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0. Introduction

In this paper we consider the following integrodifferential equations
with time delay in a real Hilbert space H

%u(t) +Au(t)+ A u(t—h)+ J‘] a(—s)A,u(t+s)ds=f(t),
—h

(0.1)
u(0)=x, u(s)=y(s) —h<s<O0.

Here, A is a positive definite self-adjoint operator and A4,, A, are closed
linear operators with domains containing that of 4. The notation k
denotes a fixed positive number and a (+) is a real valued function belonging
to C3([0,A]).

The equations of the type (0.1) were investigated by G. Di Balasio,
K. Kunisch and E. Sinestrari [3], S. Nakagiri [5], H. Tanabe [9] and
D.G. Park and S.Y. Kim [6], etc. Particularly, G. Di Balasio, K.
Kunisch and E. Sinestrari [3] showed the existence and uniqueness of a
solution for fe L?(0,T; H), AyeL*(—h,0; H) and xe(D(A),H)y;3,- In
[6] D.G. Park and S.Y. Kim also got a similar result to [3] under the
following conditions:

feL*(0,T; H; tdt) and Aye L*(—h,0; H: tdt),
0.2) A Y2fe L2(0,T; H) and AY?ye L*(—h,0; H),
f(t) and Ay(t—h) are improperly integrable at t=0,

x is an arbitray element of H,
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where fe L?(0,T; H, tdt) means that f is a measurable function with

values in H on [0,7] and | |f(¢)|3tdt< 00, and A% is a fractional power of 4.
0
Since the equation (0.1) is of parabolic type, we want x to be an

arbitrary element of H. Then the integral in (0.1) exists only in the
improper sense no matter what nice functions f and Ay may be. Hence,
it would be considered natural to investigate our problem under the
hypothesis such as (0.2).

In this paper our object is to study the existence and uniqueness of
the solution of the equation (0.1) under assumptions weaker than (0.2)
for the initial function y and the inhomogeneous term f, which are,
roughly speaking, stated as follows:

(0.3) {f€m¢;>0L2(5,T;H)andAyemboLz(—h—l—é,O;H),
f(t) and Ay(t— h) are improperly integrable at t=0.

First we show the existence and uniqueness of a weak solution for which
A~ %u is continuous in [0,T] for an arbitrary positive number a. Next,
under some conditions which are weaker than the assumption (0.2) but
stronger than (0.3) we show the existence of the unique solution of (0.1)
in C ([0,T]; H).

We enumerate the contents of this paper as follows.
In section. 1 we give some notations, assumptions and theorems.
In section 2 we introduce some fundamental lemmas for later use.
In section 3 we investigate approximate solutions of some parabolic
equation associated with the equation (0.1) and prove the existence and
uniqueness of a solution to the equation.
In section 4 we study the relation between this parabolic equation and
the equation (0.1). In section 5 we give the proof of Theorem 1 concerned
with a weak solution and in section 6 we show Theorem 2 for a continuous
solution. In the final section we state some remarks for our
assumptions.

The authors wish to express the deepest appreciation to Prof. H.
Tanabe of Osaka University for his kind suggestions.

1. Notations, Assumptions and Theorems

Let H be a real Hilbert space with the inner product (-,-) and norm
|‘lg- The operator A4 is positive definte self-adjoint in H. The fractional
power A* of A is defined for all real numbers using the spectral resolution,
and A% is bounded if ®<0. In this paper by the graph norm of 4% we
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mean the norm |A% |4 for any real number a. If >0, D(A4%) is a Hilbert
space with this graph norm. If >0, we denote by D(A4 %) the pre-Hiblert

space H endowed with the graph norm of 47*. We denote ﬂ DA™
n=1

by D(A%®). Let e~ ' be the analytic semigroup generated by —4. We

denote the convolution of funcitons f and g by fxg :

(fxg)(t)= ff(t —5)g(s)ds,
0

and the product of operators PP, P, by [| P, We use the usual
i=1

notations L2(0,T; S), W'2(0,T; S) etc., to denote variable spaces of

functions with values in a Banach space S. In particular L%(8,T; D(A))

is the space of all measurable functions from [§,7T] to the domain of 4

such that |4u|? is integrable on [§,T]. For the sake of simplicity we put

leoc((arb]; H) = r\¢§>OI‘2(‘1'|"6)b; H)

When we are concerned with convergence, we mean the strong convergence
in H unless otherwise stated.
Throughout this paper we denote

t

t
lim f(s)ds and lim A~*]| f(s)ds by

20 Ja+¢ £—=0 a+te
t t
J f(s)ds and A™° f f(s)ds respectively.
at a+

We denote by QO the set of functions satisfying the following two
conditions:

1) feLi,((0,h]; H),

t
2) foranya>0,4 _“f f(s)ds exists and there is a function g€ C((0,4];
0+

t
H) such that, for any te(0,4], A*“f f(s)ds=A"%q(t) and there

a+

t
exists J q(s)ds.

at
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t

The second condition means that the improper integral q(t)=| f(s)ds
a+

exists in the graph norm of 47 * for any >0 and is a continuous function
t

with values in H in (0,4] such that the improper integral f q(s)ds exists.

a4+
Suppose A; and A, are closed linear mappings with domains

containing that of 4. For the sake of simplicity we assume T'=Nh for
some natural number N.

With regard to the equation (0,1) we employ the terminology of a
weak solution on [0,7] defined as follows.

DEeriNiTION 1.1. We say that a function u defined on [—A,T] is a
weak solution of the equation (0.1) if the following four conditions are
satisfied:
1) wueLl((nh,(n+1)R]; D(A)AW3i(nh,(n+1)h]; H) for
n=0,1,- N—1 and ueC([0,T]; D(A™%) for any a>0,

2) lim A *u(t)=A %« for any oa>0 and u(s)=y(s) for —h<s<0,
t-0

3) for each m:n=0,1,2,---,N—1, Au(- +nh) belongs to Q,

4) the function u satisfies the equation (0.1) for a.e. t€0,T]

REMARK 1. Let u be a weak solution of (0.1). Since ue W};?

((nh,(n+1)h];H), u is continuous in (nh,(n+ 1)k] for n=0,1,---, N—1 where
the continuity at t=(n+ 1)k means the left continuity. From 3) we know
that there exists

n+1)h
A_‘"J' Au(s)ds for n=0,1---N—1 and any a>0.

nh+

Then the integral in the left side of the equation (0.1) should be understood
in the following sense

—~t+nh
AlimA ~*{( + JD Ya(— s)Ayu(s + t)ds)
—~h —t+nh+e

e—0

for nh<t<(m+1)h and any a>0 where n=0,1,---N—1(i.e. the integral
exists in the improper sense in the graph norm of A~ % for any a>0 and
its value belongs to H for a.e t).
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ASSUMPTION.

