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Abstract

Musculoskeletal robots have flexible and compliant structure inspired by biolog-
ical creatures. They are capable of performing a variety of tasks, and can enhance
dexterity and safety in various situations, such as replacing human jobs to perform
dangerous and tedious tasks, and environments where robots work in close proximity
with human. However, technical difficulties of controlling the complex structure that
having many joints and muscles hinders development to practical applications. In
biological studies, it has been suggested that the central nervous system of verte-
brates simplifies control complexity by coordinating groups of muscle co-activations,
namely muscle synergies, to produce movements, instead of controlling muscles in-
dependently. This research studies control methods using muscle synergies for mus-
culoskeletal robots. First, in a case of controlling a musculoskeletal robot using an
optimal control theory, analysis of several sets of muscle synergies arising from op-
timizing muscle activations according to different optimization objectives is carried
out. Results show that muscle synergies can reduce control dimensionality while
maintaining control performance. Moreover, the analysis demonstrates that the mus-
cle synergies for performing a specific task can be extracted from muscle activations
optimized according to an energy-related optimization objective function that does
not include task-related variables. Second, the problem of how to extract muscle
synergies given a data sample of parameterized muscle activations that are randomly
initialized, without prior knowledge of robot dynamics is investigated; Most literature
assumes that muscle synergies can be directly extracted from a given data sample of
muscle activations that have inherent statistical regularities. A data preprocessing
method is proposed to estimate a set of muscle activations that produces the same
set of end-effector accelerations with minimum control efforts, from the randomly ini-
tialized parameterized muscle activations, based on system identification of the robot



dynamics using a kernel-based regression technique. A data-driven controller is also
designed based on a sliding mode control technique to perform task space tracking
control task. Results show that muscle synergies can be extracted from the estimated
set of muscle activations, and can be utilized to control a musculoskeletal robot in
a reduced control dimensionality. The proposed method contributes to enabling ex-
traction of muscle synergies from data sample without statistical regularities. Third,
the problem of enabling a musculoskeletal robot to obtain muscle synergies by itself
is studied. Inspired by the motor skill learning in human infants, a data collection
method is proposed based on a goal-directed exploration strategy. During exploration
of designated targets spreading over an unknown task space, the robot is controlled
in a reduced control dimensionality using muscle synergies and the data-driven task
space tracking controller established from a local data sample. Results show that
the proposed method can enable the robot to obtain muscle synergies and to estab-
lish a low-dimensional controller by itself, making a step forward to the development
of autonomous musculoskeletal robots. Finally, this thesis concludes with several
current limitations and future directions. The main contribution of this thesis is the
investigation of the feasibility of control methods utilizing muscle synergies for a mus-
culoskeletal robot. This research would be the first step to the realization of robots
that can work in daily life.
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Chapter 1

Introduction

Musculoskeletal robots have flexible and compliant structure inspired by biological
creatures. This structure imparts dexterity, flexibility and versatility to the robots.
If the robots can be well controlled, these innate qualities can be brought out to
contribute in various situations, especially in scenarios that require multitasking and
safety. For instance, in tele-manipulation, a human-like musculoskeletal robots can
be sent to dangerous or distant environments. The musculoskeletal structure provides
possibilities of transferring operators’ natural movements to effectively perform a va-
riety of tasks [11]. The compliant musculoskeletal structure also can enhance safety
when robots work with humans in close proximity, such as in after-stroke rehabilita-
tion applications where an exoskeleton robot guides a patient’s limb to follow some
specific desired trajectories for therapy of movement recovery.

In considering control methods of musculoskeletal robots, learning from biological
creature comes naturally in mind. This thesis concerns with a bio-inspired concept
called muscle synergies; The central nervous system of vertebrates reduces control
complexity by coordinating muscle synergies, instead of muscles independently. This
research starts by analyzing performance of sets of muscle synergies with different
inherent properties in a particular optimization problem, subsequently investigating
how to obtain, and how to utilize muscle synergies in several engineering control
problems, towards the ultimate goal of development of musculoskeletal robots that

can work in daily life.



1.1 Musculoskeletal robots

Musculoskeletal robots have skeletal structure actuated by force-controllable ac-
tuators. The skeleton is constituted by connecting bones with artificial joints to
provide a supportive structure for a robot, in contrast to vertebrates where bones are
connected by ligaments [1]. The force-controllable actuators mimic the contraction
mechanism of muscles in vertebrates, as opposed to conventional motors that provide
rotary actuation at joints. Linear actuators such as pneumatic artificial muscles the
McKibben muscles [2], electromagnetic linear actuators [3], or wire-driven type actu-
ators in which wires attached to bones directly driven by motor [4] are examples of

the force-controllable actuators.

The musculoskeletal structure is beneficial in various applications demanding for
flexibility and safety. For instance, a human-like robotic arm can perform a task
(e.g. holding an object) with different joint configurations. When there is sudden
change (e.g. an obstacle in a place block some configuration), the robotic arm can
still perform a task by changing to another admissible configuration. Within a close
proximity or during interaction with human, the force-controllable actuators can be
easily controlled or cut off to avoid undesired collision [5, 6] thus enhance safety. The
musculoskeletal structure has biarticular actuation mechanism, where muscles actuate
distal bones (muscles across two joints rather than one joint). The biarticular actu-
ation mechanism has force output characteristics closer to human than conventional
rotary actuation mechanism, enhances safety especially enhances in wearable robot
applications [7]. A seven degree-of-freedom arm exoskeleton actuated by pneumatic
artificial muscles for arm movement recovery training [8] is an example in rehabil-
itation application. Recently, efforts have been put in developing human-machine
interface using electromyogram (EMG) signals to directly transfer operators’ natural
movements to remote robots in tele-operation applications [9,10]. It is believed that
musculoskeletal robots that mimic biological actuation mechanism are more suitable

to transfer operators’ dexterity [11].

However, the control of musculoskeletal robots is difficult. Musculoskeletal robots



usually have many actuators and many joints (degree-of-freedom). One difficulty
is that computing control signals to achieve a desired task is generally an ill-posed
problem, because the number of actuators is larger than the degree-of-freedom of
the robots. It is also difficult to obtain accurate analytical models of the flexible and
complicated musculoskeletal structure. This research particularly focuses on reducing
the control dimensionality, taking inspiration of a biological motor control concept,

namely muscle synergies.

1.2 Muscle synergies

How does the central nervous system (CNS) coordinate many muscles to produce
movements and to perform various motor tasks? This is one of the fundamental ques-
tions in the study of biological motor control. Because of the redundancies of the joints
and the muscles of musculoskeletal structure, there are many ways to accomplish a
motor task. A motor task can be achieved by one of the many joint configurations,
where each configuration can be attained by one of the many combinations of muscle
activations. These redundancies cause a problem to the CNS because the task re-
quirement provided is insufficient to select one of the infinite number of possible ways
to accomplish the motor task [12|. This problem is known as the degree-of-freedom
problem or the Bernstein’s problem [13].

It has been suggested that the CNS simplifies control complexity by organizing
control variables into modules [13, 14| such as spinal force field, kinematics strokes
and muscle synergies [15]. By coordinating muscle synergies, the CNS produces a
movement with fewer control variables; the CNS does not control each muscle inde-
pendently [16,17]. This section gives a brief introduction about how muscle synergies

can simply control complexity. Interpretations of muscle synergies are also mentioned.

1.2.1 Interpretations of muscle synergies

Muscle synergies are quantitatively studied by investigating statistical regularities

in measurements of muscle activations. In biological studies, the measurements are



usually electromyogram (EMG) signals of motor tasks performed by a variety of
species [18,19|. Two components, muscle synergies and muscle synergy activations,
are extracted from a given data sample of muscle activations. Common analyses
assume that a given data sample can be approximated by linear combination of a set
of muscle synergies. For the purpose of dimensionality reduction, it usually seeks for a
set of synergies where the number of synergies is smaller than the number of muscles.
The muscle activations are usually low-dimensional signals scaling the corresponding

muscle synergies.

There are two main interpretations of muscle synergies, namely the time-invariant
synergy and time-varying synergies. In the time-invariant synergies interpretation,
each muscle synergy specifies a fixed pattern of muscle co-activations of a group of
muscles. Time-invariant synergies are constant for all the time; they store spatial
information of muscles and are task-independent [20]. Time-invariant synergies can
be extracted by common linear matrix factorization tools. For instance, if principal
component analysis (PCA) is used, the principal components are the time-invariant

muscle synergies, and the corresponding scores are the synergy activations.

In the time-varying synergies interpretation, each muscle synergy specifies a se-
quence of muscle activations spanning for a particular duration of a group of muscles.
Therefore, a synergy can be an input signal for actuation; it contains spatiotemporal
information. The synergy activation defines the scale, time-lead/time-lag, and the
duration of a synergy. The activations for a group of muscles are given by superpos-
ing time-varying synergies after modification by synergy activations. The activations
can be either time-invariant or time-varying; This provides flexibility to adapt in-
herent regularities in a given data sample to provide better dimensionality reduction
performance. The extraction of the time-varying synergies needs more complicated

tools such as optimization process with specific constraints as demonstrated in [17].

Apart from the concept of muscles synergies, there is another interpretation of
modular control mechanism in the CNS called the “uncontrolled manifold” [21], stating
that the CNS coordinates elements (e.g. joint, muscles) that are task-related elements

and leaves others elements uncontrolled. Across trails, a task-dependent uncontrolled
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manifold can be observed from measuring the variance of all the elements. However,
this concept requires a controller acting in high-dimensional space [22| (because all
elements are controlled), which is different from the notion of control simplification

in this study.

1.2.2 Biological evidence

Biological studies focus on validating the hypothesis of muscle synergies. One com-
mon approach is to obtain EMG signals from specific motor tasks of a certain species,
followed by investigating the inherent statistical regularities; It is usually desired to
identify muscle synergies and synergy activations that have lower dimensionality than
the original number of muscles to approximate the acquired data sample.

To testify the muscle synergy hypothesis, various experiments have been carried
out in a variety of species. In analyses of frog hindlimb movements such as reflexive
motion [23], kicking [17], swimming, jumping, and walking [24], it has been reported
that both the identified time-varying synergies [17| and time-invariant synergies [23]
were directly related to the resulting kinematics characteristics. Further evidence
was found in cat postural experiments [25,26], where the time-invariant synergies ob-
tained from the EMG signals from a set of natural postural configurations to maintain
balance on a translating surface were consistent with that on a rotating surface, sug-
gesting that the synergies captured specific biomechanical functionalities. In primates
experiments, it was discovered that a small number of time-invariant synergies [27]
extracted from a grasping task were able to reconstruct the EMG signals measured
in other trials of the same task. A small number of time-varying synergies were also
capable of accounting for a variety of grasping tasks, and adaptive to describe novel
motor behaviors by tuning the scale and timing in the synergies [19].

The hypothesis of muscle synergies was also verified in human motor tasks. The
EMG-signals of reaching tasks in different speeds and directions could be approxi-
mated by linear combinations of a set of extracted synergies; Similar synergies were
found across subjects and with and without loading conditions [28,29]. A similar

finding was reported in [30], where a small number of time-invariant synergies could
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explain the muscle activations in producing isometric forces by hand; The extracted
synergies were correlated to a particular force direction that the synergy activations
account for the amplitude of force. It has been also demonstrated that walking mo-
tions with different speeds and loading conditions could be explained by small number

of time-varying synergies, which were found correlated to the kinematics of foot [31,32]

Not all experiments support the muscle synergy hypothesis. In an experiment of
producing finger-tip force, it was found that the variance explained by each extracted
synergies (by PCA) from the measured EMG signals has non-negligible fluctuation
within trials, conflicting with the hypothesis that muscle activations are formed by
small number of muscle synergies. [33] It has been also argued that the identified
muscle synergies from EMG signals may be the consequence of task or biomechanical
constraints, unrelated to the neural coupling of muscles in the CNS [34], although
these results did not falsify the existence of a neural implementation of muscle syn-

ergies in the CNS.

More direct approach for testifying muscle synergy hypothesis has been conducted
by trying to locate the neural implementation of muscle synergies in the CNS (e.g.
motor cortex) when performing different motor tasks. Supportive evidence of mus-
cles synergies has been found in cats that the sequential activations of specific groups
of muscles were initialized and tuned by populations of neurons in the motor cor-
tex [18]. Similar findings were reported in the study of the relationship between
the neural activities in monkey’s brain and muscle activations during pointing and
reaching movements, where activations of groups of muscles that related to particular
functionalities were correlated to the discharge of individual neurons in the primary
motor cortex [35]. It was found that the time-invariant synergies extracted from the
EMG signals resulting from micro-stimulations of particular regions in the motor cor-
tex of two rhesus macaques were very similar to those identified from the reaching
and grasping motions of the other rhesus macaques. In comparing time-invariant syn-
ergies extracted from the arm movements performed by healthy and that performed
by brain-damaged patients, it was found that they are very similar, implying that

the synergies were implemented in the unimpaired regions in the CNS [36]. In an
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extension of the comparison to patients with more severe brain-damaged, the time-
invariant synergies were found to be varied in the forms of preservation, merging and
fractionation, indicating the CNS may response to the cortical damage [37]. A simi-
lar finding of preservation of synergy activations after stroke has also been reported
in [38].

One of the limitations of analysis of measured EMG signals is that it is difficult
to evaluate the feasibility of utilizing the extracted synergies to perform the observed
motor tasks or generalized motor tasks. The validation of the modular control is
usually carried out by reconstructing the observed data sample by a smaller number
of muscle synergies as bases; However, the reconstructed muscle activities may not
produce the same observed task [39]. Verifications using biologically plausible mus-
culoskeletal model have been adopted to overcome this deficiency. A mathematical
model of frog hindlimb was used in [40] in a synergies-based control scheme. It was
shown that a low-dimensional dynamical model captures the natural dynamics of the
frog hindlimb. Time-invariant synergies were obtained from data sample that was
representative to account for both the low- and full-dimensional dynamics with mini-
mum muscular effort. The synergies were found very similar to the synergies extracted
from jumping and swimming motions of intact frogs. And the control performance
of the low-dimensional control scheme using the proposed synergies was comparable
with the full-dimensional controller that activated each muscle independently. An
analysis was also conducted for human walking motion. It was reported that the
time-invariant synergies extracted from the EMG signals of walking could be used as
bases to reproduce walking kinematics and the ground reaction forces via a muscu-
loskeletal model of human legs [41,42|, where the relative muscle activations and the
synergy activations were optimized such that the difference between the experimental

measurements and the forward simulation was minimized.

1.2.3 Relation to biological motor control

In addition the testification of the existence of muscle synergies, the relationship

between muscle synergies and the act of control has been studied. In the presented



literature above, synergies were extracted from muscle activations of motor tasks,
which are the consequence of the act of control by the CNS. This indicates there is a
strong relationship between the existence of muscle synergies and the control strate-
gies adopted in the CNS. Here two control strategies, task-oriented control strategy

and optimal control strategy, that closely related to muscle synergies are introduced.

Internal models

How does the CNS produce muscle activations and movements? It has been sug-
gested that the CNS uses internal models [43] to process sensorimotor information
such as visual information, limb configurations, during motion planning, control, and
learning [44-47|. Internal models that predict consequences of actions (motor com-
mands) are known as forward models. For example, a forward model of arm dynamics
can predict arm joint angles and velocities given current joint angles, velocities and
motor commands [46]. Forward models have also been used to estimate unmeasurable
quantities such as internal forces in ligaments for understanding energy utilization in
walking simulation [48]. In contrast, internal inverse model acts as an controller,
which transforms desired consequences to actions (i.e. motor commands that can
achieve the desired consequences such as desired hand position trajectories) [49-51].

It has been suggested that muscle synergies simplify the representation and utiliza-
tion of the internal models in the CNS by providing basis functions, thereby reducing
the number of parameters to be processed in control [52]. For instance, for producing
fast movements, an internal inverse model may be acquired to form an open-loop
controller; Such controller can be synthesized by a small number of time-varying syn-
ergies [53|. Internal forward models provide estimations of the states and goal as
feedback signals for error correction [54]. The error correction can also be achieved
by coordination of muscle synergies [52,55]. In a cat’s postural task study [56], it
was reported that the feasible force sets under the cat feet could be produced by a
small number of time-invariant synergies using a simulated 3D static hindlimb model,
suggesting that an internal model that produces postural force may coordinate time-

invariant synergies.



Task-oriented control strategy

Task-oriented control strategy refers to the concept that the CNS focuses on
achieving better control accuracy in terms of the task-space coordinates such as a
position of a fingertip, rather than focuses on joint-space coordinates such as angles
of shoulder, elbow and wrist [57]. The CNS represents limbs (joint space) and targets
(task space) in different coordinates frames, and carries out transformation between
the reference coordinates frame during execution of a movement [58]. A question
about which coordinate frame (e.g. task-space coordinate frame which represents
positions, a finger, or joint-space coordinate frame which represents angles of a shoul-
der, elbow and wrist of an arm) is used in the CNS during movement generation,
has been mentioned in several literature [59,60]. This concept has been investigated
by experimental measurements of variance during movements (e.g. reaching move-
ment). Because exerting control reduces error, the reference frame that revealed
smaller variance would be more likely the central nervous system used in movement
generation [61]. Several experimental studies also reported that variance in the task-
space was smaller than the variance in joint space, either in both human [62] and
animals [63]; This implies the CNS pays more attention to controlling the task space

variables than the joint space variables.

Analyses have related muscle synergies with task-related variables to the per-
formance of motor tasks. In [64], it was demonstrated that the EMG-signals of
human reaching movements in different directions and speeds could be represented
by a small number of time-varying synergies during the reaching movements and
time-invariant synergies at the end of a reaching task (to maintain posture); The
time-varying synergies were modulated in terms of the directions and speeds, im-
plying that the task-relevant sensory information and the dynamics of the system
could be incorporated into low-dimensional representation in the form of synergies to
simply control. The functionality of muscle synergies in a human postural task was
analyzed in [65]. In addition to the EMG signals of a person standing on a surface

under perturbation, the task-related variable, which measured reaction forces to the



feet and the accelerations of the center of mass of the body, were included in the data
sample for extraction of the so-called functional muscle synergies (time-invariant). It
was found that the functional synergies extracted from one type of responses to the
perturbations (non-stepping responses) were similar and could be used to reconstruct
the EMG signals and the task-related variables of another type of responses (step-
ping responses), supporting the concept that muscle synergies are used to produce a

predictable biomechanical function [25].

Optimal control strategy

It has been suggested that the CNS produces movements optimally — It selects an
optimal control signal from the infinite number of solutions according to certain opti-
mal principle in performing a motor task. In the field of computational study of motor
control, an optimality principle called the minimum intervention principle [66,67|, has
been proposed to relate the act of the task-oriented control strategy and the resulting
statistical regularities in control signals (e.g. EMG signals). It states that the op-
timization during generation of voluntary movements focuses on task-related control
variables (e.g. specific groups of muscles that produce reaching motion in desired di-
rections) and leaves task-unrelated control variables uncontrolled, which is related to
the concept of uncontrolled manifold [14,21]. Using an optimal control theory to solve
for solutions of a motor task [68-70], it has been demonstrated that a low-dimensional
control space that reflects task-relevant dynamics of system is naturally identified [71].
Related results have been reported in [56,72]. Based on an anatomically-realistic mus-
culoskeletal model of a cat, the muscle activations for keeping balance on a surface
under translational perturbations were found by optimization constraining the forces
and moments at the center of mass (task-related variables) while minimizing control
efforts. It was found that the extracted time-invariant synergies could predict the
EMG signals and the reaction forces on the surface observed experimentally, sug-
gesting that muscle synergies mechanism can reduce control dimensionality and can

achieve similar kinetics to the optimal solution.
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1.3 Related control methods in engineering

This section briefly introduces several control methods in engineering for control-
ling musculoskeletal systems, especially those related to the computational aspects of

control in vertebrates mentioned in section 1.2.3.

1.3.1 Optimal control theory

In the optimal control theory [73-75], the control problem is to find an optimal
control law such that an objective function is optimized (minimized /maximized) while
satisfying the robot dynamics itself, in contrast to common control problem that find-
ing a closed-loop feedback control law such that the dynamics system is stable along
with a given desired trajectory [76,77|. Optimal control theory can solve for motion
planning and control at the same time. For example, in realizing point-to-point arm
reaching movement [78], there was no need to provide a pre-calculated desired tra-
jectory. The objective function, or cost-to-go function [75|, for a standard optimal
control problem is composed of a cost at the final time (e.g. distance from a desired
position at final time step) and accumulative cost over a finite/infinite time interval.
The accumulative cost can be different from the definition of the cost at the final
time, such as the accumulative amplitude of joint angular velocities and/or control
efforts. In the biological studies, the optimal control theory is adopted to study dif-
ferent definition of the objective functions in producing movements, such as minimum

jerk model [79] and minimum torque-change model [80].

1.3.2 Task-space control

In task-space control, or operational space control, the control task of a robot
is to follow a give desired trajectory in task-space [81,82] such as a desired robot
end effector position trajectory. Since the dimensionality of the task space is usually
lower than the joint space, there are infinitely many solutions (e.g. infinitely many

combinations of joint torque) to achieve the same desired task space trajectory. A
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task-space control law often consists of two components, a control term relating to the
main task goal such as desired end effector accelerations, and a null space control term
relating to a secondary goal such as joint stabilization [83] or posture control [84].
Essentially, task-space control laws can be implemented by learning-based approach.
In [85], a task-space tracking control law for computing necessary torque of a simu-
lated 7-DOF robotic arm to follow a figure of “8” trajectory was implemented, where
the compute torque was a combination of locally estimated inverse dynamics models
with weights computed by locally estimated forward dynamics models. In [86], a
real 7-DOF robotic arm was controlled by online-updated inverse dynamics models

estimated from local data in the vicinity of the current states of the robot.

1.3.3 Learning-based control approach

Techniques in machine learning allow implementation of controllers without know-
ing the robot structural parameters such as mass and link lengths, by utilizing forward
models or inverse model estimated from experimental data. In the field of robotics,
control algorithms are usually derived based on a dynamics model of a robot, which
relates the control input (e.g. torque input at joints) and states (e.g. joint angles,
velocities and accelerations) of the robot. The dynamic model can be analytically
obtained by using standard methods such as the Euler-Lagrange equation of mo-
tion [87]. However, because of the structural variability and the uncertainty about
physical parameters such as mass and link lengths, or because the states that fully
define the dynamics may not be observable [73], it is usually difficult to obtain an
exact dynamic model.

In model reference adaptive control [88,89], a controller was updated based on
the error between the desired states and the output of a forward dynamics model,
which predicts the robot state in the next time step from an input action and a
current robot state. Applications of forward models can also be found in solving
optimal control problems such as model predictive control [90], in which an optimal

action was computed by minimizing an objective function summing the prediction

12



error over a finite time step in the future; or in reinforcement learning [91], where the
forward model gave probability of occurrence of next state given an input action and
a current state. Inverse dynamics model, which gives actions (e.g. torque at joints)
required to move the robot from current state to a desired state, can be found in
various robotic application of such as computed torque control [76], where the inverse
dynamics model gives the torque required for a robot to follow a desired trajectory
(e.g. desired joint angles). If the inverse dynamics models exactly model the inverse
dynamics of the robot, precise control performance can be achieved. More advanced
techniques such as sliding mode control can offer tolerance for modeling inaccuracies

and unmodeled dynamics [77].

