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0. Introduction

Azumaya [2], Osofsky [20] and Utumi [26] considered various properties of QF

rings, e.g., the completely faithfulness (i.e., generator) of modules, the injective co-

generator and Morita duality. They introduced and studied one new class of, so-called,

right PF (pseudo-Frobenius) rings, i.e., rings R whose every faithful right iΐ-module

is a generator for Mod-it!, the category of all right β-modules. Afterward, Endo [6]

and Tachikawa [25] naturally studied (commutative noetherian or perfect) rings R sat-

isfying the condition that every finitely generated faithful right i^-module is a gener-

ator for Mod-R. Rings satisfying this condition are called right FPF (finitely pseudo-

Frobenius) rings whose general studies were made, at first over semiperfect rings, by

Faith [7], [8]. The study of commutative or semiperfect FPF rings was improved in

more detail ([9], [10] [11], [13], [14], [21]). Most of the basic results on FPF rings

may be found in Faith and Page [12].

We now consider, for each positive integer n, the condition "right n-PF" on a

ring R that every n-generated (i.e., generated by at most n elements) faithful right R-

module is a generator for Mod-R ([27]). Thus the rings that are right n-PF for all

positive integers n are just the right FPF rings, and there exists a chain of conditions:

FPF =>. . .=> (n + 1)-PF => n-PF =»..-=» 1-PF.

Concerning this, it was shown in [4], [17] that a right self-injective ring is right FPF if

and only if it is right 1-PF, while a commutative semiprime or von Neumann regular

ring is right FPF if and only if it is right 2-PF. We then ask generally whether the

chain of conditions from FPF to n-PF for some positive integer n collapses to a single

condition, i.e., n-PF =>- FPF. Obviously, 1-PF does not imply FPF in general (for every

commutative ring is 1-PF). Thus it is natural to ask whether 2-PF implies FPF. We do

not know whether this is true in general case.

In this paper, we shall study semiperfect or commutative FPF rings in connection

with the noted above. In Section 1, we present a characterization of semiperfect FPF

rings, which shows that 2-PF =>> FPF for semiperfect rings. Section 2 is concerned

with commutative FPF rings. In the section, we characterize these rings R by over-
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modules of R in its injective hull and the stalks of R, from which 2-PF => FPF for

commutative rings. In the last section, by using the theorem of Section 2 we present

additional results on commutative FPF rings, e.g., the "invertibility" of finitely gener-

ated overmodules in the injective hull, the integrally closedness and flat epimorphisms

of overlings in the maximal quotient rings.

NOTATION and TERMINOLOGY. Throughout this paper, all rings considered are as-

sociative rings with identity and all modules are unitary.

Let R be a ring. For an i?-module M and a positive integer n, we denote by

E(M), J(M) and Z(M) the injective hull, the Jacobson radical and the singular sub-

module of M, respectively, and by M^ the direct sum of n copies of M. The no-

tations N < M and N < Θ M mean that N is an .R-module isomorphic to a sub-

module and a direct summand of M, respectively. For subsets A, B of M, we set

(A : B) = {r G R \ Br C A}. For finitely-many x 1 ? . . . , x n G M, we abbreviate

(A : { z i , . . . , £ n } ) to (A :xι,...,xn).

Recall that a ring R is right FPF if every finitely generated faithful right R-

module is a generator for Mod-iϊ.

1. Semiperfect FPF rings

In this section, we shall prove the following.

Theorem 1.1. Let R be a semiperfect ring with basic idempotent e. Then the

following conditions are equivalent:

(1) R is right FPF\

(2) Every faithful factor module of (eR)^ is a generator for Mod-R;

(3) (i) If I is a submodule of eR such that eR/I is faithful, then 1 = 0;

(ii) For every x e E(eR), eR + xeR is a generator for Mod-β;

(4) eR is the unique faithful factor module of eR and the unique finitely generated

faithful submodule of E(eR), to within isomorphism.

The theorem above immediately implies the following result.

