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Abstract 

 

The work presented here is separated into two topics. The first involves the 

application of a mathematical method for solving a system of nonlinear ordinary 

differential equations (ODEs) relating to kinetic reaction systems on extracellular 

matrix degradation associated with cancer invasion. This method is based on the 

concept of grouping kinetic reactions based on reaction rate constants. The mass 

conservation law is used to obtain relationships on dependent variables that are 

involved in these kinetic reactions. Because these relationships are valid at all times 

during a reaction, they can be used to solve the ODEs explicitly. This method has been 

successfully applied to kinetic reaction systems on extracellular matrix degradation. 

The system consists of 12 ODEs that are generated by kinetic reactions of three basic 

molecules with specific binding rules. Using the presented model, we showed that the 

difference between initial concentrations of connected molecules controls the 

behavior of group solutions. The second topic involves a study on the pattern 

formation of blood vessel networks in angiogenesis. Angiogenesis is a process by 

which new blood vessels form. The formation of blood vessel networks is driven by 

chemotactic and haptotactic responses to environmental gradients of vascular 

endothelial growth factor (VEGF) and fibronectin, respectively. In the absence of 

haptotaxis, the sprouts grow directly toward the source of the tumor with little lateral 

movement. By incorporating both chemotaxis and haptotaxis, some of the sprouts 

grow backward to the parent vessel upon reaching a certain distance from it, so that 

their growth toward the source of the tumor progresses slowly. This means that the 

growth of blood vessel networks in tumor angiogenesis is mostly driven by 

chemotactic responses to the VEGF gradient. The hybrid discrete-continuous 

technique is used to simulate vessel network formation by tracking the movement of 

tip cells in response to the environmental gradient. 
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CHAPTER 1 

INTEGRABILITY OF KINETIC REACTION SYSTEMS REPRESENTING 

THE EXTRACELULLAR MATRIX DEGRADATION ASSOCIATED WITH 

CANCER INVASION 

 

 

In the field of molecular biology, we often deal with molecules that are involved in 

several molecular biological events. Mathematical equations are often used to model 

biological networks of kinetic reactions. As the system increases in size, it becomes 

difficult to solve and analyze them explicitly. Numerical methods are currently the 

most powerful tools to solve large systems, but specific information such as the 

monotonicity of solution and important parameter that regulates the network are not 

certain. In this chapter, we propose a mathematical method to model and analyze 

kinetic reaction systems using a grouping system and the mass conservation laws. This 

method enables us to obtain an explicit solution to ordinary differential equations 

(ODEs) system, which clarifies important parameters that influence the behavior of 

solutions. To demonstrate this method, we use kinetic reaction systems representing 

the extracellular matrix (ECM) degradation associated with cancer invasion as an 

example.  

 

Introduction 

The study described in this chapter helps us to understand large systems of kinetic 

reactions. Kinetic reactions involve a change in concentration due to the consumption 

and production of components in a system. This can be translated into mathematical 

equations by using the law of mass action, which results in a system of first-order 
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nonlinear ODEs. In most cases, such systems are difficult to solve explicitly, thus they 

are often studied by using numerical simulations. 

To overcome this problem, we propose the idea of grouping kinetic reactions based 

on reaction rate constants. This grouping is performed along the mass conservation 

laws, meaning that the local balancing relationships of inflow and outflow of relevant 

variables are determined. Moreover, these relationships can be used to solve the ODE 

system. 

In the next section, we describe the mathematical modeling of an elementary kinetic 

reaction system and use the mass conservation laws to obtain the explicit solution. 

The approach in this elementary process is then used to model kinetic reaction 

systems representing ECM degradation in the next section. The main topic discussed 

in this section is the mathematical approach to solving the ODE system. Simulation 

results are also presented. The chapter ends with some concluding remarks. 

 

The Mathematical Expressions of Elementary Kinetic Reaction Systems 

In kinetic reactions, many types of reaction involve in a system. They can be reaction 

between molecules, molecules and complexes, or between complexes. We assume 

all reactions that is presented in this chapter has repetition of association and 

dissociation constant with the relevant elementary molecular reaction. Also, we 

assume the system is closed, meaning that the system is conserved. Below is the 

mathematical modeling of some elementary kinetic reaction processes. The explicit 

solution is also presented on each elementary processes. 

1.A Reaction of two different molecules, 𝐴 and 𝐵. 

Consider the following reaction: 
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 𝐴 + 𝐵 ⇌ 𝐴𝐵, (1) 

with association constant rate 𝑘  and disassociation constant rate 𝑙 . The mass 

action laws for these reaction are 

 𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐵] + 𝑙[𝐴𝐵], (2) 

 𝑑[𝐵]

𝑑𝑡
= −𝑘[𝐴][𝐵] + 𝑙[𝐴𝐵], (3) 

 𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘[𝐴][𝐵] − 𝑙[𝐴𝐵], (4) 

where [∙] denotes the concentration. And the mass conservation laws are 

 𝑑

𝑑𝑡
([𝐴] + [𝐴𝐵]) =

𝑑

𝑑𝑡
([𝐵] + [𝐴𝐵]) = 0. (5) 

Equation (5) shows that the total concentration of molecule 𝐴 and 𝐴𝐵 or 𝐵 and 

𝐴𝐵 remains constant. Moreover, 

 [𝐴](𝑡) + [𝐴𝐵](𝑡) = 𝐼𝐴, (6) 

 [𝐵](𝑡) + [𝐴𝐵](𝑡) = 𝐼𝐵, (7) 

where 0 ≤ 𝐼𝐴 = [𝐴](0) + [𝐴𝐵](0)  and 0 ≤ 𝐼𝐵 = [𝐵](0) + [𝐴𝐵](0)  denote as 

total initial concentration of  [𝐴] + [𝐴𝐵] and [𝐵] + [𝐴𝐵]. Then, using relations (6) 

and (7), we can rewrite equation (2) as 

 𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴](𝐼𝐵 − (𝐼𝐴 − [𝐴])) + 𝑙(𝐼𝐴 − [𝐴]) 

= −{𝑘[𝐴]2 − (−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))[𝐴] − 𝑙𝐼𝐴} 

= −𝑘([𝐴] − 𝑧1)([𝐴] − 𝑧2), (8) 

with 
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𝑧1, 𝑧2 =
−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵) ± √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴

2𝑘
. 

(9) 

If the discriminant of (9) is not zero, which can be satisfied if 𝑙 ≠ 0 and 𝐼𝐴 − 𝐼𝐵 =

0, we have two equilibrium points, 𝑧1 and 𝑧2. If 𝑧1 ≠ 𝑧2, 

 1

(𝑧1 − 𝑧2)
(

1

[𝐴] − 𝑧1
−

1

[𝐴] − 𝑧2
)
𝑑[𝐴]

𝑑𝑡
= −𝑘 

(
1

[𝐴] − 𝑧1
−

1

[𝐴] − 𝑧2
) 𝑑[𝐴] = −𝑘(𝑧1 − 𝑧2)𝑑𝑡 

ln
[𝐴] − 𝑧1
[𝐴] − 𝑧2

= −𝑘(𝑧1 − 𝑧2)𝑡 + 𝑆 

[𝐴] − 𝑧1
[𝐴] − 𝑧2

= 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡. 
(10) 

Hence, the explicit solution of [𝐴](𝑡) is  

 
[𝐴](𝑡) =

𝑧1 − 𝐶𝑧2𝑒
−𝑘(𝑧1−𝑧2)𝑡

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
 

=
𝑧1 − 𝑧2 + 𝑧2 − 𝐶𝑧2𝑒

−𝑘(𝑧1−𝑧2)𝑡

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
 

=
𝑧1 − 𝑧2 + 𝑧2(1 − 𝐶𝑒

−𝑘(𝑧1−𝑧2)𝑡)

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
 

=
𝑧1 − 𝑧2

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
+ 𝑧2, (11) 

where 

 
𝐶 =

[𝐴]0 − 𝑧1
[𝐴]0 − 𝑧2

,   (12) 
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for 𝑡 ≥ 0.  

Solution of [𝐵] and [𝐴𝐵] can be obtained using (6) and (7), respectively. That is 

 [𝐵](𝑡) = 𝐼𝐵 − 𝐼𝐴 + 𝑧2 +
𝑧1 − 𝑧2

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
, (13) 

  [𝐴𝐵](𝑡) = 𝐼𝐴 − 𝑧2 −
𝑧1 − 𝑧2

1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡
. (14) 

Now, we observe (9). Since 

 (−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))
2
+ 4𝑘𝑙𝐼𝐴 = 𝑙2 + 𝑘2(𝐼𝐴 − 𝐼𝐵)

2 + 2𝑘𝑙(𝐼𝐴 + 𝐼𝐵) 

≥ 𝑙2 + 𝑘2(𝐼𝐴 − 𝐼𝐵)
2 + 2𝑘𝑙(𝐼𝐴 + 𝐼𝐵 − 2𝐼𝐴) 

= 𝑙2 + 𝑘2(𝐼𝐴 − 𝐼𝐵)
2 − 2𝑘𝑙(𝐼𝐴 − 𝐼𝐵) 

= (−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))
2
, (15) 

then (9) satisfies  𝑧1 > 0 > 𝑧2. Moreover, 

 

𝑧1 =
−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵) + √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴

2𝑘
 

=
−𝑙 + 𝑘(𝐼𝐵 − 𝐼𝐴) + √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴 + 2𝑘(𝐼𝐴 − 𝐼𝐵)

2𝑘
 

≥
2𝑘(𝐼𝐴 − 𝐼𝐵)

2𝑘
 

= (𝐼𝐴 − 𝐼𝐵). (16) 

From the solution of [𝐴](𝑡) in (11), we take the first derivative: 

 𝑑[𝐴]

𝑑𝑡
=
−(−𝐶(−𝑘(𝑧1 − 𝑧2))𝑒

−𝑘(𝑧1−𝑧2)𝑡)(𝑧1 − 𝑧2)

(1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡)2
 

(17) 
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=
−𝐶𝑘(𝑧1 − 𝑧2)

2𝑒−𝑘(𝑧1−𝑧2)𝑡

(1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡)2
. 

The sign of right hand side of (17) depends on the sign of 𝐶. Since [𝐴]0 − 𝑧2 > 0, 

the sign of [𝐴]0 − 𝑧1  would determine the sign of right hand side in (17). It is 

obvious that if [𝐴]0 = 0 , [𝐴]0 − 𝑧1 < 0 . For [𝐴]0 > 0 , we take [𝐴]0 − 𝑧1  as 

follow: 

 

[𝐴]0 − 𝑧1 = [𝐴]0 −
−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵) + √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴

2𝑘
 

= [𝐴]0 −
−𝑙 + 𝑘([𝐴]0 − [𝐵]0)

2𝑘
 

−
√(−𝑙 + 𝑘([𝐴]0 − [𝐵]0))

2
+ 4𝑘𝑙([𝐴]0 + [𝐴𝐵]0)

2𝑘
 

=
𝑙 + 𝑘([𝐴]0 + [𝐵]0)

2𝑘
 

−
√(−𝑙 + 𝑘([𝐴]0 − [𝐵]0))

2
+ 4𝑘𝑙([𝐴]0 + [𝐴𝐵]0)

2𝑘
. (18) 

From (18), we find that if [𝐵]0 = 0, [𝐴]0 − 𝑧1 < 0. Moreover, [𝐴]0 = [𝐵]0 = 0  

implies [𝐴]0 − 𝑧1 ≤ 0. Consider if the case is [𝐴]0 ≠ 0, [𝐵]0 ≠ 0. To take care of 

(18), firstly we look at the inside of the root. Let 𝑃 = (−𝑙 + 𝑘([𝐴]0 − [𝐵]0))
2
+

4𝑘𝑙([𝐴]0 + [𝐴𝐵]0). 

 𝑃 = 𝑙2 + 𝑘2([𝐴]0
2
+ [𝐵]0

2
− 2[𝐴]0[𝐵]0) + 2𝑘𝑙([𝐴]0 + [𝐵]0) 

+4𝑘𝑙[𝐴𝐵]0 

= 𝑙2 + 𝑘2 ([𝐴]0
2
+ [𝐵]0

2
+ (

4𝑙[𝐴𝐵]0
𝑘

− 2[𝐴]0[𝐵]0)) 
(19) 
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+2𝑘𝑙([𝐴]0 + [𝐵]0). 

Hence, the sign of 𝐶 depends on the term of (
4𝑙[𝐴𝐵]0

𝑘
− 2[𝐴]0[𝐵]0). If  

 4𝑙[𝐴𝐵]0
𝑘

− 2[𝐴]0[𝐵]0 < 2[𝐴]0[𝐵]0 

[𝐴𝐵]0
[𝐴]0[𝐵]0

<
𝑘

𝑙
, 

(20) 

[𝐴]0 − 𝑧1 > 0, meaning that we have negative sign of (17). The inequality (20) can 

be achieved by taking large initial concentration of 𝐴  and 𝐵  and small initial 

concentration of 𝐴𝐵. This condition would promote association reaction of (1), so 

that the forward reaction would dominate the backward reaction. In fact, [𝐴](𝑡) 

is monotonically decreasing: 

 [𝐴](0) = [𝐴]0   ↘  [𝐴](∞) = 𝑧1, (21) 

and is nonnegative. From (13) and (14), we can find that [𝐵](𝑡) and [𝐴𝐵](𝑡) are 

monotonically decreasing: 

 [𝐵](0) =  𝐼𝐵 − 𝐼𝐴 + [𝐴]0   ↘  [𝐵](∞) = 𝐼𝐵 − 𝐼𝐴 + 𝑧1, (22) 

and increasing: 

 [𝐴𝐵](0) =  𝐼𝐴 − [𝐴]0   ↗  [𝐴𝐵](∞) = 𝐼𝐴 − 𝑧1, (23) 

respectively. Both [𝐵](𝑡) and [𝐴𝐵](𝑡) are nonnegative. 

