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In [14] we determined the algebra structure of *KO*(SO(ri)) for w=0, 1, 7
mod 8 assuming information about the K- and ^CO-groups of Spin(/x) and P*~l>

In this paper we compute KO*(SO(ri)) for n=3, 4, 5 mod 8 in the same
way as in [14]. However in the present case some generators appear in dgree
—5. So we first study the squares of elements in KO~\X) following the method
of Crabb [7] for elements in KO~\X). We then provide a short exact sequence
in .KOZ2-theory similar to those in Lemma 4.1 of [14] which is a main tool
for our computation.

We write A g for an ^4-module with a single generator g throughout this
paper.

1. Preliminaries

a) Let G be the multiplicative group consisting of ±1. Denote by Rptq

the Rp+q with non trivial G-action on the first p coordinates, and denote by
Bp q, Sp 9 and Σp>q the unit ball and unit sphere in Rp q and the quotient space
Bp q/Sp 9 with the collapsed Sp q as base point respectively.

Let X be a compact G-space with base point. According to [12, 5], if

p+q~Q mod 8 and/> = 0 mod 4, there is a Thorn element ωptq^KOG(Σp q), so
that we have an isomorphism

φptq: KO%(X)^KO%φ>q/\X)

given by φp,q(x)=ωp,q/\x for x&KO$(X) where Λ denotes the smash product.
We now specify the elements ωBprQ and ω4>4. Let us take ωBptQ to be the

element ωp given in [14; p. 793]. Then we have

(l l) i*(ω8p.ύ = 2»-\l-H) in KOG(Σ^)

where i is the inclusion of Σ° ° into Σ8j>'° and H=Rl>".
We may assume that ι|r(ω8/)>0)=l through the periodicity isomorphism, by

replacing ω8ίϊ0 by —HωBptQ if necessary. Here -ψ* denotes the forgetful homo-
morphism.
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ί p
Applying ^OG-functor to the cofibering S4'0-^4'0-^4'0 where ί and/) are

obvious maps, we have an exact sequence

#Oό4(S4 °) -*

R

in which 974 is a generator of KO~\-{-)^Z (+— point) and P3 is the real projec-

tive 3-space. Since KO~4(P3)=Q [8], from this we see that i*((l-H)rj4) = Q
and hence P*(ω4ti)=(l—H)η4 up to sign. So we suppose that ωM is chosen so
that

(1.2) i*(ωM) = (l-#)?4 ™ κδG(^A)=RO(G)-η,

where i is the inclusion of 2°'4 into 24 4, and also ψ(ω4.4)=l.
Similar results hold for KG. Let τ2ΛO denote the element τ£ e KG(Σ2p 0) as

in [14], i the inclusion of 2°'° into Σ2/>*° and L=C®RH. Then we have

(1-3) i*(τ2pf0) = 2*-\l-L) in gG(Z°>») = R(G) .

By construction we obviously have

where c denotes the complexification.
Let μ^K~2(+) be the Bott class and denote by ψ also the forgetful homo-

morphism KG(X)->K(X.). Similarly we may assume that τ2ptQ satisfies the

relation ty(T

2p.o)=vp- Here let K*(X, Y) be regarded as a Z8-graded cohomology
theory, so that K*(+)=Z[μ]lμ*= 1.

b) Let KH denote the quaternionic ^-functor and KR the Real J£-functor
in the sense of [3]. We recall the following isomorphism

t : KH(X)^KRΓ\X) = KR(Σ?*/\X) [6, 15]

where X is a Real space with base point. By a quaternionic vector bundle
over X we mean a complex vector bundle E-+X together with a conjugate
linear anti-involution JE: E-*E commuting with the Real structure on X. We

assume henceforth that the quaternionic structure on H is right multiplication

by;.
Define an isomorphism

a: S° *xH^S° 4xH

by a(v, w)=(v,vrt) for v^S° 4 (—the unit quaternions), w^H and denote by BH
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the trivial line bundle B° 4xH-*B°Λ. Then by σ we denote the element of

KH(B° \ SQ *)=KH(Σ°'4) which (6a, 6Hy a) represents.
Let Y also be a Real space with base point. If E and F are quaternionic

vector bundle over X and Y, the external tensor product E®c F of the under-
lying complex vector bundles E and F can be viewed as a Real vector bundle

over Xx F, since JE®JF becomes a conjugate linear involution commuting the
Real structure on Xx Y. Hence the functor (E, F)t-*E®cF induces a smash

product Ac' KH(X)®KH(Y)-^KR(XA F). Using this the required isomor-
phism t is given by

t(χ) = σ/\coc for x<=KH(X).

