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内容梗概

蛍光顕微鏡技術や生体イメージング技術の登場により，生体内の細胞の動態を動画

像として実際に「見る」ことが可能になった．生体イメージング技術で取得される動

画像には多くの組織や細胞が映り込み，絶えず互いに相互作用している非常に複雑な

データとなる．このようなデータは研究者の目と手で解析されているのが現状だが，

技術向上により可視化対象は多様化し，また高精細化してきており，科学的知見を導

き出すことは困難になりつつある．それに伴い，画像認識技術や機械学習によるデー

タの自動解析技術が重要となってきている．また，膨大な数の画像に対して一定の基

準で定量化を行うためには計算機での処理が有用である．このような技術の確立によ

り生物学はより進展し，疾病のメカニズム解明や創薬等への応用が促進されることが

期待される．

蛍光顕微鏡で撮影される観測対象の微細なスケールにおいては，対象が細胞分裂を

起こす等，我々が生活するスケールを対象とした一般的な画像処理技術が適用できな

い場合がある．単一の画像内に観測対象の細胞が多数存在したり，観測対象を蛍光物

質を介して間接的に撮影したりするために境界が曖昧になるなど，顕微鏡画像特有の

問題を解決する必要もある．また，観測対象は非常に多様であり，単一の手法で画一

的に解析を行うことは困難である．そのため，解析を行う対象組織ごとに自動解析技

術を確立していくことが必要となる．

本論文では，生体イメージング技術で取得されるデータである，骨組織の生体画像

に焦点を当て，細胞等を自動解析・評価する手法を提案する．骨組織はこれまで，生

きたままの解析が困難とされてきた部位であり，生体イメージング技術の発達によっ

て様々な知見を得ることが期待されている組織であるが，自動解析技術はまだ確立さ

れていない．骨組織の生体画像を評価するに当たり，大きく二つの課題が考えられる．

一つは大規模データ全てを走査し，画像を認識・定量化する大規模化の問題であり，

他方は一般的な画像処理技術でデータセットごとにユーザが与える事前情報を不要と

し，ユーザの負荷を軽減する自動化の問題である．

大規模化の問題に対して，3章で骨組織内部にある骨髄腔と呼ばれる領域を画像処
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理技術を用いて領域分割する手法を提案する．提案手法では，骨髄腔を実際に人の手

で認識する際に専門家が用いている判断基準を，画像処理技術の一つであるグラフ

カット法のエネルギー関数のデータ項としてモデル化する．提案手法と従来法を比較

し，提案手法が安定して骨髄腔を認識できていること，また提案手法が大規模化に適

していることを示す．

4章では，骨髄腔認識の問題に関連して，特定の状況下において変化する細胞の動

態を解明するため，骨髄腔領域の輝度変化を定量化する手法を提案する．細胞内の特

定の物質量が変化した際に，血管から骨髄腔領域に染み出す血液量が変化することが

知られている．この変化量は細胞の動態解明のための大きな手がかりになると考えら

れている．提案手法では，血液の染み出しが時間変化していく点に着目し，時間方向

にも辺を持つ時空間ボリュームを用い，染み出しをモデル化する．このモデルを用い

たエネルギー関数に対してグラフカット法を用いて骨髄腔を領域分割した後，骨髄腔

領域の輝度変化を染み出し量の変化として定量化する．染み出し量の定量化により，

骨組織内部の細胞の動態について定量的な議論が可能になる．実験では，提案手法が

専門家が手作業で分類した真値の場合と比較し，定量化が正しく行われていることを

示す．

5章では自動化の問題に対して，ユーザの負担の大きい事前情報の入力を自動化す

るため，画像の特徴量抽出を用いて骨髄腔領域を認識する手法を提案する．一般的な

画像処理技術では画像に対する事前情報としてユーザの入力を利用することが多い．

3 章，4 章の提案手法についても，それぞれユーザに対してグラフカット法に対して

シードと呼ばれる事前情報を入力させる必要がある．提案手法では，対象画像に特有

の模様が見られることに着目し，モーメントやウェーブレット変換を用いた特徴量を

用い，画素ごとの特徴量抽出を行い分類する．本手法では，特徴量を調整することで

ある程度骨髄腔領域を特定することができ，ユーザの入力の代替になる可能性を示す．

最後に，本研究の成果についてまとめ，全体の総括を行う．
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第 1章

序論

近年，生体イメージング技術の向上により生体内の様々な細胞の動態を動画像とし

て観察することが可能となりつつある．これまでの生物学では細胞等の個別の要素を

それぞれに取り出して解析する還元主義的解析が主流であり，個別の組織が実際に生

体内でどのように相互作用しているかは人間の想像力で補っていたという側面があっ

た．生体内部におけるミクロな現象が解明されるにつれ，個別の現象から得られた情

報を結合し，マクロな生体内の様子を有機統合的に理解することが求められる時代へ

と移行している．しかしながら，研究対象は研究の進展と共に多様化・細分化されて

きており，複雑に相互作用するマクロな生体内を理解することは容易ではない．一方，

技術の発展と共にマクロな動態の理解に重要な役割を果たす生体イメージング技術が

登場し，生体内部の様子を実際に「見る」ことを可能にした．「見る」ことが可能にな

るということは単純に可視化が行われるという意味にとどまらず，時空間の四次元的

な変化の観測を可能にし，想像力で補われていた要素同士の相互作用が直接観測可能

になったという意味で生命科学研究の発見の新たなプロセスを確立した．

生体イメージング技術は，顕微鏡技術と蛍光タンパク質技術の発達に伴って可能に

なった技術の一つである．顕微鏡技術は光学顕微鏡に始まり，より空間分解能が高い

電子顕微鏡，また蛍光物質の観測を通して生物を観察可能な蛍光顕微鏡等が登場した．

蛍光顕微鏡は，観測対象の細胞が蛍光するように標識を付けたり，組織に投与した蛍

光物質を撮影する技術であり，細胞の標識が可能になった背景として蛍光タンパク質

技術の登場が挙げられる．細胞に対して蛍光タンパク質を遺伝子導入することで，任

意の細胞を蛍光させて観察することができるようになった．蛍光顕微鏡の一つである

共焦点顕微鏡は，検出器前にピンホールを置き，観測したい深さを選択可能になった

ことで，奥行き方向の分解能を獲得した．また，蛍光物質の励起に二光子吸収過程を

利用した二光子励起顕微鏡の登場により，生きたまま，より深く，より局所的な観測

が可能となった．このような技術を応用することで，これまでは一切観測できなかっ
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た，循環血流を完全に保った生体イメージングが可能となった．

新しく登場した生体イメージングで取得される 4次元動画像は，個別の細胞等を取

り出して解析する場合とは異なり，多くの組織や細胞が映り込み，絶えず互いに相互

作用している非常に複雑なデータとなる．また，顕微鏡技術の発展により高精細化・

多様化する傾向がある．このような膨大なデータに対して，研究者は自身の手で膨大

な時間をかけて分析しているのが現状である [1]．しかしながら，近年の技術で得られ

る膨大なデータに対して，特定の細胞の動きの発見や画像の解析を全て人の手で行う

には非常に困難になりつつある．人の手で解析可能と思われるデータにおいても，見

えやすい部分や見たい部分のみを見るという研究者の主観的判定によるバイアスの恐

れがあり，重要な科学的知見を見落とす危険性も高まる．そのため，顕微鏡をはじめ

とする観測技術の発展に加えて，細胞画像の大規模で画一的な解析を行うための画像

認識技術や機械学習による自動解析技術が重要となってきている．

画像処理の分野ではこれまでに画像解析に関する様々な手法が提案されているが，

これらの手法は一般的に人間が生活するスケールでの事象に対応するものが多い．顕

微鏡で撮影された細胞画像のスケールでは，細胞の分裂や融合，極めて複雑に変形す

る，といった性質が従来対象としている画像の性質と大きく異なるため，既存の技術

をそのまま適用することが難しい場合が多い．また，単一の画像内に観測対象の細胞

が多数存在したり，観測対象を蛍光物質を介して間接的に撮影するために組織間の境

界が曖昧になるなど，顕微鏡画像特有の問題を解決する必要もある．さらに，生体イ

メージングで得られる画像は，用いる顕微鏡環境や観測対象等が非常に多様であり，

画一的な手法のみを用いて全ての対象の解析を行うことは困難である．そのため，解

析を行う対象組織ごとに自動解析技術を確立していくことが必要となる．

骨組織の生体画像は，画像自動解析技術が必要とされている分野の一つである．こ

れまでの研究では，ある時刻における骨の状態を切片として取り出して観察すると

いった手法で研究されてきたものの，石灰質に囲まれた骨組織は生体で最も硬い組織

であるため，従来は生きたままでの観察が困難であるとされてきた．そのため，骨組

織内に含まれる破骨細胞等の動態は未だ未解明である [2]．一方，二光子励起顕微鏡の

登場により，骨組織の生体内の血管に血液が流れる様子や骨髄腔における細胞の動態

を生体画像として取得できるようになった．骨組織内部には様々な細胞が含まれるが，

骨髄腔と呼ばれる領域は他の領域に比べて生体イメージング技術により変化が観測さ

れやすいため，骨の代謝のメカニズムを理解する上で重要な観測対象となる．得られ

る動画像には解析を行いたい骨髄腔領域が大量に含まれ，人の手で全て分析するのは

困難である．また，画像の変化について科学的に議論する際，統計的かつ定量的な議

論が可能となる枠組みが必要である．自動解析手法の確立により破骨細胞等の動態の

解明を促進し，骨粗鬆症や関節リウマチ等の疾病のメカニズム解明や治療法確立に繋
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がることが期待される．

本研究では，二光子励起顕微鏡から得られる複雑な骨髄腔画像に対して，主に医学

的に重要な骨髄腔領域について自動解析する手法に焦点を当てる．骨髄腔画像も境界

が曖昧になる,ノイズなどを多く含む，輝度のムラなど蛍光顕微鏡画像特有の問題が存

在し，従来の画像処理技術を単に応用することは困難である．2章では，これらの研

究についての背景と関連研究，また動向について述べる．自動解析技術を確立するた

めには，大きく大規模化と自動化の二つの課題の解決が必要となる．大規模化の問題

は，大規模データ全てを一律に走査し，骨髄腔を認識・定量化する問題である．ここ

での大規模化は，既存手法に対して処理速度の向上や単位時間に処理可能なデータの

容量を増やすことではなく，これまで人の手で行ってきた大量の動画像の解析を一枚

ずつ行わなずとも，大規模な対象画像に対して一律に解析手法を適用し，研究者が扱

えるデータ量を向上させることである．また，大規模化により主観的なバイアスを排

除することで，画一的かつ統計的に数値化を行うことが可能となり，科学的な議論の

土台を形成することができる．3章と 4章ではこの大規模化にあたる手法を議論する．

グラフカット法という画像処理技術で一般的な手法を，骨髄腔画像の特徴に基づいて

モデル化を行うアプローチで解決を試みる．3章では専門家の判断基準をモデル化し，

骨髄腔を認識するための手法について述べ，4章では血管から骨髄腔領域への血液の

染みだし量の定量化問題について，染み出しによる時間変化をモデル化した手法につ

いて述べる．

また他方の自動化の問題は，解析手法に必要なユーザの入力やパラメータ調整を不

要とする問題である．一般的に，画像処理技術ではユーザの事前情報入力やパラメー

タ調整が必要となる場合が多い．画像セットごとに事前入力が必要となると，大規模

化により全ての動画像を解析できるとしても，ユーザの負担はある程度大きくなるこ

とが予想される．この問題に対しては，事前入力自体を骨髄腔画像という画像の特性

からある程度推定し，入力を行うという方法が考えられる．骨髄腔画像では，撮影環

境に関わらず血液の染み出しにある程度模様が見られるという点に着目し，画像特

徴の抽出が可能かどうかについて調べる．骨髄腔画像で共通の特徴は，3章や 4章と

いった特定環境下のための手法の事前入力として利用できると考えられる．5章では

この画像特徴量を用いた画像処理技術における入力の自動化の手法について述べ，6

章で結論とする．
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第 2章

関連研究と動向

2.1 画像撮影技術

本研究の背景として，近年の顕微鏡技術の発達が挙げられる．医学的な画像撮影

技術の最も初歩的なものは光学顕微鏡である．最初の顕微鏡は 1590 年 Sacharias

Janssenと Hans Janssenによって作成されたと言われている [3]．その後，1600年代

半ばには細胞の構造や臓器の生物学的構造の分析が行われた．中でも，Leeuwenhoek

は顕微鏡を改良し，初めて微生物を発見した．その後，現在の微生物の礎を築いたと

して「微生物の父」と呼ばれている．

光学顕微鏡での分解能は，Abbe の分解能に従うと，用いる光の半波長が限界と言

われている．可視光線で最も波長が短い光は 400nm 程度であるので，200nm 程度

が限界となる．これに対し，対象物に当てる光を電子線に変更することで，さらな

る解像度を可能とした電子顕微鏡が 1930 年代に登場した．最初の電子顕微鏡は透過

型電子顕微鏡 (Transmission Electron Microscope; TEM) で，1931 年に Ruska と

Knollによって発明された [4]．Ruskaは，電子顕微鏡の研究開発の成果で 1986年に

ノーベル物理学賞を受賞した．また，1937年に Ardenneによって走査型電子顕微鏡

(Scanning Electron Microscope; SEM) が開発された [5]. 当時は透過型電子顕微鏡に

力が入れられており，走査型電子顕微鏡の普及は 1960年以降となる．TEMや SEM

以外にも様々な方法が提案されており，観測物の特徴により使い分けられている．ま

た電子顕微鏡は，生物学でウィルスの発見等に貢献し，当時大きな注目を集めた．

位相差顕微鏡

1932年，Zernikeは回折格子の研究を応用し，位相差顕微鏡の元となる位相差をコ

ントラストとして検出する方法を確立した [6]．この成果により 1953年にノーベル物

理学賞を受賞した．物質に光が通過する際，異なる屈折率を持つ物質を透過した光を
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比較すると位相差が発生するが，それをコントラストに変換して観察することが可能

となる．蛍光顕微鏡などの撮影方法では蛍光物質等を利用するのに対し，無染色，非

侵襲的に対象を観察することが可能である．蛍光物質などで損傷を受ける細胞等を観

察が可能であることから，細胞の観察や臨床検査などに用いられる．

2.1.1 蛍光顕微鏡

蛍光顕微鏡は，生体などの蛍光・発光現象を観察する顕微鏡である．注目する細胞

や分子などを蛍光分子や発光分子で標識し，その部位を撮影する．通常の顕微鏡と異

なり，蛍光現象等を撮影するため，発光物質や蛍光物質の励起が無い状態では何も撮

影されない．蛍光物質は，エネルギー的に低い基底状態の蛍光分子に対して励起光を

照射すると，励起光を吸収して蛍光分子をエネルギーが高い励起状態に移動させるこ

とができる．励起状態は不安定な状態であるためにすぐに基底状態に戻るが，この時

に放射する光を観測する仕組みにより画像を得る．また，発光現象を利用する場合は

励起光の照射を必要としない．励起状態から基底状態に戻る際に放射される光を観察

することは蛍光現象を利用して撮影する場合と同一であるが，化学反応によって分子

が励起されるため，外部の励起光は不要となる．発光プローブの利用によって自家蛍

光や励起光による細胞損傷などの問題を排除できるが，発光波長はそれほど長波長で

はなく，また励起させる箇所を選べない，明るさが足りないといった欠点がある．

蛍光顕微鏡は，標識を行った細胞や分子のみの撮影が可能であったり，また波長の

異なる複数の蛍光物質を利用することで，注目するいくつかの細胞間の関係を同時に

可視化することが可能である．また，蛍光顕微鏡は，蛍光の強度の時間的変化を抽出

することができ，個体の形態を定量的に計測することを可能にした．一方で，蛍光顕

微鏡では，生きた細胞の分子の動きの情報が見えるなどのメリットがあるが，意図的

に必要な部位を可視化するための標識を行わないと何も見えないというデメリットが

ある．蛍光や発光に利用する化学プローブも次々開発されているほか，蛍光顕微鏡に

関して改良が重ねられており，様々な方法が提案されている．これらの技術により，

「生きたまま」「より局所的な」「より深い」観測が可能となりつつある．

蛍光を用いた標識方法は大きく二つに分けられる．一つは蛍光物質を投与するもの，

他方は GFP (Green Fluorescent Protein) に代表される，蛍光タンパク質を用いるも

のである．どちらを用いるかは，研究対象などにより適宜選択される．蛍光物質は小

分子の化学物質で，観測対象に投与して用い，抗体などに結合させる形で標識として

機能させる．導入は簡単であるが，蛍光物質は徐々に抜けていくため長時間の観測に

は適さない．蛍光タンパク質を用いる場合は，可視化したい細胞に蛍光タンパク質の

遺伝子を組み込み，蛍光させる．蛍光タンパク質技術の登場により，細胞単位で蛍光
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させることが可能になったため，数々のタンパク質の生体内の挙動を細胞レベル，場

