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Abstract

Musculoskeletal robots have flexible and compliant structure inspired by biolog-
ical creatures. They are capable of performing a variety of tasks, and can enhance
dexterity and safety in various situations, such as replacing human jobs to perform
dangerous and tedious tasks, and environments where robots work in close proximity
with human. However, technical difficulties of controlling the complex structure that
having many joints and muscles hinders development to practical applications. In
biological studies, it has been suggested that the central nervous system of verte-
brates simplifies control complexity by coordinating groups of muscle co-activations,
namely muscle synergies, to produce movements, instead of controlling muscles in-
dependently. This research studies control methods using muscle synergies for mus-
culoskeletal robots. First, in a case of controlling a musculoskeletal robot using an
optimal control theory, analysis of several sets of muscle synergies arising from op-
timizing muscle activations according to different optimization objectives is carried
out. Results show that muscle synergies can reduce control dimensionality while
maintaining control performance. Moreover, the analysis demonstrates that the mus-
cle synergies for performing a specific task can be extracted from muscle activations
optimized according to an energy-related optimization objective function that does
not include task-related variables. Second, the problem of how to extract muscle
synergies given a data sample of parameterized muscle activations that are randomly
initialized, without prior knowledge of robot dynamics is investigated; Most literature
assumes that muscle synergies can be directly extracted from a given data sample of
muscle activations that have inherent statistical regularities. A data preprocessing
method is proposed to estimate a set of muscle activations that produces the same
set of end-effector accelerations with minimum control efforts, from the randomly ini-
tialized parameterized muscle activations, based on system identification of the robot
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dynamics using a kernel-based regression technique. A data-driven controller is also
designed based on a sliding mode control technique to perform task space tracking
control task. Results show that muscle synergies can be extracted from the estimated
set of muscle activations, and can be utilized to control a musculoskeletal robot in
a reduced control dimensionality. The proposed method contributes to enabling ex-
traction of muscle synergies from data sample without statistical regularities. Third,
the problem of enabling a musculoskeletal robot to obtain muscle synergies by itself
is studied. Inspired by the motor skill learning in human infants, a data collection
method is proposed based on a goal-directed exploration strategy. During exploration
of designated targets spreading over an unknown task space, the robot is controlled
in a reduced control dimensionality using muscle synergies and the data-driven task
space tracking controller established from a local data sample. Results show that
the proposed method can enable the robot to obtain muscle synergies and to estab-
lish a low-dimensional controller by itself, making a step forward to the development
of autonomous musculoskeletal robots. Finally, this thesis concludes with several
current limitations and future directions. The main contribution of this thesis is the
investigation of the feasibility of control methods utilizing muscle synergies for a mus-
culoskeletal robot. This research would be the first step to the realization of robots
that can work in daily life.
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Chapter 1

Introduction

Musculoskeletal robots have flexible and compliant structure inspired by biological

creatures. This structure imparts dexterity, flexibility and versatility to the robots.

If the robots can be well controlled, these innate qualities can be brought out to

contribute in various situations, especially in scenarios that require multitasking and

safety. For instance, in tele-manipulation, a human-like musculoskeletal robots can

be sent to dangerous or distant environments. The musculoskeletal structure provides

possibilities of transferring operators’ natural movements to effectively perform a va-

riety of tasks [11]. The compliant musculoskeletal structure also can enhance safety

when robots work with humans in close proximity, such as in after-stroke rehabilita-

tion applications where an exoskeleton robot guides a patient’s limb to follow some

specific desired trajectories for therapy of movement recovery.

In considering control methods of musculoskeletal robots, learning from biological

creature comes naturally in mind. This thesis concerns with a bio-inspired concept

called muscle synergies; The central nervous system of vertebrates reduces control

complexity by coordinating muscle synergies, instead of muscles independently. This

research starts by analyzing performance of sets of muscle synergies with different

inherent properties in a particular optimization problem, subsequently investigating

how to obtain, and how to utilize muscle synergies in several engineering control

problems, towards the ultimate goal of development of musculoskeletal robots that

can work in daily life.
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1.1 Musculoskeletal robots

Musculoskeletal robots have skeletal structure actuated by force-controllable ac-

tuators. The skeleton is constituted by connecting bones with artificial joints to

provide a supportive structure for a robot, in contrast to vertebrates where bones are

connected by ligaments [1]. The force-controllable actuators mimic the contraction

mechanism of muscles in vertebrates, as opposed to conventional motors that provide

rotary actuation at joints. Linear actuators such as pneumatic artificial muscles the

McKibben muscles [2], electromagnetic linear actuators [3], or wire-driven type actu-

ators in which wires attached to bones directly driven by motor [4] are examples of

the force-controllable actuators.

The musculoskeletal structure is beneficial in various applications demanding for

flexibility and safety. For instance, a human-like robotic arm can perform a task

(e.g. holding an object) with different joint configurations. When there is sudden

change (e.g. an obstacle in a place block some configuration), the robotic arm can

still perform a task by changing to another admissible configuration. Within a close

proximity or during interaction with human, the force-controllable actuators can be

easily controlled or cut off to avoid undesired collision [5,6] thus enhance safety. The

musculoskeletal structure has biarticular actuation mechanism, where muscles actuate

distal bones (muscles across two joints rather than one joint). The biarticular actu-

ation mechanism has force output characteristics closer to human than conventional

rotary actuation mechanism, enhances safety especially enhances in wearable robot

applications [7]. A seven degree-of-freedom arm exoskeleton actuated by pneumatic

artificial muscles for arm movement recovery training [8] is an example in rehabil-

itation application. Recently, efforts have been put in developing human-machine

interface using electromyogram (EMG) signals to directly transfer operators’ natural

movements to remote robots in tele-operation applications [9, 10]. It is believed that

musculoskeletal robots that mimic biological actuation mechanism are more suitable

to transfer operators’ dexterity [11].

However, the control of musculoskeletal robots is difficult. Musculoskeletal robots
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usually have many actuators and many joints (degree-of-freedom). One difficulty

is that computing control signals to achieve a desired task is generally an ill-posed

problem, because the number of actuators is larger than the degree-of-freedom of

the robots. It is also difficult to obtain accurate analytical models of the flexible and

complicated musculoskeletal structure. This research particularly focuses on reducing

the control dimensionality, taking inspiration of a biological motor control concept,

namely muscle synergies.

1.2 Muscle synergies

How does the central nervous system (CNS) coordinate many muscles to produce

movements and to perform various motor tasks? This is one of the fundamental ques-

tions in the study of biological motor control. Because of the redundancies of the joints

and the muscles of musculoskeletal structure, there are many ways to accomplish a

motor task. A motor task can be achieved by one of the many joint configurations,

where each configuration can be attained by one of the many combinations of muscle

activations. These redundancies cause a problem to the CNS because the task re-

quirement provided is insufficient to select one of the infinite number of possible ways

to accomplish the motor task [12]. This problem is known as the degree-of-freedom

problem or the Bernstein’s problem [13].

It has been suggested that the CNS simplifies control complexity by organizing

control variables into modules [13, 14] such as spinal force field, kinematics strokes

and muscle synergies [15]. By coordinating muscle synergies, the CNS produces a

movement with fewer control variables; the CNS does not control each muscle inde-

pendently [16,17]. This section gives a brief introduction about how muscle synergies

can simply control complexity. Interpretations of muscle synergies are also mentioned.

1.2.1 Interpretations of muscle synergies

Muscle synergies are quantitatively studied by investigating statistical regularities

in measurements of muscle activations. In biological studies, the measurements are
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usually electromyogram (EMG) signals of motor tasks performed by a variety of

species [18, 19]. Two components, muscle synergies and muscle synergy activations,

are extracted from a given data sample of muscle activations. Common analyses

assume that a given data sample can be approximated by linear combination of a set

of muscle synergies. For the purpose of dimensionality reduction, it usually seeks for a

set of synergies where the number of synergies is smaller than the number of muscles.

The muscle activations are usually low-dimensional signals scaling the corresponding

muscle synergies.

There are two main interpretations of muscle synergies, namely the time-invariant

synergy and time-varying synergies. In the time-invariant synergies interpretation,

each muscle synergy specifies a fixed pattern of muscle co-activations of a group of

muscles. Time-invariant synergies are constant for all the time; they store spatial

information of muscles and are task-independent [20]. Time-invariant synergies can

be extracted by common linear matrix factorization tools. For instance, if principal

component analysis (PCA) is used, the principal components are the time-invariant

muscle synergies, and the corresponding scores are the synergy activations.

In the time-varying synergies interpretation, each muscle synergy specifies a se-

quence of muscle activations spanning for a particular duration of a group of muscles.

Therefore, a synergy can be an input signal for actuation; it contains spatiotemporal

information. The synergy activation defines the scale, time-lead/time-lag, and the

duration of a synergy. The activations for a group of muscles are given by superpos-

ing time-varying synergies after modification by synergy activations. The activations

can be either time-invariant or time-varying; This provides flexibility to adapt in-

herent regularities in a given data sample to provide better dimensionality reduction

performance. The extraction of the time-varying synergies needs more complicated

tools such as optimization process with specific constraints as demonstrated in [17].

Apart from the concept of muscles synergies, there is another interpretation of

modular control mechanism in the CNS called the “uncontrolled manifold” [21], stating

that the CNS coordinates elements (e.g. joint, muscles) that are task-related elements

and leaves others elements uncontrolled. Across trails, a task-dependent uncontrolled
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manifold can be observed from measuring the variance of all the elements. However,

this concept requires a controller acting in high-dimensional space [22] (because all

elements are controlled), which is different from the notion of control simplification

in this study.

1.2.2 Biological evidence

Biological studies focus on validating the hypothesis of muscle synergies. One com-

mon approach is to obtain EMG signals from specific motor tasks of a certain species,

followed by investigating the inherent statistical regularities; It is usually desired to

identify muscle synergies and synergy activations that have lower dimensionality than

the original number of muscles to approximate the acquired data sample.

To testify the muscle synergy hypothesis, various experiments have been carried

out in a variety of species. In analyses of frog hindlimb movements such as reflexive

motion [23], kicking [17], swimming, jumping, and walking [24], it has been reported

that both the identified time-varying synergies [17] and time-invariant synergies [23]

were directly related to the resulting kinematics characteristics. Further evidence

was found in cat postural experiments [25,26], where the time-invariant synergies ob-

tained from the EMG signals from a set of natural postural configurations to maintain

balance on a translating surface were consistent with that on a rotating surface, sug-

gesting that the synergies captured specific biomechanical functionalities. In primates

experiments, it was discovered that a small number of time-invariant synergies [27]

extracted from a grasping task were able to reconstruct the EMG signals measured

in other trials of the same task. A small number of time-varying synergies were also

capable of accounting for a variety of grasping tasks, and adaptive to describe novel

motor behaviors by tuning the scale and timing in the synergies [19].

The hypothesis of muscle synergies was also verified in human motor tasks. The

EMG-signals of reaching tasks in different speeds and directions could be approxi-

mated by linear combinations of a set of extracted synergies; Similar synergies were

found across subjects and with and without loading conditions [28, 29]. A similar

finding was reported in [30], where a small number of time-invariant synergies could
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explain the muscle activations in producing isometric forces by hand; The extracted

synergies were correlated to a particular force direction that the synergy activations

account for the amplitude of force. It has been also demonstrated that walking mo-

tions with different speeds and loading conditions could be explained by small number

of time-varying synergies, which were found correlated to the kinematics of foot [31,32]

Not all experiments support the muscle synergy hypothesis. In an experiment of

producing finger-tip force, it was found that the variance explained by each extracted

synergies (by PCA) from the measured EMG signals has non-negligible fluctuation

within trials, conflicting with the hypothesis that muscle activations are formed by

small number of muscle synergies. [33] It has been also argued that the identified

muscle synergies from EMG signals may be the consequence of task or biomechanical

constraints, unrelated to the neural coupling of muscles in the CNS [34], although

these results did not falsify the existence of a neural implementation of muscle syn-

ergies in the CNS.

More direct approach for testifying muscle synergy hypothesis has been conducted

by trying to locate the neural implementation of muscle synergies in the CNS (e.g.

motor cortex) when performing different motor tasks. Supportive evidence of mus-

cles synergies has been found in cats that the sequential activations of specific groups

of muscles were initialized and tuned by populations of neurons in the motor cor-

tex [18]. Similar findings were reported in the study of the relationship between

the neural activities in monkey’s brain and muscle activations during pointing and

reaching movements, where activations of groups of muscles that related to particular

functionalities were correlated to the discharge of individual neurons in the primary

motor cortex [35]. It was found that the time-invariant synergies extracted from the

EMG signals resulting from micro-stimulations of particular regions in the motor cor-

tex of two rhesus macaques were very similar to those identified from the reaching

and grasping motions of the other rhesus macaques. In comparing time-invariant syn-

ergies extracted from the arm movements performed by healthy and that performed

by brain-damaged patients, it was found that they are very similar, implying that

the synergies were implemented in the unimpaired regions in the CNS [36]. In an
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extension of the comparison to patients with more severe brain-damaged, the time-

invariant synergies were found to be varied in the forms of preservation, merging and

fractionation, indicating the CNS may response to the cortical damage [37]. A simi-

lar finding of preservation of synergy activations after stroke has also been reported

in [38].

One of the limitations of analysis of measured EMG signals is that it is difficult

to evaluate the feasibility of utilizing the extracted synergies to perform the observed

motor tasks or generalized motor tasks. The validation of the modular control is

usually carried out by reconstructing the observed data sample by a smaller number

of muscle synergies as bases; However, the reconstructed muscle activities may not

produce the same observed task [39]. Verifications using biologically plausible mus-

culoskeletal model have been adopted to overcome this deficiency. A mathematical

model of frog hindlimb was used in [40] in a synergies-based control scheme. It was

shown that a low-dimensional dynamical model captures the natural dynamics of the

frog hindlimb. Time-invariant synergies were obtained from data sample that was

representative to account for both the low- and full-dimensional dynamics with mini-

mum muscular effort. The synergies were found very similar to the synergies extracted

from jumping and swimming motions of intact frogs. And the control performance

of the low-dimensional control scheme using the proposed synergies was comparable

with the full-dimensional controller that activated each muscle independently. An

analysis was also conducted for human walking motion. It was reported that the

time-invariant synergies extracted from the EMG signals of walking could be used as

bases to reproduce walking kinematics and the ground reaction forces via a muscu-

loskeletal model of human legs [41,42], where the relative muscle activations and the

synergy activations were optimized such that the difference between the experimental

measurements and the forward simulation was minimized.

1.2.3 Relation to biological motor control

In addition the testification of the existence of muscle synergies, the relationship

between muscle synergies and the act of control has been studied. In the presented
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literature above, synergies were extracted from muscle activations of motor tasks,

which are the consequence of the act of control by the CNS. This indicates there is a

strong relationship between the existence of muscle synergies and the control strate-

gies adopted in the CNS. Here two control strategies, task-oriented control strategy

and optimal control strategy, that closely related to muscle synergies are introduced.

Internal models

How does the CNS produce muscle activations and movements? It has been sug-

gested that the CNS uses internal models [43] to process sensorimotor information

such as visual information, limb configurations, during motion planning, control, and

learning [44–47]. Internal models that predict consequences of actions (motor com-

mands) are known as forward models. For example, a forward model of arm dynamics

can predict arm joint angles and velocities given current joint angles, velocities and

motor commands [46]. Forward models have also been used to estimate unmeasurable

quantities such as internal forces in ligaments for understanding energy utilization in

walking simulation [48]. In contrast, internal inverse model acts as an controller,

which transforms desired consequences to actions (i.e. motor commands that can

achieve the desired consequences such as desired hand position trajectories) [49–51].

It has been suggested that muscle synergies simplify the representation and utiliza-

tion of the internal models in the CNS by providing basis functions, thereby reducing

the number of parameters to be processed in control [52]. For instance, for producing

fast movements, an internal inverse model may be acquired to form an open-loop

controller; Such controller can be synthesized by a small number of time-varying syn-

ergies [53]. Internal forward models provide estimations of the states and goal as

feedback signals for error correction [54]. The error correction can also be achieved

by coordination of muscle synergies [52, 55]. In a cat’s postural task study [56], it

was reported that the feasible force sets under the cat feet could be produced by a

small number of time-invariant synergies using a simulated 3D static hindlimb model,

suggesting that an internal model that produces postural force may coordinate time-

invariant synergies.
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Task-oriented control strategy

Task-oriented control strategy refers to the concept that the CNS focuses on

achieving better control accuracy in terms of the task-space coordinates such as a

position of a fingertip, rather than focuses on joint-space coordinates such as angles

of shoulder, elbow and wrist [57]. The CNS represents limbs (joint space) and targets

(task space) in different coordinates frames, and carries out transformation between

the reference coordinates frame during execution of a movement [58]. A question

about which coordinate frame (e.g. task-space coordinate frame which represents

positions, a finger, or joint-space coordinate frame which represents angles of a shoul-

der, elbow and wrist of an arm) is used in the CNS during movement generation,

has been mentioned in several literature [59, 60]. This concept has been investigated

by experimental measurements of variance during movements (e.g. reaching move-

ment). Because exerting control reduces error, the reference frame that revealed

smaller variance would be more likely the central nervous system used in movement

generation [61]. Several experimental studies also reported that variance in the task-

space was smaller than the variance in joint space, either in both human [62] and

animals [63]; This implies the CNS pays more attention to controlling the task space

variables than the joint space variables.

Analyses have related muscle synergies with task-related variables to the per-

formance of motor tasks. In [64], it was demonstrated that the EMG-signals of

human reaching movements in different directions and speeds could be represented

by a small number of time-varying synergies during the reaching movements and

time-invariant synergies at the end of a reaching task (to maintain posture); The

time-varying synergies were modulated in terms of the directions and speeds, im-

plying that the task-relevant sensory information and the dynamics of the system

could be incorporated into low-dimensional representation in the form of synergies to

simply control. The functionality of muscle synergies in a human postural task was

analyzed in [65]. In addition to the EMG signals of a person standing on a surface

under perturbation, the task-related variable, which measured reaction forces to the
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feet and the accelerations of the center of mass of the body, were included in the data

sample for extraction of the so-called functional muscle synergies (time-invariant). It

was found that the functional synergies extracted from one type of responses to the

perturbations (non-stepping responses) were similar and could be used to reconstruct

the EMG signals and the task-related variables of another type of responses (step-

ping responses), supporting the concept that muscle synergies are used to produce a

predictable biomechanical function [25].

Optimal control strategy

It has been suggested that the CNS produces movements optimally – It selects an

optimal control signal from the infinite number of solutions according to certain opti-

mal principle in performing a motor task. In the field of computational study of motor

control, an optimality principle called the minimum intervention principle [66,67], has

been proposed to relate the act of the task-oriented control strategy and the resulting

statistical regularities in control signals (e.g. EMG signals). It states that the op-

timization during generation of voluntary movements focuses on task-related control

variables (e.g. specific groups of muscles that produce reaching motion in desired di-

rections) and leaves task-unrelated control variables uncontrolled, which is related to

the concept of uncontrolled manifold [14,21]. Using an optimal control theory to solve

for solutions of a motor task [68–70], it has been demonstrated that a low-dimensional

control space that reflects task-relevant dynamics of system is naturally identified [71].

Related results have been reported in [56,72]. Based on an anatomically-realistic mus-

culoskeletal model of a cat, the muscle activations for keeping balance on a surface

under translational perturbations were found by optimization constraining the forces

and moments at the center of mass (task-related variables) while minimizing control

efforts. It was found that the extracted time-invariant synergies could predict the

EMG signals and the reaction forces on the surface observed experimentally, sug-

gesting that muscle synergies mechanism can reduce control dimensionality and can

achieve similar kinetics to the optimal solution.
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1.3 Related control methods in engineering

This section briefly introduces several control methods in engineering for control-

ling musculoskeletal systems, especially those related to the computational aspects of

control in vertebrates mentioned in section 1.2.3.

1.3.1 Optimal control theory

In the optimal control theory [73–75], the control problem is to find an optimal

control law such that an objective function is optimized (minimized/maximized) while

satisfying the robot dynamics itself, in contrast to common control problem that find-

ing a closed-loop feedback control law such that the dynamics system is stable along

with a given desired trajectory [76, 77]. Optimal control theory can solve for motion

planning and control at the same time. For example, in realizing point-to-point arm

reaching movement [78], there was no need to provide a pre-calculated desired tra-

jectory. The objective function, or cost-to-go function [75], for a standard optimal

control problem is composed of a cost at the final time (e.g. distance from a desired

position at final time step) and accumulative cost over a finite/infinite time interval.

The accumulative cost can be different from the definition of the cost at the final

time, such as the accumulative amplitude of joint angular velocities and/or control

efforts. In the biological studies, the optimal control theory is adopted to study dif-

ferent definition of the objective functions in producing movements, such as minimum

jerk model [79] and minimum torque-change model [80].

1.3.2 Task-space control

In task-space control, or operational space control, the control task of a robot

is to follow a give desired trajectory in task-space [81, 82] such as a desired robot

end effector position trajectory. Since the dimensionality of the task space is usually

lower than the joint space, there are infinitely many solutions (e.g. infinitely many

combinations of joint torque) to achieve the same desired task space trajectory. A
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task-space control law often consists of two components, a control term relating to the

main task goal such as desired end effector accelerations, and a null space control term

relating to a secondary goal such as joint stabilization [83] or posture control [84].

Essentially, task-space control laws can be implemented by learning-based approach.

In [85], a task-space tracking control law for computing necessary torque of a simu-

lated 7-DOF robotic arm to follow a figure of “8” trajectory was implemented, where

the compute torque was a combination of locally estimated inverse dynamics models

with weights computed by locally estimated forward dynamics models. In [86], a

real 7-DOF robotic arm was controlled by online-updated inverse dynamics models

estimated from local data in the vicinity of the current states of the robot.

1.3.3 Learning-based control approach

Techniques in machine learning allow implementation of controllers without know-

ing the robot structural parameters such as mass and link lengths, by utilizing forward

models or inverse model estimated from experimental data. In the field of robotics,

control algorithms are usually derived based on a dynamics model of a robot, which

relates the control input (e.g. torque input at joints) and states (e.g. joint angles,

velocities and accelerations) of the robot. The dynamic model can be analytically

obtained by using standard methods such as the Euler-Lagrange equation of mo-

tion [87]. However, because of the structural variability and the uncertainty about

physical parameters such as mass and link lengths, or because the states that fully

define the dynamics may not be observable [73], it is usually difficult to obtain an

exact dynamic model.

In model reference adaptive control [88, 89], a controller was updated based on

the error between the desired states and the output of a forward dynamics model,

which predicts the robot state in the next time step from an input action and a

current robot state. Applications of forward models can also be found in solving

optimal control problems such as model predictive control [90], in which an optimal

action was computed by minimizing an objective function summing the prediction
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error over a finite time step in the future; or in reinforcement learning [91], where the

forward model gave probability of occurrence of next state given an input action and

a current state. Inverse dynamics model, which gives actions (e.g. torque at joints)

required to move the robot from current state to a desired state, can be found in

various robotic application of such as computed torque control [76], where the inverse

dynamics model gives the torque required for a robot to follow a desired trajectory

(e.g. desired joint angles). If the inverse dynamics models exactly model the inverse

dynamics of the robot, precise control performance can be achieved. More advanced

techniques such as sliding mode control can offer tolerance for modeling inaccuracies

and unmodeled dynamics [77].

1.4 Applications of muscle synergies in engineering

The modular control approach based on muscle synergies motivates robotic re-

search to develop synergistic control strategies to reduce control complexity (in the

sense of reducing the number of control variable) for high dimensional robotic sys-

tems. In contrast to biological studies that the objective is to justify (or falsify) the

muscle synergies hypothesis, the objective in engineering is to develop controllers for

accomplishment of a variety of tasks. This section highlights several works in robotic

research that adopt the concept of muscle synergies.

One of the first synergies-based controllers was proposed in [92]. A control signal

of the actuators was given by linear combination of time-varying synergies. Each

synergy was defined by a single equilibrium point. This idea was inspired by a similar

proposal in biological studies [93,94] that the CNS plans and executes limb movement

as a temporal sequence of static attractor points for the limb. Various end-effector

trajectories of a simulated planar kinematic chain could be produced by suitable choice

of equilibrium points. Based on the same synthesis of synergies, a feedback controller

that was able to drive a simulated 2D planar kinematic chain to synergy equilibrium

position to follow the desired trajectory was proposed in [95]; The synergies were

obtained from analytical solutions of an optimal control problem.
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Obtaining muscle synergies from solutions of optimization problems can be found

in [96, 97]. In [96], an analysis was carried out on a simulated planar robotic arm.

Two sets of time-varying synergies extracted from optimal solutions of reaching tasks

and via-point tasks solved by optimal control theory. Comparison of the two sets of

synergies revealed that some synergies in the two sets were similar, suggesting that

synergies arise regardless of the task context, and implying optimal motor behaviors

can be efficiently generated by combinations of task-dependent and task-independent

synergies. The existence of such compositional optimal control laws has been proven

mathematically in [97]; For a certain class of stochastic optimal control problems

that have a particular form of the optimization objective function called the cost-to-go

function in defining a task, an optimal control law that is a linear combination of some

functions. These functions are the solutions of other optimal control problems and

can be represented as time-varying synergies (or primitives), although the acquisition

of such time-varying synergies is not provided.

The acquisition of time-varying synergies without given an system dynamics model

has been demonstrated in [98]. In the proposed hierarchical control scheme, muscle

synergies translate high-level control signals encoded in low-dimensionality to actual

muscle activations, via some internal variables that receive sensory signals; There

exists inverse model that maps the sensory signals to the muscle synergies. The

inverse model, as well as the time-varying synergies, can be learned from observed

data sample, and form a low-dimensional controller. However, whether the controller

can perform generalized tasks have not yet been testified. Reinforcement learning

can solve optimal control problem adaptively without given system dynamics [91,99].

Under the reinforcement learning framework, a composite control law is defined as a

linear combination of time-varying synergies; Each synergy is a parameterized control

policy. A given task is achieved by solving an associated Markov decision process to

determine optimal parameters in the composite control law that maximizes the ex-

pected reward. It was shown that the introduction of time-varying synergies facilitate

learning novel control policies, in a scenario that required a simulated muscle-actuated

planar robot to complete reaching tasks in the present of obstacles.
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One advantage of the time-invariant synergies is that they are simpler. Com-

paring with the time-varying synergies, they enable easier implementation of existing

feedback control techniques, since the time-invariant synergies encode fixed muscle co-

activations (spatial information) that a low-dimensional controller generates synergy

activations. Although encoding temporal information in the time-varying synergies

provides good dimensionality reduction performance, it is also more difficult to im-

plement feedback controller [20].

Taking the advantage of simplicity, feedback controllers based on time-invariant

synergies have been implemented in several works in robotic research. In the devel-

opment of the tendon-driven robotic ACT hand [100], time-invariant synergies were

adopted in a PID feedback controller that controled a finger-tip to follow a circular

trajectory on a virtual plane accurately. In addition to the use of muscle synergies

to reduce control dimensionality, the sensory signals were adopted to reduce the ob-

servation space, leading to a low-dimensional dynamical system where the feedback

controller was derived. Without the knowledge of robot dynamics, a learning-based

control scheme has been proposed in [101] to obtain muscle synergies using unsuper-

vised Hebbian-like algorithm and to learn a low-dimensional feedforward controller

based on supervised learning techniques; In the experiment of a single-joint robot

driven by four tendons connecting to independent motors, the time-invariant muscle

synergies were obtained from a data sample of robot responses of spontaneous single

muscle twitches with fixed amplitude and duration. The low-dimensional controller

was learned to minimize task error. In contrast to most literature where synergies

have been obtained from a data sample of movements with specific task goals, this

work demonstrates that time-invariant synergies can also be obtained from a data

sample that is not generated with specific task goals.