A-1) feL{((0,T]: H) and ye L, ((—h,0]; D(A)).
A-2) The restriction of f to [0,h] and Ay(- —h) belong to Q.

A-3) Letabe any nonnegative number. Then we have the following
estimate

Max {|4 %A, A7 2y, |A7 4,47 x|y} < Clxly

for any x € D(A%), where C is a constant depending only on «.
A-4) The function a(:) belongs to C3([0,k]).

We now state our theorem.

Theorem 1. Under the assumptions A-1), A-2), A-3) and A-4) a
weak solution u(t) of the equation (0.1) exists and is unique.

Next we state the definition of a continuous solution of the equation
(0.1). We first define the function space F_; by

t
F_,={geL}((0,h]; H); f g(s)ds exists for any te(0,h]}.
0+

DEerFINITION 1.2. Substitute 0 for « in 1), 2) of Definitition 1.1 and
F_, for Q in 3) of the same definition. Then the weak solution u(t) of
the equation (0.1) is called a continuous solution of (0.1).

t
We put (Kf)(t)=J e ""94f(5)ds for any feL2.((0,h]; H). If
12
t

geL?*(0,h; H), Je—('_s“g(s)ds belongs to L2%(0,h; D(A)nW'2(0,h; H)
0

(see Vol. 2 Theorem 3.2 in Lions-Magenes [4]). Let § be any small
positive number. Putting g(t)=£(¢) if t>0/2, =0 if 0<#<J/2 and using
the above result, we see the operator K is continuous from L% ((0,4]; H) to
L2.((0,h]; D(A))NC((0,h); H). Then, from A, K=A4,A '4AK, AK is a
continuous operator from L2 ((0,k]; H) to L% .((0,h); H). Thus, for any
natural number i, (KA4,)'K is a continuous operator from L2 .((0,k]; H)
to L},((0,h]; D(A)NC((0,h]; H).

We define function spaces F, by

F,={geF,_; lim((KA,)"Kg)()=0} for n=0,1,- N—1

t—0

inductively.
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ASSUMPTION

A-5) f(-)—Ay(-—h)eFy_ and Ay(-—h)eF_,
A-6) Let a be any real number and xe D(A*)NH. Then the
operator A; holds the same estimate as that in A-3).

Theorem 2. Let the assumptions A-1), A-4), A-5) and A-6) be
satisfied. Then a continuous solution u(t) of the equation (0.1) exists and
s unique.

ReEMARK 2. The assumption A-1) plus A-2) is Weaker than (0.3),
and A-5) is stronger than (0.3). But A-5) is weaker than the assumption
(0.2) and we have L'(0,h; H)nL2 ((0,k]; H) = Fy_, (see Appendix). We
see the following relations of inclusion: Fy_jc Fy_,c---c Foc F_,
< Q. If A4 is a bounded operator it follows that Fy_,=0.

Remark 3. 1) If feQ, then for ¢#>0, the improper integral
t
f e~ ""94f(5)ds exists and belongs to L2.((0,k]; D(A))NC((0,k]; H)nC

o+
([0,k4]; D(A~%) forany «>0. Indeed, for f L2 ((0,h];H), we have (Kf)(t) €
L2 .((0,h]; D(A))NC((0,k]; H). Using an integration by parts and the
analytic semigroup properties we see

t/2 t/2
(1.1) J e~ IAf(5)\ds = ¢~ DA 4o, ¢ J f(s)ds
0+ 0+

t/2
- J Ae™ =94 4002, 402 f f(t)drds in D(A™%).
0+

0+

12
Since J |de™*~944%2|, | ds<c-t~*? both terms of the right side of

0+
t

(1.1) are well defined in H. So J e C94f(5)ds exists in H. Moerover

0+
t

12
f e ""94f(s)ds €C((0,h); D(A™)). Hence J e”""94f(s)ds e LE ((0,h];
0+ 0+

D(A)NC((0,h]; H). Since both functions of the right side of

Jl e_"_’)Af(s)ds=ft f(s)ds—ft Ae“""“f f(t)drds
0+ 0 0+

0+

t

are continuous in D(A~%) on [0,k] it follows J. e~ ""94£(5)ds belongs to
0+
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C([0,r]; D(A™%)).

t
2) If feF, J e~ ""94f(s)ds is continuous in [0,k]. Indeed, from

0+
t

our assumption for f it follows that J e~ ¢"94£(5)ds is continuous on [0,4]

2
12 '/

and (1.1) yields f e~ ""f(5)dse C([0,h]; H).

o+

t

3) If feQ, f e ""94f(5)ds belongs to F_,. Let &¢ and & be
0+
sufficiently small positive numbers. Then

t
JEJ‘ e~ TIf(5)dsdt =
s Jo+
t t
r f e""s’Af(s)dsdt+rJ e~ IO dsdt =T, + I .
s Jo+ s Jo+

Changing the order of integration and integrating by parts we see

I,= r A“e“e‘s’A-A_“ff(t)dtds.
] ]

Then from the analytic semigroup property and fe Q we get lim I, =0.
€,0—0

Using the integration by parts we see

I r Ale™ 94, 4 f f(t)drdt
J\J) Altteet=94. 4 “’f f(r)drdsdt.

From the analytic semigroup property and fe Q we have lim I;=0. Then
€,6—0

our assertion is proved.

2. Preliminaries

In this secton we list some lemmas which will be used throughout
this paper. In what follows we suppose the assumptions A-3) and A-4)
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are satisfied.
Let R(-) be the operator valued function satisfying the following
integral equation

(2.1) R+ad,A '+R*ad, ' =0.
2

2

d . ..
We denote the derivative ER(t) by R(t) and also diER(t) by R(t).
[4

Lemma 2.1 1) For each te[0,T] R(t), R(t) and R(t) are continuous
linear operators from H to H and their operator norms are uniformly bounded

in [0,T.

2) Let o be any positive number. Then we have the following estimate:
Max {|47*R(t)A%|y, |A™*R(t) A%y, |4 *R(t)A *x|y} < Clx|y

for any xe D(A*) where C is a constant independent of t and x.

3) Rxad,A '=ad,A™?

Proof. The assumptions A-3), A-4) and the equality (2.1) readily
yield the conclusions of the lemma.

Using the semigroup property we get the following lemma.

