

Title	Ensuring Safe Operation of Ship Propulsion Plant in Actual Seas
Author(s)	Oleksiy, Bondarenko
Citation	大阪大学, 2012, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/59942
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、 https://www.library.osaka-u.ac.jp/thesis/#closed 大阪大学の博士論文について

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏 名	オレクシイ ボンダレンコ Oleksiy Bondarenko
博士の専攻分野の名称	博 士 (工学)
学 位 記 番 号	第 25644 号
学 位 授 与 年 月 日	平成 24 年 9 月 25 日
学 位 授 与 の 要 件	学位規則第 4 条第 1 項該当 工学研究科地球総合工学専攻
学 位 論 文 名	Ensuring Safe Operation of Ship Propulsion Plant in Actual Seas (実海域での船舶推進プラントの安全な運転を確実にするための研究)
論 文 審 査 委 員	(主査) 教 授 柏木 正 (副査) 教 授 戸田 保幸 准教授 梅田 直哉 准教授 篠浦 宗彦

論 文 内 容 の 要 旨

The released statistics of incidents in the world wide fleet reveal a great reduction in the number of casualties of merchant ships and at the same time confirm that the ship machinery continues to be the major cause of serious faults, followed by groundings and collisions. Moreover in ship accidents which were attributed to weather, grounding and fire/explosion, the propulsion plant failures may have been a contributory or initiatory factor. Although the operation of ships in actual seas has received much research attention in recent time covering safety, economy and performance aspects, the safety of propulsion plant operation within the framework of ship operation has been considered scarcely.

The problem of propulsion plant safe operation is defined as the operation with minimum risk of accidents or faults, which can cause the loss of ship propulsion. The operational conditions of a propulsion plant closely interrelate with those of a propeller disturbed by waves and ship hull transitional motions. Thus the concerned problem of safe operation of propulsion plant is extended to consideration of an entire ship operation in actual seas. However the ship navigating in actual seas is a heterogeneous system which consists of various subsystems and involves two major fields of expertise: naval architecture and marine engineering. In order to systematize the assessment of propulsion plant safe operation, the Formal Safety Assessment (FSA) methodology, adopted by the International Maritime Organization (IMO) has been exploited.

In accordance with the FSA methodology at the initial stage, the preliminary identification of events and propulsion plant elements that may lead to hazardous incidents was performed based on the experience of propulsion plant operation and using a "brainstorming" technique with the support of Fault Tree Analysis (FTA). These made it possible to deduce the cause consequence tree of loss of ship propulsion, and to identify the most hazardous scenarios, i.e. engine slow/shut down protection and turbocharger failure, which can result in the loss of ship propulsion. In order to quantify these events, the entire ship propulsion plant model consisting of hull, propeller and engine has been formulated as the deterministic time domain model and as the statistical model in the domain of stochastic variable.

In the concerned ship propulsion plant model, the sub-model of propeller torque is based on a quasi-steady

open-water characteristic in which two dominant dynamic effects were introduced: the first is the dynamics of axial inflow velocity comprising the wave orbital motion and ship hull transitional motions (surge, heave and pitch); the second is the effect of propeller emergence often referred to as the propeller racing. The propeller and engine are connected through the propeller shaft rotational dynamics, thus in order to represent the operation of propulsion engine in part of torque generation, a quasi-steady cycle-mean modeling approach for the engine thermodynamic processes was adopted in this thesis. Besides modern propulsion engines comprise a speed control system in which the governor plays a key role. The correctness of the developed statistical model of ship propulsion plant was confirmed through a comparison with the results obtained by a stochastic simulation in the time domain, and the model was found acceptable over the wide range of sea states.

The evaluation of complete ship propulsion plant performance over the wide range of sea states shows a dilemma in the engine speed control. Engine speed governors as a rule are tuned for calm sea condition to keep the engine speed constant at the expense of change of fuel flow rate. However as the sea condition changes from moderate to severe, the propeller load demand inevitably rises and the calm sea like control becomes inadmissible due to the possibility of turbocharger compressor surge, which is an unacceptable risk. The readjustment of the speed governor can significantly reduce the fluctuation of fuel flow rate but at the expense of increased engine speed fluctuations which may reach the overspeed limit. Thus the optimal balance between the admissible fluctuation of fuel flow rate and the engine speed is a necessary condition to ensure the safe operation of propulsion plant in actual seas, which can be maintained based on the concept of Safety Window introduced in this thesis.

