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A NOTE ON QUASI-CORATIONAL EXTENSIONS
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In his paper [3] Bland has introduced quasi-corational completions of
modules and by means of this concept he has given a characterization of finite
direct sums of complete matrix rings over perfect completely primary rings.

In this note we shall look at his results again from the point of view of
torsion theories. By this we can see his results in perspective and give simple
proofs of some of his results. In section 1 we shall define an idempotent pre-
radical ¢, of mod-R for a fixed R-module Q. As is well-known, when Q is
projective, #o is a radical. An example will be given to show that #, is not
always a radical even if Q is quasi-projective. However we can show that, for
submodules of a quasi-projective module Q, ¢, acts as a radical (Proposition 1.2).

Using this proposition, in section 2, we shall give a slightly simple char-
acterization of a quasi-corational extension of an R-module (Theorem 2.4). We
shall show that a maximal quasi-corational extension of an R-module can be con-
structed naturally by this theorem and the proposition.

In section 3 we shall treat quasi-corationally complete modules. In section
4 we shall only deal with R-modules M having projective covers 0—-K —P— M
—0. Wu and Jans [9] has shown how to construct a quasi-projective cover
of M out of the projective cover of M. They showed that P modulo the unique
maximal R-Endg(P)-submodule contained in K is the desired quasi-projective
module. We shall show that this submodule is precisely P(0: M) (Proposition
4.1). We also show that the quasi-corationally completeness of M can be de-
scribed by means of the radical ¢, (Theorem 4.6). Finally in closing this note
we shall give an example of ar R-module which is quasi-corationally complete
but not quasi-projective.

Throughout this note R will denote an associative ring with identity and
all modules will be unital right R-modules. The category of unital right R-
modules is denoted by mod-R. For the notions and terminologies about torsion
theories we refer to Stenstrom [8].

1. Preliminaries

A subfunctor ¢ of the identity functor of mod-R is called a preradical of
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mod-R, i.e., ¢ assigns to each module M a submodule #(M) of M in such a way that
every homomorphism M —>N induces ¢(M)—#(N) by restriction. A preradical
t is idempotent if t(t(M))=t(M) for every module M and is called a radical if
H(M[t(M)) =0 for every module M.

To each preradical # we can associate two classes of modules, namely
T(t) = {Ag: (A)= A} and F(t)= {Bg: (B)=0}.

T(t) is closed under homomorphic images and direct sums and dually F(£) is
closed under submodules and direct products.
Now let O be a module and define a preradical ¢y of mod-R as

to(M) = 23 {Im(f): f EHomg(Q, M)}

for each module M. 'Then #q is idempotent and #o(Q)=0. Moreover Zq is a
unique minimal one of those preradicals ¢ of mod-R for which #(Q)=0.

A module M belongs to T'(#g) if and only if M is a homomorphic image
of a direct sum of copies of Q. While M belongs to F(to) if and only if
Hom,(Q, M)=0. F(t,)is also closed under group extensions and becomes a
torsion-free class.

If in particular Q is a projective module, then #, becomes a radical and
F(ty) is closed under homomorphic images, as is easily seen. However this is
not true in general. The following example shows that #q is not always a radical
even if Q is a quasi-projective module.

ExampLE 1.1. Let R be a right Artinian ring with identity and N (=0) its
Jacobson radical. There exists an integer n>0 such that N"=0 and N*"'50.
We put Q=R/N""!. 'Then, since f(IN)CN for all f €End(R;), by [9, Proposi-
tion 2.1] we see that Q is quasi-projective. Furthermore N*~! is not a direct
summand of R and so Q can not be a projective module. It is easy to see that
to(R) = Anny(N""), the left annihilator of N*™! in R, and #o(R)=+R. Since
N"=0, we have N*"'C N Cto(R) and so, by considering the canonical homomor-
phism O—R/to(R), we see that to(R/to(R))=R/to(R)=0.

We note that, for a module Q, ¢, is a radical if and only if T'(Ze) is closed
under group extensions (see e.g. [2, Proposition 3] or [7, Proposition 1.1]). So
the above example also shows that, in contrast with F(¢q), T(tg) is not always a
torsion class in general.

As we have shown above, # is not always a radical, but for submodules of
O it acts as a radical.