Lemma 2.2. There exists a constant C that is nonnegative
number. Moreover it follows that

le*“ A, x|y < C-t™ x|y for any xe D(A) and
|A% 1A, APe 4%y < C-t ~* s P x|, for any xe H.

For any feL?, ((0,k]; H) we consider the following approximate
functions f,€ L*(0,h; H) of f:

f(t)_{f(t) if 1/n<t<h
" 0 if 0<t<l/n forn=1,2,-.

Lemma 2.3. Let f(t) be a function satisfying assumptions A-1) and
A-2). Then we have the following.

1) f, L*(0,h; H) for each n=1,2,

2) For any a>0 A4~ “J f.(8)ds uniformly concerges to A~ f(s)ds
0



SOLUTIONS FOR INTEGRODIFFERNTIAL EQUATIONS 637

in [0,k] as n— o0.
3) For any 6>0 it follows that

h
lim | |f,(s—f(s)|3ds=0.

n->odJs
Proof. With the aid of

0 if1/n<t

f,.(t)—f(t)={ —f)  if0<t<1/n

the assumptions A-1) and A-2) imply the assertions of the lemma.

Lemma 2.4. If u belongs to Q there exist

t t
A“limA_“j R(t—s)u(s)ds and A“limA—“J R(t —s)u(s)ds

50 s 5-0 F

where o is any positive number. Moreover the values of these limites are
independent of o and belong to F_ .

Proof. Using the integration by parts we have

(2.2) lim4 _“ftR(t —s)u(s)ds

60 )

=A"*R(0)A*A " f t u(t)de} —lim A °R(t—8) A% A" f u(t)dr
0+

0+ -0

t
+1imA'°‘J R(t—s)A“A_“f w(t)drds=1,—1_+1,.
0+

5-0 s
Let g be the function in the definition of Q associated with u. Then

I,=A*R(0)q(2), I,=1imA *R(t—5) A* A~*q(5)

-0

t
and I;=lim4 '“J- R(t—5)q(s)ds.

6—0 F]

Noting that ¢ is improperly integrable at t=0 and using the integration
by parts we see
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I,=A"*R(0) f ' q(t)dr+ A~° J tR‘(t—s) f q(t)drds.
o+ 0 0+

Then A%I;+1;) is a function independent of a and belonging to

F_;. Noting A™* q(6)e D(A*) and using Lemma 2.1 we get lim I, =0.
50

Replacing R by R, using a similar method to the above and noting R
is three times differentiable we know that the latter limit function in the
lemma has also the same properties.

For any ue Q we set

Ryu(t)=A%lim A4 _“ftR(t —s)u(s)ds,

-0 o

2.3) Rxu(t)= A*lim A *afR(t— s)u(s)ds,

5-0 s
G(u)(t) = R(O0)u(t) + (R¥u)(t).
Lemma 2.5. Let o be an arbitrary positive number. Then we get
the following.
1) If ueQ, R*u and R*u belong to F_,NnC([0,k]; D(A™%).
2) G(*) is an operator from Q to Q.
3) The operator G(-) has the following inequatily

f 1A~ *(G(u)(s) — G(v)(s))|pds < Constft |4~ *(u(s) — v(s))| uds
0 0

for any u, veQn LY(0,h; D(A™%)).
4) If A % u €([0,h); H) it follows
Jt e~ ""94G(u)(s)ds € C([0,h]; H) and

0+

" t
| J e~ CTIG(u)(s)ds|y SConstJ‘ |4~ *u(s)| gds.
0

0+

Proof. Combining Lemma 2.2, Lemma 2.4 and (2.3) and following
the proof of Lemma 2.4 we complete the proof of the lemma.
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RemMaARrk 4. If ueF_,, we know that
t
R*u(t)=f R(t—s)u(s)dse C([0,h]; H),
0+

and similarly for R*u(t). Hence, Gu)(t)eF_,.

h
Lemma 2.6. If fe Q then it follows that J a(t+h—1)f(t)dt belongs to

t

F_;nC([0,h]; D(A™?).

If feF_,, fa(t+h—t)f(’c)dr belongs to C([0,h]; H).

t

Proof. From A-2) it follows that th(é)df =q(h)—q(t) and q(-)eF_;.

Then the integration by parts, A-4) and A-2) yield conclusions.

3. Approximate equations

We study the existence, uniqueness and properties of a solution of
the following initial value problem

3.1) { i+ Au=f—G(u)

u(0)=xeH.

This type of equation (3.1) was deeply investigated by J. Pruss [7], E.
Sinestrari [8] and G.F. Webb [11] in case where f holds some regularity.

In this section we study the equation (3.1) assuming that f belongs
to Q. We consider the following approximate equations of (3.1)

(3.2) {i‘n+Aun=fn—G(un) on [0,A]

u,(0)=xeH,
where f, are the approximate functions defined just before Lemma 2.3.

Lemma 3.1. For any natural number n, a slution u,(t) of (3.2) exists
and is uunique. Moreover u,(t) belongs to C([0,h]; H)NWL2((0,A];
H)NL2:((0,k]; D(A)) and satisfies

t t

e“‘""Afn(S)ds_j e IG(u,)(s)ds.

0

(3.3) un(t)=e_'Ax+J

0
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Proof. The integral equation (3.3) is easily solved by successive
approximation. Since f,eL?(0,h; H), the maximal regularity result
(Theorem 3.2 of [4], Vol. 2) yield the proof of the lemma.

Lemma 3.2. 1) For each a>0 there exists a constant C, such that
for any n=1,2,---,

sup 'A —aun(t)lﬂ < Ca’

0<t<h

and there exists a constant C such that for n=1,2,---

t t
sup || u,(s)ds|y<C and sup || Gu,(s)ds|y<C.
0<t<h Jo 0o<t<hJo

2) there exists a continuous decreasing function C(+) from (0,h] to (0,00)
such that
sup |u,(O)lg and sup |Gu,(t)lg<C(d).
0<s<t<h O0<s<t<h

Proof. Using the integration by parts we have

4= f I (s <A™ f 7 el
0

0

t
+|f A“"“e“"""A“/ZA‘“/Zf fu@drdslyg =1, +1,.
0 0

From 2) of Lemma 2.3 we obtain I; <C. Combining 2) of Lemma 2.3
and Lemma 2.2 we obtain I,<C. Then we have I, +I,<C. From 4)
of Lemma 2.5, the equality (3.3) and the above results there exists a
constant C such that

