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1. Introduction

Let Ω be an open set in R2 and L be a second order partial differential

operator defined in Ω of the form

(1.1) L=/(χJφy^
\ ox oy) ox oy

In this paper we give necessary and sufficient conditions for hypoellipticity of L

under the following assumptions:

(H.I) /, a, b, c, d and g are real valued analytic functions defined in Ω;

(H.2) the operators ad/dx + bd/dy and cd / dxΛ-dd / dy are independent in Ω, that

is, ad—bcφO in Ω.

We recall that L is said to be hypoelliptic in Ω if for any open subset ω of Ω and any

weZ)'(ω), LweC°°(ω) implies weC°°(ω).

Set

Then we have the following theorem.

Theorem. Suppose that (H.I) and (H.2) hold. Then, L is hypoelliptic in Ω if and

only if

(A) Xf(x9y) = 0 for any (x,y) e Ω such that f(x,y) = 0,

(B) / does not vanish identically on any integral curve of Y,

(C) / does not change sign from plus to minus along any integral curve of Y,

where we consider Y as a vector field in Ω.

The necessity of (A) and (B) follows from Theorem Π.I (iii) and Theorem Π.I
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(ii) of [14] respectively, and the necessity of (C) follows from Theorem 1.2 of
[2]. For details see §2.

It is already proved in [11], [5], [9] and [4] that (A), (B) and (C) are sufficient
for hypoellipticity of L in Ω if one of the following four conditions is satisfied:

(i) f(x,y)^0 in Ω or f(x,y)£0 in Ω (cf. [11]);
(ii) X=a(x9y)d / dx, Y—djdy and f(x,y)=yoc(x,y) in Ω, where oc(x,y) is a real valued
analytic function defined in Ω and cc(x9y)^0 there (cf. [5]);
(iii) f(x9y) = φ(x,y)ph(x9y) in Ω with some real valued functions 0,λeC°°(Ω) and
an integer /?^3, where h(x,y)^0 in Ω and φ~ι(0) is a finite union of C^curves
(cf. [9]);
(iv) Yf(x,y)>0 for any (x,y)eΩ such that f(x,y) = 0 (cf. [4]).

With regard to the condition (iv) see also [3].
Our proof of the sufficiency of (A), (B) and (C) will be given in §3 and §4 by

considering the above cases (i), (ii) and (iii). In case 3 of §3 we shall adopt the
reasoning of [9] with several auxiliary lemmas, and among them the results of
Lemma 3.2 relating to (iii) will play an essential role.

2. Necessity of (A), (B) and (C)

In this section we shall prove that (A), (B) and (C) hold if L is hypoelliptic
in Ω. We write

(2.1) L =f(a2d2 / dx2 + 2abd2 / dxdy + b2d2 / dy2) + (faax +fbay + c)d / dx

+ (fabx+fbby + d)8/dy+g

= θ I dx(fa2d / dx +fabd /dy) + d/ dyifabd / dx +fb2d / dy)

By the assumption (H.2), |α| + |6|^0 and |c| + |d |#0 in Ω. Hence

\fa2\ + \2fab\ + \fb2\ + \faax +fbay + c\ + \fabx +fbby + d\

= I/KM + \b\)2 + \f(aax + bay) + c\ + \f(abx + bby) + d\ Φ 0 in Ω.

This shows that the N. T. D condition of [14] is fulfilled and we can apply
Theorem II.I of [14] to the operator L.

Proof of (A). (A) follows immediately from (2.1) and Theorem II.I (iii) of [14].

Proof of (B). The proof is by contradiction. Suppose that there exists an
integral curve Γ of Y where / vanishes identically. Let p be a point on Γ. Then
we have

(2.2) Ynf(p) = 0 for all non-negative integers n.
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Now we set Qo = [c - {{fd)x + (fb)y}ά]d/dx + id- {(fa)x 4- {fb)y}V\dIdy9 Qγ

=fa2d/dx+fabd/dy and Q2=fabd / dx+fb2d/δy. Since / = 0 on Γ, it follows

from (A) and (1.2) that (fa)x + (/ό)y = Xf+fax +fby = 0 on Γ. Therefore Y= Qo on Γ

and we have by (2.2)

(2.3) βo/(/?) = O f° r a " non-negative integers «.

On the other hand, according to Theorem IΙ.I(ii) of [14], the hypoellipticity

of L implies that

(2.4) rank Lie [β o,βi,β 2](p) = 2,

where Lie \_Qo>QnQi\ is the Lie algebra generated by β 0 , Qx and β 2 .

REMARK. Theorem IΙ.I(ii) of [14] states that rank Lie lQ,QuQ2](p) = 2 with

Q = (faax -\-fbay + c)d /dx + (fabx +fbby + d)d/ dy. But its proof indicates that (2.4)

holds. Compare two expressions of L in (2.1).

Successive use of the formula: \_W,φZ~\ = φ\_W,Z'\+(Wφ)Z, where W and Z

are first order operators with smooth coefficients, φ is a smooth function and [,]

denotes the Lie bracket, yields that any element of Lie [ β 0 , β i , β 2 ] *s °f the form:

^ δ o + / ^ o + (£?o/)^i ~l Kβo/M f̂c> where Λ is a real analytic function in Ω, &

is a non-negative integer, and Mf,/ = 0,•••,&, are first order operators in Ω with real

analytic coefficients. Hence, in virtue of (2.3), Lie IQo^Qi^QiUp) *s generated by

Q0(p) and so rank Lie [Q&QuQϊMp)^ which contradicts to (2.4). Thus we

obtain (B).

Proof of (C). The proof is by contradiction. Suppose that / changes sign

from plus to minus along an integral curve Γ:{x(t\y(i)\ tί<t<t2, of Y. We set

(2.5) F(t)=f(x(t%y(t)l h<t<t2.

F{t) is real analytic on (tί9t2)
 a n d changes sign from plus to minus when t

increases. Therefore there exist tojί<to<t2, a constant c<0 and an odd integer

<7>0 such that

(2.6) F[t)=c(t-t0y+o((t-t0y
+1).

