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1. Introduction

This paper deals with compact complex solvmanifolds. Our main purpose
is to generalize the theory on the divisor group of a complex torus to these
manifolds. By a solvmanifold we mean a homogeneous space of solvable Lie
group. Let G be a simply connected complex solvable Lie group and T" be a
lattice of G, that is, a discrete subgroup of G such that G/T" is compact. The
de Rham cohomology group and the Dolbeault cohomology group of a compact
complex manifold G/T" play an important role in studying the divisor group of
a complex manifold G/T'. The de Rham cohomology group of a compact
solvmanifold G/T" has been discussed by Matsushima [7], Nomizu [10] and
Mostow [8].

Let M be a compact connected complex manifold and H%//(M) denote the
Dolbeault cohomology group of M of type (p, q). Let g be a complex Lie
algebra and I be the canonical complex structure of g. Then g¢=g*Pg", where
g*={X €g°|IX=4+/—1X}. In section 2, we prove:

Theorem 1. Let G be a simply connected complex nilpotent Lie group and
T be a lattice of G. Then there is a canonical isomorphism

Hz}GIT) = HYg )QA?(g+)*

where H?(g~) denotes the Lie algebra cohomology group of g~ and (g*)* denotes the
dual vector space of g*.

Let G be a simply connected complex solvable Lie group and T be a lattice
of G which has the following property:

(M) Ad(G) and Ad(T") have the same Zariski closure in the group Aut(gC).

This condition has been used by Mostow in his study of lattices of solvable

1) This work was presented to the Graduate School of the University of Notre Dame in
partial fulfillment of the requirement for the Ph. D. degree.
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Lie group [8]. Denote by [G, G] the commutator group of G and let z: G—
G/[G, G] be the projection. Then I'N[G, G] is a lattice of [G, G], so that z(T")
is a lattice of G/[G, G] and (G/T, =, (G/[G, G])[=(T), [G, G]/([G, G]NT)) is a
homlomorphic fiber bundle. Let T denote the complex torus (G/[G, G])/=(T).
In section 3, we study Chern classes of holomorphic line bundles over these
compact complex solvmanifolds.

Let M and N be complex manifolds and ¢: M — N be a surjective holo-
morphic map. For a divisor D on N let ¢*(D) denote the divisor on M defined
by ¢ (Decrr) for all xeM. We call the divisor ¢p*(D) on M the pull back of
the divisor D on N [15]. In section 4, we prove:

Theorem 2. Let G be a simply connected complex solvable Lie group and T'
be a lattice of G. Assume that T' satisfies the condition (M) and that H3}(G|T)==
H'(g") canonically. Then, under the notation introduced above, for each positive
divisor D on G|T', there exists a positive divisor D on the complex torus T such that
the divisor D is the pull back of the divisor D on T by the projection =: G/T—T,
ie., D=x*D.

Note that our assumption in Theorem 2 is always satisfied if G is a simply
connected complex nilpotent Lie group and T is a lattice of G.

If M is a compact connected complex manifold, K (M) will denote the
field of all meromorphic functions on M.

Corollary. Under the condition of Theorem 2, there is a canonical isomor-
phism
n*: K(T)= K(G|T).

In particular, the transcendence degree of K(G|T') over C is not larger than the
complex dimension of the complex torus T.

The author would like to express his deep appreciation to Professor Yozo
Matsushima for his thoughtfull guidence and encouragement given during the
completion of this paper.

2. Dolbeault cohomology groups of compact complex nilmanifolds

Let M be a complex manifold and H%?(M) denote the Dolbeault coho-
mology of M of type (p,q). Let G be a simply connected complex Lie group
and T be a uniform lattice of G. Let g denote the Lie algebra of all right
invariant vector fields on G, I denote the complex structure of g and g* (resp. g~)
denote the vector space of the \/—1 (resp. —\/—1) eigenvectors of I in the
complexification g€ of g. We identify g* to the Lie algebra of all right invariant
holomorphic vector fields on G and the dual space (g*)* to the space of all right
invariant holomorphic 1-forms on G. Moreover we may identify an element of
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g* (resp. (g*)*) to a holomorphic vector field (resp. a holomorphic 1-form) on
G|T. Let A?T*(G|T") be the p-th exterior product bundle of the holomorphic
cotangent bundle 7*(G/T") of G/T. Since G/T is a compact complex paralleli-
sable manifold, the holomorphic vector bundle A?T*(G|T) on G/T is the trivial
vector bundle G/T' X A?(g*)*. 'Thus we have an isomorphism

(2.1) H2%(GT) = HY(GT)@Ag*)* .

Theorem 1. Let G be a simply connected complex nilpotent Lie group and
T be a lattice of G. Then we have a canonical isomorphism

H2(GIT) = Hg )QA?(g+)*

where H?(g™) denoted the q-th Lie algebra cohomology of with the trivial representa-
tion p,: g"—C.

We need some preparations to prove Theorem 1. Consider the descending
central series {C*(G)} of G, where C¥G)=[G, C*¥}(G)] and C°(G)=G. Since
G is nilpotent, there is an integer m& N such that C™(G)=(e) and C™*(G)=(e).
Let A4 denote the group C™(G). Then 4 is contained in the center Z(G) of G.
Since G is a simply connected nilpotent Lie group and A is connected, 4
is a simply connected closed Lie subgroup. Let I'" be a lattice of G. Then
ANT is a lattice of A ([11] p. 31 Corollary 1) and AT is closed in G ([11] p. 23
Theorem 1.13). Let z: G—G/A4 be the canonical map. Then #(T") is a lattice
of G/A. Since A|(ANT)== ATT" is a complex torus, we have a holomorphic
principal fiber bundle (G/T", (G/4)/=(T'), =, A|(ANTY)).

Let C~(G, C) be the vector space of all complex valued C~-functions on
G. Define the subspaces C and C’ of C*(G, C) by

C= {feC~(G,C)lflgv)=flg) forall yET}
and

C'= {feC|f(ga)=f(g) forall ac A} .
For a right invariant vector field X g and feC=(G, C), put

(EP(D) = 2 fa(0) 1

where a(?) is the one parameter subgroup corresponding to X. Then C=(G, C)
is a g-module, and hence C and €’ are g¢-submodules of C=(G, C).

Let a be the Lie subalgebra of g corresponding to the complex Lie sub-
group A of G. Then a¢ has the decomposition a®=a*@a~ with respect to the
complex structure I, and C and C’ are a”-modules. Let {4%a", C), d} (resp.
{4%(a~, "), d} denote the cochain complex of a“-module C (resp. C’) and
H*(a™, C) (resp. H*(a™, C’)) denote the Lie algebra cohomology of a--module
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C (resp. C’). Since a~ is an ideal of g-, 4%a-, C) (resp. A%(a-, C’) is g~-module
by

(Lzo(X,, -+ Xg) = X(o(X,, -+, X)) — 2 o(X,, -+, [X, X ], -+, Xo)

q
i=1
where Xeg-, o€4%a", C) (resp. v A4%a-, €’)) and X,, -+, X,€a~. More-
over Lzod=doLx for all Xeg-. Thus H*(a~, C) and H*(a", C’) are g--
modules.