4™ %u,)lp < C(1 + f |4~ %u,(s)| uds).-
0

By virtue of Gronwall’s inequality |4~ *u,(t)|y is uniformly bounded on
[0,h]. In view of 4) in Lemma 2.5 and the above result we know that

t
Je"'_s)"G(u,,)(s)ds are uniformly continuous on [0,k]. Changing the
0

order of integration and integrationg by parts we have
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(3.4) ftfe"s_’)Afn(T)drds=fte“"‘)AA“'A_“ffn(s)deT'
0Jo 0

0

From 2) of Lemma 2.3 it follows that the right side of (3.4) is uniformly

continuous on [0,k]. Thus integrating both sides of equation (3.3) over
t

[0,f] we conclude | u,(s)ds are uniformly continiuous on [0,4].
0
Using a similar method to 1) in Remark 3 and noting 2) and 3) of

t
Lemma 2.3 we get If e I4f ()ds|y<C for any te[d,h] where C
0

is independent of n but dependent on §. From (3.3), 1) of this lemma
and the above result we obtain that there exists a positive decreasing
function C() such that |u, ()| < C(d) for any te[d,h]. Using the method
of (2.2) and 1) of this lemma and noting the above result we know that
|G(u,)(t)|y are also smaller than Const(C(d)+ 1) if t€[d,h], where we denote
another positive decreasing function again by C(d). Then the proof is
complete.

For the sake of simplicity we denote a continuous decreasing function
which will be used in subsequent estimates by the same notation C(J)
as that in Lemma 3.2.

Lemma 3.3. For any 6€(0,h) we have

J (g + | Auy()| )ds + sup |4 u, ()| < C(&).
o

0<t<h

Proof. Let y be any positive number with 0<y<h. Noting 2) of
Lemma 3.2 and 3) of Lemma 2.3 we have

|f (G(u,)(5),i,(s))ds|g < C(y)+ 1/ 4J |6, ()| frds
y ?
and

If (Fa(9),it,(8))ds|p < C(y) + 1/ 4J |ty () | .

Combining the following energy equality

t
fIitn(S)I?;ds+1/2|A”2un(t)lﬁ=1/2IA”2u..(v)lfz
Y



642 K. Maruo anp D.G. Park

+ f (f..(S),it,.(S))ds—J(G(un)(S),it,.(S))ds

and the above two inequalities we obtain
t
(3.5) J lita() |75 + | A0, (D) |5 < CO) + | A Puy() | 7.
Y
Multiplying both sides of (3.2) by u,(t) and integrating over [6/2,t] we get

t
1/2|u,(t)|F— 1/2|u,,(5/2)|§+f | A ?u,(s)|2ds
52

=J (f..(S),un(S))ds—f (G(u,)(5),u,(s))ds.
32 52

Setting t=0 in the above equality and using 2) of Lemma 3.2 and 3) of
Lemma 2.3 we have

f | A ?u,(s)|3ds < C(6/2).
52

Hence there exists s, 0/2<s, ;<0, such that
|A1/2u,,(s,,,,;)|,2,S4/5'C(5/2).

Putting y=s, s in (3.5) and noting that C(-) is a decreasing function we
get, for any t€[d,h],

ftlit,,(S) lfds + 1A' u, (D15 < (1 +4/8)C(3/2).

Combining the equations (3.2), 3) of Lemma 2.3 and the above results
we get a decreasing function C(-) such that

f tIAun(S)|f1dSSC(5)-
d

This completes the proof.

For the convergence of u,(t) we get the following lemma,
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Lemma 3.4. For each >0, {4 *u,(t)} is a Cauchy sequence in
C([0,h); H), Moreover {u,(t)} is also a Cauchy sequence in C([5,h]; H)
where & is any positive number.

Proof. The first part follows from Gronwall’s inequality satisfied
by | A~ *(u,(t) —u,(t))|y and the fact that
t

e~ =94 472f (s)ds is a Cauchy sequence in C([0,k]; H), both of which

0
are established following the proof of 1) of Lemma 3.2. Combining this
with Lemma 3.3 and using the interpolation ineqality

lulg<14"2uly | A7 ?uly

we know that {u,(¢)} is a Cauchy sequence in C([4,k]; H).
Thus the proof of the lemma is complete.

We put
(3.6) lim u,(t)=u(t) in (0,h].

n—>o

Lemma 3.5. The function u has the following properties:
1) u belongs to F_,,
2) ueLZ((0,h]; D(A)NWLA(O,h]; H),
A *ue C([0,h]; H) and u(0)=x,

3) lim 'u”(s)ds=Jt u(s)ds for any te[0,h],

n-wdJo 0+

4)  1im G(u,)(t) = G)(t) for any te(0,h].

n— oo

t
Proof. In the proof of 1) of Lemma 3.2 we showed that ju,,(s)ds

(V]
t

are uniformly continuous in [0,k]. Especially lim sup|| wu,(s)ds|z=0.

t—0 n 0
t

Using this and Lemma 3.4 we get that J u(s)ds exists and 3) holds. Then
o+

ue F_,. 2)isadirect consequence of Lemma 3.3 and Lemma 3.4. From

ue F_, we have

3.7) G)(t)=R(O)u(t)+ R(O)f u(s)ds + ~J\tﬁ(t — s)f u(t)drds.
o+ 0 0+
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Then 3) yields 4).

DerINITION 3.1.  We call a function u(¢) defined on [0,k] and satisfying
the following conditions a weak solution of the initial value problem(3.1).

1) ueLf,((0,k]; D(A)NWRZ((0,h); H)=C((0,k]; D(A'?)).
2) limA ™ *u(t)=A *x for any a>0.
t-0
t
3) The improper integral f u(s)ds exists.
0+
4) The function u satisfies the equation (3.1) for a.e t€[0,kh], where
G(u) is defined by (3.7).

Lemma 3.6. A weak solution u(t) of (3.1) exists.

Proof. With the aid of the equations (3.2), Lemma 3.3, Lemma 3.4
and Lemma 3.5 and using the well known argument on approximate
solutions we obtain that the function u(t) of (3.6) satisfies the conditions
of the weak solution of (3.1).

Lemma 3.7. Let u be a weak solution of (3.1). Then AuecQ and
A *ue C([0,h]; H) for any a>0.

Proof. From the definition we know that 4~ *u belongs to C([0,A];
H). From the equation (3.1) we have

t

A ”"Jlt Au(s)ds=A"*{x—u(t)+ J" f(s)ds— f G(u)(s)ds}.
0+

0+ 0+

t

Thus noting that J u(s)ds exists we get AueQ.

0+

Lemma 3.8. A weak solution of (3.1) is unigue.

Proof. Let u and v be two weak solutions of (3.1). Since u satisfies
the equation (3.1) in H we have

A u(t)=A4 % " y(e)

t t
+4 ‘“J e "T9f(5)ds— A ““f e G (u)(s)ds.