From (19), [𝐴]0 − 𝑧1 < 0 is satisfied if 

 [𝐴𝐵]0
[𝐴]0[𝐵]0

>
𝑘

𝑙
. (24) 



12 
 

In contrary to (20), the inequality (24) would promote the dissociation reaction of 

(1). In fact, [𝐴](𝑡), [𝐵](𝑡) are monotonically increasing: 

 [𝐴](0) = [𝐴]0   ↗  [𝐴](∞) = 𝑧1, (25) 

 [𝐵](0) =  𝐼𝐵 − 𝐼𝐴 + [𝐴]0  ↗  [𝐵](∞) = 𝐼𝐵 − 𝐼𝐴 + 𝑧1, (26) 

and [𝐴𝐵](𝑡) is monotonically decreasing: 

 [𝐴𝐵](0) =  𝐼𝐴 − [𝐴]0   ↘  [𝐴𝐵](∞) = 𝐼𝐴 − 𝑧1. (27) 

Both [𝐴](𝑡) and [𝐵](𝑡) are obviously nonnegative. Since  

 (−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))
2
+ 4𝑘𝑙𝐼𝐴 = 𝑙

2 + 𝑘2(𝐼𝐴 − 𝐼𝐵)
2 + 2𝑘𝑙(𝐼𝐴 + 𝐼𝐵) 

= 𝑙2 + 𝑘2(𝐼𝐴
2 + 𝐼𝐵

2) + 2𝑘𝑙(𝐼𝐴 + 𝐼𝐵) 

−2𝑘2𝐼𝐴𝐼𝐵 

≤ 𝑙2 + 𝑘2(𝐼𝐴
2 + 𝐼𝐵

2) + 2𝑘𝑙(𝐼𝐴 + 𝐼𝐵) 

≤ (𝑙 + 𝑘(𝐼𝐴 + 𝐼𝐵))
2
. (28) 

Hence, 

 

𝐼𝐴 − 𝑧1 = 𝐼𝐴 −
−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵) + √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴

2𝑘
 

=
𝑙 + 𝑘(𝐼𝐴 + 𝐼𝐵) − √(−𝑙 + 𝑘(𝐼𝐴 − 𝐼𝐵))

2
+ 4𝑘𝑙𝐼𝐴

2𝑘
 

≥ 0, (29) 

meaning that [𝐴𝐵](𝑡) is nonnegative. 
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If the case is  

 [𝐴𝐵]0
[𝐴]0[𝐵]0

= 𝑘, 
(30) 

we have [𝐴]0 − 𝑧1 = 0. This equality means that from the beginning, the reaction 

reaches the steady state. We can say that no change in concentration of each 

component in reaction (1) if (30) occurs.  

The discriminant of (9) would be zero if 𝑙 = 0 and 𝐼𝐴 − 𝐼𝐵 = 0. This implies (8) can 

be rewritten as 

 
𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴]2. (31) 

The solution of (31) is  

 
1

[𝐴]2
𝑑[𝐴] = −𝑘𝑑𝑡 

−
1

[𝐴]
+

1

[𝐴](0)
= −𝑘𝑡 

[𝐴](𝑡) =
[𝐴](0)

1 + [𝐴](0)𝑘𝑡
. 

(32) 

The solution of [𝐵](𝑡) is 

 
[𝐵](𝑡) = 𝐼𝐵 − 𝐼𝐴 +

[𝐴](0)

1 + [𝐴](0)𝑘𝑡
, (33) 

and solution of [𝐴𝐵](𝑡) is 
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[𝐴𝐵](𝑡) = 𝐼𝐴 −

[𝐴](0)

1 + [𝐴](0)𝑘𝑡
, (34) 

   

 

 

 

 

 

 

 

 

 

 

 

by (6) and (7). Hence, [𝐴](𝑡) now decreases: 

 [𝐴](0) = [𝐴]0   ↘  [𝐴](∞) = 0, (35) 

with order 𝛰(𝑡−1), which is slower than in the case if the discriminant of (9) is 

positive with order 𝛰(𝑒−𝛼𝑡). Using conservation relations in (6) and (7), we can 

find that [𝐵](𝑡) is now decreasing: 

Figure 1. (a) Graph of solution of [𝐴](𝑡), [𝐵](𝑡), [𝐴𝐵](𝑡) with positive discriminant. (b) Graph of solution of 
[𝐴](𝑡), [𝐵](𝑡), [𝐴𝐵](𝑡) with zero discriminant. 

(a)  

(b) 
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 [𝐵](0) = [𝐴]0   ↘  [𝐵](∞) = 0, (36) 

and [𝐴𝐵](𝑡) is increasing: 

 [𝐴𝐵](0) =  𝐼𝐴 − [𝐴]0   ↗  [𝐴𝐵](∞) = 𝐼𝐴, (37) 

with same order to [𝐴](𝑡), which is 𝛰(𝑡−1). 

Figure 1 shows the solution obtained analytically coincides with the solution 

obtained numerically for both conditions: positive discriminant and zero 

discriminant in (9). The graphs also confirm that in comparison to the solution of 

[𝐴](𝑡) and [𝐵](𝑡) with positive discriminant, the solution with zero discriminant 

decreases slower.  

 

 

 

 

 

 

 

From the expression of (9), the initial concentration difference between 𝐵 and 𝐴,  

𝐼𝐵 − 𝐼𝐴  influences the behavior of solution [𝐴](𝑡), [𝐵](𝑡), and [𝐴𝐵](𝑡) and the 

equilibrium value of [𝐵](𝑡). 𝐼𝐵 − 𝐼𝐴 = 0 , [𝐴](∞) coincides with [𝐵](∞) at the 

equilibrium. If 𝐼𝐵 − 𝐼𝐴 > 0, [𝐵](∞) > [𝐴](∞). If 𝐼𝐵 − 𝐼𝐴 < 0 [𝐵](∞) < [𝐴](∞). 

Figure 2. Graph of solutions to reaction system 𝐴 + 𝐵 ⇌ 𝐴𝐵 obtained numerically and analytically. 
(left) [𝐴](0) > 𝑧1 and 𝐼𝐵 − 𝐼𝐴 < 0. (middle) [𝐴](0) < 𝑧1 and 𝐼𝐵 − 𝐼𝐴 > 0. (right) [𝐴](0) > 𝑧1 and  𝐼𝐵 −

𝐼𝐴 = 0 
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Figure 2 confirms this conclusion and the monotonicity of solutions with two 

conditions: [𝐴](0) > 𝑧1 and [𝐴](0) < 𝑧1. 

1.B Symmetry reaction. 

Let 𝐴 has two non-identical binding sites. One site can bind to other molecule, 

let’s say 𝐵 , while the other site can bind to 𝐴  itself. Consider the following 

reaction: 

 𝐴 + 𝐴𝐵 ⇀ 𝐴𝐴𝐵, (38) 

with association constant rate 𝑘. Free binding site-𝐴𝐵 in reaction (38) binds to 𝐴 

with reaction rate 𝑘[𝐴]2. However, the following reaction: 

 𝐴 + 𝐴 ⇀ 𝐴𝐴, (39) 

would proceed at 1/2 𝑘 rate due to the symmetry of picking reaction pairs. To 

illustrate this, assume we react certain number of molecules of 𝐴, denoted as 𝑁𝐴, 

in a unit volume. Then, the number of pair collisions between molecules in the 

system is 
𝑁𝐴(𝑁𝐴−1)

2
 pairs [Gillespie, 1976].  

𝑁𝐴(𝑁𝐴−1)

2
→

𝑁𝐴
2

2
 as 𝑁𝐴 ≫ 1. The half 

factor explains that reaction (39) occurs at reaction rate 1/2𝑘[𝐴]2. 

Let the dissociation reaction occurs in (39) with constant rate  𝑙. Thus, the mass 

action laws of reaction (39) are 

 𝑑[𝐴]

𝑑𝑡
= −2(

1

2
𝑘[𝐴]2 + 𝑙[𝐴𝐴]), (40) 

  𝑑[𝐴𝐴]

𝑑𝑡
=
1

2
𝑘[𝐴]2 − 𝑙[𝐴𝐴]. (41) 

The coefficient 2 on (40) represents the summation of two 𝐴’s equations. The 

mass conservation law of reaction (39) is 
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 𝑑

𝑑𝑡
([𝐴] + 2[𝐴𝐴]) = 0, (42) 

meaning that 

 [𝐴] + 2[𝐴𝐴] = 𝐼𝐴, (43) 

where 0 ≤ 𝐼𝐴 = [𝐴](0) + 2[𝐴𝐴](0) as total initial concentration of  [𝐴] + 2[𝐴𝐴]. 

Using relation (43), rewrite (40) to 

 𝑑[𝐴]

𝑑𝑡
= −{𝑘[𝐴]2 + 𝑙[𝐴] − 𝑙𝐼𝐴}. 

= −𝑘([𝐴] − 𝑚1)([𝐴] − 𝑚2). (44) 

If 𝑚1 ≠ 𝑚2 , we obtain the solution as 

 
[𝐴](𝑡) =

𝑚1 − 𝐶2𝑚2𝑒
−𝑘(𝑚1−𝑚2)𝑡

1 − 𝐶2𝑒−𝑘
(𝑚1−𝑚2)𝑡

 

=
𝑚1 −𝑚2

1 − 𝐶2𝑒−𝑘
(𝑚1−𝑚2)𝑡

+𝑚2 
(45) 

using similar manner in 1.A, with 

 
𝐶2 =

[𝐴]0 −𝑚1

[𝐴]0 −𝑚2
, (46) 

 
𝑚1, 𝑚2 =

−𝑙 ± √𝑙2 + 4𝑘𝑙𝐼𝐴
𝑘

. (47) 

Solutions of [𝐴𝐴](𝑡) can be obtained using (43). That is 
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[𝐴𝐴](𝑡) =

1

2
(𝐼𝐴 −𝑚2 −

𝑚1 −𝑚2

1 − 𝐶2𝑒−𝑘
(𝑚1−𝑚2)𝑡

). (48) 

Since (47) satisfies 𝑚1 > 0 > 𝑚2 and the expression of (45) is similar to (11), the 

same conclusion about positivity, monotonicity and equilibrium values to [𝐴](𝑡) 

and [𝐴𝐴](𝑡) with reaction in 1.A.  

1.C Reaction between complexes with multiplicity. 

Suppose that molecule 𝐴 can bind to molecule 𝐵. Then, the following reaction 

 𝐴 + 𝐵𝐵 ⇌ 𝐴𝐵𝐵, (49) 

would proceed at rate 2𝑘[𝐴][𝐵𝐵] and 𝑙[𝐴𝐵𝐵] for association and disassociation. 

This reaction proceeds at double rate because now 𝐴  has two possibility in 

choosing where to bind 𝐵 (Figure 3:left). Hence, the mass action laws of reaction 

(49) are 

 𝑑[𝐴]

𝑑𝑡
= −2𝑘[𝐴][𝐵𝐵] + 𝑙[𝐴𝐵𝐵], (50) 

 𝑑[𝐵]

𝑑𝑡
= −2𝑘[𝐴][𝐵𝐵] + 𝑙[𝐴𝐵𝐵], (51) 

 𝑑[𝐴𝐵]

𝑑𝑡
= 2𝑘[𝐴][𝐵𝐵] − 𝑙[𝐴𝐵𝐵]. (52) 

The system (50)-(52) still satisfies (5). Hence, the solution of this system can be 

obtained in similar manner to (1.A). 
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Now, consider the following reaction: 

 𝐴 + 𝐴𝐵 ⇌ 𝐴𝐵𝐴. (53) 

This reaction now would proceed at rate 𝑘[𝐴][𝐵] and 2𝑙[𝐴𝐵] for association and 

disassociation. The double dissociation rate is applied due to two possibility of 

picking 𝐴 from detaching 𝐴 of 𝐴𝐵𝐴 (Figure 3:right). Hence, the mass action laws 

of reaction (53) are 

 𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐴𝐵] + 2𝑙[𝐴𝐵𝐴], (54) 

 𝑑[𝐴𝐵]

𝑑𝑡
= −𝑘[𝐴][𝐴𝐵] + 2𝑙[𝐴𝐵𝐴], (55) 

 𝑑[𝐴𝐵𝐴]

𝑑𝑡
= 𝑘[𝐴][𝐴𝐵] − 2𝑙[𝐴𝐵𝐴]. (56) 

The system (54)-(56) still satisfies (5). Hence, the solution of this system can be 

obtained in similar manner to (1.A). 

The concept for solving a system of ODEs of elementary kinetic reactions above is 

using total mass conservation for each molecules. That conservation relations were 

able to replace the ODE so that the system can be solved analytically.  

B A A 

B 

A 

Figure 3. The illustration of attachment and detachment of molecule with two possible choices. 

B 
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In the next section, we extend the use of concept to the kinetic reaction systems on 

ECM degradation associated with cancer invasion. The system involves interaction 

between three molecules with specific binding rules. Besides mass conservation laws, 

we use grouping system which is based on kinetic reaction rate. 

 

The Application to The Kinetic Reaction Systems on The ECM Degradation 

Associated with Cancer Invasion 

MT1-MMP, membrane type-matrix metalloproteinase, is believed to play as 

important molecule in the cancer metastasis, especially in the ECM degradation. MT1-

MMP is found highly express on the membrane of small protrusion of cancer cell 

called invadopodia. Invadopodia helps cancer cell to degrade extracellular matrix. In 

the beginning process of extracellular matrix degradation, there are several kinetic 

reactions from interactions between three molecules, MT1-MMP, TIMP2, and MMP2. 

TIMP2 and MMP2 exist on the extracellular matrix (ECM). Their interaction results in 

MMP2 activation that leads to the ECM degradation. After that, MT1-MMP begins to 

degrade the interstitium beyond the ECM.  

 

 

 

 

 

Figure 4. The illustration of MMP2 activation by free TIMP2-MT1-MMP 
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From that process, we see that the study of MMP2 activation is important for anti-

cancer drug development. For simplification, we denote MT1-MMP, TIMP2, and 

MMP2 as 𝑐, 𝑏, and 𝑎, respectively.  

Sato et al. has revealed the mechanism in the MMP2 activation. Below is the scenario 

(Figure 4): 

1. The 𝑐 penetrates the cell membrane. Once 𝑐 is on the membrane, 𝑐 will form 

the homodimer, 𝑐𝑐. 

2. The 𝑎 is associated with 𝑐𝑐 via 𝑏 by coupling one site of -𝑐𝑐- with heterodimer 

𝑎𝑏- or 𝑎- with heterotrimer –𝑏𝑐𝑐 to produce complex 𝑎𝑏𝑐𝑐. 

3. The free site- 𝑐 process the binding 𝑎𝑏 by cutting the connection between 𝑎 

and 𝑏. 

