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1. Introduction

In[3], we have defined fake surfaces to study 3-manifolds with boundary from
their spines. We use the notations in [3] and [4], for example, & (s, t) denotes the
set of all the acyclic closed fake surfaces P with #&,(P)=s and #&,(P)=¢,
where &;(P) means the ¢-th singularity of P and # denotes the number of the
connected components. And, &(s,2) is the subset of (s, t) each of whose
elements is a noraml spine, that is, for any element P of &(s, t), there exists a
3-manifold in which P can be embedded as a spine. The following theorems
are proved in [3] and [4].

Theorem. (s, {)=d¢, if and only if t=0.
Theorem. &(s, t)=4¢, if and only if s=2t.

Then, when #>1, it is known that the difference (s, #)—&(s, ¢) is non-

empty.

Let C(s, t) denote the subset of £(s, £) each of whose elements is contractible
and (s, t) the subset of ((s, t) each of whose elements is a normal spine of a
3-ball. Define the two difference sets 9)(s, t) and A(s, t) by

9(s, t) = &(s, t)—C(s, t)
A(s, t) = C(s, t)— B(s, t) .

Then, Poincaré conjecture asks “Is the set U A(s, 2) empty?”. On the
s,t

other hand, the following theorem is well-known.
Theorem. U 9(s,t)+¢ .
s,
And, in [3] and [4], we proved the following.

Theorem. 9)(s, t)=¢=C_A(s, t) for the cases s=2t—1 and s=2t—2, and
91, 2)=¢p=A(1, 2).

In this paper, we show the following.
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Theorem 1. For the case 1=s<2t—11 and t=6, the set (s, t) is non-
empty.

In §2, we construct a non-contractible acyclic mormal spine P, with
#S,(Pr)=1 and $&,(P,)=8k—1 for any integer k=1. And, in § 3, we can prove
that a 3-manifold W, has a normal spine P’ with §&,(P')=1 and $S,(P’)=6,
where W, is the 3-manifold containing P, as its normal spine. And, the proof
of Theorem 1 is obtained. It is known, by the uniqueness theorem of [1], that
Wy is uniquely determined. In §4, we define the Dehn space of type k and
show, in Theorem 2, that W, is the Dehn space of type k.

The author thanks Mr. Y. Tsukui for pointing out the existence of P/ and
to all the membres of All Japan Combinatorial Topology Study Group for many
useful discussions.

2. The construction of non-contractible acyclic normal spines P;

It has been proved in Theorem 4 [3] that £(1, 1) contains a unique element
F1},, called an abalone. Let the set {M,, M,, f} be the polygonal representation
of the abalone, that is, M; is a 2-ball for i=1, 2, and f means the identification
map from M,UM, to Fi, (for M,, M, and the identification by f, see Theorem
2 [3)).

Through out this paper, the subpolyhedron f(2,) of the abalone is denoted
by F, whichiswrittenin Fig. 1. Then, F isa closed fake surface with $&,(F)=1
and #S,(F)=0, more precisely, U(F)=SX,T. And, by a little geometrical
consideration, it is seen that F is a normal spine of the exterior of the clover-leaf
knot in 3-sphere. The fundamental group of F is as follows.

m(F) = (S,, S,; 8,578,827 = 1)
(for the generators S, and S,, see Fig. 1).

Lemma 1. For any integer k=0, there exists an embedding hy, from 1-sphere
S into F which represents the homotopy class S3*S$*~' and the intersection
ho(S)N S, consists of |8k—1| points.

Proof. When k=0, we can take %, to be the homeomorphism from S onto
S, which reverses the orientation. Then, clearly, %, represents the homotopy
class S7* and we have #(%,(S)N S,)=1. Let us construct the required embed-
ding A, for the cases 2>1.

Step 1. Suppose k=1. For the point a, a’, b, ¥, ¢, ¢/, d and x;, i=1, 2, 3,
see Fig. 2. Now, starting from the point a, go to b along the orientation of S,.
From ¥/, go to c along S,. Intersecting with S, at the point x,, go to ¢’ as shown
in Fig.2. From ¢/, go to d along S,. And, intersecting with S, at x,, go to x,.
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Finally, going along S, five times from x,, we come back to the starting point a.
Thus, we obtain an embedding %, representing the homotopy class S§.S; and
#(h(S)N S;)=7.

Fig.2



514 H. Ikepa

Step 2. Because S3 lies in the center of z,(F), we obtain the following.
53 S¢-1=(5389) 11 (8359),, k=2.
bp=2

So, we try to construct the required embedding 4, to represent the homo-
topy class (S3.S3) f[ (835%),, as follows. Let a,, -+, a; be the points between a
=2

and S, as shown in Fig. 3. And formally, set @,=a. Then, by the same way
as in Step 1, we obtain an embedding 4,” from S into F which represents the
homotopy class (S3S%), and whose initial point and end point is @,. And set
h/=h,. More strictly, we can choose %, to satisfy the following conditions.

S1

Fig. 3

(1) A/ (S)NkJ(S)=¢, if p#q and p, g=2.
(2) A,(S)NA(S)is one point in the small neighborhood of a, (see Fig. 3).
(3) #(*,/(S)NS,)=8.

/ Sz

az

7%

Ap+1 //
a /

Fig. 4
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Now, changing the end point a, of &,” to the initial point a,,, of 4,
for 1=p=<k—1, and the end point a, to a, (see Fig. 4), we obtain the required
embedding 4, from S into F.

DrerFINITION 1. Let P, be the closed fake surface obtained from F by attach-
ing a 2-ball B by the homeomorphism #, from B to F.

ReMARK. From the construction, it is clear that P, is homeomorphic to an
abalone Fi ,.

Lemma 2. If k=1, then P, is a non-contractible element of £(1, 8k—1).