1.4 Applications of muscle synergies in engineering

The modular control approach based on muscle synergies motivates robotic re-
search to develop synergistic control strategies to reduce control complexity (in the
sense of reducing the number of control variable) for high dimensional robotic sys-
tems. In contrast to biological studies that the objective is to justify (or falsify) the
muscle synergies hypothesis, the objective in engineering is to develop controllers for
accomplishment of a variety of tasks. This section highlights several works in robotic
research that adopt the concept of muscle synergies.

One of the first synergies-based controllers was proposed in [92|. A control signal
of the actuators was given by linear combination of time-varying synergies. Each
synergy was defined by a single equilibrium point. This idea was inspired by a similar
proposal in biological studies [93,94] that the CNS plans and executes limb movement
as a temporal sequence of static attractor points for the limb. Various end-effector
trajectories of a simulated planar kinematic chain could be produced by suitable choice
of equilibrium points. Based on the same synthesis of synergies, a feedback controller
that was able to drive a simulated 2D planar kinematic chain to synergy equilibrium
position to follow the desired trajectory was proposed in [95]; The synergies were

obtained from analytical solutions of an optimal control problem.
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Obtaining muscle synergies from solutions of optimization problems can be found
in [96,97]. In [96], an analysis was carried out on a simulated planar robotic arm.
Two sets of time-varying synergies extracted from optimal solutions of reaching tasks
and via-point tasks solved by optimal control theory. Comparison of the two sets of
synergies revealed that some synergies in the two sets were similar, suggesting that
synergies arise regardless of the task context, and implying optimal motor behaviors
can be efficiently generated by combinations of task-dependent and task-independent
synergies. The existence of such compositional optimal control laws has been proven
mathematically in [97]; For a certain class of stochastic optimal control problems
that have a particular form of the optimization objective function called the cost-to-go
function in defining a task, an optimal control law that is a linear combination of some
functions. These functions are the solutions of other optimal control problems and
can be represented as time-varying synergies (or primitives), although the acquisition

of such time-varying synergies is not provided.

The acquisition of time-varying synergies without given an system dynamics model
has been demonstrated in [98]. In the proposed hierarchical control scheme, muscle
synergies translate high-level control signals encoded in low-dimensionality to actual
muscle activations, via some internal variables that receive sensory signals; There
exists inverse model that maps the sensory signals to the muscle synergies. The
inverse model, as well as the time-varying synergies, can be learned from observed
data sample, and form a low-dimensional controller. However, whether the controller
can perform generalized tasks have not yet been testified. Reinforcement learning
can solve optimal control problem adaptively without given system dynamics [91,99].
Under the reinforcement learning framework, a composite control law is defined as a
linear combination of time-varying synergies; Each synergy is a parameterized control
policy. A given task is achieved by solving an associated Markov decision process to
determine optimal parameters in the composite control law that maximizes the ex-
pected reward. It was shown that the introduction of time-varying synergies facilitate
learning novel control policies, in a scenario that required a simulated muscle-actuated

planar robot to complete reaching tasks in the present of obstacles.
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One advantage of the time-invariant synergies is that they are simpler. Com-
paring with the time-varying synergies, they enable easier implementation of existing
feedback control techniques, since the time-invariant synergies encode fixed muscle co-
activations (spatial information) that a low-dimensional controller generates synergy
activations. Although encoding temporal information in the time-varying synergies
provides good dimensionality reduction performance, it is also more difficult to im-
plement feedback controller [20].

Taking the advantage of simplicity, feedback controllers based on time-invariant
synergies have been implemented in several works in robotic research. In the devel-
opment of the tendon-driven robotic ACT hand [100], time-invariant synergies were
adopted in a PID feedback controller that controled a finger-tip to follow a circular
trajectory on a virtual plane accurately. In addition to the use of muscle synergies
to reduce control dimensionality, the sensory signals were adopted to reduce the ob-
servation space, leading to a low-dimensional dynamical system where the feedback
controller was derived. Without the knowledge of robot dynamics, a learning-based
control scheme has been proposed in [101] to obtain muscle synergies using unsuper-
vised Hebbian-like algorithm and to learn a low-dimensional feedforward controller
based on supervised learning techniques; In the experiment of a single-joint robot
driven by four tendons connecting to independent motors, the time-invariant muscle
synergies were obtained from a data sample of robot responses of spontaneous single
muscle twitches with fixed amplitude and duration. The low-dimensional controller
was learned to minimize task error. In contrast to most literature where synergies
have been obtained from a data sample of movements with specific task goals, this
work demonstrates that time-invariant synergies can also be obtained from a data

sample that is not generated with specific task goals.

1.5 Research focuses

This thesis puts focuses on the extraction and utilization of time-invariant syn-

ergies. The objectives of research in robotics should focus on developing control
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methods that allow robotic systems to achieve a variety of tasks. Adopting time-
invariant synergies is a straightforward approach, also because they are simpler to
extract, and allow implementation of existing feedback control methods. Although
time-varying synergies are more flexible that may enhance dimensionality reduction
performance for specific data regularities, they require more complicated methods for

extraction and control. This thesis consists of three technical parts:

1. A feasibility study comparing muscle synergies arisen from different optimiza-

tion objective criteria in producing voluntary movements.

2. A method for extracting muscles synergies from movements actuated by ran-
domly parameterized control signals, and derivation of a task-oriented controller
utilizing the extracted muscle synergies, without the need of known analytical

model of a robot.

3. A data collection method that a robot can gather appropriate data sample by

itself for extraction of muscle synergies.

The first part investigates which optimization objective criteria are suitable defini-
tions for extracting muscle synergies. Muscle synergies have to be extracted from data
source before utilization for controlling musculoskeletal robots. In most literature, the
data source is given and it is assumed that muscle synergies can be extracted. As
mentioned in section 1.2.3, correlation (statistical regularities) between muscle activa-
tion, and thus the existence of muscle synergies, is closely related to the optimization
process by the central nervous system. A suitable definition of the objective func-
tion in the optimization of voluntary movement is important to the development of
extraction method.

Followed by the feasibility analysis, the second part focuses on developing a
method to extract muscle synergies without given analytical dynamics models of
the robot. In particular, extraction method from a data sample random movements
is of special interest, since it is usually easier to generate random movements. The

extraction method is developed based on the results obtained in the first part. A
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learning-based approach is adopted, where an estimation technique was formulation
in order to estimate the dynamics models of the robot. The estimated forward dy-
namics model contributes to the extraction of the muscles synergies, and an estimated
inverse dynamics model is used for control. A task-oriented control technique is also
derived for a musculoskeletal robot to track a desired trajectory of the end effector
position in task space.

Finally, the third part describes a data collection method which adopts goal-
directed exploration strategy. Towards the development of autonomous musculoskele-
tal robots, it is important to equip robot with self-learning ability. Inspired by the
efficient motor skill learning strategy by means of goal-directed exploration, a method
is proposed such that a musculoskeletal robot can collect data sample by trying to
reach pre-defined targets spreading over the task space successively. Using the col-
lected data sample, muscle synergies, the forward and inverse dynamics models of the
robot are obtained such that the robot is controlled in reduced dimensionality during
exploration. The proposed method enables a robot to gather data sample for extrac-
tion of muscle synergies by itself, paving a way for the development of autonomous

musculoskeletal robots that can work in daily life.

1.6 Thesis organization

Chapter 2 gives preliminaries. A musculoskeletal model used in this thesis is
described. Technical details of control methods, an estimation techniques and pattern
recognition tools for extracting synergies are provided.

Chapter 3 analyzes muscle synergies arisen from optimization according to several
objective criteria in generating voluntary movements. The optimization processes, to-
gether with a definition of optimization objective criteria for generating data source
for extracting muscle synergies, and control method for producing the voluntary move-
ment are described in detail.

Chapter 4 proposes the method for extracting muscle synergies without the need

of given data source and dynamics models of the robot. The procedure for extracting
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muscle synergies is elaborated. Estimation formulation and a task-space tracking
controller for a class of musculoskeletal systems are derived.

Chapter 5 presents the data collection method for extraction of muscle synergies
where the robot can gather data sample by itself, by adopting goal-directed explo-
ration strategy. The method is developed based on the method presented in Chapter
4. Detailed implementation is provided.

Chapter 6 concludes this thesis and provides the future plan.
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Chapter 2

Preliminaries

2.1 Dynamics modeling of musculoskeletal robots

A musculoskeletal robot is actuated by contraction forces provided by actuators
(muscles) attached to the skeleton. Generally, the dynamics of a musculoskeletal

robot in joint-space can be described by conventional rigid-body equation of motion:

M (z(1))a(t) + C(2(t), 2(t))2(t) + G(2(t)) = 7(2(t), u(t), 1) (2.1)

where z(t) € R, &(t) € R and &(t) € R™" are the joint angles, joint velocities and
joint accelerations, respectively. t is the time. This time argument will be dropped in
the later context for compact notation unless necessary. M (a:) is the inertia matrix.
Multiplying the matrix C (m,w) € R 7" by & yields the centrifugal and Coriolis
forces. G (m) € R is the gravity term. The control input to the actuators are
constrained to be nonnegative and upper bounded 0 < u(t) < u*.

Musculoskeletal robots are usually overactuated systems where the number of
actuators is larger than that of the joints n* > n®. The actuators provide j contraction
forces F (u, t) = [ f:, . ]ﬂ € R when applying control input w at time ¢, where
each column of F (u, t) is a force vector in the fixed global coordinate frame - ;,pq-
nY = 2 and nY = 3 if the robot works in a two and three dimensional task space,

respectively. T(:c,u,t> € R is the resulting torque at the joints when applying
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Figure 2-1: A 2-link robot actuated by one muscle. The two links are represented
by the two rods and the revolution joint is depicted as the circle. (a) When there is
no muscle wrapping, joint torque is produced by 2 forces exerting at the two muscle
attachment points. (b) When there is muscle wrapping, joint torque is produced by 4
forces exerting at the two muscle attachment points (A and D) and the two tangent
points at the joint.

control input w € R™" at joint angles x at time t. The torque 7 is linearly related to

the contraction forces F*:

7'(:1:, u, t) = jJZ::lEj (:v)f; (2.2)

where E; <m) € N> is a matrix depends on the positions where the forces j? exert
to the skeleton. Let 7; be a position vector where f; exerts at with respect to the
global coordinate frame 37, the rows of =; are the partial derivatives of with

respect to the joints x:

=5(@) = [ ]| 23)
where T' denotes the transpose operation. The number of forces j depends on the
configuration x of the robot. More forces are exerted to the skeletal when muscle
wrapping at the joints occurs. Fig. 2-1 depicts an example of a 2-links robot
actuated by a muscle for the cases without and with muscle wrapping at the joint.
The overall dynamics depends on the characteristics of the actuators that how the

contractile force f_; relates to the control input u;. Throughout this thesis, actuators
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with contraction forces linearly related to the control input without time delay are

considered:

IF51 = cuy (2.4)

where ¢; is a nonnegative scalar specifying the maximum amplitude of the force that
the actuator j can produce. Equation (2.4) can model a simple muscle that has inex-
tensible tendon such as the rigid-tendon models in [102]. Because this research focuses
on investigating how muscle synergies can reduce control complexity by dimensional-
ity reduction, the above simple linear muscle model (2.4) is adopted. Common muscle
models having dynamics of contraction [103,104] that introduce unobservable states

into the robot dynamics are out of the scope of the present work.

The dynamics of a musculoskeletal robot with actuators having linear input-output
relationship (2.4) can be described by the following nonlinear equations where the

equation of motion is affine in control wu:

B(t) = f(&) + 9(2)u

y=h(z) (2.5)

i(t) = o(&) + B(2)u

where = [T, 27| € R, y € R is the position of the end effector with respect
to the fixed global frame - ;,,,;- The muscle activation, i.e. the control input u, are
nonnegative and bounded such that 0 < wu(t) < u*l. f(fi:) € R, g(i}) € Rt
and h(cE) € R are nonlinear functions obtained by substituting (2.4) and (2.2)
followed by rearranging (2.1). The last equation in (2.5), which is the dynamics in
task space, is obtained by differentiating the second equation twice with respect to
time t followed by eliminating the term & using the first equation. 04(5:) € R and
B (5:) € R are also nonlinear functions. A vector g = [yT, 97| € R will
be used in the thesis for compact notation. Throughout this thesis, the nonlinear

system (2.5) is considered.
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2.2 Extraction of muscle synergies

Extraction of muscle synergies can be achieved by matrix factorization. Precisely,
a set of N sample points of n“-dimensional control signals {u;}Y, can be recon-

structed by linear combinations of n* vectors {w;}}~, without loss of information:

n

u; = Z (wjaij) —+ wy (26)
j=1
where wy € R™" is a constant vector. The vectors {'wj}’]il € R are the muscle
synergies and the n" scalars {aij}?il are the corresponding synergy activations for
reconstructing the sample point w;. The extracted muscle synergies are groups of

muscle co-activations.

If all the control signals {u;}¥ , lie close to a M-dimensional manifold of lower
dimensionality than that of the original data space, the control signals can be ap-

proximated by linear combinations of fewer M muscle synergies

M
u; ~ Z (’LUjCLZ'j) + wy
j=1 (2.7)

= Wa,; + wy

where W € R *M contains M of the n* vectors in {w;}"", and a; € R is the
M-dimensional of synergy activations. The remaining n* — M synergies are stored in

W | R x(n"=M) gych that WU W | = {wj};il

Nonnegative matrix factorization (NMF) [105] is one of the widely used tools
for extraction of muscle synergies in biological studies [25,106]. Given nonnegative
control signals {u;};",, NMF extracts nonnegative muscle synergies {w; > 0}_, and

nonnegative synergy activations {a;; > 0}7Z; such that

u; = Z'wjaij (28)
j=1

where the vector wy in (2.7) becomes zeros in in this case. The nonnegative nature
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provides direct insights how the actuators are coordinated in the extracted synergies.

Principal component analysis (PCA) is another widely used tool for extraction of
muscle synergies [34,35,107]. It extracts muscle synergies as the orthogonal bases,
which are known as the principal components, that the first principal component is

colinear with the direction having the maximum variance of the data [108] such that

n

j=1

where {w; };Lll are the principal components and the vector wy in (2.7) becomes the

N
i=1"

mean value @ of {u;} PCA is mainly employed in literature for the purpose of

dimensionality reduction.

Other various matrix factorization techniques such as independent component
analysis (ICA) [109,110], factor analysis [111] (FA) have been used in the literature
to extract muscle synergies. This thesis focuses on the functionality of dimensionality
reduction, therefore the widely used tool NMF is employed in chapter 3 for addi-
tional purpose of understanding physical meaning of muscle coordination, and PCA
in chapter 4 and chapter 5 for its algorithmic simplicity and the ease of implementa-

tion, respectively.

2.3 Control methods

Control of a robot refers to finding appropriate control inputs of the actuators in
order to achieve a specific task. In this thesis, control techniques in optimal control
theory and task space tracking control are applied for analysis of muscle synergies.
This section gives a brief introduction about the optimal control theory and task
space tracking control, and discuss the difficulty of using them in musculoskeletal

robots.
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Figure 2-2: Schematic diagram of optimal control.

2.3.1 Optimal control theory

In optimal control theory, a control task is achieved by solving an optimization
problem which in a cost-to-go function (or performance index) defining the task is
minimized (or maximized), with given robot’s dynamics model given. In the case of
musculoskeletal robots, given the known dynamics model (2.5), an optimal controller

(control law) is obtained by minimizing a cost-to-go function J in the following form

J(@(to)) =gina(2(T), &(T),y(T), §(T))
: (2.10)
+ [ 1(a(t), (), y (1), (t), u(t))dt

to

where t, and T are the start and end time of the control task. [ final defines the cost

at the end time and [ defines the cost at intermediate time ¢.

Motion planning is carried out simultaneously when solving for optimal control
u*(t). u*(t) is obtained by solving the optimization problem in backward time man-
ner, such that the resulting trajectories of @(t), &(t), y(t) and y(¢) are optimal with

respect to J. Fig. 2-2 shows a schematic diagram of optimal control.
For example, consider a Linear Quadratic Regulator (LQR) setting:
Z(t) =AZ(t) + Bul(t)

1 oo 1T
2t0

(2.11)
(2" (1)Q&E(t) + " () Ru(1))

where A = f(:'i:):f:, B = g(rfc) (compared with (2.5)). P and Q are symmetric,

positive semidefinite matrices. R is symmetric, positive matrix. The optimal control
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law for the LQR problem (2.11) is given by:

u (t) = — K(H)&()

(2.12)
K(t) =R 'B"S(t)
where S(t) is the solution of the Riccati equation
—S(t) = S(t)A + ATS(t) —S()BR'BTS(t) + Q, S(T)=P (2.13)

which is solved in the backward time manner. When there is no time limit 7 = oo,
the problem is called the infinite horizon problem and S(t¢) is the unique solution of
the Algebraic Riccati equation 0 = S(¢)A + ATS(¢) — S(t)BR'BTS(¢) + Q. That

is, the unique solution for S(t) = 0.

Solving for optimal control problems is generally difficult, because analytical so-
lutions cannot be found in many cases, and the computation requirement dramati-
cally increases with the duration of the time interval [ty, T] and the dimensionality
of the state space. There are several numerical approaches for solving optimal con-
trol problems. Indirect methods in which induced boundary-value problem is solved
through iterations of integrations of the robot forward dynamics and so-called back-
ward costate equations [112|. Direct methods where optimal control problems are
discretized and transformed into nonlinear programming problems [113]. Dynamic
programming (DP) is a well-known method that solves optimal control problems
based on Bellman’s principle of optimality that limits the number of potentially op-
timal control strategies, however, it still encounters the curse of dimensionality that

hinders practical applications for high dimensional systems [114].

Utilizing muscle synergies, the dimensionality of the control space can be reduced.
Using (2.7) to substitute the control variable w in the robot dynamics (2.5) and
the cost-to-go function definition (2.10) to a which has lower dimensionality M <
n". The resulting optimal control problem can then easier be solved in the reduced

dimensionality.
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2.3.2 Task-space tracking control

The control task of task-space tracking control is to follow a pre-defined task space
trajectory, in contrast to the optimal control problem where a task space trajectory is
implicitly computed during solution solving. The control problem is to find a control
law to track a pre-defined task space trajectory g*(t) = [y*(t), U (t)} in time interval

t € [to, T] such that the tracking position error e(t) = y(t) — y* and the velocity error

é(t) = y(t) — y* are limited by small values €; and €s:
Vit >0,le(t)] < e, lé(t) < e e >0,es > 0. (2.14)

where | - | is an entry-wise operator returning absolute values.

Consider the musculoskeletal robot (2.5). In order to track a given desired task
space trajectory §*(t),t € [to, T] with corresponding desired acceleration 4j*(t), the
control input at time ¢ must satisfy the task space dynamics in the last equation

in (2.5). The general solution can be expressed as:

u(t) = A1 (&0) [§°(1) — a(2()] + [T- 5 (21))8(2(1))][¢ (215

where ﬂT(:E(t)) is the Moore-Penrose inverse of B(fi}(t)), I is the identity matrix. &
is an arbitrary vector. In ideal case where the robot can be exactly modeled by (2.5)
and the nonlinear functions f, g, h, a and § are exactly correct, the control law (2.15)
can achieve tracking the desired trajectory y*. In reality, it is impossible to obtain
exact model of the robot. One common usual approach in engineering is to add a

feedback control term ws/(t) to (2.15) such that the error dynamics [83,115,116]:
e+K,ée+Kye=0 (2.16)

is stable, i.e. e = 0 as t — 0, where K,, and K, are the control gain matrices.

The resulting tracking control law w(t) consists of three components:

'U,(t) = 'U,ff(t> + ’U,fb(t) + ’U/null(t) (217)
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Figure 2-3: Schematic diagram of task space tracking control.

where usf(t) = B (53(15)) {y*(t) - a(ﬁz(t))} is the feedforward control term (the first
term in (2.15)), which is responsible for achieving desired acceleration §* in the task
space. This feedforward control term can be computed either from given analytical
model of the robot dynamics (functions oc(.i(t)) and 3 (:E(t)) ), or estimated from data.
In adaptive control approach [77], this term is updated online from new measurement
data to adapt environmental changes. wpn,;(t) = [I — At (i(t)) g (:’i:(t))}uo, where
& = w,, is the null space control term (the second term (2.15)), which acts in the null
space of 3 (53) such that the tracking performance in the task space is not interfered.
The null space control term is used for joint stabilization and achieving secondary
task goal that is defined by ug. It has been demonstrated that the joints can be
“pulled” to desired joint angles [116]. wy, is the feedback control term responsible
for compensating modeling error to achieve asymptotic tracking in task space. In
chapter 5, the feedback control term is designed based on sliding mode control [77]
approach. Fig. 2-3 shows a schematic diagram of task space tracking control.
Utilizing muscle synergies (2.7), the computation of the tracking control (2.17) can
be reduced by decreasing the control dimensionality similar to the case in optimal
control. The computation of the tracking control (2.17) involves computation of the
pseudo inverse of 3 (53) € ™" (also inversion of g(:ﬁ) € R™>"" may be needed
for the null space control term). The computation cost of the pseudo inverse can be

reduce by reducing the matrix £ (5:) € R to a n¥ x M matrix.

27



Chapter 3

Analysis of muscle synergies and its
utilization for generation of optimal

movements

This chapter verifies the feasibility of utilizing muscle synergies to reduce the con-
trol dimensionality in controlling a musculoskeletal robot. One of the main difficulties
in controlling musculoskeletal robots is to determine the appropriate control inputs
to the many actuators. It has been suggested that human reduces control dimension-
ality by coordinating groups of muscle co-activations called muscle synergies, instead
of controlling muscles independently. In this chapter, the feasibility is investigated
in simulation experiments, where control performance is compared between utilizing
different sets of muscle synergies, which are extracted from sequences of control sig-
nals having particular inherent characteristics that actuate the robot’s end effector to
produce omnidirectional movements in the task space. In the experiments, a human-
like robotic arm utilized a set of muscle synergies to move the end effector to a set
of targets spreading in the task space of the robot, where the control signals were
determined by minimizing the final distance from a target and the minimum control
effort. Among five sets of muscle synergies being investigated, it was found the robot
could be controlled utilizing the following two sets of muscles synergies: 1) The goal-

related synergies, which were extracted from a data sample of optimized movements
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that had minimum distances from targets at the final time step and minimum total
control effort spent, where the control inputs to actuate the robot was determined by
an algorithm in the optimal control theory. 2) The energy-efficient synergies, which
were extracted from a data sample of optimized movements according to a fitness
function defined as the ratio between kinetic energy and the movement and control,
where genetic algorithm was employed for the optimization. In the above two cases,
it was found that the control dimensionality could be reduced from 10 to 5 in reaching
a set of targets ranging 30cm to 40cm away from the initial end effector positions.
The success of utilizing the goal-related synergies implies muscle synergies extracted
from control signals that are optimized to achieve specific task goals can be utilized
to reduce control dimensionality in achieving the same task goals. The success of uti-
lizing the energy-efficient synergies implies that goal-directed tasks could be achieved
by muscle synergies extracted from optimized control signals with respect to energy

efficiency, regardless of whether task goals are specified in the optimization.

3.1 Introduction

Musculoskeletal robots are expected to have the ability to behave like biological
creatures because of their similar mechanical structures. The control of such complex
structure is also difficult.

Within the field of human motor control research, the hypothesis of muscle syn-
ergies [117-119| has been proposed as a solution to the degree-of-freedom problem.
Among many interpretations of muscle synergies, one suggests that many muscles
are not controlled individually, but a few groups of muscles with specific activation
patterns, namely muscle synergies, are coordinated. Control can then be simplified
by coordinating fewer control variables in terms of muscle synergies.