4. The cutted-𝑎 is being released and then becomes an activated 𝑎.  

From this mechanism, we see that the interaction of the three molecules 𝑎, 𝑏, and 𝑐  

is the key to the MMP2 activation that leads to the ECM degradation. The following 

binding patterns: 

1. 𝑐 has two non-identical binding sites for 𝑏 and 𝑐 itself, 

2. 𝑏 has two non-identical binding sites for 𝑎 and 𝑐, 

3. 𝑎 has one binding sites for 𝑏, 

 

 

  

 

 

Figure 5. The illustration of binding sites of molecule a, b, and c 

a b c 

The same color on binding site of a molecule to other molecule indicates one binding pattern. (left) a 

has one binding site for b. (middle) b has non-identical binding site for a and c. (right) c has non-

identical binding site for b and c itself. 
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will be assumed in the interaction of molecules 𝑎, 𝑏, and 𝑐 (Figure 5). We assume 

there is no other binding pattern although there is no evidence to ignore other 

possibility of binding rules. 

Using these three binding rules, we can generate nine complexes from monomers 𝑎, 

𝑏, and 𝑐 as written in the following table: 

Table 1 

Monomer 𝑎 𝑏 𝑐 

Dimer 𝑎𝑏 𝑏𝑐 𝑐𝑐 

Trimer 𝑎𝑏𝑐 𝑏𝑐𝑐  

Tetramer 𝑎𝑏𝑐𝑐 𝑏𝑐𝑐𝑏  

Pentamer 𝑎𝑏𝑐𝑐𝑏   

Hexamer 𝑎𝑏𝑐𝑐𝑏𝑎   

The pathway network of kinetic reactions between these twelve complexes are 

shown in Figure 6.  

 

  

 

   

 

 

 

 

The same color lines toward a component is indicated as one reaction. If only one color, it is 

dimerization. The bold yellow box in one of the component above indicates the important component in 

the ECM degradation. 

Figure 6. Pathway network of interaction between MT1-MMP, TIMP2, and MMP2 
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These 12 components with kinetic reactions of three molecules; 𝑎, 𝑏, and 𝑐  and 

pathway network on Figure 6 can be used to build a quantitative model of ECM 

degradation. A first quantitative model was proposed by Karagiannis et al., in which 

the general interactive behavior of the molecules 𝑎, 𝑏, and 𝑐  was investigated 

through simulation in the context of type-I collagen proteolysis. 

 

Figure 7. Graph of 𝑎(0) − 𝑎𝑏𝑐𝑐(∞). 

 

𝑎𝑏𝑐𝑐 is the important complex in the extracellular matrix degradation. Once these 

complex is formed, 𝑏-free 𝑐 cuts 𝑎 − 𝑏 binding which leads to an activation of 𝑎. The 

activated 𝑎 degrades the basement membrane and the rest of extracellular matrix 

degradation will be cone by c. 

To form 𝑎𝑏𝑐𝑐 complex, 𝑏 is sufficiently needed. However, if the existence of 𝑏 is too 

much, 𝑏 -free 𝑐  on 𝑎𝑏𝑐𝑐  will tend to bind 𝑏 . As a result, 𝑎𝑏𝑐𝑐𝑏  will be formed 

preferentially to 𝑎𝑏𝑐𝑐 leading to an insignificant of 𝑎 activation. If the existence of 𝑏 

is too low, 𝑎𝑏𝑐𝑐 will be less formed. This phenomenon can be see in (Figure 7). 
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Mathematical Expression of Kinetic Reaction Systems on The ECM 

Degradation Associated with Cancer Invasion 

Firstly, denote the concentration of 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑐, 𝑎𝑏𝑐𝑐, 𝑏𝑐𝑐𝑏, 𝑎𝑏𝑐𝑐𝑏, 

and 𝑎𝑏𝑐𝑐𝑏𝑎 as 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, and 𝑋12, respectively. To 

build the mathematical equation of the kinetic reaction systems, we add the following 

assumptions: 

1. The initial concentration of 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, and 𝑋12  are all 0. The 

initial concentration of 𝑋1, 𝑋2, and 𝑋3 are denoted as 𝑎0 > 0, 𝑏0 > 0, and 𝑐0 > 0, 

respectively. 

2. The complex reaction has repetition rate constant to the relevant monomer 

reaction. 

Due to the assumption on binding rules in previous section (Page 21), we find that the 

following three group reactions are all reactions that involved in the system: 

1. Reaction between monomer 𝑎 and monomer 𝑏 or 𝑏’s compound, written as 𝑏𝑩, 

with association rate constant 𝑘1: 

 𝑎 + 𝑏𝑩 ⇀ 𝑎𝑏𝑩. (57) 

2. Reaction between monomer 𝑏 or 𝑏𝑩 and monomer 𝑐 or 𝑐’s compound, written 

as 𝑐𝑪, with association rate constant 𝑘2 and dissociation constant 𝑙2: 

 𝑏𝑩 + 𝑐𝑪 ⇌ 𝑩𝑏𝑐𝑪. (58) 

3. Reaction between two monomer 𝑐  or 𝑐𝑪 , which involves symmetry and non-

symmetry reactions: 

 𝑐𝑪 + 𝑐𝑪 ⇌ 𝑪𝑐𝑐𝑪. (59) 
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Reaction (59) has association rate constant 𝑘3 and dissociation rate constant 𝑙3 if 

it is a non-symmetry reaction. If it is symmetry, Reaction (59) has association rate 

constant 1/2𝑘3 and dissociation rate constant 𝑙3. 

Based on the three group reactions above, we grouped all reactions that involved in 

the system into three groups of reaction as written in the following tables: 

Table 2 

Group 1  (𝑎 + 𝑏𝑩 ⇀ 𝑎𝑏𝑩) 
Association 

constant 

dissociation 

constant 

𝑋1(𝑎) + 𝑋2(𝑏) ⇀ 𝑋4(𝑎𝑏) 𝑘1 

𝑙1 = 0 

+ 𝑋5(𝑏𝑐) ⇀ 𝑋7(𝑎𝑏𝑐) 𝑘1 

+ 𝑋8(𝑏𝑐𝑐) ⇀ 𝑋9(𝑎𝑏𝑐𝑐) 𝑘1 

+ 𝑋10(𝑏𝑐𝑐𝑏) ⇀ 𝑋11(𝑎𝑏𝑐𝑐𝑏) 2𝑘1 

+ 𝑋11(𝑎𝑏𝑐𝑐𝑏) ⇀ 𝑋12(𝑎𝑏𝑐𝑐𝑏𝑎) 𝑘1 

Table 3 

Group 2  (𝑏𝑩 + 𝑐𝑪 ⇌ 𝑩𝑏𝑐𝑪) 
Association 

constant 

dissociation 

constant 

𝑋2(𝑏) + 𝑋3(𝑐) ⇋ 𝑋5(𝑏𝑐) 𝑘2 𝑙2 

+ 𝑋6(𝑐𝑐) ⇋ 𝑋8(𝑏𝑐𝑐) 2𝑘2 𝑙2 

+ 𝑋8(𝑏𝑐𝑐) ⇋ 𝑋10(𝑏𝑐𝑐𝑏) 𝑘2 2𝑙2 

+ 𝑋9(𝑎𝑏𝑐𝑐) ⇋ 𝑋11(𝑎𝑏𝑐𝑐𝑏) 𝑘2 𝑙2 

𝑋4(𝑎𝑏) + 𝑋3(𝑐) ⇋ 𝑋7(𝑠𝑏𝑐) 𝑘2 𝑙2 

+ 𝑋6(𝑐𝑐) ⇋ 𝑋9(𝑎𝑏𝑐𝑐) 2𝑘2 𝑙2 

+ 𝑋8(𝑏𝑐𝑐) ⇋ 𝑋11(𝑎𝑏𝑐𝑐𝑏) 𝑘2 𝑙2 

+ 𝑋9(𝑎𝑏𝑐𝑐) ⇋ 𝑋12(𝑎𝑏𝑐𝑐𝑏𝑎) 𝑘2 2𝑙2 
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Table 4 

Group 3  (𝑐𝑪 + 𝑐𝑪 ⇌ 𝑪𝑐𝑐𝑪) 
Association 

constant 

dissociation 

constant 

𝑋3(𝑐) + 𝑋3(𝑐) ⇋ 𝑋6(𝑐𝑐) 1/2𝑘3 𝑙3 

+ 𝑋5(𝑏𝑐) ⇋ 𝑋8(𝑏𝑐𝑐) 𝑘3 𝑙3 

+ 𝑋7(𝑎𝑏𝑐) ⇋ 𝑋9(𝑎𝑏𝑐𝑐) 𝑘3 𝑙3 

𝑋5(𝑏𝑐) + 𝑋5(𝑏𝑐) ⇋ 𝑋10(𝑏𝑐𝑐𝑏) 1/2𝑘3 𝑙3 

+ 𝑋7(𝑎𝑏𝑐) ⇋ 𝑋11(𝑎𝑏𝑐𝑐𝑏) 𝑘3 𝑙3 

𝑋7(𝑎𝑏𝑐) + 𝑋7(𝑎𝑏𝑐) ⇋ 𝑋12(𝑎𝑏𝑐𝑐𝑏𝑎) 1/2𝑘3 𝑙3 

 

From Table 2, Table 3, and Table 4 above, we can write the following 12 nonlinear 

ODEs system: 

𝑑𝑋1
𝑑𝑡

= −𝑘1𝑋1(𝑋2 + 𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11), (60) 

𝑑𝑋2
𝑑𝑡

= −𝑘1𝑋1𝑋2 − 𝑘2𝑋2(𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9) 

+𝑙2(𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11), 

(61) 

𝑑𝑋3
𝑑𝑡

= −𝑘2𝑋3(𝑋2 + 𝑋4) − 𝑘3𝑋3(𝑋3 + 𝑋5 + 𝑋7) + 𝑙2(𝑋5 + 𝑋7) 

+𝑙3(2𝑋6 + 𝑋8 + 𝑋9), 

(62) 

𝑑𝑋4
𝑑𝑡

= 𝑘1𝑋1𝑋2 − 𝑘2𝑋4(𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9) + 𝑙2(𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12), (63) 

𝑑𝑋5
𝑑𝑡

= −𝑘1𝑋1𝑋5 + 𝑘2𝑋2𝑋3 − 𝑘3𝑋5(𝑋3 + 𝑋5 + 𝑋7) − 𝑙2𝑋5 

+𝑙3(𝑋8 + 2𝑋10 + 𝑋11), 

(64) 
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𝑑𝑋6
𝑑𝑡

=
1

2
𝑘3𝑋3

2 − 2𝑘2𝑋6(𝑋2 + 𝑋4) + 𝑙2(𝑋8 + 𝑋9) − 𝑙3𝑋6, (65) 

𝑑𝑋7
𝑑𝑡

= 𝑘1𝑋1𝑋5 + 𝑘2𝑋3𝑋4 − 𝑘3𝑋7(𝑋3 + 𝑋5 + 𝑋7) − 𝑙2𝑋7 

+𝑙3(𝑋9 + 𝑋11 + 2𝑋12), 

(66) 

𝑑𝑋8
𝑑𝑡

= −𝑘1𝑋1𝑋8 + 𝑘2𝑋2𝑋6 − 𝑘2𝑋8(𝑋2 + 𝑋4) + 𝑘3𝑋3𝑋5 

+𝑙2(−𝑋8 + 2𝑋10 + 𝑋11) − 𝑙3𝑋8, 

(67) 

𝑑𝑋9
𝑑𝑡

= 𝑘1𝑋1𝑋8 − 𝑘2𝑋9(𝑋2 + 𝑋4) + 2𝑘2𝑋4𝑋6 + 𝑘3𝑋3𝑋7 

+𝑙2(−𝑋9 + 𝑋11 + 2𝑋12) − 𝑙3𝑋9, 

(68) 

𝑑𝑋10
𝑑𝑡

= −2𝑘1𝑋1𝑋10 + 𝑘2𝑋2𝑋8 +
1

2
𝑘3𝑋5

2 − 2𝑙2𝑋10 − 𝑙3𝑋10, (69) 

𝑑𝑋11
𝑑𝑡

= 𝑘1𝑋1(2𝑋10 − 𝑋11) + 𝑘2𝑋2𝑋9 + 𝑘2𝑋4𝑋8 + 𝑘3𝑋5𝑋7 − 2𝑙2𝑋11 

−𝑙3𝑋11, 

(70) 

𝑑𝑋12
𝑑𝑡

= 𝑘1𝑋1𝑋11 + 𝑘2𝑋4𝑋9 +
1

2
𝑘3𝑋7

2 − 2𝑙2𝑋12 − 𝑙3𝑋12, (71) 

by using law of mass action as presented in the previous section. 

In the next section, the grouping system and mass conservation laws will be presented.  

 

The Grouping System to The ODEs of Kinetic Reaction Systems on The ECM 

Degradation Associated with Cancer Invasion 

From Table 2, all reactions in Group 1 can be summarized as 
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 𝑋1 + (𝑋2 + 𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11) ⇀ (𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12), (72) 

with association rate 𝑘1. Coefficient 2 in 𝑋10(𝑏𝑐𝑐𝑏) indicates 𝑏𝑐𝑐𝑏 has two possible 

sites for the attachment of 𝑎. Coefficient 2 in 𝑋12(𝑎𝑏𝑐𝑐𝑏𝑎) indicates that 𝑎𝑏𝑐𝑐𝑏𝑎 

consumes two 𝑎  molecules unlike others: 𝑋4(𝑎𝑏) , 𝑋7(𝑎𝑏𝑐) , 𝑋9(𝑎𝑏𝑐𝑐) , and 

𝑋11(𝑎𝑏𝑐𝑐𝑏).  

Let 𝜁2581011 = 𝑋2 + 𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11. Using law of mass action, we have the 

following system to the reaction Group 1: 

 𝑑𝑋1
𝑑𝑡

= −𝑘1𝑋1𝜁2581011, (73) 

 𝑑𝜁2581011
𝑑𝑡

= −𝑘1𝑋1𝜁2581011. (74) 

Observing the ODEs system (60)-(71), the equation (73) is equal to equation (60) and 

the equation (74) is (61) + (64) + (67) + 2(69) + (70). 

Applying mass conservation law to reaction Group 1, we have 

 𝑑

𝑑𝑡
(𝑋1 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12) = 0. (75) 

By observing the original ODE system (60)-(71), we find that ODE system (60)-(71) 

satisfies (75). Thus, equation (75) can be considered as one of mass conservation laws 

to system (60)-(71). Moreover, equation (75) may be considered as mass conservation 

law for 𝑎0, since 

 (𝑋1 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12)(𝑡) = 𝑎0. (76) 

The other mass conservation to reaction Group 1 is 
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 𝑑

𝑑𝑡
(𝜁2581011 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12) = 0. (77) 

Again, ODE system (60)-(71) satisfies (77). Equation (77) can be written as 

 (𝜁2581011 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12)(𝑡) = 𝑏0. (78) 

We see that equation (78) can be considered as mass conservation law for 𝑏0 . 