€ €
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Letting ¢ > 0 in the above and recalling 1) of Remark 3 we get

t
(3.8) A *u(t)=A e "x+ A4 _‘"J e 79465 ds

0+

-4 “fe ~=IG(u)(s)ds.

0

Combining (3.8) and 3) of Lemma 2.5 we get

|[A™*(u(t)—v(t)|g < Constf | A~ *(u(s) —v(s))| yds.
0

The uniqueness follows with the aid of Gronwall’s inequality.

4. The relation between the associated equation and the
original equation

This section is devoted to the study of relations between solutious
of equations of (0.1) and (3.1). To prove our statment we use a similar
method to that of M.G. Crandall and J.A. Nohel [2]. Throughout this
section let f belong to O and {f,} be approximate functions of f in Lemma
2.3.

Lemma 4.1. Let ¢ be any small positive number. Then there exists
a constant 6, depending only on & such that for any y and t: 0 <y <1 <,

4.1) |A_“J‘a(t—s)A2A_’f,,(s)ds|H<£ and
y

(4.2) |A”“fR(t—s)A2A”1fn(s)ds|H<s.
Y

Proof. Using a similar method to the proof of Lemma 2.4 and
noting 2) of Lemma 2.1 we complete the proof.

Lemma 4.2. For any t€[0,kh] it follows

(4.3) Jt A'“R(t—s)A“-limA‘“fa(s—‘c)Az A~ f(r)drds
0+ I

-0

t

=—A“'Jr R(t—t)f(r)dt—A_“f a(t—1)A,A™ f(r)dt

0+ 0+
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(4.4) f a(t—s)A~*A,A™ ' A% limA~*R(s — t)f(v)drds

-0

__A‘“f R(t—r)f(r)dt—/l_a_r a(t—1)4,4" f(r)dr.
0+

0+

Proof. From (2.1) we see Rxad,A 'sf,=—Rsf,—ad, A '«f,.
Noting (4.1) and letting n— o0 for the above equalityu we have
(4.3). Using a similar method to the above and noting 3) of Lemma
2.1 and (4.2) we get (4.4).

We consider two equations

“.5) { i+ Au=f+ (Rxf) — G(u) + R(t)x
) u(0)=xeH,
u+ Au+ A* limA'“fa(t—s)Azu(s)ds =f
(4.6) e s

{ u(0)=xeH.

If fe Q, then f+ Rxf+ R(-)x€ Q. A function u is a weak solution of (4.5)
if it is a weak solution of (3.1) with f replaced by f+ Rxf+ R(-)x.

DEerFINITION 4.1. We call a function u(t) defined on [0,h] and
satisgying the following conditions a weak solution of the initial value
problem (4.6).

1) ueLl((0,k]; D(A)NWi2((0,h); H)=C((0,h]; D(A'?)).
2) lim A *u(t)=A .

10
3) AueQ.
4) The function u satisfies the equation (4.6) for a.e te[0,h].

REMARK 5. Let u be a weak solution of (4.6). From 3) of the above
definition it follows that the integral in(4.6) makes sense and # belongs
to Q. If feF_, and ue C([0,k]; H), Au belongs to F_;.

Proposition 4.3. A function u is a weak solution of (4.5) if and
only if is a weak solution of (4.6).
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Proof. Let u be a weak solution of (4.6). From the integration by
parts it follows

(4.7) f t A™R(t—s)A* A *u(s)ds
0+

=A"*R(0)u(t)— A *R(t)x + f A R(t—5) A% A~ %u(s)ds.

0+

= A~ *{G(u)(t)— R(t)x}.

Multiplying the equation (4.6) by A% taking the convolution of both
sides of the equation and A~ *R(-)A* and using (4.3) with f=Au and (4.7)

we have

t
A_“J a(t +5)A,u(s)ds = A~ *{G(u)(t) — R(t)x — (Rxf)(2)}.

o+
With the aid of the argument used in the proof of (3.8) and noting 3)

of Remark 3 and 4) of Lemma 2.5 we get ue F_,. Then we obtain that

u is a weak solution of (4.5). Conversely, let u be a weak solution of
(4.5). From Lemma 3.7 it follows Aue Q. Then (f—i#)eQ. Thus
using the method of (4.7) and noting (4.5) we see

(4.8) A~(f—i)(t) + A Rx(f—i))(t) = A~ *Au(t).

Taking the convolution of both sides of the equality (4.8) and
a(-)A *A,A 'A* and using (4.4) we have

A _“Jt a(t—s)Au(s)ds= — A~ *(Rx(f—i))(¢).

0+

Combining (4.8) and the above equality we obtain that u is a weak
solution of (4.6).

Corollary 4.4. The weak solution u(t) of (4.6) exists and is unique
on [0,A].

Proof. The conclusion follows from Lemma 3.6, Lemma 3.8 and
Proposition 4.3.
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5. Proof of Theorem 1

In this section we assume the conditions in Theorem 1.
We first study the equation (0.1) on [0,h]. We transform the equation
(0.1) to the following form:

t
u+ Au+ f a(t—s)A,u(s)ds
0

(5.1) =f(t)~/11y(t—h)—fJ a(t —$)A,y(s)ds =fo(2),
t—h
u(0)=x.

Nothing Ay(-—h)e Q and using Lemma 2.6 we see
J“ a(t—s)A,y(s)dse F_,.
t—h

Then it follows fo€ Q. Therefore from Corollary 4.4 we get the existence
and uniqueness of a weak solution of (5.1). We denote the weak solution
on [0,k] by u;(t). Next we consider the equation (0.1) on [A,2k]. From
Lemma 3.7 Au, belongs to Q. Then it follows

J@&)—Ayuy(t—h) —J‘) a(t—s)Ayuy(s)ds€ Q4
t—h

where Q= {ge L}, ((h,2h]; H); g(-—h)e O}.
For t; h<t<2h we also transform the equation (0.1) to the following form

+h
u+ Au+ J‘ a(t—s)A,u(s)ds
h

(5.2) =f(t)—A1u1(t—h)—f a(t—s)Au, (s)ds
t—h
u(0)=u, (h).

With the aid of the change of the variables t > f=t—h in the above
equation and using Corollary 4.4 we obtain that there exists the weak
solution of (5.2) and is unique. Iterating this prosess, we get the global
existence and uniqueness of the solution of the equation (0.1). Then
the proof of Theorem 1 is complete.
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6. Proof of Theorem 2

Throughout this section we suppose that the assumptions A-4) and
A-6) hold. Moreover we assume 4y(-—h)eF_, f(-)—A,y(-—h)F, and
FeL2(0,T}; H)

If the weak solution u of (0.1) is continuous on [0,77], the proof of
Theorem 2 is complete. Thus we shall show that the weak solution u
of (0.1) is continuous on [0,mhA) if and only if f(-)—Ay(—h)€eF,,_; where
O<m<N.