合によっては分子レベルで観測できるようになった．一方で，特定の細胞を標識した

遺伝子改変マウス等を作製する必要がある，といった課題もある．既に目的のマウス

が作製されていれば利用することができるが，一般的に目的の細胞を標識したマウス

を作製することはコストが高い作業となる．蛍光タンパク質技術は蛍光顕微鏡の有用

性を大きく高めた特筆するべき技術であるため，顕微鏡技術の後に取り上げる．

共焦点顕微鏡

共焦点顕微鏡は，フォトマルチプライヤと呼ばれる検出器の前にピンホールを置く

ことで，焦点外のボケを排除した顕微鏡である．ピンホールを用いることで焦点面か

ら外れた部位の発光や蛍光によるボケを排除することで解像度を高める．スキャナに

よるスポット状のレーザーを焦点面上に走査させる方式となる．この仕組みにより，

立体構造を知ることができるようになった．共焦点顕微鏡の原理は Minsky により

1953年に開発されたが，レーザー技術が実用化される 1980年代ごろまで一般化しな

かった．

分解能は比較的高く，ピンホールにより，特に奥行き方向に対して高い解像度を得

ることができる．また，波長分解能が高く，蛍光分子の励起に必要な波長のみを透過

させるバンドパスフィルタはより幅の狭いものを用いることが可能となり，異なる蛍

光間において波長が重複して誤認の原因となったりするクロストークの少ない画像を

取得できる．

超解像蛍光顕微鏡

超微細構造を鮮明に観測する技術として，超解像蛍光顕微鏡が注目されている．光

学顕微鏡の仕組みを利用する限り，Abbe の分解能の 200nm を超えることが不可能

である．電子顕微鏡であればさらに分解能を高めることが可能であるが，細胞に高エ

ネルギーの電子線を照射させる必要があり，生きたままの細胞の撮影に適さない．

これに対して Stefan らは，Abbe 分解能を上回る STED (Stimulated Emission

Depletion) 　顕微鏡を開発した [7]．観測したい点の周囲の分子に脱励起現象を起こ

させることで，撮影の範囲をさらに限定することが可能となり，解像度が向上する．一

方，Williamらは，一分子レベルで蛍光のオン・オフ操作が可能である改良 GFP を開

発する [8]と，Ericらはこの原理を利用した PALM (Photo Activated Localization

Microscopy) または STORM (Stochastic Optical Reconstruction Microscopy) と呼

ばれる顕微鏡を開発した [9]．この手法により STED顕微鏡よりも高い解像度を実現

できるが，一分子レベルでの蛍光のオン・オフを調整した画像を複数重ねて結果を得

るという仕組み上，像の取得には時間がかかるため，ライブイメージングには適さな
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い．これらの研究は 2014年にノーベル化学賞を受賞する等大きな注目を集めている．

二光子励起顕微鏡

通常の蛍光顕微鏡では，観察対象の蛍光分子 1つに対して光子を 1個当てるが，多

光子励起顕微鏡では複数の光子により励起を行う．複数の光子による励起は極めて起

こりにくい現象であるが，Göppert-Mayerは原子密度を高くすることで起こりうるこ

とを示した．焦点にのみ光を凝縮させることで，より局所的な観察が可能となる．こ

の原理を利用して，Denkらは二光子励起顕微鏡を提案した [10,11]．

1 光子による励起に比べ，2 光子による励起ではエネルギーが半分の光子を 2 つ利

用する．光子の波長が 2倍になるため，通常 400nm 程度の励起光を利用するのに比

べて 780 ～ 1, 000nm 程度の近赤外線を利用することが可能となる．波長の長い赤外

光は浸透性が高いため，従来に比べて非常に高い組織透過性が実現できる．また，焦

点面でのみ蛍光分子を凝縮して励起させるため，組織侵襲性を小さく抑えることがで

き，これにより生体組織の観察に有利である．

以上に挙げた二光子励起顕微鏡の特徴は，いずれも組織や臓器を生かしたままで観

測するためにきわめて有用である．解像度の面では共焦点顕微鏡や超解像蛍光顕微鏡

に劣るものの，他の顕微鏡に比べて，より深く，より長時間，生きた個体での観測を

行うことができる．特に，観測したい場所が観測対象の深い部分である場合，組織の

奥深くまで，高い三次元解像度で，さらに低侵襲で観測することができる．

2.1.2 蛍光タンパク質技術

蛍光タンパク質技術は，顕微鏡そのものの発展と並んで重要な技術である．Shimo-

mura らはオワンクラゲが光るメカニズムについて研究を行い，青色に発光する物質

を特定してイクリオンと名付けた [12]．イクリオンはその後生物学者により，発光現

象を用いて事象の証明に用いられるようになり，重要性が認識されるようになった．

また，緑色に光る蛍光タンパク質 GFPについてもイクリオン研究の過程で発見され，

単離・精製に成功した．その後 Tsien らにより GFP の発光団の構造が明らかにさ

れ [13]，タンパク質自体が内部に発光団を形成する天然の発光物質として最初の例で

あることが確認された．

GFP を作る遺伝子の配列が明らかになると，Chalfie らは大腸菌や線虫の体内に

GFP遺伝子を送り込み，生体細胞内で発現させることに成功した [14]．これにより，

遺伝子組み換えを行って GFPの遺伝子を導入することで，特定の細胞を光らせるこ

とが可能になり，様々な現象の証明に用いられるようになった．また，Tsienは緑色

以外にも光る人工タンパク質を作り出すことに成功した他 [15]，GFP技術を使いやす
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いものに改良したり可視化する技術を確立した．

蛍光タンパク質技術の登場により，タンパク質を生きたまま蛍光顕微鏡で観測する

ことが可能となったため，観測可能な領域が飛躍的広まり，蛍光顕微鏡の可能性を大

きく広げた．各々のタンパク質の生体内での振る舞いや相互作用の様子が追跡可能と

なった．最も広く用いられているものの一つである GFPは，単体でも蛍光すること，

外部の補助因子が不要であること等から，遺伝子が発現しているかどうかを容易に判

別するためのレポータ遺伝子として用いられる．生物学の幅広い分野にて様々な発見

に貢献したことから，Shimomura，Chalfie，Tsienは 2008年にノーベル化学賞を受

賞した．

2.2 生物学のパラダイムシフト

2.2.1 in vitro と in vivo

以上に示すように，顕微鏡技術は歴史的にも多くの研究がノーベル賞を受賞するな

ど，社会的に大きな影響を与えている．生物的な観点からは，生体イメージングはそ

の実験条件から in vivo イメージングと同義的に用いられる場合がある．in vivo はし

ばしば in vitro の対義語として用いられる．in vitro は，「試験管内で」という意味を

表し，実験環境が人工的に構成された条件下であることを意味する．実験条件が完全

にコントロールされた環境であり，試験管内の内容物の種類や量等が全て明らかであ

る場合が多い．細胞のみを取り出して培養する等，局所的な評価が容易である．また，

設定した環境以外の影響を受けにくいため，実験結果の原因が特定しやすい．しかし

ながら，人為的に取り出して培養された細胞を用いる際，本来の形態や機能が変質す

る等の問題が発生する傾向にある．一方，in vivo は「生体内で」という意味を表し，

細胞内での反応等，生体内の条件下を表す．組織をある種のブラックボックスとして

実験を行うような状態での実験となるため，各種条件が人為的にコントロールされて

いない状態である．自然のままの様々な組織が相互作用を起こしている環境下で実験

を行うため，個体ごとに結果のバラつきが出るなどの複雑な環境である．

in vivo と in vitro は相補的な関係であり，必要に応じて使い分けられる．in vitro

は単一の研究対象の細胞や組織に反応が起こる過程等を明らかにできるが，全組織を

含む生体全体としての反応を観測するような場合には in vivo 環境での実験が必要で

ある．一般に in vivo 環境は実験環境の構築が難しく，また多額の設備費が必要にな

る傾向にある．また，マウス等が生きたまま観測を行うため，in vitro 環境と異なり

対象内部の観察等が非常に困難である．生体イメージング技術の登場は，困難であっ

た対象内部の観測を可能にしたという点で，in vivo 環境における代表的な観察手法と
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して重要な役割を果たすようになった．

2.2.2 形態学から動態学へ

生物学の最も基本的で重要な解析方法の一つである形態学は，肉眼や顕微鏡などで

組織の形態を観察して，組織を記述する方法である．形態学は生物学の基礎として今

後も重要であり続ける一方，ある時間の組織を切り出して解析を行うため，時間変化

等が失われる．また，切り出して観察を行う場合は系全体の相互作用なども観測でき

ない．形態学では，失われた情報は生物学者の想像力で補われていたといった側面が

あった．

生物的な理解が深まるにつれ，要素を切り出して観察する時代から相互作用を有機

結合的に理解する時代に移行しつつある．一方で，蛍光顕微上技術に代表される生体

イメージング技術の登場により，止まった形態情報だけではなく，それらの変化を含

んだ動態情報を「見る」ことが可能となった．これは単純に可視化が行われるという

意味にとどまらず，時空間の四次元的な変化の観測を可能とし，想像力で補われてい

た要素同士の相互作用が直接観測可能になったという意味で，生命科学研究のプロセ

スを革新した．

生体イメージング技術による動態情報が利用できるようになったことで，石井 [16]

によると形態学的な情報に加えて下記のような情報の観察が可能となった．

• 細胞の「動き」のモード
– 細胞が動く場合にも，様々な動き方が考えられる．形態学では動く前と動

いた後しか解析できなかったが，生体イメージング技術によってどのよう

な動きをしているのかが明らかとなる．

• 細胞間相互作用―細胞と細胞の「対話」
– 細胞間での相互作用の起こり方の詳細が明らかになる．どの細胞がどのよ

うなタイミングで，どこで，どの細胞と，どのような相互作用を行うのか

といった情報が解析可能となる．

• 細胞内シグナル伝達・性質変化
– 他の細胞と相互作用の後，各細胞自身も様々なシグナルの伝達や増殖，死

滅したりと様々な動作をする．蛍光プローブ等を使うことでこれらの可視

化が可能となる．

• 細胞の位置，ニッチ環境
– 生きた細胞の動きや相互作用，細胞内の性質変化等に加え，その細胞が組

織のどこにいるのか，その組織のどのような環境要因の影響を受けている
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のかを解析できる．

歴史が古く，多くの研究がなされた形態学に比べ，顕微鏡技術や蛍光タンパク質技

術によって可能となった「動態学」と呼ぶべき学問領域は今まさに黎明期にある．今

後，未だ解明されていない様々な事象も動態情報の分析によって解明され，大きく生

物学が進展することが期待されている．

2.3 生体イメージングと画像処理技術

2.3.1 Bioimage Informatics

ここまで，生物学は光学と融合して顕微鏡技術が確立され，化学により蛍光顕微鏡

や GFP技術が進展し,それに伴う生物学の動態学へのパラダイムシフトが注目されて

きたことを述べた．一方，技術の進歩により得られるデータが膨大になり，人の手で

全ての画像を把握したり解析すること難しくなりつつあるといった問題が発生してき

ている．例えば，数百といった数の細胞が含まれる動画像において，細胞分裂等の現

象を全て手作業で一枚ずつ個数の数え上げ，面積を求めるといった作業が一般に必要

となる．さらに, データが膨大になると研究者自身が自分の仮説に合うなど注目した

い結果だけを選び出すバイアスの危険性が高まる．また，ロボット・センサ技術の進

展はデータの取得機会や回数を増加させ，得られるデータを多様化させてきた．こう

した問題を解決するため，情報処理技術による自動解析が重要になってきているが，

顕微鏡技術の発達に比べて遅れ気味であると言われている [17, 18]．

画像処理分野では様々な画像認識や解析に関わる技術が確立されてきたが，細胞

画像はこれまで画像処理分野で研究されてきた対象の画像の性質と大きく異なるた

め，これらの技術を単純に細胞画像に適用することは難しい．それに伴い，Bioimage

Informatics と呼ばれる分野が急速に発達した．2012 年 3 月には Bioinformatics 誌

にて Bioimage Informatics の分野が新カテゴリとしてアナウンスされる [19] と，7

月には Nature Methods 誌でも Focus on Bioimage Informatics という特集号で問題

提起 [20]と共に各種ソフトウェアや解析ツールなどが紹介されるなど，世界的に新分

野として受け入れられつつある．

さらに，近年のビッグデータや機械学習，人工知能というような分野の技術の進展

により，あらゆる情報がデータとして蓄積され，そのデータ解析により新たな知見が

導出される時代に突入している．Bioimage Informaticsにおいても，単に蛍光顕微鏡

画像を解析するだけでなく，得られた様々な解析結果をデータとしてデータサイエン

ス領域と融合することで，研究者のみならず多方面からデータについて評価が行われ，

生物学的知見の発見が加速されるプラットフォームが実現できる．
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生物学と情報科学の関わりは，これまでも Bioinformatics を中心に模索されてき

た．Bioinformatics　では，分子生物学の分野において様々な技術から得られる大量

のデータに意味を持たせることを目的として，大規模な DNA の塩基配列の決定や配

列のアセンブリやアノテーションのためのツールの研究から始まった [21]．そして，

Bioimage Informatics は生物学と情報科学の新たな関わりとして Bioinformatics の

新分野として位置付けられている．一方，医学と画像処理，画像認識技術の分野間

の交流はこれまで，生体画像処理や医用画像処理等で行われてきた．生体や人体か

ら得られる画像を生成したり解析したりする分野である．一般には CT (Computed

Tomography) や MRI (Magnetic Resonance Imaging) 等を用いて臨床上画像形式で

得られるデータを中心に分析する学問分野であり，最新の蛍光タンパク質等を用い，

蛍光顕微鏡などの画像を解析するための Bioimage Informatics とは画像の性質や撮

影環境などが異なるため，独立した分野であるとされている．

これら全ての分野に共通することとして，人間に出来ないことを行うのではなく，

人間にも可能であることを短時間に間違いなく行うことを可能にするという点が挙げ

られる．自動処理により扱えるデータ量が増やせるため，結果的に人間が解析する場

合と比べて多くの科学的知見が得られることとなる．Bioimage Informatics において

も，人がこれまで行ってきた作業を肩代わりし，画像から膨大な知見を得ることが期

待されている．生物学の発展においては，人が扱えない量のデータから新しい知見を

得る唯一の手段となる可能性もあるため，この分野の発展は社会にとって非常に重要

な位置を占めると言える．一方で，Bioimage Informaticsは，これまでの技術を応用

して生物学的発見を単に補助するための応用科学的な側面のみならず，技術そのもの

の進歩により生物学の議論の土台を提供する基礎科学的な側面も存在する．生物学の

観点からも，生体イメージング技術や Bioimage Informatics の進歩によりどのよう

な知見が得られ，その知見からどのような議論を行うべきかを模索している段階であ

り，生体画像に対して常に当初から明確な目的を持って解析が行われるわけではない．

そのため，生物学的な目的を受けて技術開発を行うのみならず，何が認識可能であり，

何を定量化できるかといった解析の可能性や基礎技術そのものを進歩させることで，

Bioimage Informaticsの側から生物学者へ議論の土台を提案することも可能になると

考えられる．それぞれの分野が共に発展して協調し，新たな発見のプロセスを確立す

るために，目的を持った解析技術のみならず解析技術そのものを進歩させることも必

要である．
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2.3.2 蛍光顕微鏡画像の特徴と問題点

蛍光顕微鏡画像の解析において，画像処理分野で確立されてきた技術を単純に適用

することは難しい場合が多い．例えば，画像処理分野で確立されてきた手法は，我々

が普段目にするスケールの画像に対して研究が行われていることが多く，ミクロの世

界では対象の性質が大きく異なる場合がある．他の例としては，対象のうち蛍光物質

や発光物質が存在する部分が単なる輝点として観測されるため，物質の表面のみが観

測される実スケールの画像と特徴が異なる．画像のスケールの違いや蛍光物質撮影に

よる問題に加え，映り込む細胞自体の数が膨大であったり，細胞の分裂や消滅といっ

た細胞特有の複雑な動作を取り扱うことが可能な手法が求められる．さらに，顕微鏡

の種類や撮影条件の違い，撮影対象組織の違いに加え，用いる蛍光物質や蛍光タンパ

ク質の違い等，画像の種類そのものが非常に多岐にわたる．

Bioimage Informatics が対象とする画像解析の問題点を，内田 [23] は次のように

要約している．

• 撮像過程に起因したもの
– ノイズ：微弱な蛍光を観測するため．観測対象以外の自家蛍光が混じりこ

むことがある．

– 低解像度：空間的および時間的な解像度が足りない場合がある．

– 膨大なデータ量：イメージングの結果がギガバイト，テラバイト単位とな

ることが多い．

• 対象の性質に起因したもの
– 組織間で明瞭な境界が見られない場合，そもそも境界の定義が難しい場合

もある．

– 手前と奥の対象が重なって見え，分離できない場合がある．対象が半透明

な場合等もある．

– 対象が単一の画像内に大量に存在する場合や，それらが密集する場合が

ある．

– 対象に「見え」の情報が乏しい場合がある．蛍光観察する場合は単なる輝

点でしかないので，大量に存在すると判断や追跡が困難となる．

– きわめて複雑に変形する場合がある．そもそも柔らかい対象組織なども

ある．

– 動画像として観測中に，対象が分裂したり消滅したりすることがある．

– 生命現象のモデル構築を目的とする場合，定量化の段階にモデルを仮定で
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きない．