Let s denote an obvious complexification KH(X)-*K(X). By construction
we then have

(1.5) s(σ) = μ2, so that σf\cBH = ̂  , σΛ c<r = 1 [15]

where βff denotes the quaternionic trivial line bundle over 2°'°.
In the above let take X~ Y and E=F. Then E®CE can be viewed as a

Real G-vector bundle [5] with G-action switching factors. Therefore a similar
functor Et-»E®cE induces a natural transformation

KH(X)-»KRG(XΛX)

which we denote also by ΛC (Here we consider that X /\X is a Real G-space
with G-action interchanging factors and also G has trivial involution.)

In particular, when X= Σ°'9 Λ Y, X/\X is identified with Σ<*«Λ(FΛ Y)
as Real spaces through a canonical homeomorphism Σ0' f fΛΣ° ff«Σίfί. This is
obtained from the homeomorphism R° qχRQt9^Rq QχRQ q given by the map (u, v)

v-+(u—v, u-}-v) for u, v^Rq, by taking one-point compactifications of both sides.
As in the non equivariant case [3], if X is a Real G-space with trivial in-

volution, the functor E\-^C®RE yields an isomorphism KOG(X)^KRG(X)
where E is an ordinary real G-vector bundle over X and C has a standard real
structure by complex conjugation. In this paper we regard as

KO(X) = KR(X) and KOG(X) = KRG(X)

via the isomorphisms as in [3] and above.

2. Squares of elements in KD~*(X)

Let c: KR(X)^>K(X) be the complexification. From now on we assume
that τ]ι is chosen so that c(η4)=2μ2.
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Lemma 2.1, cr /\cσ — o>4>4

as an element ofKRG(Σ4'4)==RO(G) ω4t4.

Proof. View μ2Aμ2 as an element of KG(Σ4'4) with G-action switching
factors. According to (2.6) when/>=2 in [2] we then have

where i is the inclusion of 2°'4 into 24'4. However because of ψi*(μ2/\μ2)=Q
we get

n

Let i/r2 be the 2nd Adams operation. Then ψ2(μ2)=—2\2μ2 by definition
and also ^2(μ2)=2μ2 by Proposition 3.2.2 in [4]. Hence \2μ2=—2μ2. Thus we
obtain

- 2(1 -L)M

2 in £G(Σ° 4) .

From this formula it follows that

« *(<τΛc«0 = 2(1-LV in £G(Σ° 4) (a)

because c(σ/\cσ)=μ,1/\μΐ by (1.5).
On the other hand by (1.2) we have

«*(ω«Λ = 2(1 -LV in £c(2° 4) (b)

Furthermore by (1.5) again and the assumption in (1.2) we have

where ψ denotes the forgetful homomorphism.

Compare σ/\cσ with ω4>4 using (a), (b) and (c), then the assertion follows
immediately.

Let ξ: E-> X be a quaternionic vector bundle over X and ξc its underlying
complex vector bundle. Then the 2nd exterior power \2ξc of ξ c becomes a Real
vector bundle over X with JE/\JE as a Real structure. If we write \2

cξ for
this vector bundle, the functor £t-»λc ξ is extended to a natural transformation
λc: KH(X)-+KR(X) in an obvious way.