Subtracting equation (78) to equation (76), we obtain 

 (𝜁2581011 − 𝑋1)(𝑡) = 𝑏0 − 𝑎0. (79) 

This equation can be considered as mass conservation law for 𝑏0 − 𝑎0. 

Next, we consider all reactions in Group 2, which can be summarized as 

 (𝑋2 + 𝑋4) + (𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9) ⇋ 

(𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11) + (𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12). 
(80) 

with association rate 𝑘2 and dissociation rate 𝑙2. Coefficient 2 in 𝑋6(𝑐𝑐) indicates 𝑐𝑐 

has two possible sites for the attachment of 𝑏 as in reaction (1C). Coefficient 2 in 

𝑋10(𝑏𝑐𝑐𝑏)  and 𝑋12(𝑎𝑏𝑐𝑐𝑏𝑎)  indicate 𝑏𝑐𝑐𝑏  and 𝑎𝑏𝑐𝑐𝑏𝑎  consume two 𝑏  molecules 

unlike others: 𝑋5(𝑏𝑐), 𝑋7(𝑎𝑏𝑐), 𝑋8(𝑏𝑐𝑐), 𝑋9(𝑎𝑏𝑐𝑐), and 𝑋11(𝑎𝑏𝑐𝑐𝑏). 

Let 𝜁24 = 𝑋2 + 𝑋4 and 𝜁3689 = 𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9. Using the similar manner to that 

used in group 1, we have the following system to reaction Group 2: 

 𝑑𝜁24
𝑑𝑡

= −𝑘2𝜁24𝜁3689 + 𝑙2(𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12), (81) 

 𝑑𝜁3689
𝑑𝑡

= −𝑘2𝜁24𝜁3689 (82) 
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+𝑙2(𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12). 

Taking summation of 𝑋2 and 𝑋4 from the ODE system (60)-(71) results equation (81). 

The similar manner to equation (82). That is, equation (82) is the summation of 𝑋3, 

2𝑋6, 𝑋8, and 𝑋9: (62)+2(64)+(66)+(67). 

The mass conservation to reaction Group 2 other than equation (77) is 

 𝑑

𝑑𝑡
(𝜁3689 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12) = 0. (83) 

Again, ODE system (60)-(71) satisfies (83). This equation can be written as 

 (𝜁3689 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)(𝑡) = 𝑐0. (84) 

This equation can be considered as mass conservation law for 𝑐0. Rewrite equation 

(78)  to 

 (𝜁24 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)(𝑡) = 𝑏0. (85) 

By substracting equation (84) to equation (85), we obtain 

 (𝜁3689 − 𝜁24)(𝑡) = 𝑐0 − 𝑏0. (86) 

This equation can be considered as mass conservation law for 𝑐0 − 𝑏0. 

The last is reaction of Group 3. All reactions in Group 3 can be summarized as 

 (𝑋3 + 𝑋5 + 𝑋7) + (𝑋3 + 𝑋5 + 𝑋7) ⇋ 

(𝑋6 + 𝑋8 + 𝑋9 + 𝑋10 + 𝑋11 + 𝑋12) 
(87) 
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with association rate 1/2𝑘3 and dissociation rate 𝑙3. Coefficient 2 in all term on the 

right-hand side of reaction above indicate all components consume two 𝑐 molecules. 

Let 𝜁357 = 𝑋3 + 𝑋5 + 𝑋7. Using law of mass action, we have the following equation: 

 𝑑𝜁357
𝑑𝑡

= −𝑘3𝜁357
2 + 2𝑙3(𝑋6 + 𝑋8 + 𝑋9 + 𝑋10 + 𝑋11 + 𝑋12). (88) 

Again, by summing of 𝑋3, 𝑋7, and 𝑋7 of ODE system (60)-(71), we find that equation 

(88) is true. 

In the next section, we will see how the group ODE system is used to show that the 

ODE system (60)-(71) is integratable.  

 

The Integrability of ODEs System  

By substituting (79), 𝜁2581011 = 𝑋1 + 𝑏0 − 𝑎0, into (73), we have 

 𝑑𝑋1
𝑑𝑡

= −𝑘1𝑋1(𝑋1 + 𝑏0 − 𝑎0). (89) 

If 𝑏0 − 𝑎0 = 0, the solution to (89) would be similar to (32).  

Now if the case is 𝑏0 − 𝑎0 > 0, the solution to (89) is 

 (
1

𝑋1
−

1

𝑋1 + 𝑏0 − 𝑎0
) 𝑑𝑋1 = −𝑘1(𝑏0 − 𝑎0)𝑑𝑡 

ln
𝑋1

𝑋1 + 𝑏0 − 𝑎0
− ln

𝑎0
𝑏0
= −𝑘1(𝑏0 − 𝑎0)𝑡 

(90) 
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𝑋1
𝑋1 + 𝑏0 − 𝑎0

=
𝑎0
𝑏0
𝑒−𝑘1(𝑏0−𝑎0)𝑡 

𝑋1(𝑡) =
𝑎0(𝑏0 − 𝑎0)𝑒

−𝑘1(𝑏0−𝑎0)𝑡

𝑏0 − 𝑎0𝑒−𝑘1
(𝑏0−𝑎0)𝑡

. 

And, if 𝑏0 − 𝑎0 < 0, the solution to (89) would be 

 (−
1

𝑋1
+

1

𝑋1 + 𝑏0 − 𝑎0
) 𝑑𝑋1 = −𝑘1(𝑎0 − 𝑏0)𝑑𝑡 

ln
𝑋1 + 𝑏0 − 𝑎0

𝑋1
− ln

𝑏0
𝑎0
= −𝑘1(𝑎0 − 𝑏0)𝑡 

𝑋1 + 𝑏0 − 𝑎0
𝑋1

=
𝑏0
𝑎0
𝑒−𝑘1(𝑎0−𝑏0)𝑡 

𝑋1(𝑡) =
𝑎0(𝑎0 − 𝑏0)

𝑎0 − 𝑏0𝑒−𝑘1
(𝑎0−𝑏0)𝑡

. (91) 

In summary, the solution of 𝑋1(𝑡) is expressed as 

 

𝑋1(𝑡) =

{
  
 

  
 

  

𝑎0
1 + 𝑎0𝑘1𝑡

,                                      𝑏0 − 𝑎0 = 0

𝑎0(𝑏0 − 𝑎0)𝑒
−𝑘1(𝑏0−𝑎0)𝑡

𝑏0 − 𝑎0𝑒−𝑘1
(𝑏0−𝑎0)𝑡

            𝑏0 − 𝑎0 > 0

𝑎0(𝑎0 − 𝑏0)

𝑎0 − 𝑏0𝑒−𝑘1
(𝑎0−𝑏0)𝑡

,                     𝑏0 − 𝑎0 < 0

, (92) 

By observing (92) at large 𝑡, we find that 𝑋1(𝑡) is decreasing monotonically: 

 
𝑋1(0) = 𝑎0  ↘  𝑋1(∞) = {  

(𝑎0 − 𝑏0),   𝑏0 − 𝑎0 < 0
0,                    𝑏0 − 𝑎0 ≥ 0 

 (93) 

and is nonnegative. 
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The solution of 𝜁2581011(𝑡) can be obtained using (79). That is 

 

𝜁2581011(𝑡) =

{
  
 

  
 

𝑎0
1 + 𝑎0𝑘1𝑡

,                                              𝑏0 − 𝑎0 = 0

𝑏0(𝑏0 − 𝑎0)

𝑏0 − 𝑎0𝑒−𝑘1
(𝑏0−𝑎0)𝑡

,                            𝑏0 − 𝑎0 > 0

𝑏0(𝑎0 − 𝑏0)𝑒
−𝑘1(𝑎0−𝑏0)𝑡

𝑎0 − 𝑏0𝑒−𝑘1
(𝑎0−𝑏0)𝑡

,                     𝑏0 − 𝑎0 < 0

. (94) 

Again, by observing (94) at large 𝑡, we find that 𝜁2581011(𝑡) is decreasing: 

 
𝜁2581011(0) = 𝑏0  ↘  𝜁2581011(∞) = {

(𝑏0 − 𝑎0),   𝑏0 − 𝑎0 > 0
0,                    𝑏0 − 𝑎0 ≤ 0 

. (95) 

and is nonnegative. 

Next, we consider equation (81). Using relation (85) and (86), we can rewrite equation 

(81) as follow: 

 
𝑑𝜁24
𝑑𝑡

= −𝑘2𝜁24(𝜁24 + 𝑐0 − 𝑏0) + 𝑙2(𝑏0 − 𝜁24) 

= −{𝑘2𝜁24
2 − (−𝑙2 + 𝑘2(𝑏0 − 𝑐0))𝜁24 − 𝑙2𝑏0} 

= −𝑘2(𝜁24 − 𝜁24
+ )(𝜁24 − 𝜁24

− ). 
(96) 

This expression is similar to (8). Hence, the solution to (96) is 

 
𝜁24(𝑡) =

𝜁24
+ − 𝜁24

−

1 − 𝐶24𝑒
−𝑘2(𝜁24

+ −𝜁24
− )𝑡

+ 𝜁24
− , (97) 

where 
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𝐶24 =

𝑏0 − 𝜁24
+

𝑏0 − 𝜁24
− , (98) 

 

𝜁24
± =

−𝑙2 + 𝑘2(𝑏0 − 𝑐0) ± √(−𝑙2 + 𝑘2(𝑏0 − 𝑐0))
2
+ 4𝑘2𝑙2𝑏0

2𝑘2
, 

(99) 

and 𝑏0 − 𝑐0 < 𝜁24
+ > 0 > 𝜁24

− .  

The solution of 𝜁3689(𝑡) can be obtained using relation (86). That is, 

 
𝜁3689(𝑡) =

𝜁24
+ − 𝜁24

−

1 − 𝐶24𝑒
−𝑘2(𝜁24

+ −𝜁24
− )𝑡

+ 𝜁24
− + 𝑐0 − 𝑏0. (100) 

By observing (99) using similar manner in (18) and (19), we find that 𝑏0 − 𝜁24
+ > 0. 

Thus, 𝜁24(𝑡) is monotonically decreasing: 

 𝜁24(0) = 𝑏0    ↘  𝜁24(∞) = 𝜁24
+ . (101) 

𝜁3689(𝑡) is also decreasing monotonically: 

 𝜁3689(0) = 𝑐0    ↘  𝜁3689(∞) = 𝜁24
+ + 𝑐0 − 𝑏0. (102) 

Both 𝜁24(𝑡) and 𝜁3689(𝑡) are nonnegative for 𝑡 ≥ 0. 

The analysis result above is for positive discriminant in (99), which can be satisfied if 

𝑙2 ≠ 0, and 𝑏0 − 𝑐0 ≠ 0. If 𝑙2 = 0 and 𝑏0 − 𝑐0, (96) now become 

 𝑑𝜁24
𝑑𝑡

= −𝑘2𝜁24
2. (103) 

Since (103) is similar to (31), the solution to (103) is 
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𝜁24(𝑡) =

𝑏0
1 + 𝑏0𝑘2𝑡

, (104) 

And the solution of 𝜁3689(𝑡) is 

 
𝜁3689(𝑡) =

𝑏0
1 + 𝑏0𝑘2𝑡

+ 𝑐0 − 𝑏0. (105) 

Now, both 𝜁24(𝑡) and 𝜁3689(𝑡) decrease with 𝛰(𝑡−1), which is slower than in the case 

if the discriminant of (99) is positive, with order 𝛰(𝑒−𝛼𝑡). 

To solve equation (61), rewrite equation (61) using relation (86) and definition of 

𝜁2581011 as follow: 

 
𝑑𝑋2
𝑑𝑡

= −𝑘1𝑋1(𝑡)𝑋2 − 𝑘2𝑋2𝜁3689(𝑡)  + 𝑙2(𝜁2581011(𝑡) − 𝑋2) 

= −𝑋2(𝑘1𝑋1(𝑡) + 𝑘2𝜁3689(𝑡) + 𝑙2)  + 𝑙2𝜁2581011(𝑡). 
(106) 

The solution of 𝑋2(𝑡) can be obtained by solving the above equation using method of 

variation of constant. Thus, the solution of 𝑋4(𝑡) can be obtained by definition of 𝜁24. 

To solve equation (88), first rewrite equation (84) to 

 (𝜁357 + 2𝑋6 + 2𝑋8 + 2𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)(𝑡) = 𝑐0. (107) 

(88) now can be rewritten as follow: 

 
𝑑𝜁357
𝑑𝑡

= −𝑘3𝜁357
2 + 𝑙3(𝑐0 − 𝜁357) 

= −𝑘3(𝜁357 − 𝜁357
+ )(𝜁357 − 𝜁357

− ). (108) 

Again, the expression of (108) is similar to (8). Hence, the solution of 𝜁357(𝑡) is 
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 𝜁357(𝑡) =
𝜁357
+ − 𝜁357

−

1 − 𝐶357𝑒
−𝑘3(𝜁357

+ −𝜁357
− )𝑡

+ 𝜁357
− , (109) 

where 

 
𝐶357 =

𝑐0 − 𝜁357
+

𝑐0 − 𝜁357
− , (110) 

 

𝜁357
± =

−𝑙3 ±√𝑙3
2 + 4𝑘3𝑙3𝑐0

2𝑘3
. 

(111) 

and 𝜁357
+ > 0 > 𝜁357

− .  Since 𝑐0 − 𝜁357
+ , we find that 𝜁357(𝑡)  is decreasing 

monotonically: 

 𝜁357(0) = 𝑐0    ↘  𝜁357(∞) = 𝜁357
+ , (112) 

and is nonnegative. 

The discriminant of (111) is zero if 𝑙3 = 0 , leading to the solution of 𝜁357(𝑡)  is 

expressed as 

 𝜁357(𝑡) =
𝑐0

1 + 𝑐0𝑘3𝑡
. (113) 

Now, both 𝜁357(𝑡) decreases with 𝛰(𝑡−1), which is slower than in the case of positive 

discriminant in (111), with order 𝛰(𝑒−𝛼𝑡). 