Proposition 2.1. The inclusion map ¢,: C’' — C induces an isomorphism ¢§ of
g~ -modules

&:H% ", C)—> H%a~, C).

This follows from Kodaira and Spencer [6] §2, but we shall give an ele-
mentary proof (cf. [11] VII §4).

Let {X,, .-, X;} be a basis of a* and {w,, -, w;} be the dual basis. We
reagrd »; (j=1, ---, ) as the holomorphic invariant 1-forms on the complex
torus A/(ANT). Define an invariant hermitian metric 2 on A/(ANT) by

h= EI yw;+w;. LetQ be the associated form of type (1,1). Then
=
Ea——4
0=v=130,Aa,,
=

and —ll'—.(),’ defines a Haar measure da on A/ANT. We may assume that

g ) ll-'ﬂ’ =1 by changing the choice of a basis of a* if necessary. For feC
AlAnr ]!
and x=G, let f,(a)=f(xa) for ac A. Then we can define a gé-module homo-

morphism H: C—~C’ by

H(f)(x) = SA npf”(“)% = S f(xa)da .

/A A/ANT

1 - —1 - .
Let Y,=%5(X;+X,) and Yj+,=!2—1(Xj—Xj) for j=1,-+,l. Then
{Y,, -+, Y,;} is a basis of a. Let {0,, ---, 0,;} be its dual basis. Let A" (a, C)
denote the vector space of all C-valued r-forms on A/ANT. Note that each

element o= A"(a, C) can be written uniquely as
w = 2 fkl...kﬂkl/\ "'Aek’ Where fkr..k'EQ .
By <<k,
For simplicity, let @x=0, A\ --A0, and fx=fy..,, for K=(k,, -, k,)
(1 §k1< "'<kr§21). Then wzszGK.
K

Let A#9a, C) denote the vector space of all C-valued forms of type (p, q)
on A/ANT. Each element w=A4?%a, C) can be written uniquely as
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© = IE}fITwz/\'ﬁl

where I=(i}, -+, 1) (1S4, <-<ip< D, J=0p js) ASH<<jg= D,
JeCl, vr=0; A Ay, and @;=,,A A,
Define operators d: A’(a, C)—>A"*(a, C) by
2!

for 0=31fx0x € A'(a, C), d': A*%(a, C)~A4*""*(a, C) by

1
d,CO = g (z; kajj)a)k/\ﬂ)[/\a]

for o=3 fiyw; Aw; & A#%(a, C) and d”: A2%(a, C)—A***(a, C) by
W

! -
d’w= 12.1 (,Zl] Xifin)oe Ny Nwy
for m=lz;f1]w,/\6,e/.l?'”(a, C). Then dod=d'od’=d" od"’=0.
Define <w, 7>’ for o, n= A#%a, C) by

{w, M(%) = 2]

1,0 SA/Anl"

foeagseada={  orem,

Al/AnT
where w=3 frjo; AN@;, 7=2)grjo; Aw; and * is the operation defined by the
1,7 1,7

natural orientation of A/ANT and the metric # on A/ANT.
Let f €C=(G/AT, C) denote the function corresponding to f C’. Define
a hermitian inner product ( , ) on 4#%(a, C) by

@ =

where dx denotes an invariant measure on G/AT.

Define (o, 7)=0 if we& 4?7(a, C), n< 4?7 (a, C) for (p, q) * (¢, 7).
Since A"(a, C)= >3 A?%a, C), we have thus an hermitian inner product ( , )
on A(a,C). 7

Now define the adjoint operators 8, &', 8" of d, d’, d’ by §=—xd*, &=
—xd”*, §""=—xd’+ respectively. We then have

G/AT <;;7>(x)dx

(do, 7) = (w, &)  for wsAd’(a,C) and n€Ad™Y(a, (),
(@w, 1) = (0, 81) for weA?%a,C) and ncA?*a, C),
(@0, 1) = (w, 81) for wsA?%a,C) and ncA?*(a,C).
with respect to the hermidian inner product ( , ).
Define Laplacians A, [V, [ ] by
A=ds+8d, [ =d8+8d, [1"=ds"+8"d".
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Then, by a direct computation we get
Ao = =3 (3} Y3l
for w=§}f,{6‘x, and
o= =~ (XX e Aw
for w=§f17w1/\6,.

Since X ;X ; f=(Y 3+ Y3.,)f for each fEC, we see A=[1=[1".

Since A is abelian and simply connected, we may identify 4 (resp. the
lattice A N T of 4) with Euclidean space (R", {, )) (resp. a lattice D in R"). For
a fixed x€G and fEC, f, can be regarded as a function on the torus R”*/D.
Consider the Fourier expansion of f,,

f(a) = f(xa) =¢§/Ca(x) exp 27V — Ka, @>

where D'= {aeR"|{a,d>= Z for any d=D} and Ca(x)=SA/ f(xa) exp

Anr
—2n/ —1{a, a>da for acD’. Note that H(f)(x)=C,(x)= SA/A N f(xa)da.
n
For Yea, feC and x=G, we have

(YN) = 2 fla(t)sa) o

where a(#) is the one parameter subgroup corresponding to Y. Since 4 is con-
tained in the center of G,

(Y)(xa) = L1, f(sa(t)a)
= ), {ZCul) exp 20V " ey, alt)ad}

= 4 (510.6) exp 2/ TG -+ alt))}
= Z”\/:Twélcu(xxa, Y> exp 272/ —1Ka, @ .

Since <Y, Y,,>=—i—8,k for j, k=1, ---, 2l, it follows that 4(Af)(xa)=
—4 2 (V3f)(xa)=(27)* 2 Ca@lall* exp 227/ —1<a, @) where llalP=<at, .
Define an operator G: C— C by
1 C.()
G(f)(xa) = 2
(f)( a) (27[2) e~ ”a“g

for x&€G and feC. We can show that G(f)(xa)=G(f)(yb) if xa=yb where
a,be A ([11] p. 118). Thus G(f)=C=(G, C). We also have G(f)(xv)=G(f)(x)
for any yeT. Hence, G(f)eC. Itis obvious that

exp 27 \/ —Ka, a>
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40G(f) = 4GA(N=f i H()=0,
and Go H(f)=HoG(f)=0 for any f&C. Therefore

f= H(f)+4AG(f) = H(f)+4GA(f)  forany feC.
Define H: A?%(a, C)—A?“(a, C’) and G: A?%a, C)—A?%a, C) by

H(w) = g H(ff._f)wl/\aj for o= ;J]fﬁa’z/\al
and

G(w) = ‘ZJ G(fi7)orNwy for o= gfﬁw;/\aj .
Then we have

o = H(w)+4GA(0) = H(0)+4AG(w)

and

© = H()+46[1"(0) = H(w)+41'G(w) .

