLEBET D22 E2HbnE Lz, —F. CWAVZn/Al/Cu 7 7 v F#IL, EWIRE K
RHBIEE E COFRMFIZYH Cu BN HEFF SN HHEUREETH L L ZH LM E LTz,
Cu/Al/Zn/Al/Cu 7 Z v R OARFEEIL Al THIZY Cu OHEHNY T & L THERE L 72 /55
ThHhHIERLIE, 72, CW/Al/Zn/Al/Cu 7 7 v FMEHWT, @lERKIELSZD
WENRGEONDLZ LA LMNE LT,

% 6 ETlE., CWAVZn/AVCu 7 7 v N & W TIERL L 7ok F oA M 2 MGk L
72o Cu/Al/Zn/Al/Cu 7 7 v KM &EHWSH Z & T Pb-5Sn-1.5Ag IFATEZ K& EFS
300 CEREE CO ML EM L . -55/160CILEY 1 7 L TORMEEMENGLND Z & &
fesd L7, REY A 7 VBB OMEITIZA NI A == a UIMAET D 2 L2 6T
L7z, BB, CWAVZn/AUCu 7 7 v FH TG LIckFOBERENEHRN TH D Z &
R L7c, CWAVZn/AYCu 77 v RMIZX DM FOA T A =— 3 L, Pb-58n-
1.5Ag ITATEITHARTHE v FTHY . Cu/Al/Zn/Al/Cu 7 7 v R4 Pb-5Sn-1.5Ag %
NELVEFEMERDIBERTHLZ EERLTE, S 612, CuW/AVZn/Al/Cu 7 7 v REfIC
£V, SiC NU =YK r— U h AN T2, CuW/AVZn/Al/Cu 7 7 v K3 SiC -
BEROES L, TOEIBEMECKHSAETH D Z & 2R L,

AFSCTIEL, BEICER LT Zn-Al 1ZATEOEGAR%Z, 77y REIELZFIH L7 Zn,
Al, Cu OZEIZE ViR L7z, CWAVZn/Al/Cu 7 7 v RMRNEEE Pb 7 U —8H64
E LTI FEARBET D 2 L 2R L. Y —FEKRT Zn-Al 7Ty FEGHME
BAJE T & 72 & s i %,
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