Several works have shown that human-like goal-directed movements can be pre-
dicted by the optimal control theory [68,120,121]. But the curse of dimensional-
ity [122] in solving the optimal control problem is still one of the main difficulties to

be overcome in engineering.
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In this chapter, application of muscle synergies in controlling musculoskeletal
robotic system by optimal control is studied. Special attention is paid to the fol-
lowing problems: 1) Can muscle synergies facilitate the solving of optimal control
problem? 2) What properties should muscle synergies have in order to achieve tasks?

3) How should muscle synergies be utilized better?

In addition to the control complexity reduction by utilizing muscle synergies, the
main contributions of this research are the understanding of inherent properties of
muscle synergies and the ways to obtain the muscle synergies. The performance is
analyzed by utilizing two types of muscle synergies, namely goal-related synergies
and goal-unrelated synergies. The former ones are extracted from solutions optimized
according to the cost-to-goal function specified as task goals, whereas the latter ones
are extracted from solutions optimized according to different fitness criteria having
different meanings of “movement fitness” instead of explicit task goals. Moreover,
since the goal-unrelated synergies are obtained according to different optimization
criteria, successful achievement of some particular tasks utilizing the goal-unrelated
synergies would imply that muscle synergies can be extracted by other methods (e.g.

GA), rather than from solutions of the optimal control problem.

Similar studies on muscle synergies properties can be found in [96], where the
muscle synergies were obtained from optimal control solutions only. They studied the
time-varying synergies which represent the spatiotemporal actuation pattern. In con-
trast, time-invariant synergies are studied in this chapter. A time-invariant synergy
represents a spatial muscle co-activation pattern. In order to achieve a novel task,
time-invariant muscle synergies might be better because they are task-independent.
To achieve a (novel) task, the time-invariant synergies are coordinated by the cor-
responding time-varying synergy activations, which possess task-related information

and are determined by a controller in use.
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3.2 Optimal control utilizing muscle synergies

This chapter considers a control task of a musculoskeletal robot end effector. The
control task is a reaching task that the robot is required to move the end-effector to
a target position y* and with desired velocity g from joint configuration () from
starting time ty. The reaching task is achieved by solving the following optimal control
problem for the musculoskeletal system (2.5), where the optimal muscle activation

u*(t) is sought to minimize the cost-to-go function J (x(to)):

where x, & and & are joint angles, joint velocities and joint accelerations, respectively.

z = [x7, 2], w specifies the muscle activations to the muscles, where the muscle
activations are nonnegative and bounded by an upper limit u“ such that 0 < u <
u®. g = [yT,y"]. g*is the target position and velocity. to, T, [ final and [ denote start
time, final time, final state cost and instantaneous cost, respectively. The functions
f, g and h describe the robot dynamics and observer, respectively. With the aid of
muscle synergies, the control dimensionality can be reduced. The nonlinear optimal
control framework iterative Linear Quadratic Gaussian (iLQG) [123] was adopted to

solve for optimal solutions.

Because biological muscles can only provide contraction forces and have non-
negative control signals, all the actuator inputs w(t), the synergies W and synergy
activations a(t) are constrained to be non-negative for better understanding of the
muscles (actuators) activations in solutions and mimic biological control system. The
nonnegative muscle synergies are extracted by using nonnegative matrix factorization
(NMF). The extraction will be explained later in section 3.3. A muscle synergy

extracted by NMF represents a synchronous activation pattern of a group of actuators
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Figure 3-1: Schematic diagram of the control method utilizing muscle synergies.
When the robot is controlled in the original dimensionality (the upper figure), the
controller computes muscle activations that actuate and move the robot to the target
end-effector position and velocity based on the feedback of the robot states. When
synergies are used (the lower figure), the controller computes the synergy activations,
which have lower dimensionality than the muscle activations. The synergies trans-
form the synergy activations to the muscle activations, which actuate and move the
robot to the target end-effector position and velocity.

(muscles). Control signals of n actuators can be approximated as linear combinations

of M (M < n) muscle synergies:
M
u(t)~> wja;(t) = Wal(t) (3.2)
=1

where u(t) € R is the actuator input at time ¢, w; € R"" and a;(t) € R' are synergy
7 and the corresponding synergy activation, respectively. W is an n* x M matrix

that collects all M synergies, and is constant for all time ¢.

§Rn><M

Given a set of synergies W € where M < n, the control space is transformed

into one with lower dimensionality as shown in equation (3.2). Then the optimal
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control problem can be solved in lower dimensionality with respect to a € R#:

N

#(t) (1)) + g(&(t)) Wal(t)
y(t) = h(=(1)) (3.3)

[(§(T).5+) +/0Tl(Wa(t)>dt

I
n(

J ((to))

where the optimal synergy activation a*(t) is sought such that the cost-to-go function
J(x(tp)) is minimized.
Fig. 3-1 depicts the schematic diagrams controlled by the iLQG controller in orig-

inal dimensionality and in reduced control dimensionality via muscle synergies.

3.3 Muscle synergies with different properties

This chapter analyzes different synergies extracted from movements that are gener-
ated in different ways. Three types of muscle synergies, namely goal-related synergies,
goal-unrelated synergies and random synergies will be analyzed in this chapter. The
ways generating different movements to extract the three types of muscle synergies

are described.

3.3.1 Extracting muscle synergies

NMF is adopted to extract synergies, such that the root-mean squared residual
(|[U° —=UM||;/(N"))¥/2 between the original signals U® and the reconstructed signals
UM = WMAM is minimized, where N" is the number of elements in the matrix
U° (or UM), WM ¢ R™M is the set of M synergies extracted, AM ¢ RM*N*/n)
is the corresponding synergy activations. Extraction is performed by function nnmf
in the MATLAB statistic toolbox. For example, a synergies set WM € R#"*M can

be extracted from r movement, by applying NMF to a control signal matrix U? =

0

2] concatenated from all » movements which are gathered based on a

0 2,0
[ul, ul, ..., u

certain criterion, where u?, j = 1,...,r is the series of control signals of movement
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Figure 3-2: A set of 3 synergies extracted by NMF (M = 3). Each synergy is time
invariant, specifying synchronous activations of all the 10 muscles.

with index j. All synergies extracted by NMF are then normalized as follows

wy e "1 )
Zk:1<wkj)2

where W = {w;,j =1,..., M}, and w; = {w;;,7 = 1, ...,n}. In the following sections

it will be described in detail how to gather movements and obtain different synergies

by using different criteria. Fig. 3-2 depicts an example of a set of synergies consisting

of 3 synergies.

3.3.2 Type 1: goal-related synergies

goal-related synergies are extracted from the optimal control solutions of (3.1),
that is, the optimal solutions without utilizing synergies. It is named as “goal-related”
because they are extracted from the optimal solutions of (3.1), having the property of
achieving a goal that is explicitly specified in the cost-to-goal function. (e.g. reaching
targets in Cartesian coordinates). It is reasonable that the same goals can be achieved
by utilizing goal-related synergies. The goal-related synergies are denoted as WM ¢
o< M

where n and M are the dimension of control signals and the number of synergies

extracted, respectively.
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3.3.3 Type 2: goal-unrelated synergies

goal-unrelated synergies are extracted from control signals of movements that are
generated by optimizing movements according to specific movement fitness criteria.
The movement fitness is not related to any explicit task goal such as targets in Carte-
sian coordinates. Therefore, the resulting movements are different from the goal-
directed movements generated by solving the optimal control problem. In this chapter
goal-unrelated synergies are extracted from some “good” movements that are gener-
ated by using genetic algorithm (GA) with three different movement fitness criteria,
namely energy-efficient, curvature and jerk. Details of generating such movements
are as follows.

A movement ¢ = {x;,u,},t = 1,...,T is generated from a given configuration x
and final time T using the arm dynamics described in the Appendix. The activation
of a muscle (actuator) ¢ at time ¢ is defined by a Gaussian function with 3 parameters

controlling the amplitude A;, the width o; and the center ¢; of the Gaussian:

uilt) = Avexp ((t — ¢;)?/207), t =1,..., T. (3.5)

A “good” movement ¢, is generated by optimizing the activation parameters =, =
[A;, 04, ¢]q,7 =1, ..., 10 of each muscle such that the value of the movement according

to the following movement fitness functions V;, ¢ = {en, cur, jerk} are minimized:

_ force input Y (Zilgl Z)

Vi = _ = ;
KE L (0rH(0.)0,)
Vewr = maximum curvature = max_ |/, (3.6)
tel2,...,T)

Vierr = maximum jerk = max_ (7.2 + p,>
jerk J 1€[3,T] (p t pyt)

where V,,, V., and Vi relate to input-output efficiency, smoothness of trajec-
tory in the Cartesian plane, and jerk of end-effector trajectory in the Cartesian
plane, respectively. /; is the angle between successive end-effector velocities: /; =

|cos™t (< ©(t — 1),9(t) >)| where < ®(t — 1), 9(t) > denotes the dot product of suc-
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cessive normalized end-effector velocities with & = v/(||v]|2).

The reciprocal of V,,, measures the ratio between the total kinetic energy output
and the total force input to the robot. Therefore, a smaller value of V,, implies a
better energy efficiency. V., measures the smoothness by the maximum change of
trajectory tangent. Vj.,; is the modified version of measuring trajectory smoothness
defined in [124], where D' denotes the rate of change of acceleration.

Each movement &, is optimized with given random final time T and random resting
(zero velocities) configuration @y with respect to each movement fitness criterion V;
by adopting GA to search for values of Z, = [A;, 04, ¢y, ¢ = 1,...,10, such that V
is minimized. The GA optimization is performed by using function ga in MATLAB.
For each movement, the population size of =, is set to 20 and then 5 generations are
carried out before the termination of evolution.

WM WM and W%Tk, are used to denote the energy-efficient synergies, curva-
ture synergies, the jerk synergies, respectively, where M is the number of synergies

extracted.

3.3.4 Type 3: Random synergies

In order to verify the necessity of the inherent properties in muscle synergies, Non-
negative random synergies are constructed for comparison. The random synergies that
are drawn from identical distribution and normalized by using (3.4). W™ denotes

the random synergies.

3.4 Performance Analysis

Reaching task is a common goal-directed movement in human motion. This chap-
ter analyzes reaching movements generated by utilizing muscle synergies, and put

focuses on the following issues:

1. Whether muscle synergies can facilitate the solving of the optimal control prob-

lem?
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2. What properties should muscle synergies have?

The reaching movements starting from a joint configuration x at time ¢ = 0 are

achieved by finding an optimal solution that minimizes the cost-to-go function:

T @(to) =+ (50~ 5¢)" P (3(T) - ) .
g 3.
+ 3 [ o) R ute)

where x and u are the robot joints and muscle activations. 4 is a vector containing
position and the velocity of the end-effector in the Cartesian coordinate plane and
g+ denotes the target position and velocity. The movement time 7' was determined
by Fitts’s law T = a + blog,(1 + 2d/w) to mimic human motion behavior, where
d is the distance from the target and w is the tolerance. The values of parameters
P = diag(10000, 10000, 1000,1000), R = I,a = 0,b = 0.08, w = 0.02(=~ 2cm)
are used. With this setting the cost-to-go value J approximately equals the FEuclidean
distance d from desired targets in centimeter (J = 1 implies d &~ lem in our case).

For simplicity, the following are defined:

e Original solutions: Solutions without utilizing synergies by solving (3.1) di-

rectly.

e Synergies-goal solutions: Solutions utilizing goal-related synergies by solving

(3.3).

e Synergies-en/cur/jerk solutions: Solutions utilizing goal-unrelated synergies by
solving (3.3), in which the synergies are extracted from movements generated

by GA according to movement fitness functions V., Veur or Vier.

e Random solutions: Solutions utilizing random synergies by solving (3.3).

3.4.1 Experiment 1: Feasibility of muscle synergies approach

The objective of this experiment is to verify the feasibility of muscle synergies

approach in solving the optimal control problem. goal-related synergies are utilized in
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Goal-related synergies or

Experiment 1 Random synergies
i 400 Optimal reaching
400 Optimal reaching NMF M % 1 iLQG movements
~ movements > W* or W* a— (Synergies-goal
(Original solutions by iLQG) solutions/random solutions)

(a) Experiment 1: The original solutions are solved firstly, followed by extraction of achieve-
goal synergies WM using NMF. Then W are utilized for solving synergies-goal solutions.
The random solutions are obtained by utilizing random synergies W .

Goal-unrelated synergies

Experiment 2

400 Optimal reaching

2000 “good” random NMF iLQG
movements —> WM\WM \WM — L
en \ Y cur \ VY jerk Synergies-en/cur/jerk
[bygal solutions by GA)

(b) Experiment 2: Each goal-unrelated synergies W WM and W%Tk are extracted from

a set of 2000 “good” random movements generated by GA according to criteria Ve,, Veyr
and Vjepp, respectively. Then the synergies-en/cur/jerk solutions are obtained by utilizing
the goal-unrelated synergies W WM —and WM

en’ cur jerk:

Figure 3-3: Summary of (a) Experiment 1 and (b) Experiment 2. All reaching
movements were carried out using the same 400 pairs of initial and target positions

{330, y*}
this experiment. Because it is reasonable that goal-related synergies have properties

to achieve the same goals. It would be said that the muscle synergies approach is

feasible if its (synergies-goal solutions)

e success rate of reaching target has similar level, and

e computation expense is reduced

when compared with original solutions. In the next experiment, the properties of
muscle synergies will be explored.

The experiment procedure is summarized in Fig. 3-3. In this experiment, 400 pairs
of initial and target position of the end effector {xq, y*} were uniformly distributed
over the workspace such that there were 100 pairs in each of the four target distance
d = ||lyo — y * ||3 ranges (reaching distance): [0-10Jcm, [10-20]cm, [20-30]cm and
[30-40]cm. 1) Firstly, the 400 original solutions were simulated. Then goal-related
synergies WM were extracted from the control signals in the original solutions by

NMF as described in section 3.3. Eight sets of synergies WM were extracted where
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M = 3,...,10. ii) Then, for each M = 3,...,10, the 400 synergies-goal solutions
were simulated utilizing WY using the same 400 pairs of {xo,yx}. iii) Finally,
the 400 random solutions were simulated for verifying the necessity of the inherent

characteristics in muscle synergies.

The optimal control problem solutions were solved by adopting the iLQG [123].
Iteration of iLQG was terminated if improvement of cost-to-go value is smaller than

1073 or if the cost-to-go value is smaller than 1 (i.e. distance from target< lem).

The box-plots of cost-to-go values (log,, scaled) and total computation time spent
of utilizing synergies WM for different reaching distances are depicted in Figs. 3-4a
and 3-6a, respectively. Because a smaller value of cost-to-go value means a closer
distance from the desired target, a lower position of the percentiles markers implies
a better success rate. In Fig. 3-4a it is observed that when more than 3 synergies
are utilized (M > 3), the cost-to-go values are not much different from the original
solutions (M = 0) for all the four reaching distance ranges. On the other hand, it
is observed in Fig. 3-6a that the computation expense is reduced as expected. The
computation time spent is less than the original solutions and lesser time is spent
when fewer synergies are utilized. In particular, from careful inspection at the data’s
percentile markers it is observed that the success rate is better in the synergies-goal
solutions, especially for reaching further targets, since the percentiles markers has
lower positions in the box-plots.

Fig. 3-5 depicts the performance of utilizing random synergies WM In contrast
to the synergies-goal solutions, it is obvious that targets could not be reached in
random solutions. This implies that synergies must possess inherent properties in
some sense. For better illustration, the end-effector trajectories of a movement are
depicted in Fig. 3-7. It is obvious that the resulting trajectories are closed to the
original solutions (dash line in the figure) when more synergies are utilized. Moreover,
the success rate is better when synergies are utilized in this reaching task because the

resulting cost-to-go values are lower.

Fig. 3-8 depicts the induced accelerations by synergies of the trajectory depicted

in Fig. 3-7 (M=5). The induced acceleration vector a’(k) at time step k is computed
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Cost-to-go values

Cost-to-go values

energy-efficient
represents the results of the 100 movements.
original solutions utilizing no synergies, and the number of synergies utilized. The
two edges and the horizontal line in each box indicate the 25th, 75th and the median
(50th) percentile of the data. The 60th, 70th, 80th, 90th and 100th percentiles are
indicated by markers ‘47, ‘x’, ‘7', ‘¢’ and ‘box’, respectively. It can be observed that
utilizing more than 3 (M > 3) goal-related synergies or energy-efficient synergies has
a similar success rate compared with the original solutions.
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Figure 3-4: Performances of utilizing different numbers of synergies for different
reaching distances. The cost-to-go values of utilizing goal-related synergies W an
synergies W are depicted in (a) and (b), respectively. Each column
“M=0" and “M=[3-10]" refer to the
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Figure 3-5: Performance of utilizing random synergies WM. It can be observed that
goals could not be achieved.

from the difference of the end-effector velocities in the task space: a'(k) = 0;(k +
1) — v(k), where v;(k + 1) is the task space velocities after applying only a synergy

w; with maximum activation a"® ie. u(t) = w;a"*"

, at current state xy. It can
be observed that the directions of the induced accelerations are quite constant, and
spread towards different directions to span the task space. This activation pattern
can be interpreted as follows: At the beginning, synergy 3 brings the end-effector
towards the target and synergy 1 acts in the opposite direction to control the speed.

Near the end of the trajectory, the acting of synergy 3 decreases and the other four

synergies increase in order to stop at the target.

3.4.2 Experiment 2: Synergies with different properties

In the previous experiment, it was verified that utilizing goal-related synergies
can solve the optimal control problem. In this experiment, the focus is extended

to investigate what properties of muscle synergies should have in order to solve the
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boxplot of total computation time spent Vs number of synergies utilized for different reaching distances
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Figure 3-6: Performances of utilizing different numbers of synergies for different reach-
ing distances. The total computation times spent of utilizing goal-related synergies
WHM and energy-efficient synergies WX are depicted in (a) and (b), respectively.
Each column represents the results of the 100 movements. “M=0" and “M=|3-10|"
refer to the original solutions utilizing no synergies, and the number of synergies uti-
lized. The two edges and the horizontal line in each box indicate the 25th, 75th and
the median (50th) percentile of the data. The 60th, 70th, 80th, 90th and 100th per-
centiles are indicated by markers ‘+’, ‘X’ ‘7', ‘0" and ‘box’, respectively. It can be
observed that utilizing more than 3 (M > 3) goal-related synergies or energy-efficient
synergies could reduce computation expense.
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End effector trajectory, d = 30 — 40cm
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Figure 3-7: Trajectories of a reaching task: A reaching movement of the original
solutions is shown in dash line (M=0). Movements utilizing different numbers of
goal-related synergies are shown in corresponding colors (M= K indicates K synergies
are utilized). The corresponding cost-to-go values are also shown (smaller values for
better trajectory). It is obvious that when more than 3 synergies are utilized, the
resulting trajectories are closed to the original solutions (M=0).
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End effector trajectory, d = 30 — 40cm
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(b) The synergies utilized and the corresponding synergy activation

Figure 3-8: (a) The trajectory shown is the same as the one depicted in Fig. 3-7 when
5 synergies (M = 5) are utilized. The arrows along the trajectory denote the induced
accelerations of individual synergies. (b) The goal-related synergies utilized and the
corresponding synergy activations of generating the trajectory in (a). It is observed
that synergy 3 and synergy 1 dominate the control signal. Synergy 3 and synergy 1
act the opposite and the target, whereas the other synergies act to other directions.
Near the end of the movement the activation of synergy 3 decreases, while the other
4 synergy activations increase in order to decelerate the movement.
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Cost-to-go values, M 6, d = 30-40cm

| O e6othperc. < 70th perc. VYV 80thperc. X 90thperc. + 100th perc. |
10°F E
+
+ + + +
-
2 Y
S o X X
s 10°F x x 4
z ¢
?
£ v T m]
k%)
3 — Y
1
10'} 1 A v J
1
1 , o
8 2 | 8 O 1
10° L . L -1
< )
g = % 2
x © >
2 3 c 5 5
o) 2 i} o =
(a)
Total compt. time spent, M 6, d = 30-40cm
6
| O 60th perc. (} 70thperc. ¥ 80thperc. X 90thperc. + 100th perc. |
+
5 5F 7
=
Q
O
2 + —
o + U
S 4} X J
x 1
*g 1
Q —_— -+ I
' - Y '
£ 1
= 1 —_ 1
S 1 1 X n ¢
2 o Y X | ! o 1
3 o ' Y —¥—
: %
8 0 ] Q
o o
24} 1 1 h
1 1 1 1 1
1 1 1 1 1
-4 0 0 1
0
S ()
> =
g = % 3
> < o g £
o 2 | o s
(b)

Figure 3-9: Performance of the reaching task (target range: [30-40]cm) utilizing 6
synergies (M = 6). Distribution of (a) cost-to-go values and (b) total computation
time spent are shown. The columns from the left represent results of original so-
lutions (Org nosyn), synergies-goal solutions (Syn* M6), synergies-en solutions (En.
eff.), synergies-cur solutions (Curvature) and synergies-jerk solutions (Jerk), respec-
tively. It can be observed that utilizing energy-efficient synergies performs similarly
to utilizing goal-related synergies.
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optimal control problem. This experiment can also obtain some hints about how to
obtain muscle synergies. Because obtaining goal-related synergies requires solving for
original solutions in advance, it is better to discover a way to obtain muscle synergies

and then to solve the optimal control problem directly.

The experiment procedure is summarized in Fig. 3-3b. First, three sets of goal-

M

en’?

unrelated synergies were obtained, namely energy-efficient synergies W, curvature

M
cur

and jerk synergies W . . Within each of the three sets, M =5, ..., 10

jerk:

synergies W
synergies are extracted from 2000 “good” movements generated by GA according to
the movement fitness functions V;,,, Veur and Viei, respectively, as described in sec-
tion 3.3.3. Then simulations of the reaching movements utilizing WM WM =~ and

en? cur

W%Tk were carried out, using the same 400 initial and target pairs {xo, y*} of Ex-
periment 1. (Synergies M = 3,4 were not tested because of large reconstruction error

in NMF extraction.)

Fig. 3-9 depicts the comparison of the original solutions, the synergies-goal solu-
tions and the synergies-en/cur/jerk solutions. For better illustration, only the results
of reaching 100 targets 30-40cm away while utilizing 6 synergies (M = 6) are shown.
The results of reaching the remaining 300 targets and utilizing different numbers of
synergies also have the same trend as depicted in Figs. 3-4b and 3-6b. These results
show that utilizing energy-efficient synergies can also achieve similar performance
compared with utilizing goal-related synergies. In contrast, utilizing curvature syner-
gies and jerk synergies performed badly. Fig. 3-10 depicts a similarity matrix to mea-
sures the difference between the goal-related synergies W and the energy-efficient
synergies WM Tt was found that the two sets of synergies are quite different. The
maximum value of all dot product measure between W and W is about 0.25 for
all M. Nevertheless, the energy-efficient synergies can still be utilized to achieve the

reaching tasks.
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Figure 3-10: Similarity matrix of goal-related synergies and energy-efficient synergies
(M = 6). The values of the matrix are the dot product of a goal-related synergy and
an energy-efficient synergy. Lighter color has closer value of 1. The synergy 2 of the
goal-related synergies and the synergy 4 of the energy are the most similar with dot
product value = 0.2489.
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Figure 3-11: Possible moving directions of the robot end-effector when muscle syn-
ergies are activated individually. The circles denote the end-effector positions on a
2D task space, and each arrow denotes a moving direction when a muscle synergy is
activated. This figure illustrates that at least 3 synergies may be required to move
the end-effector in all possible directions on a 2D horizontal task space.