Set (xo,yo) = (x(toly(to)l It follows from the hypothesis (H.2) that \a(xo,yo)\

+ \b(xO9yo)\^0. Without loss of generality we may suppose that

(2.7) Φ W

Let x = φx{u,v) and y = φ2(u,v) be the solutions of the initial value problem
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(2.8) -— = a(x,y), --=b(x,y), χ\u=0 = χ09 y\u=0=y0 + υ.
du du

Then it is obvious that φγ{μ^v) and φ2(u,v) are real analytic functions defined in an

open neigborhood of (0,0). Since d(φuφ2)/d(u,v)\u=υ=o = a(xo9yo)φ0 by (2.8) and

(2.7), we can introduce the coordinate transformation

from an open neighborhood ώ0 of (0,0) in the wi -plane to an open neighborhood

ω0 of (xo,yo) in the xj>-plane. The operator L is transformed by Φ to the operator

L =/(w, v)-— + c(u, v)-— + 3(u, v)—+g(u, v\
du du dv

where ?(u,v)=f(φί(u,v%φ2(u,v)% g(u,v)=g(φi(u,v%φ2(u9v)l d/du = (Φ~ι):¥X and

cd/du + 3d/dv = (Φ~ί)^Y. From the hypothesis (H.2) it follows that d/du and

cd I du + cld / dv are independent in ώω that is,

(2.9) 3{μ9Ό)Φ09 (u,v)eώ0.

Let Γ be the image of Γ by Φ " x . Then Γ is the integral curve of cd/du + 3d/ dv

through (0,0), and we have

(2.10) /lf

where t1<t\<t0<t'2<t2. Now we consider the operator

l £ _ / δ 2 cd d g „

3 3du2 3du dv 3

It is clear that

(2.11) ^ L is hypoelliptic in ώ0.
a

Let Γ' be the integral curve oΐ c/3d / du + d / dv through (0,0). Then F" coincides

with Γ except for parametrization. From (2.9) we see that 3>0 in ώ0 or 3<0 in

ώ0 if we shrink ώ0 to (0,0). In the former case f* has the same direction as Γ, and in

the latter case the opposite one. Therefore, by (2.6) and (2.10), Jj3 changes sign

from plus to minus along Γ' in a neighborhood of (0,0). Hence, denoting Γ' by

(u(v\v\ |ι>|<ε0 (ε o >0 is small), we see that there exist a constant c '<0 and an odd

integer q' > 0 such that J[u{v\v)/3{u{v\v) = c'vq> + O(vq' +i)9\v\<ε0, because j{u,v)/3(u,v)

is real analytic in ώ0 and u(v) is real analytic on ( — ε09ε0). Then, according to
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Theorem 1.2 of [2], L/3is not hypoelliptic in ώ0 which contradicts to (2.11). Thus
we obtain (C).

3. Sufficiency of (A), (B) and (C): special case

In this section we shall prove that the conditions (A), (B) and (C) are sufficient
for L to be hypoelliptic in Ω when

(3.1) b(x,y) = c(x,y) = 0 and d(x,y) = 1, (x9y)eΩ.

Then we can write

(3-2) Lf(af)+^
\ dy

where Qo = (-fxa
2 -faax)d/dx + d/dy, Qγ =fa2d/dx.

Here we list up the properties that /, a and g have. By the assumptions (H.I)
and (H.2) it holds respectively that

(3.3) /, a and g are real valued and analytic in Ω,

(3.4) a(x,y)*0, (xj>)eΩ,

and by (A) with (3.4) above, (B) and (C) it holds respectively that

(3.5) fx(χ,y) = 0 for any (x,y)eΩ such that f(x9y) = 0,

(3.6) for any xeR1 and any interval / such that {x}xl a Ω, the function y -+f(x,y)
does not vanish identically on /,

(3.7) for any x e R1 and any interval / such that {x} x / cz Ω, the function y ->f(x,y)
does not change sign from plus to minus when y increases on /.

Lemma 3.1. Let Qo and Qγ be the first order operators introduced in (3.2). Then
rank Lie [Q0,Q1](p):=2, peΩ, where Lie [βo>δi] is tne Lie algebra generated by
Qo and Qv

Proof. Let p be an arbitrary point in Ω and let Γ:(x(t),y(t% t1<t<t2

(tι<O<t2), be the integral curve of Qo such that p = (x(0),}>(0)). Suppose that/=0
on Γ. Then, by (3.5), —fxa

2—faax = 0 on Γ. Hence Γ is the straight line parallel
to the -axis and/=0 there, which contradicts to (3.6). Thus it has been shown
that / does not vanish identically on Γ. Therefore, since f(x(t)9y(ή) is real analytic
on (tut2\ ^ holds that there exists an integer n^O such that
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( 3 8 ) Qof(p) = dk/dtkf(x(t%y(t))\t=o = 0, * = 0,..vι-l, and

By using the formula: [W,φZ] = φ[W,Z]+(Wφ)Z repeatedly, where W and
Z are first order operators with smooth coefficients and φ is a smooth function,
we have

(ad QofQt = ϊ Qo(f<*2)Zi + Qn

0(fa2)d / dx9
i = 0

where (diάA)B = ΛB—BA for any operators A and B9 and Zί? ι = 0, ,w — 1, are first
order operators with smooth coefficients. Hence, in virtue of (3.4) and (3.8),
(adQ0)

nQι=cd/dx at p with a constant cφO, and so Qo and (&dQ0)
nQι are

linearly independent at p which proves the Lemma.

Here we remark that hypoellipticity is a local property, that is, L is hypoelliptic
in Ω if and only if for any/?eΩ there exists an open neighborhood ωp oϊp such that L
is hypoelliptic in ωp.

Let p be an arbitrary point of Ω. For the sake of simplicity we let
p = (0,0). Setting for rl9r2 >0

(3.9) Drur2 = {(x,y)\ \x\<rl9\y\<r2}

we must show that

(3.10) L is hypoelliptic in Drur2 for sufficiently small rί9 r2.

In virtue of (3.3) and (3.6) we can write with a constant α#0 and an
integer k^O

(3.11) /(0,j) = α/ + OOfc+1), \y\^r> f o r sufficiently small r>0.