Corollary 1.2. A semiperfect ring R is right FPF if and only if every 2-

generated faithful right R-module is a generator for Mod-i2.

Concerning the corollary, we note that in [25, (the proof of) Proposition 2.4 and

Theorem 2.5], Tachikawa proves the following strong theorem for perfect rings.

Theorem ([25]). A left perfect ring R is right PF if and only if every 2-

generated faithful right R-module is a generator for Mod-R
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To prove Theorem 1.1, we use the following lemmas. The first one is well-known

(e.g. [3, Lemma I, 3.5]).

Lemma 1.3. (1) Let M and M i , . . . , Mn be right R-modules such that

EndR{M) is a local ring. If

M < 0 Mi θ θMn,

then there exists an i G {1,.. . ,n} such that M < φ M{.

(2) Let R be a semiperfect ring with basic idempotent e. If G is a generator for

Mod-fl, then eR < φ G.

For an /^-module M, we denote by T(M) (= the top of M) the factor module

of M modulo its Jacobson radical.

Lemma 1.4. Let P be a finitely generated projective right R-module whose top

is semisimple. If X is a submodule of P such that P < θ P/X, then X = 0.

Proof. Note by the semisimpleness of T(P) that the top of every factor module

of P is semisimple. Now, assume that

P/X Ξ P 0 Y

for some right Λ-module Y, and set J(P/X) = X'/X. Then,

p/x1 s τ(p/x) Ξ

Comparing the (composition) length of the semisimple Λ-modules above, we obtain

X' = J(P) and Y = J(Y), i.e., Y = 0. Thus, P/X Ξ P, whence by the projectivity

of P, X is a direct summand of P. But then, X c J ( P ) , from which we conclude

that X = 0. D

Recall that a right β-module is co-faithful if Λ# < M^ for some positive in-

teger n, or equivalently there exist finitely-many xι,...,xn G M such that (0 :

xι,...,xn) — 0. Note also an easy fact that for right ^-modules M and N with

N < M, there exists a homomorphic image of M in E(N) containing N.

Lemma 1.5. For a ring R, the following conditions are equivalent:

(1) R is right FPF\

(2) (i) Every cyclic faithful right R-module is co-faithful;

(ii) Every finitely generated submodule of E{RR) containing R is a generator

for Mod-Λ.
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Proof. (1) => (2). Obvious.

(2) => (1). Let M = ]£? = 1 XiR be a finitely generated faithful right iΐ-module.

Set / = (0 : a?i,...,a?n). Then, Λ/J is faithful and R/I < M< n \ whence by (2)(i),

RR < M(mn) for some integer m. Thus, M ( m n ) has a homomoφhic image F in

B(i?) containing /?. It then follows from (2)(ii) that F, and hence M, is a genera-

tor for Mod-ϋ. Therefore, R is right FPF. D

In general, infinite direct products of FPF rings are not FPF. For example, the di-

rect product of simple artinian rings Rn (n — 1,2,...) of length n is not FPF. Howev-

er, as a consequence of the lemmas above, we have the following results for semiper-

fect rings (c.f. [9, Corollary 18]).

Proposition 1.6. Let R\ be a semiperfect ring with basic idempotent eχ for λ G

Λ. Then, the ring ΠλeΛ R* i s ri8ht FPF tf a n d only ιf (0 e a c h R* i s ri8ht FPF>
and (ii) there exists a positive integer n such that Rχ < φ ( e λ i ϊ λ ) ^ far all λ G Λ.

Proof. Set R = l\Rχ, Eχ = E(RχRχ) and E = Y\Eχ, the injective hull of

RR.

"If part". Assume (i) and (ii). To prove that R is right FPF, we show Lemma

1.5(2). First, let / be a right ideal of R such that R/I is faithful. For each λ G Λ,

let p\ : R -> Rx be the λ-th projection, and set Iχ — p\{I). Then each Rx-module

Rχ/Iχ is faithful, whence by the assumption and Lemma 1.3, Rx < (Rχ/Iχ)(n\ Thus,

R < (R/Uh){nK and hence R < (R/I)W, i.e., R/I is co-faithful. Next, let M be a

finitely generated submodule of E containing R. Then, M = f | M λ , where each Mx

is a finitely generated submodule of Ex containing Rx. By the assumption and Lemma

1.3, Rx < φ M{

χ

n) so that R < 0 M^n\ i.e., M is a generator for Mod-i?. Therefore,

R is right FPF.

