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0. Introduction

In this note we consider fibrations of the form F—E —B where all spaces
involved have the homotopy type of pointed connected CW-complexes. Well-
known work on the plus-construction (for algebraic K-theory, et al) reveals the
following situation concerning when E— B induces an isomorphism of homology
groups with trivial integer coefficients.

Theorem 0.1 [4]. The following are equivalent.
(i) Fis acyclic;
(il) Hy(E)—Hy(B) is an isomorphism, and m(B) acts trivially on Hy(F).

We focus here on a dual problem of when Hy(F)—Hy(E) can be an iso-
morphism. In general, mere acyclicity of B does not suffice, as evidenced by
the following.

ExampLE 0.2. Let Re>—Fr—>G be a free presentation of a finitely generat-
ed acyclic group G, with Fr of finite rank. By passing to classifying spaces we
obtain a fibration as in the first sentence above. If G is non-trivial, then it is
well-known that the rank of Re and H(Re) exceeds that of Fr and H(Fr)
[13 1 §3].

Here is the counterpart to Theorem 0.1.

Theorem 0.3 [8]. The following are equivalent.
(i) B is acyclic, and 7\(B) acts trivially on Hy(F);
(ii) Hy(F)—Hx(E) is an isomorphism.

However we shall now show how it is possible to remove the hypothesis
of trivial fundamental group action (orientability) in favourable circumstances.
We thereby derive assumptions under which acyclicity of B implies that
Hy(F)—>Hy(E) is an isomorphism for all fibrations involving the given F, E and
B. The price is a further condition, either on B or on F. For the former ap-
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proach we use our previous work [9]. While the arguments there are adequate
to apply to regular coverings, for more general fibrations we introduce the con-
cept of a fundamentally torsion-generated (ftg) space B.

1. Conditions on the base: fundamentally torsion-generated spaces

We define a space B to be fundamentally torsion-generated if it admits a
map

VK(n,1)— B
finite
inducing on fundamental groups an epimorphism

7 —>» my(B)

whose domain is a free product *=z of finite groups z. In particular, 7z,(B) is
a torsion-generated group. Indeed, a group G is torsion-generated if and only
if its classifying space K(G, 1) is ftg. Evidently the class of ftg spaces also
includes all simply-connected spaces. It is easily seen to be closed under finite
unions whose intersections are connected (by the Seifert-van Kampen Theorem),
direct limits and finite products.

In this work we are interested in acyclic ftg spaces. We now indicate
some classes of examples of these.

ExampLE 1.1. Let 4 be an abelian group which is an R-module for some
torsion ring R. (For example, 4 could be any bounded abelian group [12 (120.8)].)
Let A be a dense ordering with first and last elements. Then the group
M(A, (R, A)), with centre A, constructed in [6] is both acyclic and torsion-
generated, so that its classifying space is acyclic and ftg.

ExampLE 1.2. Let G be a group which is the quotient of some acyclic
torsion-generated group N. Then the map K(N, 1)-K(G, 1) lifts to Dror’s
acyclic space AK(G, 1) [4 ch. 7], which we claim is also ftg. This is because
U=n(AK(G, 1)) is the universal central extension [4 ch. 8] of G. So any
epimorphism N—U->G has U=ImN. &(U). Since U=[U, U], this makes

N—U surjective as required.

Note from Example 1.1 that any bounded abelian group is (naturally) the
centre of the fundamental group of an acyclic ftg space. If we abandon func-
toriality then this result generalizes to any abelian group, as follows.

Proposition 1.3. Let A be any abelian group. Then there exists an acy-
clic ftg space X such that A=Z (n\(X)).

Proof. Using [3 Lemma 7], we start with a group G, whose abelianization
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is A and whose higher homology vanishes. As in [2 p. 17], G, may be embedded
in an algebraically closed group L, say. Let G, be the free product of two
copies of L with the subgroup G, amalgamated. Since by [2] L is acyclic, G,
has a single nonzero homology group, namely 4 in dimension two. In parti-
cular, G, is perfect. Also, L is simple by [13 Theorem 8.2] (since for nontrivial
groups the notions of algebraically closed and existentially closed coincide).
From the algebraic closure property, L must contain elements of (any) finite order.
So, from simplicity, L is torsion-generated. Hence G, is torsion-generated
too.