1.5 Research focuses

This thesis puts focuses on the extraction and utilization of time-invariant syn-

ergies. The objectives of research in robotics should focus on developing control
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methods that allow robotic systems to achieve a variety of tasks. Adopting time-

invariant synergies is a straightforward approach, also because they are simpler to

extract, and allow implementation of existing feedback control methods. Although

time-varying synergies are more flexible that may enhance dimensionality reduction

performance for specific data regularities, they require more complicated methods for

extraction and control. This thesis consists of three technical parts:

1. A feasibility study comparing muscle synergies arisen from different optimiza-

tion objective criteria in producing voluntary movements.

2. A method for extracting muscles synergies from movements actuated by ran-

domly parameterized control signals, and derivation of a task-oriented controller

utilizing the extracted muscle synergies, without the need of known analytical

model of a robot.

3. A data collection method that a robot can gather appropriate data sample by

itself for extraction of muscle synergies.

The first part investigates which optimization objective criteria are suitable defini-

tions for extracting muscle synergies. Muscle synergies have to be extracted from data

source before utilization for controlling musculoskeletal robots. In most literature, the

data source is given and it is assumed that muscle synergies can be extracted. As

mentioned in section 1.2.3, correlation (statistical regularities) between muscle activa-

tion, and thus the existence of muscle synergies, is closely related to the optimization

process by the central nervous system. A suitable definition of the objective func-

tion in the optimization of voluntary movement is important to the development of

extraction method.

Followed by the feasibility analysis, the second part focuses on developing a

method to extract muscle synergies without given analytical dynamics models of

the robot. In particular, extraction method from a data sample random movements

is of special interest, since it is usually easier to generate random movements. The

extraction method is developed based on the results obtained in the first part. A
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learning-based approach is adopted, where an estimation technique was formulation

in order to estimate the dynamics models of the robot. The estimated forward dy-

namics model contributes to the extraction of the muscles synergies, and an estimated

inverse dynamics model is used for control. A task-oriented control technique is also

derived for a musculoskeletal robot to track a desired trajectory of the end effector

position in task space.

Finally, the third part describes a data collection method which adopts goal-

directed exploration strategy. Towards the development of autonomous musculoskele-

tal robots, it is important to equip robot with self-learning ability. Inspired by the

efficient motor skill learning strategy by means of goal-directed exploration, a method

is proposed such that a musculoskeletal robot can collect data sample by trying to

reach pre-defined targets spreading over the task space successively. Using the col-

lected data sample, muscle synergies, the forward and inverse dynamics models of the

robot are obtained such that the robot is controlled in reduced dimensionality during

exploration. The proposed method enables a robot to gather data sample for extrac-

tion of muscle synergies by itself, paving a way for the development of autonomous

musculoskeletal robots that can work in daily life.

1.6 Thesis organization

Chapter 2 gives preliminaries. A musculoskeletal model used in this thesis is

described. Technical details of control methods, an estimation techniques and pattern

recognition tools for extracting synergies are provided.

Chapter 3 analyzes muscle synergies arisen from optimization according to several

objective criteria in generating voluntary movements. The optimization processes, to-

gether with a definition of optimization objective criteria for generating data source

for extracting muscle synergies, and control method for producing the voluntary move-

ment are described in detail.

Chapter 4 proposes the method for extracting muscle synergies without the need

of given data source and dynamics models of the robot. The procedure for extracting
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muscle synergies is elaborated. Estimation formulation and a task-space tracking

controller for a class of musculoskeletal systems are derived.

Chapter 5 presents the data collection method for extraction of muscle synergies

where the robot can gather data sample by itself, by adopting goal-directed explo-

ration strategy. The method is developed based on the method presented in Chapter

4. Detailed implementation is provided.

Chapter 6 concludes this thesis and provides the future plan.
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Chapter 2

Preliminaries

2.1 Dynamics modeling of musculoskeletal robots

A musculoskeletal robot is actuated by contraction forces provided by actuators

(muscles) attached to the skeleton. Generally, the dynamics of a musculoskeletal

robot in joint-space can be described by conventional rigid-body equation of motion:

𝑀
(︁
𝑥(𝑡)

)︁
�̈�(𝑡) + 𝐶

(︁
𝑥(𝑡), �̇�(𝑡)

)︁
�̇�(𝑡) +𝐺

(︁
𝑥(𝑡)

)︁
= 𝜏

(︁
𝑥(𝑡),𝑢(𝑡), 𝑡

)︁
(2.1)

where 𝑥(𝑡) ∈ ℜ𝑛𝑥 , �̇�(𝑡) ∈ ℜ𝑛𝑥 and �̈�(𝑡) ∈ ℜ𝑛𝑥 are the joint angles, joint velocities and

joint accelerations, respectively. 𝑡 is the time. This time argument will be dropped in

the later context for compact notation unless necessary. 𝑀
(︁
𝑥
)︁

is the inertia matrix.

Multiplying the matrix 𝐶
(︁
𝑥, �̇�

)︁
∈ ℜ𝑛𝑥×𝑛𝑥 by �̇� yields the centrifugal and Coriolis

forces. 𝐺
(︁
𝑥
)︁
∈ ℜ𝑛𝑥 is the gravity term. The control input to the actuators are

constrained to be nonnegative and upper bounded 0 ≤ 𝑢(𝑡) ≤ 𝑢𝑢𝑏.

Musculoskeletal robots are usually overactuated systems where the number of

actuators is larger than that of the joints 𝑛𝑢 ≥ 𝑛𝑥. The actuators provide �̄� contraction

forces 𝐹
(︁
𝑢, 𝑡

)︁
=
[︁
𝑓1, ..., 𝑓�̄�

]︁
∈ ℜ𝑛𝑦×�̄� when applying control input 𝑢 at time 𝑡, where

each column of 𝐹
(︁
𝑢, 𝑡

)︁
is a force vector in the fixed global coordinate frame

∑︀
𝑔𝑙𝑜𝑏𝑎𝑙.

𝑛𝑦 = 2 and 𝑛𝑦 = 3 if the robot works in a two and three dimensional task space,

respectively. 𝜏
(︁
𝑥,𝑢, 𝑡

)︁
∈ ℜ𝑛𝑥 is the resulting torque at the joints when applying
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Figure 2-1: A 2-link robot actuated by one muscle. The two links are represented
by the two rods and the revolution joint is depicted as the circle. (a) When there is
no muscle wrapping, joint torque is produced by 2 forces exerting at the two muscle
attachment points. (b) When there is muscle wrapping, joint torque is produced by 4
forces exerting at the two muscle attachment points (A and D) and the two tangent
points at the joint.

control input 𝑢 ∈ ℜ𝑛𝑢 at joint angles 𝑥 at time 𝑡. The torque 𝜏 is linearly related to

the contraction forces 𝐹 :

𝜏
(︁
𝑥,𝑢, 𝑡

)︁
=

�̄�∑︁

𝑗=1

Ξ𝑗

(︁
𝑥
)︁
𝑓𝑗 (2.2)

where Ξ𝑗

(︁
𝑥
)︁
∈ ℜ𝑛𝑥×𝑛𝑦 is a matrix depends on the positions where the forces 𝑓𝑗 exert

to the skeleton. Let �⃗�𝑗 be a position vector where 𝑓𝑗 exerts at with respect to the

global coordinate frame
∑︀

𝑔𝑙𝑜𝑏𝑎𝑙, the rows of Ξ𝑗 are the partial derivatives of with

respect to the joints 𝑥:

Ξ𝑗

(︁
𝑥
)︁

=
[︁ 𝜕

𝜕𝑥1
�⃗�𝑗, ...,

𝜕

𝜕𝑥𝑛𝑥

�⃗�𝑗
]︁𝑇

(2.3)

where 𝑇 denotes the transpose operation. The number of forces �̄� depends on the

configuration 𝑥 of the robot. More forces are exerted to the skeletal when muscle

wrapping at the joints occurs. Fig. 2-1 depicts an example of a 2-links robot

actuated by a muscle for the cases without and with muscle wrapping at the joint.

The overall dynamics depends on the characteristics of the actuators that how the

contractile force 𝑓𝑗 relates to the control input 𝑢𝑗. Throughout this thesis, actuators
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with contraction forces linearly related to the control input without time delay are

considered:

‖𝑓𝑗‖ = 𝑐𝑗𝑢𝑗 (2.4)

where 𝑐𝑗 is a nonnegative scalar specifying the maximum amplitude of the force that

the actuator 𝑗 can produce. Equation (2.4) can model a simple muscle that has inex-

tensible tendon such as the rigid-tendon models in [102]. Because this research focuses

on investigating how muscle synergies can reduce control complexity by dimensional-

ity reduction, the above simple linear muscle model (2.4) is adopted. Common muscle

models having dynamics of contraction [103, 104] that introduce unobservable states

into the robot dynamics are out of the scope of the present work.

The dynamics of a musculoskeletal robot with actuators having linear input-output

relationship (2.4) can be described by the following nonlinear equations where the

equation of motion is affine in control 𝑢:

�̈�(𝑡) = 𝑓
(︁
�̃�
)︁

+ 𝑔
(︁
�̃�
)︁
𝑢

𝑦 = ℎ
(︁
𝑥
)︁

...

𝑦(𝑡) = 𝛼
(︁
�̃�
)︁

+ 𝛽
(︁
�̃�
)︁
𝑢

(2.5)

where �̃� = [𝑥𝑇 , �̇�𝑇 ] ∈ ℜ2𝑛𝑥 , 𝑦 ∈ ℜ𝑛𝑦 is the position of the end effector with respect

to the fixed global frame
∑︀

𝑔𝑙𝑜𝑏𝑎𝑙. The muscle activation, i.e. the control input 𝑢, are

nonnegative and bounded such that 0 ≤ 𝑢(𝑡) ≤ 𝑢𝑢𝑏. 𝑓
(︁
�̃�
)︁
∈ ℜ𝑛𝑥 , 𝑔

(︁
�̃�
)︁
∈ ℜ𝑛𝑥×𝑛𝑢

and ℎ
(︁
�̃�
)︁
∈ ℜ𝑛𝑦 are nonlinear functions obtained by substituting (2.4) and (2.2)

followed by rearranging (2.1). The last equation in (2.5), which is the dynamics in

task space, is obtained by differentiating the second equation twice with respect to

time 𝑡 followed by eliminating the term �̈� using the first equation. 𝛼
(︁
�̃�
)︁
∈ ℜ𝑛𝑦 and

𝛽
(︁
�̃�
)︁
∈ ℜ𝑛𝑦×𝑛𝑢 are also nonlinear functions. A vector 𝑦 = [𝑦𝑇 , �̇�𝑇 ] ∈ ℜ2𝑛𝑦 will

be used in the thesis for compact notation. Throughout this thesis, the nonlinear

system (2.5) is considered.
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2.2 Extraction of muscle synergies

Extraction of muscle synergies can be achieved by matrix factorization. Precisely,

a set of 𝑁 sample points of 𝑛𝑢-dimensional control signals {𝑢𝑖}𝑁𝑖=1 can be recon-

structed by linear combinations of 𝑛𝑢 vectors {𝑤𝑗}𝑛𝑢

𝑗=1 without loss of information:

𝑢𝑖 =
𝑛𝑢∑︁

𝑗=1

(︁
𝑤𝑗𝑎𝑖𝑗

)︁
+ 𝑤0 (2.6)

where 𝑤0 ∈ ℜ𝑛𝑢 is a constant vector. The vectors {𝑤𝑗}𝑛𝑢

𝑗=1 ∈ ℜ𝑛𝑢 are the muscle

synergies and the 𝑛𝑢 scalars {𝑎𝑖𝑗}𝑛𝑢

𝑗=1 are the corresponding synergy activations for

reconstructing the sample point 𝑢𝑖. The extracted muscle synergies are groups of

muscle co-activations.

If all the control signals {𝑢𝑖}𝑁𝑖=1 lie close to a 𝑀 -dimensional manifold of lower

dimensionality than that of the original data space, the control signals can be ap-

proximated by linear combinations of fewer 𝑀 muscle synergies

𝑢𝑖 ≈
𝑀∑︁

𝑗=1

(︁
𝑤𝑗𝑎𝑖𝑗

)︁
+ 𝑤0

= W𝑎𝑖 + 𝑤0

(2.7)

where W ∈ ℜ𝑛𝑢×𝑀 contains 𝑀 of the 𝑛𝑢 vectors in {𝑤𝑗}𝑛𝑢

𝑗=1 and 𝑎𝑖 ∈ ℜ𝑀 is the

𝑀 -dimensional of synergy activations. The remaining 𝑛𝑢−𝑀 synergies are stored in

W⊥ℜ𝑛𝑢×(𝑛𝑢−𝑀) such that W ∪W⊥ = {𝑤𝑗}𝑛𝑢

𝑗=1.

Nonnegative matrix factorization (NMF) [105] is one of the widely used tools

for extraction of muscle synergies in biological studies [25, 106]. Given nonnegative

control signals {𝑢𝑖}𝑁𝑖=1, NMF extracts nonnegative muscle synergies {𝑤𝑗 ≥ 0}𝑛𝑢

𝑗=1 and

nonnegative synergy activations {𝑎𝑖𝑗 ≥ 0}𝑛𝑢

𝑗=1 such that

𝑢𝑖 =
𝑛𝑢∑︁

𝑗=1

𝑤𝑗𝑎𝑖𝑗 (2.8)

where the vector 𝑤0 in (2.7) becomes zeros in in this case. The nonnegative nature
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provides direct insights how the actuators are coordinated in the extracted synergies.

Principal component analysis (PCA) is another widely used tool for extraction of

muscle synergies [34, 35, 107]. It extracts muscle synergies as the orthogonal bases,

which are known as the principal components, that the first principal component is

colinear with the direction having the maximum variance of the data [108] such that

𝑢𝑖 =
𝑛𝑢∑︁

𝑗=1

𝑤𝑗𝑎𝑖𝑗 + �̄� (2.9)

where {𝑤𝑗}𝑛𝑢

𝑗=1 are the principal components and the vector 𝑤0 in (2.7) becomes the

mean value �̄� of {𝑢𝑖}𝑁𝑖=1. PCA is mainly employed in literature for the purpose of

dimensionality reduction.

Other various matrix factorization techniques such as independent component

analysis (ICA) [109, 110], factor analysis [111] (FA) have been used in the literature

to extract muscle synergies. This thesis focuses on the functionality of dimensionality

reduction, therefore the widely used tool NMF is employed in chapter 3 for addi-

tional purpose of understanding physical meaning of muscle coordination, and PCA

in chapter 4 and chapter 5 for its algorithmic simplicity and the ease of implementa-

tion, respectively.

2.3 Control methods

Control of a robot refers to finding appropriate control inputs of the actuators in

order to achieve a specific task. In this thesis, control techniques in optimal control

theory and task space tracking control are applied for analysis of muscle synergies.

This section gives a brief introduction about the optimal control theory and task

space tracking control, and discuss the difficulty of using them in musculoskeletal

robots.
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Figure 2-2: Schematic diagram of optimal control.

2.3.1 Optimal control theory

In optimal control theory, a control task is achieved by solving an optimization

problem which in a cost-to-go function (or performance index) defining the task is

minimized (or maximized), with given robot’s dynamics model given. In the case of

musculoskeletal robots, given the known dynamics model (2.5), an optimal controller

(control law) is obtained by minimizing a cost-to-go function 𝐽 in the following form

𝐽
(︁
𝑥(𝑡0)

)︁
=𝑙𝑓𝑖𝑛𝑎𝑙

(︁
𝑥(𝑇 ), �̇�(𝑇 ),𝑦(𝑇 ), �̇�(𝑇 )

)︁

+
∫︁ 𝑇

𝑡0
𝑙
(︁
𝑥(𝑡), �̇�(𝑡),𝑦(𝑡), �̇�(𝑡),𝑢(𝑡)

)︁
𝑑𝑡

(2.10)

where 𝑡0 and 𝑇 are the start and end time of the control task. 𝑙𝑓𝑖𝑛𝑎𝑙 defines the cost

at the end time and 𝑙 defines the cost at intermediate time 𝑡.

Motion planning is carried out simultaneously when solving for optimal control

𝑢*(𝑡). 𝑢*(𝑡) is obtained by solving the optimization problem in backward time man-

ner, such that the resulting trajectories of 𝑥(𝑡), �̇�(𝑡), 𝑦(𝑡) and �̇�(𝑡) are optimal with

respect to 𝐽 . Fig. 2-2 shows a schematic diagram of optimal control.

For example, consider a Linear Quadratic Regulator (LQR) setting:

˙̃𝑥(𝑡) =A�̃�(𝑡) + B𝑢(𝑡)

𝐽 =
1

2
�̃�𝑇 (𝑇 )P�̃�(𝑇 ) +

1

2

∫︁ 𝑇

𝑡0

(︁
�̃�𝑇 (𝑡)Q�̃�(𝑡) + 𝑢𝑇 (𝑡)R𝑢(𝑡)

)︁ (2.11)

where A = 𝑓
(︁
�̃�
)︁
�̃�, B = 𝑔

(︁
�̃�
)︁

(compared with (2.5)). P and Q are symmetric,

positive semidefinite matrices. R is symmetric, positive matrix. The optimal control
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law for the LQR problem (2.11) is given by:

𝑢*(𝑡) =−K(𝑡)�̃�(𝑡)

K(𝑡) =R−1B𝑇S(𝑡)
(2.12)

where S(𝑡) is the solution of the Riccati equation

−Ṡ(𝑡) = S(𝑡)A + A𝑇S(𝑡)− S(𝑡)BR−1B𝑇S(𝑡) + Q, 𝑆(𝑇 ) = P (2.13)

which is solved in the backward time manner. When there is no time limit 𝑇 = ∞,

the problem is called the infinite horizon problem and S(𝑡) is the unique solution of

the Algebraic Riccati equation 0 = S(𝑡)A + A𝑇S(𝑡) − S(𝑡)BR−1B𝑇S(𝑡) + Q. That

is, the unique solution for Ṡ(𝑡) = 0.

Solving for optimal control problems is generally difficult, because analytical so-

lutions cannot be found in many cases, and the computation requirement dramati-

cally increases with the duration of the time interval [𝑡0, 𝑇 ] and the dimensionality

of the state space. There are several numerical approaches for solving optimal con-

trol problems. Indirect methods in which induced boundary-value problem is solved

through iterations of integrations of the robot forward dynamics and so-called back-

ward costate equations [112]. Direct methods where optimal control problems are

discretized and transformed into nonlinear programming problems [113]. Dynamic

programming (DP) is a well-known method that solves optimal control problems

based on Bellman’s principle of optimality that limits the number of potentially op-

timal control strategies, however, it still encounters the curse of dimensionality that

hinders practical applications for high dimensional systems [114].

Utilizing muscle synergies, the dimensionality of the control space can be reduced.

Using (2.7) to substitute the control variable 𝑢 in the robot dynamics (2.5) and

the cost-to-go function definition (2.10) to 𝑎 which has lower dimensionality 𝑀 ≤
𝑛𝑢. The resulting optimal control problem can then easier be solved in the reduced

dimensionality.
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2.3.2 Task-space tracking control

The control task of task-space tracking control is to follow a pre-defined task space

trajectory, in contrast to the optimal control problem where a task space trajectory is

implicitly computed during solution solving. The control problem is to find a control

law to track a pre-defined task space trajectory 𝑦*(𝑡) =
[︁
𝑦*(𝑡), �̇�*(𝑡)

]︁
in time interval

𝑡 ∈ [𝑡0, 𝑇 ] such that the tracking position error 𝑒(𝑡) = 𝑦(𝑡)−𝑦* and the velocity error

�̇�(𝑡) = �̇�(𝑡)− �̇�* are limited by small values 𝜖1 and 𝜖2:

∀𝑡 ≥ 0, |𝑒(𝑡)| ≤ 𝜖1, |�̇�(𝑡)| ≤ 𝜖2, 𝜖1 > 0, 𝜖2 > 0. (2.14)

where | · | is an entry-wise operator returning absolute values.

Consider the musculoskeletal robot (2.5). In order to track a given desired task

space trajectory 𝑦*(𝑡), 𝑡 ∈ [𝑡0, 𝑇 ] with corresponding desired acceleration 𝑦*(𝑡), the

control input at time 𝑡 must satisfy the task space dynamics in the last equation

in (2.5). The general solution can be expressed as:

𝑢(𝑡) = 𝛽†
(︁
�̃�(𝑡)

)︁[︁
𝑦*(𝑡)− 𝛼

(︁
�̃�(𝑡)

)︁]︁
+
[︁
I− 𝛽†

(︁
�̃�(𝑡)

)︁
𝛽
(︁
�̃�(𝑡)

)︁]︁
𝜉 (2.15)

where 𝛽†
(︁
�̃�(𝑡)

)︁
is the Moore-Penrose inverse of 𝛽

(︁
�̃�(𝑡)

)︁
, I is the identity matrix. 𝜉

is an arbitrary vector. In ideal case where the robot can be exactly modeled by (2.5)

and the nonlinear functions 𝑓 , 𝑔, ℎ, 𝛼 and 𝛽 are exactly correct, the control law (2.15)

can achieve tracking the desired trajectory 𝑦*. In reality, it is impossible to obtain

exact model of the robot. One common usual approach in engineering is to add a

feedback control term 𝑢𝑓𝑓 (𝑡) to (2.15) such that the error dynamics [83,115,116]:

𝑒 + K𝑣�̇� + K𝑝𝑒 = 0 (2.16)

is stable, i.e. 𝑒→ 0 as 𝑡→ 0, where K𝑣 and K𝑝 are the control gain matrices.

The resulting tracking control law 𝑢(𝑡) consists of three components:

𝑢(𝑡) = 𝑢𝑓𝑓 (𝑡) + 𝑢𝑓𝑏(𝑡) + 𝑢𝑛𝑢𝑙𝑙(𝑡) (2.17)

26



RobotFeedback	

Feedforward	

Null	space

+

Desired 
trajectory +

+

y⇤, ẏ⇤
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Figure 2-3: Schematic diagram of task space tracking control.

where 𝑢𝑓𝑓 (𝑡) = 𝛽†
(︁
�̃�(𝑡)

)︁[︁
𝑦*(𝑡) − 𝛼

(︁
�̃�(𝑡)

)︁]︁
is the feedforward control term (the first

term in (2.15)), which is responsible for achieving desired acceleration 𝑦* in the task

space. This feedforward control term can be computed either from given analytical

model of the robot dynamics (functions 𝛼
(︁
�̃�(𝑡)

)︁
and 𝛽

(︁
�̃�(𝑡)

)︁
), or estimated from data.

In adaptive control approach [77], this term is updated online from new measurement

data to adapt environmental changes. 𝑢𝑛𝑢𝑙𝑙(𝑡) =
[︁
I − 𝛽†

(︁
�̃�(𝑡)

)︁
𝛽
(︁
�̃�(𝑡)

)︁]︁
𝑢0, where

𝜉 = 𝑢0, is the null space control term (the second term (2.15)), which acts in the null

space of 𝛽
(︁
�̃�
)︁

such that the tracking performance in the task space is not interfered.

The null space control term is used for joint stabilization and achieving secondary

task goal that is defined by 𝑢0. It has been demonstrated that the joints can be

“pulled” to desired joint angles [116]. 𝑢𝑓𝑏 is the feedback control term responsible

for compensating modeling error to achieve asymptotic tracking in task space. In

chapter 5, the feedback control term is designed based on sliding mode control [77]

approach. Fig. 2-3 shows a schematic diagram of task space tracking control.

Utilizing muscle synergies (2.7), the computation of the tracking control (2.17) can

be reduced by decreasing the control dimensionality similar to the case in optimal

control. The computation of the tracking control (2.17) involves computation of the

pseudo inverse of 𝛽
(︁
�̃�
)︁
∈ ℜ𝑛𝑦×𝑛𝑢 (also inversion of 𝑔

(︁
�̃�
)︁
∈ ℜ𝑛𝑦×𝑛𝑢 may be needed

for the null space control term). The computation cost of the pseudo inverse can be

reduce by reducing the matrix 𝛽
(︁
�̃�
)︁
∈ ℜ𝑛𝑦×𝑛𝑢 to a 𝑛𝑦 ×𝑀 matrix.
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Chapter 3

Analysis of muscle synergies and its

utilization for generation of optimal

movements

This chapter verifies the feasibility of utilizing muscle synergies to reduce the con-

trol dimensionality in controlling a musculoskeletal robot. One of the main difficulties

in controlling musculoskeletal robots is to determine the appropriate control inputs

to the many actuators. It has been suggested that human reduces control dimension-

ality by coordinating groups of muscle co-activations called muscle synergies, instead

of controlling muscles independently. In this chapter, the feasibility is investigated

in simulation experiments, where control performance is compared between utilizing

different sets of muscle synergies, which are extracted from sequences of control sig-

nals having particular inherent characteristics that actuate the robot’s end effector to

produce omnidirectional movements in the task space. In the experiments, a human-

like robotic arm utilized a set of muscle synergies to move the end effector to a set

of targets spreading in the task space of the robot, where the control signals were

determined by minimizing the final distance from a target and the minimum control

effort. Among five sets of muscle synergies being investigated, it was found the robot

could be controlled utilizing the following two sets of muscles synergies: 1) The goal-

related synergies, which were extracted from a data sample of optimized movements
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that had minimum distances from targets at the final time step and minimum total

control effort spent, where the control inputs to actuate the robot was determined by

an algorithm in the optimal control theory. 2) The energy-efficient synergies, which

were extracted from a data sample of optimized movements according to a fitness

function defined as the ratio between kinetic energy and the movement and control,

where genetic algorithm was employed for the optimization. In the above two cases,

it was found that the control dimensionality could be reduced from 10 to 5 in reaching

a set of targets ranging 30cm to 40cm away from the initial end effector positions.

The success of utilizing the goal-related synergies implies muscle synergies extracted

from control signals that are optimized to achieve specific task goals can be utilized

to reduce control dimensionality in achieving the same task goals. The success of uti-

lizing the energy-efficient synergies implies that goal-directed tasks could be achieved

by muscle synergies extracted from optimized control signals with respect to energy

efficiency, regardless of whether task goals are specified in the optimization.

3.1 Introduction

Musculoskeletal robots are expected to have the ability to behave like biological

creatures because of their similar mechanical structures. The control of such complex

structure is also difficult.

Within the field of human motor control research, the hypothesis of muscle syn-

ergies [117–119] has been proposed as a solution to the degree-of-freedom problem.

Among many interpretations of muscle synergies, one suggests that many muscles

are not controlled individually, but a few groups of muscles with specific activation

patterns, namely muscle synergies, are coordinated. Control can then be simplified

by coordinating fewer control variables in terms of muscle synergies.

Several works have shown that human-like goal-directed movements can be pre-

dicted by the optimal control theory [68, 120, 121]. But the curse of dimensional-

ity [122] in solving the optimal control problem is still one of the main difficulties to

be overcome in engineering.
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In this chapter, application of muscle synergies in controlling musculoskeletal

robotic system by optimal control is studied. Special attention is paid to the fol-

lowing problems: 1) Can muscle synergies facilitate the solving of optimal control

problem? 2) What properties should muscle synergies have in order to achieve tasks?

3) How should muscle synergies be utilized better?

In addition to the control complexity reduction by utilizing muscle synergies, the

main contributions of this research are the understanding of inherent properties of

muscle synergies and the ways to obtain the muscle synergies. The performance is

analyzed by utilizing two types of muscle synergies, namely goal-related synergies

and goal-unrelated synergies. The former ones are extracted from solutions optimized

according to the cost-to-goal function specified as task goals, whereas the latter ones

are extracted from solutions optimized according to different fitness criteria having

different meanings of “movement fitness” instead of explicit task goals. Moreover,

since the goal-unrelated synergies are obtained according to different optimization

criteria, successful achievement of some particular tasks utilizing the goal-unrelated

synergies would imply that muscle synergies can be extracted by other methods (e.g.