Furthermore, by the Weierstrass preparation theorem, we can write for sufficiently
small r>0

(3.12) f(x,y) = q(x9y)yιF{x9y)9 (x,y)eDrtr9

where

(3.13) q(x9y) is a real valued analytic function in Drr and q(x9y)φ0, (x,y)eDrr,

(3.14) F{x9y)=ym + am_ί(x)ym-ί + - + Λ 0 W , ( ^ ) e Z ) ^ ,

(3.15) / and m are non-negative integers and iΛ-m — k,

(3.16) αφc), ί = 0, ",m — 1, are real valued analytic functions on ( — r,r) and αf(0) = 0,
/=0, , m - l ,
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(3.17) ao(x)ψ0 on (-rj).

We shall divide the proof of (3.10) into three parts: Case 1, Case 2 and Case 3.

Case 1: k is even. Let α>0 in (3.11). Then we can take t\ and r2, 0<r1,r 2 < r ,
so small that/(x, — r2)>0, M ^ T V Therefore it follows from (3.7) that f(x,y)^.O,
(x,y)eDrur2. Combining this with (3.3) and Lemma 3.1, we see from Theorem
2.8.2 of [11] that L is hypoelliptic in Dnr2.

Next let α<0 in (3.11). Then we can take rx and r2, 0<r 1 , r 2 <r, so small
that/(jc,r2)<0, \x\^rx. Therefore it follows from (3.7) that f(x9y)^0, (x,y)eDrι%r2.
By the change of variables: x'=—x, y'=—y9 L is transformed to the operator
Lr=f(-x\-yf)(a(-x\-y')d/dx')2-d/d/+g(-x',-/) and -L is hypoelliptic in
A i,Γ2 by t ' i e P^vious argument. Hence L is hypoelliptic in Drur2.

Case 2: k is odd and / is odd. Since k is odd, it follows from (3.11) and (3.7)
that α>0. On the other hand, it follows from (3.11H3.16) that q(0,y)yk

= ocyk + 0(yk+ί). Therefore #(0,0) = α>0 and so we have by (3.13)

(3.18) q(x,y)>0, (x,y)eD,tr.

Since ao(x) is analytic on |x|<r and ao(x)φ0 there by (3.16) and (3.17), there
exists ru 0 < r t <r, such that ao(x)Φ09 0< |x |<r 1 . Suppose that a0(xo)<0 for some
x09 0<|jcJ<r 1. Then F{xO9y)<0 for sufficiently small y and so f(χo,y) =
q(x09y)yιF{x0,y) changes sign from plus to minus when y increases near 0, because
#(*„,}>) >0 by (3.18) and / is odd by the hypothesis. This contradicts to (3.7) and
so ao{xo)>0 which implies that αo(x)>0, 0< |x |<r 1 . Hence, for any fixed x09

0<|x o |<r 1 , there exists r\ 0<r'<r, such that F{xo9y)>09 \y\<r' (rf may depend on
x0). Hence f(x09y) = q{xωy)yιF{xoyy) > 0 on 0 < y < r' and f(x09y) = q(xo,y)yιF{xo,y) < 0
on —r'<y<0, because / is odd by the hypothesis and q(xo,y)>0 on \y\<r' by
(3.18). Then it follows from (3.7) that f(xO9y)^09 0<y<r and f(xO9y)^09

— r<y<0. This implies that F[xo9y)^0, \y\<r. Since x09 0<\xo\<ru is arbitrary
we obtain

(3.19) F{x,y)^0, (x9y)eDritr.

Taking into account that / is odd, we see from the Example 2 of [5] that
(3.12H3.14), (3.18) and (3.19) yield that L is hypoelliptic in Drur2 with r2 = r.

Case 3: k is odd and / is even (hence m is odd). As in the Case 2 it holds
that α>0 and

(3.20) q(x,y)>0, (x,y)eDr,r.

Since α>0 and k is odd by the hypothesis, it follows from (3.11) that there exist
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ρx and p2, Q<PuPi<r> such that /(JC, — p2)<0 on | x | ^ P ! and f(x9p2)>0 on

IXI^PJ. Hence, from (3.12), (3.20) and the fact that / is even by the hypothesis,

we have

(3.21) F{x9-ρ2)<0 on \x\ikργ and F(x9p2)>0 on \x\£px

and, moreover, in virtue of (3.7) it holds that

(3.22) for any xe[ — pί9pχ]9 the function y^F{x,y) does not change sign from

plus to minus when y increases on \_ — ρ2,ρ2\

Then it is not difficult to see that

(3.23) there exists a unique continuous function λ(x) defined on [ — pl9pι] such

that 40) = 0, \λ(x)\<p2 on \x\£pl9F[x9y)£0hi {(x,y)\ \x\£p» -p2^y^λ{x)}

and F{x9y)^0 in {(x9y)\ \x\£pl9 λ(x)^y^p2}.

The uniqueness follows from the fact that the function y -> F(x,y) does not vanish

identically on any sub-interval of \_ — p2,p2\ We define λ(x) as sup{joe[ — ρ2,ρ2~\\

on -

Lemma 3.2. There exist rl9 r2 (0<r x <pί9 0<r2<p2) and real valued analytic

functions φ(x9y)9 h(x9y) in Dnr2 such that

(3.24) f(x,y) = φ(x,yγh(x,yl (χ9y)eDrit,2;

(3.25) h(x9y)*0, (x,y)eDrur2;

(3.26) \λ(x)\<r29 xei-wά

(3.27) φ{x9y)^0 in {(x,y)eDrγr2 \y^λ(x)} and φ(x,y)^0 in {(x9y)eDrχJt2 \y^λ(x)};

(3.28) λ(x) is real analytic on 0 < | x | < r 1 ;

(3.29) for any fixed ye[ — r2,r2\ the number of x's on \_ — rur{\ satisfying λ(x)=y

is less than or equal to M9 where M is the order of zero of the function

ao(x) at x = 0.