Now apply Quillen’s plus-construction to K(G,, 1) to form the simply-
connected space K(Gj, 1)* [4 ch.5]. Again, it has no homology in dimensions
higher than 2, making it homotopy equivalent to its 3-skeleton. Then for any
finite cyclic group z, any homomorphism z— G, induces

K(r, 1) = K(G,, 1) > K(G,, 1)*

which must be nullhomotopic, by [15 Thm A]. So K(z, 1)=K(G,, 1) lifts to
the acyclic fibre X=UJK(G,, 1) of K(G,, 1)=>K(G,, 1)*. Since G, is torsion-
generated, we obtain V K(z, 1)—X which on fundamental groups induces a sur-
jection *z—z,(X)—G,. The argument given in Example 1.2 shows that *z—
m(X) is already surjective, as required. []

Next we show how to associate an acyclic ftg space to any space.

Proposition 1.4. Given any space X there exists an (aspherical) acyclic
ftg space Y and f: X—Y such that f induces an injection of fundamental groups.
Moreover, there exists a universal such Y having this property with respect to all
finite CW-complexes.

Proof. Given an acyclic torsion-generated group L in which z,(X) em-
beds, one may simply take the obvious composition f: X— K(=,(X), 1)>K(L, 1)
=Y. In general, one can choose L to be an algebraically closed group, as
above. However, when X is finite, z,.X is finitely presented, in which case L
may be taken to be the universal finitely presented acyclic torsion generated group
constructed in [10 Theorem 6]. [

Recall from [4 Chapter 7] that any space X has a canonical cover by a space
X, whose fundamental group is isomorphic to the maximum perfect subgroup
Pry(X) of m(X), and further, the fibre X, of the canonical map X,—
K{(Hy(X;),2) has as fundamental group the (superperfect) universal central
extension of Pz (X). Thus the next result associates a ftg space to any given
space in an especially nice way.

Proposition 1.5. Let X be a space with superperfect fundamental group.
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Then there exists a ftg space Z and g:X—Z such that g induces an injection of
fundamental groups and an isomorphism of all homology groups.

Proof. Again consider Dror’s acyclic space AX and the map d: AX—X
which induces an isomorphism on fundamental groups. Now apply (1.4) with
respect to AX to obtain an acyclic ftg space Y and f: AX—Y with z,(f) in-
jective. Define Z and g: X—Z from the following pushout diagram.

JXLY

Ll

Then the claimed properties of g follow. []

2. Conditions on the base: the main result

To state our result we recall that a space F is of finite type if each of its
homology groups is finitely generated. (If we use a universal coefficients argu-
ment in the proof below then we require only the weaker property whereby
each H,(F) is of finite rank at all primes p—-including 0-, or equally H,(F; £) is
finitely generated for each 7 and each prime field 4.)

Theorem 2.1. Let B be a fundamentally torsion-generated space. The fol-
lowing are equivalent.
(i) B s acyclic;
(i) for amy fibration F—E—B with F of finite type, Hy(F)—Hx(E) is an iso-
morphism.

Proof. Since by Theorem 0.3 above (i) is a consequence of (ii), we are
left with the derivation of (ii) from (i). It suffices, by Theorem 0.3 again, to
establish orientability. By hypothesis, each of the automorphism groups
Aut(H,(F)) is residually finite [13 IV (4.8)]. 'Therefore any nontrivial element of
the image M of z,(B) in Aut (H,(F)) maps nontrivially to some finite quotient
Aut (H;(F))/N and so maps nontrivially to the finite quotient Q=M/(M N N)
(=MN|N) of z(B). Hence it suffices to establish the triviality of any finite
quotient Q of zy(B) (thus, with O embeddable in some GL,(C)). Using the
canonical map B—K (7,(B), 1) and the hypothesis on B, we are therefore led to
consider «

K(z, 1) - B — K(=(B), 1) > K(Q, 1) > BGL(C)

with # finite, Q linear and B acyclic, and K(Q, 1)>BGL(C) induced from the
given embedding. Because BGL(C)=BU is simply-connected, any map from
B to BGL(C) factors through the contractible plus-construction B* of B [4 ch. 5],
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making z—(Q—>GL(C) nullhomotopic on classifying spaces. It follows from
[1(6.11), (7.2)] that this homomorphism is trivial when z has prime power order.
By hypothesis z,(B) is generated by the image of such z, so we deduce that the
image Q of zy(B) in GL,(C) is trivial as required. []

A somewhat analogous argument occurs in [7] where a different class of acy-
clic groups (binate groups) is considered.
The discussion above suggests the following problem.