GA), rather than from solutions of the optimal control problem.

Similar studies on muscle synergies properties can be found in [96], where the

muscle synergies were obtained from optimal control solutions only. They studied the

time-varying synergies which represent the spatiotemporal actuation pattern. In con-

trast, time-invariant synergies are studied in this chapter. A time-invariant synergy

represents a spatial muscle co-activation pattern. In order to achieve a novel task,

time-invariant muscle synergies might be better because they are task-independent.

To achieve a (novel) task, the time-invariant synergies are coordinated by the cor-

responding time-varying synergy activations, which possess task-related information

and are determined by a controller in use.
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3.2 Optimal control utilizing muscle synergies

This chapter considers a control task of a musculoskeletal robot end effector. The

control task is a reaching task that the robot is required to move the end-effector to

a target position 𝑦* and with desired velocity �̇�* from joint configuration 𝑥(𝑡0) from

starting time 𝑡0. The reaching task is achieved by solving the following optimal control

problem for the musculoskeletal system (2.5), where the optimal muscle activation

𝑢*(𝑡) is sought to minimize the cost-to-go function 𝐽 (𝑥(𝑡0)):

�̈�(𝑡) = 𝑓
(︁
�̃�(𝑡)

)︁
+ 𝑔

(︁
�̃�(𝑡)

)︁
𝑢(𝑡)

𝑦(𝑡) = ℎ (𝑥(𝑡))

�̇�(𝑡) =
𝜕

𝜕𝑡

(︁
ℎ (𝑥(𝑡))

)︁

𝐽 (𝑥(𝑡0)) = 𝑙𝑓𝑖𝑛𝑎𝑙
(︁
𝑦(𝑇 ),𝑦*

)︁
+
∫︁ 𝑇

𝑡0
𝑙 (𝑢(𝑡)) 𝑑𝑡

(3.1)

where 𝑥, �̇� and �̈� are joint angles, joint velocities and joint accelerations, respectively.

�̃� = [𝑥𝑇 , �̇�𝑇 ]. 𝑢 specifies the muscle activations to the muscles, where the muscle

activations are nonnegative and bounded by an upper limit 𝑢𝑢𝑏 such that 0 ≤ 𝑢 ≤
𝑢𝑢𝑏. 𝑦 = [𝑦𝑇 , �̇�𝑇 ]. 𝑦* is the target position and velocity. 𝑡0, 𝑇 , 𝑙𝑓𝑖𝑛𝑎𝑙 and 𝑙 denote start

time, final time, final state cost and instantaneous cost, respectively. The functions

𝑓 , 𝑔 and ℎ describe the robot dynamics and observer, respectively. With the aid of

muscle synergies, the control dimensionality can be reduced. The nonlinear optimal

control framework iterative Linear Quadratic Gaussian (iLQG) [123] was adopted to

solve for optimal solutions.

Because biological muscles can only provide contraction forces and have non-

negative control signals, all the actuator inputs 𝑢(𝑡), the synergies W and synergy

activations 𝑎(𝑡) are constrained to be non-negative for better understanding of the

muscles (actuators) activations in solutions and mimic biological control system. The

nonnegative muscle synergies are extracted by using nonnegative matrix factorization

(NMF). The extraction will be explained later in section 3.3. A muscle synergy

extracted by NMF represents a synchronous activation pattern of a group of actuators
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Figure 3-1: Schematic diagram of the control method utilizing muscle synergies.
When the robot is controlled in the original dimensionality (the upper figure), the
controller computes muscle activations that actuate and move the robot to the target
end-effector position and velocity based on the feedback of the robot states. When
synergies are used (the lower figure), the controller computes the synergy activations,
which have lower dimensionality than the muscle activations. The synergies trans-
form the synergy activations to the muscle activations, which actuate and move the
robot to the target end-effector position and velocity.

(muscles). Control signals of 𝑛 actuators can be approximated as linear combinations

of 𝑀 (𝑀 ≤ 𝑛) muscle synergies:

𝑢(𝑡)≈
𝑀∑︁

𝑗=1

𝑤𝑗𝑎𝑗(𝑡) = W𝑎(𝑡) (3.2)

where 𝑢(𝑡) ∈ ℜ𝑛 is the actuator input at time 𝑡, 𝑤𝑗 ∈ ℜ𝑛𝑢 and 𝑎𝑗(𝑡) ∈ ℜ1 are synergy

𝑗 and the corresponding synergy activation, respectively. W is an 𝑛𝑢 ×𝑀 matrix

that collects all 𝑀 synergies, and is constant for all time 𝑡.

Given a set of synergies W ∈ ℜ𝑛×𝑀 where𝑀 < 𝑛, the control space is transformed

into one with lower dimensionality as shown in equation (3.2). Then the optimal
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control problem can be solved in lower dimensionality with respect to 𝑎 ∈ ℜ𝑀 :

�̈�(𝑡) = 𝑓
(︁
�̃�(𝑡)

)︁
+ 𝑔

(︁
�̃�(𝑡)

)︁
W𝑎(𝑡)

𝑦(𝑡) = ℎ
(︁
𝑥(𝑡)

)︁

𝐽 (𝑥(𝑡0)) = �̃�
(︁
𝑦(𝑇 ),𝑦 *

)︁
+
∫︁ 𝑇

0
𝑙
(︁
W𝑎(𝑡)

)︁
𝑑𝑡

(3.3)

where the optimal synergy activation 𝑎*(𝑡) is sought such that the cost-to-go function

𝐽(𝑥(𝑡0)) is minimized.

Fig. 3-1 depicts the schematic diagrams controlled by the iLQG controller in orig-

inal dimensionality and in reduced control dimensionality via muscle synergies.

3.3 Muscle synergies with different properties

This chapter analyzes different synergies extracted from movements that are gener-

ated in different ways. Three types of muscle synergies, namely goal-related synergies,

goal-unrelated synergies and random synergies will be analyzed in this chapter. The

ways generating different movements to extract the three types of muscle synergies

are described.

3.3.1 Extracting muscle synergies

NMF is adopted to extract synergies, such that the root-mean squared residual

(‖U0−U𝑀‖𝑓/(𝑁𝑢))1/2 between the original signals U0 and the reconstructed signals

U𝑀 = W𝑀A𝑀 is minimized, where 𝑁𝑢 is the number of elements in the matrix

U0 (or U𝑀), W𝑀 ∈ ℜ𝑛×𝑀 is the set of 𝑀 synergies extracted, A𝑀 ∈ ℜ𝑀×(𝑁𝑢/𝑛)

is the corresponding synergy activations. Extraction is performed by function nnmf

in the MATLAB statistic toolbox. For example, a synergies set W𝑀 ∈ ℜ𝑛×𝑀 can

be extracted from 𝑟 movement, by applying NMF to a control signal matrix U0 =

[𝑢0
1,𝑢

0
2, ...,𝑢

0
𝑟] concatenated from all 𝑟 movements which are gathered based on a

certain criterion, where 𝑢0
𝑗 , 𝑗 = 1, ..., 𝑟 is the series of control signals of movement
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Figure 3-2: A set of 3 synergies extracted by NMF (𝑀 = 3). Each synergy is time
invariant, specifying synchronous activations of all the 10 muscles.

with index 𝑗. All synergies extracted by NMF are then normalized as follows

𝑤𝑖𝑗 ←
𝑤𝑖𝑗√︁∑︀𝑛

𝑘=1(𝑤𝑘𝑗)2
(3.4)

where W = {𝑤𝑗, 𝑗 = 1, ...,𝑀}, and 𝑤𝑗 = {𝑤𝑖𝑗, 𝑖 = 1, ..., 𝑛}. In the following sections

it will be described in detail how to gather movements and obtain different synergies

by using different criteria. Fig. 3-2 depicts an example of a set of synergies consisting

of 3 synergies.

3.3.2 Type 1: goal-related synergies

goal-related synergies are extracted from the optimal control solutions of (3.1),

that is, the optimal solutions without utilizing synergies. It is named as “goal-related”

because they are extracted from the optimal solutions of (3.1), having the property of

achieving a goal that is explicitly specified in the cost-to-goal function. (e.g. reaching

targets in Cartesian coordinates). It is reasonable that the same goals can be achieved

by utilizing goal-related synergies. The goal-related synergies are denoted as W𝑀
* ∈

ℜ𝑛×𝑀 where 𝑛 and𝑀 are the dimension of control signals and the number of synergies

extracted, respectively.
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3.3.3 Type 2: goal-unrelated synergies

goal-unrelated synergies are extracted from control signals of movements that are

generated by optimizing movements according to specific movement fitness criteria.

The movement fitness is not related to any explicit task goal such as targets in Carte-

sian coordinates. Therefore, the resulting movements are different from the goal-

directed movements generated by solving the optimal control problem. In this chapter

goal-unrelated synergies are extracted from some “good” movements that are gener-

ated by using genetic algorithm (GA) with three different movement fitness criteria,

namely energy-efficient, curvature and jerk. Details of generating such movements

are as follows.

A movement 𝜉 = {𝑥𝑡,𝑢𝑡}, 𝑡 = 1, ..., 𝑇 is generated from a given configuration 𝑥0

and final time 𝑇 using the arm dynamics described in the Appendix. The activation

of a muscle (actuator) 𝑖 at time 𝑡 is defined by a Gaussian function with 3 parameters

controlling the amplitude 𝐴𝑖, the width 𝜎𝑖 and the center 𝑐𝑖 of the Gaussian:

𝑢𝑖(𝑡) = 𝐴𝑖 exp
(︁
(𝑡− 𝑐𝑖)2/2𝜎𝑖

)︁
, 𝑡 = 1, ..., 𝑇 . (3.5)

A “good” movement 𝜉𝑞 is generated by optimizing the activation parameters Ξ𝑞 =

[𝐴𝑖, 𝜎𝑖, 𝑐𝑖]𝑞, 𝑖 = 1, ..., 10 of each muscle such that the value of the movement according

to the following movement fitness functions 𝑉𝑞, 𝑞 = {𝑒𝑛, 𝑐𝑢𝑟, 𝑗𝑒𝑟𝑘} are minimized:

𝑉𝑒𝑛 =
force input

K.E
=

∑︀𝑇
𝑡=1

(︁∑︀10
𝑖=1 𝑓

𝑖
)︁

∑︀𝑇
𝑡=1

(︁
𝜃𝑇𝑡 𝐻(𝜃𝑡)𝜃𝑡

)︁

𝑉𝑐𝑢𝑟 = maximum curvature = max
𝑡∈[2,...,𝑇 ]

|̸ 𝑡|

𝑉𝑗𝑒𝑟𝑘 = maximum jerk = max
𝑡∈[3,...,𝑇 ]

(︁...
𝑝𝑥

2
𝑡 +

...
𝑝𝑦

2
𝑡

)︁

(3.6)

where 𝑉𝑒𝑛, 𝑉𝑐𝑢𝑟 and 𝑉𝑗𝑒𝑟𝑘 relate to input-output efficiency, smoothness of trajec-

tory in the Cartesian plane, and jerk of end-effector trajectory in the Cartesian

plane, respectively. ̸ 𝑡 is the angle between successive end-effector velocities: ̸ 𝑡 =

| cos−1 (< 𝑣(𝑡− 1),𝑣(𝑡) >)| where < 𝑣(𝑡− 1),𝑣(𝑡) > denotes the dot product of suc-
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cessive normalized end-effector velocities with 𝑣 = 𝑣/(||𝑣||2).
The reciprocal of 𝑉𝑒𝑛 measures the ratio between the total kinetic energy output

and the total force input to the robot. Therefore, a smaller value of 𝑉𝑒𝑛 implies a

better energy efficiency. 𝑉𝑐𝑢𝑟 measures the smoothness by the maximum change of

trajectory tangent. 𝑉𝑗𝑒𝑟𝑘 is the modified version of measuring trajectory smoothness

defined in [124], where
...
𝑝 denotes the rate of change of acceleration.

Each movement 𝜉𝑞 is optimized with given random final time 𝑇 and random resting

(zero velocities) configuration 𝑥0 with respect to each movement fitness criterion 𝑉𝑞

by adopting GA to search for values of Ξ𝑞 = [𝐴𝑖, 𝜎𝑖, 𝑐𝑖]𝑞, 𝑖 = 1, ..., 10, such that 𝑉𝑞

is minimized. The GA optimization is performed by using function ga in MATLAB.

For each movement, the population size of Ξ𝑞 is set to 20 and then 5 generations are

carried out before the termination of evolution.

W𝑀
𝑒𝑛, W𝑀

𝑐𝑢𝑟 and W𝑀
𝑗𝑒𝑟𝑘 are used to denote the energy-efficient synergies, curva-

ture synergies, the jerk synergies, respectively, where 𝑀 is the number of synergies

extracted.

3.3.4 Type 3: Random synergies

In order to verify the necessity of the inherent properties in muscle synergies, Non-

negative random synergies are constructed for comparison. The random synergies that

are drawn from identical distribution and normalized by using (3.4). Ŵ𝑀 denotes

the random synergies.

3.4 Performance Analysis

Reaching task is a common goal-directed movement in human motion. This chap-

ter analyzes reaching movements generated by utilizing muscle synergies, and put

focuses on the following issues:

1. Whether muscle synergies can facilitate the solving of the optimal control prob-

lem?
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2. What properties should muscle synergies have?

The reaching movements starting from a joint configuration 𝑥 at time 𝑡 = 0 are

achieved by finding an optimal solution that minimizes the cost-to-go function:

𝐽 (𝑥(𝑡0)) =
1

2

(︁
𝑦(𝑇 )− 𝑦*

)︁𝑇
P
(︁
𝑦(𝑇 )− 𝑦*

)︁

+
1

2

∫︁ 𝑇

𝑡0
(𝑢(𝑡))𝑇 R (𝑢(𝑡))

(3.7)

where 𝑥 and 𝑢 are the robot joints and muscle activations. 𝑦 is a vector containing

position and the velocity of the end-effector in the Cartesian coordinate plane and

𝑦* denotes the target position and velocity. The movement time 𝑇 was determined

by Fitts’s law 𝑇 = 𝑎 + 𝑏 log2(1 + 2𝑑/𝑤) to mimic human motion behavior, where

𝑑 is the distance from the target and 𝑤 is the tolerance. The values of parameters

P = diag(10000, 10000, 1000, 1000), R = I, 𝑎 = 0, 𝑏 = 0.08, 𝑤 = 0.02(≈ 2𝑐𝑚)

are used. With this setting the cost-to-go value 𝐽 approximately equals the Euclidean

distance 𝑑 from desired targets in centimeter (𝐽 = 1 implies 𝑑 ≈ 1𝑐𝑚 in our case).

For simplicity, the following are defined:

∙ Original solutions: Solutions without utilizing synergies by solving (3.1) di-

rectly.

∙ Synergies-goal solutions: Solutions utilizing goal-related synergies by solving

(3.3).

∙ Synergies-en/cur/jerk solutions: Solutions utilizing goal-unrelated synergies by

solving (3.3), in which the synergies are extracted from movements generated

by GA according to movement fitness functions 𝑉𝑒𝑛, 𝑉𝑐𝑢𝑟 or 𝑉𝑗𝑒𝑟𝑘.

∙ Random solutions: Solutions utilizing random synergies by solving (3.3).

3.4.1 Experiment 1: Feasibility of muscle synergies approach

The objective of this experiment is to verify the feasibility of muscle synergies

approach in solving the optimal control problem. goal-related synergies are utilized in
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(a) Experiment 1: The original solutions are solved firstly, followed by extraction of achieve-
goal synergies W𝑀

* using NMF. Then W𝑀
* are utilized for solving synergies-goal solutions.

The random solutions are obtained by utilizing random synergies Ŵ𝑀 .

(b) Experiment 2: Each goal-unrelated synergies W𝑀
𝑒𝑛, W𝑀

𝑐𝑢𝑟 and W𝑀
𝑗𝑒𝑟𝑘 are extracted from

a set of 2000 “good” random movements generated by GA according to criteria 𝑉𝑒𝑛, 𝑉𝑐𝑢𝑟

and 𝑉𝑗𝑒𝑟𝑘 respectively. Then the synergies-en/cur/jerk solutions are obtained by utilizing
the goal-unrelated synergies W𝑀

𝑒𝑛, W𝑀
𝑐𝑢𝑟 and W𝑀

𝑗𝑒𝑟𝑘.

Figure 3-3: Summary of (a) Experiment 1 and (b) Experiment 2. All reaching
movements were carried out using the same 400 pairs of initial and target positions
{𝑥0,𝑦*}.

this experiment. Because it is reasonable that goal-related synergies have properties

to achieve the same goals. It would be said that the muscle synergies approach is

feasible if its (synergies-goal solutions)

∙ success rate of reaching target has similar level, and

∙ computation expense is reduced

when compared with original solutions. In the next experiment, the properties of

muscle synergies will be explored.

The experiment procedure is summarized in Fig. 3-3. In this experiment, 400 pairs

of initial and target position of the end effector {𝑥0,𝑦*} were uniformly distributed

over the workspace such that there were 100 pairs in each of the four target distance

𝑑 = ‖𝑦0 − 𝑦 * ‖22 ranges (reaching distance): [0-10]cm, [10-20]cm, [20-30]cm and

[30-40]cm. i) Firstly, the 400 original solutions were simulated. Then goal-related

synergies W𝑀
* were extracted from the control signals in the original solutions by

NMF as described in section 3.3. Eight sets of synergies W𝑀
* were extracted where
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𝑀 = 3, ..., 10. ii) Then, for each 𝑀 = 3, ..., 10, the 400 synergies-goal solutions

were simulated utilizing W𝑀
* using the same 400 pairs of {𝑥0,𝑦*}. iii) Finally,

the 400 random solutions were simulated for verifying the necessity of the inherent

characteristics in muscle synergies.

The optimal control problem solutions were solved by adopting the iLQG [123].

Iteration of iLQG was terminated if improvement of cost-to-go value is smaller than

10−3 or if the cost-to-go value is smaller than 1 (i.e. distance from target< 1𝑐𝑚).

The box-plots of cost-to-go values (log10 scaled) and total computation time spent

of utilizing synergies W𝑀
* for different reaching distances are depicted in Figs. 3-4a

and 3-6a, respectively. Because a smaller value of cost-to-go value means a closer

distance from the desired target, a lower position of the percentiles markers implies

a better success rate. In Fig. 3-4a it is observed that when more than 3 synergies

are utilized (𝑀 > 3), the cost-to-go values are not much different from the original

solutions (𝑀 = 0) for all the four reaching distance ranges. On the other hand, it

is observed in Fig. 3-6a that the computation expense is reduced as expected. The

computation time spent is less than the original solutions and lesser time is spent

when fewer synergies are utilized. In particular, from careful inspection at the data’s

percentile markers it is observed that the success rate is better in the synergies-goal

solutions, especially for reaching further targets, since the percentiles markers has

lower positions in the box-plots.

Fig. 3-5 depicts the performance of utilizing random synergies Ŵ𝑀 . In contrast

to the synergies-goal solutions, it is obvious that targets could not be reached in

random solutions. This implies that synergies must possess inherent properties in

some sense. For better illustration, the end-effector trajectories of a movement are

depicted in Fig. 3-7. It is obvious that the resulting trajectories are closed to the

original solutions (dash line in the figure) when more synergies are utilized. Moreover,

the success rate is better when synergies are utilized in this reaching task because the

resulting cost-to-go values are lower.

Fig. 3-8 depicts the induced accelerations by synergies of the trajectory depicted

in Fig. 3-7 (M=5). The induced acceleration vector �̃�𝑖(𝑘) at time step 𝑘 is computed
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(a) Cost-to-go values of goal-related synergies
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d = [0−10]cm d = [10−20]cm d = [20−30]cm d = [30−40]cm

100th percentile
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(b) Cost-to-go values of energy-efficient synergies

Figure 3-4: Performances of utilizing different numbers of synergies for different
reaching distances. The cost-to-go values of utilizing goal-related synergies W𝑀 and
energy-efficient synergies W𝑀

𝑒𝑛 are depicted in (a) and (b), respectively. Each column
represents the results of the 100 movements. “M=0” and “M=[3-10]” refer to the
original solutions utilizing no synergies, and the number of synergies utilized. The
two edges and the horizontal line in each box indicate the 25th, 75th and the median
(50th) percentile of the data. The 60th, 70th, 80th, 90th and 100th percentiles are
indicated by markers ‘+’, ‘×’, ‘▽’, ‘◇’ and ‘box’, respectively. It can be observed that
utilizing more than 3 (𝑀 > 3) goal-related synergies or energy-efficient synergies has
a similar success rate compared with the original solutions.
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Figure 3-5: Performance of utilizing random synergies Ŵ𝑀 . It can be observed that
goals could not be achieved.

from the difference of the end-effector velocities in the task space: �̃�𝑖(𝑘) = 𝑣𝑖(𝑘 +

1) − 𝑣(𝑘), where 𝑣𝑖(𝑘 + 1) is the task space velocities after applying only a synergy

𝑤𝑖 with maximum activation 𝑎𝑚𝑎𝑥
𝑖 , i.e. 𝑢(𝑡) = 𝑤𝑖𝑎

𝑚𝑎𝑥
𝑖 , at current state 𝑥𝑘. It can

be observed that the directions of the induced accelerations are quite constant, and

spread towards different directions to span the task space. This activation pattern

can be interpreted as follows: At the beginning, synergy 3 brings the end-effector

towards the target and synergy 1 acts in the opposite direction to control the speed.

Near the end of the trajectory, the acting of synergy 3 decreases and the other four

synergies increase in order to stop at the target.

3.4.2 Experiment 2: Synergies with different properties

In the previous experiment, it was verified that utilizing goal-related synergies

can solve the optimal control problem. In this experiment, the focus is extended

to investigate what properties of muscle synergies should have in order to solve the
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(a) Total computation time of goal-related synergies
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boxplot of total computation time spent Vs number of synergies utilized for different reaching distances
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(b) Total computation time of energy-efficient synergies

Figure 3-6: Performances of utilizing different numbers of synergies for different reach-
ing distances. The total computation times spent of utilizing goal-related synergies
W𝑀 and energy-efficient synergies W𝑀

𝑒𝑛 are depicted in (a) and (b), respectively.
Each column represents the results of the 100 movements. “M=0” and “M=[3-10]”
refer to the original solutions utilizing no synergies, and the number of synergies uti-
lized. The two edges and the horizontal line in each box indicate the 25th, 75th and
the median (50th) percentile of the data. The 60th, 70th, 80th, 90th and 100th per-
centiles are indicated by markers ‘+’, ‘×’, ‘▽’, ‘◇’ and ‘box’, respectively. It can be
observed that utilizing more than 3 (𝑀 > 3) goal-related synergies or energy-efficient
synergies could reduce computation expense.
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M=0 cost=0.886

M=3 cost=26
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M=8 cost=0.602

M=9 cost=0.528

M=10 cost=0.672

Figure 3-7: Trajectories of a reaching task: A reaching movement of the original
solutions is shown in dash line (M=0). Movements utilizing different numbers of
goal-related synergies are shown in corresponding colors (M= 𝐾 indicates 𝐾 synergies
are utilized). The corresponding cost-to-go values are also shown (smaller values for
better trajectory). It is obvious that when more than 3 synergies are utilized, the
resulting trajectories are closed to the original solutions (M=0).
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(a) Induced accelerations by synergies
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(b) The synergies utilized and the corresponding synergy activation

Figure 3-8: (a) The trajectory shown is the same as the one depicted in Fig. 3-7 when
5 synergies (M = 5) are utilized. The arrows along the trajectory denote the induced
accelerations of individual synergies. (b) The goal-related synergies utilized and the
corresponding synergy activations of generating the trajectory in (a). It is observed
that synergy 3 and synergy 1 dominate the control signal. Synergy 3 and synergy 1
act the opposite and the target, whereas the other synergies act to other directions.
Near the end of the movement the activation of synergy 3 decreases, while the other
4 synergy activations increase in order to decelerate the movement.
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Figure 3-9: Performance of the reaching task (target range: [30-40]cm) utilizing 6
synergies (𝑀 = 6). Distribution of (a) cost-to-go values and (b) total computation
time spent are shown. The columns from the left represent results of original so-
lutions (Org nosyn), synergies-goal solutions (Syn* M6), synergies-en solutions (En.
eff.), synergies-cur solutions (Curvature) and synergies-jerk solutions (Jerk), respec-
tively. It can be observed that utilizing energy-efficient synergies performs similarly
to utilizing goal-related synergies.
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optimal control problem. This experiment can also obtain some hints about how to

obtain muscle synergies. Because obtaining goal-related synergies requires solving for

original solutions in advance, it is better to discover a way to obtain muscle synergies

and then to solve the optimal control problem directly.

The experiment procedure is summarized in Fig. 3-3b. First, three sets of goal-

unrelated synergies were obtained, namely energy-efficient synergies W𝑀
𝑒𝑛, curvature

synergies W𝑀
𝑐𝑢𝑟 and jerk synergies W𝑀

𝑗𝑒𝑟𝑘. Within each of the three sets, 𝑀 = 5, ..., 10

synergies are extracted from 2000 “good” movements generated by GA according to

the movement fitness functions 𝑉𝑒𝑛, 𝑉𝑐𝑢𝑟 and 𝑉𝑗𝑒𝑟𝑘, respectively, as described in sec-

tion 3.3.3. Then simulations of the reaching movements utilizing W𝑀
𝑒𝑛, W𝑀

𝑐𝑢𝑟 and

W𝑀
𝑗𝑒𝑟𝑘 were carried out, using the same 400 initial and target pairs {𝑥0,𝑦*} of Ex-

periment 1. (Synergies 𝑀 = 3, 4 were not tested because of large reconstruction error

in NMF extraction.)

Fig. 3-9 depicts the comparison of the original solutions, the synergies-goal solu-

tions and the synergies-en/cur/jerk solutions. For better illustration, only the results

of reaching 100 targets 30-40cm away while utilizing 6 synergies (𝑀 = 6) are shown.

The results of reaching the remaining 300 targets and utilizing different numbers of

synergies also have the same trend as depicted in Figs. 3-4b and 3-6b. These results

show that utilizing energy-efficient synergies can also achieve similar performance

compared with utilizing goal-related synergies. In contrast, utilizing curvature syner-

gies and jerk synergies performed badly. Fig. 3-10 depicts a similarity matrix to mea-

sures the difference between the goal-related synergies W𝑀
* and the energy-efficient

synergies W𝑀
𝑒𝑛. It was found that the two sets of synergies are quite different. The

maximum value of all dot product measure between W𝑀
* and W𝑀

𝑒𝑛 is about 0.25 for

all 𝑀 . Nevertheless, the energy-efficient synergies can still be utilized to achieve the

reaching tasks.
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Figure 3-10: Similarity matrix of goal-related synergies and energy-efficient synergies
(M = 6). The values of the matrix are the dot product of a goal-related synergy and
an energy-efficient synergy. Lighter color has closer value of 1. The synergy 2 of the
goal-related synergies and the synergy 4 of the energy are the most similar with dot
product value = 0.2489.
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Figure 3-11: Possible moving directions of the robot end-effector when muscle syn-
ergies are activated individually. The circles denote the end-effector positions on a
2D task space, and each arrow denotes a moving direction when a muscle synergy is
activated. This figure illustrates that at least 3 synergies may be required to move
the end-effector in all possible directions on a 2D horizontal task space.

3.5 Discussion

3.5.1 The minimum number of synergies required

At least 3 synergies may be required to move the end-effector in all possible direc-

tions on a 2D horizontal task space. A synergy specifies co-activations of all muscles.