Proposition 1.2. Let Q be a quasi-projective module and K and K’ sub-
modules of Q such that K' CK. Then to(K/K’)=0 if and only if to(K)CK’. In
particular we have to(K[to(K))=0.
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Proof. Suppose that ¢o(K/K’)=0. Then we have (¢o(K)+K’)/ K’ F(tg).
On the other hand, since ¢4 is idempotent, 2o(K) € T'(¢,) and so (¢o(K)+K")/K’
€ T(tg). Thus we have (£o(K)+K’)/K’=0 and #o(K)CK’. Conversely sup-
pose that 2o(KYC K’ and claim that Homg(Q, K/K’)=0. Take f €Homg(Q,
K/K’). Then there exists a homomorphism ¢: Q— Q making the diagram

0
¥

¢/ K|K'

0 —— Q/K’

commutative, where Q — Q/K’ and K/K’— Q/K’ are the canonical map and the
inclusion map respectively. For any x=Q, ¢(x)+K’'=f(x)=x'+K’ for some
#’€K. From this it follows that ¢(x)=K and hence ¢p(x)Eto(K). Therefore
f(®)=¢p(x)+K’=0 by assumption. Thus we have f=0.

2. Quasi-corational extensions
We now record some required definitions.

A quasi-projective cover of a module M is an exact sequence QEM -0
with the properties that Q is quasi-projective, Ker(3) is small in Q and, for
every nonzero submodule O’ of Ker(8), O/Q’ is not quasi-projective.

An exact sequence NV ir> M — 0 of modules is called corational by M if every
factor module of Ker(f) belongs to F(ty). It is called quasi-corational by M

if it is corational by M, besides M has a quasi-projective cover QEM —0 and
there exists a homomorphism ¢: Q— N such that f¢=/@3. Note that, since
Ker(f) is small in N (see [4, Theorem 2.3]), ¢ must be an epimorphism.

First we shall quote [2, Proposition 2] in a slightly general form.

Lemma 2.1. Let 0—>L—>N LM — 0 be an exact sequence of modules such
that L is small in N and let A be a module. If every factor module of A belongs
to F(ty), then A belongs to F(ty). In the case where F(ty) is closed under factor
modules of A, the converse is also true.

Proof. We claim that Homg(N, 4)=0. Take any g & Homg(N, 4).
Then g induces the mapping g*: M — A[g(L) given by g*( f(x))=g(x)+g(L) for
xeN. Since g*=0 by assumption, g(N)=g(L) and hence N= L+ Ker (g).
However L is small in N and so N=Ker (g). Thus we have g=0. The latter
half of the lemma follows from the fact that F(ty) C F(t,).

As a consequence of this lemma we have
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Corollary 2.2. Let 0—>L—N—>M—0 be an exact sequence with L small
in N. If F(ty) is closed under factor modules, then F(ty)=F(t;) holds.

From Proposition 1.2 we have

Corollary 2.3. Let Q be a quasi-projective module and K a submodule of Q.
Then every factor module of K belongs to F(tq) if and only if K itself belongs to
F(to).

Proof. Note that if K € F(tg), then F(ty) is closed under factor modules
of K by Proposition 1.2.
We now obtain a characterization of quasi-corational extensions.

Theorem 2.4. An exact sequence N L M—0 is quasi-corational by M
if and only if

(1) M has a quasi-projective cover 0— K —Q EM -0,
(2) there exists an epimorphism ¢: Q — N such that fp=p3, and
(3) Ker(f)eF(ty).

Proof. The “only if” part follows from the definition and Lemma 2.1, so
we only show the “if” part. Assume that (1), (2) and (3) hold. Then Ker(¢)
is a submodule of K and the diagram

*

O/Ker ()~ M
#| H

N —M

commutes, where 8* and ¢* are homomorphisms induced by 8 and ¢ respec-
tively. Hence Ker (f) is isomorphic to K/Ker(¢) and by Proposition 1.2
to(K)CKer(¢). Every factor module of Ker (f) is also isomorphic to K/K’ for
some submodule K’ of K containing Ker(¢). Again by Proposition 1.2
K|/K’e F(tg) and thus every factor module of Ker (f) belongs to F(t;). Since

F(t) C F(ty), this implies that N LM — 0 is quasi-corational by M.
As is seen from the proof of the theorem, every exact sequence which is
quasi-corational by M is of the form
g*
O/IK'— M —0
for some submodule K’ of K, where 0—K— QEM — 0 is a quasi-projective

cover. Conversely for a module A/ having a quasi-projective cover 0— K —Q
*

-QM —0, by Theorem 2.4 an exact sequence Q/K’ ——'8——->M —0 with K’ a sub-
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module of K is quasi-coratinoal by M if and only if K/K’=Ker(B8*)< F(to),
or equivalently, by Proposition 1.2, to(K)C K.
Consequently, in particular,

Qlto(K) LRy

is surely quasi-corational by M, where @ denotes the homomorphism induced
*
by B, and moreover, for each exact sequence Q/K’ i» M -0 which is quasi-

corational by M, the mapping ¢: Q/to(K)— OQ/K’ defined by ¢(x+to(K))=
x+K’ makes the diagram

Qlto(K) LIy

o
K — M

commutative, i.e.,
O/to(K) —B—> M—0
is maximal quasi-corational by M in the following sense.