We define the space Cy, by Cy={ge C([0,h]; H); g(0)=0} and recall
the definitions of the operator K:

/2
(KN() = f e TMf(s)ds.
0+
We define two other integral operatros L and E by
/2 1
LH(@®) = f e” ¢ TIS(s)ds, (Ef)(t)=J e “TIY(s)ds
0+ 0+

for feQ. If feQ, then Ef is the unique weak solution of (3.1) with
G(-)=0 and x=0. In view of Lemma 3.7 AEfe Q. Hence EAEf is
defined and AEA,Efe Q. Continuing this process we see that for any
integer 1>0 (EA,)'Ef is defined and belongs to L2 ((0,k]; D(A))nC((0,k];

H). Since (Lf)(t)=e" “24(Ef)(t/2), ALf also belongs to O, and so deos
AKf. Hence, LA,Kf is also defined as an element of L2.((0,A];(A4))N

loc
C((0,h]; H).
(EA,)Ef is formally expressed as follows:

t i 1
J J‘ f e TSAY e 2ms0A o 1msAg (o Vs - ds;.
oJo Jo

We divide the domain of integration of the above integral into the sum
of the following sets

{(505851, ++51): 0<$50<5,/2 or §;/2<57<sy, 0<s;<5,/2 or

5,/2<5,<58,5,0+0, 0<5;<8/2 or t/2<5;<t}

The number of these sets is 2'*!. We denote them except the one with
§1/2<50<5y,8,/2<5; <85, t/2<5;<tby A}, j=1,---, 2i*1_1. Weput
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(Et;f)(t)=f e—(t_si)AAl"'e_(sz_sl)AAle_m_so)Af(so)dso"dsi.
Aj

Lemma6.1. The operators E; have the following repesentations:
(BEA,)Ef(t)= (KA, )K)(®)+ (L))
where (L.f)(#)=Y 2L "L, ,N)(¢).

Proof. Inductively we show our statement. For 7=0, it follows

Y/
(ENH) ()= (KSf)(?) +J

0

2
e "94f(s)ds. Then in this case the proof is

complete.
Combining the definition of (E4,)'Ef and the assumption of the induction
we get
(EA,) T Ef) ) =((KA) M Kf)(®) + (LA (KA, YKf)(t)
+ (KA, Lf)(@®)+ (LA, Lif)(2).

Putting (L;; f)(¢)= the sum of the last three terms of the right side of
the above equality, we get the proof for 7+1.

Lemma 6.2. Let f belong to F_, and p and q be any integers such
that 0<p<q. Then it follows

1) (KA,)’LA(KA,)* PKfe L;,((0,h]; D(A))NC,,
2) (KA,)’Lfe L},((0,h]; D(A))NC,,
3) |(KA,)’LAx|g<Const-|x|yg for any xe D(A).

Proof. We have the following equality

6.1) (Je o144,

k=0
p—1
__=( l"[Aaie—(si—snl)AAl—a(i+1),A-—1+a(i+l)A1A—a(i+l))
i=0
.(Apae—(sp-sp+1)AA(q-p)a+1) . (A—l—(q—p)aAlA(q—p)a)
q

( l‘[ A-(p-j+l)ae—(5j—81+1)AAl+(q-j)a.A-l—(q—j)aAlA(q—j)a)=IO
j=1+p
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where o be small positive number and so=¢. Then from the assumption
A-4) and the semigroup property we get

p—1 q
(6.2) [ Iox|g<C n )(si_si-f-l)_l+a(sp_sp+l)_l—qa H (sj_sj+1)—1+a|x|H
i=0

j=p+1

for any xe D(A).
Let ¢ be any sufficiently small positive number and r(¢) be rl f(s)|gds. We
t

define a sequence {{;};2, satisfying the following conditions:

h=¢(>&,>->8>->0, §,,2¢/2

lim¢;=0 and 0 <7({;,,)—7r(&)<e/2.

i— o

The existence of such a sequence is shown as follows. If &,,--- &, are
already chosen, put

it =min{§; $=>¢/2, 1(&)—r(&) 58/2}\

Suppose that &, » £ >0. Ifiissolargethat ;<2 ,thené;, >¢&, >&/2.
Hence, r(¢;4,)—7(&)=¢/2. This implies r(¢,)=o00, which is obviously
a contradiction. We put s,(8)={(&—¢& V(&1 —E)}@E—E)+ &y, for
¢(i<t<&,_y. Then we have

i) s,e WL™((0,h]) and t/2<s,(t)<t,

t
ii) If e~ " 94f(5)ds|y <e for any te(0,A4],
sg(t)

iii) t e~ ¢"Mf(s)dse C((0,h]; H)NLE, ((0,h]; D(A)).

se(t)

t
For the sake of simplicity we put ¢t,=s,(f). Since J e~ T4 E)dE belongs

to D(A) from (6.1), (6,2), ii), iii) we get

(6.3) I(KAl)"LAl(KAl)""’J‘.e“"é"f(é)dfl,,sConst-z—:.

Using the integertion by parts we have
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(Kf)(®)= J te_“"”'f(S)ds— f " gemumoa f f(&)dlds +
te 2 0+

t/

te 12
{e—“"ﬂ“f Qg —e 04 f AOAEY=1,+1,+1Is.
0+ 0+

From 1), ii) and iii) we get

1, 1,, I,e L ((0,h]); D(A)) and limI;=0.

-0
Then using (6.2) we see

(KA, LA,(KA)* PLjly < Const sup |I3|y.

0<s<t
From (6.2) and (6.3) it follows that
(KA )PLA(KA,)*" ?1,|gy<Const .

Using a similar method to (6.1) and (6.2) we get

q
|( l_[ e—(sk~Sk+1)AA1)A6—(S.,+1—sq+z)Ax|HS

k=0
p—1 q+1
-1+ —1-(q+1 -1
Cl—l(si—si+1) *(Sp—Sp+1) @+ ba H (s;—Sj+1) x|y
i=0 j=p+1

Then we see

(KA)PLA(KA) " Ly|y<Const sup | |  AE)dE|yH.