3.5 Discussion

3.5.1 The minimum number of synergies required

At least 3 synergies may be required to move the end-effector in all possible direc-
tions on a 2D horizontal task space. A synergy specifies co-activations of all muscles.
Given a certain value of synergy activation to a synergy, the muscles correspond to
the synergy provide contractile forces on the robot and actuate the end-effector in
a certain direction on a 2D task space if the resultant forces on the robot are not
canceled out; As illustrated in Fig. 3-11, producing a motion along a line (1D task
space) requires at least 2 synergies that move the end-effector in opposite direction,
thereby 3 synergies are minimally required to move the end-effector in the 2D task
space if combination of any two synergies can move the end-effector in the directions

between the two directions that the two synergies can produce.

According to Fig. 3-4a, at least 4 goal-related synergies are necessary. One possi-
ble reason is that the moving direction produced by a synergy depends on the robot
posture. Therefore, it makes sense that a redundant number of synergies are required

to move the end-effector to various target positions.
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Figure 3-12: Illustrations of the concept of the original control space and subspace
spanned by synergies. The admissible set of muscle activation that can actuate the
robot is colored in yellow. Muscle activations are bounded such that 0 <ul< 1,
0 <u2< 1, and nonnegative synergy activations (can be larger than 1) are considered
in this figure. (Left) A original control space contains a set of admissible muscle
activations. (Middle) 2 synergies, wl and w2, span a subspace within the original
space with a smaller area of the admissible muscle activations. (Right) 1 synergy, wl,
span a subspace where the admissible muscle activation is along the synergies wl.

3.5.2 Relationship of the cost-to-go values and the number of

synergies used

It is expected that the cost-to-go value defined in (3.7) decreases as the number
of synergies increased. In this chapter, the robot motion is generated by a well-
established “optimal control theory based solver” called iLQG, no matter how the
synergies are used or not (Fig. 3-1). It is assumed that the iLQG solver can search
for an optimal solution in a given control space such that the cost-to-go value is min-
imized. The cost-to-go value reflects the control performance defined by the distance
from an end-effector target position and velocity at the last time step and the total
muscle activation applied to achieve a reaching movement. The smaller the cost-to-go
value, the better the control performance. When no synergy is involved (the upper
schematic diagram in Fig. 3-1), the control space contains a set of nonnegative and
upper bounded muscle activations (0 < u < u*’); This control space is referred as the
original control space in the following context. In the original control space, the iLQG

controller searches for a set of optimal muscle activations such that the resulting cost-
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to-go value is minimized. The number of synergies specifies the control complexity
(dimensionality). Fig. 3-12 illustrates the concept of the original control space and
the subspace spanned by synergies. When synergies are utilized (the lower schematic
diagram in Fig. 3-1), the control space is a subspace of the original control space.
This subspace is spanned by a set of muscle synergies. In the subspace, the iLQG
controller searches for a set of optimal synergy activations such that the resulting
cost-to-go value is minimized. The set of optimal synergy activations is transformed
to a set of muscle activations to actuate the robot. Because of the reduction of the
dimensionality, the admissible set of muscle activations to actuate the robot thus
decreases as fewer synergies are utilized. Therefore, it can be expected that better
control performance can be attained when more synergies are utilized; In other words,
monotonically decreasing cost-to-go value can be expected when more synergies are
utilized. Moreover, under the assumption that the iLQG solver can minimize the
cost-to-go function (3.7), it is expected that the cost-to-go value attains the small-
est value when no synergy is involved, compared with the case when synergies are
utilized. The cost-to-go value obtained in the case of no synergy is referred as the

reference value.

The number of synergies does not strongly related to the cost-to-go value. When a
set of synergies are utilized, whether the reference value can be attained in a reaching
movement does not directly related to the number of synergies used, it is related to
whether the optimal muscle activation that corresponds to the reference value, say
u/, lies within the subspace spanned by the set of synergies. For the case when the
set of goal-related synergies is utilized, since the set of synergies is extracted from a
set of muscle activations (the original solution) that includes u’, the synergies span
a subspace (of the original control space) that w’ lies within; At least using all the
synergies as bases, a set of synergy activations can be found by the iLQG controller
to approximate u'. Moreover, if u' lies within a low-dimensional subspace of the
original control space, it is expected that the iLQG controller can found a set of
synergy activations to approximate u' using fewer synergies and a cost-to-go value

close to the reference value can be attained; In Fig. 3-4a, the cost-to-go values that
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closed to the reference values are attained when 4 or more synergies are utilized,
implying that the optimal muscle activations of all the reaching movements lie in a
low-dimensional control space (manifold). In contrast, for the case when the set of
random synergies is used (Fig. 3-5), since the synergies are not orthogonal vectors
and the muscle activations are nonnegative and upper bounded, the admissible set
of muscle activations to actuate the robot is smaller than, with very small possibility
equal to, that of the original control space; The optimal muscle activation u' does
not necessarily lie within the subspace spanned by the set of random synergies, thus
the cost-to-go value is unlikely to be attained closed to the reference value even all
10 synergies are used. The monotonically decreasing trend of the cost-to-go value in
Fig. 3-5 may be caused by such reduction of the admissible set of muscle activations
to actuate the robot as fewer synergies are utilized, as illustrated in Fig. 3-12. For
the case when the the set of energy-efficient synergies is utilized, it is observed in
Fig. 3-4b and Fig. 3-9a that utilizing 5 or more synergies attain cost-to-go values
close to the reference values, implying that the set of energy-efficient synergies spans
a subspace of the original control space where the optimal muscle activations of all

the reaching movements lie within.

3.5.3 Determining the best number of synergies

Because the main purpose of adopting synergies in this thesis is to reduce the
control complexity by means of dimensionality reduction, the best number of synergies
is regarded as the minimum number of synergies that can achieve a certain level of task
performance measured by particular performance indexes. In this chapter, reducing
the number of synergies results in the decrease of the computation time spent.

The best number of synergies to achieve the reaching task in this chapter can
be determined based on the cost-to-go values that reflect the control performance
of the synergies-based iLQG controller. As mentioned in section 3.5.2, the cost-to-
go value is expected to be monotonically decreasing (e.g. Fig. 3-4a) with more
synergies utilized, with a trade-off of an increase of computation time spent (e.g.

Fig. 3-6a) due to the increase of control dimensionality. Moreover, if the set of
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muscle activations corresponding to the reference value lies within a low-dimensional
subspace that can be spanned by fewer synergies, the cost-to-go value is expected
to drop to a level similar to the reference values in the first few synergies (e.g. Fig.
3-4a); The reference cost-to-go value is the cost-to-go value obtained where the iLQG
controller searches for solutions in the original control space in full dimensionality.
(corresponding to the upper schematic diagram in Fig. 3-1). The best number of
synergies can be determined by looking for the minimum number of synergies that
has the cost-to-go value close to the reference value. For instance, it can be observed
from Fig. 3-4a the best number of goal-related synergies that compromises between

the control performance and the computation time spent is 4.

In general, to determine the best number of synergies compromising the control
complexity (dimensionality) and the control performance of a synergies-based con-
troller in a case, it is needed to 1) define a performance index to measure the control
performance, 2) design a criteria according to the performance index, and 3) design

an algorithm to determine the best number of synergies based on the criteria.

The performance index can be, indeed should be, defined to match the objective
of the analysis. In this chapter, the objective is to investigate the feasibility of muscle
synergies in generating reaching movements by means of solving an optimal control
problem. The cost-to-go function defined in (3.7) can quantitatively assess the fea-
sibility of a set of muscle synergies employed in the synergies-based iLQG controller
to generate a reaching movement, according to the distance to a target at the last
time step and the total muscle activations applied during a reaching movement, such
that the smaller the cost-to-go value, the closer to the target. If it is suggested to put
more concern on the control assumption, larger weight R on the term related to the

muscle activations should be used in the cost-to-go function in (3.7).

Having the performance index that measures the control performance of a con-
troller, a particular criterion or criteria can be defined for the determination of the
best number of synergies based on the (expected) characteristics of the performance
index. For example, for the reaching task in this chapter, it is expected that the

curve of the cost-to-go values is monotonically decreasing (e.g. Fig. 3-4a) when
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more synergies are used. Moreover, the cost-to-go value will drop to a level similar
to the reference cost-to-go value is expected to appear, if the set of optimal muscle
activations corresponding to the reference cost-to-go value lies in a low-dimensional
subspace of the original control space. Based on such characteristics of the curve of
the cost-to-go values, the criterion for determining the best number of synergies can
be defined as the minimum number of synergies that has the cost-to-go value differing
from the reference value smaller than a certain threshold value.

According to the criterion or criteria defined, one can determine the best number of
synergies from the results of the performance index when different number of synergies
are utilized. A simple approach can be obtaining the results of the performance index
for every number of synergies, plotting a curve of the performance index against the
number of synergies utilized, and finally determining the best number of synergies
from observation according to the criterion or criteria; As it can be observed from
Fig. 3-4a that minimum number of synergies is 4. If it can be expected that the value
of the performance index will improve as more synergies utilized, one can take an
incremental approach that obtains the results of the performance index from the case
of the smallest number of synergies, incrementally increases the number of synergies,
and terminates until the defined criterion or criteria are satisfied; If the objective
of an experiment is to determine the best number of synergies so that the control
performance of every number of synergies is not of interest, this incremental approach

can save the time to carry out experiments.

3.6 Summary

In this chapter, the feasibility of muscle synergies in controlling musculoskele-
tal robotic system by optimal control was investigated. The simulations of reaching
movements of a human-like robotic arm were analyzed. Two types of muscle synergies
having different properties were utilized in simulations, namely goal-related synergies
and goal-unrelated synergies. The former type has the properties of goal-related be-

cause they are extracted from the optimal solutions of achieving some task goals.
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The latter type is goal-unrelated because they are extracted from some “good” move-
ments which are optimized according to three specific goal-unrelated criteria, namely
energy-efficient synergies, curvature synergies and jerk synergies. It was verified that
muscle synergies can facilitate the solving of the optimal control problem utilizing
goal-related synergies. Simulations show that the reaching task can still be achieved,
with the same level of success rate and less computation expense. Furthermore, it was
investigated what properties muscle synergies should have by analyzing the perfor-
mance of utilizing goal-unrelated synergies. The reaching task could still be achieved
when energy-efficient synergies are utilized. These results imply that in order to
achieve the goal-directed task, synergies do not necessarily need to have goal-related
properties. Synergies having other properties such as energy-efficient can also be uti-
lized to achieve the goal-directed task. The results here also suggest that it is possible
to obtain synergies by other methods rather than from solving the computationally

expensive optimal control problem.
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Chapter 4

Extracting muscle synergies from
random movements for low-

dimensional task-space control

This chapter studies the extraction of muscle synergies given a data sample of
randomly parameterized control signals, without prior knowledge of robot dynam-
ics. In most literature, it is usually assumed that muscle synergies can be extracted
from a given data sample with statistical regularities. In reality, this assumption may
not be satisfied. A method for extracting muscle synergies with the aid of system
identification techniques is proposed. In the proposed method, a forward dynamics
model, which predicts the robot’s end-effector accelerations from inputs of joint con-
figurations, joint velocities and control signals, is estimated from a data sample of
end-effector movements that are generated by randomly parameterized control sig-
nals. Using the forward dynamics, a set of optimal control signals that produces the
same end-effector accelerations using minimum control effort is estimated by quadratic
programming. The required muscle synergies are extracted from the set of control
signals estimates. A kernel-based regression technique is adopted to estimate the for-
ward dynamics, as well as the inverse dynamics, which transforms the joint angles,
joint velocities and end-effector accelerations (or joint accelerations) to required con-

trol signals (i.e. activations of muscles synergies) that achieved the acceleration. A
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sliding mode controller is also derived to follow a desired end-effector trajectory, for
a class of musculoskeletal systems with the dimensionality of the control input larger
than that of the joints and that of the end-effector. The sliding mode controller is a
data-driven based controller which consists of the robot inverse dynamics, a feedback
control term and a null space control term. The null space control term is respon-
sible for joint stabilization and achieving a secondary task goal, without interfering
accuracy of the end-effector. In a simulation evaluation of a human-like robotic arm
actuated by 10 muscles, it was shown that muscle synergies could be extracted from
the set of control signals estimates, but could not be extracted from the randomly
parameterized control signals. In a control task, it was demonstrated that the end-
effector could follow a desired figure of “8” trajectory utilizing the extracted muscle
synergies, where the control dimensionality was reduced 10 to 5. The null space
control also worked well to keep all the joints away from the joint limits, without
affecting the tracking accuracy of the end-effector. It was also shown that the control
dimensionality could be reduced. It was achieved by first track a set of desired end-
effector trajectories spread over the workspace utilizing the current extracted muscle
synergies. Then a new set of muscle synergies was extracted from the control signals
of the resulting tracking movements. It was found that the figure of "8" trajectory
could be tracked when four muscle synergies were utilized. The proposed method
provides a solution to the question of how to extract muscle synergies given data

sample of control signals without statistical regularities.

4.1 Introduction

Realizing human-like movements and behavior has been one of the most interesting
and challenging problems in the fields of robotics. Human-like musculoskeletal robots
are usually designed with high dimensionality and redundancy in both control space
and joint space, in order to mimic human manipulation ability. However, controlling
such complex robots is a challenging problem. One approach is to simplify the control

complexity by dimensionality reduction techniques.
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In the field of human motor control, muscle synergies hypothesis has been con-
sidered as a solution to the degrees-of-freedom (DOF) problem [13,117,118, 125].
It has been reported that muscle synergies originate from a human optimal control
policy called the minimal intervention principle [121]. This optimal policy focuses
control on task-relevant variables and leaves redundant variables uncontrolled as far
as possible [68,126]. In order to reduce the control dimensionality and mimic human
task-space control behavior, this chapter focuses on 1) how to extract and 2) utilize

muscle synergies to achieve task-space control for human-like musculoskeletal robots.

In many studies of low-dimensional control, muscle synergies were estimated from
control signals of given optimal data sources such as human movement data |9, 127],
or optimized data with given robot’s dynamics model [40,96]; These data samples
possess inherent statistical regularities the signals in one dimension is correlated with
the signals in other dimensions. In model-free setting, reinforcement learning was
commonly used in which muscle synergies were emerged [128,129]. However, in com-
mon reinforcement learning techniques, a well-designed reward function and initial
conditions are usually needed for good learning performance. Therefore, it is also
important that a robot can extract muscle synergies from data sample that possesses

no statistical regularities without prior knowledge.

This chapter aims at extracting muscle synergies from data sample without sta-
tistical regularities, and to utilize the extracted muscle synergies to achieve low-
dimension control, for general manipulation of musculoskeletal robots. The control
of a human-like robot arm is studied. Under the assumption that large enough sam-
ples of random reaching-like movements possess control skills for general manipu-
lation tasks, it is proposed to extract muscle synergies from random reaching-like
movements, which are not optimized with respect to minimum control effort. Given
enough samples of such reaching-like movements without statistical regularities, a
subset of movements is selected according to the end-effector efficiency. The forward
dynamics of the robot is then estimated from the subset of data. The correspond-
ing optimal control signals are estimated utilizing the forward dynamics estimates.

These estimated optimal control signals are utilized as the source for extracting mus-
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cle synergies and the corresponding low-dimensional control signals for the subset of
reaching-like movements. The subset of reaching-like movements is regenerated utiliz-
ing the low-dimensional control signals. Then the regenerated subset of reaching-like
movements is used to estimate the robot’s inverse dynamics in the lower dimensional

control space for control.

In controlling musculoskeletal robots, estimating robot’s dynamics from data is a
promising approach to avoid modeling difficulties [130, 131]. Usually, estimation of
forward dynamics has no problem because it is a many-to-one mapping. Conversely,
due to the redundancy in control space, the inverse dynamics is generally a one-to-
many mapping. Therefore, the estimation problem is globally ill-posed and difficult to
solve. It is demonstrated that the inverse dynamics could be estimated directly from
data, when using the estimated optimal control signals as the training data source.
The estimations of the forward dynamics and the inverse dynamics, are formulated
into a regression problem within a kernel learning framework. Kernel methods have

been widely applied to handle nonlinear and high-dimensional data [132,133].

In this chapter, a novel method is proposed to extract muscle synergies from
optimal control signals estimated from data sample without statistical regularities
without prior knowledge of robots for low-dimensional control. In the present work,
the estimated inverse dynamics is employed in a sliding controller to achieve task
space control. Sliding control is well-known for its robustness, maintaining good con-
trol accuracy in the presence of modeling inaccuracies. While sliding control has been
studied for standard “square” systems [134] (in which the DOF equals to the number
of actuators) and underactuated systems [135], a sliding controller is proposed for ap-
plications to overactuated systems such as musculoskeletal system. The control law
has a null space control term for stabilization in joint space and achieving secondary
goals, without interfering the performance in task space. It is shown that using the
estimated inverse dynamics provides maximum capacity for applying the null space

control within the admissible control range.
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The work in this chapter relates to learning-based control of redundantly actu-
ated robots. In [129], the action space was updated through lower dimensional latent
variables in a reinforcement learning process, without the need of applying dimen-
sionality reduction beforehand. They achieved a 3D reaching task using a full-torso
musculoskeletal robot. It was needed to start over the learning process when achiev-
ing new tasks, which is common in reinforcement learning. Learning-based control
from random movements can also be related to “motor babbling” [136], which is an
exploratory motor learning process in infants. In [137], an ill-posed robot’s inverse
kinematics was directly estimated from data in a “trying to reach goals (Goal bab-
bling)” process, in which data samples were weighted according to the redundancy in
joint space. Their work aimed at resolving redundancy problem and bootstrap learn-
ing. The work here can also be considered as obtaining low-dimensional skills in a
motor babbling process. From random movements samples, the work presented here
estimates the ill-posed inverse dynamics directly at the control level. In [138] the Jaco-
bian matrix relating the velocities between joint space and task space was iteratively
estimated and then its inverse was applied to task space in open-loop motion rate
control. Similar studies of task-space control using inverse dynamics estimation can
be found in [130,131|. They solved a globally ill-posed inverse dynamics estimation
by estimating the mapping locally, which is well defined in the vicinity of the current
robot configuration. In [130], the local control torques were computed in individual
local models by averaging the local related data, and then combined to produce the
final control torque weighting by local forward dynamics models. In [131], the control
torque was given by an inverse dynamics mapping which was updated on-line. The
kernel-based estimation formulation proposed here can be considered as a natural

generalization of their estimation formulation.

This chapter organizes as follows. First, the problem being studied is defined in
section 4.2. The formulation of estimating the robot’s forward and inverse dynamics
is then introduced in section 4.3. Section 4.4 briefly reviews the concept of muscle
synergies, and describes the extraction of the muscle synergies from random reaching-

like movement data. In section 4.5, a sliding controller for task-space control is
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provided. Section 4.6 explains that using optimal data source enables estimation of
inverse dynamics. Finally, section 4.7 provides numerical evaluations of the control

performance and analysis of dimension reduction.

4.2 Problem statement

The goals of this chapter are to extract muscle synergies without optimal data
given, and to achieve low-dimensional task-space control for general manipulation of
a musculoskeletal robot. In particular, the optimality of control signals is restricted
to minimum control effort measured by the Euclidean norm. Moreover, it is assumed
that mathematical model the robot is not given. In order to achieve these goals, the

followings are the key issues to be accomplished:

1. Given training samples of random reaching-like movements, extract the muscle

synergies that can be utilized to achieve general manipulation.

2. For manipulation, establish a robust task-space tracking control law that con-
trols the end-effector of the robot to follow a desired trajectory in the Cartesian
coordinates (task-space). The control law should allow modeling uncertainties,
and include a null space control for joint stabilization and achieving secondary

goals.

3. Estimation of both the forward and inverse dynamics of the robot, given the

kinematics data of the joints and the end-effector, and the control input.

The outline of the extraction of muscle synergies and its utilization for low-
dimensional control is illustrated in Fig. 4-1.
Throughout this chapter the following second order continuous time overactuated

system is considered

y(t) = h(z(1)) (4.1)
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Figure 4-1: Outline of the extraction of muscle synergies and its application for low-
dimensional control. (From upper left) The robot’s forward dynamics is estimated
from a given data sample of omnidirectional movements, which are selected accord-
ing to the end-effector efficiency. The estimated forward dynamics is then utilized
to approximate the corresponding optimal control signals (minimum control effort).
From the estimated optimal control signals, muscle synergies and the corresponding
low-dimensional control signals are extracted. Then, the same movements are regen-
erated using the low-dimensional control signals. The regenerated movements are the
data source to estimate the robot’s inverse dynamics in lower dimensionality. The es-
timated inverse dynamics and the muscle synergies are utilized in a sliding controller,
which control the robot to follow a desired trajectory.
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where x € R, & € R and & € R™" are the joint angles, velocities and accelerations,
respectively. Let & = [T, 27] € R*™" to simplify the notation where T' denotes the
transpose operation. w € ™" are the non-negative control signals of actuators with
dimension n* > n® bounded by 0 < u < u*. y € R is the output in task space.
f, g, aand 3 are continuous functions of Z. h is an observer function. a(&) € R*’
and B(x) € R *"" are obtained after differentiating y = h(x) with respect to time
accordingly. f, g, h, @ and § are assumed to be unknown. In the following context,
the input arguments of all functions f, g, h, @ and 3, and the time index ¢ are dropped
for compact notations. Non-negative control signals were considered because most
musculoskeletal systems are actuated by muscles that provide only contraction forces.
For simplicity, the dynamics of the actuators were not considered and the joint torque

7 is assumed to be linearly related to the control signals wu:
T=E(2)u (4.2)

where E(z, &) € R ™" is a matrix of nonlinear functions. Joint torque induced by a
simple human muscle model with assumption of inextensible tendon such as the rigid-
tendon models in [102| can be described by (4.2). However, common human muscle
models having dynamics of contraction [103,104| introduce unobservable states into
the robot dynamics are out of the scope of the present work. The above system was
studied in [20]. The planar, 3-DOF, human-like robotic arm actuated by 10 muscles

in the Appendix A was used as the simulation platform.

4.2.1 Collecting omnidirectional reaching-like movement data

In chapter 3, it is found that the muscle synergies extracted from optimal goal-
directed reaching movements could be utilized for lower dimensional control of similar
but not the same goal-directed reaching movements. Therefore, intuitively these mus-
cle synergies can be considered as possessing control skills for general manipulation.
In this subsection, the generation of similar reaching-like movements is described.

In present study, reaching-like movements were generated by applying the following
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Gaussian-like control signal

um(t) = Ay, exp <—t ;mCm> (4.3)

to the mth actuator at time ¢, with the end-effector initially resting within the robot’s
workspace. A group of control signals generated by (4.3) is depicted in Fig. 4-4a. Each
movement ended at the same time ¢t = 7', and started with randomly initialized joint

angles « and the parameters A,,, ¢,, and d,,.