現状において，顕微鏡で撮影される様々な画像を画一的に単一の手法で全て解析する

ことはできないため，対象画像ごとに解析手法の研究が行われている．

2.3.3 細胞画像処理の関連研究

得られた細胞画像に対して，様々なアプローチによる解析が行われている．細胞画

像処理の主な解析手法としてはセルトラッキングや領域分割等が挙げられる．セルト

ラッキングに関して，藤崎らはノイズが多くグレイスケール化された細胞内動画像を

対象に，細胞内の粒状物質のトラッキングを行った [24]．Raghuveerらの放射相称の

細胞の中央点を画素の勾配から求めてトラッキングを行った [25]．また，瀬尾らは蛍

光画像における細胞核を混合ガウス分布モデルを用いて検出しトラッキングしてい

る [26]．これらトラッキングによる細胞画像処理の解析は，単純な移動追跡のみなら

ず，細胞融合や細胞分裂により複雑な変化が起こるために非常に困難である．一方で，

細胞分裂などに対応可能な方法も研究されており，一例として，Liらは細胞集団に対

して隠れマルコフモデルを用いて細胞分裂を検出できる手法を提案している [27]．ま

た，Biseらはフレームごとに細胞を検出し，フレーム間での細胞の関連を検出して木

構造に表し，MAP (Maximum-A-Posteriori) 問題として定式化して解くことで，領

域内の細胞の動きや分裂に対して定量的な評価が可能な枠組みを提案した [28]．細胞

動態を解析するために様々な研究が行われているが，Meijering らは様々な手法の調

査の後，セルトラッキングに関して様々な細胞画像に画一的に適用できる方法はない

と結論付けている [29]．また，細胞画像における領域分割に関する研究として，Yin

らは単純ベイズ分類器を用いた領域分割を提案している [30]．細胞画像における領域

分割の論文数の推移を調査した Erikらの報告 [31]によると，領域分割手法はさまざ

まな手法が試されているが，過去の領域分割手法に関しては閾値を用いたものが多く

見られる．

二光子励起顕微鏡を扱った研究としては，Olivieri らの研究が挙げられる [32]．こ

の研究では，リンパ球に関する生体イメージに対し，細胞のトラッキングを行う方法

及びツールを提案している．しかし，これはリンパ球にのみ焦点を当てた研究であり，

異なる性質の対象に単純に応用することは困難である．

得られた画像そのものに関する処理だけではなく，撮影される顕微鏡に焦点を当て

た研究も存在する．Yinらは，顕微鏡から得られた画像を直接解析を行うのではなく，

位相差顕微鏡の特性をモデル化し，画像処理的に複雑な顕微鏡画像を単純な画像に変

換した [33]．これにより，閾値だけで領域分割可能な程度での単純化に成功している．
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以上に示すように，撮影対象画像の複雑性や生体組織の多様性のみならず，その画

像が得られる顕微鏡の特性といった多様な問題が存在するため，細胞画像処理におい

て，画一的な方法のみで解析を行うことは困難である．

2.4 本研究の対象

2.4.1 骨組織に関する研究の動向

本研究では，生体画像に対する画像処理技術が確立されていない分野として骨組織

に着目する．骨組織は，成熟骨組織や血管,骨髄腔といった領域加え, 骨の代謝に関わ

る破骨細胞や骨芽細胞，これらが終末分化した骨細胞の他，白血球や造血幹細胞など

様々な細胞が存在する組織である．破骨細胞は単球系細胞から分化・成熟する多核巨

細胞である．石灰質に覆われた骨組織は生体中でも最も硬い部位であり，分析を行う

ことが難しい部位の一つであった．従来は，骨の内部を観察するには固定して摘出し

た骨を切片にして観察する方法で骨組織内の細胞の形態を見たり，免疫染色による分

子発現の解析は可能であったが，生きたままでの観察が極めて困難であると考えられ

ていた．そのため，骨組織の動態について未だに知られていないことが多い．骨組織

の動態の解明により，骨の代謝に関わるリモデリング機構の解明に大きく役立つこと

が期待される．骨のリモデリング機構の異常は，骨粗鬆症や関節リウマチ等の疾病を

引き起こすことが知られており，このような疾病の解明や治療法の確立につながるこ

とが期待されている．

しかしながら，顕微鏡技術の発達により，近年この状況が変わりつつある．Ishiiら

は，低侵襲で深部まで高い時空間解像度で観察可能な二光子励起顕微鏡を用いた骨髄

の生体イメージング手法を確立した [34–36]．これらは循環血流を保ったままで観察

することが可能であるが，最も複雑であるが故に，より多くの知見が得られると考えら

れている解析方法である．この生体イメージング手法により，骨組織内の生きたまま

での状態で流出入する細胞の動きや細胞同士の相互作用を捉えることが可能となった．

二光子励起顕微鏡では，近赤外線レーザーを用いると 一般的には 1, 000µm 程度ま

で到達が可能とされているが，骨組織の場合は内部に含まれるリン酸カルシウム結晶

により励起光が散乱されやすいため，150 ～ 200µm が限界となる．Ishiiらの方法で

は，骨基質が比較的薄く骨表面から骨髄腔まで約 80 ～ 120µm で到達可能なマウス

の頭頂骨を用いることで，骨組織内部の生体画像の取得に成功した．

Ishiiらの手法を応用することで，様々な知見が得られるようになった． 例えば，破

骨前駆細胞の例が挙げられる．破骨前駆細胞は，通常時は血中と骨組織の間を出入り

しながら，必要に応じて成熟破骨細胞へ分化し，骨の吸収を行うことが知られている．
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図 2.1: 破骨細胞に関して知られている挙動

しかしながら，単球系の破骨前駆細胞が目的の骨表面にどのように到達するか，どの

ような物質によって破骨細胞の遊走や位置を決めているのかという点は従来は不明で

あった．これに対し，Ishiiらは二光子励起顕微鏡を利用して，スフィンゴシン 1リン

酸 (sphingosine-1-phosphate: S1P) と呼ばれる物質による破骨前駆細胞の遊走制御

機構を解明した [34,35]．

他の例として，Kowadaらは，pHの低下に応じて蛍光する「pH応答性蛍光プロー

ブ」を開発し，生体内における成熟破骨細胞が実際に骨吸収を行っているところを観

察した．他に，石井らは破骨細胞が「骨の表面に存在するが骨の破壊をする破骨細胞

（R型）」と 「骨の表面に存在するが骨の破壊をしない破骨細胞（N型）」の発見に成

功する [37]など，二光子励起顕微鏡を用いることで様々な知見が発見されている．

このような研究を通じてもなお，破骨前駆細胞についての正確な機序は未解明であ

る．現在は図 2.1に示すようなモデルが考えられている [38]．すなわち，破骨前駆細

胞は血管内を流れており，必要に応じて骨髄腔領域に入り込み，さらに骨を壊すよう

な要請があれば成熟した破骨細胞になり，骨を吸収する．血中を流れている S1P の

受容体には S1PR1～S1PR5 の 5 種類が知られているが，破骨前駆細胞は S1PR1 と

S1PR2が発現していることが確認されている．これらの働きにより，破骨前駆細胞は

血管と骨髄腔の出入りを繰り返し，骨を構築する骨芽細胞（図中緑の細胞）が発する

RANKL (Receptor Activator of Nuclear Factor κB Ligand) の刺激を受けて成熟破

骨細胞へと分化する．この仮説を証明するためには，二光子励起顕微鏡を用いて様々

な画像を取得し，それらの画像から得られる知見を集約して議論を行う必要がある．

そのためには，二光子励起顕微鏡から得られる骨髄腔の領域が認識できる必要がある．
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ここで，人工的に RANKLを投与し，破骨前駆細胞の挙動の変化を観測することで

RANKL との相互作用に関する動態に関する知見を得ることができると考えられる．

しかしながら，このような動態については全てを直接観測することができない．そこ

で，蛍光物質を投与した状態で二光子励起顕微鏡を用いて血管を撮影したところ，血

液が血管から破骨細胞内部に染み出す血管透過性に関与していることが確認された．

この血管透過性について定量的に議論することが可能であれば，RANKLの作用につ

いて科学的な議論が可能になると考えられる．

2.4.2 骨髄腔画像

骨組織の生体画像においても, 得られる動画像から多くの知見を得ることは可能で

あるが，科学的議論の定量化や生物学知見を得るために領域の自動認識，また対象領

域の定量化といった技術を確立することが有用である．骨組織内部の骨髄腔領域は骨

の代謝に関わる細胞が活動を行う空洞であり，生体イメージング手法で観察する際に

多くの変化が観測されるため，生物学的知見を得るために重要性が高い観測対象であ

るである．

骨髄腔画像においても，どのような現象が発見され，どの現象からどのような結論

を導くかについては模索段階である．そのため，本研究においても骨髄腔の細胞の出

入りといった特定の目的だけでなく，議論を行う際に必ず重要となると考えられる骨

髄腔領域の認識技術に焦点を当てる．認識手法を研究しその可能性を示すことで，生

物学の今後の研究の方向性を決める指針となる．

骨髄腔画像の例を図 2.2，図 2.3 に示す．励起光として近赤外線を利用した二光子

励起顕微鏡を用い，マウスの頭頂部について撮影したものである．到達可能な深さ

は 200nm 程度であるため，骨組織を観察する場合は骨が表面まで距離が短い頭頂

部が適する．蛍光顕微鏡では，蛍光物質や発光物質を利用して間接的に対象を観測す

る．図 2.2は，骨組織内に含まれる白血球の一種である顆粒球において優勢に発現す

る LysM (Lysozyme M) のプロモータの下流に，緑色蛍光タンパク質 EGFP を利用

した LysM-EGFP マウスを用いているため，顆粒球が緑色に標識されている．また，

蛍光物質である dextran conjugated-Texas Red と呼ばれる赤色で観測される蛍光プ

ローブを静脈注射したため，血管が赤色で観測されている．

一方，図 2.3は，dextran conjugated-FITC (Fluorescein Isothiocyanate) と呼ば

れる蛍光物質を血管に投与したもので，血液および血液が染み出す骨髄腔が緑色で観

測される．蛍光物質は血液中にすぐにいきわたるため明るい緑色で観測される．一方，

血管と血管の間に見られる薄い緑の領域は骨髄腔である．血管から血液が少しずつ染

み出すために投与した蛍光物質がほんの少し含まれる．また，骨組織中にはコラーゲ
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ン繊維が豊富に含まれていることから，二次高調波発生と呼ばれる現象により自家蛍

光のような光が発せられる．二次高調波発生で発せられる光は励起光の半分の波長と

なっていることから，青色域の波長となる．そのため，適当なフィルタを設置すると

骨組織を青色チャンネルで観測することが可能となる．

2.4.3 骨髄腔画像に対する画像処理

骨髄腔画像においても，一般的な蛍光顕微鏡と同様の画像処理上の困難さが存在す

る．二光子励起顕微鏡を含む蛍光顕微鏡で観測を行う場合は，蛍光物質や発光物質の

観測ができるだけであり，任意の細胞を自由に観測することはできない．また，観測

対象が単なる輝点としてしか観測できないこと，ノイズや輝度のムラ，三次元的な重

なりが存在すること，対象の細胞や領域が数多く存在する，といった多くの問題が存

在する．骨髄腔と他の組織との境界線は直接可視化することが出来ないため，観測可

能な蛍光物質を手掛かりとした推測が必要となる．このような複雑な画像から未知の

知見を得るためには，条件を変えた画像での比較を行う等の方法を用いて，研究対象

の細胞の動態を間接的に解明する必要がある．そのため，領域分割による骨組織内の

各組織の認識が必要となる．また，RANKL投与時の染み出し量の変化といった問題

を解決するには，領域分割に加えて領域内の染み出し量を定量化することで，動態を

図 2.2: 生体骨組織における骨髄腔画像 1（スケールバー：50µm）
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解明することが可能と考えられる．高精細化，多様化に伴い特定の細胞の挙動等を人

の手で分析することは現実的でないため，自動検出技術が重要となる．

2.5 本研究の位置づけ

本研究では，二光子励起顕微鏡で得られた骨組織領域の生体画像に対して，生物学と

して自動解析が重要となる骨髄腔領域の認識や定量化を行う．Bioimage Informatics

の観点からは，骨髄腔領域を分析するための手法を確立し，可能性について議論する．

また生物学的観点からは，生体イメージングにおける骨髄腔領域の動態学としての発

見を支援する手法を確立する．これらの知見は破骨細胞等これまで挙動が完全に解明

されていなかった各組織の解析を促すと共に，リウマチや骨粗鬆症といった疾病のメ

カニズムの解明や治療への応用が期待される．

自動解析技術を達成するためには，大規模化と自動化という大きく二つの課題の解

決が必要となる．一つは大規模化の課題であり，データ全てを走査し，骨髄腔を認識・

定量化する問題である．ここでの大規模化は，既存手法に対して処理速度の向上や単

位時間に処理可能なデータの容量を増やすことではなく，これまで人の手で行ってき

た大量の動画像の解析を一枚ずつ行わなずとも，大規模な対象画像に対して一律に解

図 2.3: 生体骨組織における骨髄腔画像 2
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析手法を適用し，研究者が扱えるデータ量を向上させることである．また大規模化に

より，主観的なバイアスを排除して画一的かつ統計的に数値化を行うことが可能とな

り，科学的な議論の土台を形成することができる．3章と 4章ではこの大規模化にあ

たる手法を議論する．グラフカット法という画像処理技術で一般的な手法を，骨髄腔

画像についてモデル化を行い，評価を行う．3章では専門家の判断基準をモデル化し，

骨髄腔を認識するための手法について述べ，4章では血管から骨髄腔領域への血液の

染みだし量の定量化問題について，染み出しによる時間変化をモデル化した手法につ

いて述べる．

また他方の自動化の問題は，解析手法に必要なユーザの入力やパラメータ調整を不

要とする問題である．一般的に，画像処理技術ではユーザの事前情報入力やパラメー

タ調整が必要となる場合が多い．画像セットごとに事前入力が必要となると，大規模

化により全ての動画像を解析できるとしても，ユーザの負担はある程度大きくなるこ

とが予想される．この問題に対しては，事前入力自体を骨髄腔画像という画像の特性

からある程度推定し，入力を行うという方法が考えられる．骨髄腔画像では，撮影環

境に関わらず血液の染み出しにある程度模様が見られるという点に着目し，画像特徴

の抽出が可能かどうかついて調べる．骨髄腔画像で共通の特徴は，3章や 4章といっ

た特定環境下のための手法の事前入力として利用できると考えられる．5章ではこの

画像特徴量を用いた画像処理技術における入力の自動化の手法について述べ，6章で

結論とする．

なお，本研究で用いる生体動画像のデータは，何れも大阪大学医学系研究科感染免

疫医学講座（生命機能研究科個体機能学講座）免疫細胞生物学教室で取得されたデー

タであり，共同研究のために提供されているものである．
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第 3章