"Only if part". This part immediately follows from the fact that any direct sum-

mand of an FPF ring is FPF, and the one that the condition (ii) is equivalent to the

condition that the cyclic faithful i?-module (eχ)R is a generator for Mod-iϊ. •

Lemma 1.7 (c.f. [7, Theorem 1], [21, Theorem 2.1]). Let R be a semiperfec-

t ring with basic idempotent e such that for every x G E(eR), eR+xeR is a generator

for Moά-R. Then,

(1) R has finite uniform dimension as a right R-module.

(2) Every finitely generated submodule of E(eR) containing eR is isomorphic to

eR.

Proof. Set E = E(eR), and let the basic idempotent e be expressed as

e = ei +••• + ek,
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where e i , . . . ,e& is a basic set of primitive idempotents of R.

(1) It suffices to show that the right β-module eiR is uniform for each i =

1,. . . , k. So, let /, J be submodules of aR with / Π J = 0, and set

X = (eR/I) Θ (eR/J).

Then the Λ-homomorphism

φ : ei? -> X : a H-> (α + /, a + J)

is monic and

Extending the inclusion map eR -> £ to an i?-homomorphism ψ : X ^ E through <p,

we have

Im ^ = eR -h ̂ (e + /, 0)eR.

By hypothesis, I m ^ , and hence X, is a generator, whence by Lemma 1.3 we obtain

either e^R < θ eR/I or e^R < φ eR/J. We may assume the first case so that

eiR < θ eR/I = (eiR/1) θ (eiϋ θ θ ei-iR θ eΐ+χjR θ θ ekR),

from which e^i? < θ eιR/1, because eiR is not isomorphic to βjR for i φ j . It then

follows from Lemma 1.4 that 7 = 0. Thus, e^i? is uniform, as desired.

(2) Let M be a finitely generated submodule of E containing eR. Since eR is a

generator for Mod-β, there exist x\,..., xn € M such that

M = xieR H h xneR, where ^i = e.

If n = 1, then the result is obvious. Assume that n > 1 and that there exists an R-
isomorphism

φ : x\eR Λ + xn-ιeR -> eR.

Then we may extend φ to an i?-monomoφhism M ^ E so that

</?(M) = e β -h φ(xne)eR.

Since by hypothesis, y?(M) ~ M is a generator, it follows from Lemma 1.3 that

eR < θ M. But then, by (1), eR and M have the same finite uniform dimension, from

which we obtain eR = M. D
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Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Set E = E(eR).

(1) => (2). Obvious.

(2) => (3). Assuming (2), we see that (3)(i) immediately follows from Lemma

1.3 and 1.4, while (3)(ii) is obvious.

(3) => (4). Assume (3). Then one only needs to prove that eR is the unique

finitely generated faithful submodule of E{eR), to within isomorphism. So, let M be

a finitely generated faithful submodule of E. Then there exist xι,...,xn G M such

that

M — x\tR + + xneR.

We set

/ = eiZΠ (0 : a?i,... ,x n )

Since eR/I is faithful, (3)(i) implies that 7 = 0, from which the β-homomorphism

eR ->• M ( n ) : α i-4 (x iα, . . . , xnά)

is monic. Thus, M^ has a homomoφhic image N in E containing eR. By (3)(ii)

and Lemma 1.7(2), N, and hence M, is a generator, i.e., eR < φ M, while by Lemma

1.7(1), E has finite uniform dimension. This shows that eR = M.