0<s<t 0o+
Therefore
lim |((KA4,)?LA(KA,)* PKf)(t)|g=0.

t—=0

Using a similar method to (6.1) and (6.2) we see

. p—l . q
| AT x|y <c [ (si—sis1) l+a(sp—sp+l) iz T (s5—sj40) 7 %y
i=0 j=p+1
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Then we get
|AI(KA)PLA (KA )" PKf)(t)|y < Const-t ™.

Then the proof of 1) is complete. We can prove 2) and 3) by an
analogous method.

Lemma 6.3. Let f belong to F_,. Then, for any integer m, we see
L,(t)f€ Li,((0,h]; D(A))NCy.

Proof. Lemma 6.1 and Lemma 6.2 yield the proof of the lemma.

Lemma 6.4. We have the following five properties:

1) ((E4,)Eg)(")e ConL*(0,h; D(A)NC([0,h); D(A'?)) for any
ge€L,(0,h; H) and k=0,1,2,---,

t
2) JAﬁe"‘_"Ag(s)dseCo for any g such that A°geC([0,h]; H),
0
Age L{,((0,k); H) and 0<f<a,

3) (EAp‘e” 4y)()eConL?(0,h; D(A)NC([0,h]; D(A'?) for any
yeD(AY?) and k=1,2,---.

(*t

4) A% "94G(u)(s)dse C, where u is the weak solution of (3.1) and

Jo

O<a<l1,

rt

5) APe= " "9g(5)dse C,, for any ge C([0,h]; D(A™%) and

Jo
O<a+p<1.

Proof. The well known semigroup property yields Ege ConL?(0,k;
D(A))NC([0,h]; D(A'?)) for any geL*0,h; H). Then A,Ege L,(0,h;
H). Thus (EA,)Ege ConL*(0,h; D(A)NC([0,k]; D(A'Y?)). Therefore
1) is proved. The ststements 2) and 5) follows from Lemma 2.2. Lemma
2.5 yields the proof of 4). Using a similar method to the proof of
Lemma 6.2 we get

|AP(EA,) Ee™*y)(s)|la<C|A"%yly  for any yeD(A'?).
On the other hand it follows

lim| AY2((EA,)*Ee™ 4y,)(s)|y=0 for any vy, € D(4).

s—=0



654 K. Maruo anp D.G. Park

We choose {¥,,} such that lim A2y, =A%y, Combining 1) of Remark

m~— oo

3 and the above results we get the proof of 3).

Let u be the weak solution of (0.1). Denote by u, the restiction of
u to [(n—1)h, nh] for n=1,2---)N, and wuy(s)=3(s) for —h<s<0 and
u;(0)=x. Then, u, is the solution of

t

i+ Au +f a(t—s)A,u(s)ds

(n—1)h
n—1)h
(6.4) =f(t)—A1u,,_1(t—-k)—J' a(t—s)A,u, _ ((s)ds,
t—h
u((n—1)h)=u,_(n—1)h) for t: n—1)h<t<nh.
Put for 0<s<h

w,(s) =u,(s +(n—1)h), wo(s) =y(s—h),

gn(s) =f(s+(n— 1)h)—/11w,.-1(8)—J‘l a(s—1)A; w,-1(t+h)dr,
s—h

gi(s)=— J“ a(s — 1) Aw, - 1(t+ h)dt + (Rxg,)(s) + R(s)w,(0).
s—h

Since Aw,_;€Q we see g,€0Q. Then, from Lemma 2.5, and Lemma
2.6, we get gle C([0,h]; D(A™*))NF_,.

Then in the same manner as the proof of the equivalence of (4.5) and
(4.6) we get from (6.4) that

W, (5) + Aw,(s) =gy (s) +f(s + (n—1)h)
(6.5) — A, w, - 1(5) — G(w,)(s)
w,(0) =u,((n—1)h).

From 1) of Remark 3, 4) of Lemma 2.5 and (3.8) we get the representation
of w, as the following mild solution:

(6.6) w,(s) =€~ *w,(0) + (Egy)(s) + (Ef( +(n—1)R))(s)
—(EA,w,_ )(5)—(EG(w))(s) =1, + I, + I, + I, +Is

From g! e C([0,k]; D(A~ %)) and 5) of Lemma 6.4 it follows A?I, belongs
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to C, for 0<f<1. Noting that w, is a weak solution and using 4) in
Lemma 6.4 we have A*I;€C,. Thus putting %,=(Egl)—(EG(w,)) and
noting 1) of Remark 3 we get, for n=1,2,--- and any f; 0<fi<1,

(6.7) APl e C, and Fie L2 ((0,h]; D(A)).

For any integer n, 1 <n<N—1, we shall show there exists a function
h,e Con L2 ((0,h]; D(A)) such that

(6.8) w,(s)—e 4x=h,(s)
+ K(f(") — Ay y(- = h)(s)+ Ly (f(-) — A1y(- — h)(s),
(6.9) w,(s) =h,(s)

+k22( — 1" K (EBA,) T MES + (k— 1)) + e~ 4w, (0)})(s)

+(=D"H(EA)" e x)(s)
+(= D" (KA K(C) = Ay(- = R))(s)
+L,(f(")— Ay (- —h))(s)

for n=2,3,--- and

(6.10) A™h,e Cy and h,e L} ((0,h]; D(A)) for n= 1,2,

where o, are some positive numbers smaller than 1. Here we note that
Aje”4xeF_, and so (EA;)" 'e”“x can be defined. To begin with we
shall show (6.8). (6.6) yields
wy(s)=e " *x+k(s) + K(f— A,y —Rh))(s)
+L,(f—Ay(- —h))(s).
We put h,=h,. Then (6.7) yields (6.9) in case of n=1. Therefore,
from the above, (6.8) is proved in case of n=1. Next let w,_, satisfy
(6.8) or (6.9) and (6.10) with n—1 in place of n for 2<n <N-—-1.
We investgate (6.9) and (6.10) for n=2. From (6.6) it follows
wy(s) = e *4w,(0) + =y (s) + (Ef(- + h))(s) — (EA 201)(s)-
From (6.8) we see
(EA w,)(s)=(EA e” *x)(s) + (EA hy)(s)
+(EA,K(f—A1y(: —h))(s) + (EA Ly (f— Ay(- — h)))(s)
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=Io+11 +12+I3.

From 2) in Lemma 6.4 and (6.10) there exists a number a, such that
0<a,<1and 421, €C,. Since KA, is continuous from L2 ((0,4]; D(4))
to L%.((0,h]; D(A)) and [(ALAh)(@)|g<C-t"'** and from EA,=

loc
KA+ LA,it follows that EAh,e L} ((0,k]; D(A)). Putting h,=h,—1I,
we obtain that A, satisfies (6.10) in case of n =2. Since

I,=(KA)K({f—A;y(-—h)(s)+ LA, K(f—A,y(- —h))(s),

I, =(KA)L,(f—Ay(:—h)(s)+ LA L (f—Ay(- —h))(s)
it follws

I, +1,=(KA)'K(f— A1y(- — )(s) + L,(f— A (- — h))(s).