The main conclusions of the present study are:

1. The experts' judgment and experience of propulsion plant operation made it possible to develop a qualitative cause-consequence model for the loss of ship propulsion. Moreover the probabilistic formulation of a complete model of ship operation, connecting three main objects hull-propeller-engine, allowed to establish interconnection between the ship navigating conditions and the propulsion plant operation and thus made it possible to calculate the occurrence probability of loss of ship propulsion.
2. The analytical description of propeller torque statistics in terms of the energy density spectrum and probability density function was obtained by virtue of the statistically linear representation of propeller racing function and introduction of weight functions for representation of nonlinear interactions between the components. The proposed method shows good agreement with numerical results.
3. The statistical model of propeller torque clearly shows contribution of various components (i.e. inflow velocity and propeller racing) to the total fluctuation over the wide range of sea states. Besides it shows the effect of propeller racing on the wave energy spectrum which consists in the reallocation of frequency components of that spectrum, thus facilitating the formulation of optimal control system for the propulsion plant.
4. In order to assess and consequently ensure the safe operation of propulsion plant, the concept of Safety Window in engine transient operations was introduced based on the engine load diagram and the turbocharger-engine joined operation. With respect to the latter, a clear insight into the principle of turbocharger compressor operation allowed defining a stability factor of compressor, and then interconnection between the stability factor and propulsion engine operation has been found as well.
5. Since the propulsion plant model provides information about two state variables of engine rotational speed and turbocharger rotational speed and the stability factor of compressor is significantly affected by the turbocharger rotational speed, consideration of the second state variable is rather important for the formulation of control action (fuel flow rate) to the engine. Thus, the novel multi-input single-output type of control system considered in this thesis has shown promising performance with respect to the propulsion plant safe operation, but there is still room for improvement in this type of control.

世界における船舶の海難事故に関する公開された統計値によると、商船の事故は大きく減少しているものの、重大な非全損事故の主な原因是船の機械装置のトラブルであり、座礁と衝突がその次であるということに変わりはない。さらに、悪天候・座礁・火災に起因する全損海難事故においては、船舶推進プラント（船体・プロペラ・エンジンから成るシステム）におけるトラブルが引き金であったと想像される。最近、実海域における船舶の運航は、安全性、経済性、性能面に關係して注目を集めているが、船舶推進プラントの運転における安全性について取り扱った研究は非常に少ない。

船舶推進プラントの安全な運転は、船の推進機能を失う原因ともなり得る事故や過失のリスクを最小とする運転であると定義され、その推進プラントの作動状態は、波や船体運動によって変動するプロペラの作動状態と密に関係している。したがって推進プラントの安全な運転の問題は、実海域における船全体システムの運転の問題でもある。しかしながら、実海域を航行している船は幾つかの異質なサブシステムから成り立っており、その理解には造船工学と船用機関工学という二つの専門分野の知識が必要である。推進プラントの安全な運転評価を系統的に行うために、国際海事機関によって採用されている総合的安全評価（Formal Safety Assessment: FSA）の方法論が開発してきた。

初期段階での FSA 方法論に則りして、船舶推進プラントの運転経験に基づくとともに過失樹状解析の支援によるブレインストーミング手法を用いて、危険な事故に結び付くかもしれない重要な出来事や推進プラント要素を予備的に調査し、それによって、エンジン出力の低減・停止、ターボチャージャーの故障という最も危険なシナリオが船舶の推進機能喪失という結果になり得ることを特定している。さらに本論文では、これらの事象を定量化するために、船体・プロペラ・エンジンから構成される船舶推進プラント全体を、時間領域での決定論的なモデルとして、また確率変数を用いた統計解析モデルとして定式化している。