(4) => (1). To this end, we use Lemma 1.5. The condition (2)(i) of the lemma

follows from the proof of (3) => (4) combined with Lemma 1.4, while (2)(ii) does

from noting that every ϋ-module containing R has a homomoφhic image in E con-

taining eR. D

REMARK. Over semiperfect rings, 1-PF condition (i.e., every cyclic faithful mod-

ule is a generator) does not imply FPF one in general. For example, any non-

semihereditary local commutative domain is 1-PF, but not FPF (see [10, Corollary Part

Π, 1.9]).

2. Commutative FPF rings

Faith [10] has already given the following decisive characterization of commuta-

tive FPF rings.

Theorem ([10, Theorem Part II, 5.1]). For a commutative ring R, the following

conditions are equivalent:

(1) R is FPF;

(2) The classical quotient ring of R is self-injectivey and every finitely generated

faithful ideal of R is a generator for Mod-JR;
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(3) Every finitely generated submodule of E{R) containing R and every finitely gen-

erated faithful ideal of R is a generator for Mod-iϊ;

(4) Every finitely generated submodule of E{R) containing R and every finitely gen-

erated faithful ideal of R is projective.

In this section, we present a characterization of commutative FPF rings, which

sharpens a part of the theorem above and is concerned with the noted in § 0.

For a ring R, we denote by B(R) the set of all central idempotents in β, which

forms a Boolean algebra with the join eV/ = e + f -ef and the meet eΛ/ = e/, and

by X(R) the set of all maximal ideals of the Boolean algebra B(R). Let X be an R-

module and x an element of X. For each m G X{R), we denote by X m the (Pierce)

stalk of X at m, i.e., the factor β-module X/Xm of X, and by x^ the image of x

in X/Xm. If Y is a submodule of X, then we may naturally identify F m with the

submodule (Y+Xm)/Xm of Xm. Elementary results on B(R), X(R) and the stalks

may be found in [22, Part I, § 1 ~ 4].

Our aim in this section is to prove the following theorem.

Theorem 2.1. Let R be a commutative ring with E = E(R). Then the following

conditions are equivalent:

(1) R is FPF\

(2) For every x e E, R + xR is a generator for Mod-R;

(3) For every x € E, R + xR is projective;
(4) For every x G E, there exist a G {R : x) and b G R such that α + xb = 1;

(5) For every m G X(R) and x m G £?m, ί/*ere emf α m G ( Λ m : x m

The theorem immediately implies the following result, which is shown in [17,

Corollary 2] for commutative semiprime rings.

Corollary 2.2. A commutative ring R is FPF if and only if every 2-generated

faithful R-module is a generator for Mod-R.

To prove the theorem, we provide several lemmas.

The following facts are elementary and well-known (e.g. [10, Part II, Chapt. 2, 3],

[24, Chapt. XIV]).

Let R be a ring with Q the maximal right quotient ring, and set E = E(RR),

S = Endβ(E) and J = J(S). Then:

(1) J — {φ G S I Ker<^ is essential in ER), and S/J is a (von Neumann) regular

and right self-injective ring.

(2) J1R = JE = Z(E).

(3) Q = {x G E I for every a G R,(R : xa) has zero left annihilator in R}.
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(4) Q is right self-injective if and only if Q = E if and only if for every x £ E,

(R : x) has zero left annihilator in R.

(5) If R is a commutative ring and M is a finitely generated .R-module that is gen-

erated by n elements xι,... , xn, then M is a generator for Mod-i? if and only

if there exist ψ\,.. ,,φn £ Hom#(M,R) such that ΣΓ=i Ψi(χΐ) — l

Lemma 2.3. Let R be a commutative ring such that Z(R) = Z(E(R)). If M is

a submodule of E(R) containing R, then

M{R: M) =Tr Λ (M),

where Trjι(M) is the trace ideal of M.

Proof. Set E = E(R), S = Endβ(£;) and J = J(S). It is then immediate that

M(R : M) C TTR(M). TO the converse, let φ £ Hom Λ (M,Λ), and set

a = y?(l) and ψ = φ — a*,

where >̂ is extended to an i?-endomoφhism of E, and a* : E -> E is the multiplica-

tion map of α. Since R C Ker^, it follows that ψ £ J, from which

Mα C y?(Λf) - ^ ( M ) C Λ, i.e., α £ (R : M).