Thus, we get the representation of (6.9) in case of n=2 from I, =EA e “x.
Inductively we shall show (6.9) and (6.10). Let n be a natural number
larger than 2. (6.6) yields

Wa(s) = e 4w, (0) + hy(s) + (Ef(- + (n— 1)R)(s) — (EA 20, _ 1)(5).
From the assumption of induction we get
(EA w, - 1)(s)=(EA h,_)(s)
n—1
+ ), (=)' ITHEA) THES - + (k—1)R)(s) + e wi(0)})(s)
k=2

+(—1)""2((EBA)" e x)(s) +
(—1)"2EA{(KA,)" 2K(f() = Ay(: —h) + L, (f(-) — A1 y(- — ) }(s)
=I,+Is+Ig+1,.

Putting h,=h,—I, and noting (6.7) and 2) of Lemma 6.4 we know that
h, satisfies (6.10). Using a similar method to the proof of (6.9) in case
of n=2 we also get (6.9) in this case.

Lemma 6.5 Let f(')—Ay(-—h)eF_,. Then the weak solution w,
of (6.5) satisfies

wy(t)—e™“uw,(0)— (= 1)""Y(KA,)" ' K(f— A1y —h)(t) € Cy.
Proof. Using a similar method to (6.1) we get

[(EA )" Ye™ “4x)(t)|y < Const|x|, for any xe H,
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lim (EA4,)" 'e” “4x)(t)=0 for any xe D(A).

t—0

Thus it follows lim((EA4,)" 'e™ “x)(t)=0 for any xe H. From 1) and 3)

-0
of Lemma 6.4 it follows
n—1

lim[AY2 Y (—1)" " M(EA)" MEf(-+(k—1)h

s—0 k=2
+e” 4, (0)})(5) [y =0.

Therefore combining the above results, Lemma 6.3 and (6.8), (6.9) we
complete the proof of the lemma.

Proposition 6.6 Let f(-) belong to F_, and fe L} ((0,T); H). The
following two conditions are equivalent.

1) A weak solution of (0.1) is continuous on [0,mh) but, at t = mh,
this solution is discontinuous in H.

2) f()—Aw(—heF,_ but f(')—A,y(-—h)¢F,.
Proof. Lemma 6.5 imlies of the proposition.

Proof of Theorem 2. From Proposition 6.6 we obtain that the weak
solution of (0.1) is continuous on [0,f]. Thus the proof of Theorem 2
is complete.

7. Appendix

To begin with we give the proof of Remak 2.

The frist half of our statement is trivial. Then we show the latter
half of our statement.

1). Let f belong to L*(0,h; H)NL2((0,h]; H). We shall show feF,
for any natural number n. For the sake of simplicity we consider the
case n=2. Let a, f and 0 be positive numbers satisgying a+f+0=2
and a<1, f<1, 0<1. With the aid of a similar method to (6.1) and
(6.2) it follows that

(7.1) le 794477944 ,e” Ty Ly
<Const-(t—s) " *(s—1) Pz =%)"".

Noting the above inequality and changing the order of integration we
have
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(KA KN(B) g < CO"“‘I Lf(E) udE.
0

Thus we get feF,.

2). Let f be a function satisfying the assumption (0.2). We shall
show fe F,. For the sake of simplicity let n=2. From (7.1) it follows

(KA )’ KN®) g <
SConst'f! f f (t—5)"(s—1) " P(x—&) 7OV EV2| (&) | )y dE drds
t/2Js/2J1/2

=1(t).

If 8<1/2, using Schwarz’s inequality, we get

I(t)SCOr\st'(f EIAD D2,
t/2

Hence feF,.

Their works in [1], [7], [8], [10] and [11] provide us with the
information to study the inculusion relation between the function spaces
F;. We will show somewhere else by an example that F; is in general
a proper subset of F;_; for any i=0, 1,---) N—1.

3). Finally we show that there exists a function which belongs to
QO but not to F_;.

Supposing for instance that A~! is completely continuous let {4}
be a set of eigenvalues of 4 such that

O0<di<d<--<d,<-+, limi,=00,
(7.2) €0

Y {(1=(A/Ans1)?} < 0.

n=1

Let ¢; be normalized eigenvector of A corresponding to 4; .

Put f(t)='§1fj(t) where
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a;0; if A +AG)2<e<A
fi(H= —ajp; if AR <t<(A' 4453072

0 otherwise

Here, {aj} is a sequence of positive numbers such that (17 1_ J+1)a
converges to 1 as j — c0. It is trivial that fe L ((0,k]; H). For the sake

of simplicity we write c-=(l'-1+ AJH)/Z and b;=4" 1. Since |
biva

f(s)ds|H=aj(,1j“1 J+1)/2 it follows that f is not improperly integrable
at t=0. Next, let b, <t<b, and b;,;<e<b;<b ;,;. Then we have

t

t by
A J fs)ds= A" f fods+A™ | fls)ds.

brc+ 1

by
Since |A™* ij(s)dSIHSConst (ij'l-—ij}ll)ajlj_“ and A7 (47! — lj'fl)aj

t
converges to 0 as j —» 00 ,we know there exists 4~ * f f(s)ds if a>0. Since

0+
b

A" f f(s)ds=A"* Jt fi(s)ds for te[b,,,bi] and J Fi(s)ds=0

0+ br+1 bic+1
t

we see J f(s)dse C((0,h]; H). Hence fe Q. Moreover we get

0+
fim | J TS (s)ds |y > 0.
t—’O

Indeed, we have

< -1_,-1
lf e~ CITIAf(s)ds |y > A {1 — e A i,

by+1

> Consta (,{ —/11111) — Const>0asj— 00. On the other hand we get
| e~ Ci7I f(s)ds| g

0+
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0 13 Ck
= Y || ae @ 9 gs— age” @79 |2
1 Jg

k=j+ 3 brc+1
o0
<Const' Y {ay(A '— A1) e M2 =1,
k=j+1

From (7.2) we have lim I;=0. Thus our claim is showed. If « is a
joo

o0
sufficiently small poisitive number, then we have le_“=oo.. From
i=1

;
f |A™% f(s)ds|y ds=aj(/lj_1—lj_+ll)).j—“, we obtain 4% ¢ L1(0,h; H).
b

i+ 1
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