After generation of the reaching-like movements, a subset of the movements is
selected for the extraction of muscle synergies. It is usually desirable to manipulate
the end-effector with as less control effort as possible. Therefore, it is attempted
to select movements in which the end-effector moved most efficiently along the z
axis and y axis in the Cartesian plane. Due to the physical structure of the robot,
the end-effector may move more efficiently in some particular directions or some
particular areas in the workspace. In order to obtain an evenly distributed data set,
the workspace is divided into equally sized regions. In each region, an equal number
of movements starting from within the same region are selected, according to the
end-effector efficiency. The efficiency of a movement in each of the four perpendicular
directions was assessed by the ratios of the end-effector displacement to the total
control input:

2,(t=T) — z,(t =0)

J:c+ = — 5 z— — T Jr+
I lu(®)lle

5(t=T) = z,(t=0)

J + = = ) - =—J +
’ % (@)l ’ ’

where y = [z, z,]" is the Cartesian coordinates of the end-effector position, ¢ indicates

(4.4)

the time and T is the end time of each movement. || - ||» denotes Euclidean norm. The
ratios indicate better efficiency with larger values. Keeping an even distributed data
set is important to achieve good control performance because this subset of movements
is subsequently used as the training data for estimating the inverse dynamics. With
fixed number of movements to be selected in each region inside the grid, choosing

smaller regions ensures a more evenly distributed data set, but also requires more
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random movements samples and results in larger training data set. The control

selected

2 . Because they are

signals in the selected subset of movements are denoted as w
not the minimum norm control signals to achieve end-effector acceleration ; at state
Z;. Directly performing PCA on u;“*“® does not give a significant performance of

dimension reduction in general.

4.3 Estimation of nonlinear affine system

This section describes the estimation of the forward dynamics for muscle synergies
extraction, and the inverse dynamics for control. This can be considered as the

estimation of unknown nonlinear functions a(x) and bg(x) in the following affine

system
v=a(x)+ Y_ bn(X)wn, (4.5)
m=1
given N data tuples {v;, xi, Wi}, vi, xi € R and w; = [wi, ..., wi,|T € N are

the scalar output, and the two input vectors, respectively. Denote w™ € R be the

vector having all N data of the mth dimension of w.

Assume that the nonlinear functions can be approximated by

a(x) = w, ¢(x) + 6§

b (X) =~ Wi $(x) + 05

(4.6)

with a nonlinear mapping ¢ : x — ¢(x) which maps x to an F-dimensional feature
(Hilbert) space F having inner product k(x,, X,) = (0(xp), #(Xq)) - w. € R,
wy,, € N, 05 and O™ are the coefficients to be determined. Given N data tuples

{vi, xi, wi}Y.,, N equations can be formulated

v~ oTw,+ > D@ w,, +976, (4.7)

m=1

where v = [vy,...,vn]T € RV & = [¢(x1), ..., 0(xn)] € RN D, € RVN

is a diagonal matrix having vector w™, QT = (W, w1y € RVXCHD 1y s a
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column vector having all entries equal to 1, and 6y = [081, ...,98296‘] € Rt De-
fine a slack variable ¢ = Q(®"w, + X! _; D, ®Tw;,, + Qre, — v), where Q is
a diagonal matrix with positive entries. The coefficients w,, w,, and 6, are ob-
tained by minimizing the square error and the norm of the coefficients with constraint

®Tw, + " _ D, w,, +Q70,—v - Q¢ =0:

1 '
min S¢7¢ + % (wZ’ wo+ Y wy,, wy,, + 6 00>

m=1

subject to (4.8)

®Tw, + Z Dm<I>T'wbm + QTGO —-v—-Q¢=0
m=1
where 7 is a positive scalar. Introducing Lagrangian multipliers 5\, (4.8) can be

converted to the following unconstrained optimization problem

max min F

A C7wa ;Wp,),

1 T
E=¢C+ % (wf w, + ) wy, wy,, + 6 00> (4.9)

m=1
+ N7 <<I>Twa +Y D, w,, + Q70— v — Q1¢> .

m=1

Solving (4.9) by setting the partial derivatives equal to zero yields

r -1
A=—y <7Q_2 +K+ Y D,KD,, + QTQ> v

m=1

= — (VQ_Q + K—l) v (4.10)

1. < 1 1~4
w, =—P\, w,, = ——PD,, A, 0y =——QA
v gl g

where the entries of K at the pth row and g¢th column are k(x,,x,), K = K +
1 D,KD,, + Q7Q. The estimations of a(x’) and b, (x') for a test input x’ are
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then given by
1 ~
a(x') = ——k(x)A + 05

_

b(x') = ——k(X)DiX + 05"

where the entries of k(x’) € RY are k(x',x:),i =1, ..., N.
The computation of A needs the inversion of the matrix K, which has computation
cost O(N?3). The computation is impractical for large N. Sparsification technique is

a possible way for practical implementation. Let x’ = [x/7,wT]T, it can be shown

that

V%) = B(R) (—iﬂ) (.11)

where the entries of the vector I;:()Z’ ) are computed using the composite kernel

r

k(X' Xi) = k(X' xi) + Y wink(X, Xi)wim + [, 1w, 1]7. (4.12)

m=1

with training data x;,7 = 1, ..., N. Note that (4.11) is the standard form of common
nonlinear kernel-based regression. Therefore, the sparsification can be achieved by
solving for the spanning coefficients A = —%5\ using common sparse kernel regres-
sion techniques. The software SparseBayes 2.0 [139] is used, which implements the
Relevance Vector Machines (RVM) [140, 141], to solve for A. One of the advantages
of RVM is that the regularization constant v is automatically determined, users only

need to choose the proper valid kernel & (x,, Xq) = (¢(Xp), ?(Xp))-

4.4 Extraction of muscle synergies

In most studies such as [9,40,96, 127-129], muscle synergies were extracted from
controlled or optimal specific movement data. Intuitively, those synergies can be
utilized to control movements similar to the original ones. One of our goals is the
extraction of muscle synergies without optimal data given. Moreover, the extracted

synergies can be utilized for general manipulation tasks. This section starts by giving
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the definition of muscle synergies. Then the generation of reaching-like movements
is briefly described. It will be demonstrated that muscle synergies can be extracted

from optimal data, which are estimated using the forward dynamics estimated.

4.4.1 Definition

There are many interpretations of muscle synergies in various studies such as time
varying synergies [17,20, 142], or uncontrolled manifold [118,143|. In this chapter,
time-invariant synergies is adopted that a muscle synergy w; € R"" represents a
synchronous activation of a group of n" actuators. Applications of time-invariant
synergies to robot control can also be found in [144], where robots were manipu-
lated by a feedback controller. Applications of time-varying synergies can be found
in [96,145|. In contrast to time-invariant synergies that possess only spatial informa-
tion, time-varying synergies are sequences of (control) action which possesses both
temporal and spatial information. The presence of temporal information increases
the difficulties to implement time-varying synergies to a feedback controller. It is still
an open question that which interpretation is the best. Time-invariant synergies are
chosen to achieve general manipulation because of it is simpler to implement conven-
tional feedback control techniques. However, controllers (usually open-loop) utilizing
time-varying synergies usually have much fewer control parameters. Therefore, they
are especially beneficial for controlling simple tasks such as reaching movements. De-
velopment of a controller utilizing both time-invariant and time-varying synergies is
a promising direction and will be studied in the future. Readers can refer to [119] for
more details about different interpretations of muscle synergies.

A control signal u € R™" is constructed by linear combination of M < n* muscle
synergies. Given samples of the control signals, muscle synergies can be extracted by
various matrix factorization techniques [125]. In this chapter, Principal Component
Analysis (PCA) [108] is used to extract muscle synergies, because PCA is one of the
most common dimension reduction techniques and easy to understand. Also, because
dimension reduction performance depends on data characteristics, attention is put on

development to achieve low-dimensional control in a general manner. Investigation
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of different dimension reduction techniques for better performance will be carried out
in future work. Through linear matrix factorization, a control signals vector wu is
approximated by
uz%wjaj—l—'&:Wa—i—ﬁ (4.13)
j=1

where W contains the first M < n"* most important principal components in the
columns. % is the mean of w. a; is the activation of the jth muscle synergy w;. The
muscle synergies extracted by PCA may have negative components. A muscle with
negative activation can be considered a muscle which produces extensional force. The

linear combination of muscle synergies (5.2) must be non-negative because a muscle

can only produce contraction force and bounded above by maximum activation w*.

In implementation, the values in u were set to 0 or u“, respectively, when they

become negative or larger than u*, .

4.4.2 Extraction of muscle synergies from estimated optimal

control signals

Using the forward dynamics in task space (the third equation in 4.1), the corre-

min
i

sponding optimal control signals w"" can be estimated. If the control is not bounded,

min

u;

is simply given by u" = B1(Z;)(4; — a(&;)) where M’ denotes the Moore-

7

Penrose pseudo-inverse of a matrix M. For bounded control, the optimal control

signals u™™ are estimated by solving the following quadratic programming problem:
: 1 min\T , min
min §(ul ) ul
i = a(@;) + B(Zi)u™", (4.14)

subject to '
0 S ,u,;nm S ,u’ub.

The estimation of the functions a and  in the forward dynamics has been described
in section 4.3. The key idea is to approximate the optimal control signals ™" from

the selected omnidirectional movements, with the aid of forward dynamics estimates.
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Figure 4-2: The workspace of the robotic arm. Within the square regions, data sample
of movements generated by randomly parameterized control signals were collected for
synergies extraction. The collected data sample was the source for the result shown
in Fig. 4-3.

In order to demonstrate that using the optimal control signals as data source en-
ables dimension reduction, muscle synergies were extracted from reaching-like move-
ments data from the workspace of the robot depicted in Fig. 4-2. 383 of 10000 random
reaching-like movements generated by the randomly parameterized control signal de-
fined in (4.3) were selected, from 48 square regions (0.1m X 0.1m each), according to
the end-effector efficiency. The set of the omnidirectional movement’s control signals

selected were esti-

is denoted as u The corresponding optimal control signals w
mated after estimating the forward dynamics using the selected movement data. To
compare the performance of the selection process, 383 of the same 10000 reaching-
like movements were randomly selected. The control signals u’ were collected and
the corresponding optimal control signals (u”)™" were estimated after estimating
the forward dynamics using the randomly selected movement data. Fig. 4-3 depicts
the variance characteristics of performing PCA on w®, weected  (¢9)™n and w™n.

Dimension reduction was observed in the case of estimated optimal control signals
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Figure 4-3: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (1) u%: control signal from randomly
selected reaching-like movements; (2) ue°*ed: control signals selected according to
the end-effector efficiency; (3) (u®)™": the estimated optimal control signals corre-

sponding to u’ and (4) w™": the estimated optimal control signals corresponding to
uselected'
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(u®)™" and w™". A better degree of dimension reduction was observed after selec-
tion. Because every principal component shares almost the same importance, muscle
synergies cannot be extracted from neither the data u’ that without statistical reg-

ularities, nor the selected data wseected

. Recall that because muscle synergies were
obtained from random reaching-like movements for general manipulation, the degree
of dimension reduction provided by these synergies was expected to be not as good as
those synergies obtained from well-optimized/controlled signals of simple movements.
It was observed that the degree of dimension reduction is not very significant that 5
PCs explain 90% variance of a 10-dimensional data. In section 4.7 it will show that

better degree of dimension reduction can be achieved when controlled movements are

the data source.

4.5 A sliding controller for overactuated system

This section describes a controller which computes the control signal to manipulate
the end-effector to follow a desired trajectory, using estimates of the inverse dynamics
of the overactuated system (4.1). Sliding control technique is adopted for allowing
estimation inaccuracies. The controller also has a null space control term for joint
stabilization and achieving secondary goals.

Precisely, the problem is find control signals wu(t) to control the overactuated
system (4.1) to follow a desired trajectory g(t) = [(y*(t))T, (g*(t))T]T € R?"” in task
space such that

Vt20,|e| §61,|é’ <é€,€6 >0,e >0 (415)

with initial condition g*(0) = [(y(0))7, ((0))"], where e = y — y* and & = § — y*
are the tracking error vectors and | - | is an entry-wise absolute value operator.

Following standard procedure in sliding control [134], let

s=é-+le, A>0,)eR (4.16)
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The tracking problem (4.15) is achieved by finding a control law which satisfies the
sliding condition

1
——(s's) < —n'ls|, n>o0. (4.17)

Let & and B be the estimates of & and /3 in (4.1), respectively. Furthermore, assume
that the estimation errors are bounded such that |« —&| < A and |5 — 3| < B, where
the entries of A and B are non-negative finite real number. Consider the following

control law

u = (7" — a) — BT((k, o sgn(s)) + Xé) + (I — B15)uyg (4.18)

where 31 is the Moore-Penrose pseudo-inverse of 3 and I is the identity matrix, sgn(-)
is an entry-wise operator which returns 1, -1 and 0 if the corresponding entry is
positive, negative or equal to zero respectively, o denotes the Hadamard product and
ug is a null space control vector which will be explained in more detail later. In order
to satisfy the sliding condition (4.17), one can choose large enough control gain k;
such that

BTk, > A +Bla| +n (4.19)

where @ = (1(§* — & — Aé) + (I — 315)uy. In other words, the end-effector can follow
the desired trajectory y(t), by choosing large enough control gain k, in the control

law (5.13) to compensate the estimation inaccuracies A and B.

For the proof, consider a Lyapunov-like function

1
V(s,t) = §sTs > 0. (4.20)
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Differentiating with respect to time yields

V=s"3
=s"(§ — §" + 2é)
s (a+ Bu — §* + \é) (4.21)
s"(a+ Bt — fa+ i — §* + Aé — B! (ko sgn(s)))
=s"[(a —a) + (8 — B)a — BB (k, o sgn(s))].

Using (4.19) yields

V < sT[A +Bla| - (|A + B|a| + 1) o sgu(s)]
=s' (A +Bla|) - |s|"(A + Bla|) - n'|s| (4.22)

< -n'ls| <0.

From Barbalat’s Lyapunov-like lemma, it can be concluded that s — 0 and therefore

e — 0.

In order to reduce the effect of chattering, the sgn(-) function is replaced by a

saturation function
u = 31§ — a) — B1((ks o sat(s, ¥)) + Aé) + (I— B'B)ug (4.23)

where sat is an entry-wise function

sat(s,, Uy) = sy if ‘Sn <1
U (4.24)
sat(sp, ¥,,) = sgn(sy) otherwise.

where n = 1,...,nY is the dimension index, ¥ € R"" is vector of positive entries V,,.

In (4.23), the first term corresponds to the feedforward control. The second term
corresponds to the feedback control. In the last term (I— BT B) projects the null space
control ugy to the null space of B , which only acts in the null space and thus does

not affect the performance in the task space. The null space control ug is utilized
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for stabilization in the joint space and to achieve secondary goals, during tracking
in the task space. In simulation, the following null space control was employed in
order to achieve a secondary goal of avoiding collision at the joint limits z{ and 2},
l=1,..,n"

Uy = gT[—Kvodi — Kpoé'(iv)] (425)

where §' was the Moore-Penrose pseudo-inverse of the estimate of ¢, K, and K, were
the diagonal matrices with positive entries in their diagonals. € was an entry-wise

function that the [th entry given by

x— (2P +6), 2 <x<ab+6
g=1 z— (2 —96), a—-§<xy<aW (4.26)

0 otherwise

and 0 was a positive scalar. One can replace g(x) to achieve other secondary goals.
For example, choosing ug = §'(—K,0& — Kpo( — T,esr)) has the effect of bringing =

to “resting posture” &, ..

It is desirable to have small control gains. Briefly speaking, using minimum
norm control signals allows larger null space control u, for achieving secondary goals.
Within the admissible control range 0 < u < u* where w is defined by (4.23), using

the estimated optimal control in the feedforward control

B1(@) (§ — a(®)) = u™" (4.27)

having the minimum absolute values, has the advantage of providing maximum ca-
pacity to apply the null space control uy and the feedback control, since the required
control gain k, in the feedback control becomes the smallest. It is because acting
larger null space control ug (up # 0) results in larger |@| in (4.19), thus larger k;
is needed in the feedback control to satisfy the condition (4.19) in order to achieve
tracking under modeling uncertainties. Readers can refer to [116] for more details

about null space control in task space control.
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4.6 Inverse dynamics estimation

4.6.1 Estimation of the inverse dynamics from optimal control
signals

In order to apply the sliding control law (4.23), it is needed to estimate the terms

Bfa and BT in the inverse dynamics. One of the common difficulties of inverse dy-

namics estimation is that the mapping is one-to-many in general. Consider the over-

actuated system (4.1) with w4 unbounded, the inverse dynamics is given by

u=B1(&)(§ — a(@) + (1 - 51(@)5(2))¢
= wmin 4 (I B1(&)B(F))E

(4.28)

where £ is an arbitrary vector and ™" is given by (4.27). This implies that there are
many ways to achieve §j at the same Z. The estimation of o and 37 is impossible
because & is unknown. Inspired by the fact that the optimal control 4™™" has the
minimum Euclidean norm among all possible solutions', the estimation of 8T and
pt is feasible if the training samples are optimal control signals among all possible
solutions to achieve §j; at @; in the sense of minimum Euclidean norm. In this research,
optimal control signals are approximated by solving the optimization problem (4.27).
Consequently, it can be considered as the case of £ ~ 0 and thus the inverse dynamics

min

mapping can be directly estimated from the estimated optimal control signals ;]

4.6.2 Regeneration of the same movements using lower-dimensional

control signals

Before estimating the task space inverse dynamics mapping (&, 4) — a for low-
dimensional control, it is necessary to ensure that each ¢; is the outcome of applying
the low-dimensional control signal a; at &; in the training data set {a;, &;, ¥;},1 =

1,...,N. To this end, the same omnidirectional movements are regenerated, by ap-

1Since the minimum Euclidean norm solution of linear system Mz = b with non-unique solutions
is given by z = M'b where MT is the Moore-Penrose inverse of M.
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Figure 4-4: The regeneration of a selected reaching-like movement according to the
end-effector efficiency. (a) The original randomly initialized parameterized control
signals. (b): Control signals reconstructed using all the extracted 10 muscle syner-
gies. These signals were the estimated optimal control signals. (c¢): Control signals
reconstructed using the first 5 muscle synergies. These signals were used for the
regeneration. (d): The end-effector trajectories in the task space generated by the
control signals in Fig. 4-4a, Fig. 4-4b and Fig. 4-4c are shown by the dashed line, the
solid line and the dash-dot line, respectively. The grid indicates a rectangular area
and the regions where the training data were collected, for the manipulation task in
section 4.7. This trajectory starts from the highlighted region. (e): The histories of
the x and y position. These graphs show that the reaching-like movements could be
reproduced by using low-dimensional control signals via muscle synergies.
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plying the same sequence of the extracted low-dimensional control signals with the
same initial conditions. Fig. 4-4 depicts the difference before and after a regeneration
of a movement using low-dimensional control signals. It was observed that the low-
dimensional control signals produced similar movements, with smaller control effort.
The trajectories generated by muscle synergies deviated from the original one because
of accumulative difference between the original control signals (Fig. 4-4a) and the re-
constructed signals from muscle synergies. The control signals reconstructed from
fewer muscle synergies (Fig. 4-4c) were almost the same as the ones from all synergies
(Fig. 4-4b) and thus produced almost the same trajectories. The regeneration process
does not have much influence to the distribution of the selected movement data, and

thus does not affect the estimation of inverse dynamics and control performance.

4.6.3 Overall procedure

The procedure for estimating the inverse dynamics with muscle synergies is sum-
marized in Table 4.1. In Step 1, and in Step 5, the forward dynamics and the low-
dimensional inverse dynamics are estimated independently for each dimension of 4
and a, respectively. In Step 2, since the estimates &, and B (not the true a and f3)
are used in solving (4.14), there may exist || u?""||s > ||u;||o. In this case, the optimal

min

control signal was set to the original control signal u = u; in implementation.

i
In Step 4, the regeneration of movements ensures that each y{ is the outcome of

min
i

applying a; at &!. The application of PCA on u]™" also acts as a whitening step to

min
i

decorrelate the data in Step 5. The estimation error of u and the possible exis-
tence of local minima when solving the quadratic programming problem may affect
the estimation of the inverse dynamics. However, the evaluation in the next section
shows that the estimated inverse dynamics mapping could still be applied to achieve
a tracking control task.

The procedure can also be interpreted as a self-learning process of extracting
muscle synergies for low-dimensional control. The extraction of muscle synergies
corresponds to the extraction of control skills from random movements (Step 1 to

Step 3). Then, the extracted control skills are practiced by replicating the same
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Table 4.1: Procedure for estimation of inverse dynamics for low-dimensional control.
This scheme can be considered as a realization of a simple self-learning process of
muscle synergies for low-dimensional control.

Given N training samples {u;, Z;, 4}, of ) movements

Extracting muscle synergies (control skills)
Step 1: Estimate (&) and 3(&) from the forward dynamics:

¥ =a(@)+ [(T)u i
Step 2: Estimate the optimal control signals using &(&) and £(&)
by solving (4.14).
Step 3: Extract muscle synergies from u" using PCA:

u" ~ Wa; + @

Regeneration of movements (Practice with the control

skills)

Step 4: Re-generate the () movements by using the corresponding
lower dimensional control sequence a; with the same initial
condition. Denotes the regenerated samples as (a;, ¢, §¢)

Estimation of inverse dynamics (Remember the uses of the

control skill)

Step 5: Use the regenerated samples (a;, ¢, ) for estimation of
the inverse dynamics:

a = 1) — a(z?))
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movements (Step 4). Finally, the utilization of the extracted control skills are re-
membered (Step 5).

In simulation, it is found that if the sparsification technique in described (4.11)
and (4.12) was used instead of solving equation (4.10), it might remove important
data samples, resulting in bad control performance. It can be solved by keeping
a portion of training data that always contribute in the estimation. This can be
accomplished easily by randomly selecting a portion of training data in each region in
the workspace, and setting the selected portions of all the regions as the “free bases”
in the SparseBayes 2.0 [139]. It does not remove “free bases” from the training data

during sparsification.

4.7 Experiments

4.7.1 Simulation setup

The planar 3-DOF human-like robotic arm actuated by 10 muscles described in
Appendix A was used as a simulation platform. The control task was to follow a
figure of “8” trajectory for four cycles locating within a rectangular area (0.2m X
0.3m) with lower left corner at (0,-0.65) in the Cartesian plane. The rectangular area
was divided into 24 square regions (0.05m X 0.05m). The figure of “8” trajectory con-
sists of all movement directions and thus suitable for the evaluation of the extracted
muscle synergies for general manipulation task. In data collection, 192 of 5000 ran-
dom reaching-like movements were collected from the rectangular area, according to
the end-effector efficiency as described in section 4.2.1. (The best 2 movements were
chosen for each of the four moving directions). The total number of samples was
3774. (Samples outside the grids were excluded). All the samples were used for the
estimation of the forward dynamics. For the estimation of the inverse dynamics, 1920
samples were used for faster computation. The samples were collected by randomly
selecting 80 samples in each region. In order to examine the robustness to measure-

ment noise, x, &, y, ¥y and ¢y were corrupted with Gaussian noise. The signals were
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corrupted as 8’ = s’ + 6¢ where ¢ was drawn from the Gaussian distribution with

~

zero mean and identity covariance, where & = 0.2°, 6 = 2°s ! and 6 = 2°s2 for x,

Vand 6 = 0.2ms~? for y, ¥ and 4,

@ and &, respectively; ¢ = 0.002m, ¢ = 0.02ms™
respectively. The noisy measurements were used for estimations of the dynamics and
during control.

