

Title	MATHEMATICAL STUDY ON TUMOR CELL INVASION
Author(s)	Mahemuti, Rouzimaimaiti
Citation	大阪大学, 2013, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/59847
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏 名	マヘムティ ロージマイマイティ MAHEMUTI ROZIMAIMAITI (肉孜买买提 马合木提)
博士の専攻分野の名称	博 士 (理学)
学 位 記 番 号	第 26121 号
学 位 授 与 年 月 日	平成 25 年 3 月 25 日
学 位 授 与 の 要 件	学位規則第 4 条第 1 項該当 基礎工学研究科システム創成専攻
学 位 論 文 名	MATHEMATICAL STUDY ON TUMOR CELL INVASION (腫瘍細胞浸潤に関する数理的研究)
論 文 審 査 委 員	(主査) 教 授 鈴木 貴 (副査) 教 授 名和 範人 教 授 関根 順

論 文 内 容 の 要 旨

Cancer disease is one of the leading causes of death worldwide, especially in developed countries. Cancer treatment is one of the top fields of inquiry. Some treatments are intending to inhibit the ability of angiogenesis, formation of new blood vessels since cancer cells have a certain size and cannot grow further without nutrients from blood vessels [Shih and Lindley, 2006]. Others are trying to reduce and inhibit the ability of invasion of cancer cells. Cancer cells have their invasive feet on membrane which are called invadopodia, and it can degrade surrounding ECM (extracellular matrix) to provoke invasion. Cancer cells then can escape from the original tumor and establish their secondary tumor in other organs. In this study, we aim at investigating invasiveness of cancer cells.

Mathematical research on cancer treatment has boomed in the recent years. Some mathematicians contributed to investigate the motility of cells [Chaplain and Anderson, 2003], some mathematicians trying to investigate the growth of probability of invadopodia [Enderling et al, 2008]. Differently from them, we considered several processes such as actin reorganization, ECM degradation etc., required by invadopodia formation. Then considered a model to investigate how invadopodia appears, and what is the leading source of invadopodia.

First, as the basic understanding of mathematical modeling, we present the derivation of the reaction-diffusion equation from master equations. There, master equation is considered in n spatial dimensions. Then, we consider the models for invadopodia formation regarding actin reorganization, ECM degradation and MMP regulations by ECM fragments. Then we examine the spatial-temporal dynamics by running numerical simulations. Then we discuss its numerical simulations to observe the effect of loops. We also offer localization by using Allen-Cahn equation and random numbers to determine the location where invadopodia appears. Numerically, we had invadopodia-like projections close to the real phenomenon in space and time. We also found that MMP regulation by signals has vital effect on the formation of invadopodia.

がん（悪性新生物）は特に先進国において死亡原因の第1位を占め、その制圧は共通の課題となっている。しかし近年の生物学の目覚ましい進展により、発生と成長のメカニズムは次第に確定してきた。未だ全体像は捉え切れないが、がんによる死亡原因の大半が転移によるものであり、転移は腫瘍細胞が運動能を獲得する浸潤過程とともに始まるることは共通の認識である。がん研究の中で、連続場の時間変化を記述する偏微分方程式(PDE)を用いた数理モデリングは最近顕著に進展している研究分野である。その目的は複雑に絡み合った要因を俯瞰し整理することで特異的な現象の支配原理を明確にし、病態生理の予測や創薬開発の指針を与えることにある。本論文は、細胞レベルで現出する浸潤初期過程を題材とし、がん細胞悪性化メカニズムを数理的にピボットで解明したものである。すなわち第1章では分子の結合、解離則から平均場方程式が導出されることを示してPDEモデリングの正当性を検証した。次いで第2章は細胞変形と細胞外マトリクス(ECM)分解の相互作用を分子動態に基づいて解析している。第3章では細胞膜を自由境界で記述して酵素反応を細胞膜上でのイベントに制限し、細胞内を伝達するシグナルを新しい変数とすることで細胞を個別化したモデルを構築し、更に個別モデルから初期浸潤の第3の要素である接着剥離シミュレーションを可能とする多細胞モデルを導出した。とりわけ第2章は先端の細胞生物学と連携したコア部分であり、細胞外のECMフラグメント拡散を通した細胞内のアクチン再編と、細胞膜上のECM分解の正のフィードバックを組み込んだモデルを構築して、シミュレーションによってフィードバックの揺らぎが浸潤突起形成の引き金となることを証明したのである。使われたモデルと背景となる原理は国際的にも注目を集め、研究討論を通してその有効性と実在性が確立している。以上から本論文は博士（理学）の学位論文として価値のあるものと認める。