Proof. We consider a factorization of F(x,y). Let Ao be the ring of germs

of real valued analytic functions of x at x = 0, and let A0[y\ be the polynomial

ring of Ao. It is well-known that Ao and A0[y~] are unique factorization

domains. We regard F[x9y) as an element of ^40Qv]. Then there exist irreducible

polynomials PU' 9PNeA0[y]9 PiΦPj (iφj)9 and positive integers mu-jnN such

that F=P™X 'P™N. Since F is a monic polynomial of y9 we may suppose that

Pi9 i=l9 - 9N9 are also monic polynomials of y of degree μ f ^ l . Since Pt and

are relatively prime, their resultant ωh ω^A^ is not equal to 0, and there
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exist Gh HieA0[y~i such that GiPi + HidPi/dy = ωi. Furthermore, since Pt and Pj

(iφj) are relatively prime, their resultant ωij9 ωifjeAoi is not equal to 0, and there

exist Gij9 Hi}eA0\y] such that GijPi + HijPj = ωij.

We choose rί9 0<r1<ρu so small that ωi9 ωUj and all coefficients of F9 Pi9

Gi9 Ht, Gij and Hij9 l^iΦj^N, are real valued analytic functions defined on

("~ri>ri) a n c * they can be extended analytically to the complex domain {zeC\

\z\<rt}. Then we can regard F, Pi9 Gi9 Hi9 Gtj and Hij9 l^iΦj^N, as analytic

functions defined in Z> = {(z,w)eC2 | | z | < r 1 ? |w|<oo}, and ωi9 ωitj9 ^^iΦjίkN, as

analytic functions defined in |z| <crx. Of course, F(z9w)9 Pι(z9w\ Gi(z9w)9 Hlz9w)9

GitJ(z9w) and HitJ{z9w)9 ^tkiΦj^N, are polynomials of w. Then we have by choosing

rt smaller if necessary

(3.30) F(z,w) = Pί(z,w)mi- 'PN{z,w)mN in D = {(z,w)eC2\ \z\<rl9 \w\<oo};

(3.31) Gi(z9w)Pι{z9w) + Hι(z9w)dPi(z9w)/dw = ωJίz) in D9 and ω f(z)#0 in

(3.32) GiJz,w)Pi(z,w) + HiJ(z9w)PJ(z,w) = ωiβ) in D, and ωtβ)φQ in 0 < | z | < r 1 ?

(3.31) and (3.32) imply respectively that

(3.33) for any fixed z, 0 < | z | < r 1 , the equation Pi(z,w) = 0 has no multiple roots,

(3.34) for any fixed z, 0<\z\<rί9 the equations Pf(z,w) = 0 and Pj{z,w) = 0 have no

common roots, l^iφj^N.

We set Δ + = { z e C | | z | < r l 9 Rez>0} and fix J C ^ O , ^ ) . In virtue of (3.33) the

equation Pl{xO9w) = 0 has distinct roots α, 1, ,α I | l . . Since the coefficients of Pt{x09w)

as a polynomial of w are real, it is possible to choose vi9 O ^ v ^ μ ^ so that
αi,i' *'αi,v, are real; αi>V| + 1, ,α ί ϊ μ ι are not real and α M = α i J + 1 , y = v i + l ,

v^H-3,- ,μί— 1. Here we let vt = 0 if the equation /)

ι(xσ,w) = 0 has no real roots. It

follows from (3.33) and the implicit function theorem that there exist r09

0<r o <min(x o ,r 1 —x o ), and analytic functions wu(z), ,κ>itμi(z) defined in B0 = {zeC\

\z-xo\<ro) such that wUk{x0) = 0LUk(\^k^μ^ Plz,wUk{z)) = 0 in Bo ( l g f c g μ λ and

wiΛ(z)ΦWij(z) in l?0 (1 Skφj^μi). It is obvious that the functions witk(x)9 k= l,~ 9vi9

are real valued on (x0 — rωx0-\-r^). In virtue of (3.33) we can extend witk(z)9

k=l9"'9μi9 to analytic functions λik(z\ k=l9- -9μi9 defined in Δ + such that

λik{z)ΦλUj(z) in Δ + (1 ̂ kΦj^μ^). This fact is well-known in the theory of analytic

functions. Hence we have

Pfay) = 0 - kι(x)) '"(y- km(χ))> (x>y) e (0,^) x ( - oo, oo).

The functions λitk(x)9 A:=l, ,vi, are real valued on (O^J, because λitk(z)9
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fc=l, ,vi, are the analytic extensions of wik(z), fc = l, ,vi5 and wik(x), k=l,- 9vi9

are real valued on (x0 — r09 x0 + r0). On the other hand, it is easy to see that λimJ{z)9

j=Vi+l,~;μh are analytic in Δ + . Since λiJ+ί(x0) = ociJ+1=(xij = λij(x0) and

(I^()) (λJ+ί{x)) = O = Pi(x,λiJ(x)) on (0jx)9 y ^ v ^ U v ^ ^ ^ ^ - l , it^ ^ ^

follows from (3.33) and the implicit function theorem that λiJ+1(x) = λifJ(x\

j=vi+l9vi + 39 9μi — l9 on an open interval containing x0. Therefore, by the

coincidence theorem, λij+ί(z) = λiJ(z), j=vi-\-l,vi + 3, > ,μi—l9 in Δ + , and so

^i+iW = 4i(4i=v i+l,v i4-3, , μ r l , on (O,Γj).

We note that lmλitJ{x)Φ09j=vi+l9 -9μi9 on (0,^), since λij+ί(x) = λitJ(x) and

Λ, j+it*) ̂ Λ ,/*)> 7 = vi + !»v» + 3, -,/x, - 1 , on (0,^). Then (y-Aif/A:)Xy-Au+1(x))
,y = vi4-l,vί + 3, ,μ i--l, in (O^^x(-00,00). Hence

(3.35) Pi(x,y) = (y-λiΛ(x))- '(y-λax))Qi(x,y) in ( O ^ x ί -

where

(3.36) β f ( ^ ) = Π ( y - Λ » ) > 0 in (O^xί-00,00).