Obviously d”c H=d'o- H=0. Since S (X;f )(xa)da:S (X, f)(xa)da
A/AnT A/AnT
=0 for j=1, .-,/ and fEC, Hod""=Hod’=0. By the definition of H, it is
obvious that xo H= Ho*, so that 8"’oc H= Ho§"=0.
Let A*(a, C)=>) A?%(a, C).
b9

Lemma 4.2. Let F: A*(a, C)— A*(a, C) be an additive operator which
commutes with [ 1". Then F commutes with H and G. In particular, G commutes

with d”’ and 8" .
Proof. See [15] Chapter IV lemma 3.

Proof of Proposition 2.1. Note that the cochain complex {4>%a, C), d”’}
is exactely the cochain complex of a--module C. The inclusion map ¢,: C'—C
induces a cochain map ¢§: 4*(a~, C')—>A*(a~, C). In particular, the following
diagram commutes

%
A%(a, €') —> 4°(a, C)
dl/ ld!l
%

A“"”‘(a, g/) Lo , Ao-q+1(a’ Q) .

Since d”(w)=0 for any o= A4*%(a, C’), H%a", C")=A"%a, C’).

Let &: Ha~, C')—H?%a", C) denote the map induced from the cochain
map «§: A*(a-, C")—A*(a", C). Since Hod"=d" oH, H: A”(a, C)—A"%(a, ")
induces a linear map H: H%a-, C)—H%a", C’).

We claim that §fo H=id and How¥=id. By definition H ou[w]= [w] for
[]leH%a, C’). Since w=H(w)+ 4G [ (0)= H(0)+4Gd"8"w= H(w)+
4d"Gd"w for any weA”Y(a, C) such that d’w=0, § H[w]=[w] for any [w]=
H?%a-, C). Itis now obvious that ¢ is a g"-module homomorphism.  q.e.d.
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Proof of Theorem 1. Let A*%G|T, C) be the space of all C-valued C~-dif-
ferential forms on G|T" of type (0, ¢). Take a basis {X|, ---, X,} of g* and let
{ew,, =, ®,} be the dual basis of (g*)*. We regard an element ws(g*)* as a
holomorphic 1-form on G/T. Then any element w € A”?(GT, C) can be
written as w=72) ffw; where ;=& ; A\ - A\®

iq
J= U 5j) 125, < <j,=n) and freC.
The operator d”7: A*?(G|T", C)—~A*?*(G|T, C) can be written as
"o =3 (kz X 7)o Ao+ frdo;

for 0=>]frw,.
J
Therefore the Dolbeault cohomology group H:#(G/T") can be regarded as
the Lie algebra cohomology H?(g~, C) of g~-module C.

2.2) HYYGIT)=~H%g", C).

Regarding C as constant functions on G, we have the inclusion map
¢: C—C of g~-modules. Now by (2.1), Theorem 1 is equivalent to assert that ¢
induces an isomorphism on the cohomology groups

& HYg™)—> H%g", C).

We prove th the isomorphism *: H%g~)— H%g", C) by the induction on
the dimension of G/T'. If G is abelian, G/T" is a complex torus and our claim
is well-known. As before, let 4 be the normal subgroup of G contained in
the center of G and a be the ideal in g corresponding to 4. Consider the
Hochschild and Serre spectral sequences for g--modules C and C, and a homo-
morphism of these spectral sequences induced by the inclusion map ¢: C—C [2];

E,(c): H(g"a~, H(a", C)) — H'(g"[a", H*/(a, C))

for t, s=0, 1, 2, ---.
Consider also the g~-module €’. Then we have a commutative diagram of
g -modules

C;g

N /e

Cl

This commutative diagram induces the corresponding commutative diagram of
spectral sequences
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- ta- H(am. 0N 2 e la Ho(a-
H(g/a’H(avC))—’H(g/a’H(arg))

EGDN\, /B

H'(g"[a~, H(a", C)).

By proposition 2.1, we have an isomorphism of g~-modules «§: H*(a", C’')—
H*(a, C). Hence,

Ey(w): H'(g"/a", H*(a", €")) = H'(g"/a", H*(a", C))
is an isomorphism.

We shall show that E,(j) is an isomorphism. Since a- is contained in the
center of g~, g~ acts trivially on H*(a~, C)=A°(a", C). Hence,

H(g™[a~, H*(a", C)) = H¥(g"/a", C)®H?*(a", C).
Since a~ acts trivially on €’, H*(a", C’)=A4°(a~, C’). Consider the action
of g~ on H%a, C’). For an s-cochain o=3)f;w,4%a", C’) and Xeg-,

J
Lzxo=3) (Xf7)®,, since a~ is contained in the center of g-. Hence, H*(a", C’)
J
and C'®H*(a, C) are isomorphic as g"-modules. Hence, we have
H'(g"/a~, H(a", C")) = H'(g"[a", C'QH"(a", C))
= H'(g"/a”, C)®H"*(a", C).

We now regard C’ as the vector space of all C-valued C ~-functions on
(G/A)/=(T"). It is easy to see that this identification is compatible with g~/a"-
module structure. Thus we have

H(g"[a~, C=((G/4)/=(T), C)) = H(g"[a", C").
By the assumption of the induction, we get
H(g"[a~, C=(G/4)[=(T), C)) = H'(g7[a", C).
Hence, we have an isomorphism
E,(j): H'(g"[a~, H(a™, C)) = H'(g"/a", H*(a", C")).

Thus E,(¢): H(g"/a~, H*(a", C))—H*(~g/a~, H°(a", C)) is an isomorphism.
By a theroem on spectral sequence ([13] Chapter 9, §1 Theorem 3), this implies
an existence of an isomorphism

*:H%g-,C)= H%g", C).
Combining this (2.1) and (2.2), we get
Hz3(GT) = Hg )QA?(g*)*. » q.e.d.
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Corollary 1 (Kodaira [9]). Let r be the dimension of the vector space of all
closed holomorphic 1-forms on a compact complex parallelisable nilmanifold G|T.
Then dim H3;}(G|T)=r.

Proof. Let w be a closed holomorphic 1-form on G/T'. Then w=2l fid;

where (¢,, -+, ¢a) is a basis of (g*)* and f; (j=1, -+-, n) are holomorphic func-
tions on G/T'. Since G/T' is compact, f; are constant. Hence, w&(g*)*.
Moreover dw=0 if and only if o([g*, g*])=(0). Thus r=dim(g*/[g*, g*]). Since
dim H'(g")=dim(g"/[g", ¢"]) = dim(g*/[g*, g*]), we have r=dimHg}(G/T)
by Theorem 1. q.e.d.

Let M be a compact connected complex manifold. Let b, (resp. h?'?)
denote dimp H"(M, R) (resp. dimcH%(M)).