Thus we have

φ(M)cM(R:M) + Z(R).

On the other hand,

MZ{R) C Z(E) = Z(Λ), i.e., Z(Λ) C (Λ : Af).

Therefore we obtain φ(M) C Aί(Λ : M), which shows that Tr^ίM) C M{R : Af),

as desired. D

Lemma 2.4. Lei E be a {right) R-module extension of a ring R such that for

every x £ E, there exist a £ (R : x) and b £ R for which a H- xb = 1. Let F be a

submodule of E such that E{R Π F) C F. Set Έ= {R + F)/F and ~E = E/F, and

denote by x the image of each element x of E in E. Then,

(1) For every x £ Ef there exist a £ (R:x) and b £ R such that a + xb=l.

(2) R is essential in E as an R-module.

(3) If E is a ring extension of R and F is an ideal of E, then all idempotents of

the ring E are contained in R.
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Proof. (1) Immediate.
(2) and (3) Let x be a nonzero element of E. Then, by (1) there exist a G (R : x)

and b € R such that a + x6 = 1. If xb — 0, then Q φx — x~a £ R. If otherwise, then

0 ^ x 6 = 1 — a £ R. Thus, i? is essential in E-^.

If x is an idempotent of E, then x = xa + xb e R. D

For a ring R and e G # ( # ) , we set

M{e) = {me X(R) I e g m}.

Then it is well-known that £(i?) is a Boolean space in which

{Λ/Xe) I e G B(R)}

is the set of all clopen (= closed and open) sets, and that X(R) has the following,

so-called (see [22, p. 12-13]), partition property.

Partition Property. For every open covering {O\}\eλ of X(R), there exist

finitely-many clopen sets Λ/Ί,... ,Λfk of X(R) such that:

(i) for each i — 1,..., fc, there exists a λ; G Λ /or which λίi C C?λi

(ϋ) x(R)=λr1\j'"\jλrk\
(iii) AΓiDAfj =Qfori^j.

We use the following "sheaf theoretical" result as in [22, Proposition 3.4]. We

briefly give its direct proof.

Lemma 2.5. Let Mi,..., Mt be submodules of a {right) R-module M, and let

x\y ..., xs G M. Let / i , . . . , / n be integral polynomials in noncommuting variables

Xι, ..., Xs, Yi, ..., Yt such that for each m G X(R), there exists a

( 2 / i , . . . , 2 / ί ) G M i x ••• x M t

for which

/ i k r - , ^ m , 2 / L r - , ! / L ) =°m (in Mmforj = l,...,ή).

Then there exists a

( ί / i , . . . , y t ) G M i x ••• x M i

/ o r which

fj(xi,...,x8,yi,' ',yt) = 0 {in M for j = l , . . . , n ) .
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Proof. For each m G X(R), there exist a neighborhood U(m) of m and

{y'i>'-,yt) e M i x ••• x M t

such that for each j and mι G U(m),

Indeed, by hypothesis there exists a

(2/ί> >2/t) G M i x ••• x M t

such that for each j ,

which means that there exist Zj G M and e^ G m such that

We then only set U{m) = Π^=i

By Partition Property of X(R), there exist finitely-many

( y i i i - , y u ) , - Λ v k i , - . , y k t ) e Mx x ••• x Mt

such that:

(i) for each i = l,...,fc, / j ί a J u , . - . , ^ , ^ , . . . . 2/<tw) = 0 m for each j and

m G ΛΓ(ei);

(ii) X(R)=λr{e1)U'"Uλί(ek);

(iii) Λr(ei)nΛf(ei>) = 0 for i ^ i'.

Note by (ii) and (iii) that e\ V V e^ = 1 and ê  Λ e^ = 0 for i φ V. Now, for each

h — 1,. . . , £, we set

2/Λ = 2/iΛβi + \-ykhek-

Then it is easy to see that for each j and m G 3£(iϊ),

/ j K r . ,^m,2/im, ., l/ίJ = 0 m .