専門家の評価を取り入れた領域
分割

骨組織内部に含まれる骨髄腔領域は，骨の代謝に関わる重要な器官だと考えられて

いる．骨髄腔領域が抽出可能になることで，出入りする細胞の数を数え上げること等

を通じて解明されていない細胞の動態に関する手がかりを得ることが期待される．本

章では，二光子励起顕微鏡を用いて撮影されたマウスの頭頂部の骨髄について撮影し

た細胞画像について，専門家の判断基準を取り入れた領域分割手法について述べる．

3.1 対象画像の性質

本研究の対象画像を図 3.1に示す．赤色の蛍光プローブ dextran conjugated-Texas

Red を血管に注射したため血液が赤色で示されており，緑色は白血球の一種である

顆粒球と呼ばれる細胞を蛍光タンパク質で標識したもの，中央にある無色の部分は骨

髄腔である．図 3.1はある時刻における画像の例であり，時間軸を含めて 3次元の画

像列として取得されている．この画像において，骨髄腔領域は図 3.2で示される．ま

た，図 3.3に示すように，一枚の画像に複数の骨髄腔領域を含む場合がある．この画

像では図 3.1とは異なる蛍光体が用いられている．血管を緑色の蛍光プローブである

dextran conjugated-FITC で蛍光させ，二次高調波により骨が青色で観測されてお

り，無色の部分が骨髄腔領域である．

骨髄腔領域は骨の代謝の仕組みを解明する上で重要度の高い領域であり，領域分割

の必要性が高い部位である．骨髄腔領域は直接観測できないため，血管領域の認識等

を通じて間接的に特定する必要がある．しかしながら，図 3.1や図 3.3に示される通

り，それぞれの領域の輝度は一様ではないため，単純に輝度を用いて骨髄腔領域の領

域分割を行うことは難しいと考えられる．また，人が判断する場合には時間経過によ



22 第 3章 専門家の評価を取り入れた領域分割

図 3.1: 生体骨組織における骨髄腔画像（スケールバー：50µm）

図 3.2: 生体骨組織における骨髄腔画像の骨髄腔領域（スケールバー：50µm）

る血液の流れなど，様々な情報を考慮した総合的な領域分割が可能であるが，単純に

輝度値のみを用いる画像処理技術では領域分割を行うことは困難である．

3.2 画像領域分割に関する既存手法

画像処理の分野で提案されている一般的な画像領域分割手法について議論する．2

つの領域の境界線を連続に追跡する動的輪郭モデルとして Snakes [39] や Level Set

Method [40,41] と言われる方法が提案されている．これらはノイズに対して頑強な境

界の追跡法として広く用いられている．Snakesは対象空間を複数の領域に分け，領域
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図 3.3: 生体骨組織における骨髄腔画像（スケールバー：100µm）

の境界線を時連続的に最適化を行う方法である．Level Set Method は検出する境界

を一次元高い補助関数のゼロ等高面をみなし，補助関数を進行させて次々とゼロ等高

面を切り出すことで，トポロジ変化に対応した輪郭の追跡を実現する．Snakesは分離

や結合などの位相変化への対応が困難であるが，Level Set Method はこの問題に対

処可能である．

Level Set Method を応用した例として，蛍光顕微鏡で撮影された細胞群を追跡す

る Dzyubachykらの手法が挙げられる [42]．Level Set は適用可能範囲に制限がある

ため，蛍光顕微鏡画像でのセルトラッキングの場合に対して最適化を行った方法を提

案している．他の応用例として，心臓の左心室を形状を利用して認識し，Level Set

Method を拡張してトラッキングを行う方法も提案されている [43]．

一方で，コンピュータビジョンや画像処理の多くの問題を，エネルギー最小化の問

題として解決する手法としてグラフカットが挙げられる．この手法を用いた様々な応

用が提案されており，画像領域分割にも応用が可能である [44,45]．動的輪郭モデルで

は，一般に初期値に応じて結果が異なるのに対し，グラフカット法は劣モジュラ性と

呼ばれる条件を満たす場合には，大局的最適解が得られることが示されている．また，

計算コストの面でも優れており，さらに拡張が容易であることから，領域分割のみな

らず画像復元やノイズ除去，ステレオ，テクスチャ合成，フォトモンタージュなど幅
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広い問題に応用されている．

グラフカットの応用の一つとして，二次元の時系列の画像データを空間な三次元画

像である時空間ボリューム（spatio-temporal volume）とみなして領域分割を行う方

法が提案されている [46]．この方法では，長時間の動画像において全てのフレームの

全ての画素に対して直接グラフカットを行うことは計算コストが高いため，画素のク

ラスタリングを用いて情報を間引く方法である．一方で，形状に関する事前知識を利

用するグラフカットも多数提案されている．その一例として，成平らは肝臓領域の領

域分割に関して解剖学的形状特徴を取り入れ，事前入力の自動化等の工夫を通して自

動化や認識精度の向上を確認した [47]．また，グラフカットを医用画像に応用した研

究として，Held らがmacrophage spreadingの評価に用いた例がある他 [48]，Kleiner

らは三次元偏光画像に対して二次Markov Random Fieldとグラフカットを用い，曖

昧な神経線維のオリエンテーションの分類を行った [49]．

上記に示すように，Level Set Method は心臓の動きやセルの動きなどトポロジや

位相変化を含む動態の領域分割や境界追跡手段として広く応用されている．また，グ

ラフカットは静的な二次元画像や三次元画像等に対して低い計算コストで領域分割が

可能であり，大域的最小解が得られ，拡張が容易であることから，様々な方面で応用

されている．

3.3 骨髄腔領域の分割に対するアプローチ

本研究が対象とする細胞画像に対する領域分割アルゴリズムとしては，空間的かつ

時間的連続性を考慮でき，また 2クラスの認識問題を扱うため，大域的最小解が得ら

れるグラフカットが最適であると考えられる．グラフカット法及びグラフカット法を

応用した Boykovらの領域分割手法 [46]の詳細に関しては付録 A及び付録 Bで議論

を行うが，グラフカット法ではデータ項と平滑化項からなるエネルギー関数を定義し，

最小化を行うことで最適解を得る．最小化問題は双対問題であるグラフの最大流量を

求める問題に変換できるため，エネルギー関数に対応するグラフを定義し，最大流量

アルゴリズムを用いて最小解を得る．Boykov らの画像領域分割法では，各ノードを

それぞれの画素としたグラフを定義し，各ノードが前景か後景かを出力する．データ

項は画素ごとに前景と後景への分類されやすさに関する事前情報を，また平滑化項は

隣接する画素同士が同じラベルになりやすさを定式化する．データ項の事前情報は，

前景・後景それぞれの代表点をユーザに入力させ，入力した地点は hard-constraints

と呼ばれ，絶対的に正しい情報として扱う．それ以外の点においては前景，後景それ

ぞれについて入力した画素を代表点として計算される輝度値の発生確率に基づくモデ

ルが用いられている．
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Boykov らの手法では輝度値のみを用いるため，対象画像のような複雑な輝度の変

化に対応できないと考えられる．また，細胞画像の特徴として挙げられる血液の流れ

や時間経過による特徴変化などは考慮されない．さらに，画像ごとにシード入力が必

要となるため，大量の画像処理を行う際に逐次シード入力を行うのは現実的ではない

と考えられる．しかしながら，グラフカット法では各画素ごとに前景らしさ，後景ら

しさを定義することができるデータ項を自由に設計可能である．すなわち，データ項

に対して細胞画像の特徴をモデル化を行い，定式化することが出来れば，既存手法の

問題点が克服可能であると考えられる．

データ項の定式化には，細胞画像の特徴をモデル化することが必要となる．そこで，

専門家が骨髄腔領域の分割の際に用いる判断基準を考慮することで，認識精度を挙げ

ることが可能になることが考えられる．また，同じ環境で撮影された異なる画像への

領域分割に対応するため，従来手法で必要であった画像単位のシードを作成する手間

を軽減することを考慮する．本手法では，hard-constraintsに対応する概念として尤

度関数を導入し，ユーザが与えるシードを用いてその撮影環境における尤度関数のパ

ラメータを推定する．これにより，同一条件で撮影された異なる画像に関しても同一

のパラメータを利用することが可能となり，画像単位でのユーザの入力は不要となる．

隣接する画素間で輝度値が近いノードに同じラベルを割り当てる役割を果たす平滑

化項については，細胞画像の特徴を考慮しても既存手法が有効であると考えられるた

め，既存手法と同一のモデルを用いる．

3.4 提案手法

3.4.1 専門家による骨髄腔領域分割の判断基準のモデル化

専門家が骨髄腔領域を認識する際の基準を以下に述べる．

判断基準 1 血液の流れていない部分（図 3.2中央の暗い部分）でおおまかな骨髄腔の

領域を判断する

判断基準 2 血液の色（図 3.2の赤い領域）を利用して判断する

判断基準 3 骨髄腔と血管の境界線が不明確な場合は，時系列画像内で血液の流れで

判断する

以上の判断基準から，グラフカットのデータ項に対するモデル化を考える．これらの

判断基準は実際に専門家に領域分割を行ってもらうことで得られた知見である．次に，

それぞれの判断基準のモデル化方法について議論する．
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判断基準 1と判断基準 2については基本的には血液の輝度を用いて判断されている

ため，輝度値の利用が有効と考えられる．また，血液の輝度は一様でなく，染色され

ていない細胞などを含んでいるため，空間的に細かく変化している．輝度値だけでは

このような変化の影響を受けるため，空間的な輝度の変化も考慮する必要がある．す

なわち，骨髄腔領域と血管領域の濃淡の変化が空間的に異なることを考慮すればよい．

判断基準 3の血流のある領域とは，図 3.2の場合，赤い領域の濃淡が一定の方向に移

動している領域である．血流の有無が判断に用いられているが，流れる方向は重要で

ないと考えられる．そのため，判断基準 3に対しては時間的な輝度の変化を考慮する

ことが有効だと考えられる．以上から，エネルギー関数のデータ項には，Boykovらが

用いている輝度値に加え，空間方向の輝度の変化，時間方向の輝度の変化をさらに考

慮する．

空間方向の輝度の濃淡の変化については，方向の影響を受けずに定量化できるラプ

ラシアンフィルタを用い，時間方向の輝度の変化は画素ごとにフレーム間差分の総和

を求めることで算出する．フレーム間差分の総和は次のように定義する．

D(t+ 1) =
∑
i,j∈V

|B(i, j, t+ 1)−B(i, j, t)| (3.1)

n−1∑
t=1

D(t+ 1) =
n−1∑
t=1

∑
i,j∈V

|B(i, j, t+ 1)−B(i, j, t)| (3.2)

ここで，t はフレーム，B(i, j, t) は t の血液の色の輝度値のみからなるイメージであ

り，i, j は対象画像における画素の座標 i, j である．D(t)は t時の前フレームとの差

を表す．対象としている生体画像は，二光子励起顕微鏡で生きたままの生体を観測し

ているため，脈の動きによるブレや，人的な影響によるズレが起こることが考えられ

る．式 3.2はフレーム間で位置のズレが無い仮定で定義しているため，前処理として

このズレを解消するため画像に対してレジストレーションを行う．

3.4.2 シード入力

Boykovらの領域分割手法では，事前情報としてユーザに hard-constraintsと呼ば

れる背景，後景それぞれの代表点を入力させ，その点を基準に領域分割を行うような

データ項を定義する．シードは画像ごとに入力が必要となる．本手法では，同一環境

で撮影された画像間でのシードの入力を不要とするため，ユーザが与えるシードを用

いてその撮影環境における尤度関数のパラメータを推定する．シード入力を行った全

ての点に対して，エネルギー関数のデータ項に取り入れる輝度値，空間方向の輝度の

変化，時間方向の輝度の変化それぞれに対して確率分布を求め，混合ガウス分布と仮
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定して尤度関数を求める．シード入力は前景，背景それぞれについて入力し，尤度関

数も前景と背景それぞれについて求める．データ項では，Boykov らの手法のシード

を利用した定義の代わりに尤度関数を利用する．

3.4.3 エネルギー関数の決定

以上全てを考慮してエネルギー関数のデータ項を決定する．Boykov らの手法と同

様に，前景（骨髄腔領域）と後景（骨髄腔ではない領域）に対してデータ項をそれ

ぞれ定義する．前景の輝度，ラプラシアンフィルタ，フレーム間差分の値 Ip, Fp, Bp

を用いた前景の尤度関数をそれぞれ，PfR(Ip|θfI)，PfF(Fp|θfF )，PfB(Bp|θfB)とす
る．θfI , θfF , θfB は前景の各尤度関数のパラメータである．後景についても同様に

θbI , θbF , θbB に対する尤度関数を PbR(Ip|θbI)，PbF(Fp|θbF )，PbB(Bp|θbB) とする．
各尤度について重み係数 λR と λF，λB を用いて，前景のデータ項を

gfυ(Xυ) = λR ·PfR(I(Xυ)|θfI)+λF ·PfF(F (Xυ)|θfF )+λB ·PfB(B(Xυ)|θfB) (3.3)

と定義する．ここで，Xυ は画像中の座標である．後景のデータ項も同様に後景のパ

ラメータを用いて次のように定義される．

gbυ(Xυ) = λR ·PbR(I(Xυ)|θbI)+λF ·PbF(F (Xυ)|θbF )+λB ·PbB(B(Xυ)|θbB) (3.4)

提案手法におけるシード入力からデータ項決定までの流れを図 3.4に示す．

また，平滑化項は Boykovらの手法 [46]と同様の式を用いる．

hpq(lp, lq) =

{
0 (lp = lq)

c · exp
(
− (Ip−Iq)

2

2σ2

)
· 1
d(p,q) (lp ̸= lq)

(3.5)

ここで，隣接する画素 p, q に対する配置を lp, lq とする．また c はエネルギー関数に

占める平滑化項の重みであり，任意の値である．σ も任意の値であり，隣接画素間の

輝度差をどの程度許容するかを指定する．d(p, q) は画素 p, q 間の距離を表す．

本手法では，画像に含まれる情報のうち血液の流れのみを判断として用いているた

め，血液チャンネルを抽出して用いる．例えば，図 3.1の例では，血液チャンネルは

赤であるため，平滑化項やデータ項で使われる画素の値は赤色チャンネルの画素値と

する．

最後に，提案手法の流れを以下に示す．

1. データへの前処理
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図 3.4: 前景シード入力のストロークからデータ項のエネルギー関数生成までの流れ

• 画像のレジストレーション
2. 撮影環境毎の事前準備：撮影環境における尤度関数のパラメータの推定

• 前景と後景それぞれのユーザによるシード入力
• シードで与えられた画素の分布から尤度関数のパラメータを推定

– 輝度値から PfR(Ip|θfI)及び PbR(Ip|θbI)を生成
– ラプラシアンフィルタから得られた値から PfF(Fp|θfF ) 及び

PbF(Fp|θbF )を生成
– 血流モデルから算出された値から PfB(Bp|θfB) 及び PbB(Bp|θbB) を
生成

3. 骨髄腔領域の画像領域分割
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• 撮影環境ごとに生成された尤度関数のパラメータを入力
• グラフカットのパラメータを調整して前景，後景の領域分割

3.5 提案手法の実装

3.5.1 ストロークによるシード入力

シード入力のためのマウスストローク入力は，Microsoft 社の Windows 7 に標準

搭載のペイントを用いた．図 3.5に前景と後景へのストロークの入力例を示す．

3.5.2 骨髄腔画像におけるレジストレーション

本研究では，画像処理支援環境 ImageJ [51] のプラグインとして実装されている

Turboreg [52]と Stackreg [53] を用いて画像の位置合わせを行った．

3.5.3 グラフカットのデータ項のエネルギー関数

グラフカットの実装には，MathWorks 社の MATLAB R2013b 及び Image Pro-

cessing Toolbox，Statistics Toolboxを用いて行った．ただし，最大流量を求める処理

には，mex を利用してMATLAB 上から Boykov らの C言語の実装である maxflow

3.01 [54] を利用した．

ラプラシアンフィルタを用いた境界線抽出

ラプラシアンフィルタを用いる際，カーネルの大きさが問題となる．骨髄腔領域

と血管領域の境界線がはっきりとしている部分を情報として取得したい．そのため，

(a) 前景のためのストローク (b) 後景のためのストローク

図 3.5: 骨髄腔画像におけるストローク入力の例（いずれもスケールバー：50µm）
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カーネルが大きい場合，骨髄腔領域と血管領域の境界線部分においてフィルタ処理を

行った場合，その境界線とは離れている部分の画素に影響を受けて，境界線における

濃度の変化という情報を十分に得られないことが考えられる．そこで，本研究では

経験的に，5×5 のカーネルサイズに設定し，標準偏差を 0.5 とした．以上の処理は

MATLAB上で行う．その結果得られたフィルタ行列Mを式 3.6に示す．

M =


0.0448 0.0468 0.0564 0.0468 0.0448
0.0468 0.3167 0.7146 0.3167 0.0468
0.0564 0.7146 −4.9048 0.7146 0.0564
0.0468 0.3167 0.7146 0.3167 0.0468
0.0448 0.0468 0.0564 0.0468 0.0448

 (3.6)

血液の流れ具合のモデルの正規化

式 3.2の血液の流れ具合のモデルから算出される値は制限が無く，色の変化の度合

いが激しい部分は値がより大きくなり，そうでない部分との差が広がる一方である．

混合ガウス分布の推定において軸を無制限に取ることは推測の精度を下げる原因とな

ることが考えられる．MATLAB 上で画像は 8bit 整数である 0 から 255 の範囲で輝

度値が表されており，他の尤度関数である輝度値とラプラシアンフィルタは，0から

255までの値を取る．従って，式 3.2から得られた値を 0から 255に正規化する．

ストローク入力からの EMアルゴリズムを用いた分布推定

ストローク入力から得られた画素の位置情報から分布を推定する際は，収束の安定

性と欠損値に対してロバストな EMアルゴリズムを用いて，混合ガウス分布の推定を

行う．ストロークから得られた前景と後景のそれぞれの値は，0から 255の範囲に存

在する．混合数はおおむね推定可能であった 2とした．

3.6 評価実験

提案手法に対し，骨髄腔画像の領域分割の精度評価，グラフカットを用いた従来法

との比較評価の 2つの評価実験を行った．図 3.7に対象画像の一例を示す．この図で

は緑が血液であり，青い領域は骨である．また，図中の白い線で囲まれた領域は専門

家の手によって得られた骨髄腔領域である．この図のように，画像中には複数の骨髄

腔領域が存在し，各領域には図中の番号のラベルが付けられている．本実験では，そ

れぞれの骨髄腔領域に対してストロークによるシード入力を行い評価を行った．また，

評価のための真値は専門家が画像に対して手動で直接領域分割を行ったものを用いた．
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(a) 輝度値の分布　　　　　 (b) 分布の推定結果　