Given a certain value of synergy activation to a synergy, the muscles correspond to

the synergy provide contractile forces on the robot and actuate the end-effector in

a certain direction on a 2D task space if the resultant forces on the robot are not

canceled out; As illustrated in Fig. 3-11, producing a motion along a line (1D task

space) requires at least 2 synergies that move the end-effector in opposite direction,

thereby 3 synergies are minimally required to move the end-effector in the 2D task

space if combination of any two synergies can move the end-effector in the directions

between the two directions that the two synergies can produce.

According to Fig. 3-4a, at least 4 goal-related synergies are necessary. One possi-

ble reason is that the moving direction produced by a synergy depends on the robot

posture. Therefore, it makes sense that a redundant number of synergies are required

to move the end-effector to various target positions.
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Figure 3-12: Illustrations of the concept of the original control space and subspace
spanned by synergies. The admissible set of muscle activation that can actuate the
robot is colored in yellow. Muscle activations are bounded such that 0 ≤u1≤ 1,
0 ≤u2≤ 1, and nonnegative synergy activations (can be larger than 1) are considered
in this figure. (Left) A original control space contains a set of admissible muscle
activations. (Middle) 2 synergies, w1 and w2, span a subspace within the original
space with a smaller area of the admissible muscle activations. (Right) 1 synergy, w1,
span a subspace where the admissible muscle activation is along the synergies w1.

3.5.2 Relationship of the cost-to-go values and the number of

synergies used

It is expected that the cost-to-go value defined in (3.7) decreases as the number

of synergies increased. In this chapter, the robot motion is generated by a well-

established “optimal control theory based solver” called iLQG, no matter how the

synergies are used or not (Fig. 3-1). It is assumed that the iLQG solver can search

for an optimal solution in a given control space such that the cost-to-go value is min-

imized. The cost-to-go value reflects the control performance defined by the distance

from an end-effector target position and velocity at the last time step and the total

muscle activation applied to achieve a reaching movement. The smaller the cost-to-go

value, the better the control performance. When no synergy is involved (the upper

schematic diagram in Fig. 3-1), the control space contains a set of nonnegative and

upper bounded muscle activations (0 ≤ 𝑢 ≤ 𝑢𝑢𝑏); This control space is referred as the

original control space in the following context. In the original control space, the iLQG

controller searches for a set of optimal muscle activations such that the resulting cost-
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to-go value is minimized. The number of synergies specifies the control complexity

(dimensionality). Fig. 3-12 illustrates the concept of the original control space and

the subspace spanned by synergies. When synergies are utilized (the lower schematic

diagram in Fig. 3-1), the control space is a subspace of the original control space.

This subspace is spanned by a set of muscle synergies. In the subspace, the iLQG

controller searches for a set of optimal synergy activations such that the resulting

cost-to-go value is minimized. The set of optimal synergy activations is transformed

to a set of muscle activations to actuate the robot. Because of the reduction of the

dimensionality, the admissible set of muscle activations to actuate the robot thus

decreases as fewer synergies are utilized. Therefore, it can be expected that better

control performance can be attained when more synergies are utilized; In other words,

monotonically decreasing cost-to-go value can be expected when more synergies are

utilized. Moreover, under the assumption that the iLQG solver can minimize the

cost-to-go function (3.7), it is expected that the cost-to-go value attains the small-

est value when no synergy is involved, compared with the case when synergies are

utilized. The cost-to-go value obtained in the case of no synergy is referred as the

reference value.

The number of synergies does not strongly related to the cost-to-go value. When a

set of synergies are utilized, whether the reference value can be attained in a reaching

movement does not directly related to the number of synergies used, it is related to

whether the optimal muscle activation that corresponds to the reference value, say

𝑢′, lies within the subspace spanned by the set of synergies. For the case when the

set of goal-related synergies is utilized, since the set of synergies is extracted from a

set of muscle activations (the original solution) that includes 𝑢′, the synergies span

a subspace (of the original control space) that 𝑢′ lies within; At least using all the

synergies as bases, a set of synergy activations can be found by the iLQG controller

to approximate 𝑢′. Moreover, if 𝑢′ lies within a low-dimensional subspace of the

original control space, it is expected that the iLQG controller can found a set of

synergy activations to approximate 𝑢′ using fewer synergies and a cost-to-go value

close to the reference value can be attained; In Fig. 3-4a, the cost-to-go values that
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closed to the reference values are attained when 4 or more synergies are utilized,

implying that the optimal muscle activations of all the reaching movements lie in a

low-dimensional control space (manifold). In contrast, for the case when the set of

random synergies is used (Fig. 3-5), since the synergies are not orthogonal vectors

and the muscle activations are nonnegative and upper bounded, the admissible set

of muscle activations to actuate the robot is smaller than, with very small possibility

equal to, that of the original control space; The optimal muscle activation 𝑢′ does

not necessarily lie within the subspace spanned by the set of random synergies, thus

the cost-to-go value is unlikely to be attained closed to the reference value even all

10 synergies are used. The monotonically decreasing trend of the cost-to-go value in

Fig. 3-5 may be caused by such reduction of the admissible set of muscle activations

to actuate the robot as fewer synergies are utilized, as illustrated in Fig. 3-12. For

the case when the the set of energy-efficient synergies is utilized, it is observed in

Fig. 3-4b and Fig. 3-9a that utilizing 5 or more synergies attain cost-to-go values

close to the reference values, implying that the set of energy-efficient synergies spans

a subspace of the original control space where the optimal muscle activations of all

the reaching movements lie within.

3.5.3 Determining the best number of synergies

Because the main purpose of adopting synergies in this thesis is to reduce the

control complexity by means of dimensionality reduction, the best number of synergies

is regarded as the minimum number of synergies that can achieve a certain level of task

performance measured by particular performance indexes. In this chapter, reducing

the number of synergies results in the decrease of the computation time spent.

The best number of synergies to achieve the reaching task in this chapter can

be determined based on the cost-to-go values that reflect the control performance

of the synergies-based iLQG controller. As mentioned in section 3.5.2, the cost-to-

go value is expected to be monotonically decreasing (e.g. Fig. 3-4a) with more

synergies utilized, with a trade-off of an increase of computation time spent (e.g.

Fig. 3-6a) due to the increase of control dimensionality. Moreover, if the set of
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muscle activations corresponding to the reference value lies within a low-dimensional

subspace that can be spanned by fewer synergies, the cost-to-go value is expected

to drop to a level similar to the reference values in the first few synergies (e.g. Fig.

3-4a); The reference cost-to-go value is the cost-to-go value obtained where the iLQG

controller searches for solutions in the original control space in full dimensionality.

(corresponding to the upper schematic diagram in Fig. 3-1). The best number of

synergies can be determined by looking for the minimum number of synergies that

has the cost-to-go value close to the reference value. For instance, it can be observed

from Fig. 3-4a the best number of goal-related synergies that compromises between

the control performance and the computation time spent is 4.

In general, to determine the best number of synergies compromising the control

complexity (dimensionality) and the control performance of a synergies-based con-

troller in a case, it is needed to 1) define a performance index to measure the control

performance, 2) design a criteria according to the performance index, and 3) design

an algorithm to determine the best number of synergies based on the criteria.

The performance index can be, indeed should be, defined to match the objective

of the analysis. In this chapter, the objective is to investigate the feasibility of muscle

synergies in generating reaching movements by means of solving an optimal control

problem. The cost-to-go function defined in (3.7) can quantitatively assess the fea-

sibility of a set of muscle synergies employed in the synergies-based iLQG controller

to generate a reaching movement, according to the distance to a target at the last

time step and the total muscle activations applied during a reaching movement, such

that the smaller the cost-to-go value, the closer to the target. If it is suggested to put

more concern on the control assumption, larger weight R on the term related to the

muscle activations should be used in the cost-to-go function in (3.7).

Having the performance index that measures the control performance of a con-

troller, a particular criterion or criteria can be defined for the determination of the

best number of synergies based on the (expected) characteristics of the performance

index. For example, for the reaching task in this chapter, it is expected that the

curve of the cost-to-go values is monotonically decreasing (e.g. Fig. 3-4a) when
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more synergies are used. Moreover, the cost-to-go value will drop to a level similar

to the reference cost-to-go value is expected to appear, if the set of optimal muscle

activations corresponding to the reference cost-to-go value lies in a low-dimensional

subspace of the original control space. Based on such characteristics of the curve of

the cost-to-go values, the criterion for determining the best number of synergies can

be defined as the minimum number of synergies that has the cost-to-go value differing

from the reference value smaller than a certain threshold value.

According to the criterion or criteria defined, one can determine the best number of

synergies from the results of the performance index when different number of synergies

are utilized. A simple approach can be obtaining the results of the performance index

for every number of synergies, plotting a curve of the performance index against the

number of synergies utilized, and finally determining the best number of synergies

from observation according to the criterion or criteria; As it can be observed from

Fig. 3-4a that minimum number of synergies is 4. If it can be expected that the value

of the performance index will improve as more synergies utilized, one can take an

incremental approach that obtains the results of the performance index from the case

of the smallest number of synergies, incrementally increases the number of synergies,

and terminates until the defined criterion or criteria are satisfied; If the objective

of an experiment is to determine the best number of synergies so that the control

performance of every number of synergies is not of interest, this incremental approach

can save the time to carry out experiments.

3.6 Summary

In this chapter, the feasibility of muscle synergies in controlling musculoskele-

tal robotic system by optimal control was investigated. The simulations of reaching

movements of a human-like robotic arm were analyzed. Two types of muscle synergies

having different properties were utilized in simulations, namely goal-related synergies

and goal-unrelated synergies. The former type has the properties of goal-related be-

cause they are extracted from the optimal solutions of achieving some task goals.
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The latter type is goal-unrelated because they are extracted from some “good” move-

ments which are optimized according to three specific goal-unrelated criteria, namely

energy-efficient synergies, curvature synergies and jerk synergies. It was verified that

muscle synergies can facilitate the solving of the optimal control problem utilizing

goal-related synergies. Simulations show that the reaching task can still be achieved,

with the same level of success rate and less computation expense. Furthermore, it was

investigated what properties muscle synergies should have by analyzing the perfor-

mance of utilizing goal-unrelated synergies. The reaching task could still be achieved

when energy-efficient synergies are utilized. These results imply that in order to

achieve the goal-directed task, synergies do not necessarily need to have goal-related

properties. Synergies having other properties such as energy-efficient can also be uti-

lized to achieve the goal-directed task. The results here also suggest that it is possible

to obtain synergies by other methods rather than from solving the computationally

expensive optimal control problem.
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Chapter 4

Extracting muscle synergies from

random movements for low-

dimensional task-space control

This chapter studies the extraction of muscle synergies given a data sample of

randomly parameterized control signals, without prior knowledge of robot dynam-

ics. In most literature, it is usually assumed that muscle synergies can be extracted

from a given data sample with statistical regularities. In reality, this assumption may

not be satisfied. A method for extracting muscle synergies with the aid of system

identification techniques is proposed. In the proposed method, a forward dynamics

model, which predicts the robot’s end-effector accelerations from inputs of joint con-

figurations, joint velocities and control signals, is estimated from a data sample of

end-effector movements that are generated by randomly parameterized control sig-

nals. Using the forward dynamics, a set of optimal control signals that produces the

same end-effector accelerations using minimum control effort is estimated by quadratic

programming. The required muscle synergies are extracted from the set of control

signals estimates. A kernel-based regression technique is adopted to estimate the for-

ward dynamics, as well as the inverse dynamics, which transforms the joint angles,

joint velocities and end-effector accelerations (or joint accelerations) to required con-

trol signals (i.e. activations of muscles synergies) that achieved the acceleration. A
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sliding mode controller is also derived to follow a desired end-effector trajectory, for

a class of musculoskeletal systems with the dimensionality of the control input larger

than that of the joints and that of the end-effector. The sliding mode controller is a

data-driven based controller which consists of the robot inverse dynamics, a feedback

control term and a null space control term. The null space control term is respon-

sible for joint stabilization and achieving a secondary task goal, without interfering

accuracy of the end-effector. In a simulation evaluation of a human-like robotic arm

actuated by 10 muscles, it was shown that muscle synergies could be extracted from

the set of control signals estimates, but could not be extracted from the randomly

parameterized control signals. In a control task, it was demonstrated that the end-

effector could follow a desired figure of “8” trajectory utilizing the extracted muscle

synergies, where the control dimensionality was reduced 10 to 5. The null space

control also worked well to keep all the joints away from the joint limits, without

affecting the tracking accuracy of the end-effector. It was also shown that the control

dimensionality could be reduced. It was achieved by first track a set of desired end-

effector trajectories spread over the workspace utilizing the current extracted muscle

synergies. Then a new set of muscle synergies was extracted from the control signals

of the resulting tracking movements. It was found that the figure of "8" trajectory

could be tracked when four muscle synergies were utilized. The proposed method

provides a solution to the question of how to extract muscle synergies given data

sample of control signals without statistical regularities.

4.1 Introduction

Realizing human-like movements and behavior has been one of the most interesting

and challenging problems in the fields of robotics. Human-like musculoskeletal robots

are usually designed with high dimensionality and redundancy in both control space

and joint space, in order to mimic human manipulation ability. However, controlling

such complex robots is a challenging problem. One approach is to simplify the control

complexity by dimensionality reduction techniques.
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In the field of human motor control, muscle synergies hypothesis has been con-

sidered as a solution to the degrees-of-freedom (DOF) problem [13, 117, 118, 125].

It has been reported that muscle synergies originate from a human optimal control

policy called the minimal intervention principle [121]. This optimal policy focuses

control on task-relevant variables and leaves redundant variables uncontrolled as far

as possible [68,126]. In order to reduce the control dimensionality and mimic human

task-space control behavior, this chapter focuses on 1) how to extract and 2) utilize

muscle synergies to achieve task-space control for human-like musculoskeletal robots.

In many studies of low-dimensional control, muscle synergies were estimated from

control signals of given optimal data sources such as human movement data [9, 127],

or optimized data with given robot’s dynamics model [40, 96]; These data samples

possess inherent statistical regularities the signals in one dimension is correlated with

the signals in other dimensions. In model-free setting, reinforcement learning was

commonly used in which muscle synergies were emerged [128,129]. However, in com-

mon reinforcement learning techniques, a well-designed reward function and initial

conditions are usually needed for good learning performance. Therefore, it is also

important that a robot can extract muscle synergies from data sample that possesses

no statistical regularities without prior knowledge.

This chapter aims at extracting muscle synergies from data sample without sta-

tistical regularities, and to utilize the extracted muscle synergies to achieve low-

dimension control, for general manipulation of musculoskeletal robots. The control

of a human-like robot arm is studied. Under the assumption that large enough sam-

ples of random reaching-like movements possess control skills for general manipu-

lation tasks, it is proposed to extract muscle synergies from random reaching-like

movements, which are not optimized with respect to minimum control effort. Given

enough samples of such reaching-like movements without statistical regularities, a

subset of movements is selected according to the end-effector efficiency. The forward

dynamics of the robot is then estimated from the subset of data. The correspond-

ing optimal control signals are estimated utilizing the forward dynamics estimates.

These estimated optimal control signals are utilized as the source for extracting mus-
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cle synergies and the corresponding low-dimensional control signals for the subset of

reaching-like movements. The subset of reaching-like movements is regenerated utiliz-

ing the low-dimensional control signals. Then the regenerated subset of reaching-like

movements is used to estimate the robot’s inverse dynamics in the lower dimensional

control space for control.

In controlling musculoskeletal robots, estimating robot’s dynamics from data is a

promising approach to avoid modeling difficulties [130, 131]. Usually, estimation of

forward dynamics has no problem because it is a many-to-one mapping. Conversely,

due to the redundancy in control space, the inverse dynamics is generally a one-to-

many mapping. Therefore, the estimation problem is globally ill-posed and difficult to

solve. It is demonstrated that the inverse dynamics could be estimated directly from

data, when using the estimated optimal control signals as the training data source.

The estimations of the forward dynamics and the inverse dynamics, are formulated

into a regression problem within a kernel learning framework. Kernel methods have

been widely applied to handle nonlinear and high-dimensional data [132,133].

In this chapter, a novel method is proposed to extract muscle synergies from

optimal control signals estimated from data sample without statistical regularities

without prior knowledge of robots for low-dimensional control. In the present work,

the estimated inverse dynamics is employed in a sliding controller to achieve task

space control. Sliding control is well-known for its robustness, maintaining good con-

trol accuracy in the presence of modeling inaccuracies. While sliding control has been

studied for standard “square” systems [134] (in which the DOF equals to the number

of actuators) and underactuated systems [135], a sliding controller is proposed for ap-

plications to overactuated systems such as musculoskeletal system. The control law

has a null space control term for stabilization in joint space and achieving secondary

goals, without interfering the performance in task space. It is shown that using the

estimated inverse dynamics provides maximum capacity for applying the null space

control within the admissible control range.
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The work in this chapter relates to learning-based control of redundantly actu-

ated robots. In [129], the action space was updated through lower dimensional latent

variables in a reinforcement learning process, without the need of applying dimen-

sionality reduction beforehand. They achieved a 3D reaching task using a full-torso

musculoskeletal robot. It was needed to start over the learning process when achiev-

ing new tasks, which is common in reinforcement learning. Learning-based control

from random movements can also be related to “motor babbling” [136], which is an

exploratory motor learning process in infants. In [137], an ill-posed robot’s inverse

kinematics was directly estimated from data in a “trying to reach goals (Goal bab-

bling)” process, in which data samples were weighted according to the redundancy in

joint space. Their work aimed at resolving redundancy problem and bootstrap learn-

ing. The work here can also be considered as obtaining low-dimensional skills in a

motor babbling process. From random movements samples, the work presented here

estimates the ill-posed inverse dynamics directly at the control level. In [138] the Jaco-

bian matrix relating the velocities between joint space and task space was iteratively

estimated and then its inverse was applied to task space in open-loop motion rate

control. Similar studies of task-space control using inverse dynamics estimation can

be found in [130, 131]. They solved a globally ill-posed inverse dynamics estimation

by estimating the mapping locally, which is well defined in the vicinity of the current

robot configuration. In [130], the local control torques were computed in individual

local models by averaging the local related data, and then combined to produce the

final control torque weighting by local forward dynamics models. In [131], the control

torque was given by an inverse dynamics mapping which was updated on-line. The

kernel-based estimation formulation proposed here can be considered as a natural

generalization of their estimation formulation.

This chapter organizes as follows. First, the problem being studied is defined in

section 4.2. The formulation of estimating the robot’s forward and inverse dynamics

is then introduced in section 4.3. Section 4.4 briefly reviews the concept of muscle

synergies, and describes the extraction of the muscle synergies from random reaching-

like movement data. In section 4.5, a sliding controller for task-space control is
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provided. Section 4.6 explains that using optimal data source enables estimation of

inverse dynamics. Finally, section 4.7 provides numerical evaluations of the control

performance and analysis of dimension reduction.

4.2 Problem statement

The goals of this chapter are to extract muscle synergies without optimal data

given, and to achieve low-dimensional task-space control for general manipulation of

a musculoskeletal robot. In particular, the optimality of control signals is restricted

to minimum control effort measured by the Euclidean norm. Moreover, it is assumed

that mathematical model the robot is not given. In order to achieve these goals, the

followings are the key issues to be accomplished:

1. Given training samples of random reaching-like movements, extract the muscle

synergies that can be utilized to achieve general manipulation.

2. For manipulation, establish a robust task-space tracking control law that con-

trols the end-effector of the robot to follow a desired trajectory in the Cartesian

coordinates (task-space). The control law should allow modeling uncertainties,

and include a null space control for joint stabilization and achieving secondary

goals.

3. Estimation of both the forward and inverse dynamics of the robot, given the

kinematics data of the joints and the end-effector, and the control input.

The outline of the extraction of muscle synergies and its utilization for low-

dimensional control is illustrated in Fig. 4-1.

Throughout this chapter the following second order continuous time overactuated

system is considered
�̈�(𝑡) = 𝑓(�̃�(𝑡)) + 𝑔(�̃�(𝑡))𝑢(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡))

𝑦(𝑡) = 𝛼(�̃�(𝑡)) + 𝛽(�̃�(𝑡))𝑢(𝑡)

(4.1)
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Figure 4-1: Outline of the extraction of muscle synergies and its application for low-
dimensional control. (From upper left) The robot’s forward dynamics is estimated
from a given data sample of omnidirectional movements, which are selected accord-
ing to the end-effector efficiency. The estimated forward dynamics is then utilized
to approximate the corresponding optimal control signals (minimum control effort).
From the estimated optimal control signals, muscle synergies and the corresponding
low-dimensional control signals are extracted. Then, the same movements are regen-
erated using the low-dimensional control signals. The regenerated movements are the
data source to estimate the robot’s inverse dynamics in lower dimensionality. The es-
timated inverse dynamics and the muscle synergies are utilized in a sliding controller,
which control the robot to follow a desired trajectory.
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where 𝑥 ∈ ℜ𝑛𝑥 , �̇� ∈ ℜ𝑛𝑥 and �̈� ∈ ℜ𝑛𝑥 are the joint angles, velocities and accelerations,

respectively. Let �̃� = [𝑥𝑇 , �̇�𝑇 ] ∈ ℜ2𝑛𝑥 to simplify the notation where 𝑇 denotes the

transpose operation. 𝑢 ∈ ℜ𝑛𝑢 are the non-negative control signals of actuators with

dimension 𝑛𝑢 ≥ 𝑛𝑥 bounded by 0 ≤ 𝑢 ≤ 𝑢𝑢𝑏. 𝑦 ∈ ℜ𝑛𝑦 is the output in task space.

𝑓 , 𝑔 , 𝛼 and 𝛽 are continuous functions of �̃�. ℎ is an observer function. 𝛼(�̃�) ∈ ℜ𝑛𝑦

and 𝛽(�̃�) ∈ ℜ𝑛𝑦×𝑛𝑢 are obtained after differentiating 𝑦 = ℎ(𝑥) with respect to time

accordingly. 𝑓 , 𝑔, ℎ, 𝛼 and 𝛽 are assumed to be unknown. In the following context,

the input arguments of all functions 𝑓 , 𝑔, ℎ, 𝛼 and 𝛽, and the time index 𝑡 are dropped

for compact notations. Non-negative control signals were considered because most

musculoskeletal systems are actuated by muscles that provide only contraction forces.

For simplicity, the dynamics of the actuators were not considered and the joint torque

𝜏 is assumed to be linearly related to the control signals 𝑢:

𝜏 = Ξ(�̃�)𝑢 (4.2)

where Ξ(𝑥, �̇�) ∈ ℜ𝑛𝑥×𝑛𝑢 is a matrix of nonlinear functions. Joint torque induced by a

simple human muscle model with assumption of inextensible tendon such as the rigid-

tendon models in [102] can be described by (4.2). However, common human muscle

models having dynamics of contraction [103, 104] introduce unobservable states into

the robot dynamics are out of the scope of the present work. The above system was

studied in [20]. The planar, 3-DOF, human-like robotic arm actuated by 10 muscles

in the Appendix A was used as the simulation platform.

4.2.1 Collecting omnidirectional reaching-like movement data

In chapter 3, it is found that the muscle synergies extracted from optimal goal-

directed reaching movements could be utilized for lower dimensional control of similar

but not the same goal-directed reaching movements. Therefore, intuitively these mus-

cle synergies can be considered as possessing control skills for general manipulation.

In this subsection, the generation of similar reaching-like movements is described.

In present study, reaching-like movements were generated by applying the following
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Gaussian-like control signal

𝑢𝑚(𝑡) = 𝐴𝑚 exp
(︂
−𝑡− 𝑐𝑚

𝑑𝑚

)︂
(4.3)

to the 𝑚th actuator at time 𝑡, with the end-effector initially resting within the robot’s

workspace. A group of control signals generated by (4.3) is depicted in Fig. 4-4a. Each

movement ended at the same time 𝑡 = 𝑇 , and started with randomly initialized joint

angles 𝑥 and the parameters 𝐴𝑚, 𝑐𝑚 and 𝑑𝑚.

After generation of the reaching-like movements, a subset of the movements is

selected for the extraction of muscle synergies. It is usually desirable to manipulate

the end-effector with as less control effort as possible. Therefore, it is attempted

to select movements in which the end-effector moved most efficiently along the 𝑥

axis and 𝑦 axis in the Cartesian plane. Due to the physical structure of the robot,

the end-effector may move more efficiently in some particular directions or some

particular areas in the workspace. In order to obtain an evenly distributed data set,

the workspace is divided into equally sized regions. In each region, an equal number

of movements starting from within the same region are selected, according to the

end-effector efficiency. The efficiency of a movement in each of the four perpendicular

directions was assessed by the ratios of the end-effector displacement to the total

control input:

𝐽𝑥+ =
𝑧𝑥(𝑡 = 𝑇 )− 𝑧𝑥(𝑡 = 0)

∫︀ 𝑡=𝑇
𝑡=0 ‖𝑢(𝑡)‖2

, 𝐽𝑥− = −𝐽𝑥+

𝐽𝑦+ =
𝑧𝑦(𝑡 = 𝑇 )− 𝑧𝑦(𝑡 = 0)

∫︀ 𝑡=𝑇
𝑡=0 ‖𝑢(𝑡)‖2

, 𝐽𝑦− = −𝐽𝑦+
(4.4)

where 𝑦 = [𝑧𝑥, 𝑧𝑦]
𝑇 is the Cartesian coordinates of the end-effector position, 𝑡 indicates

the time and 𝑇 is the end time of each movement. ‖·‖2 denotes Euclidean norm. The

ratios indicate better efficiency with larger values. Keeping an even distributed data

set is important to achieve good control performance because this subset of movements

is subsequently used as the training data for estimating the inverse dynamics. With

fixed number of movements to be selected in each region inside the grid, choosing

smaller regions ensures a more evenly distributed data set, but also requires more
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random movements samples and results in larger training data set. The control

signals in the selected subset of movements are denoted as 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑖 . Because they are

not the minimum norm control signals to achieve end-effector acceleration 𝑦𝑖 at state

�̃�𝑖. Directly performing PCA on 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑖 does not give a significant performance of

dimension reduction in general.

4.3 Estimation of nonlinear affine system

This section describes the estimation of the forward dynamics for muscle synergies

extraction, and the inverse dynamics for control. This can be considered as the

estimation of unknown nonlinear functions 𝑎(𝜒) and 𝑏𝑘(𝜒) in the following affine

system

𝜈 = 𝑎(𝜒) +
𝑟∑︁

𝑚=1

𝑏𝑚(𝜒)𝜔𝑚, (4.5)

given 𝑁 data tuples {𝜈𝑖,𝜒𝑖,𝜔𝑖}𝑁𝑖=1, 𝜈𝑖, 𝜒𝑖 ∈ ℜ𝑛𝜒 and 𝜔𝑖 = [𝜔𝑖1, ..., 𝜔𝑖𝑟]
𝑇 ∈ ℜ𝑟 are

the scalar output, and the two input vectors, respectively. Denote 𝜔𝑚 ∈ ℜ𝑁 be the

vector having all 𝑁 data of the 𝑚th dimension of 𝜔.