To solve equation (62), rewrite equation (62) using definition of 𝜁24, 𝜁3689, and 𝜁357: 

 
𝑑𝑋3
𝑑𝑡

= −𝑘2𝑋3𝜁24(𝑡) − 𝑘3𝑋3𝜁357(𝑡) + 𝑙2(𝜁357(𝑡) − 𝑋3) (114) 
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+𝑙3(𝜁3689(𝑡) − 𝑋3) 

= −𝑋3(𝑘2𝜁24(𝑡) + 𝑘3𝜁357(𝑡) + 𝑙2 + 𝑙3) + 𝑙2𝜁357(𝑡) + 𝑙3𝜁3689(𝑡). 

(114) can be solved using method of variation of constant, as well. Then, the solution 

of 𝑋5(𝑡) can be obtained by similar manner. That is by solving the following equation: 

 
𝑑𝑋5
𝑑𝑡

= −𝑘1𝑋1(𝑡)𝑋5 + 𝑘2𝑋2(𝑡)𝑋3(𝑡) − 𝑘3𝑋5𝜁357(𝑡) − 𝑙2𝑋5 

+𝑙3(𝜁2581011(𝑡) − 𝑋2(𝑡) + 𝑋5) 

 = −𝑋5(𝑘1𝑋1(𝑡) + 𝑘3𝜁357(𝑡) + 𝑙2 + 𝑙3) + 𝑘2𝑋2(𝑡)𝑋3(𝑡) 

+𝑙3𝜁2581011(𝑡). 
(115) 

Thus, the solution of 𝑋7(𝑡) can be obtained by definition of 𝜁357. 

The solution of 𝑋6(𝑡), 𝑋8(𝑡), 𝑋9(𝑡), 𝑋10(𝑡), 𝑋11(𝑡), 𝑋12(𝑡) can be obtained by similar 

manner. 

 

Biological Implication 

Cancer invasion is triggered by the production of molecule 𝑎𝑏𝑐𝑐  in the system. 

Therefore, by controlling the abcc production, we may be able to prevent leakage of 

cancer cells from the primary sites through ECM degradation. From the analysis 

results in the previous section, we can find the important parameter that regulates 

the production of molecule 𝑎𝑏𝑐𝑐. 

At large 𝑡, (106) gives the equilibrium value of 𝑋2, which is written as follows: 

 𝑋2(∞) =
𝑙2𝜁2581011(∞)

(𝑘1𝑋1(∞) + 𝑘2𝑋2𝜁3689(∞) + 𝑙2)
. (116) 
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Then,  

 𝑋4(∞) = 𝜁24(∞) −
𝑙2𝜁2581011(∞)

(𝑘1𝑋1(∞) + 𝑘2𝑋2𝜁3689(∞) + 𝑙2)
. (117) 

At large 𝑡, (114) and (115) respectively become 

 𝑋3(∞) =
𝑙2𝜁357(∞) + 𝑙3𝜁3689(∞)

(𝑘2𝜁24(∞) + 𝑘3𝜁357(∞) + 𝑙2 + 𝑙3)
, (118) 

 𝑋5(∞) =
𝑘2𝑋2(∞)𝑋3(∞) + 𝑙3(𝜁2581011(∞) − 𝑋2(∞))

(𝑘1𝑋1(∞) + 𝑘3𝜁357(∞) + 𝑙2 + 𝑙3)
. (119) 

Then, 

 𝑋7(∞) = 𝜁357(∞) −
𝑙2𝜁357(∞) + 𝑙3𝜁3689(∞)

(𝑘2𝜁24(∞) + 𝑘3𝜁357(∞) + 𝑙2 + 𝑙3)
 

−
𝑘2𝑋2(∞)𝑋3(∞) + 𝑙3(𝜁2581011(∞) − 𝑋2(∞))

(𝑘1𝑋1(∞) + 𝑘3𝜁357(∞) + 𝑙2 + 𝑙3)
 (120) 

From (65) and (67), the equilibrium values of 𝑋6(𝑡)  and 𝑋8(𝑡)  are respectively 

obtained as follows: 

 
𝑋6(∞) =

1
2𝑘3𝑋3

(∞)2 + 𝑙2(𝜁3689(∞) − 𝑋3(∞))

2𝑘2𝜁24(∞) + 2𝑙2 + 𝑙3
. (121) 

 𝑋8(∞) =
𝑘2𝑋2(∞)𝑋6(∞) + 𝑘3𝑋3(∞)𝑋5(∞)

𝑘1𝑋1(∞) + 𝑘2𝜁24(∞) + 2𝑙2 + 𝑙3
 

+
𝑙2(𝜁2581011(∞) − 𝑋2(∞) − 𝑋5(∞))

𝑘1𝑋1(∞) + 𝑘2𝜁24(∞) + 2𝑙2 + 𝑙3
, (122) 

Hence, the equilibrium value of 𝑋9(𝑡) can be obtained by substituting (101), (116)-

(122) into the following equation: 
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 𝑋9(∞) =
𝑘1𝑋1(∞)𝑋8(∞) + 2𝑘2𝑋4(∞)𝑋6(∞) + 𝑘3𝑋3(∞)𝑋7(∞)

𝑘2𝜁24(∞) + 2𝑙2 + 𝑙3
 

+
𝑙2(𝑎0 − 𝑋1(∞) − 𝑋4(∞) − 𝑋7(∞))

𝑘2𝜁24(∞) + 2𝑙2 + 𝑙3
. (123) 

Figure 4 shows how the initial concentration of each connected molecule affects the 

production of 𝑎𝑏𝑐𝑐. Note that abcc production is regulated by [𝑐𝑜 − 𝑏𝑜] . Specifically, 

abcc is produced when  𝑐𝑜 − 𝑏𝑜 > 0, and is not produced when 𝑐𝑜 − 𝑏𝑜 ≤ 0. 

 

 

 

 

 

 

 

 

Discussion 

From the expressions of the group solutions presented in the previous section, we 

infer that the initial concentration difference between the connected molecules 

regulates the behavior of solutions and their equilibrium values. That is 

1. 𝑏0 − 𝑎0 regulates the solutions and equilibrium values of 𝑋1(𝑡) and 𝜁2581011(𝑡). 

𝑋1(𝑡)  and 𝜁2581011(𝑡)  decrease at rate 𝛰(𝑡−1) when 𝑏0 − 𝑎0 = 0,  and at rate 

𝛰(𝑒−𝛼𝑡) when 𝑏0 − 𝑎0 ≠ 0, 

𝑎0 

𝑏0 𝑏0 

𝑐0 

𝑋9(∞) 

𝑋9(∞) 

Figure 8. Graph of 𝑋9(∞) vs 𝑏𝑜 − 𝑎𝑜  (left) and 𝑐𝑜 − 𝑏𝑜 (right) 
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2. 𝑏0 − 𝑐0 regulates the solutions and equilibrium values of 𝜁24(𝑡) and 𝜁3689(𝑡), 

but only one parameter (𝑐0.) regulates the group solution 𝜁357(𝑡). 

Here, the nonlinear ODEs system is solved by imposing appropriate doubling rules on 

the reactions of Group 3. Similarly, Kawasaki et al. imposed doubling rules on a system 

of mathematical equations to allow an explicit solution. The two approaches apply 

different concepts to symmetry reactions described in Section 1.B. In their concept, 

they used full reaction rate to the symmetry reaction and added the following 

reactions to Reaction group 3: 

 𝑋3(𝑐)+ 𝑋5(𝑏𝑐) ⇋ 𝑋8(𝑏𝑐𝑐), (124) 

 𝑋3(𝑐)+ 𝑋7(𝑎𝑏𝑐) ⇋ 𝑋9(𝑎𝑏𝑐𝑐), (125) 

 𝑋5(𝑐)+ 𝑋7(𝑏𝑐) ⇋ 𝑋11(𝑏𝑐𝑐), (126) 

After these manipulations, the ODE of 𝜁357(𝑡) can be solved explicitly. 

Alternatively, Minerva [2013] omitted reactions (124)-(126), preventing the direct 

solution of 𝜁357(𝑡) from the ODE of 𝜁357(𝑡). She reduced the ODE to a Lotka–Volterra 

system, which is more complicated to solve. 

Figure 11 compares the solutions of Kawasaki et al, Minerva [2013] and the present 

work. The initial concentrations in the simulations were 𝑎0 = 𝑐0 = 10
−6, 𝑏0 = 5 ×

10−7 and rate constants were 𝑘1 = 2.1 × 107, 𝑘2 = 2.74 × 106, 𝑘3 = 2 × 10
6, 𝑙2 =

2 × 10−4, 𝑙3 = 10
−2.  
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Figure 9. Graph of Solution X3, X5, and  X7 in Three Concepts. (Green) First model without 
doubling rules. (Blue) Method in Kawasaki et al. (Red) Present method.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

As shown in Figure 9., the new concept in the symmetry reaction (red) halves the 

reaction rate; therefore, the graphical solutions of 𝑋3, 𝑋5, and 𝑋7 reduce more slowly 

under the new concept than under the previous concepts. The equilibrium is also 

𝑎𝑏𝑐𝑐∞ 

b(0) 

Figure 10. Graph of 𝑏(0) − 𝑎𝑏𝑐𝑐(∞). (Green) First model without doubling rules. (Blue) Method in 
Kawasaki et al. (Red) Present method. 
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higher, implying faster dissociation of the symmetry reactions in Group 3 (as 

evidenced by the red line of solutions 𝑋6, 𝑋10, and 𝑋12). Because the present study 

omits reactions (124)-(126), the solutions of 𝑋8 , 𝑋9 , and 𝑋11  are lower in the 

presented method than in Kawasaki’s work. The results of 𝑏0 − 𝑎𝑏𝑐𝑐∞ are compared 

in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Graph of solution to the ODEs System in Three Concepts. (Green) First model without doubling rules. 
(Blue) Method in Kawasaki et al. (Red) Present method. 
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Concluding Remarks 

The new concept of the symmetry reaction in Section 1.B allows us to generate an 

ODE system with appropriate doubling rules. Moreover, the ODEs are completely 

integratable. This new concept groups the kinetic reactions by their reaction rate 

constants. The relations between the ODE variables satisfy the mass conservation law 

and are valid for all 𝑡 ≥ 0. The behaviors of the solutions and their equilibrium values 

are regulated by the concentration differences over the connected molecules. 

The approach presented in this chapter is applicable to kinetic reaction systems with 

𝑛 monomers. The system has the following reaction pattern: 

 𝐴𝑛 − 𝐴𝑛−1 −⋯− 𝐴2 − 𝐴1 ⊃, (127) 

where 𝐴1, 𝐴2, … , 𝐴𝑛  are 𝑛  distinct molecules, line ‘− ’ represents the reaction 

between two connected molecules, and line ‘⊃’ represents the dimer reaction. An 𝑛-

monomer system was successfully treated by Itano and Suzuki. They explicitly solved 

an 𝑛 -group ODE system and obtained asymptotically stable solutions that are 

consistent with the 3-monomer system solved by Itano and Suzuki [2016].  
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CHAPTER 2 

MATHEMATICAL MODELLING AND SIMULATION OF PATTERN 

FORMATION ON TUMOR-INDUCED ANGIOGENESIS 

 

 

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a vital 

component of many growth processes, including embryogenesis, retinal vasculature, 

wound healing, tumor growth and numerous vascular diseases. This chapter focuses 

on angiogenesis in tumor growth, known as tumor-induced angiogenesis. The 

formation of the blood vessel network is controlled by the movement of endothelial 

cells, which is driven by chemotactic and haptotactic responses to the gradients of 

vascular endothelial growth factor (VEGF) and fibronectin, respectively. This chapter 

investigates the role of VEGF and fibronectin gradients in the growth and patterning 

of blood vessels. To this end, we vary the parameters in a mathematical model of 

tumor-induced angiogenesis and present the results of a simulation study. For the 

simulations, we adopt a hybrid technique that combines discrete and continuous 

methods. 

 

Introduction 

Angiogenesis in tumor growth begins when a tumor cell is deprived of oxygen and 

nutrients. Once the tumor cell reaches this stage, it releases VEGF into the 

surrounding tissue [Folkman and Klagsbrun, 1987]. The VEGF diffuses through the 

extracellular matrix (ECM), establishing a concentration gradient between the tumor 

cell and the nearby pre-existing vessel. Having reached a nearby vessel, VEGF induces 

the endothelial cells to degrade the basement membrane that protects them from 
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the ECM. Consequently, some of the endothelial cells leak from the vessel and begin 

migrating through the ECM towards the tumor cell. The movement of endothelial cells  

up the VEGF gradient is called chemotaxis [Sholley et al., 1984]. As the endothelial 

cells migrate, they recruit other endothelial cells from the parent vessel, forming 

finger-like sprouts. These sprouts subsequently lengthen under movement of 

endothelial cells at the leading edge (tip cells). 

Cell interaction with fibronectin (a major ECM component) is another important 

governor of cell movement  [Anderson and Chaplain, 1998]. In particular, fibronectin 

attaches the endothelial cells to the ECM via integrins [Johanson et al., 1987], and 

stimulates haptotaxis (movement up a concentration gradient) [Carter, 1967]. 

Therefore, cell movement is driven by both chemotactic response to the up-gradient 

of VEGF and by haptotactic response to the up-gradient of fibronectin. 

As the blood vessel network develops, tip cells meet and fuse with other tip cells or 

sprouts, eventually forming a loop network (anastomosis) at some distance from the 

parent vessel [Paweletz, 1989]. Tip cells can also proliferate and form new tip cells. 

The formation of new sprouts by this process is called sprout branching. As the tip cell 

approaches the tumor cell, sprout branching accelerates until the tumor cell is 

penetrated, resulting in vascularization [Muthukkaruppan et al., 1982]. 

To simulate the formation of the blood vessel network under these biological 

processes, we employ continuous and discrete mathematical models. The discrete 

model is obtained by discretizing the continuous model using a finite difference 

scheme. Instead of solving the finite difference scheme, we take the coefficients in 

the finite difference scheme as the probabilities of individual cell movements. In this 

discrete model, a tip cell can choose one of five options; remain still, move left, move 

right, move down, or move up. The next decision is based on the concentration 

gradients of VEGF and fibronectin, which are numerically computed by the continuous 

model. This process outlines our hybrid technique.  



46 
 

In the next section, we present the continuous model of Anderson–Chaplain tumor-

induced angiogenesis. Each mathematical term in that model will be clearly explained. 

In a later section, we will discuss the numerical method and the hybrid technique with 

branching and anastomosis. The Simulation Results and Discussions section is filled 

with figures of the blood vessel network simulated under varying initial concentration 

profiles of VEGF and fibronectin. These results reveal the roles of both molecules in 

the pattern formation. The final section summarizes the study results. 