Proposition 2.2. Let X be a Real space with trivial involution. If x=

t(x)^KR-5(X)forX^KH"1(X)) then

iJΰhere ηλ denotes the generator o



REAL /^-GROUPS OF SO(n) 189

Proof. Under the identification (S5Λ-X)Λ(S5Λ-X')= ?* 5ΛX/\X of Real
G-spaces stated above we have by definition

= (σ Λcσ)Λc(*Λc*) *n

By Lemma 2.1 we therefore have

#Λc*=ω4,4Λ(*Λc*) in KRG(Σ* *ΛX/\X) = !KRc(Σ1 lΛ-ΪΛ-ϊ) ωM (a).

Arguments parallel to (2.6) whenp=2 in [2] yield

i*(lΛ<0*(*Λc*) = (#-l)λ2c* in KRG(ΣQ^/\X) = RO(G)®KR(S1ΛX) (b)

where d: X-*X /\X is the diagonal map and i: Σ^Λ-SΓ-^^Λ^Γis the inclu-
sion.

To analyze/* we consider the exact sequence for (SlflΛ-X', Σ^Λ-X").

Because of Σ1 1/20'1^*S'J. 0ΛΣ0'2 [12], we have the following exact sequence:

_
KR(S2/\X) RO(G)®KR(S1AX)

Here it is easily verified that δ is induced by the map k: S1^0

Σo,ιΛΣo,ιΛJγ given by Λ^^ ^ y)=(~ί, jOJor ίeΣ0-1, y eS0>1A-y. Hence we

see that δ agrees with ψ : ̂ ΛG(2°'2Λ^")-^^Λ(5'2Λ^'). From this it follows that
δ is surjective and so i* is injective.

Let f : B^xR^-^B1-0 and £: B1-0 X R*'1 -> Bl ° be the product bundles and

α: *S1 °x jR1'°^S1 °XjR0'1 be an equivariant isomorphism given by α(l, «0=(1, ϋ)>

α(— 1, ϋ)=(— 1, — v) for z eΛ. Denote by ή the element of XRG(Σlf°) repre-

sented by (f , f , α). Then evidently the restriction of ή to KRG(ΣQ'Q)=RO(G) is
#— 1, so that

in KRc&^AX) (c).

Because /* is injective, we see by (b) and (c) that

(lΛ</)*(*Λc*) = «Λλ2c* in

Consequently from this and (a) it follows that

(lΛ^)*(*Λ*) = ω4,4MΛλ2

c* in

Applying ψ to both sides of this equality, we obtain

3? = ηί\lχ in KR~2(X)

since ψ(ή)= ηl by definition and ψ (ω4>4)=l. This completes the proof.
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Let/: X-*GL(n, F), F=R, C or H, be a base point preserving map where

the unit element of GL(ny F) is taken as its base point. We denote by β(f) the

element of KO~~\X), K~\X) or KH~\X) which / defines in a natural manner
according as F=R, C or H. If/: X-*GL(m, H) and g: X-*GL(n, H) are base
point preserving maps, the isomorphism a: Hx(Hm/\cH

n)^ Xx(Hm f\cH"}
given by a(x, u/\v)=(x,f(x)u/\g(x)v) for u^Hm, v^H" becomes an isomor-

phism of Real vector bundles. So a defines an element of KR~\X) in a similar

way to /?(/). We denote this element also by β(f /\cg) and by /3(λc/) if f=g
Then by Proposition 2.2 we have

Corollary 2.3. Let f: X-*GL(n, H} be a base point preserving map. Then

fort(β(f))^KR-\X)

(t(β(fW = >h(/3(λ2c/)+«/5(<*Λc/)) in KR-\X)

where tff is the constant map from X to GL(1, H).

3. KO*(Pl~l) and JΓO*(Sρin(/)) for 1=3, 4, 5 mod 8

In this section we observe the algebra structure of the XΌ-groups of the
real projective /-space Pl and the spinor group Sρin(/). Then for the additive
structures of them we refer to [1, 8, 16] and [15].

We consider that G acts on Sρin(/) as a subgroup of Spin(/), and we regards
as Sl *IG=Pl~l and Spm(/)/G=5O(/), the rotation group of dgree /. Assume
that ϊ: *S/>0-»Sρin(/) is an equivariant embedding which induces a well-known
embedding c: P7"1— >*SΌ(/), and denote by π the canonical projections SIt{*-*Pl~l

and Spin (/) -> SO(l). Then clearly

(3.1) πϊ = iπ .