Assume that the nonlinear functions can be approximated by

𝑎(𝜒) ≈ 𝑤𝑇
𝑎 𝜑(𝜒) + 𝜃𝑎0

𝑏𝑚(𝜒) ≈ 𝑤𝑇
𝑏𝑚𝜑(𝜒) + 𝜃𝑏𝑚0

(4.6)

with a nonlinear mapping 𝜑 : 𝜒 ↦→ 𝜑(𝜒) which maps 𝜒 to an 𝐹 -dimensional feature

(Hilbert) space ℱ having inner product 𝑘(𝜒𝑝,𝜒𝑞) = ⟨𝜑(𝜒𝑝), 𝜑(𝜒𝑞)⟩ . 𝑤𝑎 ∈ ℜ𝐹 ,

𝑤𝑏𝑚 ∈ ℜ𝐹 , 𝜃𝑎0 and 𝜃𝑏𝑚0 are the coefficients to be determined. Given 𝑁 data tuples

{𝜈𝑖,𝜒𝑖,𝜔𝑖}𝑁𝑖=1, 𝑁 equations can be formulated

𝜈 ≈ Φ𝑇𝑤𝑎 +
𝑟∑︁

𝑚=1

D𝑚Φ
𝑇𝑤𝑏𝑚 + Ω̃𝑇𝜃0 (4.7)

where 𝜈 = [𝜈1, ..., 𝜈𝑁 ]𝑇 ∈ ℜ𝑁×1, Φ = [𝜑(𝜒1), ..., 𝜑(𝜒𝑁)] ∈ ℜ𝐹×𝑁 , D𝑚 ∈ ℜ𝑁×𝑁

is a diagonal matrix having vector 𝜔𝑚, Ω̃𝑇 = [𝜔1, ...,𝜔𝑟,1𝑁 ] ∈ ℜ𝑁×(𝑟+1), 1𝑁 is a
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column vector having all entries equal to 1, and 𝜃0 = [𝜃𝑏10 , ..., 𝜃
𝑏𝑟
0 , 𝜃

𝑎
0 ] ∈ ℜ𝑟+1. De-

fine a slack variable 𝜁 = Q(Φ𝑇𝑤𝑎 +
∑︀𝑟

𝑚=1D𝑚Φ
𝑇𝑤𝑏𝑚 + Ω̃𝑇𝜃0 − 𝜈), where Q is

a diagonal matrix with positive entries. The coefficients 𝑤𝑎, 𝑤𝑏𝑚 and 𝜃0 are ob-

tained by minimizing the square error and the norm of the coefficients with constraint

Φ𝑇𝑤𝑎 +
∑︀𝑟

𝑚=1 D𝑚Φ
𝑇𝑤𝑏𝑚 + Ω̃𝑇𝜃0 − 𝜈 −Q−1𝜁 = 0:

min
1

2
𝜁𝑇𝜁 +

𝛾

2

(︃
𝑤𝑇

𝑎𝑤𝑎 +
𝑟∑︁

𝑚=1

𝑤𝑇
𝑏𝑚𝑤𝑏𝑚 + 𝜃𝑇

0 𝜃0

)︃

subject to

Φ𝑇𝑤𝑎 +
𝑟∑︁

𝑚=1

D𝑚Φ
𝑇𝑤𝑏𝑚 + Ω̃𝑇𝜃0 − 𝜈 −Q−1𝜁 = 0

(4.8)

where 𝛾 is a positive scalar. Introducing Lagrangian multipliers �̂�, (4.8) can be

converted to the following unconstrained optimization problem

max
�̂�

min
𝜁,𝑤𝑎,𝑤𝑏𝑚

𝐸

𝐸 =
1

2
𝜁𝑇𝜁 +

𝛾

2

(︃
𝑤𝑇

𝑎𝑤𝑎 +
𝑟∑︁

𝑚=1

𝑤𝑇
𝑏𝑚𝑤𝑏𝑚 + 𝜃𝑇

0 𝜃0

)︃

+ �̂�𝑇

(︃
Φ𝑇𝑤𝑎 +

𝑟∑︁

𝑚=1

D𝑚Φ
𝑇𝑤𝑏𝑚 + Ω̃𝑇𝜃0 − 𝜈 −Q−1𝜁

)︃
.

(4.9)

Solving (4.9) by setting the partial derivatives equal to zero yields

�̂� = −𝛾
(︃
𝛾Q−2 + K +

𝑟∑︁

𝑚=1

D𝑚KD𝑚 + Ω̃𝑇 Ω̃

)︃−1

𝜈

= −𝛾
(︁
𝛾Q−2 + K̃−1

)︁
𝜈

𝑤𝑎 = −1

𝛾
Φ�̂�, 𝑤𝑏𝑚 = −1

𝛾
ΦD𝑚�̂�, 𝜃0 = −1

𝛾
Ω̃�̂�.

(4.10)

where the entries of K at the 𝑝th row and 𝑞th column are 𝑘(𝜒𝑝,𝜒𝑞), K̃ = K +
∑︀𝑟

𝑚=1D𝑚KD𝑚 + Ω̃𝑇 Ω̃. The estimations of 𝑎(𝜒′) and 𝑏𝑚(𝜒′) for a test input 𝜒′ are
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then given by

𝑎(𝜒′) = −1

𝛾
𝑘(𝜒′)�̂� + 𝜃𝑎0

𝑏𝑚(𝜒′) = −1

𝛾
𝑘(𝜒′)D𝑚�̂� + 𝜃𝑏𝑚0

where the entries of 𝑘(𝜒′) ∈ ℜ𝑁 are 𝑘(𝜒′,𝜒𝑖), 𝑖 = 1, ..., 𝑁 .

The computation of �̂� needs the inversion of the matrix K̃, which has computation

cost 𝒪(𝑁3). The computation is impractical for large 𝑁 . Sparsification technique is

a possible way for practical implementation. Let �̃�′ = [𝜒′𝑇 ,𝜔′𝑇 ]𝑇 , it can be shown

that

𝜈(�̃�′) = �̃�(�̃�′)

(︃
−1

𝛾
�̂�

)︃
(4.11)

where the entries of the vector �̃�(�̃�′) are computed using the composite kernel

𝑘(�̃�′, �̃�𝑖) = 𝑘(𝜒′,𝜒𝑖) +
𝑟∑︁

𝑚=1

𝜔′
𝑚𝑘(𝜒′, 𝜒𝑖)𝜔𝑖𝑚 + [𝜔′𝑇 , 1][𝜔𝑇

𝑖 , 1]𝑇 . (4.12)

with training data �̃�𝑖, 𝑖 = 1, ..., 𝑁 . Note that (4.11) is the standard form of common

nonlinear kernel-based regression. Therefore, the sparsification can be achieved by

solving for the spanning coefficients 𝜆 = − 1
𝛾
�̂� using common sparse kernel regres-

sion techniques. The software SparseBayes 2.0 [139] is used, which implements the

Relevance Vector Machines (RVM) [140, 141], to solve for 𝜆. One of the advantages

of RVM is that the regularization constant 𝛾 is automatically determined, users only

need to choose the proper valid kernel 𝑘 (𝜒𝑝,𝜒𝑞) = ⟨𝜑(𝜒𝑝), 𝜑(𝜒𝑝)⟩.

4.4 Extraction of muscle synergies

In most studies such as [9, 40, 96, 127–129], muscle synergies were extracted from

controlled or optimal specific movement data. Intuitively, those synergies can be

utilized to control movements similar to the original ones. One of our goals is the

extraction of muscle synergies without optimal data given. Moreover, the extracted

synergies can be utilized for general manipulation tasks. This section starts by giving
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the definition of muscle synergies. Then the generation of reaching-like movements

is briefly described. It will be demonstrated that muscle synergies can be extracted

from optimal data, which are estimated using the forward dynamics estimated.

4.4.1 Definition

There are many interpretations of muscle synergies in various studies such as time

varying synergies [17, 20, 142], or uncontrolled manifold [118, 143]. In this chapter,

time-invariant synergies is adopted that a muscle synergy 𝑤𝑗 ∈ ℜ𝑛𝑢 represents a

synchronous activation of a group of 𝑛𝑢 actuators. Applications of time-invariant

synergies to robot control can also be found in [144], where robots were manipu-

lated by a feedback controller. Applications of time-varying synergies can be found

in [96,145]. In contrast to time-invariant synergies that possess only spatial informa-

tion, time-varying synergies are sequences of (control) action which possesses both

temporal and spatial information. The presence of temporal information increases

the difficulties to implement time-varying synergies to a feedback controller. It is still

an open question that which interpretation is the best. Time-invariant synergies are

chosen to achieve general manipulation because of it is simpler to implement conven-

tional feedback control techniques. However, controllers (usually open-loop) utilizing

time-varying synergies usually have much fewer control parameters. Therefore, they

are especially beneficial for controlling simple tasks such as reaching movements. De-

velopment of a controller utilizing both time-invariant and time-varying synergies is

a promising direction and will be studied in the future. Readers can refer to [119] for

more details about different interpretations of muscle synergies.

A control signal 𝑢 ∈ ℜ𝑛𝑢 is constructed by linear combination of 𝑀 ≤ 𝑛𝑢 muscle

synergies. Given samples of the control signals, muscle synergies can be extracted by

various matrix factorization techniques [125]. In this chapter, Principal Component

Analysis (PCA) [108] is used to extract muscle synergies, because PCA is one of the

most common dimension reduction techniques and easy to understand. Also, because

dimension reduction performance depends on data characteristics, attention is put on

development to achieve low-dimensional control in a general manner. Investigation
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of different dimension reduction techniques for better performance will be carried out

in future work. Through linear matrix factorization, a control signals vector 𝑢 is

approximated by

𝑢 ≈
𝑀∑︁

𝑗=1

𝑤𝑗𝑎𝑗 + �̄� = W𝑎 + �̄� (4.13)

where W contains the first 𝑀 < 𝑛𝑢 most important principal components in the

columns. �̄� is the mean of 𝑢. 𝑎𝑗 is the activation of the 𝑗th muscle synergy 𝑤𝑗. The

muscle synergies extracted by PCA may have negative components. A muscle with

negative activation can be considered a muscle which produces extensional force. The

linear combination of muscle synergies (5.2) must be non-negative because a muscle

can only produce contraction force and bounded above by maximum activation 𝑢𝑢𝑏.

In implementation, the values in 𝑢 were set to 0 or 𝑢𝑢𝑏, respectively, when they

become negative or larger than 𝑢𝑢𝑏, .

4.4.2 Extraction of muscle synergies from estimated optimal

control signals

Using the forward dynamics in task space (the third equation in 4.1), the corre-

sponding optimal control signals 𝑢𝑚𝑖𝑛
𝑖 can be estimated. If the control is not bounded,

𝑢𝑚𝑖𝑛
𝑖 is simply given by 𝑢𝑚𝑖𝑛

𝑖 = 𝛽†(�̃�𝑖)(𝑦𝑖 − 𝛼(�̃�𝑖)) where M† denotes the Moore-

Penrose pseudo-inverse of a matrix M. For bounded control, the optimal control

signals 𝑢𝑚𝑖𝑛
𝑖 are estimated by solving the following quadratic programming problem:

min
1

2
(𝑢𝑚𝑖𝑛

𝑖 )𝑇𝑢𝑚𝑖𝑛
𝑖

subject to

⎧
⎪⎨
⎪⎩

𝑦𝑖 = 𝛼(�̃�𝑖) + 𝛽(�̃�𝑖)𝑢
𝑚𝑖𝑛
𝑖 ,

0 ≤ 𝑢𝑚𝑖𝑛
𝑖 ≤ 𝑢𝑢𝑏.

(4.14)

The estimation of the functions 𝛼 and 𝛽 in the forward dynamics has been described

in section 4.3. The key idea is to approximate the optimal control signals 𝑢𝑚𝑖𝑛 from

the selected omnidirectional movements, with the aid of forward dynamics estimates.
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Figure 4-2: The workspace of the robotic arm. Within the square regions, data sample
of movements generated by randomly parameterized control signals were collected for
synergies extraction. The collected data sample was the source for the result shown
in Fig. 4-3.

In order to demonstrate that using the optimal control signals as data source en-

ables dimension reduction, muscle synergies were extracted from reaching-like move-

ments data from the workspace of the robot depicted in Fig. 4-2. 383 of 10000 random

reaching-like movements generated by the randomly parameterized control signal de-

fined in (4.3) were selected, from 48 square regions (0.1m X 0.1m each), according to

the end-effector efficiency. The set of the omnidirectional movement’s control signals

is denoted as 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. The corresponding optimal control signals 𝑢𝑚𝑖𝑛 were esti-

mated after estimating the forward dynamics using the selected movement data. To

compare the performance of the selection process, 383 of the same 10000 reaching-

like movements were randomly selected. The control signals 𝑢0 were collected and

the corresponding optimal control signals (𝑢0)𝑚𝑖𝑛 were estimated after estimating

the forward dynamics using the randomly selected movement data. Fig. 4-3 depicts

the variance characteristics of performing PCA on 𝑢0, 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, (𝑢0)𝑚𝑖𝑛 and 𝑢𝑚𝑖𝑛.

Dimension reduction was observed in the case of estimated optimal control signals
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Figure 4-3: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (1) 𝑢0: control signal from randomly
selected reaching-like movements; (2) 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑: control signals selected according to
the end-effector efficiency; (3) (𝑢0)𝑚𝑖𝑛: the estimated optimal control signals corre-
sponding to 𝑢0 and (4) 𝑢𝑚𝑖𝑛: the estimated optimal control signals corresponding to
𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.
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(𝑢0)𝑚𝑖𝑛 and 𝑢𝑚𝑖𝑛. A better degree of dimension reduction was observed after selec-

tion. Because every principal component shares almost the same importance, muscle

synergies cannot be extracted from neither the data 𝑢0 that without statistical reg-

ularities, nor the selected data 𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. Recall that because muscle synergies were

obtained from random reaching-like movements for general manipulation, the degree

of dimension reduction provided by these synergies was expected to be not as good as

those synergies obtained from well-optimized/controlled signals of simple movements.

It was observed that the degree of dimension reduction is not very significant that 5

PCs explain 90% variance of a 10-dimensional data. In section 4.7 it will show that

better degree of dimension reduction can be achieved when controlled movements are

the data source.

4.5 A sliding controller for overactuated system

This section describes a controller which computes the control signal to manipulate

the end-effector to follow a desired trajectory, using estimates of the inverse dynamics

of the overactuated system (4.1). Sliding control technique is adopted for allowing

estimation inaccuracies. The controller also has a null space control term for joint

stabilization and achieving secondary goals.

Precisely, the problem is find control signals 𝑢(𝑡) to control the overactuated

system (4.1) to follow a desired trajectory 𝑦(𝑡) = [(𝑦*(𝑡))𝑇 , (�̇�*(𝑡))𝑇 ]𝑇 ∈ ℜ2𝑛𝑦 in task

space such that

∀𝑡 ≥ 0, |𝑒| ≤ 𝜖1, |�̇�| ≤ 𝜖2, 𝜖1 > 0, 𝜖2 > 0 (4.15)

with initial condition 𝑦*(0) = [(𝑦(0))𝑇 , (�̇�(0))𝑇 ], where 𝑒 = 𝑦 − 𝑦* and �̇� = �̇� − �̇�*

are the tracking error vectors and | · | is an entry-wise absolute value operator.

Following standard procedure in sliding control [134], let

𝑠 = �̇� + 𝜆𝑒, 𝜆 > 0, 𝜆 ∈ ℜ. (4.16)
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The tracking problem (4.15) is achieved by finding a control law which satisfies the

sliding condition
1

2

𝑑

𝑑𝑡
(𝑠𝑇𝑠) ≤ −𝜂𝑇 |𝑠|, 𝜂 > 0. (4.17)

Let �̃� and 𝛽 be the estimates of 𝛼 and 𝛽 in (4.1), respectively. Furthermore, assume

that the estimation errors are bounded such that |𝛼− �̃�| ≤ A and |𝛽−𝛽| ≤ B, where

the entries of A and B are non-negative finite real number. Consider the following

control law

𝑢 = 𝛽†(𝑦* − �̃�)− 𝛽†((𝑘𝑠 ∘ sgn(𝑠)) + 𝜆�̇�) + (I− 𝛽†𝛽)𝑢0 (4.18)

where 𝛽† is the Moore-Penrose pseudo-inverse of 𝛽 and I is the identity matrix, sgn(·)
is an entry-wise operator which returns 1, -1 and 0 if the corresponding entry is

positive, negative or equal to zero respectively, ∘ denotes the Hadamard product and

𝑢0 is a null space control vector which will be explained in more detail later. In order

to satisfy the sliding condition (4.17), one can choose large enough control gain 𝑘𝑠

such that

𝛽𝛽†𝑘𝑠 ≥ A + B|�̂�|+ 𝜂 (4.19)

where �̂� = 𝛽†(𝑦*− �̃�−𝜆�̇�) + (I−𝛽†𝛽)𝑢0. In other words, the end-effector can follow

the desired trajectory 𝑦(𝑡), by choosing large enough control gain 𝑘𝑠 in the control

law (5.13) to compensate the estimation inaccuracies A and B.

For the proof, consider a Lyapunov-like function

𝑉 (𝑠, 𝑡) =
1

2
𝑠𝑇𝑠 ≥ 0. (4.20)
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Differentiating with respect to time yields

�̇� =𝑠𝑇 �̇�

=𝑠𝑇 (𝑦 − 𝑦* + 𝜆�̇�)

=𝑠𝑇 (𝛼 + 𝛽𝑢− 𝑦* + 𝜆�̇�)

=𝑠𝑇 (𝛼 + 𝛽�̂�− 𝛽�̂� + 𝛽�̂�− 𝑦* + 𝜆�̇�− 𝛽𝛽†(𝑘𝑠 ∘ sgn(𝑠)))

=𝑠𝑇 [(𝛼− �̃�) + (𝛽 − 𝛽)�̂�− 𝛽𝛽†(𝑘𝑠 ∘ sgn(𝑠))].

(4.21)

Using (4.19) yields

�̇� ≤ 𝑠𝑇 [A + B|�̂�| − (|A + B|�̂�|+ 𝜂) ∘ sgn(𝑠)]

= 𝑠𝑇 (A + B|�̂�|)− |𝑠|𝑇 (A + B|�̂�|)− 𝜂𝑇 |𝑠|

≤ −𝜂𝑇 |𝑠| ≤ 0.

(4.22)

From Barbalat’s Lyapunov-like lemma, it can be concluded that 𝑠→ 0 and therefore

𝑒→ 0.

In order to reduce the effect of chattering, the sgn(·) function is replaced by a

saturation function

𝑢 = 𝛽†(𝑦* − �̃�)− 𝛽†((𝑘𝑠 ∘ sat(𝑠,Ψ)) + 𝜆�̇�) + (I− 𝛽†𝛽)𝑢0 (4.23)

where sat is an entry-wise function

sat(𝑠𝑛,Ψ𝑛) = 𝑠𝑛 if
⃒⃒
⃒⃒ 𝑠𝑛
Ψ𝑛

⃒⃒
⃒⃒ ≤ 1

sat(𝑠𝑛,Ψ𝑛) = sgn(𝑠𝑛) otherwise.
(4.24)

where 𝑛 = 1, ..., 𝑛𝑦 is the dimension index, Ψ ∈ ℜ𝑛𝑦 is vector of positive entries Ψ𝑛.

In (4.23), the first term corresponds to the feedforward control. The second term

corresponds to the feedback control. In the last term (I−𝛽†𝛽) projects the null space

control 𝑢0 to the null space of 𝛽, which only acts in the null space and thus does

not affect the performance in the task space. The null space control 𝑢0 is utilized
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for stabilization in the joint space and to achieve secondary goals, during tracking

in the task space. In simulation, the following null space control was employed in

order to achieve a secondary goal of avoiding collision at the joint limits 𝑥𝑙𝑏𝑙 and 𝑥𝑢𝑏𝑙 ,

𝑙 = 1, ..., 𝑛𝑥:

𝑢0 = 𝑔†[−K𝑣0�̇�−K𝑝0𝜀(𝑥)] (4.25)

where 𝑔† was the Moore-Penrose pseudo-inverse of the estimate of 𝑔, K𝑣0 and K𝑝0 were

the diagonal matrices with positive entries in their diagonals. 𝜀 was an entry-wise

function that the 𝑙th entry given by

𝜀𝑙 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥𝑙 − (𝑥𝑙𝑏𝑙 + 𝛿), 𝑥𝑙𝑏𝑙 ≤ 𝑥𝑙 ≤ 𝑥𝑙𝑏𝑙 + 𝛿

𝑥𝑙 − (𝑥𝑢𝑏𝑙 − 𝛿), 𝑥𝑢𝑏𝑙 − 𝛿 ≤ 𝑥𝑙 ≤ 𝑥𝑢𝑏𝑙

0 otherwise

(4.26)

and 𝛿 was a positive scalar. One can replace 𝜀(𝑥) to achieve other secondary goals.

For example, choosing 𝑢0 = 𝑔†(−K𝑣0�̇�−K𝑝0(𝑥−𝑥𝑟𝑒𝑠𝑡)) has the effect of bringing 𝑥

to “resting posture” 𝑥𝑟𝑒𝑠𝑡.

It is desirable to have small control gains. Briefly speaking, using minimum

norm control signals allows larger null space control 𝑢0 for achieving secondary goals.

Within the admissible control range 0 ≤ 𝑢 ≤ 𝑢𝑢𝑏 where 𝑢 is defined by (4.23), using

the estimated optimal control in the feedforward control

𝛽†(�̃�) (𝑦 − 𝛼(�̃�)) = 𝑢𝑚𝑖𝑛 (4.27)

having the minimum absolute values, has the advantage of providing maximum ca-

pacity to apply the null space control 𝑢0 and the feedback control, since the required

control gain 𝑘𝑠 in the feedback control becomes the smallest. It is because acting

larger null space control 𝑢0 (𝑢0 ̸= 0) results in larger |�̂�| in (4.19), thus larger 𝑘𝑠

is needed in the feedback control to satisfy the condition (4.19) in order to achieve

tracking under modeling uncertainties. Readers can refer to [116] for more details

about null space control in task space control.
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4.6 Inverse dynamics estimation

4.6.1 Estimation of the inverse dynamics from optimal control

signals

In order to apply the sliding control law (4.23), it is needed to estimate the terms

𝛽†𝛼 and 𝛽† in the inverse dynamics. One of the common difficulties of inverse dy-

namics estimation is that the mapping is one-to-many in general. Consider the over-

actuated system (4.1) with 𝑢 unbounded, the inverse dynamics is given by

𝑢 = 𝛽†(�̃�)(𝑦 − 𝛼(�̃�)) + (I− 𝛽†(�̃�)𝛽(�̃�))𝜉

= 𝑢𝑚𝑖𝑛 + (I− 𝛽†(�̃�)𝛽(�̃�))𝜉
(4.28)

where 𝜉 is an arbitrary vector and 𝑢𝑚𝑖𝑛 is given by (4.27). This implies that there are

many ways to achieve 𝑦 at the same �̃�. The estimation of 𝛽†𝛼 and 𝛽† is impossible

because 𝜉 is unknown. Inspired by the fact that the optimal control 𝑢𝑚𝑖𝑛 has the

minimum Euclidean norm among all possible solutions1, the estimation of 𝛽†𝛼 and

𝛽† is feasible if the training samples are optimal control signals among all possible

solutions to achieve 𝑦𝑖 at �̃�𝑖 in the sense of minimum Euclidean norm. In this research,

optimal control signals are approximated by solving the optimization problem (4.27).

Consequently, it can be considered as the case of 𝜉 ≈ 0 and thus the inverse dynamics

mapping can be directly estimated from the estimated optimal control signals 𝑢𝑚𝑖𝑛
𝑖 .

4.6.2 Regeneration of the same movements using lower-dimensional

control signals

Before estimating the task space inverse dynamics mapping (�̃�,𝑦) ↦→ 𝑎 for low-

dimensional control, it is necessary to ensure that each 𝑦𝑖 is the outcome of applying

the low-dimensional control signal 𝑎𝑖 at �̃�𝑖 in the training data set {𝑎𝑖, �̃�𝑖,𝑦𝑖}, 𝑖 =

1, ..., 𝑁 . To this end, the same omnidirectional movements are regenerated, by ap-

1Since the minimum Euclidean norm solution of linear system M𝑧 = 𝑏 with non-unique solutions
is given by 𝑧 = M†𝑏 where M† is the Moore-Penrose inverse of M.
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Figure 4-4: The regeneration of a selected reaching-like movement according to the
end-effector efficiency. (a) The original randomly initialized parameterized control
signals. (b): Control signals reconstructed using all the extracted 10 muscle syner-
gies. These signals were the estimated optimal control signals. (c): Control signals
reconstructed using the first 5 muscle synergies. These signals were used for the
regeneration. (d): The end-effector trajectories in the task space generated by the
control signals in Fig. 4-4a, Fig. 4-4b and Fig. 4-4c are shown by the dashed line, the
solid line and the dash-dot line, respectively. The grid indicates a rectangular area
and the regions where the training data were collected, for the manipulation task in
section 4.7. This trajectory starts from the highlighted region. (e): The histories of
the x and y position. These graphs show that the reaching-like movements could be
reproduced by using low-dimensional control signals via muscle synergies.
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plying the same sequence of the extracted low-dimensional control signals with the

same initial conditions. Fig. 4-4 depicts the difference before and after a regeneration

of a movement using low-dimensional control signals. It was observed that the low-

dimensional control signals produced similar movements, with smaller control effort.

The trajectories generated by muscle synergies deviated from the original one because

of accumulative difference between the original control signals (Fig. 4-4a) and the re-

constructed signals from muscle synergies. The control signals reconstructed from

fewer muscle synergies (Fig. 4-4c) were almost the same as the ones from all synergies

(Fig. 4-4b) and thus produced almost the same trajectories. The regeneration process

does not have much influence to the distribution of the selected movement data, and

thus does not affect the estimation of inverse dynamics and control performance.

4.6.3 Overall procedure

The procedure for estimating the inverse dynamics with muscle synergies is sum-

marized in Table 4.1. In Step 1, and in Step 5, the forward dynamics and the low-

dimensional inverse dynamics are estimated independently for each dimension of 𝑦

and 𝑎, respectively. In Step 2, since the estimates �̃�, and 𝛽 (not the true 𝛼 and 𝛽)

are used in solving (4.14), there may exist ‖𝑢𝑚𝑖𝑛
𝑖 ‖2 ≥ ‖𝑢𝑖‖2. In this case, the optimal

control signal was set to the original control signal 𝑢𝑚𝑖𝑛
𝑖 = 𝑢𝑖 in implementation.

In Step 4, the regeneration of movements ensures that each 𝑦𝑎
𝑖 is the outcome of

applying 𝑎𝑖 at �̃�𝑎
𝑖 . The application of PCA on 𝑢𝑚𝑖𝑛

𝑖 also acts as a whitening step to

decorrelate the data in Step 5. The estimation error of 𝑢𝑚𝑖𝑛
𝑖 and the possible exis-

tence of local minima when solving the quadratic programming problem may affect

the estimation of the inverse dynamics. However, the evaluation in the next section

shows that the estimated inverse dynamics mapping could still be applied to achieve

a tracking control task.

The procedure can also be interpreted as a self-learning process of extracting

muscle synergies for low-dimensional control. The extraction of muscle synergies

corresponds to the extraction of control skills from random movements (Step 1 to

Step 3). Then, the extracted control skills are practiced by replicating the same

77



Table 4.1: Procedure for estimation of inverse dynamics for low-dimensional control.
This scheme can be considered as a realization of a simple self-learning process of
muscle synergies for low-dimensional control.

Given 𝑁 training samples {𝑢𝑖, �̃�𝑖,𝑦}𝑁𝑖=1 of 𝑄 movements

Extracting muscle synergies (control skills)
Step 1: Estimate �̃�(�̃�) and 𝛽(�̃�) from the forward dynamics:

𝑦 = 𝛼(�̃�) + 𝛽(�̃�)𝑢

Step 2: Estimate the optimal control signals using �̃�(�̃�) and 𝛽(�̃�)
by solving (4.14).
Step 3: Extract muscle synergies from 𝑢𝑚𝑖𝑛

𝑖 using PCA:
𝑢𝑚𝑖𝑛

𝑖 ≈W𝑎𝑖 + �̄�

Regeneration of movements (Practice with the control
skills)
Step 4: Re-generate the 𝑄 movements by using the corresponding

lower dimensional control sequence 𝑎𝑖 with the same initial
condition. Denotes the regenerated samples as (𝑎𝑖, �̃�𝑎

𝑖 , 𝑦𝑎
𝑖 )

Estimation of inverse dynamics (Remember the uses of the
control skill)
Step 5: Use the regenerated samples (𝑎𝑖, �̃�𝑎

𝑖 , 𝑦𝑎
𝑖 ) for estimation of

the inverse dynamics:
𝑎 = 𝛽†(�̃�𝑎)(𝑦𝑎 − 𝛼(�̃�𝑎))
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movements (Step 4). Finally, the utilization of the extracted control skills are re-

membered (Step 5).