 

Tumor-Induced Angiogenesis Anderson-Chaplain Model 

We assume the movement of tip cell is influenced by three factors: molecular 

diffusion, chemotactic response to VEGF gradient, haptotactic response to fibronectin 

gradient. Then, the total flux of tip cell is given by 

 𝐽𝑛 = 𝐽diffusion + 𝐽chemotaxis + 𝐽haptotaxis. (128) 

We assume the diffusion flux has form  

 𝐽diffusion = −𝐷𝑛∇𝑛, (129) 

where 𝐷𝑛 is diffusion constant. For chemotactic response, we assume the tip cell is 

flowing along the VEGF gradient towards tumor. Thus, we take the chemotaxis flux as 

 𝐽chemotaxis = 𝜒𝑛𝑛∇𝑐, (130) 

where 𝜒𝑛 is the chemotaxis sensitivity of tip cell to the gradient of VEGF (𝑛). 𝜒𝑛 can 

be assumed to be constant, meaning that the tip cells always respond to the gradient 

of VEGF, regardless of VEGF concentration. The more realistic 𝜒𝑛 can be written as 

function of VEGF, that is 
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 𝜒𝑛 =
𝜒0

1 + 𝛼𝑛𝑐
, (131) 

where 𝜒0 is chemotaxis sensitivity constant and 𝛼𝑛 is chemotaxis receptor saturation 

factor [Lapidus and Schiller, 1976]. The equation (131) means that the tip cells give 

less response to the high gradient of VEGF.  

The haptotactic response of tip cell to the gradient of fibronectin (𝑓) is assumed to 

have the form 

 𝐽haptotaxis = 𝜌𝑛𝑛∇𝑓, (132) 

where 𝜌𝑛 is the haptotaxis sensitivity constant. Because our purpose is to track the 

movement of tip cell, we omit the cell proliferation and degradation. Thus, we have 

the following mass conservation of tip cell density: 

 𝜕𝑛

𝜕𝑡
+ ∇ ∙ 𝐽𝑛 = 0, (133) 

and hence the partial differential equation of tip cell density is written as follow: 

 𝜕𝑛

𝜕𝑡
= −∇ ∙ (𝐽diffusion + 𝐽chemotaxis + 𝐽haptotaxis) 

= −∇ ∙ (−𝐷𝑛∇𝑛 + 𝜒𝑛𝑛∇𝑐 + 𝜌𝑛𝑛∇𝑓) 

= 𝐷𝑛∆𝑛 − ∇ ∙ (𝜒𝑛𝑛∇𝑐 + 𝜌𝑛𝑛∇𝑓). (134) 

To construct the mathematical equation of VEGF, we assume VEGF reached the 

steady state and established the concentration gradient. As the tip cell flows through 

ECM in response to the VEGF gradient, the tip cell binds to VEGF with the uptake rate 

constant 𝜂𝑐. Then, at the steady state, VEGF concentration is assumed to have the 

following form: 
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 𝜕𝑐

𝜕𝑡
= 𝜂𝑐𝑛𝑐. (135) 

Now, we assume the tip cells secrete fibronectin with secretion rate constant 𝛽𝑓, in 

addition to the pre-existing fibronectin concentration on the tissue. As the tip cell 

migrate through ECM, fibronectin gives an adhesion bound for tip cell to the ECM. We 

assume the adhesion bound of tip cell to the ECM is formed as an uptake of tip cell to 

fibronectin with rate constant 𝜂𝑓. Hence, we have the following partial differential 

equation of fibronectin: 

 𝜕𝑓

𝜕𝑡
= 𝛽𝑓𝑛 − 𝜂𝑓𝑛𝑓. (136) 

For the boundary condition, we assume the growth of sprout remains in the inside of 

the domain, regardless the shape of domain. Thus, the system (134)-(136) satisfies 

the following no-flux boundary condition: 

 𝜐 ∙ (−𝐷𝑛∇𝑛 + 𝜒𝑛𝑛∇𝑐 + 𝜌𝑛𝑛∇𝑓) = 0, (137) 

with 𝜐 is normal vector of the boundary. Hence, the complete system of interaction 

between tip cells, VEGF, and fibronectin is written as 

 

{
 
 
 

 
 
 

   

𝜕𝑛

𝜕𝑡
= 𝐷𝑛∆𝑛 − ∇ ∙ (𝜒𝑛𝑛∇𝑐 + 𝜌𝑛𝑛∇𝑓),            in Ω × (0, 𝑇)

𝜕𝑐

𝜕𝑡
= 𝜂𝑐𝑛𝑐,                                                            in Ω × (0, 𝑇)

𝜕𝑓

𝜕𝑡
= 𝛽𝑓𝑛 − 𝜂𝑓𝑛𝑓,                                              in Ω × (0, 𝑇)

𝜐 ∙ (−𝐷𝑛∇𝑛 + 𝜒𝑛𝑛∇𝑐 + 𝜌𝑛𝑛∇𝑓) = 0,               on 𝜕Ω × (0, 𝑇)

. (138) 
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Non-Dimensional System 

To nondimensionalize the system (138), first we take the domain as Ω = (0, 𝐿) ×

(0, 𝐿). Set 

 
𝑛̃ =

𝑛

𝑛0
,   𝑐̃ =

𝑐

𝑐0
,   𝑓 =

𝑓

𝑓0
,   𝑥̃ =

𝑥

𝐿
,   𝑦̃ =

𝑦

𝐿
,   𝑡̃ =

𝑡

𝑇
 (139) 

where 𝑛0 is the initial tip cell density, 𝑐0 and 𝑓0 are the initial VEGF and fibronectin 

concentration in which the tip cell responds in chemotactic and haptotactic manner, 

respectively. Thus, 

 
𝑛0
𝑇

𝜕𝑛̃

𝜕𝑡
=
1

𝐿2
𝐷𝑛𝑛0∆𝑛̃ −

1

𝐿
∇ ∙ (𝜒𝑛𝑛0𝑛̃

𝑐0
𝐿
∇𝑐̃ + 𝜌𝑛𝑛0𝑛̃

𝑓0
𝐿
∇𝑓) 

𝜕𝑛̃

𝜕𝑡
=
𝐷𝑛𝑇

𝐿2
∆𝑛̃ − ∇ ∙ (

𝜒𝑛𝑐0𝑇

𝐿2
𝑛̃∇𝑐̃ +

𝜌𝑛𝑓0𝑇

𝐿2
𝑛̃∇𝑓), 

 

(140) 

 𝑐0
𝑇

𝜕𝑐̃

𝜕𝑡
= 𝜂𝑐𝑛0𝑛̃𝑐0𝑐̃ 

𝜕𝑐̃

𝜕𝑡
= 𝜂𝑐𝑛0𝑇𝑛̃𝑐̃, (141) 

 𝑓0
𝑇

𝜕𝑓

𝜕𝑡
= 𝛽𝑓𝑛0𝑛̃ − 𝜂𝑓𝑛0𝑛̃𝑓0𝑓 

𝜕𝑓

𝜕𝑡
= 𝛽𝑓𝑛0𝑇𝑛̃ − 𝜂𝑓𝑛0𝑇𝑛̃𝑓. (142) 

Hence, the system (138) is now written as 
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{
 
 
 

 
 
 

    

𝜕𝑛

𝜕𝑡
= 𝐷1∆𝑛 − ∇ ∙ (𝜒1𝑛∇𝑐 + 𝜌1𝑛∇𝑓),      in Ω × (0, 𝑇)

𝜕𝑐

𝜕𝑡
= 𝜂1𝑛𝑐,                                                     in Ω × (0, 𝑇)

𝜕𝑓

𝜕𝑡
= 𝛽1𝑛 − 𝜂2𝑛𝑓,                                        in Ω × (0, 𝑇)

𝜐 ∙ (−𝐷1∇𝑛 + 𝜒1𝑛∇𝑐 + 𝜌1𝑛∇𝑓) = 0,          on 𝜕Ω × (0, 𝑇)

, (143) 

with  

 
𝐷1 =

𝐷𝑛𝑇

𝐿2
,    𝜒1 =

𝜒𝑛𝑐0𝑇

𝐿2
,    𝜌1 =

𝜌𝑛𝑓0𝑇

𝐿2
,    𝜂1 = 𝜂𝑐𝑛0𝑇, 

𝛽1 = 𝛽𝑓𝑛0𝑇,    𝜂2 = 𝜂𝑓𝑛0𝑇. (144) 

We remove the tildes for refinement.  

 

Parameter Values 

Parameter values are estimated from available experimental data. The distance of 

tumor cell from nearby parent vessel is assumed to be taken with lengthscale 𝐿 =

2 𝑚𝑚. 𝑇 =1.5 days = 1.296 × 105𝑠. 𝜒0 , 𝑐0  are assumed to be taken at maximum 

chemotactic response that was measured in concentration VEGF at around 𝑐0 =

10−10𝑀. That is 𝜒0 = 2.6 × 10
−1𝑚𝑚2𝑠−1𝑀−1[Stokes, 1990]. For diffusion constant, 

we take 𝐷𝑛 = 10
−14𝑚𝑚2𝑠−1 . These parameter values now give non-dimensional 

constants as 

 
𝐷1 =

10−14𝑚𝑚2𝑠−11.296 × 105𝑠

4𝑚𝑚2
 

= 3.5 × 10−4, 

𝜒1 =
2.6 × 10−1𝑚𝑚2𝑠−1𝑀−110−10𝑀1.296 × 105𝑠

4𝑚𝑚2
 (145) 
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= 0.38. 

For 𝛼𝑛, 𝜌1, 𝜂1, 𝛽1, and 𝜂2, we take 

 𝛼𝑛 = 0.6    , 𝜌1 = 0.3,    𝜂1 = 0.1,    𝛽1 = 0.07,    𝜂2 = 0.1. (146) 

   

Numerical Method 

To solve system (143), firstly we define 

 𝒖 = ∇𝑐, 

𝒗 = ∇𝑓, 

𝑭 = 𝑛𝑮, (147) 

where 

 𝑮 = 𝜒1𝒖 + 𝜌1𝒗. (148) 

Then, the first equation of the system (143) is now written as 

 𝜕𝑛

𝜕𝑡
= 𝐷1∆𝑛 − ∇ ∙ 𝑭. (149) 

(147) describes the total chemotactic and haptotactic flux of tip cell with velocity 𝑮 

flow. So, the equation (149) can be regarded as convection-diffusion equation. To 

solve these type of equation, we use an adaptive scheme in which the scheme is 

updated based on the flow direction. For the diffusion term, we use center space 

finite difference scheme. 
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Setting 

To implement the adaptive scheme, firstly we introduce main and sub nodes (Figure 

12:left) which is defined as 

 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = ((𝑖 − 0.5)ℎ, (𝑗 − 0.5)ℎ, 𝑘𝜏),           (𝑖, 𝑗 = 1,… ,𝑁), (150) 

 (𝑥̂𝑖 , 𝑦̂𝑗 , 𝑡̂𝑘) = (𝑖ℎ, 𝑗ℎ, 𝑘𝜏),                                       (𝑖, 𝑗 = 0,1, … ,𝑁), (151) 

respectively, where 𝑁 ≥ 1 as the number of spatial partition with ℎ = 𝐿/𝑁, and 𝜏 =

𝑇/𝑀, 𝑀 ≥ 1 as the number of time partition. 

We assume 𝑛, 𝒖, 𝒗, 𝑮 are defined on main nodes which is denoted as 

 𝑛(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑛𝑖,𝑗
𝑘 , (152) 

 𝒖(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) = 𝒖𝑖,𝑗
𝑘 , (153) 

  𝒗(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝒗𝑖,𝑗
𝑘 , (154) 

  𝑮(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑮𝑖,𝑗
𝑘 , (155) 

respectively. 

𝑐, 𝑓, 𝑭 are assumed to be defined on sub nodes which is denoted as 

 𝑐(𝑥̂𝑖 , 𝑦̂𝑗 , 𝑡̂𝑘) = 𝑐𝑖,𝑗
𝑘 , (156) 

 𝑓(𝑥̂𝑖, 𝑦̂𝑗 , 𝑡̂𝑘) = 𝑓𝑖,𝑗
𝑘 , (157) 

 𝑭(𝑥̂𝑖, 𝑦̂𝑗 , 𝑡̂𝑘) = 𝑭𝑖,𝑗
𝑘 , (158) 

respectively. 
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Adaptive Scheme for Tip Cell Density and Forward Time Scheme for VEGF 

and Fibronectin concentration 

Firstly, we consider equations (153) and (154). Each main nodes is surrounded by four 

sub nodes and so that the equations (153) and (154) are defined as 

𝒖𝑖,𝑗
𝑘 = (𝑢𝑖,𝑗,1

𝑘 , 𝑢𝑖,𝑗,2
𝑘 ) 

= (
1

2
(
𝑐𝑖,𝑗
𝑘 − 𝑐𝑖−1,𝑗

𝑘

ℎ
+
𝑐𝑖,𝑗−1
𝑘 − 𝑐𝑖−1,𝑗−1

𝑘

ℎ
) ,
1

2
(
𝑐𝑖,𝑗
𝑘 − 𝑐𝑖,𝑗−1

𝑘

ℎ
+
𝑐𝑖−1,𝑗
𝑘 − 𝑐𝑖−1,𝑗−1

𝑘

ℎ
)), 

(159) 

𝒗𝑖,𝑗
𝑘 = (𝑣𝑖,𝑗,1

𝑘 , 𝑣𝑖,𝑗,2
𝑘 ) 

= (
1

2
(
𝑓
𝑖,𝑗
𝑘 − 𝑓

𝑖−1,𝑗
𝑘

ℎ
+
𝑓
𝑖,𝑗−1
𝑘 − 𝑓

𝑖−1,𝑗−1
𝑘

ℎ
) ,
1

2
(
𝑓
𝑖,𝑗
𝑘 − 𝑓

𝑖,𝑗−1
𝑘

ℎ
+
𝑓
𝑖−1,𝑗
𝑘 − 𝑓

𝑖−1,𝑗−1
𝑘

ℎ
)), 

(160) 

respectively. 

(𝑥𝑖 , 𝑦̂𝑗 , 𝑡̂𝑘) 

ℎ 

ℎ 

(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) 

Figure 12. (left) main and sub nodes on square domain. (right)  nodes that are used in adaptive 
scheme. 