The simulation was carried out following the steps described in Table 4.1. Both

the forward dynamics and the inverse dynamics were estimated with the Gaussian

kernel
- - L. . - -
k(z,, &,) = exp (—2(:L'p — ) L(%, - ch)> : (4.29)
L was a diagonal matrix with entries L,, = o~ }(Zm% — z™")~2 where 77 and

™" were the maximum and minimum of the mth dimension in the training data.
o was the parameter of the kernel width. ¢ and the regularization constant v were
determined by cross validation. Isotropic ¢ and = were used for simplicity. The
importance of each datum was assumed to be the same and thus Q = I was set.
The performance of the sparsification technique as described in section 4.3 was also
evaluated, where 20% of the 1920 samples were set to be always incorporated in the
inverse dynamics estimation. (set as “free bases” in SparseBayes 2.0). The muscle
synergies were extracted from the optimal control signals u™" by PCA using the
MATLAB function pca. The 6 most important muscle synergies are depicted in
Fig. 4-5. All the simulations were carried out in MATLAB.

4.7.2 Tracking a figure of 8 trajectory

The control parameters were set to A = 10, k, = [10,10]7, K, = 30I, K,y =
V/30I. Fig. 4-6, Fig. 4-7, and Fig. 4-8 show the results of tracking the desired trajec-
tory for four cycles, in which 5 muscle synergies were utilized. The robot successfully
followed the desired trajectory using low control gain k. The null space control (4.25)
and (4.26) were able to keep the joints away from the joint limits. It should be noticed
that the muscle synergies were extracted from data of movements different from the

desired trajectory.
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Figure 4-5: 6 of the 10 muscle synergies extracted from the estimated optimal control
signals. Each synergy specifies co-activations of the 10 muscles of the robot arm. The
low dimensional control signals activate these synergies to control all the muscles.
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Figure 4-6: Trajectory history in joint space. In the case of using zero null space
control ug = 0, the robot collided at the upper limit of joint 2 at 90°. With the
aid of null space control, the robot stayed within the joint limits without collisions.
The collisions cause the deviation from the desired trajectory depicted in Fig. 5-6b
and Fig. 5-6d. The dot lines are the results utilizing refined muscle synergies. These
results demonstrate the ability of the null space control g that stabilizing the robot
in the joint space and perform secondary goal.
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Figure 4-7: Trajectory history in the task space. In the case without null space control
ug = 0, the robot moved away from the desired trajectory in the y position, due to

the collisions at the joint limit as depicted in Fig. 5-6¢c. The dot lines are the results
utilizing refined muscle synergies.

83



T

~0.4

_._ Zero U,
-0.42¢ __With Uy

““““ Refined
~0.44r - - Desired
-0.461

-0.481

y position (m)
S

b‘l o

N (6)]

|
©
a
D
T

-0.56

-0.58

1

0.1 0.15 0.2
X position (m)

|
o
»
T

0 0.05

Figure 4-8: Tracking a figure of “8” trajectory for four cycles. The dot line is the
result utilizing refined muscle synergies.

Table 4.2: Control performance vs Number of muscle synergies utilized.
Average position error from the de-
sired trajectory [x10~%m]

Number of | Total variance | All training data | Sparsification

synergies explained
2 65.8% 107.25 (88.0%*) | 7010 (88.2%*) | 20.5%
3 80.3% 77.91 (91.3%%) 1654 (95.9%*) | 25.8%
4 87.0% 74.61 (98.5%) 1252 (100%*) | 25.3%
5 90.6% 1.85 (100%) 2.18 (100%) 31.0%
6 93.2% 3.04 (100%) 3.59 (100%) 22.8%
7 95.3% 2.35 (100%) 3.56 (100%) 25.2%
8 97.2% 2.39 (100%) 4.93 (100%) 39.3%
9 98.8% 5.71 (100%) 4.94 (100%) 42.7%
10 100% 9.80 (100%) 12.77 (100%) 43.0%

The values in the brackets are the average percentage of following one cycles of the
figure of “8” trajectory, before the instantaneous position error > 0.03m.

The asterisks indicate collisions occurred at joint limits.

The last column is the percentage of the training data remained after sparsification.
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Table 4.2 summarizes the control performance when a different number of muscle
synergies were utilized. The position errors were the average of 10 runs of following the
figure of “8” trajectory for four cycles in each case. The third column shows the results
when inverse dynamics was estimated by all training data (solving equations (4.10)),
whereas the fourth and the fifth columns are the results when sparsification was
employed. The robot failed to follow the desired trajectory when 4 or fewer muscle
synergies were utilized, and succeed when more than 4 muscle synergies were utilized.
When sparsification was employed, good control accuracy could also be achieved when
5 or more muscle synergies were utilized. It was also observed that after sparsification,
about 20% to 30% of the training data remained when 7 or fewer muscle synergies
were utilized, whereas about 40% of the training data remained when 8 or more

muscle synergies were utilized.

4.7.3 Dimension reduction on controlled movements and mus-

cle synergies refinement

It was expected that the degree of dimension reduction was better than that listed
in the 2nd column in Table 4.2, when a well-controlled movement data was the data
source. This subsection investigates how many muscle synergies were needed to draw
the figure of “8” trajectory, by performing PCA on the control signals of the tracking
result when all 10 muscle synergies were utilized. Fig. 4-9 compares the variance
characteristics between the tracking results and the estimated optimal control signals.
Fig. 4-9a indicates that 5 principal components were needed to explain over 90% of the
total variance of u®9". This is consistent with the control performance in Table 4.2.
For simpler movement of drawing the first quarter of the figure of “8”(u“""¢), better
dimension reduction performance could be achieved. In Fig. 4-9b, over 99% of the
total variance of u®9" could be explained by 5 PCs, because the control signals
u9" was computed by utilizing 5 muscle synergies and thus had a better degree of
dimension reduction. These results motivated us to further refine the muscle synergies

to reduce the number of muscle synergies required.
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Figure 4-9: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (top) w™": the estimated optimal
control signals of the reaching-like movements selected according to the end-effector
efficiency. It is the same as the data in the second column of Table 4.2; (2"¢ row)
u®9": the control signals drawing the figure of “8”; and (bottom) w*: the first
quarter of u®9" drawing the lower right half circle of the figure of “8”.
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Figure 4-10: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (top) w™": the estimated optimal
control signals of the reaching-like movements selected according to the end-effector
efficiency. It is the same as the data in the second column of Table 4.2; (2"¢ row)
u™/™ed; the control signals of the 192 selected reaching-like movements tracked by
the sliding controller with 5 synergies.

87



It was attempted to refine the muscle synergies in order to further reduce the
number of synergies needed. After learning the inverse dynamics, the 192 selected
reaching-like movements were tracked utilizing 5 muscle synergies, with the same
initial conditions. The samples of these 192 tracked movements were used as the
source to extract muscle synergies, to regenerate movements and to learn the inverse
dynamics following the procedure in Table 4.1. In this case, because the control signals
for synergy extraction were constituted by 5 synergies, ideally performing PCA would
give the first 5 principal components explaining 100% of the total variance. Fig. 4-10
depicts the variance characteristics of the refined muscle synergies, in which the first
5 principal components explain 98% of the total variance. This is possibly because
the control signals were bounded within 0 and w“’; This bounding process can be
considered as adding noise to the control signals, which contributes the remaining
2% variance. The figure of “8” could be tracked utilizing 4 muscle synergies without
collision to the joint limits, with average position error 5.15 x10~%m (10trials). The

tracking trajectories are depicted in Fig. 4-6, Fig. 4-7 and Fig. 4-8.

4.8 Discussion

4.8.1 The minimum number of synergies required

Compared with chapter 3, this chapter allows positive and negative synergy acti-
vations. Therefore, it is possible that such bidirectional activation of a synergy may
produce 2 distinct possible motion directions, thereby there may exist 2 synergies that
may produce 4 directions for producing motion in all possible directions, as illustrated
in the Fig 4-11.

However, according to the result in Table 4.2, 5 synergies were required to track
the desired trajectory with small tracking error. One possible reason is that the
moving direction produced by a synergy depends on the robot posture. According
to (4.1), the end-effector acceleration of the robot is given by multiplying the muscle

activation uw by a nonlinear function §(&) where & consists of joint configurations
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_ By negative synergy activation
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Figure 4-11: Possible moving directions of the robot end-effector when 3 muscle
synergies, w;, wy and ws are activated individually. The circles denote the end-
effector positions on a 2D task space, and each arrow denotes a moving direction
when a muscle synergy is activated. The numbers “17, “2” and “3” denote the indexes
of the synergies w;, wy and ws, respectively. This figure illustrates that activating a
synergy may move the end-effector in two distinct directions (the second left) since
both positive synergy activation and negative synergy activation is allowed; At least
2 synergies may be required to move the end-effector in all possible directions on a
2D horizontal task space.

@ and joint velocities &, followed by adding another nonlinear function (&), which
must be a nonzero term because it is the passive dynamics of the robot in task space.
Moreover, equation (4.1) also implies that activating a synergy with opposite sign
does not necessarily produce opposite moving direction, because of the presence of

the nonzero term a(&).

4.8.2 Determining the best number of synergies

For the experiment 4.7.2, the best number of synergies compromising the con-
trol complexity (dimensionality) and the control performance of the synergies-based
tracking controller can be determined according to the control performance in the
task space and the joint space. The control performance in the task space is mea-
sured according to the tracking error (the 3rd column in Table 4.2) of the end-effector,

and the control performance in the joint space is measured according to the occur-
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rence of collisions to the joint limits (indicated with an asterisk mark in Table 4.2 if
collisions occurred). From Table 4.2, it is observed that the control accuracy of the
end-effector in the task space improves when the number of synergies increased from 2
to 4, attained similar level of small tracking error (from 1.9 x 10~°m to 3.0 x 10~°m)
when 5 to 8 synergies were utilized, and slightly worsened to larger error (smaller
than 10.0 x 107%m) when 9 and 10 synergies were utilized. The similar values of
the tracking error for the cases of 5 or more synergies in Table 4.2 implies that set
of the muscle activations to track the desired trajectory in Fig. 4-8 lies in a lower-
dimensional control space. The synergies-based controller has a secondary control
task goal, where the joints are regulated by the null space control term (the last term
in (4.23), (4.25) and (4.26)) such that the joints are kept away from the limits without
much interfering the control performance in the task space. The robot collided with
the joint limits when the number of synergies utilized was smaller than 4 (or 5 when
the sparsification technique was used), indicating by the asterisks next to the tracking
error in Table 4.2. Considering the best number of synergies as the minimum number
of synergies that can achieve good control performance in both the task space and
the joint space. According to Table 4.2, the best number of synergies in experiment

4.7.2 can be determined as 5.

Note that the control performances were assessed for the particular tracking con-
trol task in experiment 4.7.2, it may need a different number of synergies to accomplish
different desired task space trajectories. Moreover, the assessment of the control per-
formance in the joint space can only indicate whether the controller can keep the joints
away from the limits. Further investigations of the control performance to achieve a
variety of control tasks using different desired task space trajectories, and the study
of relationship between the number of synergies and the control performance in the

joint space are the future works.

90



4.9 Summary

In this chapter, the problem of extracting muscle synergies and its application to
a task space controller for a musculoskeletal robot were studied. It is proposed to
estimate the optimal muscle activations in the sense of minimum control effort, using
robot’s forward dynamics estimated by a system identification technique. It is shown
that when extracting muscle synergies from the estimated optimal muscle activations,
dimensionality reduction can be achieved. It is also demonstrated that using the es-
timated optimal data as the training source has the advantages of enabling direct
estimation of the generally ill-posed robot’s inverse dynamics, and providing maxi-
mum capacity for null space control within the admissible control range. A sliding
control law for a class of nonlinear overactuated systems, as well as a kernel-based
formulation for estimating the robot’s forward and inverse dynamics, are provided.
Numerical simulation results show that the proposed algorithm can extract muscle
synergies for general end-effector manipulation and achieve low-dimensional control.
A sparsification technique is proposed to handle large data set. It is also shown that
the muscle synergies required can be further reduced, by extracting muscle synergies
from reaching-like movements where the robot is controlled in a reduced dimension-

ality by the tracking controller with muscle synergies.
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Chapter 5

Obtaining muscle synergies in a

goal-directed exploration scheme

Although chapter 4 has developed a technique for extracting muscle synergies,
it is assumed that the robot can start the exploration from an arbitrary resting
configuration; Such assumption may not be always satisfied. In this chapter, a data
collection method is proposed based on a goal-directed exploration strategy, where
the robot explores unknown task space area by trying to reach designated targets
spreading over the task space successively, without resetting to a resting configuration.
During exploration, muscle synergies are obtained from local data sample, aiding in
the estimation of the robot’s inverse dynamics in reduced control dimensionality. The
robot is controlled by a task space controller with null space control that can regulate
the joint away from joint limits, using the inverse dynamics obtained from local data.
In simulation evaluation, the proposed methods enabled a human-like robotic arm to
collect data sample of omnidirectional reaching movements in an exploration task of
a 2D task space. It was demonstrated that the collected data sample could be used
a training source to extract a set of muscle synergies and to establish a controller for
manipulating the robot in reduced control dimensionality. Two bio-inspired strategies,
goal-directed exploration and muscle synergies, which are is highly plausible in human
beings, are integrated into engineering control techniques of musculoskeletal robots.

The proposed method enables a robot to obtain muscle synergies by itself, which is a
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step towards the development of autonomous musculoskeletal robots.

5.1 Introduction

Despite musculoskeletal robots have flexible and compliant structures that po-
tentially provide advantages such as dexterity and safety, control difficulties of such
complicated structure hinders development for real applications. Musculoskeletal
robots usually have many joints and actuators, so that it can achieve a task in many
different combinations of joint configurations and muscle activations. The general
problem of control the robot is about how to coordinate so many actuators to achieve
a task such as reaching an object or following a trajectory. Biological studies of
human motor control might give us inspirations.

The concept of muscle synergies, a hypothesis to explain how human control their
bodies, can reduce control complexity of musculoskeletal robots. It has been sug-
gested that humans coordinate groups of muscle co-activations called muscle syner-
gies, instead of controlling muscles independently [13,117,119]. In many engineering
applications, the concept of muscles synergies was adopted for the purpose of re-
ducing dimensionality. For example, muscle synergies acted in transferring human’s
motion from high dimensional electromyography (EMG) signals to a human-like low
dimensional robot motion in a real-time tele-operation application [9]. Muscle syner-
gies has also been employed in solving computationally expensive problems such as
reinforcement learning of reaching movements of a full-torso, simulated musculoskele-
tal robot [128], or point-to-point manipulation of a redundant six-muscle simulated
robotic arm using optimal control theory [96].

Muscle synergies can be extracted from control signals of a given data sample with
inherent statistical regularities [119,146|, using pattern recognition tools. Examples
of such data sample are electromyography (EMG) signals of specific movements |24,
110,147] and optimized control signals with respect to certain criteria [96,148,149|. In
chapter 4, a method to extract muscle synergies from data sample of randomly param-

eterized control signals which do not possess any statistical regularities is proposed.
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However, not only statistical regularities of the control signals, but also the corre-
sponding joint space and task space data in the sample have to be considered. For
instance, muscle synergies extracted from control signals of uni-directional movements
are unlikely be utilized for producing multi-directional movements. For manipulation
within the robot task space to perform various tasks, data sample of omnidirectional

movements is an appropriate choice.

Goal-directed exploration, an effective motor skill learning strategy observed in
the study of human motor learning, is a promising approach to enable robots ob-
taining muscle synergies.  Goal-directed exploration has been observed in motor
skill development in human [150, 151], where infants obtain motor skills by doing
goal-directed actions, such as trying to reach an object even they will fail [152].
Especially in applications of high-dimensional and redundant robotic systems, goal-
directed strategy achieves faster exploration using much fewer sample points [153],
based on directly and actively exploring often low-dimensional task space instead of
often high-dimensional joint space or control space [137,154]. It has been shown that
goal-directed exploration enabled efficient data collection in applications of obtaining
inverse kinematics models for controlling a simulated high-dimensional and redundant
robots [137] and a real bionic elephant trunk robot [153|, where prior knowledge of
the robots were not given. In [154], synergies of parameterized kinematics control in-
puts of a simulated quadruped robot were incorporated in an advanced goal-directed
exploration scheme where the goals in task space were self-generated. However, the
number of control variables was still larger than the number of degree-of-freedom
(DOF) of the quadruped robot. Because the motion of a joint is often actuated
redundantly by multiple muscles, kinematics control may not be adequate in mus-
culoskeletal robots. In [155]|, a goal-directed exploration strategy was adopted in
controlling a real, human-like musculoskeletal robotic arm actuated by many pneu-
matic muscles, but the inverse dynamics was estimated in full dimension. Currently,
there is no example of obtaining muscle synergies by goal-directed exploration for

controlling musculoskeletal robots.
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This chapter proposes a method to extract muscle synergies by goal-directed ex-
ploration, and simultaneously obtain an inverse dynamics mapping for control without
prior knowledge of the robot. The proposed method has three main features. First,
in order to construct a controller with adequate manipulation ability using muscle syn-
ergies and inverse dynamics, the “goals”(targets) are spread within the task space in
order to collect data sample of omnidirectional point-to-point movements. Second, to
facilitate the exploration, muscle synergies are incorporated during exploration, such
that the robot is controlled in reduced control dimensionality using inverse dynamics
mapping updated from local data sample. Third, a task space feedback controller
associated with null space control is employed to proceed exploration by effectively
manipulating the end effector and regulating the joints from joint limits. Integration
of the two bio-inspired strategies, goal-directed exploration and muscle synergies, is
highly plausible in human beings, but few examples have been shown in literature
of the integration of these strategies for the control of musculoskeletal robots. The
proposed method enables robots to obtain muscle synergies by itself, which is an

important step towards development of autonomous musculoskeletal robots.

5.2 The exploration scheme

A data sample having control signals that generate end effector movements with
different moving directions covering the whole task space is more suitable for synergy
extraction. For example, synergies extracted from a data sample of horizontal point-
to-point movements from one specific location to one specific target in a 2D task space
are unlikely to be utilized for producing vertical point-to-point movements. If a robot
can start from rest anywhere in the whole task space, a data sample of end effector
movements with different moving directions can be easily obtained, by randomly
actuating the robot from rest at random locations in the task space. However, this
“starting from anywhere” assumption may not be easily satisfied in reality.

This section presents an exploration scheme that enables a robot generates sample

points of end effector movements with different moving directions for extraction of syn-
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ergies. Section 5.2.1 first defines some notations for the ease of description. Then the
overview of the proposed exploration scheme is given in section 5.2.2. Section 5.2.3,
section 5.2.4 and section 5.2.5 give detailed description of three components: the ini-
tialization process, the try-to-reach process and the stable point positioning process,

respectively.

5.2.1 Notation definitions

This chapter considers the same model of musculoskeletal robots as described in

section 4.2 (copy from (4.1)):

y(t) = h(=(t)) (5.1)

where x € R, & € R and & € R™" are the joint angles, velocities and accelerations,
respectively. y = [y1, ..., ynv]T € RY, ¥ = [91, .., U] € R and § = [ij1, ..., uv]T €
R are is the position, velocity and acceleration of the end effector in the task space S
of the robot, represented in the Cartesian coordinates. u € ™" is the control input of
actuators (muscles) with dimension n* > n® bounded by 0 < u < u*, The functions
f, g, h, a and § are assumed to be unknown. Let = [T, 27| € R*", £ € X where
X denotes the robot state space and T denotes the transpose operation. Also we
denote uw € U, € € X%, ¢ € Y, where U, X Y*° are the spaces of control,
joint acceleration space and end effector acceleration, respectively. The following

notations are also introduced for the ease of description:
® Ty,me: A home configuration that the robot can always reset to.

e §: The whole task space to be explored. This task space is divided into R
smaller regions §;,1 = 0, ..., R—1. The region & includes the home configuration

Lhome-
o Y™ = {yr yr i, xp, &5, &5 A set of vector series defining a desired tra-
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jectory connecting region &, and region S,,. k denotes the time index such that
time ¢ = (k — 1)At where At is a fixed time step. Here k is used to emphasize
that it is the time index. However, in the context, the symbol ¢ is also used as

sample index.

{a}i, = {ap, ug, Ty, Zr, Yr, U, Ur Jo_,: A data sample of a movement consists
of N samples points. &; and ¥, are the resulting accelerations when applying
uy, at ®,. a; is the corresponding synergy activation of wuy after extracting

synergy. A sample point is denoted as qx = {ax, uk, Tg, T, Y, Yk, Yr }-

D, De*plored: D js used to denote a data sample consists of N movement sam-
ple points D = {q;},. DePlered ig specifically used to denote the library of

collected sample points in exploration.

WP ¢ M and WP € R x("=M). Gynergies extracted from the control

signals {u;}Y | in a data sample D using PCA:
M
u~ Y wia+8=WPa+a. (5.2)
=1

WP consists of the first M important synergies (principal components) and

WP consists of the remaining n* — M synergies.

PP i The forward dynamics mappings in task space obtained from a data

sample D which stores N sample points {q;};:

Uhoge X XU = V™, (Z,u) = § = a(Z) + (&) u. (5.3)

a/ D

Joints a¢P . Inverse dynamics mappings obtained from a data sample D which

stores N sample points {q;}Y,, for computing M-dimensional synergy activa-
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tion a € RM:
oDt X X X A (& &)~ a=g'(@)|f (%) - &] (5.4)
U iask 1 X X V¥ = A, (2,9) = a=p"(2)]a(2) -] (5.5)

where f (&), § (&), & (&) and 3 (&) can be formulated by substituting (5.2)
into (5.1).

5.2.2 Overview

The exploration scheme is developed based on an assumption that the robot can
reset its configuration to a home configuration xj,,.. For example, the robot can
return to a resting configuration under gravity by setting all actuation to zeros. It
has been observed that infants reset posture in obtaining skills of reaching move-
ment during goal-directed exploration [156]. Infants do not try to reach a target for-
ever [137]. This assumption has also been made in other researches of goal-directed
exploration [137,153,154].

The proposed scheme consists of three functional processes, the initialization pro-
cess, the try-to-reach process and the stable point positioning process, in order to
generate end effector movements with different moving directions.  In the initial-
ization process, the whole task space S is divided into smaller regions {S f;_ol. In
the region Sy where the home configuration @y, is included, a data sample Dq of
movements generated by randomly parameterized control signals for the first try-to-
reach process is collected. The exploration proceeds from Sy, by iteratively executing
the try-to-reach process and the stable point positioning process in order to explore
all the regions {S;}/5,'. In a try-to-reach process, the robot attempts to move the
end effector to reach the center of a region §,, that is in the neighborhood of the
current starting region §,,, where the robot starts the try-to-reach process, in a finite
number of trials. In each trial, the robot moves from rest for a fixed number of time
step, followed by resetting the end effector to the center of S,,. The best trial in

one try-to-reach process that is closest to the center of S, at the last time step is
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Try-to-reach process:

-Try-to-reach a center of region
in neighborhood

e = /
Initialization Process:

- Divide the whole task space
and determine exploring order

/

Stable point positioning
process:

- Move to stable starting point

Figure 5-1: Conceptual flow of the proposed exploration scheme, which consists of
three components. The task space being explored is divided into smaller regions with
designated exploring order in the initialization process. The exploration proceeds by
trying to reach designated region centers successively, in which the robot moves to a
stable point in the task space in each trial of the point-to-point movement.

selected and whose sample points are collected in the library De°re? The robot
continues the try-to-reach process until all designated regions §,, in the neighborhood
of §,, has been “reached”. Then, the robot proceeds to a new starting region S,
adjacent to the current S,,. The changing of starting region and the resetting of the
end effector in each try-to-reach trial, are achieved by using a feedback task-space
controller manipulating the robot to the center of S, and §,,, respectively. Fig. 5-1
depicts the conceptual flow of the proposed exploration scheme. Fig. 5-2 illustrates

the progression of exploration of a musculoskeletal robot in a 2D task space.