Corollary 2. If M is a compact complex parallelisable nilmanifold G|T',

bzk+1 — 2(h0,2h+1+ho.2kho.1+,_,_|__ho,k+1ho,k)
bzk — 2(h0v2k+h0»2k—1h0;1+ .._+h0-k+1h0;k—l)+(h0,k)2
Jor 2k+1, 2k<n=dim.G.

Proof. By a theorem of Nomizu [10] (See [11] Corollary 7.28.), H"(G/T', R)
=H"(g, R). Thus H’(G|T, C)=~H"(g, C)=~H’(g°). Since g¢=g*Bg~ and
[8% 871=(0), H'(g9)= 3> H*g")QHg"). Since dimH*(g")=dim H*(g")

pri=r

=h"? and dim H"(g%)=b,, b,= 3 k" ?h*", q.e.d.
p¥a=r
ExampLE. Let G be a nilpotent Lie group defined by
1 2 =2
G=40 1 sz lzl, 2, 2,EC
0 0 1

Let T be a lattice in G, for example,

1 a a,
=40 1 a (a,l a, e, Z+\ —1Z} .
0 0 1

We can take a basis {X,, X,, X;} of g* such that
[Xn Xz] = Xs ’ [Xm Xs] = [Xn Xs] =0.
Then the dual basis {w,, w,, w,;} satisfies that

do;= —w,Nw,, do,=dow,=0.
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Now it follows easily from Theorem 1 that A”'=h"*=2. Note that £*°=3. By
corollary 2, we get

by=b,=1, b—=b—=4, b,—=b=8 and b,=10.

3. Chern classes of holomorphic line bundles over a compact
complex parallelisable solvmanifold

Let G be a simply connected complex solvable Lie group and I" be a lattice
of G. We assume the following condition:
(M) Ad(G) and Ad(T") have the same Zariski closure in Aut(g€).

Lemma 3.1. If G is non-abelian, we have T'N[G, G]=* {e}.

Proof. Suppose that TN[G, G]= {¢}. Since [T, T]cTN[G, G], T is
abelian, so is Ad(T"). Since Ad(T") and Ad(G) have the same Zariski closure,
Ad([G, G])* = [4d(G), AdG)T = [Ad(GY, Ad(G)*] = [Ad(T)* = Ad(T)"] =
Ad([T, TT")={e}, where X* denotes the Zariski closure of X in Aut(g°).

Hence, [G, G] is contained in the center Z of G. Thus G is nilpotent. Since
T is abelian, G is abelian [11]. This is a contradiction. q.e.d.

Proposition 3.2. T,=TN[G, G} is a lattice of [G, G].

Proof. At first note the following:

If m is an ideal of g and p, (resp. p,) is the representation on m¢ (resp. g¢/m¢°)
induced by the adjoint representation Ad: G— Aut(g°), p,(G) and p,(T)
(resp. p,(G) and p,(T")) have the same Zariski closure in Aut(mC) (resp. Aut(g/m¢°)).

Now [G, G] is a simply connected nilpotent closed Lie subgroup of G and
T, is a discrete subgroup of [G, G]. Let H be the connected closed subgroup
of [G, G] such that H|T', is compact ([11] Proposition 2.5.). We claim that H
is a normal subgroup of G. Let exp: [g, g] =[G, G] be the exponential map.
Then exp~*(T,)=! is a lattice in the Lie algebra ) of H and IQR=Y ([11]
Theorem 2.12). Since I';=T"N[G, G] is a normal subgroup of T, exp Ad(v)L
=v(exp L)y—'€T, for any Lel=exp~*(T",) and y&TI'. Hence, Ad(v)Ic! and
Ad(v)h=Y for any y=T. Since 4d(G) and Ad(T") have the same Zariski closure
in Aut(g€), Ad(G))=Y. Hence, Y is an ideal in g. Thus H is a normal sub-
group of G.

Since HC[G, Gl and T',CH, HNT=HN[G, GINT=HNT,=TI,. Thus
H/HNT is compact and H-T is closed in G ([11] Theorem 1.13). Hence,
H-T|H is a lattice of G/H. We claim that TH/H N[G/H, G/H]={e}. Let
acsTH/H N[G/H, G/H]. Since [G/H, G/H]=[G, G]H/H=[G, G]/H, a=YH
=g,H for some y&T and g,€[G, G], that is, y=g,h for some heH. Since
HcC[G, G], ve[G, GINT=I',CcH. Hence, a=yH=H.
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Since Ad(G/H) and Ad(T'H|/H) have the same Zariski closure in Au#(g¢/5°),
G/H is abelian by Lemma 3.1. Hence HD[G, G]. Thus H=[G, G] and is T,
a lattice of [G, G]. q.e.d.

Since I' N [G, G] is a lattice of [G, G], [G, G]T" is closed in G ([11] Theorem
1.13.) and z(T")=T[G, G]/[G, G] is a lattice of G/[G, G]. Note that G/[G, G]T
= (G/[G, G))/=(T") is a complex torus. Thus we have a holomorphic fiber
bundle (G/T, =, (G/[G, G))/=(T), [G, G]/[G, GINT). Let T denote the com-
plex torus G/[G, G]T.

Now we denote by A"*(G/T', R) the vector space of all real differential forms
of type (1, 1) on G/T". Let H"*(G|T', R) be the vector space

{0 4*(GIT, R)|dw=0}
{0e 4" (GT, R)|w=d#, 0 is a real 1-form}

We shall characterize H"}(G/T", R) in terms of the Lie algebra g of G.

Proposition 3.3. Suppose that a lattice T of G satisfies the condition (M).
Then, for any real closed form o of type (1, 1) on G|T', there is a unique real right
invariant closed form B A*(g*) of type (1, 1) on G such that a=B+dn on G|T
where 1 s a real 1-form on G|T.

Proof. According to a theorem of Mostow ([8], [11]), for a given real
closed 2-form «, there is a real right invariant closed 2-form B A’g* such that

(3.1) a= B+dy

where 7 is a real 1-form on G/T'. Let B8=B**4B"'+B*° where 8?7 is the
component of B of type (p, g). Since B is a real form, B8>°=8"* and B*'isa
real form. Let y=9""+%!, o9"°=§"". Taking a basis {X|, -+, X,} of g%, let
{o,, -+, w,} be its dual basis of (g*)*. We identify w; (j=1, -++, n) as holomor-
phic 1-forms on G/T'.  We then have

70»1 — lgfjajj
where f;€C =(G|T, C) for j=1, ---,n and

Bt = 2 ;40 ; \Gp
i<k
where a;,€C. Since « is of type (1,1), we get
(3.2) Bortd’y =0 and = BV4d "y d7y

by comparing the type of forms of both hands. We now have
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d// 0,1 d//(zfle)_ E(d//.f' /\(O __l_f d([) )
=j,k2=1kajwk/\ aj_jg "qujcklak/\ @;

where C}; are the structure constant of Lie algebra g+ with respect to the basis
{X,, -+, X,}. By (3.2), we get the equalities

(3.3) o = Xufi—Xifo—2f,Clh for 1<k<Isn.