An exact sequence N L M — 0 of modules is called maximal quasi-corational
/7

by M if it is quasi-corational by M and, for each exact sequence N’ L M—0
which is quasi-corational by M, there exists a homomorphism ¢: N— N’ such
that f'¢p=f.

In this definition, if a homomorphism ¢’: N—N’ also satisfies that f'¢'=f,

’
then we have Im(¢p—¢')CKer(f’). Since N’LM—>O is (quasi-) corational,
every factor module of Ker (f’) belongs to F(ty’) and whence to F(ty). By
Lemma 2.1 Ker (f) itself belongs to F(ty). Therefore p—¢’: N— N’ is a zero

mapping and thus we have ¢=¢’. From this it follows that if N LM —0 and

/7
N’= M—>0 are both maximal quasi-corational by M, then there exists an iso-

morphism ¢: N— N’ for which the diagram
v L zr

e
;

’

is commuatative.
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Corollary 2.5 ([3, Theorem 2.1]). For a module M having a quaisi-pro-

Jective cover 0— K —Q —é M —0, the sequence

O/to(K) —B—-> M—0
is maximal quasi-corational by M.

3. Quasi-corationally complete modules
A module M is called quasi-corationally complete if N '—f> M —0 1s quasi-
corational by M, then f is an isomorphism.

In case M has a quasi-projective cover, the exact sequence M — M —0 is
certainly quasi-corational by M, where 1 means tbe identity map of M. Hence
we have

Theorem 3.1. For a module M having a quasi-projective cover, the following
conditions are equivalent:
(1) M is quasi-corationally complete.

2 M —1> M —0 is maximal quasi-corational by M.

(3) Homg(M, —) is right exact on all exact sequences of the form 0— L —
N — M —0 which is quasi-corational by M.

(4) Ewvery exact sequence N — M —> 0 which is quasi-corational by M splits.

Proof. (1)=(2). If N L M —0 is quasi-corational by M, then f must be
an isomorphism by assumption. Hence the diagram
1
M—M
o
N— M
f
is commutative. This shows that M — M —0 is maximal quasi-corational by M.
2)=(@3). IfN LM — 0 is quasi-corational by M, then by the maximality
1
of M — M —0 we can find a homomorphism ¢: M — N such that the diagram

1
M— M

d

N—M
f
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is commutative. Therefore, for any g € Homg(M, M), f(p¢g)=g and thus

Homj, (M, —) is right exact on 0——>L—>N—[>M—>O.
(3)=(4). 'This is clear.

#)=@1). IftN Z» M—0 is quasi-corational by M, then by assumption
Ker (f) is a direct summand of N. However Ker (f) is small, it must be zero,
i.e., M is quasi-corationally complete.

We also have another characterization of quasi-corationally complete
modules by means of ,.

Theorem 3.2. For a module M having a quasi-projective cover 0— K — Q

§>M —0, the following conditions are equivalent:
(1) M is quasi-corationally complete.
(2) Qlto(K)=FM.
(3) KeT(ty).

Proof. By Corollary 2.5, 0—>K/tQ(K)—>Q/tQ(K)§>M—>0 is maximal
quasi-corational by M. In this case, K € T'(¢o) if and only if B is an isomor-

phism, and moreover this is so if and only if M— M —0 is maximal quasi-
corational by M since the maximal quasi-corational extension is unique up to an
isomorphism. Thus (1), (2) and (3) are equivalent by Theorem 3.1.

It follows from this theorem that a quasi-projective module is quasi-cora-
tionally complete ([3, Theorem 1.1]), but the converse of this fact is not always
true in general, as we shall show later.

The following is a generalization of [3, Theorem 2.3].

Proposition 3.3. Let Q be a quasi-projective module and K its submodule
such that K is small in Q and K € T(to). Then Homg(Q[K, —) is right exact on

all exact sequences of the form 0—L— Q|K L N — 0 which is corational by N.

Proof. Take any geHom,(Q/K, N). Since Q is quasi-projective, there
exists a homomorphism ¢’: Q— Q for which

¢ QIK

e
0" QK —N

is commutative, where = denotes the canonical homomorphism Q— Q/K. We
put ¢”’=r¢’. Then to prove the proposition it is sufficient to show that
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¢"(K)=0. Since every factor module of Ker(f) belongs to F(tq/), Ker (f)
always belongs to F(¢o) by Lemma 2.1. On the other hand, f(¢”(K))=g(=(K))
=0 and ¢”(K)CKer(f). Hence ¢ (K)< T(to) N F(to)=0.

Combining Theorem 3.2 with this proposition, we have

Corollary 3.4 ([3, Corollary 2.4]). For a quasi-corationally complete module
M having a quasi-projective cover, Homg (M, —) is right exact on all exact
sequences of the form 0— L — M — N — 0 which is corational by N.