5.2.3 The initialization process

The division method is decisive to the data sample collected after exploration,

since the robot explores the task space by moving from one region center to other
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Figure 5-2: An example of a human-like robotic arm exploring a 2D task space.
(a) In the initialization process at the region Sy having a home configuration at
the center, a data sample Dy of movements (shown in dash curves) generated by
randomly parameterized control signals is collected. (b) The exploration starts from
region Sy. In the try-to-reach process, the robot attempts to reach the center of the
adjacent region S; in a finite number of trials (shown in concrete curves). (c) After
collecting the best trials (shown in dash curves) of point-to-point the designated
regions (shaded regions, S;, S and Sy in this case), the robot moves to and stay at
the center of the adjacent region S; (shown in the concrete curve), which is the new
starting region. (d) The robot attempts to reach a designated region Sp. Exploration
proceeds by iteratively running the try-to-reach process in (b) to explore designated
adjacent regions and the stable point positioning process in (¢) to switch to new
starting region.

region centers in the neighborhood. In order to obtain a data sample of end effector
movements with different directions, even division method is adopted such that all

regions §;,1 = 0, ..., R—1 are square regions of equal size. The regions S,, with respect
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to a starting region §,, are chosen from the regions in the neighborhood such that:

S, € {S[Idl SCZ,Q[ Sé}
¥, : Vector from the center of S, to the center of S (5.6)

dy = ||Till2, 6 = min (£(6;,{¥), Vp,p # 1}))

where d; is the Euclidean distance between the two centers of S, and S;. 6, is the
minimum angle between the vector ¥; and all other vector ¥,,p =0, ..., R—1. d and 0
constrain the traveling distance and moving direction. d must not be smaller than the
minimum distance between centers of two adjacent regions. 6 must be smaller than
7/2 in order to obtain data sample of diverse end effector movements (at least moving
in orthogonal directions). For example, in a 2D task space, setting d = 5cm and 0 = 5
means the centers of all S,, are bcm away from the center of S, and located in four
orthogonal directions. The exploring order (i.e. the order of being starting region) of

S; is also defined. The only restriction is that two successive starting regions .5, and

Sma1 must be connected.

It is also necessary to collect a data sample Dy for the first try-to-reach pro-
cess at the start of exploration. The method described in section 4.2.1 is em-
ployed to generate end effector movements by applying Gaussian-like control signals
up(t) = A, exp (—(t —¢,)/(dp)) (the same as (4.3)) to the pth actuator, where A,,
¢y and d, were randomly initialized before each movement generation. These control
signals produced point-to-point movements. A subset of the movements is selected
according to the end effector efficiencies in orthogonal directions in the task space,
defined as the ratio of distance travelled and total control input. The selection pro-
cess is to ensure that the training data contained movements does not bias to some
particular directions in the task space. The selected movements containing sample
points of control signals {u;} and the kinematics data {&;, &;, y;, U;, ¥; } are collected

in a data sample Dy. An illustrative example is depicted in Fig. 5-2a.
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Table 5.1: Computing a desired trajectory of a natural reaching-like movement

Procedure for generating a desired trajectory for the presented ex-
ploration scheme is provide as follows.

Given a starting position y,, and a desired position y,,.
Given the Fitts’s Law parameters a, b, w.
Given speed profile parameters v, vy.

Step 1 Compute the joint configurations x,, and x,, for y,, and y,,
respectively, such that the x,, and @, are the configurations
farthest from the joint limits.

Step 2 Compute a joint trajectory {m;}kﬁzl by interpolating be-
tween x, and x,,. Compute a corresponding position trajec-
tories {y; }n_, where y| = y,, and y%5 = y,. k is the time
index.

Step 3 Compute the total distant travelled d = SN Y71 —Ysll2-
Determine the movement time 7' by the Fitts's Law: T =
a+ blog, (1 + 2d/w).

Step 4 Compute a bell-shaped speed profile
. 2

dy = vaexp(—W) with _top speed at T/2,

and zero speed at k = 1 and k = N, where At is the

incremental time step and 7' = (N)At. v, = T/5, v, is
optimized such that S5 | d = d.

Step 5 Compute the desired position trajectory {‘y,‘;},iv:l by inter-
polation {y}}&_, to match the speed profile d,.

Step 6 Compute the corresponding desired velocity trajectory
{gihils and {gi il
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5.2.4 The try-to-reach process
Procedure

The detailed procedure of the try-to-reach process is described as follows. When
the robot is resting at the center y,, of a starting region S,,, it attempts to reach
the center y,, of a region §,, in the neighborhood of S,,, by following a desired trajec-
tory Y™ connecting the two centers for ¢,,q, trials, using an inverse mapping ®(iqsk
that computes low-dimensional synergy activations. The generation of the Y™ is
described in Table 5.1. Precisely, at the beginning of the process, a local data sam-
ple D is selected from a subset of the library De*re? which stores collected sample
points in previous try-to-reach process, such that the selected sample points locate in

the neighborhood of y,,:

]:_) — {qz . Hyz o ymHQ S dlocal’yi €qq; € Derplored} (57)

where d'°® is a predefined local distance defining the radius of the neighborhood of the
center y,,. Dy is used instead in the first try-to-reach process where D*?°red is empty.
A set of local synergies WP € R7"*M and its complement set W? € Rrx“=M) the
corresponding synergy activation a; € M and the mean 4’ are then extracted from
the local data sample D using the procedure described in Table 4.1 (Step 1, Step 2 and
Step 3), where the forward mapping @Dgsk is also obtained. The number of synergies
M to be utilized during the process is determined such that the total variance of D
explained by the first M principal components is higher than a threshold percentage
p (e.g. 90%). These synergies in WP are fixed in all the Gmae trials. The task
space accelerations 4j; in D are re-estimated using the sample points of the extracted
synergy activation a; and the corresponding robot state &; as input to the forward
mapping 5

u; = WPa, + @/

i = Yo (&, ) (58)

¥, = 4., Vi €D.
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Before each trial, the inverse mapping “CBsk is updated using D. During each trial, the
inverse mapping “CBSk computes synergy activation to follow the trajectory Y™ =
{y:, 95, U5, 3, &5, :'é;;}kN:l by achieving instantaneous desired task space acceleration

¢*(t) using robot state at time step k:

ap = ansk(zEk?gZ)' (59)

The control input to the robot at time step k is transformed back to original control

space U utilizing synergies WP and W?:
U = Wﬁak —+ ’l?l/ + WJE_)C (510)

where ¢ is a Gaussian random vector with compatible size drawn before each trial,
and is constant during each trial. The sample points D? = {q;}_, of the jth trial
are appended to D:

D =D uD? (5.11)

The robot is reset back to the center of S,, after each trial. The resetting of the
end effector is achieved by using a feedback controller, which will be described in
section 5.2.5 later. After ¢,q, trials, the data sample of the best trial D" having the
smallest tracking position error e, = >, (||yx — y*||2) is selected and appended to the
set Dewplored.

Dexplored — De:pplm“ed U Dq*7 q* = arg min(eq). (512)
q

Fig. 5-2b and Fig. 5-2d illustrate the try-to-reach process.

Elaboration

During a try-to-reach process, the control input (5.10) to the robot is computed
using the inverse mapping GCBSk with exploratory noise to move the end effector closer
to the center y,, of S,,. The first two terms WPaq, + @ in (5.10) transform the low-
dimensional synergy activation back to the original control space U using (5.2). It has

been proven in chapter 4 that low-dimensional inverse mapping *(;,s1 can be used as
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a feedforward control to track a task space trajectory Y’ = {y&, g, 4}, with the
aid of synergies, if the inverse mapping ®(;. is accurate enough. In a try-to-reach
process, more sample points are added to the local data sample D at the end of each
trials, resulting in improving the accuracy of the inverse mapping a({zsk and thus can
bring the end effector close to the center y,, of S,, by tracking the trajectory Y™ with
desired end effector position y* = vy,. In order to produce data sample of “natural”
human-like movements, the Fitts’s law is adopted in generating the desired trajectory
Y such that the velocity profile of the end effector is determined from a human-like

traveling time.

The last term W? ¢ in (5.10) adds exploratory noise such that the control input
lies not only in the subspace by the local synergies WP but in the original control
space . The addition of the exploratory noise is theoretically essential to the success
of the exploration. Because the sample points of the control signals are used as sample
points (5.11) and (5.12) for synergy extraction in another try-to-reach process that
moving to different region center, say y,,, the control input to reach y,, by (5.10)
will be in the same subspace spanned by WP if there is no exploratory noise. That
is the local synergies WP will be fixed for all try-to-reach processes in the whole task
space §. This is undesirable because different local synergies, which are groups of
co-activation of actuators, should be utilized for moving to targets in different /distal
regions in S.

The re-estimation step in (5.8) is a necessary step to ensure that the sample
points 4; are the task space accelerations of applying a; at &;. In chapter 4, this
consistency is achieved by regenerating corresponding end effector movements using
extracted sequences of a;. In this chapter, this step is carried out by prediction using
the forward mapping @/JBS,C, because collecting new set of data sample by regeneration
is costly.

It is noteworthy that because the objective of the exploration scheme is to gen-
erate sample points of end effector movements with different moving directions and
spreading over the whole space &, it is not necessary to accurately track the desired

trajectory Y™". If the noise level is not too high, the robot can still move the end
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effector close to the center y,, of S,,.

With the aid of synergies, computation spent in the estimation of the inverse
mapping (s can be reduced. After synergy extraction, the synergy activations a;
become independent in each dimension after performing PCA on the sample points of
the control signals w;. The inverse mapping *(;.s1 can thus be estimated by multiple
univariate regressions. Computation can be reduced by running fewer univariate

regressions.

5.2.5 The stable point positioning process

In the proposed exploration scheme, the robot needs to reset the end effector
to a stable point at either the center y,, of a current starting region S,, at the
end of each trial, or to the center y,,, of a new starting region S,,. Since the
robot has to start from rest during the try-to-reach process, this resetting procedure
is named as the stable point positioning process in this chapter. The positioning
process can be achieved using a feedback controller to manipulate the end effector to
follow a desired trajectory connecting from the current end effector location Y.y rent
with robot state &.,.rens to the center y,, or y,,» with zero end effector velocity for a
certain duration of the last time period. The joint configuration at the start of each
trial in the try-to-reach process is also influential to the goal-directed exploration. It
has been discussed in [137] that hitting joint limits during exploration can lead to
failure of further exploration as the inverse mapping cannot be improved. Therefore,
the controller should also capable of regulating the joints keeping away from the joint
limits while manipulating the end effector in task space.

A feedback task space controller 1P is employed to position the end effector to the
region center y,, or ¥, and to keep the joints away from joint limits. The controller
up = o (Zk, Uk, €k, €x, €(xk)) is developed in chapter 4, in which the control input
to the robot is computed by the low dimensional inverse mapping aggsk obtained
from a data sample D with the aid of synergies WP, Tt is capable of manipulat-
ing the robot end effector to follow a desired task space trajectory {ys, s, 'jj;}fj:l.

Simultaneously, joint stabilization and a secondary task goal defined in a function
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e (x1) to keep the joints away from joint limits can be achieved without affecting the
tracking performance. A human-like trajectory is used as in the try-to-reach process
as mentioned in section 5.2.4, such that y{ = Yeurrent and Y3 = Ym (o y,) in the
desired trajectory Y* = {y;, U;, ﬁ;}fj:l. The desired trajectory is determined using
the method described in Table 5.1, such that the corresponding joint angles {:B}';}kN:l
are farthest away from the joint limits. Y™ is appended by repeated values of % and

yy with zero velocities in order to stay at y,, or y,,. The control input u; at time ¢

is given by:
ap = “Coge (T, Gi) + Uy (T, €x, €1) + Qparr (T, () (5.13)
uy, = WPay, + aP

where e, = vy, — y; and é; = Y, — y; are the tracking position error and the

velocity error, respectively. @P is the mean of control signal in the data sample D.
The first term a(t%sk (Zg, Ur) is the feedforward control term responsible for achieving
tracking the desired trajectory. The second term (g, (Zy, e, €) is the feedback
control term responsible for reducing the tracking error in the task space. The third
term Q. (2, €(@y)) is the null space control term is responsible for joint stabilization

and achieving the secondary goal defined in e(xy):
e(xy) = oy — x. (5.14)

such that the joint angles x is “pulled” to the desired joint angle x} away from the
joint limits. €, is formulated with the aid of the inverse dynamics mapping *(jint

in joint space. The synergy activation ay is transformed back to the control space U
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using (5.2). The detailed formulations of the controller in (5.13) are:

“Cuast (i) = B (@) [ — a(@)] (5.15)
Qﬂ,(mk,ek,ek):é( 2) (K, o sat(se) + Aéx) (5.16)
Qo (@0 2(@1)) = [T 51(@0)3@0)] @™ (1. () (517)
o (F, E(n) = §(E0) [Kood — Ko ()] (5.18)

where s, = &, — Ae(t). & (&x), B (&) and (&) the functions in (5.4) and (5.5).

b
/;’(azk) is the estimate of 3(&y), B:T (#;,) and g' (&;) are the estimates of the Moore-
Penrose pseudo-inverse (' (1) and §' (&), respectively. ¢ (&) is obtained by sub-
stituting (5.2) into (5.1). §' (&) is obtained by estimating the inverse dynamics
mapping *Cjeint in joint space. Iis an identity matrix, ks is the control gain, sat(-, ¥)
is an entry-wise saturation function, in which the jth entry equals -1, 1 if \;—JJ < 1,
;—jj_ > 1, respectively and s; otherwise. ¥ € R" is a vector of positive entries. o

denotes the Hadamard product.

The data sample D defines the regions where the end effector is controllable by
the controller IT?. D can be selected such that D is as a subset of the whole data

sample D¢Plored in the neighborhood of the current end effector location Yeyrrent:

f) = {qz : ”yz ycurrentH2 dlocal’ Y; € q:, d; € Demplored} (519>

where e is a predefined local distance defining the radius of the neighborhood of
the center Yeyrrent- At the end of each trail in the try-to-reach process, if the current
end effector location Ye,,rent lies far away from the explored regions where the sample
points in D are collected, the controller may not be able to manipulate the end effector
back to the center y,, or y,, . If the end effector cannot be positioned back to the
center y,, or y,, using the controller TP where the local data D is obtained by (5.19),
the end effector can be first reset to the home configuration x, at region Sy, followed
by positioned to the center y,, or y,,, using the controller 1Y obtained from another

local data sample D', which is a collection of sample points in DePlored that close to
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the trajectory Y*:

f)/ = {qz : d?{* < CZlOCal,'yi c q“y;: c Y*’ q; € De:}cplored}

v ' Cx (5.20)
d; = m}gn({Hyl — Yrlla}e=1)

where dY " is the minimum distance of between a sample point y; and the trajectory
Y*. The controller IT®" can position the end effector since the home configuration
xy and the center y,, or y,, are inside the explored regions where the data sample
Derplored were collected.  Fig. 5-2c gives an illustrative example of moving to a stable

point.

5.3 Experiments

This section presents simulation results of an exploration task and two control
tasks on a human-like robotic arm on a 2D task space. The robotic arm had 3 joints
and actuated by 10 muscles. The muscles produce torque on the joints that satisfies
the linear relation (4.2). Fig. 5-3a depicts the skeleton of the robotic arm on the
task space which were divided into 122, 5cm x 5cm square regions. The exploration
task was conducted to verify if the proposed scheme utilizing synergies is feasible for
exploration of all the 122 regions. The control tasks were carried out to examine if
synergies can be extracted from the data sample collected by the exploration scheme
for controlling the robot. In both of the tasks, measurements of the joint angles
x, angular velocities @, angular accelerations &, end effector position vy, velocities
vy and accelerations 3 were corrupted by Gaussian noise with standard deviation of
0.2°, 2°s71, 20°s72, 0.002m, 0.02ms~! and 0.2ms™2, respectively. In the estimations, a
Gaussian kernel: k(x,, Z,) = exp (—%(a?p —z,)"'L(z, — :f:q)) was employed, where L
was a diagonal matrix. The mth entry at the diagonal was L,, = o~ (gme® — gmin)=2
where o was a scalar defining the kernel width. Muscle synergies were extracted by

performing PCA using the MATLAB function pca. All simulations were carried out
on a computer with 2.8 Ghz Intel Core i7, 16GB 1600 MHz DDR3.
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5.3.1 Exploration task

The exploration started from the lowest left region Sy in the grid depicted in
Fig. 5-3a. In the initialization process, d = 5cm and 0 = /2 was set such that in
a starting region S,,, the robot end effector was controlled to reach the centers of
neighbor regions 5cm away from the current region center in the y; and y, directions
in the trying-to-reach process. The exploration order of the starting region S,, was
chosen from the left to right, and then from lower to upper. The top right region was
the last region being explored. In collecting the data sample Dy for the first try-to-
reach process, 100 movements of traveling distance around 10cm (able to cover the
regions connected to Sy) were generated by the randomly initialized parameterized
control signals (4.3) as described in section 5.2.3. Each movement had the same
number of sample points. 8 of the 100 movements that having the largest traveling
distance in the £y, and £y, direction were collected in the Dy. Dy had 120 sample
points. In each try-to-reach process, sample points that located within a radius of
d"c?’ = 5cm from the center v, of the starting region S,, were collected in the local
data sample D for synergy extraction and estimating the inverse mapping GCBSk. M
synergies were extracted from D such that the synergies in WP € R19%M explained
at least p = 90% of the total variance in D. gnqe, = 30 trials were attempted to reach
the center y, of the designated region &, in the neighborhood of S,,. Before each
trial, the Gaussian random vector ¢ of 0.2 standard deviation was drawn to activate
the remaining 10 — M synergies in W?. In the try-to-reach processes where Sy was
the start region, the estimation parameters o (kernel width) and the regularization
constant « for obtaining the inverse mapping GCBSk were determined by a trial-and-
error process such that the centers y,, of designated regions S,, could be approximately
reached. The same parameters were then used throughout the whole exploration task.
As discussed in section 5.2.5, if the end effector locates far away from the center y,,, of
the current region S, at the end of a trial, a feedback controller I1° constituted from
a local sample D (see (5.19)) may not be able to position the end effector back to gp,.

For the ease of implementation and analysis, at the end of all trials in the simulation,

110



0.6

0.5

0.4

(m)

0.3

y1 position

The dash-dot curves are the boundaries of the
111

0.2

0.1

LT [g] «==--
1 ~ = 1 I~
e e i e o 18 sl S
X ~L ! 8l | —
I I BN s Sy
[ e i e T 3 13 3| ! Iy //_ _
_ -5 HES K EXER ERSINRSE
-I IIIIIIIII =1 1 - q T T T T T
_ _,bmd . Sl e A e
e e e e b e e = 1o 1 == — e SEREE e
N I --Illrw.x E R R RS R R R CE
1 + T
-4 |||||||\_.||,.- 129 S B& 5 B H_H-Hhuu
= |
| NS TS TR ENEREX BT ER
~~— | T '
1°= 5% s NGl 5 EL K
T T
8 P I R AR AR (A QR
— 1~ 1 - 1
3 S [ [JER T [N QA (B R
p= B e e A A L e
& [ A RN Y (N N R
,\. 1o | i . 1 N
S EIEXERERENER
_ \,\r\|.r|.r|.r|/|._ﬂ|/.r|..p|.r|.r|
e T S T 7 S = N y. <
g T 7 3 7 g S S S S
(w) uonisod gA (w) uomisod A

exploration from the shaded lowest left region where the home configuration of the

reachable area. The grid is the task space in the exploration task. The robot starts
robot locates. (b) The acquired movements after exploration.

Figure 5-3: (a) A 3-links human-like robotic arm on the 2D task space. The skeleton
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the end effector was first reset back to the home configuration x, at Sy, followed by
positioned to a stable point at either y,, or y,, using the controller 1Y’ constituted
from a subset D’ having sample points close to the trajectory (CZZOC‘” = 10cm) from

the home configuration to the stable point y,, or y,,. .

Fig. 5-3b shows the movements acquired in the data sample D®*Pred after ex-
ploration. These movements were collected in the data sample D*Pl7ed Tt can be
observed that the robot successfully explored the task space. Fig. 5-4 depicts the vari-
ance explained by the synergies (principal components) extracted from the local data
samples D. The number of synergies utilized M during exploration was determined
such that the M synergies could explain 90% of the total variance. It was observed
that the exploration task was conducted utilizing 4 or 5 synergies (mostly 4) to the
trajectories depicted in Fig. 5-3b.

5.3.2 Control performance

Two control tasks were carried out. In the first control task was carried out
during the exploration when the robot was positioned to the centers of all the 122
regions from the home configuration a,. The local data sample D’ for constituting a
controller TP was a subset of De*Plored at that exploration moment, which consists
of sample points close to the trajectory Y™ (d° = 10cm) connecting from the
home configuration x; in the region &; to the center of region S,,. The second task
was carried to verify if the extracted synergies and the collected data sample can
be used for constituting a controller for controlling the robot in a reduced control
dimensionality within the whole explored task space. The robot needed to track a
trajectory of a figure of “8” in the task space depicted in Fig. 5-6a, utilizing a set of
synergies extracted from the data sample D¢ collected after exploration. The
secondary control goal in the null space control was to keep the joints away from the

joints limit. Without given desired trajectory in the joint space, the function e (xy)

113



of '
< I
\
e
R e
0 F—F—+ - - — -
T T T T T T T TR R B B
|_—'4-—4__4-—4-—4__4-—4-—4__4-—4-—4-—4-,-I
L
02 b —
T T R e R e N
= F—t———F+—F+ - —+——4+ -
S N 1 1 1 1 1 1 1 1 1 1 [
S 03 F—d—d -t =Ly
= | 1/ 1
§ B e T ey A
(] (IR
> -
/’n
47 -1
Actual
= = =Desired
0 0.1 0.2 0.3 0.4 0.5 0.6
y1 position (m)
(a) Trajectory on the task space
Iy 041
© 100 o e e e e e e e e e e e e e mmmm—m oo
5 sl —
g so
T B0 o o o e e e e e e Lol
R I -
= 0 1 2 3 4 5 6 7 8 o
Time [second] Joint trajectory 3. 011
§150_ _________________________ - = Desired trajectory | _ 0 ) ) ) ) ) ) ) )
§1 . = = =Joint limit 0 1 2 3 ] 4 5 6 7 8
S, o f = Time [second] Task space trajectory
Y] S e N .
< 50 _03r Desired trajectory
= S sttt sttt ittt oot sfiestiin o it )
_D’ 0 1 2 3 4 5 7 8 ’E‘ 4
Time [second] E -0.
ETOO* 5 0.5
=S 2
%50— e aQ
o N 2.-06
% 501 . . . . . . . , -0.7 - . . p . . . !
2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 7 8
Time [second] Time [second]
(b) Joint space history (c) Task space history

Figure 5-5: Positioning of the end effector to a stable point in the task space during
exploration. The end effector could stay at the target position with all joints being
regulated to the desired joint angles by the feedback controller associated with null
space control term.