Here we take (F —^i.iWJ Cy — î,ViW) to be equal to 1 in (09rl)x(— 00,00) if v—0,

and Qi(x,y) to be equal to 1 in (0,r1)x(— 00,00) if v^μ^

It follows from (3.30), (3.35) and (3.36) that

(3.37) π {(y-hiM)'-(y-*
1 gί^ΛΓ

= /l(x^) f ] Qfayy- in (0,r,)x(-00,00),

and from (3.22) and (3.36) that

(3.38) for any fixed xeίO,^), the left-hand side of (3.37), as a function of j , does

not change sign from plus to minus when y increases on [ —p2»P2]

We have by (3.33) and (3.34)

(3.39) h*Wk>χ{x) for all xe&rj if (i,k)Φ(i\kf).

Since \imF(x,w) = wm uniformly on M = p 2 by (3.14) and (3.16), it follows from

Rouche's theorem that for sufficiently small rλ>0

(3.40) \λttk(x)\<p2 for all j c e ^ r j , l^igiV, lgfc^ft,

Combining (3.38) with (3.39) and (3.40) we see that

(3.41) there exists at most one /, l^i-^N, such that mi is odd and v t ^l;
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(3.42) vt= 1 if mi is odd and v f ^ l .

Since m = μίmι H hμNraN by (3.14), (3.30) and the definition of μh and m is odd

by the assumption of Case 3, there exists i0, l^^^N, such that μίomio is odd. Then

μio and mio are odd, and moreover, v ί o ^ 1 because μio — vίo is even from the definition

of viσ. Hence vio = 1 by (3.42). On the other hand, suppose that μjW,- is odd with

i Φ i0. Then mi is odd and v( = 1 by the previous argument, which contradicts to

(3.41). Thus it has been proved that

(3.43) there exists a unique i09 l^io^N, such that μίomio is odd;

(3.44) vίβ = l.

Let iφi0. If mx is odd, then vf = 0 by (3.41), (3.43) and (3.44), and so

Pi(x,y)mi = Qi{x,y)mi > 0 in (0,^) x ( - oo, oo). If mi is even, it is clear that PfayF* ^ 0

in (0,rί)x(— oo,oo). Thus we have

(3.45) PfayT'^O in (0,rt)x (-00,00) if iφi0.

By using (3.30), (3.35) with i=i09 (3.36) with i=io9 (3.44) and (3.45), we can write

(3.46) F(x,y) = (y-λioΛ(x)Γ°F(x,yl (x^e^r,) x (- 00,00),

where

ϊ\χ,y)=Qio(χ,y)mί° Π Λ ( ^ Γ ^ 0 , ( ^ 6 ( 0 , ^ ) χ ( - 0 0 , 0 0 ) .

Since mio is odd by (3.43), we see from the definition of λ(x) in (3.23) that

λioΛ(x) = λ(x) on (O,^). Hence

(3.47) λ(x) is real analytic on (O,^),

and by (3.35), (3.36) with i = i0, and (3.44)

(3.48) Pio(x9y)£0 if 0<x<rx and >^^/1(JC);

Pio(x9y)^0 if 0 < x < r 1 and j^A(x).

Now we shall show that

(3.49) ™ ί o^3.

Suppose that mio=l. We have by (3.12) and (3.46)

f(χ,y)=q(χ,y)yι{y - Λo, 1 (χ))F{χ,y\ (χ,y) e (0, rj) x ( - r, r).

Since |λ i o t l (x) |<p 2 on (0,^^ by (3.40), and ( 0 , r 1 ) x ( - p 2 , p 2 ) cz Z) r r c Ω, it follows
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from (3.5) that Mx,λioΛ{x)) = 0 on (0,^), that is, Φ Λ o , i W i o , i M ) ' ( - d λ i o Λ { x )

/dx)F(x9λioΛ(x)) = 0 on (0,^). By (3.20), q(x9λioΛ(x))Φ0 on (0,^); furthermore,

% on (0,^), because β J * Λ o , i ( * ) ) # 0 on (0,^) by (3.36), and
o n (°>ri)> ' ^ o ' b y (3 3°4) Therefore (AIo)1(x))/rfAIojl(x)/i/x = 0 on

(0,rx), and so {λioΛ(x))ι+ί is constant on (0,^). This constant is equal to 0, because

λioΛ(x) = λ(x) on (0,/^) and lim λ(x) = 0 by (3.23). Hence λioΛ(x) = 0 on (0,^) which

implies from (3.46) and (3.14) that ao(x) = F{x90) = 0 on (0,^). Since ao(x) is analytic

on (-r,r) by (3.16), this shows that ao(x) = 0 on (-r,r) which contradicts to

(3.17). Thus we have proved that mio^2. Since mio is odd by (3.43), we obtain

(3.49).

In the case x<0, we adopt the same reasoning as in the case x>0. Then,

from the uniqueness of i0 such that μiomio is odd, we obtain for sufficiently small rx > 0

(3.50) PΓ(x,y)^0 in ( - Γ l , 0 ) x ( - o o , o o ) if iφio\

(3.51) λ{x) is real analytic on ( —r l 90);

(3.52) Pio(x9y)£0 if -Γ^XKO and y^λ(x);

Pio(x,y)^0 if - r ! < x < 0 and y^λ(x).

Combining (3.45), (3.47) and (3.48) with (3.50H3.52) we have

(3.53) / T t e j ^ O in (-r^r jxί-oo.oo) if iφio\

(3.54) λ(x) is real analytic on (-r1,0)u(0,r1);

(3.55) Pio(x9y)£0 if |JC|<r-^ and y^

Pio(x,y)^0 if |jc|<r! and

We take r2 such that 0<r2<ρ2 and set

φ(x,y) = Pio(x9y)9 (x,y) e D r i, r 2;

A(^) = 9(^)yΛβ(^Γ "3 Π

Since / is even by the hypothesis of Case 3, and mio ^ 3 is odd, it follows from (3.20) and

(3.53) that h(x,y)7>0 in Drιr2. It is clear that φ and h are real valued analytic

functions defined in Drιr2, and it follows from (3.12) and (3.30) that f=φ3h in

Drιrr Thus we obtain (3.24) and (3.25). From (3.54) and (3.55) we obtain (3.28)

and (3.27) respectively.