(𝑥̂𝑖 , 𝑦̂𝑗+1) 

(𝑥𝑖 , 𝑦𝑗) (𝑥𝑖+1, 𝑦𝑗) 

(𝑥𝑖 , 𝑦𝑗+1) 

(𝑥̂𝑖+1, 𝑦̂𝑗) 

(𝑥̂𝑖−1, 𝑦̂𝑗+1) 

(𝑥̂𝑖−1, 𝑦̂𝑗) 
(𝑥̂𝑖 , 𝑦̂𝑗) 

(𝑥̂𝑖+1, 𝑦̂𝑗−1) (𝑥̂𝑖 , 𝑦̂𝑗−1) (𝑥̂𝑖−1, 𝑦̂𝑗−1) 
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Define 

 𝑢𝑖,𝑗,1
𝑘,± = 𝑚𝑎𝑥{±𝑢𝑖,𝑗,1

𝑘 , 0},       𝑢𝑖,𝑗,2
𝑘,± = 𝑚𝑎𝑥{±𝑢𝑖,𝑗,2

𝑘 , 0}, (161) 

 𝑣𝑖,𝑗,1
𝑘,± = 𝑚𝑎𝑥{±𝑣𝑖,𝑗,1

𝑘 , 0},       𝑣𝑖,𝑗,2
𝑘,± = 𝑚𝑎𝑥{±𝑣𝑖,𝑗,2

𝑘 , 0}. (162) 

Then, equation (155) is written as 

 𝑮𝑖,𝑗
𝑘 = (𝐺𝑖,𝑗,1

𝑘 , 𝐺𝑖,𝑗,2
𝑘 ) 

= (𝜒1𝑢𝑖,𝑗,1
𝑘 + 𝜌1𝑣𝑖,𝑗,1

𝑘 , 𝜒1𝑢𝑖,𝑗,2
𝑘 + 𝜌1𝑣𝑖,𝑗,2

𝑘 ), (163) 

where 

 𝐺𝑖,𝑗,1
𝑘,± = 𝜒1𝑢𝑖,𝑗,1

𝑘,± + 𝜌1𝑣𝑖,𝑗,1
𝑘,± ,       𝐺𝑖,𝑗,2

𝑘,± = 𝑚𝜒1𝑢𝑖,𝑗,2
𝑘,± + 𝜌1𝑣𝑖,𝑗,2

𝑘,± . (164) 

Now, we consider the sub-node where 𝑭𝑖,𝑗
𝑘  is defined. On the 𝑥-axis direction, we may 

assume that 𝑛𝑖,𝑗
𝑘  and 𝑛𝑖+1,𝑗

𝑘  is brought to 𝑭𝑖,𝑗
𝑘  by the flow 𝐺𝑖,𝑗,1

𝑘,+  and 𝐺𝑖+1,𝑗,1
𝑘,− , respectively, 

and on the 𝑦-axis direction, we also may assume that 𝑛𝑖,𝑗
𝑘  and 𝑛𝑖,𝑗+1

𝑘  are brought to 𝑭𝑖,𝑗
𝑘  by 

the flow 𝐺𝑖,𝑗,2
𝑘,+  and 𝐺𝑖,𝑗+1,2

𝑘,− , respectively. That is 

 𝑭𝑖,𝑗
𝑘 = (𝐹𝑖,𝑗,1

𝑘 , 𝐹𝑖,𝑗,2
𝑘 ), (165) 

where 

 𝐹𝑖,𝑗,1
𝑘 = 𝑛𝑖,𝑗

𝑘 𝐺𝑖,𝑗,1
𝑘,+ − 𝑛𝑖+1,𝑗

𝑘 𝐺𝑖+1,𝑗,1
𝑘,− , (166) 

 𝐹𝑖,𝑗,2
𝑘 = 𝑛𝑖,𝑗

𝑘 𝐺𝑖,𝑗,2
𝑘,+ − 𝑛𝑖,𝑗+1

𝑘 𝐺𝑖,𝑗+1,2
𝑘,− . (167) 

Hence, the numerical scheme for 𝑛𝑖,𝑗
𝑘  is written as 
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 𝑛𝑖,𝑗
𝑘+1 − 𝑛𝑖,𝑗

𝑘

𝜏
= 𝐷1 (

𝑛𝑖+1,𝑗
𝑘 − 2𝑛𝑖,𝑗

𝑘 + 𝑛𝑖−1,𝑗
𝑘

ℎ2
+
𝑛𝑖,𝑗+1
𝑘 − 2𝑛𝑖,𝑗

𝑘 + 𝑛𝑖,𝑗−1
𝑘

ℎ2
) 

−(
𝐹𝑖,𝑗,1
𝑘 − 𝐹𝑖−1,𝑗,1

𝑘

ℎ
+
𝐹𝑖,𝑗,2
𝑘 − 𝐹𝑖,𝑗−1,2

𝑘

ℎ
). 

(168) 

For 𝑐 and 𝑓, we use forward time scheme which is written as  

 𝑐𝑖,𝑗
𝑘+1 − 𝑐𝑖,𝑗

𝑘

𝜏
= 𝜂1𝑛𝑖,𝑗

𝑘 𝑐𝑖,𝑗
𝑘 , (169) 

 𝑓𝑖,𝑗
𝑘+1 − 𝑓𝑖,𝑗

𝑘

𝜏
= 𝛽1𝑛𝑖,𝑗

𝑘 − 𝜂2𝑛𝑖,𝑗
𝑘 𝑓

𝑖,𝑗
𝑘 , (170) 

respectively. 

 

Hybrid Discrete-Continuous Technique 

To simulate the pattern formation of blood vessel network, we assume the stalk cells 

are recruited from the pre-existing vessel and follow the tip cell as it moves so that 

the vessel network is generated due to the movement of tip cell. To track the 

movement of tip cell, we rewrite scheme (168) as 

 
𝑛𝑖,𝑗
𝑘+1 = 𝑛𝑖,𝑗

𝑘 +
𝜏𝐷𝑛
ℎ2

(𝑛𝑖+1,𝑗
𝑘 + 𝑛𝑖−1,𝑗

𝑘 + 𝑛𝑖,𝑗+1
𝑘 + 𝑛𝑖,𝑗−1

𝑘 − 4𝑛𝑖,𝑗
𝑘 ) 

−
𝜏

ℎ
(𝑛𝑖,𝑗

𝑘 𝐺𝑖,𝑗,1
𝑘,+ − 𝑛𝑖+1,𝑗

𝑘 𝐺𝑖+1,𝑗,1
𝑘,− − 𝑛𝑖−1,𝑗

𝑘 𝐺𝑖−1,𝑗,1
𝑘,+ + 𝑛𝑖,𝑗

𝑘 𝐺𝑖,𝑗,1
𝑘,−  

+𝑛𝑖,𝑗
𝑘 𝐺𝑖,𝑗,2

𝑘,+ − 𝑛𝑖,𝑗+1
𝑘 𝐺𝑖,𝑗+1,2

𝑘,− − 𝑛𝑖,𝑗−1
𝑘 𝐺𝑖,𝑗−1,2

𝑘,+ + 𝑛𝑖,𝑗
𝑘 𝐺𝑖,𝑗,2

𝑘,− ). 

= 𝑛𝑖,𝑗
𝑘 𝑃𝑖,𝑗

𝑘,0 + 𝑛𝑖+1,𝑗
𝑘 𝑃𝑖+1,𝑗

𝑘,1 + 𝑛𝑖−1,𝑗
𝑘 𝑃𝑖−1,𝑗

𝑘,2 + 𝑛𝑖,𝑗+1
𝑘 𝑃𝑖,𝑗+1

𝑘,3  

+𝑛𝑖,𝑗−1
𝑘 𝑃𝑖,𝑗−1

𝑘,4  (171) 

by substituting (166) and (167). 𝑃𝑖,𝑗
𝑘,0, 𝑃𝑖+1,𝑗

𝑘,1 , 𝑃𝑖−1,𝑗
𝑘,2 , 𝑃𝑖,𝑗+1

𝑘,3  are written as 
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𝑃𝑖,𝑗
𝑘,0 = 1 − 4

𝜏𝐷1
ℎ2

−
𝜏

ℎ
(𝐺𝑖,𝑗,1

𝑘,+ + 𝐺𝑖,𝑗,1
𝑘,− + 𝐺𝑖,𝑗,2

𝑘,+ + 𝐺𝑖,𝑗,2
𝑘,− ), (172) 

 
𝑃𝑖+1,𝑗
𝑘,1 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖+1,𝑗,1
𝑘,− , (173) 

 
𝑃𝑖−1,𝑗
𝑘,2 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖−1,𝑗,1
𝑘,+ , (174) 

 
𝑃𝑖,𝑗+1
𝑘,3 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗+1,2
𝑘,− , (175) 

 
𝑃𝑖,𝑗−1
𝑘,4 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗−1,2
𝑘,+ . (176) 

The last expression of (171) means that to get the information of 𝑛 on the main node 

(𝑖, 𝑗) at time step 𝑘 + 1, we need the information on four its neighbor main nodes 

(𝑖 + 1, 𝑗), (𝑖 − 1, 𝑗), (𝑖, 𝑗 + 1), and (𝑖, 𝑗 − 1) and main node (𝑖, 𝑗) at previous time 

step, 𝑘. These information are proportional to the value of 𝑛 and some weight values 

𝑃𝑖,𝑗
𝑘,0 , 𝑃𝑖+1,𝑗

𝑘,1 , 𝑃𝑖−1,𝑗
𝑘,2 , 𝑃𝑖,𝑗+1

𝑘,3 , and 𝑃𝑖,𝑗−1
𝑘,4 . We might assume the weight values are 

probability of a tip cell to stay at, jump from right, left, upper, and down to main node 

(𝑖, 𝑗) (Figure 13:left). Then, 

 
𝑃𝑖,𝑗
𝑘,0 = 1 − 4

𝜏𝐷1
ℎ2

−
𝜏

ℎ
(𝐺𝑖,𝑗,1

𝑘,+ + 𝐺𝑖,𝑗,1
𝑘,− + 𝐺𝑖,𝑗,2

𝑘,+ + 𝐺𝑖,𝑗,2
𝑘,− ) 

= 1 − (𝑃𝑖,𝑗
𝑘,1 + 𝑃𝑖,𝑗

𝑘,2 + 𝑃𝑖,𝑗
𝑘,3 + 𝑃𝑖,𝑗

𝑘,4) (177) 

 
𝑃𝑖,𝑗
𝑘,1 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗,1
𝑘,− , (178) 

 
𝑃𝑖,𝑗
𝑘,2 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗,1
𝑘,+ , (179) 

  
𝑃𝑖,𝑗
𝑘,3 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗,2
𝑘,− , (180) 
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𝑃𝑖,𝑗
𝑘,4 =

𝜏𝐷1
ℎ2

+
𝜏

ℎ
𝐺𝑖,𝑗,2
𝑘,+ , (181) 

can be regarded as probability of tip cell to stay at, move to left, right, down, and 

upper from main node (𝑖, 𝑗), respectively (Figure 13:right). On the boundary, we set 

 𝑃𝑖,𝑗
𝑘,1 = 0,         𝑖 = 1, ∀𝑗, 

𝑃𝑖,𝑗
𝑘,2 = 0,         𝑖 = 𝑁, ∀𝑗, 

𝑃𝑖,𝑗
𝑘,3 = 0,         𝑗 = 1, ∀𝑖, 

𝑃𝑖,𝑗
𝑘,4 = 0,         𝑗 = 𝑁, ∀𝑖. (182) 

Hence, we can use (177)-(181) as the movement probability of tip cells at every time 

step. 

 

 

 

 

 

 

To track the movement of tip cells and form the blood vessel network, we use Boolean 

value (1 or 0) for tip cell, denoted as 𝑛∗, to indicate the presence of tip cell at given 

node. By this method, the scheme (169)-(170) now are written as 

(𝑖, 𝑗) 

(𝑖 + 1, 𝑗) 

(𝑖 − 1, 𝑗) 

(𝑖, 𝑗 + 1) 

(𝑖, 𝑗 − 1) 

𝑃𝑖+1,𝑗
𝑘,1

 

𝑃𝑖−1,𝑗
𝑘,2

 𝑃𝑖,𝑗+1
𝑘,3

 

𝑃𝑖,𝑗−1
𝑘,4

 

𝑃𝑖,𝑗
𝑘,0

 

(𝑖, 𝑗) 

(𝑖 + 1, 𝑗) 

(𝑖 − 1, 𝑗) 

(𝑖, 𝑗 + 1) 

(𝑖, 𝑗 − 1) 

𝑃𝑖,𝑗
𝑘,2

 

𝑃𝑖,𝑗
𝑘,1

 𝑃𝑖,𝑗
𝑘,4

 

𝑃𝑖,𝑗
𝑘,3

 

𝑃𝑖,𝑗
𝑘,0

 

Figure 13. (left) Information nodes to calculate n at node (i,j). (right) P can be thought as jump probability of 
a component from (i,j) to any 4 nodes. 
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 𝑐𝑖,𝑗
𝑘+1 − 𝑐𝑖,𝑗

𝑘

𝜏
= 𝜂1(𝑛∗̂)𝑖,𝑗

𝑘 𝑐𝑖,𝑗
𝑘 , (183) 

  𝑓𝑖,𝑗
𝑘+1 − 𝑓𝑖,𝑗

𝑘

𝜏
= 𝛽1(𝑛∗̂)𝑖,𝑗

𝑘 − 𝜂2(𝑛∗)𝑖,𝑗
𝑘 𝑓

𝑖,𝑗
𝑘 , (184) 

with 

 
(𝑛∗̂)𝑖,𝑗

𝑘 = {
1,   (𝑛∗)𝑖,𝑗

𝑘 + (𝑛∗)𝑖+1,𝑗
𝑘 + (𝑛∗)𝑖,𝑗+1

𝑘 + (𝑛∗)𝑖+1,𝑗+1
𝑘 ≥ 1,

0,                                         otherwise                                   
. (185) 

 

 

 

 

 

 

 

 

 

 

 

 

Anastomosis 

 

branching 

Tumor 

Figure 14. An illustration of branching and anastomosis schematic. 
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Branching and Anastomosis Rules 

Figure 14 gives us an illustration to the rule of branching (tip cell proliferation) and 

anastomosis (loop formation). Assume that the probability of generating new sprouts 

(branching) from the existing sprouts is proportional to the concentration of VEGF and 

is formulated as 

 

𝑃𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 =

{
 
 

 
 
0,                   0 ≤ 𝑐 < 0.25
0.3,          0.25 ≤ 𝑐 < 0.45
0.4,          0.45 ≤ 𝑐 < 0.60
0.5,          0.60 ≤ 𝑐 < 0.70
1,              0.70 ≤ 𝑐 < 1.00

. (186) 

We also assume the life time of tip cell must exceed the threshold age before 

branching. We use 𝑇𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 = 0.25 . We assume only one of original sprouts 

continue to grow if anastomosis occurs.  