In simulation, it is found that if the sparsification technique in described (4.11)

and (4.12) was used instead of solving equation (4.10), it might remove important

data samples, resulting in bad control performance. It can be solved by keeping

a portion of training data that always contribute in the estimation. This can be

accomplished easily by randomly selecting a portion of training data in each region in

the workspace, and setting the selected portions of all the regions as the “free bases”

in the SparseBayes 2.0 [139]. It does not remove “free bases” from the training data

during sparsification.

4.7 Experiments

4.7.1 Simulation setup

The planar 3-DOF human-like robotic arm actuated by 10 muscles described in

Appendix A was used as a simulation platform. The control task was to follow a

figure of “8” trajectory for four cycles locating within a rectangular area (0.2m X

0.3m) with lower left corner at (0,-0.65) in the Cartesian plane. The rectangular area

was divided into 24 square regions (0.05m X 0.05m). The figure of “8” trajectory con-

sists of all movement directions and thus suitable for the evaluation of the extracted

muscle synergies for general manipulation task. In data collection, 192 of 5000 ran-

dom reaching-like movements were collected from the rectangular area, according to

the end-effector efficiency as described in section 4.2.1. (The best 2 movements were

chosen for each of the four moving directions). The total number of samples was

3774. (Samples outside the grids were excluded). All the samples were used for the

estimation of the forward dynamics. For the estimation of the inverse dynamics, 1920

samples were used for faster computation. The samples were collected by randomly

selecting 80 samples in each region. In order to examine the robustness to measure-

ment noise, 𝑥, �̇�, 𝑦, �̇� and 𝑦 were corrupted with Gaussian noise. The signals were
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corrupted as 𝑠′ = 𝑠′ + �̂�𝜁 where 𝜁 was drawn from the Gaussian distribution with

zero mean and identity covariance, where �̂� = 0.2𝑜, �̂� = 2𝑜s−1 and �̂� = 2𝑜s−2 for 𝑥,

�̇� and �̈�, respectively; �̂� = 0.002m, �̂� = 0.02ms−1 and �̂� = 0.2ms−2 for 𝑦, �̇� and 𝑦,

respectively. The noisy measurements were used for estimations of the dynamics and

during control.

The simulation was carried out following the steps described in Table 4.1. Both

the forward dynamics and the inverse dynamics were estimated with the Gaussian

kernel

𝑘(�̃�𝑝, �̃�𝑞) = exp
(︂
−1

2
(�̃�𝑝 − �̃�𝑞)

𝑇L(�̃�𝑝 − �̃�𝑞)
)︂
. (4.29)

L was a diagonal matrix with entries 𝐿𝑚 = 𝜎−1(�̃�𝑚𝑎𝑥
𝑚 − �̃�𝑚𝑖𝑛

𝑚 )−2 where �̃�𝑚𝑎𝑥
𝑚 and

�̃�𝑚𝑖𝑛
𝑚 were the maximum and minimum of the 𝑚th dimension in the training data.

𝜎 was the parameter of the kernel width. 𝜎 and the regularization constant 𝛾 were

determined by cross validation. Isotropic 𝜎 and 𝛾 were used for simplicity. The

importance of each datum was assumed to be the same and thus Q = I was set.

The performance of the sparsification technique as described in section 4.3 was also

evaluated, where 20% of the 1920 samples were set to be always incorporated in the

inverse dynamics estimation. (set as “free bases” in SparseBayes 2.0). The muscle

synergies were extracted from the optimal control signals 𝑢𝑚𝑖𝑛
𝑖 by PCA using the

MATLAB function pca. The 6 most important muscle synergies are depicted in

Fig. 4-5. All the simulations were carried out in MATLAB.

4.7.2 Tracking a figure of 8 trajectory

The control parameters were set to 𝜆 = 10, 𝑘𝑠 = [10, 10]𝑇 , K𝑝0 = 30I, K𝑣0 =
√

30I. Fig. 4-6, Fig. 4-7, and Fig. 4-8 show the results of tracking the desired trajec-

tory for four cycles, in which 5 muscle synergies were utilized. The robot successfully

followed the desired trajectory using low control gain 𝑘𝑠. The null space control (4.25)

and (4.26) were able to keep the joints away from the joint limits. It should be noticed

that the muscle synergies were extracted from data of movements different from the

desired trajectory.
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Figure 4-5: 6 of the 10 muscle synergies extracted from the estimated optimal control
signals. Each synergy specifies co-activations of the 10 muscles of the robot arm. The
low dimensional control signals activate these synergies to control all the muscles.
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Figure 4-6: Trajectory history in joint space. In the case of using zero null space
control 𝑢0 = 0, the robot collided at the upper limit of joint 2 at 90𝑜. With the
aid of null space control, the robot stayed within the joint limits without collisions.
The collisions cause the deviation from the desired trajectory depicted in Fig. 5-6b
and Fig. 5-6d. The dot lines are the results utilizing refined muscle synergies. These
results demonstrate the ability of the null space control 𝑢0 that stabilizing the robot
in the joint space and perform secondary goal.
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Figure 4-7: Trajectory history in the task space. In the case without null space control
𝑢0 = 0, the robot moved away from the desired trajectory in the y position, due to
the collisions at the joint limit as depicted in Fig. 5-6c. The dot lines are the results
utilizing refined muscle synergies.
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Figure 4-8: Tracking a figure of “8” trajectory for four cycles. The dot line is the
result utilizing refined muscle synergies.

Table 4.2: Control performance vs Number of muscle synergies utilized.
Average position error from the de-
sired trajectory [×10−6m]

Number of
synergies

Total variance
explained

All training data Sparsification

2 65.8% 107.25 (88.0%*) 7010 (88.2%*) 20.5%
3 80.3% 77.91 (91.3%*) 1654 (95.9%*) 25.8%
4 87.0% 74.61 (98.5%) 1252 (100%*) 25.3%
5 90.6% 1.85 (100%) 2.18 (100%) 31.0%
6 93.2% 3.04 (100%) 3.59 (100%) 22.8%
7 95.3% 2.35 (100%) 3.56 (100%) 25.2%
8 97.2% 2.39 (100%) 4.93 (100%) 39.3%
9 98.8% 5.71 (100%) 4.94 (100%) 42.7%
10 100% 9.80 (100%) 12.77 (100%) 43.0%

The values in the brackets are the average percentage of following one cycles of the
figure of “8” trajectory, before the instantaneous position error > 0.03m.
The asterisks indicate collisions occurred at joint limits.
The last column is the percentage of the training data remained after sparsification.
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Table 4.2 summarizes the control performance when a different number of muscle

synergies were utilized. The position errors were the average of 10 runs of following the

figure of “8” trajectory for four cycles in each case. The third column shows the results

when inverse dynamics was estimated by all training data (solving equations (4.10)),

whereas the fourth and the fifth columns are the results when sparsification was

employed. The robot failed to follow the desired trajectory when 4 or fewer muscle

synergies were utilized, and succeed when more than 4 muscle synergies were utilized.

When sparsification was employed, good control accuracy could also be achieved when

5 or more muscle synergies were utilized. It was also observed that after sparsification,

about 20% to 30% of the training data remained when 7 or fewer muscle synergies

were utilized, whereas about 40% of the training data remained when 8 or more

muscle synergies were utilized.

4.7.3 Dimension reduction on controlled movements and mus-

cle synergies refinement

It was expected that the degree of dimension reduction was better than that listed

in the 2nd column in Table 4.2, when a well-controlled movement data was the data

source. This subsection investigates how many muscle synergies were needed to draw

the figure of “8” trajectory, by performing PCA on the control signals of the tracking

result when all 10 muscle synergies were utilized. Fig. 4-9 compares the variance

characteristics between the tracking results and the estimated optimal control signals.

Fig. 4-9a indicates that 5 principal components were needed to explain over 90% of the

total variance of 𝑢𝑒𝑖𝑔ℎ𝑡. This is consistent with the control performance in Table 4.2.

For simpler movement of drawing the first quarter of the figure of “8”(𝑢𝑐𝑢𝑟𝑣𝑒), better

dimension reduction performance could be achieved. In Fig. 4-9b, over 99% of the

total variance of 𝑢𝑒𝑖𝑔ℎ𝑡 could be explained by 5 PCs, because the control signals

𝑢𝑒𝑖𝑔ℎ𝑡 was computed by utilizing 5 muscle synergies and thus had a better degree of

dimension reduction. These results motivated us to further refine the muscle synergies

to reduce the number of muscle synergies required.
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Figure 4-9: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (top) 𝑢𝑚𝑖𝑛: the estimated optimal
control signals of the reaching-like movements selected according to the end-effector
efficiency. It is the same as the data in the second column of Table 4.2; (2𝑛𝑑 row)
𝑢𝑒𝑖𝑔ℎ𝑡: the control signals drawing the figure of “8”; and (bottom) 𝑢𝑐𝑢𝑟𝑣𝑒: the first
quarter of 𝑢𝑒𝑖𝑔ℎ𝑡 drawing the lower right half circle of the figure of “8”.
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Figure 4-10: Percentage of variance explained by all the principal components of PCA,
which was performed on the control signals of (top) 𝑢𝑚𝑖𝑛: the estimated optimal
control signals of the reaching-like movements selected according to the end-effector
efficiency. It is the same as the data in the second column of Table 4.2; (2𝑛𝑑 row)
𝑢𝑟𝑒𝑓𝑖𝑛𝑒𝑑: the control signals of the 192 selected reaching-like movements tracked by
the sliding controller with 5 synergies.
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It was attempted to refine the muscle synergies in order to further reduce the

number of synergies needed. After learning the inverse dynamics, the 192 selected

reaching-like movements were tracked utilizing 5 muscle synergies, with the same

initial conditions. The samples of these 192 tracked movements were used as the

source to extract muscle synergies, to regenerate movements and to learn the inverse

dynamics following the procedure in Table 4.1. In this case, because the control signals

for synergy extraction were constituted by 5 synergies, ideally performing PCA would

give the first 5 principal components explaining 100% of the total variance. Fig. 4-10

depicts the variance characteristics of the refined muscle synergies, in which the first

5 principal components explain 98% of the total variance. This is possibly because

the control signals were bounded within 0 and 𝑢𝑢𝑏; This bounding process can be

considered as adding noise to the control signals, which contributes the remaining

2% variance. The figure of “8” could be tracked utilizing 4 muscle synergies without

collision to the joint limits, with average position error 5.15 ×10−6m (10trials). The

tracking trajectories are depicted in Fig. 4-6, Fig. 4-7 and Fig. 4-8.

4.8 Discussion

4.8.1 The minimum number of synergies required

Compared with chapter 3, this chapter allows positive and negative synergy acti-

vations. Therefore, it is possible that such bidirectional activation of a synergy may

produce 2 distinct possible motion directions, thereby there may exist 2 synergies that

may produce 4 directions for producing motion in all possible directions, as illustrated

in the Fig 4-11.

However, according to the result in Table 4.2, 5 synergies were required to track

the desired trajectory with small tracking error. One possible reason is that the

moving direction produced by a synergy depends on the robot posture. According

to (4.1), the end-effector acceleration of the robot is given by multiplying the muscle

activation 𝑢 by a nonlinear function 𝛽(�̃�) where �̃� consists of joint configurations
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Figure 4-11: Possible moving directions of the robot end-effector when 3 muscle
synergies, 𝑤1, 𝑤2 and 𝑤3 are activated individually. The circles denote the end-
effector positions on a 2D task space, and each arrow denotes a moving direction
when a muscle synergy is activated. The numbers “1”, “2” and “3” denote the indexes
of the synergies 𝑤1, 𝑤2 and 𝑤3, respectively. This figure illustrates that activating a
synergy may move the end-effector in two distinct directions (the second left) since
both positive synergy activation and negative synergy activation is allowed; At least
2 synergies may be required to move the end-effector in all possible directions on a
2D horizontal task space.

𝑥 and joint velocities �̇�, followed by adding another nonlinear function 𝛼(�̃�), which

must be a nonzero term because it is the passive dynamics of the robot in task space.

Moreover, equation (4.1) also implies that activating a synergy with opposite sign

does not necessarily produce opposite moving direction, because of the presence of

the nonzero term 𝛼(�̃�).

4.8.2 Determining the best number of synergies

For the experiment 4.7.2, the best number of synergies compromising the con-

trol complexity (dimensionality) and the control performance of the synergies-based

tracking controller can be determined according to the control performance in the

task space and the joint space. The control performance in the task space is mea-

sured according to the tracking error (the 3rd column in Table 4.2) of the end-effector,

and the control performance in the joint space is measured according to the occur-
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rence of collisions to the joint limits (indicated with an asterisk mark in Table 4.2 if

collisions occurred). From Table 4.2, it is observed that the control accuracy of the

end-effector in the task space improves when the number of synergies increased from 2

to 4, attained similar level of small tracking error (from 1.9× 10−6m to 3.0× 10−6m)

when 5 to 8 synergies were utilized, and slightly worsened to larger error (smaller

than 10.0 × 10−6m) when 9 and 10 synergies were utilized. The similar values of

the tracking error for the cases of 5 or more synergies in Table 4.2 implies that set

of the muscle activations to track the desired trajectory in Fig. 4-8 lies in a lower-

dimensional control space. The synergies-based controller has a secondary control

task goal, where the joints are regulated by the null space control term (the last term

in (4.23), (4.25) and (4.26)) such that the joints are kept away from the limits without

much interfering the control performance in the task space. The robot collided with

the joint limits when the number of synergies utilized was smaller than 4 (or 5 when

the sparsification technique was used), indicating by the asterisks next to the tracking

error in Table 4.2. Considering the best number of synergies as the minimum number

of synergies that can achieve good control performance in both the task space and

the joint space. According to Table 4.2, the best number of synergies in experiment

4.7.2 can be determined as 5.

Note that the control performances were assessed for the particular tracking con-

trol task in experiment 4.7.2, it may need a different number of synergies to accomplish

different desired task space trajectories. Moreover, the assessment of the control per-

formance in the joint space can only indicate whether the controller can keep the joints

away from the limits. Further investigations of the control performance to achieve a

variety of control tasks using different desired task space trajectories, and the study

of relationship between the number of synergies and the control performance in the

joint space are the future works.
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4.9 Summary

In this chapter, the problem of extracting muscle synergies and its application to

a task space controller for a musculoskeletal robot were studied. It is proposed to

estimate the optimal muscle activations in the sense of minimum control effort, using

robot’s forward dynamics estimated by a system identification technique. It is shown

that when extracting muscle synergies from the estimated optimal muscle activations,

dimensionality reduction can be achieved. It is also demonstrated that using the es-

timated optimal data as the training source has the advantages of enabling direct

estimation of the generally ill-posed robot’s inverse dynamics, and providing maxi-

mum capacity for null space control within the admissible control range. A sliding

control law for a class of nonlinear overactuated systems, as well as a kernel-based

formulation for estimating the robot’s forward and inverse dynamics, are provided.

Numerical simulation results show that the proposed algorithm can extract muscle

synergies for general end-effector manipulation and achieve low-dimensional control.

A sparsification technique is proposed to handle large data set. It is also shown that

the muscle synergies required can be further reduced, by extracting muscle synergies

from reaching-like movements where the robot is controlled in a reduced dimension-

ality by the tracking controller with muscle synergies.

91



Chapter 5

Obtaining muscle synergies in a

goal-directed exploration scheme

Although chapter 4 has developed a technique for extracting muscle synergies,

it is assumed that the robot can start the exploration from an arbitrary resting

configuration; Such assumption may not be always satisfied. In this chapter, a data

collection method is proposed based on a goal-directed exploration strategy, where

the robot explores unknown task space area by trying to reach designated targets

spreading over the task space successively, without resetting to a resting configuration.

During exploration, muscle synergies are obtained from local data sample, aiding in

the estimation of the robot’s inverse dynamics in reduced control dimensionality. The

robot is controlled by a task space controller with null space control that can regulate

the joint away from joint limits, using the inverse dynamics obtained from local data.

In simulation evaluation, the proposed methods enabled a human-like robotic arm to

collect data sample of omnidirectional reaching movements in an exploration task of

a 2D task space. It was demonstrated that the collected data sample could be used

a training source to extract a set of muscle synergies and to establish a controller for

manipulating the robot in reduced control dimensionality. Two bio-inspired strategies,

goal-directed exploration and muscle synergies, which are is highly plausible in human

beings, are integrated into engineering control techniques of musculoskeletal robots.

The proposed method enables a robot to obtain muscle synergies by itself, which is a
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step towards the development of autonomous musculoskeletal robots.

5.1 Introduction

Despite musculoskeletal robots have flexible and compliant structures that po-

tentially provide advantages such as dexterity and safety, control difficulties of such

complicated structure hinders development for real applications. Musculoskeletal

robots usually have many joints and actuators, so that it can achieve a task in many

different combinations of joint configurations and muscle activations. The general

problem of control the robot is about how to coordinate so many actuators to achieve

a task such as reaching an object or following a trajectory. Biological studies of

human motor control might give us inspirations.

The concept of muscle synergies, a hypothesis to explain how human control their

bodies, can reduce control complexity of musculoskeletal robots. It has been sug-

gested that humans coordinate groups of muscle co-activations called muscle syner-

gies, instead of controlling muscles independently [13,117,119]. In many engineering

applications, the concept of muscles synergies was adopted for the purpose of re-

ducing dimensionality. For example, muscle synergies acted in transferring human’s

motion from high dimensional electromyography (EMG) signals to a human-like low

dimensional robot motion in a real-time tele-operation application [9]. Muscle syner-

gies has also been employed in solving computationally expensive problems such as

reinforcement learning of reaching movements of a full-torso, simulated musculoskele-

tal robot [128], or point-to-point manipulation of a redundant six-muscle simulated

robotic arm using optimal control theory [96].

Muscle synergies can be extracted from control signals of a given data sample with

inherent statistical regularities [119,146], using pattern recognition tools. Examples

of such data sample are electromyography (EMG) signals of specific movements [24,

110,147] and optimized control signals with respect to certain criteria [96,148,149]. In

chapter 4, a method to extract muscle synergies from data sample of randomly param-

eterized control signals which do not possess any statistical regularities is proposed.
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However, not only statistical regularities of the control signals, but also the corre-

sponding joint space and task space data in the sample have to be considered. For

instance, muscle synergies extracted from control signals of uni-directional movements

are unlikely be utilized for producing multi-directional movements. For manipulation

within the robot task space to perform various tasks, data sample of omnidirectional

movements is an appropriate choice.

Goal-directed exploration, an effective motor skill learning strategy observed in

the study of human motor learning, is a promising approach to enable robots ob-

taining muscle synergies. Goal-directed exploration has been observed in motor

skill development in human [150, 151], where infants obtain motor skills by doing

goal-directed actions, such as trying to reach an object even they will fail [152].

Especially in applications of high-dimensional and redundant robotic systems, goal-

directed strategy achieves faster exploration using much fewer sample points [153],

based on directly and actively exploring often low-dimensional task space instead of

often high-dimensional joint space or control space [137,154]. It has been shown that

goal-directed exploration enabled efficient data collection in applications of obtaining

inverse kinematics models for controlling a simulated high-dimensional and redundant

robots [137] and a real bionic elephant trunk robot [153], where prior knowledge of

the robots were not given. In [154], synergies of parameterized kinematics control in-

puts of a simulated quadruped robot were incorporated in an advanced goal-directed

exploration scheme where the goals in task space were self-generated. However, the

number of control variables was still larger than the number of degree-of-freedom

(DOF) of the quadruped robot. Because the motion of a joint is often actuated

redundantly by multiple muscles, kinematics control may not be adequate in mus-

culoskeletal robots. In [155], a goal-directed exploration strategy was adopted in

controlling a real, human-like musculoskeletal robotic arm actuated by many pneu-

matic muscles, but the inverse dynamics was estimated in full dimension. Currently,

there is no example of obtaining muscle synergies by goal-directed exploration for

controlling musculoskeletal robots.
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This chapter proposes a method to extract muscle synergies by goal-directed ex-

ploration, and simultaneously obtain an inverse dynamics mapping for control without

prior knowledge of the robot. The proposed method has three main features. First,

in order to construct a controller with adequate manipulation ability using muscle syn-

ergies and inverse dynamics, the “goals”(targets) are spread within the task space in

order to collect data sample of omnidirectional point-to-point movements. Second, to

facilitate the exploration, muscle synergies are incorporated during exploration, such

that the robot is controlled in reduced control dimensionality using inverse dynamics

mapping updated from local data sample. Third, a task space feedback controller

associated with null space control is employed to proceed exploration by effectively

manipulating the end effector and regulating the joints from joint limits. Integration

of the two bio-inspired strategies, goal-directed exploration and muscle synergies, is

highly plausible in human beings, but few examples have been shown in literature

of the integration of these strategies for the control of musculoskeletal robots. The

proposed method enables robots to obtain muscle synergies by itself, which is an

important step towards development of autonomous musculoskeletal robots.

5.2 The exploration scheme

A data sample having control signals that generate end effector movements with

different moving directions covering the whole task space is more suitable for synergy

extraction. For example, synergies extracted from a data sample of horizontal point-

to-point movements from one specific location to one specific target in a 2D task space

are unlikely to be utilized for producing vertical point-to-point movements. If a robot

can start from rest anywhere in the whole task space, a data sample of end effector

movements with different moving directions can be easily obtained, by randomly

actuating the robot from rest at random locations in the task space. However, this

“starting from anywhere” assumption may not be easily satisfied in reality.

This section presents an exploration scheme that enables a robot generates sample

points of end effector movements with different moving directions for extraction of syn-
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ergies. Section 5.2.1 first defines some notations for the ease of description. Then the

overview of the proposed exploration scheme is given in section 5.2.2. Section 5.2.3,

section 5.2.4 and section 5.2.5 give detailed description of three components: the ini-

tialization process, the try-to-reach process and the stable point positioning process,

respectively.

5.2.1 Notation definitions

This chapter considers the same model of musculoskeletal robots as described in

section 4.2 (copy from (4.1)):

�̈�(𝑡) = 𝑓(�̃�(𝑡)) + 𝑔(�̃�(𝑡))𝑢(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡))

𝑦(𝑡) = 𝛼(�̃�(𝑡)) + 𝛽(�̃�(𝑡))𝑢(𝑡)

(5.1)

where 𝑥 ∈ ℜ𝑛𝑥 , �̇� ∈ ℜ𝑛𝑥 and �̈� ∈ ℜ𝑛𝑥 are the joint angles, velocities and accelerations,

respectively. 𝑦 = [𝑦1, ..., 𝑦𝑛𝑦 ]𝑇 ∈ ℜ𝑛𝑦 , �̇� = [�̇�1, ..., �̇�𝑛𝑦 ]𝑇 ∈ ℜ𝑛𝑦 and 𝑦 = [𝑦1, ..., 𝑦𝑛𝑦 ]𝑇 ∈
ℜ𝑛𝑦 are is the position, velocity and acceleration of the end effector in the task space 𝒮
of the robot, represented in the Cartesian coordinates. 𝑢 ∈ ℜ𝑛𝑢 is the control input of

actuators (muscles) with dimension 𝑛𝑢 ≥ 𝑛𝑥 bounded by 0 ≤ 𝑢 ≤ 𝑢𝑢𝑏, The functions

𝑓 , 𝑔, ℎ, 𝛼 and 𝛽 are assumed to be unknown. Let �̃� = [𝑥𝑇 , �̇�𝑇 ] ∈ ℜ2𝑛𝑥
, �̃� ∈ 𝒳 where

𝒳 denotes the robot state space and 𝑇 denotes the transpose operation. Also we

denote 𝑢 ∈ 𝒰 , �̈� ∈ 𝒳 𝑎𝑐𝑐, 𝑦 ∈ 𝒴𝑎𝑐𝑐, where 𝒰 , 𝒳 𝑎𝑐𝑐, 𝒴𝑎𝑐𝑐 are the spaces of control,

joint acceleration space and end effector acceleration, respectively. The following

notations are also introduced for the ease of description:

∙ 𝑥ℎ𝑜𝑚𝑒: A home configuration that the robot can always reset to.

∙ 𝒮: The whole task space to be explored. This task space is divided into 𝑅

smaller regions 𝒮𝑙, 𝑙 = 0, ..., 𝑅−1. The region 𝒮0 includes the home configuration

𝑥ℎ𝑜𝑚𝑒.

∙ Y𝑚𝑛 = {𝑦*
𝑘, �̇�

*
𝑘,𝑦

*
𝑘,𝑥

*
𝑘, �̇�

*
𝑘, �̈�

*
𝑘}�̄�𝑘=1: A set of vector series defining a desired tra-
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jectory connecting region 𝒮𝑚 and region 𝒮𝑛. 𝑘 denotes the time index such that

time 𝑡 = (𝑘 − 1)∆𝑡 where ∆𝑡 is a fixed time step. Here 𝑘 is used to emphasize

that it is the time index. However, in the context, the symbol 𝑖 is also used as

sample index.

∙ {q}𝑁𝑘=1 = {𝑎𝑘,𝑢𝑘, �̃�𝑘, �̈�𝑘,𝑦𝑘, �̇�𝑘,𝑦𝑘}𝑁𝑘=1: A data sample of a movement consists

of 𝑁 samples points. �̈�𝑘 and 𝑦𝑘 are the resulting accelerations when applying

𝑢𝑘 at �̃�𝑘. 𝑎𝑘 is the corresponding synergy activation of 𝑢𝑘 after extracting

synergy. A sample point is denoted as q𝑘 = {𝑎𝑘,𝑢𝑘, �̃�𝑘, �̈�𝑘,𝑦𝑘, �̇�𝑘,𝑦𝑘}.

∙ D, D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑: D is used to denote a data sample consists of 𝑁 movement sam-

ple points D = {q𝑖}𝑁𝑖=1. D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is specifically used to denote the library of

collected sample points in exploration.

∙ WD ∈ ℜ𝑛𝑢×𝑀 and WD
⊥ ∈ ℜ𝑛𝑢×(𝑛𝑢−𝑀): Synergies extracted from the control

signals {𝑢𝑖}𝑁𝑖=1 in a data sample D using PCA:

𝑢 ≈
𝑀∑︁

𝑗=1

𝑤𝑗𝑎𝑗 + �̄� = WD𝑎 + �̄�. (5.2)

WD consists of the first 𝑀 important synergies (principal components) and

WD consists of the remaining 𝑛𝑢 −𝑀 synergies.