図 3.6: 図 3.5の前景ストロークの輝度の分布

3.6.1 抽出精度

図 3.2 の画像に対して本手法を用いて骨髄腔の抽出を行った結果を図 3.8 に示す．

それぞれのパラメータは図中に示す通りである．図 3.2の抽出結果の適合率と再現率

を表 3.1に示す．本研究では適合率及び再現率はそれぞれ式 3.7, 式 3.8のように定義

した．図 3.8 (a), (b) の結果から，パラメータの中でも血流の重みを大きくすること

で精度が得られることがわかる．この結果を元にそれぞれのパラメータを変化させ，

図 3.8 (c)のように調整すると精度が得られる．すなわち，骨髄腔領域の抽出には時間

的な変化が重要であり，提案手法は Boykovらの手法のデータ項にこれを加えたこと

で骨髄腔領域の抽出精度が向上していると言える．パラメータの選定には本実験以外

にも様々なデータで様々なパラメータを試しており，その中で最も良いと思われるパ

ラメータを用いる．

適合率 =
抽出した骨髄腔で正解の中に含まれるピクセル数

抽出した骨髄腔の全ピクセル数
(3.7)
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画像番号 2 画像番号 3

画像番号 4 画像番号 5

図 3.7: 評価実験に用いた骨髄腔画像 （スケールバー : いずれも 100µm）

再現率 =
抽出した骨髄腔で正解の中に含まれるピクセル数

正解の骨髄腔の全ピクセル数
(3.8)

表 3.1: 図 3.8の適合率と再現率

再現率 [%] 適合率 [%]

図 3.8 (a) 83.7 96.2

図 3.8 (b) 81.9 96.9

図 3.8 (c) 85.6 97.2
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(a)

σ = 1, c = 100,

λR = 1, λF = 1,

λB = 10

(b)

σ = 1, c = 100,

λR = 1, λF = 1,

λB = 1000

(c)

σ = 10, c = 1500,

λR = 100, λF = 100,

λB = 10000

図 3.8: 骨髄腔領域の抽出結果

3.6.2 既存手法との比較

Boykovらの手法のデータ項は，画像単位で位置入力を必要とする hard-constraints

及び輝度情報を用いている．本実験では提案手法に対して，Boykov らの hard-

constraints と輝度を用いた場合 (比較手法 1) および hard-constraints を用いず，輝

度情報のみを利用した場合 (比較手法 2)と比較する．すなわち，画像ごとにシードを

与える必要があるが精度を高めることができる比較手法 1と，画像ごとのシードは必

要としない点では提案手法と同一であるがデータ項に工夫を行わない比較手法 2との

比較を行う．また，hard-constraintsは画像ごとにユーザが直接真値の一部を入力す

る性質のものであるため，比較手法 1は詳細な情報を与えれば与えるだけ真値に近づ

く．そのため，比較実験においては，提案手法とこれらの既存手法には同じマウスス

トロークによるシードの入力を用いることとし，シード入力に用いた画像での比較を

行うこととした．すなわち，Boykov らの手法ではストロークをそのままシードとし

て用いる一方，提案手法ではストロークからデータ項のパラメータ推定を行い，その

結果を利用して領域分割を行う．

処理時間の比較

まず図 3.2に関する処理時間について表 3.2に示す．表中の θR, θF , θB はそれぞれ

θfR と θfR，θfF と θbF，θfB と θbB 両方を示すものとする．CPUとして Intel Core

i7 4770Kを内蔵し，Microsoft Windows 8上で動作する端末を用いて測定を行い，10

回の処理の平均値を求めた．各パラメータの推定は特性により処理時間が大きく異な

り，グラフカットに関しては他の手法と大きく変わらない結果となった．λB の推定に

大きく時間がかかっているが，これは全てのフレームの差分を求める処理の計算コス

トが高いためであると考えられる．推定処理全体で 22.11秒であるが，同一条件の大

量の測定データを一括解析する際には一度推定を行うだけでよいので，実用上問題な
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いと考えられる．グラフカットの処理時間に関しては，提案手法は他の比較手法と比

べ 10%程度遅い．これは，提案手法と比較手法で平滑化項とグラフ構造が Boykovら

の比較手法と完全に同一であるため，データ項が複雑になった計算量の差であると言

える．いずれにせよ，最も計算コストの高いエネルギー関数の最適解を得る処理時間

は変わらないため，データによらず Boykovの手法の場合に比べて大きな速度低下は

無いと言える．

抽出精度の比較

図 3.2の骨髄腔画像に対して骨髄腔を抽出した結果を図 3.9，図 3.10に示す．これ

らの結果から，Boykovらの手法では骨髄腔領域が他の領域と繋がってしまい，抽出す

ることはできなかったが，本研究の提案手法では抽出できていることが分かる．

提案手法と Boykovらの手法を比べると，Boykovらの手法では右上の領域の抽出に

失敗している．また，左下では骨髄腔でない領域を誤検出しており，その結果他の領

域と繋がってしまっている．このことから，提案手法では既存手法の輝度値に血液の

動きをデータ項に加えた結果，画素値だけでは認識が困難な部分の抽出が可能になっ

たと考えられる．

図 3.2と図 3.7の合計 5つの時系列骨髄腔画像に対して実験を行った．骨髄腔の数

は合計で 30である．なお，本実験に関連するこれら骨髄腔ごとの詳細なデータは付録

A.1に記載した．他の骨髄腔領域と繋がらずに抽出できた場合に抽出に成功したとし，

骨髄腔の抽出に成功した数を表 3.3に示す．提案手法が 80.0%の骨髄腔領域の抽出に

成功し，比較手法 1では 70.0% ，比較手法 2では 53.3% であった．提案手法でのみ

分割に成功した骨髄腔における評価を表 3.4に示す．これら結果から，提案手法は比

較手法に対して安定して骨髄腔領域を抽出できていると言える．なお，骨髄腔領域に

おける細胞動態の解析に対して実用上求められる抽出率の基準は，現段階では知られ

表 3.2: 図 3.2に関する処理時間の平均 [s] （上段）と分散（下段）

θR 推定 θF 推定 θB 推定 グラフカット

提案手法 6.66 1.82 13.63 3.12

0.0569 0.0063 0.0627 0.0025

比較手法 1 2.81

0.0002

比較手法 2 2.84

0.0061
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σ = 10, c = 100, λR = 10

図 3.9: 図 3.2の画像に Boykovらのグラフカット (比較手法 1)を用いた結果

ておらず，今後の分析内容にも依存する．骨髄腔の抽出率が高いほど撮影されたデー

タを有効利用できるため，分析を効率よく進めるためにもさらなる改善が求められる．

表 3.4の対象画像の列は (画像番号)-(骨髄腔領域のラベル番号)である．この結果から

他手法では抽出できない場合でも抽出精度は低下しないことがわかった．

成功した領域分割の再現率と適合率の平均を表 3.5に示す．これらの結果から成功

した領域分割の再現率の平均は全体的に大きな差は見られなかった．提案手法の再現

率が比較手法に比べて 17.5% 低かった画像番号 5-1 の例を図 3.11 に示す．図 3.11

(a) は画像番号 5 の画像全体で，5-1 を含む拡大領域を赤い四角で示している．(b)，

(c) はそれぞれの手法の拡大領域における真値との比較結果である．その結果，従来

手法に比べ，提案手法では血管領域を広めに（骨髄腔を小さめに）抽出していたこと

表 3.3: 骨髄腔領域の分割に成功した数

抽出率 [%]

提案手法 80.0

比較手法 1 (Boykov w/ HC) 70.0

比較手法 2 (Boykov w/o HC) 53.3
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σ = 10, c = 100, λR = 10

図 3.10: 図 3.2の画像に Boykovらのグラフカット (比較手法 2)を用いた結果

が分かった．それ以外の例においても提案手法の再現率が小さかった場合は同様の傾

向が見られた．これは，血流のパラメータを加えたために，境界付近の動きがある領

域を血管領域と判断したためと考えられる．比較手法は全体的に骨髄腔内部でも誤検

知を多く含む傾向も見られたが，提案手法ではそれが無かったために，平均としては

大差がない結果になっていると考えられる．また，適合率は全ての手法で高かったが，

その中では提案手法が最も低かった．適合率が高かった理由としては，図 3.11にも示

されるように，比較手法も含めて全体的に骨髄腔の領域が小さく認識される傾向があ

表 3.4: 提案手法のみで分割に成功した骨髄腔領域の評価

対象画像 再現率 適合率 (σ, c, λR, λF , λB)

1 85.6 97.1 (10, 1500, 100, 100, 10000)

3-1 96.6 96.6 (10, 100, 100, 100, 10)

3-3 96.5 73.3 (10, 100, 100, 100, 100)

3-5 80.4 98.6 (10, 50, 1000, 100, 100)

5-12 72.7 98.6 (10, 5, 100, 10, 50)

平均 85.8 91.2 -



3.6 評価実験 37

(a) 画像番号 5と (b) 提案手法 (c) 比較手法 1, 2

拡大領域 （同一の結果）
（色分けは TP 白，TN 黒，FP 緑，FN 赤）

図 3.11: 画像番号 5-1 の真値と抽出結果の比較

るためであると考えられる．提案手法の適合率が低かった理由としては，比較手法で

は認識に失敗したが，提案手法でのみ成功した例の再現率に適合率が比較的低いもの

が存在しており，その値が全体の平均に影響を与えていることが挙げられる．一方で，

骨髄腔領域から何らかの医学的知見を得るためには骨髄腔の領域分割結果に対する分

析が重要となるが，骨髄腔そのものの存在が認識できない場合は分析対象にすらなら

ない．この事実を考えると，実用上は抽出率が重要であって，適合率や再現率の小さ

な低下は大きな問題とはならないと言える．

領域抽出の再現率が 80% を越えている対象画像の数について表 3.6に示す．提案手

法は再現率 80% 以上の領域分割に 14例成功しており，比較手法 1では 13例，比較

手法 2では 8例であった．分割に成功する割合は提案手法が高く，再現率 80% の領

域分割は Boykovらの手法と大きな差は見られなかったが，hard-constraintsを用い

ない比較手法 2は大きく劣る結果となった．このことから，提案手法は画像単位での

入力が必要な hard-constraintsを用いていないにも関わらず，用いている場合と同程

度以上の性能を実現していることが分かる．

また，本手法で抽出に失敗した例に関して，比較手法 1で成功しているが本手法で

失敗している例については 3例あり，比較手法 2で成功しているが本手法で失敗して

表 3.5: 成功した領域分割の再現率の平均

比較手法 1 比較手法 2 提案手法　

平均再現率 80.0 79.1 78.6

平均適合率 97.9 98.4 95.7
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いる例は存在しなかった．前者の 3 例のうちの一つを図 3.12 に示す．図 3.12 (a) が

骨髄腔領域の抽出結果であり，(b)が対象の画像列である．図 3.12の真値は図 3.7の

画像番号 5のラベル付けされた領域であるが，図 3.12の各所で抽出した骨髄腔領域が

他の骨髄腔領域と繋がっていることがわかる．また，画像列から，細い隙間を血液が

流れており，比較的血流の時間的な動きが少ないことがわかる．他の 2例についても

同様であり，輝度値での判断が困難で血液の動きが僅かである画像に対しては，提案

手法では抽出に失敗することがわかった．

最後に表 3.7に，評価実験に用いた全ての対象画像について，それぞれの手法に対す

る再現率，適合率を示す．対象画像の列は (画像番号)-(骨髄腔領域のラベル番号)であ

り，領域分割に失敗したものは空欄とする．また，それぞれの分割に用いたパラメー

タの一覧を表 3.8に示す．ここでも，パラメータを調整したが領域分割に失敗した場

合は空欄とする．

3.7 結論

本章では，二光子励起顕微鏡を用いて撮られた生体骨組織における骨髄腔画像を対

象とした，骨髄腔領域認識のための手法を提案した．本手法では，骨髄腔分割におい

て，生体画像の性質や専門家の判断基準を考慮し，グラフカットのエネルギー項の設

計を行い，骨髄腔画像に適した分割を行った．以上の提案手法と従来のグラフカット

との比較評価を行った結果，提案手法は一般的に用いられる Boykovらのグラフカッ

トよりも安定して骨髄腔領域を抽出できることを示した．また，提案手法はユーザの

クリックやストロークで入力されたシードの位置による制約を用いずとも Boykov ら

のグラフカット以上に安定して骨髄腔領域の抽出ができるため，大量の画像を処理に

する場合に適しているといえる．提案手法が分割に失敗する骨髄腔領域の特徴として，

輝度値での判断が困難であり，骨髄腔の周りの血液の流れが僅かであるものだった．

この問題に対して，血管領域に行き止まりは無い，つまり，血液は止まることなく流

れているというという情報を新たに組み込むことで改善できるのではないかと考えら

れる．一方，提案手法はデータ項に複数の画像処理の結果を用いているため，それぞ

れの重みを決めるパラメータの調整が必要である．今後の課題として，これらのパラ

表 3.6: 再現率 80%で抽出した骨髄腔領域の数

比較手法 1 比較手法 2 提案手法　

抽出数 13 8 14
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メータを自動的に決定する手法の開発等があげられる．
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(a) 抽出した骨髄腔領域

（σ = 1, c = 1, λR = 1000, λF = 1, λB = 10000）

(b) 時系列画像の一例 （スケールバー : 100µm）

図 3.12: 骨髄腔領域の抽出に失敗した例
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表 3.7: 評価実験の全結果

対象 比較手法 1 比較手法 2 提案手法

画像 再現率 適合率 再現率 適合率 再現率 適合率

1 85.55 97.15

2-1 72.56 99.92 82.77 83

2-2 72.82 93.61 77.54 95.36

2-3

2-4 71.91 95.82 76.73 96.08 81.98 92.58

2-5 56.18 99.75 56.18 99.75 75.34 96.7

2-6 63.98 99.16

3-1 96.64 96.57

3-2 70.44 100 71.55 99.49 74.89 99.88

3-3 96.49 73.31

3-4 88.88 91.7 95.54 89.87

3-5 80.39 98.6

3-6 93.53 98.72 92.97 99.05 85.59 95.22

3-7 86.88 98.92 86.88 98.92 84.48 98.44

4-1 87.43 99.73 80.32 99.96

4-2 88.3 98.98 88.49 98.97 84.57 99.89

4-3

4-4 71.91 98.87 71.91 98.87 64.35 99.86

5-1 76.84 99.89 76.84 99.89 59.34 99.46

5-2 89.54 98.59 89.54 98.59 88.53 95.43

5-3

5-4 80.99 99.93 63.74 99.94

5-5 82.04 97.02

5-6 85.14 99.09 85.14 99.09 74.77 99.93

5-7 63.29 99.57 63.29 99.57 50.27 99.89

5-8 85.81 98.15 85.81 98.15 81.49 99.28

5-9 88.92 92.05 86.13 92.35 87.14 91.99

5-10 90.32 97.4 82.54 97.69 61.24 96.5

5-11 84.96 99.66

5-12 72.73 98.57

平均 80.01 97.93 79.1 98.43 78.57 95.72
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表 3.8: 評価実験の全パラメータ

対象 比較手法 1 比較手法 2 提案手法

画像 (σ, c, λ) (σ, c, λ) (σ, c, λR, λF , λB)

1 (10, 1500, 100, 100, 10000)

2-1 (10, 100, 20) (10, 30, 10, 10, 400)

2-2 (1, 100000, 20) (10, 25, 200, 100, 500)

2-3

2-4 (1, 100000, 20) (10, 100, 10) (10, 100, 500, 100, 300)

2-5 (10, 100, 10) (10, 100, 10) (10, 10, 100, 100, 200)

2-6 (10, 100, 10)

3-1 (10, 100, 100, 100, 10)

3-2 (10, 100, 10) (10, 70, 10) (10, 100, 1000, 10, 1000)

3-3 (10, 100, 100, 100, 100)

3-4 (10, 100, 10) (10, 10, 1500, 100, 100)

3-5 (10, 50, 1000, 100, 100)

3-6 (10, 100, 10) (10, 100, 50) (10, 5, 1000, 100, 200)

3-7 (10, 100, 10) (10, 100, 10) (10, 1, 5000, 150, 300)