 

 

 

 

 

 

 

 

 

Figure 15. Algorithm of Hybrid Simulation. 
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Figure 15 shows the flow of the algorithm of hybrid simulation. These flow is done for 

every time step and one tip cell. The following is the detail of steps in hybrid technique 

algorithm: 

Suppose the position of tip cell and the value of 𝑐𝑖,𝑗  and 𝑓𝑖,𝑗  at time step 𝑘  are 

determined. Then, at time step 𝑘 + 1, we do the following step: 

1. Solve the scheme (183) and (184) to obtain the value of 𝑐𝑖,𝑗 and 𝑓𝑖,𝑗 on every 

sub nodes of the domain. 

2. Calculate the movement probability (177)-(181). 

3. Set a sequence of integers: 

 
𝐴 = {𝑞 ∈ ℤ|0 ≤ 𝑞 < 𝑆, 𝑆 ≥

1

min
𝑤=0,1,2,3,4

𝑃𝑖,𝑗
𝑤} 

(187) 

4. For each probability (177)-(181), set independent sub sequence 𝐵𝑖 ⊆ 𝐴 ,     

𝐵𝑖 ∋ 𝑞 ∉ 𝐵𝑗, 𝑖 ≠ 𝑗 by choosing randomly 𝑆𝑃𝑖,𝑗
𝑤  numbers.  

5. Choose randomly an element of 𝐴, 𝑧 ∈ 𝐴. 

6. If 𝑧 ∈ 𝐵0 or 𝑧 ∈ 𝐵1 or 𝑧 ∈ 𝐵2 or 𝑧 ∈ 𝐵3 or 𝑧 ∈ 𝐵4 then set the movement as 

staying or moving to left or right or down or upper, respectively. 

7. If the decision is ‘stay’, record new life time and do from step 2 for next tip cell.  

8. If the tip cell meets an active sprout. Record the tip cell as inactive sprout. 

9. Check the life time of tip cell. If it is greater than 𝑇𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 , check the 

possibility of branching using (186) by the similar technique in step 3 to 5. If 

the decision is said to be branching, add new tip cell and check the 

anastomosis of new tip cell. 

10. Do step 1 to 9 for other tip cells. 
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Simulation Result and Discussion 

The parent vessel is assumed to lie on 𝑥 = 0, and a tumor is placed on 𝑥 = 1. We set 

five initial tip cells as the leading edges of five sprouts. We also require the initial 

concentration of fibronectin. VEGF stimulation of endothelial cells leads to 

degradation of their basal lamina; consequently, fibronectin leaks from the blood and 

diffuses into the surrounding tissue [Hynes, 1990]. The fibronectin bound to the ECM 

creates a high initial concentration of fibronectin in and around the parent vessel 

[Clark et al, 1983]. Therefore, we take the initial concentration of fibronectin as 

follows: 

 
𝑓(𝑥, 𝑦, 0) = 𝑒−

𝑥2

0.45. (188) 

This initial profile is named F2. In later simulations, we also assume a uniform 

concentration of the pre-existing fibronectin on the ECM. This profile is called F1. 

The initial VEGEF concentration was modeled by two initial profiles based on the 

source of the tumor. We assume that VEGF has reached steady-state and sets the 

gradient concentration on the domain. If the tumor source is a line, the initial VEGF 

concentration is given by: 

 
𝑐(𝑥, 𝑦, 0) = 𝑒−

(1−𝑥)2

0.45 . 
(189) 

This initial profile is called C1. If the tumor is centered on the point (1,1/2), the initial 

VEGF concentration is given by: 

 

𝑐(𝑥, 𝑦, 0) = {

1                 , 0 ≤ 𝑟 ≤ 0.1
(𝜐 − 𝑟)2

(𝜐 − 0.1)2
    , 0.1 < 𝑟 ≤ 0.1 

, (190) 
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with  

 
𝜐 =

(√5 − 0.1)

(√5 − 1)
, (191) 

 

𝑟 = √(𝑥 − 1)2 + (𝑥 −
1

2
)
2

. (192) 

This profile is called C2. The initial profiles of VEGF and fibronectin are presented in 

Figure 16 and Figure 17. 

 

 

 

 

 

 

 

 

 

 

Initially, we observe the role of VEGF in the absence of haptotaxis. First, we assume 

the C1 profile and compare the simulation results for two chemotaxis saturation 

factors of VEGF; 𝛼𝑛 = 0.6 (Figure 19) and 𝛼𝑛 = 0 (Figure 18). At 𝑡 = 1, the vessel 

Figure 16. Initial Profile of VEGF. (left) C1 profile. (right) C2 profile 

Figure 17. Initial Profile of Fibronectin. (left) F1 profile. (right) F2 profile 
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growths are identical in both simulations. Faster growth in Figure 18 than in Figure 19 

becomes obvious from 𝑡 = 2. Most of the sprouts reached the tumor at 𝑡 = 3 in 

Figure 18, and at 𝑡 = 4 in Figure 19. The growth of the vessel network is identical 

under profiles C1 and C2 up to 𝑡 = 4. At this time, some of the sprouts reached the 

tumors under the C2 profile (compare Figure 23 with Figure 22). In the absence of a 

chemotaxis saturation factor for VEGF, the vessels rapidly penetrated and grow inside 

the tumor. This indicates that when VEGE inhibits the chemotaxis sensitivity, it inhibits 

the growth of the vessel network. Later, we will investigate the influence of 𝛼𝑛 in the 

growth of vessel networks with both chemotaxis and haptotaxis.  

For now, we consider the VEGF-uptake rate constant as a parameter. Setting 𝜂1 = 0 

and assuming the C1 profile (Figure 20), most of the sprouts reached the tumor at 𝑡 =

6. At this stage, the tip cells tended to remain on the line source of the tumor. In 

contrast, a large 𝜂1  induced a much faster approach of the sprouts to the tumor. 

Having reached the tumor, the tip cells tended to move backward from the tumor, 

forming a dense network. The same behavior emerged from the C2 profile. In Figure 

24, several of the sprouts maintained their growth inside the penetrated tumor. On 

the C2 profile with a large 𝜂1,  a similar dense network formed after the tip cells 

penetrated the tumor. These phenomena can be explained by the VEGF gradient. A 

high 𝜂1 reduces the VEGF concentration at the tip cells, increasing the probability of 

movement as the tension encourages the tip cells to move. This also confirms that the 

VEGF gradient drives the cells toward the tumor source. 

We now incorporate both chemotaxis and haptotaxis into the simulation model. We 

first assume F1 as the initial fibronectin profile, and C1 and C2 as the initial VEGF 

profiles. Figure 26 and Figure 28 show the growth of the vessel network under a 

uniform initial distribution of fibronectin, i.e., 𝑓(𝑥, 𝑦, 0) = 0.5, ∀𝑥, 𝑦 ∈ [0,1] × [0,1]. 

Figure 27 and Figure 29 show the fibronectin concentration as the residue of 

fibronectin uptake and production rate, respectively. Comparing Figure 26 and Figure 

28 with Figure 19 and Figure 23, respectively, the formation of vessel network is 
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similar in all cases. This shows that in the absence of a fibronectin gradient, the growth 

of the vessel network is unaffected by the haptotactic response. 

Next, we assume F2 as the initial fibronectin profile, and C1 and C2 as the VEGF 

profiles. The formation of the vessel network reached steady state at 𝑡 = 3  on 

position 𝑥 = 0.2 (Figure 30 - Figure 31). At this position, the tip cells moved backward 

toward the parent vessel , driven by haptotactic response to the up-gradient of 

fibronectin. The sprouts never reached the tumor, even over an extended timeframe. 

With 𝛼𝑛 =  0, the sprouts reached steady state at 𝑥 = 0.9 and 𝑥 = 0.2 on profiles C1 

and C2, respectively (Figure 38 - Figure 39). Some of the sprouts reached the tumor 

cell on profile C1, indicating that when 𝛼𝑛 is high, the tip cells become desensitized at 

low VEGF, leading to steady state formation. 

Setting 𝛽1 = 0 (no fibronectin production by the tip cells) or 𝜂2 = 0 (zero fibronectin 

uptake rate by the tip cells) produces no significant effect on the growth and 

formation of the vessel network. The simulation results under various 𝛽1 and 𝜂2  on 

both C1 and C2 profiles are presented in Figure 32 - Figure 37. 
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Simulation Results with chemotaxis on VEGF 
gradient concentration C1 profile. Some 

alterations on chemotaxis saturation factor 
and VEGF uptake rate by tip cell are 

performed.  

Refer to Figure 16:left for C1 profile. 
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R17 no al 

Figure 18. Growth of blood vessel network on C1 profile in the absence of haptotaxis (𝜌1 = 0) and 
chemotaxis saturation factor (𝛼𝑛 = 0). 
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R2 al 

Figure 19. Growth of blood vessel network on C1 profile in the absence of haptotaxis (𝜌1 = 0). 
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R4 al nu 0 

Figure 20. Growth of blood vessel network on C1 profile in the absence of haptotaxis (𝜌1 = 0) and uptake 
rate of VEGF by tip cell (𝜂1 = 0). 
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R4 al nu*3 

Figure 21. Growth of blood vessel network on C1 profile in the absence of haptotaxis (𝜌1 = 0). The uptake 
rate of VEGF by tip cell is increased three times (𝜂1 = 0.3). 
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Simulation Results with  
chemotaxis on VEGF gradient concentration 
C2 profile. Some alterations on chemotaxis 

saturation factor and VEGF uptake rate by tip 
cell are performed.  

Refer to Figure 16:right for C2 profile. 
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R18 c2 no al 

Figure 22. Growth of blood vessel network on C2 profile in the absence of haptotaxis (𝜌1 = 0) and 
chemotaxis saturation factor (𝛼𝑛 = 0). 
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Figure 23. Growth of blood vessel network on C2 profile in the absence of haptotaxis (𝜌1 = 0). 
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Figure 24. Growth of blood vessel network on C2 profile in the absence of haptotaxis (𝜌1 = 0) and uptake 
rate of VEGF by tip cell (𝜂1 = 0). 
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R3 nu*3 

Figure 25. Growth of blood vessel network on C1 profile in the absence of haptotaxis (𝜌1 = 0). The uptake 
rate of VEGF by tip cell is increased three times (𝜂1 = 0.3). 
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Simulation Results with chemotaxis on C1 and 
C2 profile and haptotaxis on fibronectin 

concentration F1 profile, respectively. No 
alteration on parameters is performed. 

Refer to Figure 16 for C1 and C2 profile, Figure 17:left for F1 profile, and Figure 19 and 
Figure 23 for comparison. 
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R5 f1 EC 

Figure 26. Growth of blood vessel network on C1 and F1 profile with both chemotaxis and haptotaxis. 
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R5 f1 Fb 

Figure 27. Density of fibronectin on the domain (along the simulation of growth vessel network in Figure 26. 
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R6 f1 EC 

Figure 28. Growth of blood vessel network on C2 and F1 profile with both chemotaxis and haptotaxis. 
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R6 f1 Fb 

Figure 29. Density of fibronectin on the domain (along the simulation of growth vessel network in Figure 28. 
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Simulation Results with chemotaxis on C1 and 
C2 profile and haptotaxis on F2 profile.  

Refer to Figure 16 for C1 and C2 profile, Figure 17:right for F2 profile, and Figure 19 and 
Figure 23 for comparison  
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R7 al (part 1) 

Continue to next page. 



82 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R7 al (part 2) 

Figure 30. Growth of blood vessel network on C1 and F2 initial profile with both chemotaxis and haptotaxis. 
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Continue to next page. 
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Figure 31. Growth of blood vessel network on C2 and F2 initial profile with both chemotaxis and haptotaxis. 
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Simulation Results with chemotaxis on C1 and 
C2 profile and haptotaxis on F2 profile in 

change of fibronectin production (𝛽1),  
uptake rate by tip cell (𝜂2), and  

VEGF uptake rate by tip cell (𝜂2). 

Refer to Figure 30 and Figure 31 as for comparison. 
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R14 beta 0 (part 1) 
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R14 beta 0 (part 2) 

 

Figure 32. Growth of blood vessel network on C1 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin production rate by tip cell (𝛽1 = 0). 
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Figure 33. Growth of blood vessel network on C1 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin uptake rate by tip cell (𝜂2 = 0). 
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R19 beta gama 0 (part 1) 
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R19 beta gama 0 (part 2) 

 

Figure 34. Growth of blood vessel network on C1 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin uptake rate by tip cell (𝜂2 = 0) and fibronectin production by tip cell (𝛽1 =

0). 
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R21 beta 0 (part 2) 

 

Figure 35. Growth of blood vessel network on C2 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin production rate by tip cell (𝛽1 = 0). 
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Figure 36. Growth of blood vessel network on C2 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin uptake rate by tip cell (𝜂2 = 0). 
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R22 beta gama 0 (part 2) 

 

Figure 37. Growth of blood vessel network on C2 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of fibronectin uptake rate by tip cell (𝜂2 = 0) and fibronectin production by tip cell 

(𝛽1 = 0). 
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Simulation Results with chemotaxis on C1 and 
C2 profile and haptotaxis on F2 profile in 

change of chemotaxis saturation factor (𝛼𝑛)  

Refer to Figure 30 and Figure 31 as for comparison. 
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R10 no al part 2 

Figure 38. Growth of blood vessel network on C1 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of chemotaxis saturation factor (𝛼𝑛 = 0). 
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R9 no al (part 2) 

Figure 39. Growth of blood vessel network on C2 and F2 initial profile with both chemotaxis and haptotaxis 
and in the absence of chemotaxis saturation factor (𝛼𝑛 = 0). 
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Concluding Remarks 

The simulation results revealed some important roles of VEGF and fibronectin in the 

tip cell movements and pattern formation of vessel networks. The main findings are 

summarized below: 

1. In the absence of haptotaxis, the tip cells migrate directly toward the tumor 

cell with little lateral movement. 

2. In the presence of haptotaxis and an initial fibronectin gradient, the tip cells 

initially move toward the tumor cell. At some distances from the parent vessel, 

they begin moving backward toward the parent vessel. 

3. The VEGF gradient promotes the direct movement of tip cells toward the 

tumor cell. 

4. In the absence of an initial fibronectin gradient, the vessel network resembles 

that generated without haptotaxis. 

5. The fibronectin gradient promotes the lateral movement of tip cells, and 

inhibits their movement toward the tumor. 
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