Finally we shall prove (3.29) and (3.26) by taking r l 5 r 2 > 0 sufficiently

small. In virtue of (3.17) we can take rx > 0 so small that the function αo(z), zeC,
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has zero of order M only at z = 0 when | z | ^ r j . Since \imF(z,y) = ao(z) uniformly

on |z| = r l 5 it follows from Rouchέ's theorem that if r 2 > 0 is sufficiently small, then

for any fixed y, \y\^r2, F(z,y\ as a function of z, has M zeros in Izl^r^ We fix

y> W^'*2? arbitrarily. Let x, \x\^ru satisfy λ(x)=y. Then F(x,y) = F{x,λ(x)) = 0

by (3.30) and (3.55). Therefore the number of x9s satisfying λ(x)=y is less than

or equal to M, which proves (3.29). Since λ(x) is continuous at x = 0 and λ(0) = 0,

we obtain (3.26) by taking rx>0 smaller. Q.E.D.

Let Drιr2 be the open set determined in the above lemma. As was proved

in Theorem 2.1 of [9], to show that L is hypoelliptic in Drιr2 it is sufficient to prove

the following:

for any peDrιr2 there exist positive constants C, ε, δ and φu φ2, φ3

eCg{Drur2) such that

(i) Σ
£ = 1 , 2

(ϋ) X iii>||
i = l , 2

(3.56)

£ = 1 , 2

(iii) \\u\\UC{\\Lu\\l+\\u\\l}, for all ueC?(S(p,δ)\
\

where LW)=fa2d/dx, L0 ( 2 ) = 0, L^ = (fa2)xd
2/dx\ L(°2) = {fa\d2/dx2; Dt=d/dx9

D2 = d/dy; (,) denotes the inner product in L2(R2\ and || ||s, seR, denotes the

Hs norm; S(p:δ) = {(x,y)eR2\ \(x9y)-p\<δ}.

We obtain (3.56)(i) by the same argument as in the proof of Lemma 3.1 of

[9]. We obtain (3.56)(ii) by Lemma 3.2 (3.24) of this paper and the same argument

as in the proof of Lemma 3.2 of [9].

To prove (3.56)(iii) we use the following notations introduced in [9]. We set

D;ur2 = {(x,y)eDrur2\ y>λ(x)}, D- f Γ 2 = {(x^)eZ)Γ1,r2 | y<λ(x)} and we set for

u,υeCg>(DritrJ

Γ Γ
(u,v)+= uvdxdy, (u,v) = uϋdxdy.

^Dr\,r2 J*Vlfr2

Then the following two lemmas hold.

Lemma 3.3. We have
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for all u,veC^(Drur2), where C>0 is a constant independent of u and v.

Lemma 3.4. Let §<s<\/2 and for every veC^(Drιr2) set vo(x,y) = v(x,y) if

(x9y) e D?ur2, υo(x9y) = 0 if (x9y) φ D+,2. Then we have

K I I ^ C M , for alive C?(Drur2\

where C > 0 is a constant independent of v.

REMARK. If λ(x) is continuously differentiable in a neighborhood of x = 0,

then the proof of Lemma 3.3 is contained in that of Lemma 3.4 of [9] and Lemma

3.4 is a consequence of Theorem 11.4 and Theorem 9.2 of [10].

Proof of Lemma 3.3. We follow the way of proof of Lemma 3.4 of [9] with

slight modifications. We have

(3.57) K / Λ / ^ J ^ ί \f\a2{\ux\
2 + \υx\

2)dxdy
j

r\,r2

= ± ί fa2(\ux\
2 + \υx\

2)dxdy9

s ince/^0 in D^ri a n d / ^ 0 in D~r2 by (3.24), (3.25) and (3.27) We shall estimate

the right-hand side of (3.57).

For every ε ,0<ε<r 1 , we set m(ε) = ma.x\λ(x)\, Kε = {(x,y)eR2\ |x |^ε, | j | ^
\x\^ε

D+=D+r2\Kε, D~=D~ur2\Kε. Since λ(x) is continuous at x = 0 and Λ(0) = 0,

limm(ε) = 0 and so Kε cz Drιr2 for sufficiently small ε>0. In the rest of the proof
ε-»0

we shall take ε > 0 small.

By (3.28), dDε and dD~ are piecewise smooth curves, and by (3.24) and (3.27),

f(x,y) = 0 on y = λ(x). Hence we have

fa2\ux\
2dxdy=-\ (fa2ux)xΰdxdy+\ fa2uxΰdy

Γ Γ
= - (fa2ux)xΰdxdy+\ fa2uxΰdy,

where yε

+ is the polygonal line with vertices ( — ε,λ( — ε)), ( —ε,w(ε)), (ε,m(ε)) and

(ε,>l(ε)); γ~ is the polygonal line with vertices (ε,/l(ε)), (ε, — m(ε)), ( — ε, — m(ε)) and

( — ε, λ( — ε)). By (3.2) we can write {fa2ux)x = Lu — aux — uy — gu where α

= —fxa
2 —faax. Hence, taking into account that/tf^wj 2 is real valued, we have
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(3.58) fa2\ux\
2dxdy=-Re\ (Lu)Qdxdy + Re\ ocuβdxdy

e Uyύdxdy + Re g|w|2 J x φ + Re fa2u

JD± J D ± Jy±

+ Re Uyύdxdy + Re g|w|2 J x φ + Re fa2uxύdy.
J Jy±

Since f(x,y) = 0 on >> = /l(jt), we see from (3.5) that fx(x,y) = 0 on ̂  = >l(χ). Therefore

α(χj>) = 0 on 7 = A(x). Hence

r r r
ocuxϋdxdy=—\ u(<xu)xdxdy+\ oc\u\2dy

JD± J D± J5D±

= - (t/αMx + αjw|2) dxdy +
JD± Jy±

2) dxdy + φ\2 dyy

JD± J

and so we have

(3.59) 2Re au3fidxdy=-\ ax\u\2dxdy+\ φ\2dy.
JD± JD± Jy±

On the other hand

Γ ΐ [
uyύ dxdy = — MMy rfxί/y — \u\2 dx9

JD± JD± JδD*

and so, noting that w = 0 on dDrιr2, we have

(3.60) ±2Re

J
Combining (3.58)-(3.60) we have

J Dε± J aJD±

± /β 2 |w x |
2 dxdy ^ T Re (Lw)w ώίfy q:- α > | 2

J D± J Dε± ^ J D ±

± - | α|w|2rfy±| g\u\2dxdy±Re\ fa2uxΰdy.