Integrating (3.3) on G/T', we have
— X . X . S ~3
(34) SG/I'akI dg _SG/I‘(kal)dg SG/P(XIfk) d ;2=1 SG/r‘fj Cidg

where dg is an invariant measure on G/I". Since G is unimodular, S y (X fr)dg
G/T
=S (X, fr)dg=0, and we get
G/T

(3.5) ak,S dg = — zjmf dg .

j=

Let b,C denote S , f.dg| SG/ng. Then (3.5) can be written as
G/T

J

(3.6) = —216,Chy .

i=1

B(M:’,anklmk/\ml ; bc
= b~ Clmunw) = 31b,(ds,) = d(3ba;) -

Put 77=i‘, b,®;. We then see that 7 is of type (0, 1), 8”*=dn and B*°=dy7.
By (3.1), we get
a = B"'+d(n+7)+dy = "' +do

where =%+m5+1 is a real 1-form on G/T.
It remains to show the uniqueness of B8"'. It is sufficient to see that if

B'=d0l, 0 is a real 1-form, then B"'=0. Put B8"'= 2 ey A, and
0=06""+ 8" where 0" = Egj » & €C=(GIT, C) (]—1 ym). Since
d'0"'= EX,,g]kawJ and 40" =d"9" = EX,,g‘]m,/\w we get

(3.7) ajp=X;8—XsZ; -
Integrating (3.7) on G|T', we have
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@i SG/I‘dg - SG/P(ngk)dg_ SG/I‘(ngj)dg =0.
Hence, a;,=0 for j, k=1, ---,n and B"'=0. q.e.d.

We now determine real closed right invariant forms of type (1, 1) on G/T.
Take a basis {X|, ---, X,} of g* such that {X,,,, -+, X,} is a basis of [g*, g*].
Let {o,, --*, o,} be its dual basis of (g*)*.

Proposition 3.4. Let o be a rz:ght invariant real 2-form of type (1, 1) on G.

Then da=0 if and only if a—\/—__ Z} h;yw ; N®, where H=(h ;)€ M(r, C)

is a hermitian matrix, and r=dim g*/[g*, g*].

Proof. Since a is a right invariant form on G, « defines a bilinear form on
g*Xg~. Now da=0 if and only if

a([X, Y], Z)=0 and a(X, Y],Z)=0 for X,Y, Zeg*,

since (da)(X, Y, Z)=—a([X, Y], Z)+a([X, Z], Y)—a([Y, Z], X) for X, Y,
Z =¢°¢ and since [g*, g7 ]=(0). In particular, for a real form « of type (1, 1),
we get

(3.8) da =0 if and only if ([X, Y])a =0 for X, Yegt.

Note that dw ;=0 for j=1, ---,r. Therefore, if a=7—— 2 hjww; A®, then

2\/

2\/_1 Zhﬂ,w A@, If o is closed, then
— 1 jrk=1

(X ;)a=0 for j=r+1, .-, n by (3.8).
Since (‘(Xj)a)(Xk):a(Xj) Xi)=

da=0. Conversely, put a=——

5 \/l_lhj,, and H=(h;,) is a hermitian

matrix, we have 4;,=0 for j=r+1, - ,n;k=1,-,mand j=1, .-, n; k=

r+1, -+, n, so that a—z\/ E hivw ; ANy q.e.d.

Consider a holomorphic line bundle L on G/T. Let C(L) denote the
Chern class of L. Then we have C(L)e H"(G|T, R) ([15], Chapter V, n°4,).

Proposition 3.5. Let G be a simply connected complex solvable Lie group
and T be a lattice of G satisfying the condition (M) and such that H3;}(G|T")=H"(g")
(canonically). Let L be a holomorphic line bundle on G|T'. Then there is a unique
real invariant form a € A*g* of type (1, 1) in C(L), and this is a curvature form of
a conmection 7 of type (1, 0).

Proof. It is easy to see that there is a real closed 2-form 8 of type (1, 1) in
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C(L) which is a curvature form of a connection  of type (1,0) ([15], Chapter V,
n°4).

According to Proposition 3.3, we have 8=a+dvy where is 7 a real 1-form
on GT'. Decompose v=v""+ "' where v"° (resp. v”') is the component of
type (1, 0) (resp. (0, 1)) of . Then we have d”y*'=0, since 8 and « are of
type (1, 1). By the assumption (2), there is a right invariant 1-form 6 of type
(0, 1) such that y*'—60=d" f where f € C~(G/T, C).

We can write 6§ = E'}ajaj, a,eC (j=1, -+, r), where {w,, *+, »,} is the
= )

same as before, since H(g")=(g"/[g7, g"])*. We then have d0=3 a,ds,;=0,
im

so that B=a+d'v"'+d"y"° = a+d'y" ' +d v = a+d'(0+d" f)+d(0+d"f)
=a+d'd"(f—F). Puty=d'(f—f). We then have B=a-+dd'(f—f)=a-+dy.
Since B3 is a curvature from » of a connection of type (1, 0) by definition and
is of type (1, 0), « is a curvature form of a connection 7=w—Jr of type (1, 0).

q.e.d.

From now on we always assume that G and T satisfies the assumptions of
Proposition 3.5.

Consider a holomorphic line bundle L on G/T'. We fix a (sufficiently fine)
simple covering {U;} on G/T" and choose a connected component U;, of p~'(Uj,)
for each 7, p: G—G/T being the canonical map; let U,y denote the image of U,,
under the right translation R,(g)=gy for vy&T'. Then p~( U,-)———VLEJPU” is a

disjoint union and p maps each U,y biholomorphically to U;.

We may consider a holomorphic line bundle L on G/T is given by a system
of transition functions {g;,} relative to the covering {U;} of G/T. Let C(L) be
the Chern class of L and « be the unique real right invariant form of type (1, 1)
in C(L). By Proposition 3.5, « is a curvature form of a connection % of
type (1,0), so that there is an element 7,&4"°(U,) for each j satisfying

'flr-’?,-Z\/Z—;]dloggj,, on U;,NU,#+¢ and a=dn; on U,.
Proposition 3.6. Identify g* to the complex Lie algebra (g, I). Then we

can take a basis {X,, -+, X,} of g* such that a map r: §*—G defined by
¥ (3 3:X:) = (exp #,X,) - (exp 2.X.)

is biholomorphic. In particular, G is biholomorphic to C". Moreover G has a
system of coordinates (2,, -+, 2,) such that, for j=1, -+, 7, 2,(g¢")==2,(g)+=2,(&)
for any g, g =G, where r=dim g*|[g*, g*].