∙ 𝜓D
𝑡𝑎𝑠𝑘: The forward dynamics mappings in task space obtained from a data

sample D which stores 𝑁 sample points {q𝑖}𝑁𝑖=1:

𝜓D
𝑡𝑎𝑠𝑘 : 𝒳 × 𝒰 → 𝒴𝑎𝑐𝑐, (�̃�,𝑢) ↦→ 𝑦 = 𝛼 (�̃�) + 𝛽 (�̃�)𝑢. (5.3)

∙ 𝑎𝜁D𝑗𝑜𝑖𝑛𝑡, 𝑎𝜁D𝑡𝑎𝑠𝑘: Inverse dynamics mappings obtained from a data sample D which

stores 𝑁 sample points {q𝑖}𝑁𝑖=1, for computing 𝑀 -dimensional synergy activa-
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tion 𝑎 ∈ ℜ𝑀 :

𝑎𝜁D𝑗𝑜𝑖𝑛𝑡 : 𝒳 × 𝒳 𝑎𝑐𝑐 → 𝒜, (�̃�, �̈�) ↦→ 𝑎 = 𝑔† (�̃�)
[︁
𝑓 (�̃�)− �̈�

]︁
(5.4)

𝑎𝜁D𝑡𝑎𝑠𝑘 : 𝒳 × 𝒴𝑎𝑐𝑐 → 𝒜, (�̃�,𝑦) ↦→ 𝑎 = 𝛽† (�̃�) [�̂� (�̃�)− 𝑦] . (5.5)

where 𝑓 (�̃�𝑘), 𝑔 (�̃�𝑘), �̂� (�̃�𝑘) and 𝛽 (�̃�𝑘) can be formulated by substituting (5.2)

into (5.1).

5.2.2 Overview

The exploration scheme is developed based on an assumption that the robot can

reset its configuration to a home configuration 𝑥ℎ𝑜𝑚𝑒. For example, the robot can

return to a resting configuration under gravity by setting all actuation to zeros. It

has been observed that infants reset posture in obtaining skills of reaching move-

ment during goal-directed exploration [156]. Infants do not try to reach a target for-

ever [137]. This assumption has also been made in other researches of goal-directed

exploration [137,153,154].

The proposed scheme consists of three functional processes, the initialization pro-

cess, the try-to-reach process and the stable point positioning process, in order to

generate end effector movements with different moving directions. In the initial-

ization process, the whole task space 𝒮 is divided into smaller regions {𝒮𝑙}𝑅−1
𝑙=0 . In

the region 𝒮0 where the home configuration 𝑥ℎ𝑜𝑚𝑒 is included, a data sample D0 of

movements generated by randomly parameterized control signals for the first try-to-

reach process is collected. The exploration proceeds from 𝒮0, by iteratively executing

the try-to-reach process and the stable point positioning process in order to explore

all the regions {𝒮𝑙}𝑅−1
𝑙=0 . In a try-to-reach process, the robot attempts to move the

end effector to reach the center of a region 𝒮𝑛 that is in the neighborhood of the

current starting region 𝒮𝑚 where the robot starts the try-to-reach process, in a finite

number of trials. In each trial, the robot moves from rest for a fixed number of time

step, followed by resetting the end effector to the center of 𝒮𝑚. The best trial in

one try-to-reach process that is closest to the center of 𝒮𝑛 at the last time step is
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Figure 5-1: Conceptual flow of the proposed exploration scheme, which consists of
three components. The task space being explored is divided into smaller regions with
designated exploring order in the initialization process. The exploration proceeds by
trying to reach designated region centers successively, in which the robot moves to a
stable point in the task space in each trial of the point-to-point movement.

selected and whose sample points are collected in the library D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑. The robot

continues the try-to-reach process until all designated regions 𝒮𝑛 in the neighborhood

of 𝒮𝑚 has been “reached”. Then, the robot proceeds to a new starting region 𝒮𝑚′

adjacent to the current 𝒮𝑚. The changing of starting region and the resetting of the

end effector in each try-to-reach trial, are achieved by using a feedback task-space

controller manipulating the robot to the center of 𝒮𝑚′ and 𝒮𝑚, respectively. Fig. 5-1

depicts the conceptual flow of the proposed exploration scheme. Fig. 5-2 illustrates

the progression of exploration of a musculoskeletal robot in a 2D task space.

5.2.3 The initialization process

The division method is decisive to the data sample collected after exploration,

since the robot explores the task space by moving from one region center to other
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Figure 5-2: An example of a human-like robotic arm exploring a 2D task space.
(a) In the initialization process at the region 𝒮0 having a home configuration at
the center, a data sample D0 of movements (shown in dash curves) generated by
randomly parameterized control signals is collected. (b) The exploration starts from
region 𝒮0. In the try-to-reach process, the robot attempts to reach the center of the
adjacent region 𝒮1 in a finite number of trials (shown in concrete curves). (c) After
collecting the best trials (shown in dash curves) of point-to-point the designated
regions (shaded regions, 𝒮1, 𝒮2 and 𝒮4 in this case), the robot moves to and stay at
the center of the adjacent region 𝒮1 (shown in the concrete curve), which is the new
starting region. (d) The robot attempts to reach a designated region 𝒮2. Exploration
proceeds by iteratively running the try-to-reach process in (b) to explore designated
adjacent regions and the stable point positioning process in (c) to switch to new
starting region.

region centers in the neighborhood. In order to obtain a data sample of end effector

movements with different directions, even division method is adopted such that all

regions 𝒮𝑙, 𝑙 = 0, ..., 𝑅−1 are square regions of equal size. The regions 𝒮𝑛 with respect
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to a starting region 𝒮𝑚 are chosen from the regions in the neighborhood such that:

𝒮𝑛 ∈
{︁
𝒮𝑙 : 𝑑𝑙 ≤ 𝑑, 𝜃𝑙 ≤ 𝜃

}︁

�⃗�𝑙 : Vector from the center of 𝒮𝑚 to the center of 𝒮𝑙
𝑑𝑙 = ‖�⃗�𝑙‖2, 𝜃𝑙 = min ( ̸ (�⃗�𝑙, {�⃗�𝑝,∀𝑝, 𝑝 ̸= 𝑙}))

(5.6)

where 𝑑𝑙 is the Euclidean distance between the two centers of 𝒮𝑚 and 𝒮𝑙. 𝜃𝑙 is the

minimum angle between the vector �⃗�𝑙 and all other vector �⃗�𝑝, 𝑝 = 0, ..., 𝑅−1. 𝑑 and 𝜃

constrain the traveling distance and moving direction. 𝑑 must not be smaller than the

minimum distance between centers of two adjacent regions. 𝜃 must be smaller than

𝜋/2 in order to obtain data sample of diverse end effector movements (at least moving

in orthogonal directions). For example, in a 2D task space, setting 𝑑 = 5cm and 𝜃 = 𝜋
2

means the centers of all 𝒮𝑛 are 5cm away from the center of 𝒮𝑚 and located in four

orthogonal directions. The exploring order (i.e. the order of being starting region) of

𝑆𝑙 is also defined. The only restriction is that two successive starting regions 𝑆𝑚 and

𝑆𝑚+1 must be connected.

It is also necessary to collect a data sample D0 for the first try-to-reach pro-

cess at the start of exploration. The method described in section 4.2.1 is em-

ployed to generate end effector movements by applying Gaussian-like control signals

𝑢𝑝(𝑡) = 𝐴𝑝 exp (−(𝑡− 𝑐𝑝)/(𝑑𝑝)) (the same as (4.3)) to the 𝑝th actuator, where 𝐴𝑝,

𝑐𝑝 and 𝑑𝑝 were randomly initialized before each movement generation. These control

signals produced point-to-point movements. A subset of the movements is selected

according to the end effector efficiencies in orthogonal directions in the task space,

defined as the ratio of distance travelled and total control input. The selection pro-

cess is to ensure that the training data contained movements does not bias to some

particular directions in the task space. The selected movements containing sample

points of control signals {𝑢𝑖} and the kinematics data {�̃�𝑖, �̈�𝑖,𝑦𝑖, �̇�𝑖,𝑦𝑖} are collected

in a data sample D0. An illustrative example is depicted in Fig. 5-2a.
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Table 5.1: Computing a desired trajectory of a natural reaching-like movement

Procedure for generating a desired trajectory for the presented ex-
ploration scheme is provide as follows.

Given a starting position 𝑦𝑚 and a desired position 𝑦𝑛.
Given the Fitts’s Law parameters 𝑎, 𝑏, 𝑤.
Given speed profile parameters 𝑣𝑎, 𝑣𝑏.

Step 1 Compute the joint configurations 𝑥𝑚 and 𝑥𝑛 for 𝑦𝑚 and 𝑦𝑛,
respectively, such that the 𝑥𝑚 and 𝑥𝑛 are the configurations
farthest from the joint limits.

Step 2 Compute a joint trajectory {𝑥′
𝑘}�̄�𝑘=1 by interpolating be-

tween 𝑥𝑠 and 𝑥𝑛. Compute a corresponding position trajec-
tories {𝑦′

𝑘}�̄�𝑘=1 where 𝑦′
1 = 𝑦𝑚 and 𝑦′

�̄� = 𝑦𝑛. 𝑘 is the time
index.

Step 3 Compute the total distant travelled 𝑑 =
∑︀�̄�−1

𝑘=1 ‖𝑦′
𝑘+1−𝑦′

𝑘‖2.
Determine the movement time 𝑇 by the Fitts’s Law: 𝑇 =
𝑎+ 𝑏 log2 (1 + 2𝑑/𝑤).

Step 4 Compute a bell-shaped speed profile
𝑑𝑘 = 𝑣𝑎 exp(− ((𝑘−1)Δ𝑡−𝑇/2)2

2𝑣2
𝑏

) with top speed at 𝑇/2,
and zero speed at 𝑘 = 1 and 𝑘 = �̄� , where ∆𝑡 is the
incremental time step and 𝑇 = (�̄�)∆𝑡. 𝑣𝑏 = 𝑇/5, 𝑣𝑎 is
optimized such that

∑︀�̄�
𝑘=1 𝑑𝑘 = 𝑑.

Step 5 Compute the desired position trajectory {𝑦*
𝑘}�̄�𝑘=1 by inter-

polation {𝑦′
𝑘}�̄�𝑘=1 to match the speed profile 𝑑𝑘.

Step 6 Compute the corresponding desired velocity trajectory
{�̇�*

𝑘}�̄�𝑘=1 and {𝑦*
𝑘}�̄�𝑘=1.
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5.2.4 The try-to-reach process

Procedure

The detailed procedure of the try-to-reach process is described as follows. When

the robot is resting at the center 𝑦𝑚 of a starting region 𝒮𝑚, it attempts to reach

the center 𝑦𝑛 of a region 𝒮𝑛 in the neighborhood of 𝒮𝑚 by following a desired trajec-

tory Y𝑚𝑛 connecting the two centers for 𝑞𝑚𝑎𝑥 trials, using an inverse mapping 𝑎𝜁𝑡𝑎𝑠𝑘

that computes low-dimensional synergy activations. The generation of the Y𝑚𝑛 is

described in Table 5.1. Precisely, at the beginning of the process, a local data sam-

ple D̄ is selected from a subset of the library D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 which stores collected sample

points in previous try-to-reach process, such that the selected sample points locate in

the neighborhood of 𝑦𝑚:

D̄ =
{︁
q𝑖 : ‖𝑦𝑖 − 𝑦𝑚‖2 ≤ 𝑑𝑙𝑜𝑐𝑎𝑙,𝑦𝑖 ∈ q𝑖,q𝑖 ∈ D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

}︁
(5.7)

where 𝑑𝑙𝑜𝑐𝑎𝑙 is a predefined local distance defining the radius of the neighborhood of the

center 𝑦𝑚. D0 is used instead in the first try-to-reach process where D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is empty.

A set of local synergies WD̄ ∈ ℜ𝑛𝑢×𝑀 and its complement set WD̄
⊥ ∈ ℜ𝑛𝑢×(𝑛𝑢−𝑀), the

corresponding synergy activation 𝑎𝑖 ∈ ℜ𝑀 and the mean �̄�′ are then extracted from

the local data sample D̄ using the procedure described in Table 4.1 (Step 1, Step 2 and

Step 3), where the forward mapping 𝜓�̄�
𝑡𝑎𝑠𝑘 is also obtained. The number of synergies

𝑀 to be utilized during the process is determined such that the total variance of D̄

explained by the first 𝑀 principal components is higher than a threshold percentage

𝜌 (e.g. 90%). These synergies in WD̄ are fixed in all the 𝑞𝑚𝑎𝑥 trials. The task

space accelerations 𝑦𝑖 in D̄ are re-estimated using the sample points of the extracted

synergy activation 𝑎𝑖 and the corresponding robot state �̃�𝑖 as input to the forward

mapping 𝜓�̄�
𝑡𝑎𝑠𝑘:

𝑢𝑖 = WD̄𝑎𝑖 + �̄�′

𝑦′
𝑖 = 𝜓�̄�

𝑡𝑎𝑠𝑘(�̃�𝑖,𝑢𝑖)

𝑦𝑖 = 𝑦′
𝑖, ∀𝑦𝑖 ∈ D̄.

(5.8)
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Before each trial, the inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘 is updated using D̄. During each trial, the

inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘 computes synergy activation to follow the trajectory Y𝑚𝑛 =

{𝑦*
𝑘, �̇�

*
𝑘,𝑦

*
𝑘,𝑥

*
𝑘, �̇�

*
𝑘, �̈�

*
𝑘}�̄�𝑘=1 by achieving instantaneous desired task space acceleration

𝑦*(𝑡) using robot state at time step 𝑘:

𝑎𝑘 = 𝑎𝜁D̄𝑡𝑎𝑠𝑘(�̃�𝑘,𝑦
*
𝑘). (5.9)

The control input to the robot at time step 𝑘 is transformed back to original control

space 𝒰 utilizing synergies WD̄ and WD̄
⊥ :

𝑢𝑘 = WD̄𝑎𝑘 + �̄�′ + WD̄
⊥ 𝜍 (5.10)

where 𝜍 is a Gaussian random vector with compatible size drawn before each trial,

and is constant during each trial. The sample points D𝑞 = {q𝑘}�̄�𝑘=1 of the 𝑗th trial

are appended to D̄:

D̄ = D̄ ∪D𝑞 (5.11)

The robot is reset back to the center of 𝒮𝑚 after each trial. The resetting of the

end effector is achieved by using a feedback controller, which will be described in

section 5.2.5 later. After 𝑞𝑚𝑎𝑥 trials, the data sample of the best trial D𝑞* having the

smallest tracking position error 𝑒𝑞 =
∑︀

𝑘(‖𝑦𝑘 − 𝑦*‖2) is selected and appended to the

set D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ∪D𝑞*, 𝑞* = arg min
𝑞

(𝑒𝑞). (5.12)

Fig. 5-2b and Fig. 5-2d illustrate the try-to-reach process.

Elaboration

During a try-to-reach process, the control input (5.10) to the robot is computed

using the inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘 with exploratory noise to move the end effector closer

to the center 𝑦𝑛 of 𝒮𝑛. The first two terms WD̄𝑎𝑘 + �̄�′ in (5.10) transform the low-

dimensional synergy activation back to the original control space 𝒰 using (5.2). It has

been proven in chapter 4 that low-dimensional inverse mapping 𝑎𝜁𝑡𝑎𝑠𝑘 can be used as
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a feedforward control to track a task space trajectory Y′ = {𝑦*
𝑘, �̇�

*
𝑘,𝑦

*
𝑘}�̄�𝑘=1 with the

aid of synergies, if the inverse mapping 𝑎𝜁𝑡𝑎𝑠𝑘 is accurate enough. In a try-to-reach

process, more sample points are added to the local data sample D̄ at the end of each

trials, resulting in improving the accuracy of the inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘 and thus can

bring the end effector close to the center 𝑦𝑛 of 𝒮𝑛 by tracking the trajectory Y𝑚𝑛 with

desired end effector position 𝑦* = 𝑦𝑛. In order to produce data sample of “natural”

human-like movements, the Fitts’s law is adopted in generating the desired trajectory

Y𝑚𝑛 such that the velocity profile of the end effector is determined from a human-like

traveling time.

The last term WD̄
⊥ 𝜍 in (5.10) adds exploratory noise such that the control input

lies not only in the subspace by the local synergies WD̄, but in the original control

space 𝒰 . The addition of the exploratory noise is theoretically essential to the success

of the exploration. Because the sample points of the control signals are used as sample

points (5.11) and (5.12) for synergy extraction in another try-to-reach process that

moving to different region center, say 𝑦𝑛′ , the control input to reach 𝑦𝑛′ by (5.10)

will be in the same subspace spanned by WD̄ if there is no exploratory noise. That

is the local synergies WD̄ will be fixed for all try-to-reach processes in the whole task

space 𝒮. This is undesirable because different local synergies, which are groups of

co-activation of actuators, should be utilized for moving to targets in different/distal

regions in 𝒮.

The re-estimation step in (5.8) is a necessary step to ensure that the sample

points 𝑦𝑖 are the task space accelerations of applying 𝑎𝑖 at �̃�𝑖. In chapter 4, this

consistency is achieved by regenerating corresponding end effector movements using

extracted sequences of 𝑎𝑖. In this chapter, this step is carried out by prediction using

the forward mapping 𝜓D̄
𝑡𝑎𝑠𝑘, because collecting new set of data sample by regeneration

is costly.

It is noteworthy that because the objective of the exploration scheme is to gen-

erate sample points of end effector movements with different moving directions and

spreading over the whole space 𝒮, it is not necessary to accurately track the desired

trajectory Y𝑚𝑛. If the noise level is not too high, the robot can still move the end

105



effector close to the center 𝑦𝑛 of 𝒮𝑛.
With the aid of synergies, computation spent in the estimation of the inverse

mapping 𝑎𝜁𝑡𝑎𝑠𝑘 can be reduced. After synergy extraction, the synergy activations 𝑎𝑖

become independent in each dimension after performing PCA on the sample points of

the control signals 𝑢𝑖. The inverse mapping 𝑎𝜁𝑡𝑎𝑠𝑘 can thus be estimated by multiple

univariate regressions. Computation can be reduced by running fewer univariate

regressions.

5.2.5 The stable point positioning process

In the proposed exploration scheme, the robot needs to reset the end effector

to a stable point at either the center 𝑦𝑚 of a current starting region 𝒮𝑚 at the

end of each trial, or to the center 𝑦𝑚′ of a new starting region 𝒮𝑚′ . Since the

robot has to start from rest during the try-to-reach process, this resetting procedure

is named as the stable point positioning process in this chapter. The positioning

process can be achieved using a feedback controller to manipulate the end effector to

follow a desired trajectory connecting from the current end effector location 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡

with robot state �̃�𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the center 𝑦𝑚 or 𝑦𝑚′ with zero end effector velocity for a

certain duration of the last time period. The joint configuration at the start of each

trial in the try-to-reach process is also influential to the goal-directed exploration. It

has been discussed in [137] that hitting joint limits during exploration can lead to

failure of further exploration as the inverse mapping cannot be improved. Therefore,

the controller should also capable of regulating the joints keeping away from the joint

limits while manipulating the end effector in task space.

A feedback task space controller ΠD̂ is employed to position the end effector to the

region center 𝑦𝑚 or 𝑦𝑚′ and to keep the joints away from joint limits. The controller

𝑢𝑘 = ΠD̂ (�̃�𝑘,𝑦𝑘, 𝑒𝑘, �̇�𝑘, 𝜀(𝑥𝑘)) is developed in chapter 4, in which the control input

to the robot is computed by the low dimensional inverse mapping 𝑎𝜁D̂𝑡𝑎𝑠𝑘 obtained

from a data sample D̂ with the aid of synergies WD̂. It is capable of manipulat-

ing the robot end effector to follow a desired task space trajectory {𝑦*
𝑘, �̇�

*
𝑘,𝑦

*
𝑘}�̄�𝑘=1.

Simultaneously, joint stabilization and a secondary task goal defined in a function
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𝜀 (𝑥𝑘) to keep the joints away from joint limits can be achieved without affecting the

tracking performance. A human-like trajectory is used as in the try-to-reach process

as mentioned in section 5.2.4, such that 𝑦*
1 = 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑦*

�̄� = 𝑦𝑚 (or 𝑦𝑚) in the

desired trajectory Y* = {𝑦*
𝑘, �̇�

*
𝑘,𝑦

*
𝑘}�̄�𝑘=1. The desired trajectory is determined using

the method described in Table 5.1, such that the corresponding joint angles {𝑥*
𝑘}�̄�𝑘=1

are farthest away from the joint limits. Y* is appended by repeated values of 𝑥*
�̄� and

𝑦*
�̄� with zero velocities in order to stay at 𝑦𝑚 or 𝑦𝑚′ . The control input 𝑢𝑘 at time 𝑡

is given by:

𝑎𝑘 = 𝑎𝜁D̂𝑡𝑎𝑠𝑘 (�̃�𝑘,𝑦𝑘) + Ω𝑓𝑏 (�̃�𝑘, 𝑒𝑘, �̇�𝑘) + Ω𝑛𝑢𝑙𝑙 (�̃�𝑘, 𝜀(𝑥𝑘))

𝑢𝑘 = WD̂𝑎𝑘 + �̄�D̂
(5.13)

where 𝑒𝑘 = 𝑦𝑘 − 𝑦*
𝑘 and �̇�𝑘 = �̇�𝑘 − �̇�*

𝑘 are the tracking position error and the

velocity error, respectively. �̄�D̂ is the mean of control signal in the data sample D̂.

The first term 𝑎𝜁D̂𝑡𝑎𝑠𝑘 (�̃�𝑘,𝑦𝑘) is the feedforward control term responsible for achieving

tracking the desired trajectory. The second term Ω𝑓𝑏 (�̃�𝑘, 𝑒𝑘, �̇�𝑘) is the feedback

control term responsible for reducing the tracking error in the task space. The third

term Ω𝑛𝑢𝑙𝑙 (�̃�𝑘, 𝜀(𝑥𝑘)) is the null space control term is responsible for joint stabilization

and achieving the secondary goal defined in 𝜀(𝑥𝑘):

𝜀 (𝑥𝑘) = 𝑥𝑘 − 𝑥*
𝑘. (5.14)

such that the joint angles 𝑥 is “pulled” to the desired joint angle 𝑥*
𝑘 away from the

joint limits. Ω𝑛𝑢𝑙𝑙 is formulated with the aid of the inverse dynamics mapping 𝑎𝜁𝑗𝑜𝑖𝑛𝑡

in joint space. The synergy activation 𝑎𝑘 is transformed back to the control space 𝒰
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using (5.2). The detailed formulations of the controller in (5.13) are:

𝑎𝜁𝑡𝑎𝑠𝑘 (�̃�𝑘,𝑦𝑘) =
˜̂
𝛽† (�̃�𝑘)

[︁
𝑦*
𝑘 − ˜̂𝛼(�̃�𝑘)

]︁
(5.15)

Ω𝑓𝑏(�̃�𝑘, 𝑒𝑘, �̇�𝑘) =
˜̂
𝛽†(�̃�𝑘) (𝑘𝑠 ∘ sat(𝑠𝑘) + 𝜆�̇�𝑘) (5.16)

Ω𝑛𝑢𝑙𝑙 (�̃�𝑘, 𝜀(𝑥𝑘)) =
[︂
I− ˜̂

𝛽†(�̃�𝑘)
˜̂
𝛽(�̃�𝑘)

]︂
𝑎𝑛𝑢𝑙𝑙 (�̃�𝑘, 𝜀(𝑥𝑘)) (5.17)

𝑎𝑛𝑢𝑙𝑙 (�̃�𝑘, 𝜀(𝑥𝑘)) = 𝑔†(�̃�𝑘) [−K𝑣0�̇�𝑘 −K𝑝0𝜀(𝑥𝑘)] (5.18)

where 𝑠𝑘 = �̇�𝑘 − 𝜆𝑒(𝑡). �̂� (�̃�𝑘), 𝛽 (�̃�𝑘) and 𝑔 (�̃�𝑘) the functions in (5.4) and (5.5).
˜̂
𝛽 (�̃�𝑘) is the estimate of 𝛽(�̃�𝑘), ˜̂

𝛽† (�̃�𝑘) and ˜̂𝑔† (�̃�𝑘) are the estimates of the Moore-

Penrose pseudo-inverse 𝛽† (�̃�𝑘) and 𝑔† (�̃�𝑘), respectively. 𝑔 (�̃�𝑘) is obtained by sub-

stituting (5.2) into (5.1). ˜̂𝑔† (�̃�𝑘) is obtained by estimating the inverse dynamics

mapping 𝑎𝜁𝑗𝑜𝑖𝑛𝑡 in joint space. I is an identity matrix, 𝑘𝑠 is the control gain, sat(·,Ψ)

is an entry-wise saturation function, in which the 𝑗th entry equals -1, 1 if 𝑠𝑗
Ψ𝑗

< 1,
𝑠𝑗
Ψ𝑗

> 1, respectively and 𝑠𝑗 otherwise. Ψ ∈ ℜ𝑛𝑦 is a vector of positive entries. ∘
denotes the Hadamard product.

The data sample D̂ defines the regions where the end effector is controllable by

the controller ΠD̂. D̂ can be selected such that D̂ is as a subset of the whole data

sample D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 in the neighborhood of the current end effector location 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡:

D̂ =
{︁
q𝑖 : ‖𝑦𝑖 − 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡‖2 ≤ 𝑑𝑙𝑜𝑐𝑎𝑙,𝑦𝑖 ∈ q𝑖,q𝑖 ∈ D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

}︁
(5.19)

where 𝑑𝑙𝑜𝑐𝑎𝑙 is a predefined local distance defining the radius of the neighborhood of

the center 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡. At the end of each trail in the try-to-reach process, if the current

end effector location 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 lies far away from the explored regions where the sample

points in D̂ are collected, the controller may not be able to manipulate the end effector

back to the center 𝑦𝑚 or 𝑦𝑚′ . If the end effector cannot be positioned back to the

center 𝑦𝑚 or 𝑦𝑚′ using the controller ΠD̂ where the local data D̂ is obtained by (5.19),

the end effector can be first reset to the home configuration 𝑥0 at region 𝒮0, followed

by positioned to the center 𝑦𝑚 or 𝑦𝑚′ using the controller ΠD̂′ obtained from another

local data sample D̂′, which is a collection of sample points in D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 that close to
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the trajectory Y*:

D̂′ =
{︁
q𝑖 : 𝑑Y

*

𝑖 ≤ 𝑑𝑙𝑜𝑐𝑎𝑙,𝑦𝑖 ∈ q𝑖,𝑦
*
𝑘 ∈ Y*,q𝑖 ∈ D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

}︁

𝑑Y
*

𝑖 = min
𝑘

({‖𝑦𝑖 − 𝑦*
𝑘‖2}�̄�𝑘=1)

(5.20)

where 𝑑Y*
𝑖 is the minimum distance of between a sample point 𝑦𝑖 and the trajectory

Y*. The controller ΠD̂′ can position the end effector since the home configuration

𝑥0 and the center 𝑦𝑚 or 𝑦𝑚′ are inside the explored regions where the data sample

D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 were collected. Fig. 5-2c gives an illustrative example of moving to a stable

point.