Therefore we conclude that for each j,

fj(χi,...,χ8,yi,->,yt) - 0,
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as desired. D

Lemma 2.6. Let R C Q be a ring extension such that B{R) C B(Q). If for

each m G £(R), the ring <2m is the classical {right) quotient ring of i ϊ m , then Q is

the classical {right) quotient ring of R.

Proof. First, let c be a regular element of R. Then it is immediate that for each

ra G X(R), the element c m is regular in β m and hence invertible in Qm. Now, ap-

plying Lemma 2.5 (in which Mi = M — Q) to the element c and the polynomials

MXi,Yi)=XiYi-l, f2(XuYi)=YiXi-l,

we see that c is invertible in Q.

Next, to see that every element of Q is of the form ab~ι for some α, b G R, one

only needs to apply Lemma 2.5 (in which Mi = M2 = R and M3 = M = Q) to any

element x G (5 and the following three polynomials (in variables X\, Yi, Y2, ^3) :

We denote by Qcι(R) the classical quotient ring of i?.

Lemma 2.7. Let R C Q be a commutative ring extension such that for every

x G Q, there exist a G {R : x) and b G R for which a + xb = 1. 77i£tt,

(1) If I is an ideal of Q such that Q/I is a regular ring, then Q/I = Qcι{{R +

1)11).
(2) If Qd (R) C Q and Q is a regular ring modulo its Jacobson radical, then Q =

Qd(R).

Proof. (1) According to Lemma 2.4 and 2.6, it suffices by passing through / to

show that in case Q is a regular ring, Qm = Qcz(-Rm) for every m G X{R). By the

regularity of Q and Lemma 2.4, the ring Qrn is a field and Rrn is essential in Qrn

as an Λ m -module. Therefore, Q m is the quotient field of Λ m .

(2) Set J = J(Q), β = (Λ + J ) / J and Q = Q/J, and denote by x the image

of each element x of (5 in Q. If x G J, then by hypothesis there exist a € {R : x)
and 6 G i? such that a + xb = l. Since α = 1 — xb is invertible in Q, the element a (G

(iϊ : x)) is regular in R, which shows that a; G Qcι(R)- Thus we obtain J C Qcι{R)-

Now, let i/ G (5 be arbitrary. By (1),,Q = Qcι(R), whence there exist c, d G Λ

and q £ Q such that yc — d, cq — 1 £ J. Since eg is invertible in Q, c is regular in Λ.

Thus, y edc~ι + J c " 1 C Qcι{R)- Therefore we conclude that Q = Qcι{R). •

The following lemma is well-known (see [2, Theorem 8] and [1, Proposition

17.9]).
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Lemma 2.8. Every finitely generated faithful projective module over a commuta-

tive ring R is a generator for Mod-i?.

An ideal of a ring R is called a regular ideal if it contains a regular element of

R.

Griffin [15] characterized commutative rings in which every finitely generated reg-

ular ideal is invertible, i.e., projective (see [24, Proposition II, 4.3]). The following

lemma may be obtained by the proof of (10) =^ (1) of his theorem.

Lemma 2.9 ([15, Theorem 13]). For a commutative ring R, the following con-

ditions are equivalent:

(1) Every finitely generated regular ideal of R is projective',

(2) For every a, b e R such that a is regular in R, the ideal aR + bR is projective.

Now, we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. Throughout the proof, let Q denote the maximal quotient

ring of R.

(1) => (2). Obvious.

(2) =>> (3) and (4). First we show the following.

CLAIM. Q is a self-injective ring, i.e., Q = E.

Proof of Claim. First note that E = E(QQ), and by (2) that for every x e

E, the Q-module Q + xQ is a generator for Mod-Q, because every i?-homomorphism

R + xR -> R may be extended to a Q-homomorphism Q 4- xQ -» Q. Thus, to prove

the claim, we may assume that R — Q. This then implies that

Z(R) = Z(E).