4-1 (10, 100, 10) (10, 1, 100, 10, 100)

4-2 (10, 100, 10) (10, 150, 10) (10, 1, 100, 10, 100)

4-3

4-4 (10, 100, 10) (10, 100, 10) (10, 1, 100, 10, 100)

5-1 (10, 100, 10) (10, 100, 10) (10, 1, 200, 10, 200)

5-2 (10, 100, 10) (10, 100, 10) (10, 1, 100, 10, 100)

5-3

5-4 (10, 100, 10) (10, 1, 100, 10, 100)

5-5 (10, 100, 10)

5-6 (10, 100, 10) (10, 100, 10) (10, 10, 100, 10, 100)

5-7 (10, 100, 10) (10, 100, 10) (10, 5, 100, 10, 100)

5-8 (10, 100, 10) (10, 100, 10) (10, 5, 100, 10, 100)

5-9 (10, 100, 10) (10, 100, 100) (10, 0, 1, 0, 0)

5-10 (10, 100, 10) (10, 100, 100) (10, 1, 50, 10, 300)

5-11 (10, 100, 10)

5-12 (10, 5, 100, 10, 50)
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第 4章

血液染み出し量の定量化

本章では，3章と同じく二光子励起顕微鏡で得られたマウス頭頂部の細胞画像に対

して，血管から骨髄腔への血管透過性の定量化手法について述べる．骨組織内を流れ

る血液は,血管中を流れるだけでなく骨髄腔領域にも染み出しており，この血管透過性

は RANKL の量により染み出しの挙動が変化していることが知られている．これは

破骨前駆細胞の動態解明の手掛かりとされている．血液中には破骨前駆細胞が流れて

おり，血液と共に骨髄腔領域に染み出し，骨芽細胞が放つ RANKL により成熟破骨細

胞に分化する．破骨前駆細胞は直接観測が出来ない細胞であるため，間接的な手がか

りから挙動を分析することが求められる．ここで，血管中に人工的に RANKL を投与

することで染み出し量を変化させることができ，生体イメージング技術を併用するこ

とで変化量について観測することが可能である．染み出し量の差は破骨細胞の挙動に

関係していると考えられるため，骨髄腔の認識を行った上で染み出し量を定量化する

ことが出来れば染み出し量を元にした破骨細胞の挙動に関する統計的かつ科学的議論

が可能となる．

染み出し量の定量化は，血液が骨髄腔に染み出す速さであると考えられる．そこで，

蛍光物質を血管に投与し，間接的に血液の流れや骨髄腔領域への血液の染み出し量を

可視化することにより，染み出しの速さを観測することが可能である．染み出しによ

る骨髄腔の輝度変化を定量化することができれば，染み出し量変化に関わる科学的な

議論ができるようになると考えられる．

4.1 問題設定

本研究で対象とする生体画像は，二光子励起顕微鏡を用いてマウスの血管内に

RANKLと蛍光物質 FITCを投与して撮影を行い，時系列画像として取得したのもの

である．人工的に様々な量の RANKLの投与を行い，染み出し量の変化について定量
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図 4.1: 時間経過による生体画像の移り変わり（左から右へ時間が経過）

化することが目的となる．蛍光物質 FITCは，画像中に緑色チャンネルに現れる．ま

た，骨組織中にはコラーゲンの繊維が豊富に含まれているため，自家蛍光が行われて

青色チャンネルで撮影される．蛍光物質は血液中を流れるため，結果的に血管が明る

い緑として観測される．同時に，血液は FITCと共に徐々に骨髄腔内にも染み出すた

め，図 4.1に示すように骨髄腔内も時間の経過とともに緑色に染まっていく．

血管透過性の評価は，血管から骨髄腔へどの程度血液が染み出しているかを数値化

する問題であると考えることができる．これを実現するためには，得られた生体画像

から骨，血管，骨髄腔の領域分割を行う必要がある．本研究ではこれを画像領域分割

技術を用いて解決することを試みる．骨の部位は独立したチャンネル（青）に現れる

ためこの部位の分離はチャンネル分割で分離可能であるが，同じ緑色で表される血管

および骨髄腔領域については領域分割が必要である．骨髄腔領域の切り出しに成功し

た場合，その輝度の変化量から血管透過性の指標値とすることが可能になる．

この血管と骨髄腔の領域分割において，対象となる時系列画像は次の性質を持つ．

1. 輝度値の高い領域は時間と共に変化する．初期画像では血管の領域が高輝度で

あるが，徐々にその骨髄腔にも輝度値の高い領域が広がる．

2. 血管内には蛍光物質を含まない細胞などが流れており，初期画像で黒い領域が

必ずしも骨髄腔の領域とは限らない．

3. 生体画像であるため，観測対象の動きなどによりフレーム間で振動する場合が

ある

すなわち，初期フレームのみを用いて血管領域の領域分割を行うだけでは不十分であ

り，フレーム全体を用いて血管領域の領域分割を行う必要がある．また，空間的かつ

時間的連続性を考慮する方法がよいと考えられる．
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図 4.2: 二次元グラフカットの例 (1)

図 4.3: 二次元グラフカットの例 (2)

4.1.1 二次元グラフカットの応用

単純にある時刻における二次元画像を取り出して従来のグラフカットを行った例を

図 4.2と図 4.3に示す．共に，赤く目印をつけた領域について領域分割に失敗してい

る．図 4.2 の例では，4.1 節で示した性質（２）により，血管中を流れる細胞が暗く

映ったために領域分割に失敗している．また，図 4.3は 4.1節の性質（１）に対応す

る例で，時間が経過して右下の骨髄腔の領域も緑に染まり始めたデータに対して領域

分割を行った結果である．グラフカットのパラメータを調整しているが，それでも誤

認識が含まれてしまっている．この結果から，与えられた画像列全体に対する最適化

が必要である．
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4.2 アプローチ

骨髄腔領域の認識を行う点においては，専門家の判断基準を用いる手法と同一の目

的である．そのため，領域分割に用いる議論やアルゴリズムなどは同様の議論となる

ため省略する．一方で，意図的に蛍光物質を血管中に投与し，染み出しを起こさせた

変化量を測定するという条件が専門家の判断基準を用いる手法と異なる．染み出しに

よって時間と共に血管領域と骨髄腔領域の輝度値が近づいていくため，輝度を用いた

判断が難しくなっていく．そのため，輝度変化に対してロバストな手法が求められる．

また，時間と共に条件が変わっていくという点において，時間方向への変化を考慮す

ることが求められる．空間的，時間的な連続性を考慮する本手法のような場合におい

ても，3章と同様の理由でグラフカット法が有効であると考えられる．

時間方向へも含めて連続性を考慮して領域分割を行うためには，時空間ボリューム

に対するグラフカットが有効であると考えられる．また，時間の経過と共に骨髄腔領

域は緑に染まり，最終的に血管領域と輝度値に差が無くなることから，単純に従来の

領域分割手法を三次元に拡張するだけでは領域分割に失敗することが考えられる．本

研究では，Boykov らの領域分割について，時系列も含めた三次元グラフを用いた三

次元領域分割法を元に，データ項，平滑化項を時間軸のパラメータ t によって輝度変

化させることでこの問題に対処する．本節では一般的なグラフカットについて示した

後，その応用方法について議論する．

4.3 提案手法におけるグラフカットの応用

本手法では，空間方向以外に時間方向にも連続を考慮するため，生体時系列画像を

時系列方向に重ねた時空間ボリュームとして扱う．これにより，時間ごとの変化をモ

デルに含めることが可能である．骨髄腔と血管の境界は直接観測されないため，血液

等を蛍光し，間接的に確認する必要がある．その際，動画像には輝度のムラや境界の

不安定さがみられる．グラフのコストをうまく設定することで時刻によらない骨髄腔

の位置を固定で出力することが可能であると考えられるが，本研究では，境界の不安

定さの影響を除外するため，まず時刻ごとに骨髄腔の位置が可変というグラフを用い

る．扱う時系列画像の規模を考慮すると，計算コスト上現実的であるので，提案する

方法では全てのフレームの全ての画素をノードとする．それぞれのフレームにおいて

空間に隣接するものの他に，時間方向の隣接も考慮する．それぞれのフレームの空間

的隣接関係として 4近傍，また，ある座標の画素において時間的に直前直後の画素を

考慮した計 6近傍での隣接関係を用いる．これをグラフとして考えた場合，図 4.4で
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s

t時間

背景

前景

図 4.4: 提案手法におけるグラフ定義

示されるグラフの最小切断を求める問題となる．画素は空間方向と時間方向に隣接す

る画素と接続されて平滑化項が定義される．また，s 及び各ノード，t 及び各ノードに

データ項が定義され，画素が切断面を境界として s（前景）か t（後景）かに分類され

る．この条件においては 4近傍の隣接条件のため，式 B.3 において隣接するノード同

士の距離を表すパラメータ d(p, q) は常に 1 となる．解析対象とする生体画像はデー

タセットによりフレーム数及び解像度は異なるものとし，以下フレーム数を T として

表す．

4.3.1 データ項の定義

データ項に関しては全てのフレームの全ての画素 pに対して，Boykovらの手法 [44]

と同様のものを用いる．ただし，ヒストグラム P(Ip|O) および P(Ip|B) はフレーム
ごとに更新される．すなわち，フレーム t ごとにシードとして与えられた座標の画素

についてヒストグラムを求める．

平滑化項に関しては，時間の経過によって骨髄腔の輝度が血管に近づくため，本手

法では時間が経過するごとに直前のフレームの領域分割結果をより尊重するように調

整する．これは，時間経過に伴って平滑化項の重みを次第に大きくすることで実現で

きるため，平滑化項の重みを示す定数 c を時間を考慮した関数 f(c, t) に置き換える．

さらに，cを始めのフレーム間の重みとし，最後のフレーム間の重みを示すパラメータ

c′(c ≤ c′) を導入し，f(c, c′, t) として表記する．

それぞれの画素について直前または直後のフレームの同座標の画素を時間方向に関
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する隣接関係とした場合，隣接する画素 (p, q) に関する平滑化項を

hpqt(lp, lq) =

{
0 (lp = lq)

f(c, c′, t) · exp
(
− (Ip−Iq)

2

2σ2

)
(lp ̸= lq)

(4.1)

とする．また，それぞれのフレームにおける空間方向の平滑化項に関しては，式 B.3

をそのまま用い，パラメータ t を考慮しない．

以上のようにして血管領域と骨髄腔領域を切り出すことで，血管，骨髄腔，骨の三

領域の抽出を試みる．骨髄腔領域に関して，輝度値の平均値を求め血管透過性の指標

値として算出する．

4.3.2 シード入力

3章で触れた通り，シード入力の方法にはクリックによる入力とストロークによる

入力が挙げられる．本手法では，データ項は Boykovらと同様の hard-constraints を

用いるため，ストローク入力を用いた場合に前景のストロークの一部が誤って後景領

域に侵入してしまった場合に強く影響を受けてしまう．また，ストロークは局所的な

領域に偏ってしまうため，適切ではないと考えられる．そこで，本研究ではクリック

による複数点入力を行うこととする．

4.4 実装

生体画像の取得は，蛍光物質 FITCを投与したマウスに対して，二光子励起顕微鏡

を用いて時系列に撮影を行う．この時，ドリフト誤差が存在する場合は時間方向の隣

接関係を考慮しているため認識精度の悪化を招くと考えられる．そのため，撮影され

た生体内の動画像に関してテンプレートマッチングによって修正する．テンプレート

は，データセットとなる時系列画像に手動で指定して補正を行う．

血管領域と骨髄腔領域は，画像中に緑色のチャンネルとして観測されるため，得られ

た画像から緑のチャンネルのみをグレイスケール画像としてグラフカットの入力に用

いる．データ項を決定するシードの指定に関してはデータセットのフレーム 1枚目の

画像をユーザに示し，前景，後景となる 50点を手動でクリック入力にて指定させる．

グラフカットの平滑化項で用いる関数 f(c, c′, t)に関して，さらに v(0) = 0, v(1) = 1

となるような平滑化項の変化の傾向を表す関数 v(x)を導入し，

f(c, c′, t) = c+ (c′ − c) · v
(
t− 1

T − 2

)
(4.2)

として表す．ただし，0 ≤ t ≤ T − 1 とした場合のフレーム t と t + 1 の平滑化項の
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重みを示す．

以上の実装には，MathWorks社のMATLAB 2012b及び Image Processing Toolkit

を用いて行った．ただし，最大流量を求める処理には，mex を利用してMATLAB 上

から Boykov らの C言語の実装である maxflow 3.01 [54] を利用した．

4.5 評価

撮影されたデータセットに対してグラフカットを用いて血管領域を抽出を行った．

評価には，二光子励起顕微鏡で撮影された生体内の時系列画像のデータセットとして，

512×512 の解像度の画像データ，15 フレームものを用いた．ただし，得られた生体

画像は完全な切断面ではなく，三次元的に取得される．そのため，骨と血管部が二次

元画像上で重なる画素が存在するなど，曖昧性が存在する．また，評価のために専門

家の手で領域分割を行った結果を真値として用いる．本手法ではフレームごとに領域

分割結果が算出されるが，後のフレームほど血管と骨髄腔の輝度差が小さくなるため，

本研究では 1フレーム目の認識結果を領域分割の結果として，手動で作成したデータ

との比較を行う．

4.5.1 グラフカットによる血管と骨髄腔領域の分離

パラメータ (σ, λ, c, c′, v)を調整して領域分割を行う．(σ, λ, c, c′) = (10, 30, 100, 200),

v(x) = x を用いて領域分割を行った結果を 図 4.5 に示す．図 4.5（右）の領域分割結

果は，正確に認識されている後景は白，正確に認識されている前景は濃い緑，フォー

ルスネガティブは明るい緑，フォールスポジティブは濃い赤を表している．それぞれ

の割合について表 4.1に示す．また，式 4.3で表される正解率は 90.3% である．この

結果によると，太い血管部分に関してはほぼ正確に領域分割されているが，細い血管

部位等がうまく領域分割されていない箇所もいくつか見受けられる．細い血管は面積

が小さいだけではなく，低い輝度で示されることもあるためさらなる工夫が必要であ

ると考えられる．

正解率 =
　　正確に認識されているピクセル数（TPと TN）　

　　画像の全ピクセル数　
(4.3)

4.5.2 骨領域の抽出と定量化

以上のようにして得られた血管領域と，骨領域を元の画像から除去する必要がある．

青のチャンネルで示されていて骨の分離については，輝度値に若干の凹凸があること
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図 4.5: 領域分割結果（左）元画像（右）認識結果

表 4.1: 領域分割結果

前景 背景

前景 TP 0.85 FN 0.15

背景 FP 0.06 TN 0.94

図 4.6: 骨領域の抽出　（左）元画像（中）青チャンネル　（右）抽出結果

を考慮して，ガウシアンフィルタによる平滑化を行い，二値化した．その結果を図 4.6

に示す．骨領域と血管領域を除く領域の面積を求め，緑チャンネルの画素の平均値を

求めて数値化を行った．

専門家によって手動で領域分割された骨髄腔領域真値により数値化を行った場合と，

本研究の骨髄腔領域抽出による数値化の比較結果を図 4.7 に示す．右軸はフレーム数

であり，縦軸は最大輝度を 1とした場合のフレームごとの平均輝度である．全てのフ
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図 4.7: 血管透過性の定量化

レームに置いて真値よりも若干低い結果が得られたが，これは血管と骨の間に存在す

る黒い領域や骨である青の画素，血管である緑の画素が現れなかった黒い画素が骨髄

腔に含まれたためと考えられる．しかしながら，真値の傾向はおおむね反映できてい

る結果となった．

4.6 結論

本章では，二光子励起顕微鏡を用いた骨組織に関する生体画像から骨髄腔領域を切

り出し，定量化を行う方法を提案した．これを実現するため，骨，血管，骨髄腔の 3

領域について，単純な分離が難しい血管と骨髄腔に関してグラフカットを用いた領域

分割法を提案した．グラフカットを用いた血管と骨髄腔の認識方法にはまだ改善の余

地はあるものの，透過性の定量化においては概ね真値に近い結果が得られた．この定

量化により，RANKLの血管透過性への影響度などの統計学的な議論が可能になると

考えられる．
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第 5章

領域分割手法のパラメータ入力の
自動化

3章と 4章で骨髄腔画像について自動的に骨髄腔領域を認識する手法，および骨髄

腔への血液染み出しを自動的に定量化する手法について述べた．これらの手法を用い

ることで，全ての動画像を追って人の手で解析する必要は無くなったものの，事前情報

としてデータセットごとに複雑なユーザの入力を与える必要がある．一般に，このよ

うなアルゴリズムにおいては，ユーザが事前情報であるシードであったり，パラメー

タの調整といった作業が必須となる．本研究で用いているグラフカット法による一般

的な領域分割の場合も，ユーザの入力としてシードが用いられる．一部の画素につい

て出力されるべき前景か背景かの情報を，ユーザに事前情報として入力させ，その情

報を元に他の領域について分割が行われる．これらの事前情報は画像列セットごとに

ユーザが画像中から必要領域を選択する形で与えるため，シードの入力は一般に数字

パラメータを調整する作業に比べて負担の大きい作業となる．本章では，これらの入

力について自動化する方法について検討する．

5.1 アプローチ

一般的なグラフカット法では，ユーザが与えたシードの位置の周辺の輝度値の連続

性を仮定し，輝度が近似している領域をシードと同一の領域とみなすような方法で領

域分割が行われる．この時，シードは座標情報としてデータ項の定式化の際に用いら

れる．座標として表される情報は他の画像列分割の際にそのまま適用できないため，

シードにより入力された点群から特徴量を抽出するなど一般化を行う必要がある．ま

た，シード入力は人の手で入力するため，一般的にはシード入力には誤りを含まない

という仮定で領域分割が行われる．一方グラフカット法では，シードをどの程度重要
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図 5.1: 時間経過による生体画像の移り変わり（左から右へ時間が経過）