Proof. We prove this proposition by induction on the dimension 7 of g*.
Assume that it has been proved for all dimensions <z. Since g* is solva-



202 Y. SAKANE

ble, it has an abelian ideal a* of dimension >0. Let A be the connected com-~
plex abelian subgroup of G whose Lie algebra is a*; 4 is simply connected and
G/A is a simply connected complex solvable Lie group of complex dimension
<n. Applying our proposition to G/4, we get a basis {XF¥, ---, X ¥} of *g/a*
such that a map *: g*/a* — G/4 defined by

1!'*(2 2 X¥) = (exp 2,XF) -+ (exp 2,, X )

is biholomorphic. Take elements X, -+, X,,&g* such that 7z4(X;)=X¥ where
mx: gT—g*/a* is a projection. Choose also a basis {X,,,,, --,X,} of a*. Then
every element of A can be written uniquely in the form (exp 2,4, X,,4,)
(exp 2,X,). Let g be any element of G and g*=z(g) where z: G—>G/A4 is a
projection. Then we can write uniquely g* in the form (exp 2,X¥)---(exp 2,,X%).
Hence, we have g=(exp 2,X,)--*(exp 2,,X,,)a (a=A4) and a can be written in
the form (exp 2,41 X;m+1) " (exp 2,X,), which proves that g is in the form
(exp 2,X,) (exp 2,X,)---(exp 2,X,). Moreover z,, ::-, 2,, are uniquely determined
by 7(g) (and a fortiori by g); hence a is determined by g and z,,,,, -, 2, are
uniquely determined by g. Since exp is holomorphic, 2, (j=1, -+, n) are holo-
morphic functions on G and +: g*—G is biholomorphic.

Since we can choose a basis {X,, -, X,} of g* in such a way that
{X,41 -+, X} is a basis of [g*, g*] and +: g*—G is biholomorphic, the last
assertion follows from the Campbell-Hausdorff formula ([4] p. 170). q.e.d.

We may asrsme that w;=dz; for j=1, -+, by changing a basis of g* if
necessary. Then by Proposition 3.4, we get

1 ¢ 1

“Ta2v= igxhjkwf/\a” = 2\/———7,2 hjdz; N\ dzy

k=1
where (k) is a hermitian matrix.

4. Divisors on a compact complex parallelisable solvmanifold

Let M and N be complex manifolds and ®: M —N be a surjective holo-
morphic map. For a divisor D on N, ®*(D) denotes the divisor on M defined
by ®; (Do) for all x=M ([15] Appendice n°7). We call this divisor ®*(D)
on M the pull back of the divisor D on N. In this section we prove the follow-
ing theorem.

Theorem 2. Let G be a simply connected complex solvable Lie group. Let
T be a lattice of G. Assume that T satisfies the condition (M) and that H3}(G|T)
=H'(g") (canonically). Then, for each positive divisor D on G|T, there exists a
positive divisor D on the complex torus T such that the divisor D is the pull back of
the divisor D on T by the projection =: G|T—T, i.e., D==*D.
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If G is nilpotent, the condition () is always satisfied ([11] Theorem 2.1).
Moreover, by Theorem 1 in the section 2, H3/(G/T)=H'(g~). Thus we get:

Corollary. Let G be a simply connected complex nilpotent Lie group and
T be a lattice of G. Then the conclusion of Theorem 2 holds.

Let D denote a positive divisor on G/T". Take a representative {(U;, f;)}
of D, where f;: U;—C is a holomorphic function. Let L= {D} denote the
holomorphic line bundle corresponding to the divisor D. ([15] Chapter V, n° 6).
Let {g;,} denote the system of transition functions of L= {D} with respect to
{(Us, f:)}. We then have f ;=g . fr on U,;N U+ ¢ by definition.

Let M be a complex manifold, M be the universal covering of M and
p: M— M be the covering map. Let IT denote the fundamental group z,(M)
of M.

A map j: II X M— C* is said to be an automorphic factor if

(1) the function z— j(o, 2) is holomorphic for any o &I1, and

() j(or, 2)=j(a, 7(2))+j(7, 2) for any &, TEII and any z= M.

Let f be a holomorphic function on M which is not identically zero. fis
said to be automorphic of type j if

f(a(2)) =j(o, 2)f(2) for x&eM and o <11 .

Proposition 4.1. Let D be a positive divisor of G|T. Then D is the divisor
of a holomorphic automorphic function 0 on G, for which the automorphic factor
j(v, g): T X G—C* is given by

v, 8) = exp 20V =1 (5 33 husgValn) ),

where H=(h ;) is a hermitian matrix determined by the form o in the Chern class
C(L)=C({D}):

2\/——1 k2= h,,;dz’,,/\dz,,

and C(v)eC is a constant depending only on v <T .

a =

Proof. Let us define @;y(g) for g U,y by

Pi(g) = ﬂs(?(g))“*‘ V=1 2 huZ,(gv )z,

where 7; is the component of the connection introduced before. Then ¢,y is an
element of 4"%(U,y)) satisfying dep;y=0. Since U,y is simply connected, there
is a holomorphic function r;y satisfying dyr,y=g;y. Define 0;(g) for g€ U,y by

0:4(8) = fi((8)) exp 22/ —1(V(g)) -
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We then have
J— 1 r _ 1
G;y(g) = 015(g) exp 271'\/ — 1 (\ﬁ— h,12=1 hk,zk(g)z,(')’s‘ )+ C,'y']-5>
on UyNU s, where Cyy, ;EC is a constant.  Applying Proposition 3.6, we get
Y =Lalog g1/ W)+ i &)= 2(8) = 5 —7 S hulE®)~E(V)dss

Put a;y, j;=exp 227/ —1 Cuy,j5. {auy, ;s} satisfies relations
4.1) Ay, ;5 Qi = Qv ON UnyNU;sNUp*¢,
since
gy, ;5 = €xp 2n\/ —1 Ciy, j5
— ga}(p() oxp 20V ~T{ ()5 33 hulE (M) —5,3)]

By the principal of monodromy ([15], Chapter V, n°l), there is a system of

constant functions {;y} such that
iy, ;5 = biy b5,
since G is simply connected and {U;} is an open covering of G. We define a
holomorphic function 6 on G by
(&) = 0:(g) exp 2/ =157 — 3 bzl )2)+bu)

onge U,'-y.
We can see easily that 0 is well defined and @ is different from zero.

Note that
O:v(g7) = 0:4(g) exp 22V —1d;y
for g € U;,, where d;y is a constant. In fact, we have

d(R¥Viy)—d Yy = R¥pyy—@;, =0 on U,
and
Vin(8Y)—io(g) = diy on U,,.

We now show that

0(gm) = 0()-exp 207/ = 1( ;= 3 hyuz,(9)2M+C())

for g=G and y T, where C(v) is a constant. For g U;,, we have
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G(g'y) = 0i7(g7)°exp 27’:\/_ (2\/ 2 hklzk(gry)zl('y)_*—bw)
= 0:(g)- exp 2”\/——1{di1+ﬁ h’i;lhkzzk(g'y ) 21(7)+biy} .