5.3 Experiments

This section presents simulation results of an exploration task and two control

tasks on a human-like robotic arm on a 2D task space. The robotic arm had 3 joints

and actuated by 10 muscles. The muscles produce torque on the joints that satisfies

the linear relation (4.2). Fig. 5-3a depicts the skeleton of the robotic arm on the

task space which were divided into 122, 5cm × 5cm square regions. The exploration

task was conducted to verify if the proposed scheme utilizing synergies is feasible for

exploration of all the 122 regions. The control tasks were carried out to examine if

synergies can be extracted from the data sample collected by the exploration scheme

for controlling the robot. In both of the tasks, measurements of the joint angles

𝑥, angular velocities �̇�, angular accelerations �̈�, end effector position 𝑦, velocities

�̇� and accelerations 𝑦 were corrupted by Gaussian noise with standard deviation of

0.2∘, 2∘s−1, 20∘s−2, 0.002m, 0.02ms−1 and 0.2ms−2, respectively. In the estimations, a

Gaussian kernel: 𝑘(�̃�𝑝, �̃�𝑞) = exp
(︁
−1

2
(�̃�𝑝 − �̃�𝑞)

𝑇L(�̃�𝑝 − �̃�𝑞)
)︁

was employed, where L

was a diagonal matrix. The 𝑚th entry at the diagonal was 𝐿𝑚 = 𝜎−1(�̃�𝑚𝑎𝑥
𝑚 − �̃�𝑚𝑖𝑛

𝑚 )−2

where 𝜎 was a scalar defining the kernel width. Muscle synergies were extracted by

performing PCA using the MATLAB function pca. All simulations were carried out

on a computer with 2.8 Ghz Intel Core i7, 16GB 1600 MHz DDR3.
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5.3.1 Exploration task

The exploration started from the lowest left region 𝒮0 in the grid depicted in

Fig. 5-3a. In the initialization process, 𝑑 = 5cm and 𝜃 = 𝜋/2 was set such that in

a starting region 𝒮𝑚, the robot end effector was controlled to reach the centers of

neighbor regions 5cm away from the current region center in the 𝑦1 and 𝑦2 directions

in the trying-to-reach process. The exploration order of the starting region 𝒮𝑚 was

chosen from the left to right, and then from lower to upper. The top right region was

the last region being explored. In collecting the data sample D0 for the first try-to-

reach process, 100 movements of traveling distance around 10cm (able to cover the

regions connected to 𝒮0) were generated by the randomly initialized parameterized

control signals (4.3) as described in section 5.2.3. Each movement had the same

number of sample points. 8 of the 100 movements that having the largest traveling

distance in the ±𝑦1 and ±𝑦2 direction were collected in the D0. D0 had 120 sample

points. In each try-to-reach process, sample points that located within a radius of

𝑑𝑙𝑜𝑐𝑎𝑙 = 5cm from the center 𝑦𝑚 of the starting region 𝒮𝑚 were collected in the local

data sample D̄ for synergy extraction and estimating the inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘. 𝑀

synergies were extracted from D̄ such that the synergies in WD̄ ∈ ℜ10×𝑀 explained

at least 𝜌 = 90% of the total variance in D̄. 𝑞𝑚𝑎𝑥 = 30 trials were attempted to reach

the center 𝑦𝑛 of the designated region 𝒮𝑛 in the neighborhood of 𝒮𝑚. Before each

trial, the Gaussian random vector 𝜍 of 0.2 standard deviation was drawn to activate

the remaining 10−𝑀 synergies in WD̄
⊥ . In the try-to-reach processes where 𝒮0 was

the start region, the estimation parameters 𝜎 (kernel width) and the regularization

constant 𝛾 for obtaining the inverse mapping 𝑎𝜁D̄𝑡𝑎𝑠𝑘 were determined by a trial-and-

error process such that the centers 𝑦𝑛 of designated regions 𝒮𝑛 could be approximately

reached. The same parameters were then used throughout the whole exploration task.

As discussed in section 5.2.5, if the end effector locates far away from the center 𝑦𝑚 of

the current region 𝒮𝑚 at the end of a trial, a feedback controller ΠD̂ constituted from

a local sample D̂ (see (5.19)) may not be able to position the end effector back to 𝑦𝑚.

For the ease of implementation and analysis, at the end of all trials in the simulation,
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Figure 5-3: (a) A 3-links human-like robotic arm on the 2D task space. The skeleton
of the robot is shown in concrete lines. The dash-dot curves are the boundaries of the
reachable area. The grid is the task space in the exploration task. The robot starts
exploration from the shaded lowest left region where the home configuration of the
robot locates. (b) The acquired movements after exploration.
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total variance explained by the first M principal components and the error bars have
length of two standard deviation units.
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the end effector was first reset back to the home configuration 𝑥0 at 𝒮0, followed by

positioned to a stable point at either 𝑦𝑚 or 𝑦𝑚′ using the controller ΠD̂′ constituted

from a subset D̂′ having sample points close to the trajectory (𝑑𝑙𝑜𝑐𝑎𝑙 = 10cm) from

the home configuration to the stable point 𝑦𝑚 or 𝑦𝑚′ .

Fig. 5-3b shows the movements acquired in the data sample D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 after ex-

ploration. These movements were collected in the data sample D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑. It can be

observed that the robot successfully explored the task space. Fig. 5-4 depicts the vari-

ance explained by the synergies (principal components) extracted from the local data

samples D̄. The number of synergies utilized 𝑀 during exploration was determined

such that the 𝑀 synergies could explain 90% of the total variance. It was observed

that the exploration task was conducted utilizing 4 or 5 synergies (mostly 4) to the

trajectories depicted in Fig. 5-3b.

5.3.2 Control performance

Two control tasks were carried out. In the first control task was carried out

during the exploration when the robot was positioned to the centers of all the 122

regions from the home configuration 𝑥0. The local data sample D̄′ for constituting a

controller ΠD̂′ was a subset of D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 at that exploration moment, which consists

of sample points close to the trajectory Y1,𝑛 (𝑑𝑙𝑜𝑐𝑎𝑙 = 10cm) connecting from the

home configuration 𝑥0 in the region 𝒮1 to the center of region 𝒮𝑛. The second task

was carried to verify if the extracted synergies and the collected data sample can

be used for constituting a controller for controlling the robot in a reduced control

dimensionality within the whole explored task space. The robot needed to track a

trajectory of a figure of “8” in the task space depicted in Fig. 5-6a, utilizing a set of

synergies extracted from the data sample D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 collected after exploration. The

secondary control goal in the null space control was to keep the joints away from the

joints limit. Without given desired trajectory in the joint space, the function 𝜀 (𝑥𝑘)
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Figure 5-5: Positioning of the end effector to a stable point in the task space during
exploration. The end effector could stay at the target position with all joints being
regulated to the desired joint angles by the feedback controller associated with null
space control term.
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Figure 5-6: Controlling the robot utilizing a set of global muscle synergies extracted
from the data sample D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 after exploration. 5 synergies were utilized in the
tracking. It was observed that the desired trajectory could be followed and the joints
were kept within the joint limits by the null space control.
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in (5.14)) was replaced by the same function defined in (4.26):

𝜀𝑙𝑘 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑥𝑙𝑘 − (𝑥𝑙𝑏𝑙 + 𝛿), 𝑥𝑙𝑏𝑙 ≤ 𝑥𝑙𝑘 ≤ 𝑥𝑙𝑏𝑙 + 𝛿

𝑥𝑙𝑘 − (𝑥𝑢𝑏𝑙 − 𝛿), 𝑥𝑢𝑏𝑙 − 𝛿 ≤ 𝑥𝑙𝑘 ≤ 𝑥𝑢𝑏𝑙

0 otherwise

(5.21)

where 𝜀𝑙𝑘 indicates the 𝑙th entry of 𝑥𝑘. 𝛿 is a positive scalar.

Fig. 5-5 depicts a resulting trajectory of moving to a region centers. It was ob-

served that the end effector could be accurately positioned to the target center, and

the joints could also be regulated to desired joint angles. In all 122 cases of moving

to the region centers, the maximum position error in the task space and in the joint

space in the last 5 seconds were 0.0122m and 9.523degree, respectively. These results

confirmed that the local data sample D̂′
𝑚 and the extracted synergies WD̂′ can be

used to constitute a low-dimensional controller to position the end effector to a stable

point at the center of region 𝒮𝑚 during exploration. Fig. 5-6 depicts the results of

tracking the figure of “8” trajectory. The tracking was achieved by 5 synergies that

explained 92% of the total variance in D𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑. It was observed that the trajectory

could be followed without collision to the joint limits.

5.4 Discussion

5.4.1 On the choice of the number of synergies for exploration

In section 5.3.1, the number of synergies used for the exploration task is preset

before the act of control so that the selected synergies can explain a certain threshold

percentage of the total data variance. In the experiment, a guess of 90% was set for

the threshold.

As discussed in section 3.5.3, to determine the best number of synergies for a case,

a performance index that measures the control performance of a synergies-based con-

troller is necessary. Note that the total data variance explained depicted in Fig. 5-4

is an inappropriate measure for determining the number of synergies to carry out the
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exploration since it does not reflect any control performance of the synergies-based

controller. In the future work, the exploration task will be conducted by using a fixed

number of synergies. The best (minimum) number of synergies may then be deter-

mined, by comparing the control performance of exploration using different number

of synergies, according to a certain performance index such as tracking error. Further

investigation of the best number of synergies compromising the control performance

and the control dimensionality (complexity) for the exploration task will be carried

out as one of the future works.

5.4.2 Time-invariant synergies vs time-varying synergies

One of the main results in this chapter was that exploration could be achieved

in reduced dimensionality utilizing synergies. In [154], goal-directed exploration was

carried out with the aid of time-varying synergies, which specify sequences of control

signals of all actuators. There were 24 control variables to control a simulated 12

degree-of-freedom quadruped robot thus the control dimensionality was not reduced.

In contrast, time-invariant synergies are utilized in the proposed method, which al-

ways has dimensionality not larger than the original one. In the simulation, 4 or 5

synergies were enough for exploration of the robot actuated by 10 muscles.

In robotic applications, feedforward controllers have been used to coordinate time-

varying synergies that represent time sequences of muscle activations, before the

start of a movement [17, 20, 142]. In contrast, feedback controllers have been used

to coordinate time-invariant synergies by computing the synergy activations at each

time step as demonstrated in chapter 4. Feedback controllers are more desirable for

general manipulation and better control accuracy, while feedforward controllers are

simpler and more suitable for specific tasks. The use of time-invariant synergies allows

a straightforward implementation of a feedback controller with a null space control

term. The null space control term regulated the joints to keep close to desired joint

configurations, as a secondary control objective during exploration.
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5.5 Summary

A data acquisition method is proposed that allows musculoskeletal robots to ob-

tain muscle synergies by itself without prior knowledge about the complicated body

structure. The concept of muscle synergies is a control strategy inspired by the study

of human motor control. In most engineering applications, a data sample is usually

given for muscle synergies extraction. The proposed method adopts a motor skill

learning strategy inspired from infants called goal-directed exploration, in which the

robot collects data sample of point-to-point movements spreading over the task space.

During exploration, muscle synergies participate in constituting controller from local

data samples to achieve the point-to-point movements. The controller computes con-

trol inputs from inverse dynamics mapping in reduced dimensionality with the aid

of muscle synergies. A feedback controller is employed to support the progression of

exploration such that the robot end effector can be positioned at a stable point in

the task space that is a starting point of a point-to-point movement trail. As the

starting joint configuration is crucial for successful exploration, a null space control

term is employed to keep the joints away from the joint limits. The present method

was evaluated in a simulated human-like robotic arm. The human-like robotic arm

could successfully explore a 2D task space. Moreover, it was shown that the data

sample collected after exploration could be used as training source to extracted a set

of synergies associated with a low-dimensional controller for manipulating the robot

end effector within explored task space.
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Chapter 6

Conclusion

6.1 Conclusion

Musculoskeletal robots have a redundant number of joints and muscles that can

perform a diversity of tasks. However, the complex body structure leads to difficul-

ties in control. One control difficulty arises from the many degree-of-freedom body

structure. Dimensionality reduction is crucial to develop methods to effectively con-

trol the robots. Muscle synergies have been considered as one of the solutions to the

degree-of-freedom problem of human body control in biological studies. This research

studies control methods using muscle synergies for musculoskeletal robots. On the

whole, this research contributes to the investigation of the feasibility of control meth-

ods utilizing muscle synergies for a musculoskeletal robot. This research would be

the first step to the realization of robots that can work in daily life.

Chapter 3 studies the feasibility of utilizing muscle synergies in controlling a mus-

culoskeletal robot. In simulation experiments, muscle synergies extracted from differ-

ent data samples of control signals that were optimized according to specific criteria

were used to generate omnidirectional reaching movements of the end effector of a

human-like robotic arm actuated by 10 muscles. It was found that 1) the achieving-

goal synergies, which were extracted from data sample of optimized movements that

had minimum distances from targets at the final time step and minimum total con-

trol effort spent, and 2) the energy-efficient synergies, which were extracted from
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data sample of movements optimized with respect to a fitness function defined as

the ratio between kinetic energy and the movement and control, could be utilized

to control the robot in reduced control dimensionality. These results not only imply

muscle synergies can be utilized to control musculoskeletal robots in reduced control

dimensionality, but also demonstrate that muscle synergies can be extracted from a

data sample of optimized control signals with respect to energy efficiency, regardless

of whether task goals are specified in the optimization.

Chapter 4 investigates the problem of how to extract muscle synergies given data

sample without statistical regularities and without given dynamics model of a mus-

culoskeletal robot. The problem of extracting muscle synergies from a data sample

of movements that are generated by randomly parameterized control signals is con-

sidered. Because data sample with certain statistical regularities cannot be always

provided in reality, but it is easier to generate such random movements. In order to

tackle modeling uncertainties, a kernel-based system identification method is devel-

oped to directly estimate the robot’s forward and inverse dynamics models from the

data sample. In the presented method, muscle synergies are extracted from a data

sample of the control signals that are estimated using the kernel-based system identi-

fication method. The estimated control signals are optimal with respect to minimum

control effort (minimum Euclidean norm of the control signals). A data-driven task

space tracking controller, which is capable of manipulating the robot end effector to

follow a desired task space trajectory and achieving secondary control goals, is de-

rived using nonlinear sliding mode control technique. In simulation experiments on a

human-like robotic arm actuated by 10 muscles, it was shown that muscle synergies

could be extracted using the proposed method but could not be extracted from the

randomly parameterized control signals, and the robot could be controlled utilizing

5 muscle synergies to follow a figure of “8” trajectory on a 2D task space. More-

over, it was shown that muscle synergies could be further refined by extracting from

controlled movements data. The proposed method allows the extraction of muscle

synergies from a given data sample of movements where the muscle activations are

statistically independent in each dimension.
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Chapter 5 investigates how to extract muscle synergies without a given data sam-

ple and prior knowledge of the robot dynamics model. Although chapter 4 has devel-

oped a technique for extracting muscle synergies from data sample without statistical

regularities, it requires the robot can start from anywhere to collect sample points

spreading over the task space, which may not be always satisfied. A goal-directed

exploration scheme is proposed such that a musculoskeletal robot can collect appro-

priate data sample for extraction of muscle synergies. In the proposed scheme, the

robot explores the task space by reaching designated targets spreading over the task

space successively, in which the robot uses inverse dynamics and muscle synergies

obtained from local data to control the end effector in a reduced control dimension-

ality. In a simulation evaluation, the proposed scheme allowed a human-like robotic

arm with 10 muscles to collect data sample by exploring a 2D task space. It was

also demonstrated that muscle synergies could be extracted from the collected data

sample to establish a task space tracking controller for manipulation of the robot end

effector in reduced control dimensionality. The proposed goal-directed exploration

scheme enables a robot to obtain muscle synergies by itself, which is a step forward

to the development of autonomous musculoskeletal robots.

6.2 Limitations

Static environment

The proposed methods in this research may not be applicable to extract synergies

for control in dynamic environment. In all chapters, muscle synergies are extracted

from data sample collected in static environment. Such muscle synergies may produce

different outcomes in dynamic environment such as different end-effector motion di-

rections, compared with the case in static environment. Although it may be sufficient

to utilize more muscle synergies to compensate the effects of the dynamic environ-

ment, the applicability of muscle synergies extracted from static environment needs

further verification.
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Inherent properties of muscle synergies

Muscle synergies that possess minimum control effort properties may not be ap-

plicable in achieving control tasks related to force control of muscles. Chapter 4 and

chapter 5 propose methods extract muscle synergies from a data sample of control

signals that produce end-effector accelerations with minimum control effort in the

sense of minimum Euclidean norm. In control tasks related to force control of muscle

such as stiffness control of a joint, activating the robot with the minimum muscle

activations may not be enough to achieve desired stiffness at joints. Therefore, the

muscle synergies inheriting the minimum control effort properties may not be suitable

for the force-related control applications.

Scalability

The applicability of the muscle synergies extraction methods presented in chap-

ter 4 and chapter 5 need to be extended and verified in extension to 3D task space

application. For the ease of analysis and implementation, the presented methods have

been first validated in the application of a human-like robotic arm in 2D task space.

More sample points are needed when the problem is extended to 3D task space. As

a result, more time and larger memory are required to collect and store the data.

Although chapter 4 has presented a sparsification method to handle large-sized data

sample, the feasibility of the proposed muscle synergies extraction method in 3D task

space is still needed to be examined.

The purposes, contributions and limitations of chapter 3, chapter 4 and chapter

5 are summarized in Figure 6-1.

6.3 Future work

Real robot applications in dynamic environment

All the proposed methods in this research have been verified by simulations in a

static environment and 2D task space. Implementation of the proposed methods to

real musculoskeletal robots working in 3D task space, and obtaining muscle synergies

working in dynamic environments such as interaction with humans and environment
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with unexpected disturbances, will be the long-term goals to exploit the compliant

and flexible musculoskeletal structure.

Time-invariant vs time-varying synergies

Throughout this research the time-invariant synergies are investigated, which spec-

ify the spatial activation pattern of all actuators at a time. In contrast, time-varying

synergies have both the spatial component specifying the actuation pattern, and tem-

poral component specifying the time profile of synergy activation. For time-invariant

synergies, implementation is easier because synergies can be extracted by common

pattern recognition tools [125]. Utilizing time-invariant synergies is equivalent to

finding the corresponding temporal profiles of synergy activations. For time-varying

synergies, the synergies are more difficult to extract [29]. But utilizing time-varying

synergies might further simplify the control problem because it requires much fewer

time profile parameters to be determined at the beginning of motion instead of com-

puting solution at each time step. Moreover, time-delay information of a robot is

already possessed in the temporal profile of the time-varying synergies. Research of

combining the two kinds of synergies is a one of the directions in the future work.

Nonlinear muscles models

The research assumes that the robot is nonlinear in terms of the robot’s joint

space, but is affine in terms of the control space. However, many musculoskeletal

robots are actuated by nonlinear actuators such as pneumatic actuators, which usu-

ally have nonlinear control-force relation, or human muscle models having nonlinear

dynamics. Extension to handling nonlinear actuators and implementation to real

robots will be carried out in the future.

Fully autonomous goal-directed exploration

In the proposed method in chapter 5 the “goals” of exploration are predefined. A

similar approach has been adopted in the study of goal babbling process [137]. Incor-

porating muscle synergies in fully autonomous schemes such as Self-Adaptive Goal

Generation Robust Intelligent Adaptive Curiosity algorithm (SAGG-RIAC) [154],

where the goals are adaptively generated during exploration, is a potential future

work towards the development of fully autonomous musculoskeletal robots.
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Appendix A

A human-like robotic arm simulation

platform

A human-like robotic arm simulator was built for the studies in this thesis. Re-

dundancy and high control dimensionality are imparted by 3 joints including a wrist,

an elbow and a shoulder, and 10 muscles attached to the arm skeleton. Its dynamics

behavior obeys the nonlinear system (2.5) that is linear in control input. For the

sake of focusing on investigating the dimensionality reduction functionality of muscle

synergies and computational simplicity, the arm is restricted to move in a horizontal

plane. The conceptual appearance of the robotic arm is displayed in Fig A-1.

A.1 The musculoskeletal structure

The robotic arm has 3 rigid links: the upper arm, the forearm and the hand.

Each link is modeled as a cylinder. The upper arm, the forearm and the hand attach

to the shoulder joint, the elbow joint and the wrist joint, respectively. Each joint is

revolution joint modeled a massless cylinder.

To represent the position and orientation, a local coordinate frame is attached to

each link. The local coordinate frame of a link is attached to the negative side along

the longitudinal axis (corresponding to the second element in a 3D position vector)

of the cylinder as depicted in Fig. A-2. Each joint is also attached with a coordinate
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Figure A-1: Conceptual appearance of the human-like robotic arm with 10 muscles.

frame following the Denavit-Hartenberg (DH) convention such that its 𝑧-axis is the

rotational axis, and the �̌�-axis is the common perpendicular of two successive joints

as depicted in Fig. A-3. The origin of the global frame (denoted as �̌�0, 𝑦0 in Fig. A-

3) of the robotic arm is fixed at the origin of the shoulder joint. The robotic arm

is connected by specifying the relative location of a joint cylinder to a link’s local

coordinate frame, except the case of the should joint is located by a fixed global

position.

There are 10 muscles attached to the corresponding links. During motion, mus-

cles are wrapped around the cylindrical surface of the joints. Each muscle produces

contractile force 𝑓𝑗, 𝑗 = 1, ..., 10 with amplitude that is linearly related to the non-

negative, bounded control input 0 ≤ 𝑢𝑗 ≤ 1, 𝑗 = 1, ..., 10:

‖𝑓𝑗‖ = 𝑐𝑗 · 𝑢𝑗 (A.1)

where 𝑐𝑗 is the maximum amplitude that the 𝑗th muscle can produce. As mentioned

in chapter 2, the force direction of a muscle depends on the two attachment points

of the muscle and the configuration (joint angles) of the robotic arm. The resulting
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Figure A-2: A link and a joint modeled by cylinders with attached coordinate frames.

Figure A-3: Coordinate frames attached to the robotic arm using Denavit-Hartenberg
convention.

127



torque at the joints of all the 10 muscles is compute using (2.2).

The physical parameters of the robotic arm are taken reference from anatomical

data of an upper arm model in the simulation software MSMS [157]. Table A.1 lists

the parameters used in this thesis.

A.2 Kinematics of joints and end effector

By the Denavit-Hartenberg (DH) convention, the global position of a point on the

robot can be computed. According to the DH parameters listed in Table A.2 of the

robotic arm (Fig. A-3), the homogeneous transformation matrix

T𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝜃𝑖 − sin 𝜃𝑖 0 𝑎𝑖−1

sin 𝜃𝑖 cos𝛼𝑖−1 cos 𝜃𝑖 cos𝛼𝑖−1 − sin𝛼𝑖−1 − sin𝛼𝑖−1𝑑𝑖

sin 𝜃𝑖 sin𝛼𝑖−1 cos 𝜃𝑖 sin𝛼𝑖−1 cos𝛼𝑖−1 cos𝛼𝑖−1𝑑𝑖

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑖 = 1, 2, 3 (A.2)

can be obtained. Given the position vector �⃗�𝑘 of a point relative to the local coordinate

frame of link 𝑘, the homogeneous coordinate 𝑝 =
[︁
(�⃗�)𝑇 , 1

]︁𝑇 ∈ ℜ4, which is the vector

constituted of the global position of a point �⃗� ∈ ℜ3 and a scalar 1, is evaluated by

𝑝 = T1 · · ·T𝑚

[︁
(�⃗�𝑘)𝑇 , 1

]︁𝑇
. (A.3)

A.3 Dynamics model

The dynamics of the robotics arm is derived by Lagrangian equation of motion:

𝑑

𝑑𝑡

(︁𝜕𝐿
𝜕�̇�

)︁
− 𝜕𝐿

𝜕𝑥
= 𝐹 (A.4)

where 𝐿 = 𝐾−𝑈 is the difference of total kinetic energy 𝐾 and the total potential en-

ergy 𝑈 . 𝑥 and 𝜏 are the generalized coordinates and the generalized non-conservative
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Table A.1: Physical properties of the human-like robotic arm.

Link Mass (kg) Moment of inertia (kgm2) Length (m)
Upper arm 1.5218 𝐼𝑥 = 0.0135 𝑙1 = 0.2806

𝐼𝑦 = 0.0070
𝐼𝑧 = 0.0135

Forearm 0.8046 𝐼𝑥 = 0.0047 𝑙2 = 0.241
𝐼𝑦 = 0.00161
𝐼𝑧 = 0.0047

Hand 0.4004 𝐼𝑥 = 0.000754 𝑙3 = 0.1256
𝐼𝑦 = 0.000316
𝐼𝑧 = 0.000615

Joint Joint location (local coordinate frame) Cylinder radius (m)
Shoulder [−0.05511,−0.0096, 0.1374]𝑇 (Global) 0.01
Elbow [0,−0.2806, 0]𝑇 (Upper arm) 0.01
Hand [0,−0.241, 0]𝑇 (Forearm) 0.01

Muscle Attachment points (local coordinate frame) Maximum force (N)
BICln [0.04989,−0.00429, 0.11332]𝑇 (Global) 312.1

[0.01364,−0.03203, 8.7𝑒−4]𝑇 (Forearm)
BICsh [0.02531,−0.00878, 0.11265]𝑇 (Global) 253.2

[0.01355,−0.03203, 8.9𝑒−4]𝑇 (Forearm)
BRA [0.0254,−0.14083, 0.00771]𝑇 (Upper arm) 621.4

[0.00606,−0.02557, 0.00216]𝑇 (Forearm)
BRD [−0.00742,−0.20239, 0.00833]𝑇 (Upper arm) 133.3

[0.00311,−0.22186, 6.2𝑒−4]𝑇 (Forearm)
PT [−0.0141;−0.27551;−0.019476]𝑇 (Upper arm) 480

[0.0017,−0.09916, 0.01379]𝑇 (Forearm)
TRIln [−0.07363,−0.02957, 0.115]𝑇 (Global) 453.4

[−0.02266,−0.01411, 0.00175]𝑇 (Forearm)
TRIlt [−0.01424,−0.07357, 0.00589]𝑇 (Upper arm) 1127.4

[−0.02341,−0.01397, 0.00104]𝑇 (Forearm)
TRIm [−0.01679,−0.20597, 9.2𝑒−4]𝑇 (Upper arm) 581.9

[−0.02272,−0.01423, 0.00161]𝑇 (Forearm)
Handf [0.005,−0.05, 0]𝑇 (Forearm) 300

[0.005,−0.05, 0]𝑇 (Hand)
Hande [−0.005,−0.05, 0]𝑇 (Forearm) 300

[−0.005,−0.05, 0]𝑇 (Hand)
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Table A.2: Denavit-Hartenberg parameters of the robotic arm for computation of the
end effector position.

i 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖
1 0 0 0 𝜃1
2 0 𝑙1 0 𝜃2
3 0 𝑙2 0 𝜃3
4 0 𝑙3 0 0

forces exerted to the robotic arm. In our case, 𝑥 is the joint angles. The generalized

forces 𝐹 consists of the resulting torque 𝜏 at the joints provided by the muscle forces

𝑓𝑗, 𝑗 = 1, . . . , 10 and the frictional force −𝑏�̇� at the joints:

𝐹 = 𝜏 − 𝑏�̇� (A.5)

wher 𝑏 ∈ ℜ1 is the frictional coefficient. The torque 𝜏 is computed by (2.2) in

chapter 2. Since the motion is constrained on the horizontal plane, the potential

energy is zero 𝑈 = 0. The kinetic engergy of each link is computed by

𝐾𝑖 =
1

2
𝑚𝑖‖⃗̇𝑟𝑐𝑖‖2 +

1

2
𝐼𝑖‖

𝑖∑︁

𝑗=1

�̇�𝑖‖2 (A.6)

where 𝑚𝑖 and 𝐼𝑖 are the mass and the moment of inertia at the center of mass of the

link 𝑖. �⃗�𝑐𝑖 is the global position of the center of mass of link 𝑖. The center of mass is

assumed at the mid-point of each link. The resulting robot’s dynamics is

𝑀
(︁
𝑥(𝑡)

)︁
�̈�(𝑡) + 𝐶

(︁
𝑥(𝑡), �̇�(𝑡)

)︁
�̇�(𝑡) +𝐺

(︁
𝑥(𝑡)

)︁
= 𝜏

(︁
𝑥(𝑡),𝑢(𝑡), 𝑡

)︁
(A.7)

where 𝑥(𝑡) ∈ ℜ𝑛𝑥 , �̇�(𝑡) ∈ ℜ𝑛𝑥 and �̈�(𝑡) ∈ ℜ𝑛𝑥 are the joint angles, joint velocities and

joint accelerations, respectively.

Integration is carried out by Euler integration. Time step 0.001 second was used

in the simulation in chapter 3. Time step 0.01 second was used in the simulation

in both chapter 4 and chapter 5. The simulation platform was implemented using

MATLAB.
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