視するかは定式化の際に自由に設計可能である．そのため，グラフカットの定式化に

おいてシードの重要度を適切に設計することで，シード自体に多少の誤りが含まれて

いても，入力を過信しすぎないような設計も可能である．これまで，空間的，また時

間的連続性を考慮した手法を提案してきたが，骨髄腔画像においては，それぞれの画

素から非連続的に得られる情報についても領域分割手法に組み入れることで，自動で

精度の高い手法が確立できると考えられる．

シード入力は画素ごとに前景らしさ・背景らしさを定義するデータ項で定式化・利

用される．データ項を適切に再定義することで，シードの座標情報を用いない定式化

を行ったり，画素ごとの情報をモデルに組み入れたりすることができる．本研究が対

象とする骨髄腔画像では，骨髄腔や血管などに特有の模様が見られるため，特徴量抽

出により画素ごとに骨髄腔らしさの分類ができると考えられる．この特徴量は骨髄腔

画像全体に共通する特徴であると考えられるため，3章や 4章のような特定の撮影条

件に対してモデル化を行うよりロバストであると考えられる．画像特徴量には様々な

ものがあるが，単純な画素値等だけでは認識が困難であると考えられるため，テクス

チャ認識技術を用いて画像特徴量の抽出を試みる．

5.1.1 テクスチャ認識技術

Materkaらは，テクスチャ分析手法を次のように分類している [55]．

• Structural

– 対象のテクスチャを厳密に定義されたプリミティブで表す

• Statistical

– テクスチャを一切認識せず，統計情報のみを用いて分類する



5.1 アプローチ 55

• Model-based

– フラクタル等の生成的モデルや確率論的モデルを利用する

• Transform

– 別の座標空間に変換して分類する

Structural は画像それぞれについて構造を定義する方法であり，厳密に一致するテク

スチャ等には効果を発揮するが，曖昧なものの認識は難しい．また，Model-based は，

フラクタルなどの生成的なモデルを利用し，モデルのパラメータを推定した結果を画

像解析に用いる．自然物などについては高い精度を出すことができるが，ある程度の

法則性を持つ画像にしか適用できない．Statistical はテクスチャの形状などの情報を

一切認識せず，画素に対して決められたアルゴリズムに従って分散やモーメントなど

の値を計算し，値を統計的に分類することでテクスチャの違いを認識する．

また，Transformは，テクスチャの特徴を表現する異なる座標系へと変換する手法

である．フーリエ変換は Transform に代表される手法で，信号を周波数ごと分解す

る．フーリエ変換は空間情報が大きく損なわれるためテクスチャ認識に直接用いるこ

とは困難である．局所的な周波数を得るためには，算出したい地点を中心にガウス窓

を乗じて範囲を限定し，フーリエ変換を行う短時間フーリエ変換等の手法が存在する．

しかしながら，数学的に周波数分解能と空間分解能はトレードオフの関係にあり，一

方が高くなると他方が低下する．また，テクスチャ分析に応用する際には，分解能は

分析したいテクスチャのスケールごとに柔軟に変更する必要があるが，容易ではない．

ウェーブレット変換は，時間軸情報を失うことなく，また様々なスケールに対応可能

である．また，フーリエ変換では三角関数を基底としているが，ウェーブレット変換

ではウェーブレットと呼ばれる基底関数を選択可能である．そのため，テクスチャに

適したウェーブレットを選択することで精度を高めることが可能となる．

5.1.2 ウェーブレット変換

関数 f(x) に対する二次元連続ウェーブレット変換は，

Tf (a, b, φ) =

∫
R2

f(x)
1

a
ψ̄(r−φ(

x− b

a
))dx (5.1)

ただし，

rφ =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
φ ∈ [0, 2π) (5.2)

と表される．ここで，ψ はマザーウェーブレットであり，a (a ∈ R+) はスケールパ

ラメータ，b (b ∈ R2)はシフトパラメータである．ψ̄ は ψ の共役であることを表す．
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フーリエ変換では画像全体に対するスペクトルを求める手法であるが，ウェーブレッ

ト変換ではシフトパラメータを導入することで任意の位置に対して解析が可能となる．

また，短時間ウェーブレット変換では窓のサイズを固定するため，様々なスケールの

ものに対応不可能であったが，スケールパラメータ a を導入することで様々なスケー

ルに対応可能である．さらに，三角関数ではなくウェーブレット関数 ψ を用いて変換

するため，テクスチャの特徴にあわせて様々なウェーブレットを選択することができ

る．二次元の信号においては解析する方向を定義する必要があるため，rφ が導入さ

れる．

ウェーブレット変換には離散ウェーブレット変換と連続ウェーブレット変換が存

在する．画像特徴量抽出には連続ウェーブレット変換が適する．ただし，二次元画像

データについて連続ウェーブレット変換を用いると計算量が大きくなりすぎることか

ら，処理を簡略化し，数学的に高速可能な方法を用いた高速ウェーブレット変換が用

いられる．スケールパラメータ aを固定することで，式 5.1のウェーブレット関数は

入力信号とマザーウェーブレットの畳み込みの形となるため，畳み込み定理が利用可

能となり，フーリエ変換を利用した高速演算が可能となる．スケールパラメータにつ

いて連続性が失われるが，様々なスケールパラメータを利用することで，離散的に複

数のスケールについて検査することが可能である．

5.1.3 サポートベクターマシン

画素から得た特徴量を認識する際には分類器が用いられる．サポートベクターマシ

ン (Support Vector Machine; SVM) は高い認識率と汎化能力を兼ね備えている分類

器であり，広く利用されている．SVM は教師あり学習を用いたモデルで，クラス分類

や回帰等に用いられる．2クラス分類問題は，特徴量など n次元の入力ベクトルを正

例負例それぞれについて n次元空間に配置した際，正例と負例を分離する分離超平面

を求める問題に帰着できる．分類超平面を求める際，解が複数存在する場合が考えら

れるが，汎化誤差が最も小さくなるような解が望ましい．SVMでは，訓練データと分

離超平面までの最短距離を表すマージンという概念を用い，マージンの最大化により

最適解を求める．また，線形分離不可能なサンプルの場合であっても，カーネル関数

を用いて入力空間を高次元に写像を行って線形分離することで，入力空間では非線形

となる分離にも対応することができる．最終的に訓練データ群を用いて最適な分離超

平面を求め，識別器としてデータの分類に利用する．

n次元の入力ベクトルを xとした場合，超平面は w · x + b (x,w ∈ Rn) で表され

る．この時，マージンの最大化は ||w||2 の最小化と定義される．N 個の訓練データを
x1, ...,xN とし，それぞれに対応する目標値を t1, ..., tN とした場合，マージン最大化
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は双対問題である w, b を消去した次の式の最大化として書き直される．

N∑
n=1

an − 1

2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (5.3)

ここで，k(xn,xm) はカーネル関数であり，マージンの最大化は式 5.3 を a =

(a1, ..., an)
T に対して最大化する問題となる．最終的に未知のデータを分類する

際は，ここで得られた解を用いて w · x + b を計算し，その符号により 2クラス分類

を行う．カーネル関数は様々なものがあるが，次の式で表される RBF (Radial Basis

Function) カーネルが用いられることが多い．

k(xn,xm) = − exp(−γ||xn − xm||2) (5.4)

ここで，γ は RBF カーネル関数のパラメータであり，モデルに対して最適な値を自

由に与えることができる．

また，データによっては分離超平面で全てのデータ点を完全に分離できない場合

がある．そのような場合はコストと呼ばれるパラメータを導入したソフトマージン

SVM という手法が用いられ，全てではないがより多くのデータ点を分離するための

超平面を求めることができる．ソフトマージン SVMでは，誤分類に対して罰金項を

加えた次の式を最小化する問題となる．

C
N∑

n=1

ξn +
1

2
||w||2 (5.5)

ここで，C はペナルティの大きさを表すコストパラメータであり，ξn はスラック変

数と呼ばれるパラメータで ξn ≥ 0 である．正しく分類され，かつサポートベクトル

xn 上もしくはサポートベクトルより外側にあるデータ点では ξn = 0 となり，それ以

外の場合には ξn = |tn − y(xn)| である．すなわち，サポートベクトルより分類境界
側（マージン内部）にあるが正しく分類されている点は 0 < ξn < 1，分類境界上の点

は ξn = 1，また分類境界を超えて誤分類された場合は ξn > 1 となる．データの複雑

さによってコストパラメータ C を調整することで様々なデータに対応できるように

なる．ソフトマージン SVM では，コストパラメータ C とカーネルパラメータ γ の

2つがデータに応じて調整可能なハイパーパラメータで，最適な値を探索することで

SVM の性能を高められる．
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5.2 提案手法

本研究で認識を行う領域は特有の模様はあるが，一定の構造を持つ固体ではない．

そのため，テクスチャ認識手法として Model-based な手法や Structural な手法を用

いるのは不適切である．そこで，Statisticalな特徴量としては輝度値やモーメントと，

Transformな特徴量として最も柔軟性の高いウェーブレット変換を用いるのが最適で

あると考えられる．

高速ウェーブレット変換を用いた場合，スケールパラメータ aは定数として与える

が，様々なスケールパラメータを与えることで様々なスケールに対して特徴を得るこ

とができる．n 個のスケールパラメータを用いた高速ウェーブレット変換によって，n

個の値が得られ，これら全てを特徴量ベクトルとする．さらに輝度やモーメントの特

徴量などを利用する場合は，ウェーブレットのベクトルに付け加えて全体で特徴量ベ

クトルとする．本研究では骨髄腔とそれ以外の領域の間の判定を行いたいため，2ク

ラス分類可能な機械学習の識別器として SVMを用いる．なお，全ての画素において

特徴量を計算することが望ましいが，計算量との兼ね合いでランダムな点を複数抽出

して特徴量とした．全てのデータセット，フレームごとにランダムな点を複数抽出し，

それぞれの点の特徴ベクトルを求めた後，SVMを用いて学習・識別を行う．

5.2.1 ウェーブレットによる特徴量

血流や模様の方向等に有益な特徴があることも考えられるが，本研究では方向性を

考慮しない特徴量を用いることとした．そのため，ウェーブレット変換に与える角度

φについては，複数の角度について計算し，全ての結果について足し合わせる．m 個

の角度を考慮する場合，角度を均等に扱うためには k = 1, 2, ..,mとして φk = 2πk/m

それぞれの結果について足し合わせる．また，データセットごとに単位距離ごとの画

素数が異なるため，特徴量を算出するためにはスケールパラメータを実際のスケール

に応じて対応させる必要がある．そこで，ウェーブレット関数に入力されるスケール

a には，データセット D における長さ 50µm の画素数を PD を乗算して正規化を行

う，以上を考慮して，本研究では次のウェーブレット関数を用いる．

Tf (a, b) =
m∑

k=1

∫
R2

f(x)
1

a · PD
ψ̄(r−φk

(
x− b

a · PD
))dx (5.6)

ウェーブレット変換により得られたウェーブレット係数のうち, 絶対値を取ったもの

を特徴量として用いる．用いるマザーウェーブレット ψ 及びスケール a等のパラメー
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タは様々なものを試し，結果のよい特徴量の探索を行う．

5.2.2 モーメントによる特徴量

座標 (x, y) の画素値を f(x, y) とした場合，画像の (p+ q) 次のモーメント Mpq は

次式で定義される．

Mpq =
∑
i

∑
j

ipjqf(i, j) (5.7)

ここで，i, j はモーメントを求める範囲を表す変数である．本研究では，座標ごとに

特徴量を求めるため，特徴量を求める座標を中心とした矩形範囲を抜き出し，モー

メント特徴量として利用する．すなわち，d は矩形領域の範囲の画素数を表す場合，

x − d ≤ i ≤ x + d, y − d ≤ j ≤ y + d とする．以上の式から，特徴量として機能す

ると考えられる指標として，M10,M01,M20,M11,M02 の 5次元のベクトルを付け加

える．

5.2.3 SVM の最適化

SVM はハイパーパラメータの調整によって性能を高めることができるため，カー

ネルパラメータ γ 及びコストパラメータ C を最適化する．また，SVM では訓練集合

により結果が変わるため，本手法では交差検定を行う．ランダムなハイパーパラメー

タを与えて交差検定を行い，その値を基準に局所的に最も損失が小さいパラメータを

探索する．パラメータの大域的最小解を得ることは困難であるため，初期値をランダ

ムに変更しながらパラメータの探索処理を繰り返し，最終的な性能が最も高かったも

のを識別器として出力する．

5.3 実装

本研究では，3章で用いたものと同一のデータセットを用いる．3章と同様，撮影さ

れた蛍光物質は単一チャンネルに現れるため，蛍光物質が撮影されている緑チャンネ

ルを取り出し，グレイスケールの画像として処理を行う．

提案手法の流れを以下に示す．

• ウェーブレットの種類，スケールパラメータなどを決定する
• データセットの区別なく，データ中の全ての画像それぞれについて下記の処理
を行う

– 画像に対して式 5.6で示される高速ウェーブレット変換を求める
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画像番号 1 画像番号 2

画像番号 3 画像番号 4

図 5.2: 評価実験に用いた骨髄腔画像（スケールバー : いずれも 100µm）

– 画像ごとにランダムな点を複数選び出し，その点における特徴ベクトルを

算出する

– 全ての特徴ベクトルのデータを結合して訓練データを作成する

– 交差検定のためにデータを分割する

– SVMのハイパーパラメータを最適化するため，2つのパラメータそれぞれ

に 15通りのランダムな初期値を生成する

– パラメータそれぞれについて交差検定を行い，損失を求める

– それぞれのパラメータ初期値の地点から勾配に沿って損失が最小となる局

所最小解を探索する
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図 5.3: 専門家により作成された真値の例（画像番号 2）

– 15 通りのうち，最も損失の小さいものを SVM のパラメータとして決定

し，最終的な識別器として出力する

ここで，(x, y) に対するモーメントは，広すぎると局所性が失われるため範囲を表す

変数 d = 10 とし，x − 10 ≤ x ≤ x + 10及び y − 10 ≤ y ≤ y + 10の領域において

算出する．また，用いる φは π/4ごとに 8方向とし，前述の通りこれらを足し合わせ

る．SVM に用いるカーネルは RBF カーネルとした．交差検定の分割数は大きくす

ると計算量が増加するため，精度の兼ね合いから 15とした．また交差検定の損失は誤

判別数を利用し，ハイパーパラメータの局所最小解を求めるために Nelder-Mead の

シンプレックスアルゴリズム [56]を用いた．なお，ランダムに生成するハイパーパラ

メータは，これらが正の値である必要があるため C, γ 共に exp(z) として求めた．こ

こで，z は標準正規分布からサンプリングした値である．

以上の実装には，MATLAB R2014a を用い，画像処理には Image Processing

Toolbox，SVM には Statistics Toolbox，またウェーブレット変換には Wavelet

Toolbox を用いた．

5.4 評価

評価実験では，3章で用いた画像セットのうち，骨髄腔領域を複数含む 4セットを

用いた．これらは，スケールとフレーム数がそれぞれ異なっている．それぞれ先頭の

フレームと骨髄腔の位置を表したものを図 5.2に，データの詳細を表 5.1に示す．ま

た評価対象として，これらの画像それぞれについて専門家が手動で領域分割を行った

データを真値として用いる．画像 2に対する真値の例を図 5.3に示す．

これらについて本手法を適用して識別器を出力する．この識別器を用いて，改めて

データセットごとに予測を行い，データごとの出力を得る．本手法で得られた画像の
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表 5.1: 評価実験に用いた骨髄腔画像の詳細