114



N
~ 1
of ] i
R | -0.151
: CNL L R D D R R I R R R B M
L 1 1 1 1 L
o1 7 i i i i
AN
! 1
_o2} :_l_|_ 1 / I\ L
T 1 1 1 1 1
€ :,' ! A\ ) ! H z -0.25¢
Z n : : \>_ _J : ’ : =t Task space trajectory
S 03 LT i / T\ i ™ S _oal - - - Desired
‘@ . L | | Lt a
g . 7 1 ( 1 } 7 a8
gof A :
-0.351
> L AN ANN
1 1 1 ]
L o 1 L=
05 [ i i -04f
| 1 L_U_
L] ] il
-0.6 - L.k
: i e ~0.45
REC TR PR SN Ly N
. . . . . . . . 05 . . . . . . . )
-0.1 0 0.1 02 03 0.4 0.5 0.6 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
y1 position (m) y1 position (m)
(a) Trajectory on the task space (b) Resulting trajectory on the task space
- 0.41
9 100 e mm e i = —— —— —— - ——————————————————————
g = E0.351
=T ST ST T T T c
B0 e e e e e e e e 2 03
oo o 8
- 0 2 4 6 8 10 12 14 16 18 20 22 & 0.25}
Time [second] Joint trajectory >
§|5u—-- e __---Jointhmit o 0.2 ) ) ) \
<3 5 10 15 20
i 100;/\__\/\_‘\/\_\ Time [second] Task space trajectory
o 50k - - - Desired trajectory
= -0.1p
i T R S e e T
Time [second] E-02r
o S
O 100 o o o o e o e e e e e e e e =-03r
o o
3 sus/\/\/\/\/\/\ Q
P Q -0.4r
% -50¢ . . . . . . . . . . . -0.5 ! : L y
) 2 4 6 8 10 12 14 16 18 20 22 0 5 10 15 20
Time [second] Time [second]
(c) Joint space history (d) Task space history

Figure 5-6: Controlling the robot utilizing a set of global muscle synergies extracted
from the data sample D®*Pred after exploration. 5 synergies were utilized in the
tracking. It was observed that the desired trajectory could be followed and the joints
were kept within the joint limits by the null space control.
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in (5.14)) was replaced by the same function defined in (4.26):

ay — (P +0), aff <ay<aP+0
Ek =19 o — (2j* = 9), a* -0 <ay <ap (5.21)

0 otherwise

where &j; indicates the [th entry of @;. 0 is a positive scalar.

Fig. 5-5 depicts a resulting trajectory of moving to a region centers. It was ob-
served that the end effector could be accurately positioned to the target center, and
the joints could also be regulated to desired joint angles. In all 122 cases of moving
to the region centers, the maximum position error in the task space and in the joint
space in the last 5 seconds were 0.0122m and 9.523degree, respectively. These results
confirmed that the local data sample ]AD;n and the extracted synergies WP’ can be
used to constitute a low-dimensional controller to position the end effector to a stable
point at the center of region S,, during exploration. Fig. 5-6 depicts the results of
tracking the figure of “8” trajectory. The tracking was achieved by 5 synergies that
explained 92% of the total variance in D¢ It was observed that the trajectory

could be followed without collision to the joint limits.

5.4 Discussion

5.4.1 On the choice of the number of synergies for exploration

In section 5.3.1, the number of synergies used for the exploration task is preset
before the act of control so that the selected synergies can explain a certain threshold
percentage of the total data variance. In the experiment, a guess of 90% was set for
the threshold.

As discussed in section 3.5.3, to determine the best number of synergies for a case,
a performance index that measures the control performance of a synergies-based con-
troller is necessary. Note that the total data variance explained depicted in Fig. 5-4

is an inappropriate measure for determining the number of synergies to carry out the
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exploration since it does not reflect any control performance of the synergies-based
controller. In the future work, the exploration task will be conducted by using a fixed
number of synergies. The best (minimum) number of synergies may then be deter-
mined, by comparing the control performance of exploration using different number
of synergies, according to a certain performance index such as tracking error. Further
investigation of the best number of synergies compromising the control performance
and the control dimensionality (complexity) for the exploration task will be carried

out as one of the future works.

5.4.2 Time-invariant synergies vs time-varying synergies

One of the main results in this chapter was that exploration could be achieved
in reduced dimensionality utilizing synergies. In [154], goal-directed exploration was
carried out with the aid of time-varying synergies, which specify sequences of control
signals of all actuators. There were 24 control variables to control a simulated 12
degree-of-freedom quadruped robot thus the control dimensionality was not reduced.
In contrast, time-invariant synergies are utilized in the proposed method, which al-
ways has dimensionality not larger than the original one. In the simulation, 4 or 5

synergies were enough for exploration of the robot actuated by 10 muscles.

In robotic applications, feedforward controllers have been used to coordinate time-
varying synergies that represent time sequences of muscle activations, before the
start of a movement [17,20,142]. In contrast, feedback controllers have been used
to coordinate time-invariant synergies by computing the synergy activations at each
time step as demonstrated in chapter 4. Feedback controllers are more desirable for
general manipulation and better control accuracy, while feedforward controllers are
simpler and more suitable for specific tasks. The use of time-invariant synergies allows
a straightforward implementation of a feedback controller with a null space control
term. The null space control term regulated the joints to keep close to desired joint

configurations, as a secondary control objective during exploration.
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5.5 Summary

A data acquisition method is proposed that allows musculoskeletal robots to ob-
tain muscle synergies by itself without prior knowledge about the complicated body
structure. The concept of muscle synergies is a control strategy inspired by the study
of human motor control. In most engineering applications, a data sample is usually
given for muscle synergies extraction. The proposed method adopts a motor skill
learning strategy inspired from infants called goal-directed exploration, in which the
robot collects data sample of point-to-point movements spreading over the task space.
During exploration, muscle synergies participate in constituting controller from local
data samples to achieve the point-to-point movements. The controller computes con-
trol inputs from inverse dynamics mapping in reduced dimensionality with the aid
of muscle synergies. A feedback controller is employed to support the progression of
exploration such that the robot end effector can be positioned at a stable point in
the task space that is a starting point of a point-to-point movement trail. As the
starting joint configuration is crucial for successful exploration, a null space control
term is employed to keep the joints away from the joint limits. The present method
was evaluated in a simulated human-like robotic arm. The human-like robotic arm
could successfully explore a 2D task space. Moreover, it was shown that the data
sample collected after exploration could be used as training source to extracted a set
of synergies associated with a low-dimensional controller for manipulating the robot

end effector within explored task space.
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Chapter 6

Conclusion

6.1 Conclusion

Musculoskeletal robots have a redundant number of joints and muscles that can
perform a diversity of tasks. However, the complex body structure leads to difficul-
ties in control. One control difficulty arises from the many degree-of-freedom body
structure. Dimensionality reduction is crucial to develop methods to effectively con-
trol the robots. Muscle synergies have been considered as one of the solutions to the
degree-of-freedom problem of human body control in biological studies. This research
studies control methods using muscle synergies for musculoskeletal robots. On the
whole, this research contributes to the investigation of the feasibility of control meth-
ods utilizing muscle synergies for a musculoskeletal robot. This research would be
the first step to the realization of robots that can work in daily life.

Chapter 3 studies the feasibility of utilizing muscle synergies in controlling a mus-
culoskeletal robot. In simulation experiments, muscle synergies extracted from differ-
ent data samples of control signals that were optimized according to specific criteria
were used to generate omnidirectional reaching movements of the end effector of a
human-like robotic arm actuated by 10 muscles. It was found that 1) the achieving-
goal synergies, which were extracted from data sample of optimized movements that
had minimum distances from targets at the final time step and minimum total con-

trol effort spent, and 2) the energy-efficient synergies, which were extracted from
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data sample of movements optimized with respect to a fitness function defined as
the ratio between kinetic energy and the movement and control, could be utilized
to control the robot in reduced control dimensionality. These results not only imply
muscle synergies can be utilized to control musculoskeletal robots in reduced control
dimensionality, but also demonstrate that muscle synergies can be extracted from a
data sample of optimized control signals with respect to energy efficiency, regardless

of whether task goals are specified in the optimization.

Chapter 4 investigates the problem of how to extract muscle synergies given data
sample without statistical regularities and without given dynamics model of a mus-
culoskeletal robot. The problem of extracting muscle synergies from a data sample
of movements that are generated by randomly parameterized control signals is con-
sidered. Because data sample with certain statistical regularities cannot be always
provided in reality, but it is easier to generate such random movements. In order to
tackle modeling uncertainties, a kernel-based system identification method is devel-
oped to directly estimate the robot’s forward and inverse dynamics models from the
data sample. In the presented method, muscle synergies are extracted from a data
sample of the control signals that are estimated using the kernel-based system identi-
fication method. The estimated control signals are optimal with respect to minimum
control effort (minimum Euclidean norm of the control signals). A data-driven task
space tracking controller, which is capable of manipulating the robot end effector to
follow a desired task space trajectory and achieving secondary control goals, is de-
rived using nonlinear sliding mode control technique. In simulation experiments on a
human-like robotic arm actuated by 10 muscles, it was shown that muscle synergies
could be extracted using the proposed method but could not be extracted from the
randomly parameterized control signals, and the robot could be controlled utilizing
5 muscle synergies to follow a figure of “8” trajectory on a 2D task space. More-
over, it was shown that muscle synergies could be further refined by extracting from
controlled movements data. The proposed method allows the extraction of muscle
synergies from a given data sample of movements where the muscle activations are

statistically independent in each dimension.
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Chapter 5 investigates how to extract muscle synergies without a given data sam-
ple and prior knowledge of the robot dynamics model. Although chapter 4 has devel-
oped a technique for extracting muscle synergies from data sample without statistical
regularities, it requires the robot can start from anywhere to collect sample points
spreading over the task space, which may not be always satisfied. A goal-directed
exploration scheme is proposed such that a musculoskeletal robot can collect appro-
priate data sample for extraction of muscle synergies. In the proposed scheme, the
robot explores the task space by reaching designated targets spreading over the task
space successively, in which the robot uses inverse dynamics and muscle synergies
obtained from local data to control the end effector in a reduced control dimension-
ality. In a simulation evaluation, the proposed scheme allowed a human-like robotic
arm with 10 muscles to collect data sample by exploring a 2D task space. It was
also demonstrated that muscle synergies could be extracted from the collected data
sample to establish a task space tracking controller for manipulation of the robot end
effector in reduced control dimensionality. The proposed goal-directed exploration
scheme enables a robot to obtain muscle synergies by itself, which is a step forward

to the development of autonomous musculoskeletal robots.

6.2 Limitations

Static environment

The proposed methods in this research may not be applicable to extract synergies
for control in dynamic environment. In all chapters, muscle synergies are extracted
from data sample collected in static environment. Such muscle synergies may produce
different outcomes in dynamic environment such as different end-effector motion di-
rections, compared with the case in static environment. Although it may be sufficient
to utilize more muscle synergies to compensate the effects of the dynamic environ-
ment, the applicability of muscle synergies extracted from static environment needs

further verification.
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Inherent properties of muscle synergies

Muscle synergies that possess minimum control effort properties may not be ap-
plicable in achieving control tasks related to force control of muscles. Chapter 4 and
chapter 5 propose methods extract muscle synergies from a data sample of control
signals that produce end-effector accelerations with minimum control effort in the
sense of minimum KEuclidean norm. In control tasks related to force control of muscle
such as stiffness control of a joint, activating the robot with the minimum muscle
activations may not be enough to achieve desired stiffness at joints. Therefore, the
muscle synergies inheriting the minimum control effort properties may not be suitable
for the force-related control applications.
Scalability

The applicability of the muscle synergies extraction methods presented in chap-
ter 4 and chapter 5 need to be extended and verified in extension to 3D task space
application. For the ease of analysis and implementation, the presented methods have
been first validated in the application of a human-like robotic arm in 2D task space.
More sample points are needed when the problem is extended to 3D task space. As
a result, more time and larger memory are required to collect and store the data.
Although chapter 4 has presented a sparsification method to handle large-sized data
sample, the feasibility of the proposed muscle synergies extraction method in 3D task
space is still needed to be examined.

The purposes, contributions and limitations of chapter 3, chapter 4 and chapter

5 are summarized in Figure 6-1.

6.3 Future work

Real robot applications in dynamic environment

All the proposed methods in this research have been verified by simulations in a
static environment and 2D task space. Implementation of the proposed methods to
real musculoskeletal robots working in 3D task space, and obtaining muscle synergies

working in dynamic environments such as interaction with humans and environment
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with unexpected disturbances, will be the long-term goals to exploit the compliant
and flexible musculoskeletal structure.
Time-invariant vs time-varying synergies

Throughout this research the time-invariant synergies are investigated, which spec-
ify the spatial activation pattern of all actuators at a time. In contrast, time-varying
synergies have both the spatial component specifying the actuation pattern, and tem-
poral component specifying the time profile of synergy activation. For time-invariant
synergies, implementation is easier because synergies can be extracted by common
pattern recognition tools [125]. Utilizing time-invariant synergies is equivalent to
finding the corresponding temporal profiles of synergy activations. For time-varying
synergies, the synergies are more difficult to extract [29]. But utilizing time-varying
synergies might further simplify the control problem because it requires much fewer
time profile parameters to be determined at the beginning of motion instead of com-
puting solution at each time step. Moreover, time-delay information of a robot is
already possessed in the temporal profile of the time-varying synergies. Research of
combining the two kinds of synergies is a one of the directions in the future work.
Nonlinear muscles models

The research assumes that the robot is nonlinear in terms of the robot’s joint
space, but is affine in terms of the control space. However, many musculoskeletal
robots are actuated by nonlinear actuators such as pneumatic actuators, which usu-
ally have nonlinear control-force relation, or human muscle models having nonlinear
dynamics. Extension to handling nonlinear actuators and implementation to real
robots will be carried out in the future.

Fully autonomous goal-directed exploration

In the proposed method in chapter 5 the “goals” of exploration are predefined. A
similar approach has been adopted in the study of goal babbling process [137]. Incor-
porating muscle synergies in fully autonomous schemes such as Self-Adaptive Goal
Generation Robust Intelligent Adaptive Curiosity algorithm (SAGG-RIAC) [154],
where the goals are adaptively generated during exploration, is a potential future

work towards the development of fully autonomous musculoskeletal robots.
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Chapter 3

Purpose:

To verify feasibility of muscle
synergies

Findings/Achievements:

1. Muscle synergies extracted from
goal-directed movements can be
utilized to reduce control
dimensionality

2. Muscle synergies can be
extracted from control signals that
generate end effector movements
with maximum kinetic energy by
minimum control effort

Limitations/Unsolved issues:

1. Analytical dynamic models of the
robotisneeded

2. Muscles are modeled by linear
force model without time-delay

3. Static environmentis assumed

4. Verification was only conducted
by simulationsin a 2D task space

J

~

Chapter 4

\_

Purpose:

To extract muscle synergiesfroma
given data sample without prior
knowledge of robot

Findings/Achievements:

1. A method which can extract
muscle synergies from data sample
of randomly parameterized control
signals was developed

2. A kernel-based regression
problem was formulated for system
identification of musculoskeletal
robots

3. A data-driven task space tracking
controller was derived

4. Extracted muscle synergies could
be utilized to achieve tracking
controlin reduced dimensionality
of a human-like roboticarm

Limitations/Unsolved issues

1.1t is assumed that robot can start
fromanywherein the task space

2. Muscles are modeled by linear
force model without time-delay

3. Static environmentisassumed

4. Verification was only conducted
by simulations in a relatively small
2D task space area

J

\

Chapter 5

\_

Purpose:

To enable a robot to obtain muscle
synergies by itself

Finding/Achievements

1. A method which enables a robot
to collect data sample for
extraction of muscle synergies
based on a goal-directed
exploration strategy was proposed

2. Computation in inverse dynamics
estimation during explorationwas
reduced by utilizing muscle
synergies

3. A human-likeroboticarmcould
successfully obtain muscle
synergies, which were verified in a
tracking control task within a
relatively large task space area

Limitations/Unsolved issues

1.The “goals” are pre-defined but
notadaptively generated during
exploration

2. Muscles are modeled by linear
force model without time-delay

3..Static environmentis assumed

4. Verification was only conducted
by simulationsin a2D task space

Figure 6-1: Summary of the purposes, contributions and limitations of this research.
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Appendix A

A human-like robotic arm simulation

platform

A human-like robotic arm simulator was built for the studies in this thesis. Re-
dundancy and high control dimensionality are imparted by 3 joints including a wrist,
an elbow and a shoulder, and 10 muscles attached to the arm skeleton. Its dynamics
behavior obeys the nonlinear system (2.5) that is linear in control input. For the
sake of focusing on investigating the dimensionality reduction functionality of muscle
synergies and computational simplicity, the arm is restricted to move in a horizontal

plane. The conceptual appearance of the robotic arm is displayed in Fig A-1.

A.1 The musculoskeletal structure

The robotic arm has 3 rigid links: the upper arm, the forearm and the hand.
Each link is modeled as a cylinder. The upper arm, the forearm and the hand attach
to the shoulder joint, the elbow joint and the wrist joint, respectively. Each joint is
revolution joint modeled a massless cylinder.

To represent the position and orientation, a local coordinate frame is attached to
each link. The local coordinate frame of a link is attached to the negative side along
the longitudinal axis (corresponding to the second element in a 3D position vector)

of the cylinder as depicted in Fig. A-2. Each joint is also attached with a coordinate
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Figure A-1: Conceptual appearance of the human-like robotic arm with 10 muscles.

frame following the Denavit-Hartenberg (DH) convention such that its Z-axis is the
rotational axis, and the Z-axis is the common perpendicular of two successive joints
as depicted in Fig. A-3. The origin of the global frame (denoted as iy, g in Fig. A-
3) of the robotic arm is fixed at the origin of the shoulder joint. The robotic arm
is connected by specifying the relative location of a joint cylinder to a link’s local
coordinate frame, except the case of the should joint is located by a fixed global
position.

There are 10 muscles attached to the corresponding links. During motion, mus-
cles are wrapped around the cylindrical surface of the joints. Each muscle produces
contractile force f;, 7 = 1,...,10 with amplitude that is linearly related to the non-

negative, bounded control input 0 <wu; <1,j =1,...,10:
1551l = ¢ - u; (A.1)

where ¢; is the maximum amplitude that the jth muscle can produce. As mentioned
in chapter 2, the force direction of a muscle depends on the two attachment points

of the muscle and the configuration (joint angles) of the robotic arm. The resulting
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Figure A-2: A link and a joint modeled by cylinders with attached coordinate frames.

Figure A-3: Coordinate frames attached to the robotic arm using Denavit-Hartenberg
convention.
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torque at the joints of all the 10 muscles is compute using (2.2).
The physical parameters of the robotic arm are taken reference from anatomical
data of an upper arm model in the simulation software MSMS [157]. Table A.1 lists

the parameters used in this thesis.

A.2 Kinematics of joints and end effector

By the Denavit-Hartenberg (DH) convention, the global position of a point on the
robot can be computed. According to the DH parameters listed in Table A.2 of the

robotic arm (Fig. A-3), the homogeneous transformation matrix

cos b; —sin b, 0 i1
sin#; coso;_; cosb;cosa;_; —sina;_; —sina;_1d; .
T, = , 1=1,2,3 (A.2)
sinf;sinco;_y cosé;sinc;_; coso,_q cos o;_1d;
0 0 0 1

can be obtained. Given the position vector 7 of a point relative to the local coordinate
T
frame of link k, the homogeneous coordinate p = {(f)T, 1} € R*, which is the vector

constituted of the global position of a point 7 € R? and a scalar 1, is evaluated by

F=T, T[] (A.3)

A.3 Dynamics model

The dynamics of the robotics arm is derived by Lagrangian equation of motion:
d 0L oL
(=Y = F A4
dt <6:13) ox (A.4)

where L = K —U is the difference of total kinetic energy K and the total potential en-

ergy U. x and 7 are the generalized coordinates and the generalized non-conservative
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Table A.1: Physical properties of the human-like robotic arm.

Link Mass (kg) | Moment of inertia (kgm?) | Length (m)
Upper arm | 1.5218 I, =0.0135 [y = 0.2806
I, = 0.0070
I, =0.0135
Forearm 0.8046 I, =0.0047 I, =0.241
I, = 0.00161
I, =0.0047
Hand 0.4004 I, = 0.000754 l3 = 0.1256
I, = 0.000316
I, = 0.000615
Joint Joint location (local coordinate frame) | Cylinder radius (m)
Shoulder | [—0.05511, —0.0096,0.1374]" (Global) | 0.01
Elbow [0, —0.2806, 0] (Upper arm) | 0.01
Hand 0, —0.241, 0]" (Forearm) | 0.01
Muscle || Attachment points (local coordinate frame) Maximum force (N)
BICy, 0.04989, —0.00429, 0.11332]" (Global) 312.1
[0.01364, —0.03203, 8.7¢ 47 (Forearm)
BICqy, 0.02531, —0.00878,0.11265]" (Global) 253.2
[0.01355, —0.03203, 8.9¢ 4|7 (Forearm)
BRA 0.0254, —0.14083,0.00771]" (Upper arm) | 621.4
[0.00606, —0.02557, 0.00216]" (Forearm)
BRD [—0.00742, —0.20239, 0.00833]* (Upper arm) | 133.3
[0.00311, —0.22186, 6.2¢ 4] (Forearm)
PT [—0.0141; —0.27551; —0.019476]"  (Upper arm) | 480
[0.0017, —0.09916, 0.01379]” (Forearm)
TRIL, | [-0.07363, —0.02957,0.115]" (Global) 153.4
[—0.02266, —0.01411,0.00175]”  (Forearm)
TRI; || [-0.01424,—0.07357,0.00589]" (Upper arm) | 1127.4
[—0.02341, —0.01397,0.00104]”  (Forearm)
TRIL, | [-0.01679,—0.20597,9.2¢~*]" (Upper arm) | 581.9
[—0.02272, —0.01423,0.00161)7  (Forearm)
Hand; || [0.005, —0.05, 0]" (Forearm) 300
[0.005, —0.05,0]” (Hand)
Hand, || [—0.005, —0.05,0]" (Forearm) 300
[—0.005, —0.05, 0]” (Hand)
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Table A.2: Denavit-Hartenberg parameters of the robotic arm for computation of the
end effector position.

i oo a0 dp 6
1 0 0 0 6,
2 0 L 0 6
30 l 0 04
4 0 I35 0 0

forces exerted to the robotic arm. In our case, « is the joint angles. The generalized
forces F' consists of the resulting torque 7 at the joints provided by the muscle forces

f;,j =1,...,10 and the frictional force —b@ at the joints:
F=1—-bx (A.5)

wher b € R! is the frictional coefficient. The torque 7 is computed by (2.2) in
chapter 2. Since the motion is constrained on the horizontal plane, the potential

energy is zero U = 0. The kinetic engergy of each link is computed by

- 1K

K, = *miHT’Cl 2+ *IIHZI'ZHQ (A6)
2 2

where m; and I; are the mass and the moment of inertia at the center of mass of the

link 7. 7% is the global position of the center of mass of link i. The center of mass is

assumed at the mid-point of each link. The resulting robot’s dynamics is

M (2(t))a(t) + C(2(t), 2(1))&(t) + G(2(t)) = 7(2(t), u(t), 1) (A7)

where z(t) € R, &(t) € R and &(t) € R™ are the joint angles, joint velocities and
joint accelerations, respectively.

Integration is carried out by Euler integration. Time step 0.001 second was used
in the simulation in chapter 3. Time step 0.01 second was used in the simulation

in both chapter 4 and chapter 5. The simulation platform was implemented using

MATLAB.
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