Indeed, obviously, Z(R) C Z(E). To the converse, let x e Z(E). Then there exists a

θ E J(EndR(E)) such that x — 0(1), while by hypothesis, the β-module R + xR is

a generator; hence there exist φ, φ G Horriβ(i? -f xR,R) such that

Extending φ and φ to i?-endomorphisms of E, we see that φ{\) = (1 — φθ)(l) and

1-φθ is invertible in Enάn(E). Consequently, Ker^ΠjR = 0, i.e., φ is monic. Since

φ(xφ(l) — φ(x)) = 0 and hence xφ(ΐ) — φ(x) E R, it follows that (B : x) contains

the regular element φ(l). In particular, (R : x) has zero annihilator in iϊ, i.e, x E R

(because R = <2). Thus, we conclude that Z(fl) = Z(J5), as desired.

Now, let y € E be arbitrary. Then, the iϊ-module R -h ϊ/i? is a generator, whence
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by Lemma 2.3 we obtain (R+yR)(R : y) = R. Therefore, (R : y) has zero annihilator

in R, i.e, y G R, which completes the proof of Claim. D

To show (4), let x G E. Then by (2) there exist φ\, φ2 G Hom.R(R + xR,R) such

that

Since by Claim each ψi may be extended to a Q-endomorphism of Q, it follows that

xψi{\) = </?i(:r) G #, i.e.,

</?i(l) G (Λ:x) and φι(ΐ) + xφ2{l) = 1,

which means (4).

To show (3), one only needs to use Dual Basis Lemma for projective modules.

(3) => (2). This follows from Lemma 2.8.

(4) ^ (1). It follows immediately from (4) that for every x G E, the annihilator

of (R : x) is zero, i.e., E = Q, a self-injective ring, and that R satisfies (2) and hence

(3). Thus by Lemma 2.7 we have Q = Qcι(R), while we see by Lemma 2.9 that every

finitely generated regular ideal of R is projective.

Now, to show that R is FPF, it suffices by Lemma 1.5 to show that every finitely

generated submodule of E = Qcι{R) containing R is a generator. So, let M be such

a submodule. Then there exists a regular element c of R such that Me C R\ hence

Me is a finitely generated regular ideal of R. As mentioned above, Me is projective,

whence by Lemma 2.8, M = Me is indeed a generator. Therefore, R is an FPF ring.

(4) => (5). This follows from Lemma 2.4.

(5) =Φ (4). One only needs to apply Lemma 2.5 (in which M\ — M2 = Ms = iϊ

and M = E) to any element x € E and the polynomials

/ 1(Λ: 1,y 1,y2,y3) = i ; i + - x : 1 r 2 - i , ΛίXi , 11,^2,^3) = * i i Ί - n . •

Recall that a domain i? is Priifer if every finitely generated ideal of R is pro-

jective. Note also that every commutative semiprime ring R has the regular and self-

injective maximal quotient ring that is the injective hull of R.

As consequences of Theorem 2.1, we obtain the following corollaries.

Corollary 2.10. Let R be a commutative ring with Q the maximal quotient ring.

Then the following conditions are equivalent:

(1) R is a semiprime FPF ring;

(2) For every m G X(R), Rrn is a Priifer domain with Qrn the quotient field.

Proof. Note by Lemma 2.8 and Dual Basis Lemma that a domain is FPF if and
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only if it is Prϋfer.

(1) =*• (2) follows from Theorem 2.1 and the proof of Lemma 2.7(1).

(2) =ϊ (1) follows from Theorem 2.1 and an easy fact that if i ? m is a domain

for every m G X(R), then R is a semiprime ring. D

REMARK 1. In the corollary above, we may not drop the condition "with Q m

the quotient field' of (2). For example, let R be a non-self-injective commutative (von

Neumann) regular ring. Then, Rrn is a field for every m G X(R), but R is not FPF.

REMARK 2. Let R be a commutative ring with E — E(R) and consider the fol-

lowing two conditions for R:

(1) R is FPF;

(2) For every m G X(R), i 2 m is an FPF ring with Ern the Rγrt-injective hull.