画像解像度 フレーム数 骨髄腔の数

画像番号 1 752×752 7 6

画像番号 2 1,059×1,000 15 6

画像番号 3 958×1,000 22 4

画像番号 4 1,001×1,000 13 12

うちの一例を図 5.4（左）に示す．得られた識別器から，画像番号 2に対して提案手

法を適用した結果である．また，識別器を全てのフレームについて適用し，それらを

重ね合わせたグレイスケール画像となっている．ウェーブレットに sinc ウェーブレッ

トを用い，ベースとなるスケールパラメータには (3, 5, 8, 10, 15)を用いた場合の例で

ある．特徴ベクトルとしては輝度値等を用いず，スケールパラメータのみからなる 5

次元の特徴ベクトルを用いた．なお，高速ウェーブレット変換に用いる sincウェーブ

レットのフーリエ変換 ψ̂ は次式で表される．

ψ̂(ωx, ωy) = [sinc(Ax(ωx − ω0x))sinc(Ay(ωy − ω0y))]
p (5.8)

ここで，(ωx, ωy)はスケールパラメータ aにより決定される角周波数，Ax, Ay, ω0x,

ω0y (∈ R)，また p ∈ (0,∞)は任意のパラメータである．ここでは，Ax = Ay = p = 1,

ω0x = ω0y = 0の例である．

真値との比較を行うと，骨髄腔の領域をおおむね反映していることが読み取れる．

特に，図 5.3の青い領域で示される部分は，本手法適用時には除外されている骨領域

であるため，輝度による判断がつきにくい部分である．しかしながら，おおむね骨の

領域には反応せず，骨髄腔のみが検出される結果が得られた．一方で，骨髄腔と血管

の境界付近に誤検出が多く見られる．図 5.4（右）のように元画像の血管と重ね合わ

せたところ，骨領域のエッジ部分が認識されていることが分かった．以上ことから，

画像処理のエッジ検出などの技術を組み合わせることで精度の向上することが考えら

れる．

次に，モーメントとガウスウェーブレットを用いて学習し，画像番号 4に適用した

例を図 5.5に示す．ベースとなるスケールパラメータには (1, 2, 4, 8, 16)を用いた．ガ

ウスウェーブレットのフーリエ変換 ψ̂ は次式で表される．

ψ̂(ωx, ωy) = (iωx)
p exp(− (σxωx)

2 + (σyωy)
2

2
) (5.9)

ここで，(ωx, ωy)はスケールパラメータ aにより決定される角周波数，σx, σy(∈ R)，
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図 5.4: 画像番号 2に対する本手法の例（特徴量として sinc ウェーブレット, スケール

パラメータ (3, 5, 8, 20, 25) を利用） （左）本手法の認識結果（右）血液チャンネル

に重ねたもの

図 5.5: 画像番号 4に対する本手法の例（特徴量としてガウスウェーブレット，スケー

ルパラメータ (1, 2, 4, 8, 16)とモーメントを利用）（左）真値（右）本手法の認識結

果

また p ∈ (0,∞)は任意のパラメータで，全て 1を用いた．この例では主にエッジのみ

が検出されてしまい，骨髄腔の認識に失敗している例である．モーメントの情報を加

えたことで，主にエッジの認識率が上昇したが，骨髄腔と骨領域はほとんど正しく判

断できない結果となった．以上のことから，骨髄腔を認識するための血液染み出しの

模様を検出する手法は，ウェーブレットの選択及び特徴量の選択を工夫することで成

功する場合があるが，選択を注意深く行う必要があると言える．
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5.5 結論

本研究では，二光子励起顕微鏡を用いて得られた骨髄腔の生体画像を対象画像とし，

時系列画像の時間関係の考慮が不要なウェーブレット変換をベースとした特徴抽出手

法について検討した．また，特徴ベースの手法を用いた提案手法を用いることで，画

像の特徴を抽出できている例を示した．今後の課題として，様々なウェーブレットに

よる比較評価，また定量的評価を行い，膨大なパラメータ間から対象画像に適した手

法を探索する必要がある．また離散ウェーブレットを用いた特徴抽出との比較等も挙

げられる．本研究の最終目標には骨髄腔の領域分割を目的としているが，本研究の

ウェーブレットによる位置抽出情報を用いて，輝度情報等を元に領域分割を行うグラ

フカットに組み入れる等の方法を用いることで，より精度を上げられると考えられる．
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第 6章

結論

本論文では，生体イメージング技術で取得される生体動画像のうち，二光子励起顕

微鏡によって取得された骨組織における生体画像を取り上げ，大規模化，自動化とい

う二つの観点から研究を行った．本章では，本論文の統括としてまとめを行った後，

今後の展望について述べる．

6.1 本論文のまとめ

1章では研究背景として，蛍光顕微鏡技術，蛍光タンパク質技術といった革新的な

生体イメージング技術の進展により生物学的な発見のプロセスを大きく変えているこ

と，観測技術向上により計算機による自動解析技術が重要になってきていることを議

論した．また，生体イメージング技術で取得される動画像には，従来の画像処理技術

をそのまま適用することが困難であり，多様な観測対象に対して画一的な手法で全て

の観測対象を認識することができないことを述べた．本論文では，自動解析技術が確

立されていない観測対象として骨組織の生体画像を取り上げ，大規模化・自動化の観

点から研究行うことを述べた．

2章ではさらに背景や関連研究の動向について述べた．画像撮影技術の進展や生体

イメージング技術の土台となる蛍光顕微鏡技術や蛍光タンパク質技術の概要と生命

学的見地における重要性を述べた．また，生物学では細胞等の個別の要素をそれぞれ

に取り出して解析する方法から，それぞれの要素がどのように相互作用しているかと

いった観点に移りつつある現状に対して，生体イメージング技術が重要な位置を占め

ることも議論した．そして，生体イメージング技術の発達に伴って，計算機による自

動解析技術が重要となっていること，一般的な画像処理技術を適用する際の問題点を

述べ，新たな研究の必要性から Bioimage Informatics と呼ばれる分野が確立しつつ

あることを述べた．さらに，生物学的な見地から骨組織とその生体画像に関する概要
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と不明点，また研究の必要性について議論し,大規模化と自動化の二つの観点から研究

を行うことを述べた．

3章では，大規模化に関する研究として，骨髄腔の認識について専門家の判断基準

を取り入れた領域分割手法を提案した．専門家の評価基準を，一般的な画像処理技術

であるグラフカット法のエネルギー関数のデータ項としてモデル化することで，従来

手法では対応しきれない細胞画像特有の問題点の解決した．また，同一条件の画像に

対してシード入力を不要とするための尤度関数の推定を行った．実験として提案手法

と従来法とを比較し，提案手法が安定して骨髄腔を認識できていること，また提案手

法が大規模化に適していることを示した．

4 章では，骨髄腔領域への血液の染み出しについて定量化を行う方法を提案した．

RANKL投与時の破骨細胞の動態は蛍光顕微鏡で撮影可能な蛍光物質によって間接的

に観測されるため，染み出し量の定量化により破骨細胞の動態について数値的な議論

が可能となる．提案手法では，血液の染み出しが時間変化していく点に着目し，時間

方向にも辺を持つ時空間ボリュームを利用して染み出し現象のモデル化を行った．こ

のモデルをグラフカット法のエネルギー関数のデータ項に取り入れ，骨髄腔領域を認

識すると共に，骨髄腔領域の輝度変化を染み出し量として定量化を行った．実験では，

提案手法が専門家が手作業で分類した真値の場合と比較し，定量化が正しく行われて

いることを示した．

5章では自動化の問題に対して，ユーザの負担の大きい事前情報の入力を自動化す

るため，画像の特徴量抽出を用いて骨髄腔領域を認識する手法を提案した．提案手法

では，対象画像に特有の模様が見られることに着目し，モーメントやウェーブレット

変換の特徴量を用い，画素ごとに特徴量抽出を行い骨髄腔領域を分類した．実験の結

果，適切に特徴量を選択することで，ある程度骨髄腔領域を特定することができ，ユー

ザのシード入力の代替になる可能性が示された．骨髄腔に見られる模様は撮影環境に

関わらず見られるため，3章や 4章の手法にも適用可能であると考えられる．

本研究を通じて，骨組織における生体画像に対して様々な観点から研究を行い，二

光子励起顕微鏡で得られた骨組織領域の生体画像に対して，自動解析が求められてい

る領域の認識や定量化について手法を確立し，それぞれの章で評価により有効性を示

した．

6.2 今後の展望

本論文では，大規模化，自動化という二つの観点から研究を行い，それぞれについ

て有効性を示してきた．しかしながら，それぞれの手法について改善可能な点が挙げ

られる．
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本研究全体を通じて，提案手法では生体画像中に含まれる輝度の情報を主に用いて

きた．輝度値は用いる蛍光物質や撮影環境でも変化するため，よりロバストな手法を

確立するためにはカメラや蛍光物質も含めた系でモデル化を行うことが必要である．

また，定量化手法においても単純な輝度の変化を定量化したため，議論の土台として

用いることは可能であるがより正確な定量化が可能であると考えられる．

また，シード入力は一般にユーザが与える事前情報としては負担の大きいものであ

り，本研究の成果によりユーザの負担は軽減されたことを示したが，シード以外にパ

ラメータの調整が必要な箇所も存在する．パラメータが選択できることで最適な解に

近づけることが可能になる反面，パラメータが多いと最適な解を探すことが困難にな

る問題が挙げられる．シードに加え，最適なパラメータを自動選択する手法を確立す

ることで，よりユーザの負担を減らすことができると考えられる．

4章では，時間ごとに骨髄腔の位置が変化する可能性のあるモデルを用いた．理想

的には時間ごとに骨髄腔の位置が異なる出力が行われるるよりも単一の結果が得られ

る手法が望ましい．今後の課題として染み出しについて骨髄腔の位置が固定されるよ

りよいモデルを考える必要がある．

5章では特徴量抽出を用いて骨髄腔の分類を行い，シードとして用いる可能性につ

いて議論した．ここで得た知見を元に領域分割を行うグラフカットに実際に組み入れ

ることが必要である．グラフカット法のシードの代替として本研究の知見を利用する

場合にも様々なモデルが考えられるため，精度の高い手法を確立するためには最適な

モデルに関するさらなる研究が必要である．
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付録 A

グラフカット概要

グラフカットは，様々な問題をエネルギーの最小化という枠組みで捉える手法で

ある [57]．グラフカットのアルゴリズムは 40 年以上前から知られていた [58] が，

1980年代後半に画像処理に導入され，二値のノイズ除去問題において大域的最小解を

得ることが示された [59, 60]．その後，ノイズ以外の問題にも応用されるようになっ

た [61–63]．具体的には，ビジョンや画像処理，グラフィックスの分野において，画像

復元，ステレオ，セグメンテーション，動画像解析，テクスチャ合成等様々な用途に

用いられている．

エネルギー関数の最小化問題は一般には NP 困難であることが知られている [64]．

エネルギー最小化の他の手法として，反復条件付き最大化 Iterated Conditional

Models [65]や疑似アニーリング法 [66]等の近似解法が利用されてきた．前者は局所

最小解に落ち込む可能性が高く，また後者は処理時間の問題が考えられる．グラフ

カットでは，二値の場合には劣モジュラ性と呼ばれる条件を満たす場合等に，多項式

時間でエネルギーを大域的に最小化できることが示された [67]．

グラフカットでは，エネルギー関数のそれぞれの項に対応する対応するグラフを仮

定し，エネルギー関数の最小化をグラフの最小切断問題に置き換えることができる．

さらに最小切断問題は，最大流問題の線形計画法における双対にあたり，最大流最小切

断定理 [68, 69]により最大流を求める問題と一致する．最大流問題を多項式時間で解

くアルゴリズムは多数知られており，Ford らの augmenting path アルゴリズム [69]

や Goldberg らによる push-relabel アルゴリズム [70, 71]等があるが，Boykovらは

前者の手法を改良した手法 [72]を提案しており，高速であることが知られている．こ

れらのアルゴリズムを利用することで，間接的にエネルギー関数の大域的な最小解が

得られる．
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付録 B

グラフカットを用いたセグメン
テーション

Boykov らは，グラフカットを応用した画像の代表的なセグメンテーション法を提

案した [44]．この手法では，画素等を表すサイトの集合に対して，それぞれのサイト

にラベルを割り振る問題に置き換える．サイトへのラベルの配置に対してエネルギー

関数を定義し，その最小化問題に置き換えて解を得る．

一般に，サイトの有限集合を V とする場合，ラベル L の配置 X : V → L に対す

るエネルギー関数 E(X) は次の式で表される．

E(X) =
∑
υ∈V

gυ(Xυ) +
∑

(u,v)∈E

huv(Xu, Xv) (B.1)

ここで，E ⊂ V × V はサイト間の隣接を表し，(u, v) ∈ E において u, v は隣接し

ている．この時，配置 X に対してサイトの因子のみで決まる gυ(Xυ) を含む第一項

は一般にデータ項，またサイト間で X に与えられるラベルの関係により定義される

huv(Xu, Xv) を含む第二項は平滑化項と呼ばれる．サイトの集合やラベルの集合，さ

らにデータ項や平滑化項を表す関数 g, h は問題に応じて柔軟に定義できるため，幅広

い応用が可能である．具体的には，問題に対応するマルコフ確率場（Markov Random

Field, MRF）を定義し，データ項や平滑化項に対応する辺に重みを持たせる．

この方法ではグレイスケール画像 I(i, j) に関して，後景と前景を表すラベル

L = {0, 1} の配置を行う．ラベルが二値の場合には劣モジュラ性を満たすため大域的
最適解を得ることが可能である．この方法ではサイトを画素とし，それぞれのサイト

に対応したノード，source (s) と sink (t) と呼ばれる特殊なノードからなるグラフを

定義する．また，ノード s とノード t からそれぞれの画素ノードへの辺としてデータ

項を，隣接する画素同士の辺として平滑化項を表現する．グラフの最小切断を行った

後，切断面より s 側に存在する画素ノードは後景を，t 側に存在する画素ノードを前
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ユーザによるシード指定とヒストグラム

景としてラベルの配置を行う．

データ項には，各画素の輝度値が後景らしさ，前景らしさを計算する関数を指定す

る．具体的には，図 B.1に示すように，あらかじめユーザに複数の後景・前景の点を

入力として与え，この情報をシードとしてデータ項に作用させる．この図の例では，

赤い点がユーザの前景として選択した点を表し，白い点が背景として選択した点を表

す．ユーザが後景・前景として指定した点はそれぞれに分類されるような関数を定義

し，その他の点はシードとして選択した点群のヒストグラムを元に関数を決定する．

画素 p に対して前景として与えられたシードである場合を p ∈ O，後景として与えら

れたシードである場合を p ∈ B とし，O ∩ B = ∅ である．この時データ項として，
p ∈ O に対する辺 {p, s} の重みを K，辺 {p, t} の重みを 0 とする．同様に，p ∈ B

に対する辺 {p, s} の重みを 0，辺 {p, t} の重みを K とする．ただし，

K = 1 +max
p

∑
q

hpq (B.2)

である．ここで，hpq は後に示す平滑化項の重みであり，式 2の定義によってシード

として与えられた画素のデータ項は隣接する画素との平滑化項よりも必ず大きくなる．

この一番高いエネルギーを hard-constraints と呼び，この制約は，分割に強い影響を

持つ．ユーザが前景・後景として選択したピクセルに高いエネルギー関数を設定する

ことを，強い制約を持たせると定義する．一方で，p /∈ O ∪B に対する辺に関しては，
前景と後景それぞれシードで与えられた画素のヒストグラム P(I|O) および P(I|B)
を取り，{p, s} の重みを −λ ln P(Ip|O)，辺 {p, t} の重みを −λ ln P(Ip|B) とする．λ
はエネルギー関数に占めるデータ項の重みであり，任意の値である．以後，この制約

を弱い制約と述べる．この定義により，結果としてユーザがそれぞれ前景・後景とし

て選択した画素は前景・後景として，それ以外の画素はシードのヒストグラムから前

景らしいものを前景に，後景らしいものを後景にラベル付けを行いやすくする．この
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ヒストグラムによるエネルギーの計算方法は，このシードの入力から得られたヒスト

グラムに出現しない値は，全て同じエネルギーとして判断され，輝度値の値がシード

で指定した点群の輝度と近い場合でも，ヒストグラムに一度も現れない輝度値の点は

輝度値が離れている点と同一のエネルギーが定義されてしまうことが起こる．

Boykovらは平滑化項として，

hpq(lp, lq) =

{
0 (lp = lq)

c · exp
(
− (Ip−Iq)

2

2σ2

)
· 1
d(p,q) (lp ̸= lq)

(B.3)

を利用する．ここで，隣接する画素 p, q に対する配置を lp, lq とする．また c はエネ

ルギー関数に占める平滑化項の重みであり，任意の値である．σ も任意の値であり，

隣接画素間の輝度差をどの程度許容するかを指定する．d(p, q) は画素 p, q 間の距離を

表す．この定義により，σ で制御された画素の輝度差が近いものに関して，同じラベ

ルが割り振られやすくなる．
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