船舶推進プラントモデルにおけるプロペラトルクのサブモデルは、準定常なプロペラ単独試験の結果に基づいているが、二つの重要な動的影響、すなわち、1) 波の粒子運動と船体運動から成るプロペラ軸方向の変動流の影響、2) プロペラレーシングと呼ばれるプロペラの空中露出の影響が考慮されている。プロペラと船のエンジンは、プロペラ軸の回転運動を通して関連しているので、エンジンの作動を表現するために、本論文ではエンジンの熱力学過程に対して準定常の周期平均的取扱い方を採用している。加えて、最近の船用エンジンはガバナーが重要な役割を果たす速度制御システムを搭載しているので、それも適切にモデル化している。開発された船舶推進プラントの統計解析モデルが正しいことは、時間領域でのシミュレーションによる結果との比較によって確かめられており、提案されたモデルは、広範囲の海象状態に対しても現象を良く表していることが示されている。

広範囲の海象状態における船舶推進プラント性能の算定では、エンジンの速度制御におけるある種のジレンマが示されている。通常、エンジンの速度ガバナーは、燃料投入率の変動を許容して静穏海象状態のエンジン速度を一定に保つように調整されている。しかしながら、海象状態が厳しくなるにつれてプロペラ荷重は必然的に増加し、非常に危険なターボチャージャー圧縮機の大変動が起こり得るために、静穏海象状態に対するような制御は許容されなくなる。速度ガバナーの再調整は、燃料投入率の変動を抑えることができるが、逆に限界値に達するようなエンジン速度の変動制御を犠牲にすることとなる。したがって、実海域における船舶推進プラントの安全な運転を確実にするためには、燃料投入率の許容される変動とエンジン速度の許容される変動の間の最適なバランスを保つことが必要であるが、これに対して本論文では、主機特性平面上に設定された「安全領域」（Safety Window）の考え方に基づいて、そのバランスを維持できることが示されている。

本研究によって示された主な結果をまとめると、以下のとおりである。

- (1) 船体・プロペラ・エンジンから成る船舶推進プラントの専門家の判断と経験を基に、船の推進機能喪失における定性的な因果関係のモデルを開発した。さらに船体・プロペラ・エンジンを結びつける力学的モデルの確率論的な定式化は、船の運航状態と推進プラントの作動状態の関係を明確にし、船の推進機能喪失に関する発生確率の計算を可能にした。
- (2) プロペラレーシングを記述する非線形な特性関数の統計論的な線形化と、要素間における非線形相互作用を表現

するための各要素に対する重み関数の導入によって、エネルギー密度スペクトルと確率密度関数を用いたプロペラトルク変動の統計モデルが解析的に得られた。

- (3) このプロペラトルク変動の統計モデルは、プロペラ流入速度やプロペラレーシングなどに代表される種々の変動成分が、広範囲の海象状態における全体の変動に対してどのように寄与しているのかを明確に示している。さらにそれは、船舶推進プラントのための最適制御システムの定式化を容易にした。
- (4) 船舶推進プラントの安全な運転を評価し、確実にするために、エンジンの動的な作動時における「安全領域」(Safety Window)の考え方を導入しているが、それは、エンジン特性平面上でのターボチャージャーとエンジンの連動に基づいて導入された概念である。また、ターボチャージャー圧縮機の作動原理の洞察によって、圧縮機の安定要素を定義することが可能となり、そしてその安定要素とエンジン作動の関係も見出された。
- (5) 船舶推進プラントのモデルは、エンジンの回転速度とターボチャージャーの回転速度の二つの状態変数について情報を提供しているが、ターボチャージャーの回転速度は圧縮機の安定要素に大きく影響するので、ターボチャージャーの回転速度を考慮する方が、エンジンに対する作動制御の定式化では大切である。

以上のように、本論文は、船体・プロペラ・エンジンが結合されたシステムを船舶推進プラントとして捉え、それを構成する種々の非線形な要素を適切にモデル化することによって、実海域における船舶推進エンジン（主機）に対する安全な運転方法の検討を可能にしたものであり、波浪中船舶推進性能に関する研究に新たな考え方を提供したものと評価される。よって本論文は博士論文として価値あるものと認める。