Then, Theorem 2.1 shows that (2) =ϊ (1), while we do not know whether the converse

holds in general. However, we see by Theorem 2.1 and [24, Proposition XI, 3.11] that

this is equivalent to the following:

(*) Every stalk Qrn of an arbitrary self-injective commutative ring Q is also a self-

injective ring.

The condition (4) of Theorem 2.1 immediately implies the following.

Corollary 2.11 ([9, Corollary 18], [10, Proposition Part II, 2.9]).

(1) Let Rχ be a commutative ring for λ G Λ. Then, the ring ΠλeΛ ^ λ ί 5 FPF if

and only if each R\ is FPF.

(2) Let R be a commutative FPF ring with Q the maximal quotient ring. Then every

subring of Q containing R is FPF.

3. Additional results on commutative FPF rings

In this section, by using Theorem 2.1 we present another characterization of com-

mutative FPF rings.

Recall that a ring homomorphism φ : R —> S is a (right) flat epimorphism if φ is

an epimorphism in the category of rings and 5 is flat as a (left) β-module.

The following is well-known (c.f. [24, Theorem XI, 2.1]).

Lemma 3.1 ([23, Theoreme 2.7]). For a ring extension R C 5, the following

conditions are equivalent:

(1) The inclusion map R —» S is a right flat epimorphism;

(2) For every x G 5, (R:x)S = S.

We obtain the following theorem, which somewhat generalizes [11, § 8, Proposi-

tion, (the first) Corollary].
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Theorem 3.2. For a commutative ring R, the following conditions are equiva-

lent:

(1) R is FPF;

(2) Every finitely generated submodule M of E(R) containing R is invertible, i.e.,

M{R : M) = R;

(3) The maximal quotient ring Q of R is self-injective, and for every subring S of

Q containing R, the inclusion map R -> 5 is a flat epimorphism;

(4) The maximal quotient ring Q of R is self-injective, and every subring of Q con-

taining R is integrally closed in Q.

Proof. (1) => (2). Let M be a finitely generated submodule of E(R) (= Q, the

maximal quotient ring of R by (1)) containing R. Since M is a generator, there exist

i i , , . . , i n 6 M , ^ , . . . ) ^ 6 Hom Λ (M, R) such that

Extending each ψι to a Q-endomorphism of Q, we obtain

1 = Xiψxil) + + xnψn{l) e M(R : M).

Thus, M{R:M) = R.

(2) =» (3). Given any x e £ , we see by (2) that (iϊ + χJR)(Λ : x) = R. This

combined with Lemma 3.1 implies (3).

(3) => (4). Let S be a subring of Q containing R and 5 its integral closure in

Q. Let x e S be arbitrary. Applying Lemma 3.1 to the inclusion map R ->- 5, we

have (.R : x)5 = S, from which

{S : x)sS = 5, where (5 : a?)5 = {s G 5 | zs G 5} .

It then follows from the Lying Over Theorem (e.g. [16, Theorem 44]) that (S : x)s =

5, i.e., x G S. Therefore, 5 = S is integrally closed in Q.

(4) => (1). This follows from [5, Theorem 2] and Theorem 2.1. D

REMARK. Let R be a commutative ring with Q the maximal quotient ring. For

each prime ideal P of R, we set

[P] = {yeQ\(P:y)n(R-P)ϊ<b}.

It then follows from Theorem 3.2 and [5, Theorem 2] that the following conditions for

R are equivalent:

(1) R is FPF;
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(2) Q is a self-injective ring on which each (i?[pj,[P]) is a valuation pair in the

sense o/Manis [18], [19].

The theorem above implies the following corollary in which (1) <£> (3) is [11, §

8, (the second) Corollary].

Corollary 3.3. Let R be a commutative semiprime ring with Q the maximal

quotient ring. Then the following conditions are equivalent:

(1) R is FPF;

(2) For every subring S of Q containing R, the inclusion map R —ϊ S is a flat

epimorphism;

(3) Every subring of Q containing R is integrally closed in Q.
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