QuesTiON. Can one give a group-theoretic characterization of the funda-
mental groups of acyclic ftg spaces?

The arguments given above reveal the following conditions on a group G
to be necessary.

(i) G is torsion-generated.

(ii) G is superperfect (that is, H)(G)=H,(G)=0).

(iii) G admits no non-trivial representation G—GL(C).
Note that (i) is necessary and sufficient to make G the fundamental group of
a ftg space (namely K (G, 1)), while (ii) is equivalent to G being the fundamental
group of an acyclic space (namely AK (G, 1) [4 p. 65]). The binary icosahedral
group of order 120 is the smallest example of a group G satisfying (i) and (ii)
but not (iii).

3. Conditions on the fibre

It is also possible to dispense with orientability in Theorem 0.3 by placing
stronger conditions on the fibre F' instead of the base. Let Ey(F) (resp. &(F))
denote the group of free (resp. based) homotopy classes of self-homotopy
equivalences of F, and again let F* denote the plus-construction on F (so that
m(F*) has no non-trivial perfect subgroups).

Theorem 3.1. The following are equivalent.
(1) B is acyclic;
(i) Hy(F)—>Hy(E) is an isomorphism whenever E(F) or Ey(F*) has no non-
trivial perfect subgroup.

Proof. In view of Theorem 0.3 we have to establish orientability when (i)
holds and &y(F) or E,(F*) is hypoabelian (that is, has no non-trivial perfect sub-
group). First observe that by applying the fibre-wise plus-construction of
[5] we may as well assume that &(F) is hypoabelian. Now the fibration is induc-
ed from the universal fibration F—B aut®F—B aut F where z,(B aut F)=&(F)
[12]. So the classifying map B—B aut F gives rise to a commuting square

B — BautF

! y
B* — (BautF)*=BautF.
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Here (B aut F)*=DB aut F precisely because &(F) is hypoabelian. Because B*
is contractible the fibration is trivial and the result follows. [

ExampLE 3.2. For an interesting class of spaces X with &,(X) admitting
no non-trivial perfect subgroups (indeed, solvable), consider a finite group G
acting freely on an odd-dimensional sphere with orbit space X. From [16]
there is a commuting diagram of group extensions

InnG >— £(X) —> E(X

| ! }
InnG >— AutG —> OutG
y {

Aut G/E(X) — Aut GJE(X)

where the quotient group Aut G/E(X) is abelian by [17] (1.7). Hence the
finite group Ey(X) is solvable precisely when Out G is. Although I have not
verified all cases, it is clear from the classification of periodic groups in, for
example, [14], that for such G, Out G very often is solvable (and in fact I am
not yet aware of any counterexamples).

Results of [12] and [18] provide classes of spaces F as in Theorem 3.1, as
follows. '

Corollary 3.3. The following are equivalent.
(i) B is acyclic;
(i) Hx(F)—>Hy(E) s an isomorphism whenever F or F* is nilpotent and H (F)=0
for only finitely many j;
(i) Hy(F)—Hy(E) is an isomorphism whenever F or F* is homotopy equivalent
to a connected CW-complex whose Postnikov system is finite and whose homotopy
groups all have solvable automorphism groups.

Proof. As previously, we may simplify notation by assuming that the con-
ditions apply to F. For (ii), observe from [12] Theorem D that in this case
&Ey(F) is a nilpotent group, so that Theorem 3.1 applies. For (iii), note that
&Ey(F) is a homomorphic image of the corresponding group &(F) of based
homotopy classes. Now &(F) maps into the solvable group [T Aut z,(F), with
kernel denoted Gy(F) in [18]. If {F,} is a Postnikov system for F, then [18]
shows that for each 7 the natural homomorphism Gy(F,)—Gy(F,-,) has abelian
kernel. So, by induction on 7, Gy(F) is solvable. Hence in turn &(F) and
Ey(F) are also solvable. Hence we are again in the situation of Theorem

3. 4

ReMARK 3.4. Under the circumstances of (3.3) (ii) above, it follows from
[5] that the fibration F—E—B is plus-constructive; that is, induces a fibration
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F*—E*->B*. However the space B* is here contractible, making F*—E* in
fact a homotopy equivalence.
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