Proof. We can prove that P; is acyclic, because

H(P) = (S, S,; 285,4+8,=0 (6k—1)S,+3kS, = 0)
=0

and H,(P,) is trivially trivial. And the fact that =,(P,) is non-trivial follows
from the calculation in [2]. Hence, P} is a non-contractible acyclic closed fake
surface. It follows from the construction of P, that U(P;) can be embedded in
the euclidean 3-space R®. Then, by Lemma 2 [4], P, is a normal spine. And,
again from the construction, we see #&,(P,)=1 and $&,(P,)=8k—1, more pre-

cisely, &,(Px)==S,U hx(S) and &,(P,)=S, N k(S) is the union CJ (S.Nk,(S)),
=1
and we obtain $&,(P;)=8k—1.
3. The element P’ of 9)(1, 6) and the proof of Theorem 1

Let W, denote the 3-manifold containing P, as its normal spine,
k=1,2,.... Inthissection, we consider P, in W, and consturct another normal
spine P’ of W, from P, in 9)(1,6). For the polygonal representation of P,
see Fig. 5.

Proposition 1. W, has a normal spine P’ in 9)(1, 6).

Proof. Let us consider M, of the polygonal representation of P,, and let
N be the regular neighborhood of M, mod M, in W, chosen to satisfy

NN(P,—M,)=NnNP,=M,xI,

as shown in Fig. 6, where I is the closed unit interval [0, 1] and M,=M,x 1/2.
Put A=N NP, Then, A=(ANG&,(P,)) has three connected components each
of whose closures is a 2-ball. 'Take such a 2-ball B. Regarding B as a free face
of P,UN, we can collapse P, UN to (P,—(N NP,))U(N—B) (see Fig. 7). Put
P=P,—(NNP)U (N —é). Then, it is clear that P’ is a closed fake surface
embedded in the 3-manifold W,. Since P, expands to P,UN and P,UN col-
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Polygonal representation of Py
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lapses to P’ in W,, P, and P’ belong to the same simple homotopy type in W,
that is P’ is also a spine of W,. By the above construction, the conditions
#S,(P)=1 and §S,(P’)=6 are easily seen. Thus, W, has a normal spine P’ in
9(1.6).

Remark. The polygonal representation of P’ is shown in Fig. 8.
Now, we can prove Theorem 1.

Theorem 1. For the case 1<s<2t—11 and t=6. the set 9(s, t) is non-
empty.

Proof. First, it is shown that 9(1, ) is non-empty for =6 by the same
argument as that of the proof of Lemma 12 [4], because P’ and P, belong to
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9(1, 6) and 91, 7), respectively. And, we obtain an element of 9)(s, #) with
1=<s=2¢—11 as in the proof of Theorem 6 [4].

4. The Dehn spaces

Let E denote the exterior of a clover knot 4 in a 3-sphere 3, that is,
E=3—Ni (4, =) where N(4, =) means the interior of a regular neighborhood
N(#4, Z) of £in 3. Then, there exists a subpolyhedron F, in E which is homeo-
morphic to F. Of course, F, is a spine of E. Regarding the generators S, and
S, of = ,(F) as those of = ,(F,), we can write

7(E) = (S,, S,: $; 578,82 =1).

Take S, and S7'S, as the generators of z,(E), and let 7, denote the homomor-
phism from n,(E) to z,(E) induced by the inclusion map. Since E is an exterior
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Polygonal representation of P’
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of a knot, 74 is a monomorphism and we have 73*(S3* S$*1)=(S11Sz)** St* .
Let Cy, denote the 1-sphere in E representing the homotopy class (S7 S,)%* S3*-1.
Note that C,, exists because 2k and 6k—1 are relatively prime.

DeFINITION 2. Define the Dehn space V, of type k to be the 3-manifold
obtained from E by attaching a 2-handle along C,. (Cf. [2])

Theorem 2. Let W, be the 3-manifold containing Py as its spine. Then,
W is the Dehn space of type k.

Proof. By the uniqueness theorem of [1], it is sufficient to prove that the
Dehn space V', contains P, as its spine, because P, clearly satisfies the conditions
of standard spine of [1]. Let N, be the 3-rd derived neighborhood of U(F,) in
E mod U(F ). We can embed a cylinder SX I in N, in order to satisfy
(SXI)NU(F,)=Sx0=hyS) and (Sx I) NN,=Sx 1 as shown in Fig. 2. Now,
let F,—=F U (SxI) and N, the regular neighborhood of F, in E mod F,=Sx 1.
Then, N, is homeomorphic to E keeping F, fixed, because F, collapses to F, by
collapsing SX I to Sx0 from Sx 1. And hence S X 1 represents the homotopy
class (ST S2)**S§*! in #(N,). Thus, V, may be regarded as the 3-manifold
obtained from N, by attaching a 2-handle along Sx 1. Then, the 2-handle
B?x I collapses to (B?xI)U (B*x1/2), where B? is a 2-ball and B*x 1/2=Sx 1.
Thus, V, collapses to N,U(B?*x1/2). Since N, is a regular neighborhood of
F,, N,U(B*x1/2) collapses to F,U (B*x 1/2) which is clearly homeomorphic to
P. Thus, V, has a spine homeomorphic to P,. This completes the proof of
Theorem 2.

KoBE UNIVERSITY

References

[1] B.G. Casler: An embedding theorem for a connected 3-manifold with boundary,
Proc. Amer. Math. Soc. 16 (1965), 559-566.

[2] M. Dehn: Uber die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910),
137-168.

[3] H. Ikeda: Acyclic fake surfaces, Topology 10 (1971), 9-36.

[4] Acyclic fake surfaces which are spines of 3-manifolds, Osaka. ] Math. 9
(1972), 391-408.