Hence, letting ε-»0, we have

(3.61) ± fa2\ux\
2 dxdy ^ qp Re {Ltήύdxdy

J D ± J D*
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^CίKLM^ + MlS}-

In the same way we have

(3.62) ± f fa^dxdyZCftLΌrfl + Ml}.
JDr\,r2

From (3.57), (3.61) and (3.62) we obtain Lemma 3.3. Q.E.D.

Proof of Lemma 3.4. From the hypothesis that 0<^<l/2, it follows that

ueHs(R2) if and ony if ueH°{R2) and Γ{2s+l)dt\ (\u(x + t9y)
Jo Jκ2

-u(x9y)\2 + \φ9y + t)-u(x9y)\2)dxdy<co; the norms ||ιι||5 and Uu\\l

<3 6 3 > Ί f β > r Λ*

+ r ( 2 β + 1 ) * ( | φ + ̂ ) ( , j ) | 2 + | ( ^ + O φ ^ ) | 2 ) ^ r f y ^ are

equivalent,

and
there exists a constant C>0 such that

(3.64)
Λoo Λoo Λoo

χ-2s\φ(x)\2dx^C\ r{2s+1)dt\ \φ(x + t)-φ(x)\2dx
Jo Jo Joo Jo Jo

for any (/>eC°°([0,oo)) with a bounded support.

(3.63) is, for example, due to Theorem 10.2 of [10]. The proof of the inequality
(11.24) of [10] indicates that (3.64) holds whether φ(0) = 0 or not.

Let χ(x9y) be the characteristic function of the set {(x,y)eR2\ \x\<rl9

y>λ(x)}. Then vo = χv and in virtue of (3.63), to prove Lemma 3.4 it is sufficient
to show that

fY<2'+1>A ί
Jo J

+ \χ(

g c Γ r ( 2 β + 1 ) A I
Jo J

(3.65)
J JR2

+ \χ(x,y + ήv(x9y + 0 - χ{x,y)v{x,y)\2)dxdy

Λ 2

+ \v{x,y + ή-v(x,y)\2)dxdy

for all veC^(Drιr2), where C>0 is a constant independent of v. In the rest of
the proof we shall denote by C positive constants independent of ι;eC0°°(ί)riir2).

We have
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\χ(x + t,y)v(x + t,y) - χ(x,y)v{x,y)\2

= \x(* + t,y)(υ(x + t,y) - v{x,y)) 4- v(x, y)(χ(x + U y) - χ(x,y))\2

S 2\v(x + t,y) - v(x,y)\2 + 2\v(x,y)\2\χ(x + t,y) - χ(x,y)\2

and similarly

\χ(x,y + O Φ . J + 0 - χ(x,y)v(x,y)\2

g 2 | φ , y + 0 - v(x9y)\2 + 2\υ(x,y)\2\χ(x,y + /) - χ(x,^)|2.

Hence

(3.66) the left-hand side of (3.65)

- r
ί < 2 s + 1 ) ώ dt^x + ί.j')—r(x,j)|

)-φ,j)|Vxrfv

where

fY ί \v(x,y)\2\χ(x+t,y)-χ(x,y)\2dxdy,/1= fY ( 2 s + 1>Λ ί \v(x,
Jo JR*

h= \r(2s+udt [ \υ(x,y)\2\χ(x,y + ή-χ(x,y)\2dxdy.
Jo JR2

First we estimate Iv Since suppι> c Dri,2, we can write

Fix any ye( — r2,r7). In view of (3.29) we let xί9 9xm be the points on (-r^rj)

such that xι<x2<"'<xm and y = λ(x^ /=l , ,w. We let m = 0 if there exists

no JC e (— r! ,r j) such that y = λ(x). Then, setting x0 = — r x and xm+ί=rί,we have

/-<2 +»)|,Γ
= Σ {X'+idχίXr^+ι>\v(χ,y)\2\χ(χ+t,y)-χ(χ,y)\2dt

= oJXi Jo

because (y — λ(x))(y — λ(x + t))>0 if xt<x<xi+1 and x i <x + i<x i + 1 , and so, by the
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definition of χ, \άx + t,y)-χ(x9y)\=0 if Xi<x<xi+1 and xi

Therefore

Γ1 dx ί°°r^+1>|t;(^)|2|χ(x + ^)-χ(x^) | 2 Λ
J-n Jo

m Λx,- + i /*oo

^ Σ <& r< 2 s + 1 >KrfΛ
i — OJxi Jxi + i — x

= Σ
i = 0

m ΛXJ + l - Xi 1

= Σ -Nx i + 1-x,j) | 2χ- 2V
i=oJo 2J

Since v(xi+ x— x,y)eC^dO^co)) and it has a bounded support as a function of
we have by (3.64)

= C Γi2s+ί)dt < + 1 Kx,^)-ι
Jo J-oo

g C | r ( 2 5 + 1 ) Λ Γ
Jo J -

Therefore, taking into account that m^M (constant) by (3.29), we have

Γ dx Γr^+Mχ,y)\2\x(χ+t,y)-χ(χ,y)\2dt
J-Π Jo

Γ00

g c r ( 2 s + 1 )

Jo

Hence

(3.67)
+ 1 ) Λ ί

JΛ2
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Secondly we estimate I2. Since suppi; <= Drurj} we can write

— Γ2

Fix any xe( —r^r^. Then we have

J-Γ2 Jθ

because, by the definition of χ, χ(x,y + f) = χ{x9y) if y>λ(x) and /^0. On the other
hand, χ(x,y + ή = χ(x,y) if y g 4x) and ̂  + ̂  λ(x). Therefore