We do not know if this property of Homg (M, —) characterize the quasi-
corationally completeness of M conversely.

4. Modules having projective covers

a . . ..
Let 0— K —P—M—0 be a projective cover of a module M, i.e., it is an
exact sequence with P projective and K small in P. Throughout this section

we assume that J/ always has a projective cover and denote it by 0—K— P 2
M—0. Wu and Jans ([9, Proposition 2.6]) has shown how to construct a
quasi-projective cover out of a projective cover. They showed that P modulo
the unique maximal R-Endg(P)-submodule contained in K is the desired quasi-
projective module. Here we shall claim that this submodule is precisely P(0: 1),
where (0: M) denotes the right annibilator of M in R.

Proposition 4.1. The unique maximal R-Endy(P)-submodule of P contained
in K is P(0: M).

Proof. First we shall show that P(0: M) coincides with N {Ker(f):
f<Homg(P, M)}. This is a result due to Azumaya ([1, Proposition 7]). But,
for the sake of completeness, we give here its proof. Since P is projective, as
is well-known, there exist homomorphisms f, € Homg (P, R) and elements x, &P
for €A such that, for each x€P, f,(x)=0 for almost all AEA and x=
Dafilx). Put A= {Ker(f): feHomg(P, M)}, and take x’€4 and us M.
Then, for each A, the mapping P— M defined by x—uf\(x) for x€ P is a
homomorphism and so ufy(¥')=0. Therefore fi(x’)=(0: M) and thus we have
=21 xfai(x")€P(0: M). This shows that 4CP (0: M) and, since the reverse
inclusion is clear, we have the desired equality.

Now suppose that X is a submodule of P contained in K and is Endg(P)-
allowable. Then, for each g: P— M, there exists f: P— P such that af=g.
Take x€X. Since f(x)EX, g(x)=a(f(x))=0. Thus we have x€ A=P(0: M).
Since P(0: M) is clearly a submodule of P contained in K and is Endg(P)-
allowable, this completes the proof of the proposition.

We denote K/P(0: M) and P/P(0: M) simply by K and P respectively.
Then we have
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a
Corollary 4.2 ([5, Corollary 3.4]). 0—>K—>P—->M—0 is the quasi-pro-
jective cover of M, where Q is the map induced by a.

Corollary 4.3 ([6, Theorem 2.3]). M is quasi-projective if and only if
K=P(0: M).

Proof. Since K is small in P, by [9, Proposition 2.1 and 2.2], M (==P|K)
is quasi-projective if and only if K is Endg(P)-allowable. Hence by Proposition
4.1 this is so if and only if K=P(0: M).

Now we shall show that the quasi-corationally completeness of M can be
described by means of the radical ¢,. Before we do this, we claim the following

Lemma 4.4. t3(K)=(t(K)+P(0: M))/P(0: M).

Proof. To show this it is enough to note that, for each f: P— K, by the
projectivity of P there exists f: P— K such that the diagram

T
P—P

oy
K—£K
T
is commutative, and that conversely for each f: P— K the mapping f: P—K
defined by fz(x)==f(x) for x€P is a well-defined homomorphism since
Ker(z)=P(0: M) is End; (P)-allowable.
Using this lemma we see that P/t5(K) is isomorphic to P/(tx(K)-+P(0: M))
and so by Corollary 2.5 we have

Corollary 4.5 ([3, Theorem 3.4]). The exact sequence P|(tp(K)+P(0: M))
— M — 0 is maximal quasi-corational by M.

As another application of the lemma we have

Theorem 4.6. M is quasi-corationally complete if and only if K=tp(K)+
P(0: M).

Proof. By Theorem 3.2 M is quasi-corationally complete if and only if
K=t3K). Hence the theorem follows from the lemma.

Recently Bican [2, Theorem 4] has shown that M is corationally complete
(in the sense that it has no proper corational extensions by M) if and only if
K=tyx(K). Hence by Theorem 4.6 for a module having a projective cover we
see that the corationally completeness implies the quasi-corationally com-
pleteness. Concerning the reverse implication, again by Theorem 4.6, we see
that a quasi-corationally complete module M is corationally complete if and only
if P(0: M)Ctp(K). Examples of a module which satisfies this condition are
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provided by a faithful module having a projective cover and any module having
a projective cover over a commutative ring (cf. [3, p. 158 and Corollary 3.5]).

Finally in closing this note we give an example of a module which is quasi-
corationally complete but not quasi-projective.

ExampPLE 4.7. Let N be the Jacobson radical (#0) of R and let N’ (0)
be a right subideal of N but not a left subideal of N. Then, since N’ is not
End;(R)-allowable, R/N’ is not quasi-projective. R/N’ has a projective cover
0—-N'—R—R/N’—0 and, since T(tz)=mod-R, it is in fact (quasi-)cora-
tionally complete.
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