Since 0(g)=0;,(g) exp 2z\/—1 b;, on Uj,, and since 2,(gv)= 2x(g)+=2x(7) by
Proposition 3.6,

O(gv) = 0(¢) exp 207/ —T{, Lo 31 huru( @i+ Cl)
for g U;,, where Cy(7v) is a constant. Since 0(g7v) and

0(g) exp 20/ =1{ ;1 31 hussu(@ir)+ C)|
are holomorphic functions on G, we have
g = 0(g) exp 2/ =1 (5 31 husmal V) +CM)
for geG and y<T. By the definition of 4, we have p*D=div(0). q.e.d.
From now on, let e denote exp 27/ —1 and H(g,, g,)= 21 hezi(2)21(82)-

Then j (v, g)=e(2 s He 7)+C(%)) for g€G and 7T

Since j('yl')'z) g)=j('7v g)j('yz: g%): we get

CO)=COI+COr+5 s HO v (mod 1),
In particular, C(e)= Z and

C(v Y= —C(fy)+ _H(fy, v) for yeT'.

Lemma 4.2. C(y)eR for y<[T, T

Proof. Since [T, T]C[G, G], H(g, v)=0 for y[I', T'] and geG. Itis
enough to show that C(v)ER for y=v7,71'vz", ¥, ¥.€T. In this case,

CONY= )+ COTY) g HOY Y 7773
=C(V)+CT) 57— \/—H(vl, 72)+COT)+C(v2 ) +5 ~H('>'1, 72)

2\/—{ —H(v,, V) —H(2s V2)—H(Y2 v1)—H (s V2)}
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“—‘(H(’Yl’ 72) H(‘YU f)’z))EIe
q.e.d.

Proposition 4.3. [T, I'] is a lattice of [G, G] and [T, T'] is a subgroup of
finite index of T'N[G, G].

(H (s ¥2)—H (Y2 7,)) =

1
2vV=-1 2V —

Proof. It follows from Porposition 3.2 that T[G, G]/[G, G] is a lattice of
GJ[G, G]. Since G/[G, G] is a vector group of dimension 2r=dimg g/[g, g],
T'[G, G)/[G,G]=T|T'N[G, G] is a free abelian group of rank 2r. On the other
hand, since G is simply connected, z,(G/T")=T and is T finitely generated. It
follow that H,(G/T', Z)=T/[T’, T']. Since dim HY(G/T, R)=dim H'(g, R)=
dimg g/[g, g] =27 by a theorem of Mostow (cf. [8], [11] Corollary 7.29.),
T'/[T, T'] is then direct sum of a free abelian group of rank 2 and a finite group.
The group (I'N[G, G])/[T, T] is finite, because T'/T'N[G, G]~(T/[T, T)/(T'N
[G, G]/[T, T']) is a free abelian group of rank 2r. Since [G, G]/T N[G, G] is
compact by Proposition 3.2, [G, G]/[T, I'] is compact q.e.d.

Proposition 44. C(v)eZ for y<[T, T].

Proof. Let 6 be a holomorphic automorphic function on G of type j(v, g).
We then have

0(gv,) = 0(g)e(C(v,)) forgeG and v, [T, I'] .

Since @ is not identically zero, there is a point g,& G such that 6(g,)=0.

Define a holomorphic function F: [G, G]—C by F(g,)=0(g.,g.). Then
F is different from zero and satisfies F(g,7,)=0(g.2.7.)=0(g.&.)e(C(v,))=
F(g,)e(C(7,)) for g,€[G, G] and v, [T, T'] and F(e)=0.

Let f: [G, G]— R denote C=-function |F(g,)|. Then f(g,v,)=f(g,) for
v.€[T, T'] since C(v,)€ R by Lemma 4.2.

We also denote by f the function on [G, G]/[T, T'] induced by f: [G, G]>R.
Since [T, T is a lattice of [G, G], [G, G]/[T, I'] is a compact complex manifold.
Hence, f: [G, G]/[T, I']—R is bounded:

| F(g.)| = f(&,) = f(p(&.))=¢

for some constant ¢>0.
Since [G, G] is biholomorphic onto C™, a holomorphic bounded function
F: [G, G]—C is constant. Since F(v,)=F(e)e(C(7,)), C(7,)EZ. q.e.d.

Let A(g,, gz)=2\/%(H(gl, g.)—H(g,, g,)). We then get

A7y 72) = —(H(%, v.)—H(7,, 7))

= C(fy;yzfyl vz')=0 (mod 1) .
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We put d(v):C(v)—‘Vl_;IH('y, v) for yET. We have then

d('yS)E%A('y, 8)-+d(y)+d(8) (mod 1) for v, ST .

Let p(v) be the imaginary part of d(y). We see that p(v8)=p(v)+ p(8) for
v, 8T, that is, p: >R is a homomorphism. It is clear that Ker p O[T, T'].
Moreover we have Ker pOT'N [G, G], since [T, T'] is a subgroup of finite index
of T'N[G, G]. Hence p induces a homomorphism p: T'/T'N [G, G]—R.

Since #(T')=T"-[G, G)/[G, G]=T|T'N[G, G] and =(T") is a lattice of
G/[G, G], p can be extended to a homomorphism from G/[G, G] to R, so that
p: I'=R can be extended to a homomorphism p: G—>R.

Consider now the biholomorphic map ®: G—C" given by ®(g)=(z,(£), ">
2a(g)). Let z;(g)=x;(g)+—1y;(g) for j=1, ---,7. Note that &: G—->C"
induces a map from G/[G, G] onto C” given by z(g)— (2,(g), -**, 2,(g)). We
can write p: G—R as

p(8) = 2 a,%,(9)+318;7,(8)

for geG, where a;, b, ER, j=1, -+, 7
Define I: G—C by

)= = V=1-Fas)+58,5,(8) -
We have Im [(g)=p(g) and d(v)—v)ER for y<T.
Note that I: G—C is a holomorphic homomorphism.
Since we can regard A(g,,g.) as an alternating form on a vector group
G/[G, G] such that A(g,, g,) takes integers on the lattice =(T), there is a
R-bilinear form B which is Z-valued on the lattice =(T") and A(g,, £.)=

B(g,, g.)—B(g., g,) ([15] Chapter VI, n°2).
Define X: I'—={2€C| |2|=1} by

= _I(yy— L
X() = e (d(n)—1(n)—1- B, M)
X is a character of T, since A(v,, v,)= Z for v,, v,€T". Put
W) = x(')’)e(%B(% ')’)) for yer.

We get
57, 8) = e 5 H g P4 = HOL DA+ 4()

for yeT and geG.
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Since /(g): G—C is a holomorphic map which satisfies /(gv)=I(g)+/(7)
for g=G and YT, j(v, £) is equivalent to the automorphic factor

(2 T H(g, )+ —H (o, 7))1#(7)

We need the following proposition to show that ¥-|T'N [G, G]=id.