Γ2 dy f°°ί-(2 +

J - r2 Jθ

= Γ V Γ r<2s+Mχ,y)\2\χ(χ,y+t)-χ(χ,yψdt
J-r2 Jλ(x)-y

fλ(x) Λc»

^ dy\ Γ(2s+ί)\v(x,y)\2dt
J-r2 Jλ(x)-y

= [HX)Wχ,y)\2Uλ(χ)-yΓ2sdy
J-r2 2S
Γλ(x)+r2 1

-\v(χ9λ(χ)-y)\2y~2sdy
Jo 2^

Jo 2s

Since U(JC,A(X)—^)6C°°([0,oo)) and it has a bounded support as a function of j ,
we have by (3.64)

y)\2y-2sdy

\v(x,λ(x) -y-t)- v(x,Mx)-y)\2dy

\\v(x,λ(x)-
Jo

g c r<2 +1)A
Jo Jc

J o J - αo

gcf°°/-(2 + 1 ) AΓ I Φ
J o J -oo
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Hence

SC\r{2s+1)dt\ \υ(x9

Jo JR2

(3.68) I2SC\r{2s+1)dt\ \υ(x9y + t)-v(x9y)\2dxdy.

From (3.66)-{3.68) we obtain (3.65). Thus Lemma 3.4 has been proved.

Q.E.D.

Lemma 3.3 corresponds to Lemma 3.4 of [9]. Then, as was shown in Lemma

3.5 of [9], it holds that

(3.69) for any peDrιr2 there exist positive constants C, δ such that | |β0

Mll-i/2

+\\u\\l}, ueC?(S(p,δ)).

For the definition of Qo see (3.2). On the other hand, as was shown in Lemma

3.6 of [9], we have by Lemma 3.4

(3.70) \(U9V) + \ = \(U9Ό0)\^\\U\\2.M+\\V0^

and so

(3.71) |(M ? I;)-| = |( W ,ι;-t; 0 ) |^C(| | W | | 2 _ s +||ι;L 2 ),

(3.70) and (3.71) correspond to Lemma 3.6 of [9].

By using the same reasoning as in Lemma 3.7 and Lemma 3.8 of [9], we see

from Lemma 3.1, (3.56)(i)(ii) and (3.69H3.71) that (3.56)(iii) holds. Thus L is

hypoelliptic in Drιr2.

4. Sufficiency of (A), (B) and (C): general case

We shall prove that under the assumptions (H.I) and (H.2), the operator L

defined by (1.1) is hypoelliptic in Ω if (A), (B) and (C) hold. To this end, it is

sufficient to show that for any/?eΩ there exists an open neighborhood ωp of/? such

that L is hypoelliptic in ωp.

Let p be any point of Ω. As in the proof of necessity of (C), we can introduce

an analytic coordinate transformation Φ from an open neighborhood ώ0 of (0,0)

in the wt -plane to an open neighborhood of p in the x^-plane such that Φ(0)=/?

and ΦJίd / du) = ad / dx + bδ / dy. L is transformed by Φ to the operator

L =/(«, υ)—r + φ , v)~- + <?(w, υ)—+g(w, v),
duz ou dv

where Φ J^cd /du + dd/ dv) = cd/dx + dd/ dy, /(w, v) =f(x,y) and g(u, v) = g(x,y). Then,

in virtue of (H.2), 3^0 in ώ0. Furthermore, from (A), (B) and (C) it follows

respectively that
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(A)i 71(w,ιO = 0 f° r a n y {u9v)eώ0 such that /(w,t;) = 0;

(B)i / d o e s not vanish identically on any integral curve of cd/du-\-3d/dv;

(C)ί J does not change sign from plus to minus along any integral curve of

cd/du+3d/dv.
We consider the operator (\/3)L = (J/3)d2 / du2 + (c/3)d/du + d/dv+g/3.

Then, by (A^

(A)2 (J/3)u(u,v) = 0 for any (u,v)eώ0 such that (//<7)(w,ι;) = 0.

An integral curve of {c/3)d / du + d / dv through a point of ώ0 coincides with that of

cd/du + 3d/dv through the same point except for parametrization. If 3>0 in ώ09

both integral curves have the same directions and if 3<0 in ώ0, the opposite

ones. Hence, from (B)1 and (C) l s it follows respectively that

(B)2 J/3 does not vanish identically on any integral curve of (c/3)d /du + d /dv;

(C)2 J/3 does not change sign from plus to minus along any integral curve of

(c/3)d/du + d/dv.

Let u = φί(s,ή and v = ψ2(s,ή be the solutions of the initial value problem

du c(u,v) dv
~r = Ύ,—:> - r = 1 > u\t=o=*> 4 = 0 = 0.
dt d(u,v) dt

Then \j/2{s,t) = t, and φι(s,ή is real analytic in Wr = {(s,ή\ \s\<r, \t\<r} for some

r > 0 . Since d(ψuιl/2)/d(s>t)\s=t=o = li w e c a n introduce the coordinate trans-

formation

from Wr to an open neighborhood ώ'o c: ώ0 of (0,0) by taking r > 0 small. Then,

the operators d/du and (c/3)d/du-\-d/dv are transformed by Ψ to the operators

(d\l/ι/ds)~1d/ds and d/dt respectively, and so the operator (1 /3)L to the operator

where7(^,0 ^
0,0 and all of them are real analytic in Wr. Here we note that άφQ in PΓr

From (A)2, (B)2 and (C)2 it follows respectively that

(A)3 ?s(s,t) = 0 for any (s,ήe Wr such that f(s9 0 = 0 ;

(B)3 for any fixed ^e( —r,r), the function t -+J(s,t) does not vanish identically on
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any sub-interval of ( — r,r);

(C)3 for any fixed se( — r,r), the function t ->f(s,ή does not change sign from plus

to minus when / increases on ( — r,r).

Hence, from the result of §3, L is hypoelliptic in Wr. This implies that L is

hypoelliptic in ωp =
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