Proposition 4.5. Let  be a holomorphic automorphic function on G of type
507, 8) = €5 2 H (g, Mg —H, 1) )-9i).
2V —1 -1
Then the hermitian form H=(h,,) is non-negative. Moreover 0(g- g,)=0(g) for

gE€G, if g,€G satisfies H(g,, g,)=0.
Proof. Let f: G—R denote the function defined by

fle) =10(g)|%e (ﬁl——lfl(g, g)) = |0(g)|* exp (—=H(g, g)) -

We have f(gv)=f(g) for YT, so that f induces a function F: G/T—=R. Since
G|T" is compact, there is a constant ¢>0 such that 0=<F(p(g))=c for g=GC.
Therefore we get

fg) =10(8)|* exp (—=H(g, g))<c  for geC.
Thus we have

10(g)|*<cexp zH(g, &) for geG.
Suppose that H(g,, g,) <0 for some g,G. Define g()eG (rC) by
g(T) = CI)‘I(Tzl(gl)—f—zl(g), 0 T2(£,)+24(8)) -
Then we have g(0)=g and
10(g(7))|*=c exp zH(g(), &(7)) -

Put p=H(g(7), &(7))-

p= 3 hu(ra,(g)+2,(8)) (2ule) +24(8))

=171% 3 hyux (g u(g:)+2 Re (H(gy )+ H(s, 8)

= |7|°"H(g:, &)+2 Re (TH(g,, £))+H(g, &) -

For any €>0, there is R>0 such that zp <log & for every 7 satisfying |7| =R.
Fix g,, g€G, and we have
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10(g(TN|*=cé€ for |T|=R.

Therefore 0(g(7)) is a bounded holomorphic function on C. Hence 8(g(7))
is constant with respect to T&C. Tending €—0, we get |0(g(7))|*=0. In
particular,

10(2)1* = 16(g(0)|*=0.

Hence =0 on G, since g can be any element of G. This is a contradiction.
Therefore H=(h ) is a non-negative hermitian form.

Take an element g,=G satisfying H(g,, g,)=0. Then we have H(g, g,)=0
for any g=G since H(g, g)=0 for any gG. Put

&(7) = @7 (72,(g0), -+, T2(£)) EG

for TeC. Then we have

10(g-84(7))|*=c-exp TH(g-g,(7), £°8(7))
= €-€Xp n(H(g, g)+2 Re TH(g! go)+ | Tl 2I_I(go’ go))
= c-exp 7H(g, g) .

This shows that 8(g-g,((7) is 2 bounded holomorphic function with respect to
TeC. Hence §(g-g,(7)) is constant with respect to TC. In particular,

0(8)=0(g-£/0))=0(g-2/1))=0(g"g,)- q.e.d.

Take an element g, =G satisfying 6(g,)=+0. Since H(g,, £,)=0 for g,&[G, G],
0(gg,)=0(g) for g=G. In particular, 6(g-v)=0(g) for yeT'N[G, G]. Put
g=g.v~'. Then 0+6(g,)=6(g-v)=0(g). Since

0g-) = 0(6)-¢ (57— F(&, V)4 Hv, 1) J() = B(gh()
Y(v)=1, for yeT'N[G, G]. Note that B(g, g)=0 for g<[G, G]. Hence,
X: T'—{zeC| |z|=1} satisfies that
X|TN[G, G]=1.
Since z(I")=T'/T'N [G, G], X induces a character
%: o(T) — {zeC| |2|=1} .

Let ®: G/[G, G]—C denote the holomorphic function on G/[G, G] induced
by 8: G—C and j: z(T") X G/[G, G]— C* the automorphic factor induced by
J: TXG—C*.

Denote D the divisor on (G/[G, G])/=(T') denfied by the holomorphic auto-
morphic function ® on G/[G, G]. We then get D==*D. Therefore we have
proved Theorem 2.
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Let D be a divisor on G/T". Then there exist positive divisors D+, D~ on
G|T'such that D* and D~ are relatively prime and D=D*—D- ([15], Appendix
n°6). By Theorem 2, there are holomorphic theta functions ©,, ®, on the
complex torus T such that D*=z*(div ©,) and D-==*(div 8,).

Since z: G/T'—T is onto holomorphic,

D = D*—D- = z*(div ©,)—z*(div 8,)

= n* div(%) :

2

Note that & is a memorphic theta function on the complex torus 7.
2
It is easy to see that if the divisor D=0 the corresponding automorphic
function @ is trivial.
Take a meromorphic function 4+ on G|T. Let D=div(y). Since
D=n*div<g‘), we get that \ng%ff . Since Y(g7)=1(7) for g=G are y<T,

2 207

Glo”(g’y)=9‘°”(g), hence &1 is a meromorphic function on 7. Thus we get
@2°”(g7) @20”(g) e,
that if 4 is a meromorphic function on G/T), there is a meromorphic function
¥ on the torus T such that \p=7=*J.

Let K(G/T) (resp. K(T)) denote the field of all meromorphic functions on
G/T (resp. on T).

We now get the following corollary of Theorem 2.

Corollary Under the assumptions of Theorem 2, there is a canonical isomor-
phism n*: K(T)—K(G|T). In particular, the transcendence degree of K(G|T') over
C is not more than the complex dimention of complex torus T.

5. Remarks and examples of compact complex parallelisable
nilmanifolds

Proposition 5.1. Let M be a compact complex parallelisable manifold of
complex dimension 2. Then M is a complex torus.

Proof. By a theorem of Wang [14], M=G|T" where G is a simply con-
nected complex Lie group of dimension 2 and T is a lattice of G. Let {X,, X,}
be a basis of g* and {w,, »,} be the dual basis of (g*)*. We may consider
®,, w, as holomorphic 1-forms on G/T". Since G/I" is 2 dimensional, w,, w, are
d-closed; do,=dw,=0. Thus [X,, X,]=0. Hence, G is abelian and G/T" is a
complex torus. q.e.d.

Now we shall give some examples of compact complex parallelisable nil-
manifolds.
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(1) Let G be a simply connected complex nilpotent Lie group defined by

1 zlz ooooooooo zl”
1 Zan
G == t. *e. E z,-jEC, i<j
1 2.
0
1
and T be a lattice of G defined by
1 @ggeeeeesee a,
1 Ay o
r= o a;,€Z+NV—12,i<j .
1 a”_ln
0
1

Then G/T" is a compact complex parallelisable nilmanifold. In this case, we
see that the transcendence degree of K(G/T") over C is n—1.

(2) Let G be a simply connected complex nilpotent Lie group defined by

1 zl 22 --------- zn—'l w
1 0 ceeeerens 0 Vs
| 2, ¥, wEC
G—_—- ‘., v, :. : .]’ J?
1 0 oy, =12, n—1
0 1y
1

1 a, ageeeeeeee An-, ¢
1 ().. ........ 0 13”_1
o L P ||anb,cezivTiz|
10 b, |[i=12-n1
0 1 b
1
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Then G/T is a compact complex parallelisable nilmanifold. In this case, we
see that the transcendence degree of K(G/T") over C is 2(n—1).
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