Let γ/_! and ξ'ι be the real 1-dimensional vector bundles over Pl~l and
SO(l) associated with the 2-fold coverings above respectively. Moreover let

ry^^cy^-i and £==£{-- 1 as elements of KO(Pl~l) and KO(SO(I)). Obviou-

sly we then have

(3.2) ί*£, = 7f-1, ξ] = -2£, and 7?-ι = ~27/-ι

and arguing as in [14] we see

(3.3) The order of ξt agrees with that of fγl_l .

Note that in KO*(+) there hold the relations such that 2^ =ηl =η1η4=Q

and 974=4 and that generators of KO°(Pl) and^O(P) are already specified in
[1, 8] as described below.
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For the proof of Proposition 3.4 below we use freely the following three
types of exact sequences : the ones obtained by applying KO- and XΌc-functors
to the cofiberings

p'-i Λ P' Λ P'/P'-1 = S' and S' " -^ B' ° £ Σ' °

where t and^> are evident maps and the Atiyah's in [3], (3.4)

where η^ is multiplication by ̂  and δ is given by 8(μx)=r(x) for xeK2~"(X)
(cf. [15], (2.4)). Here r denotes the realification K(X)-*KO(X). Then we also

refer to the table in [13] for the additive structure of

Proposition 3.4. 1)

) = 0 ,

==Z24

+2) = 0 ,

with relations

Ύ8n4 2 = —

_ ?4»+l,v
— L Ύsn+2

relations
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Sn+3 == 2 * Ύ8»

= 0 ,

with relations

ΎBn+4 = 2γ8n+4 , μ-SΛ-l-4 = ?74A%f+4 == '/8n+4^'8»+4 === 0 J

Proof. See (3.2) for the first relations.

1) Because of ̂ O-6(P8Λ+1)-0 we see that p*:

szZ2 is surjective. So we define ^8n+2eίCO~6(P8w+2)^Z2 as

μ*Sn+2 = P*(g)

where g denotes a generator of KO~* (SBn+2) ^ Z. Then evidently KQ-6(P8n+2) =

Since ίΓO"7(P8Λ+1)^Z and

and p*=0: KO-2(SBn+2)^KO-2(P8n+2). Therefore it follows that KQ-7(PBn+2)

Since ί*(78»+2)
==78«+ι and γ8Λ+1 has order 24"+1, /*(24n+1γ8n+2)=0, so that

P*(v2ιg)='2<*n+1Ύ8n+2 which shows ^f ^8Λ+2=24n+1γ8w+2 immediately.
γ8n+2g lies in KO~Q(P8n+2, PBn+1)^Z and has finite order because so does

γ8n+2. Hence γ8Λ+2£=0, so that γ8ll+2A68n+2-0.
From the following isomorphism with an obvious identification:

1 KO-\PBn+2)

it follows that i*((H— 1)^=^7^^ is a generator of KO~l(P**+*)c*Zv In a

similar way we get also KO~2(PBn+2)=Z2 ηιγBn+2.

2) According to [11; § 13] the half spin representations Δsw+4 and Δi +4 of
Spin (8#+4) are quaternionic and may be viewed as homomorphisms from
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Spin(8rc+4) to GL(24n, H). We define a map

by δ^(Λ?)=ΔίM+4(zW)ΔΓ«+4(ϊ(^))"1 for *<ΞS8Λ+4'° and set

ϊ8n+3 = t(β(8))ϊΞKO-*(PB»+3).

Let v8n+3&f£~\PBn+3)£*Z be a generator given in [14]. Then we have

φ8Λ+3) = μ2v&n+z (a)

since s(σ)=μ2 by (1.5) and s(β(8))=v8n+3 by construction.

Because of KO-4(PB»+3)==Z2*n-^<yBn+z and £δ-3(P8Λ+3)— 0 we see that

c: KO-5(PBn+3)^g-\PB»+3). Therefore by (a) we obtain KO-*(PBn+3)=Z p8n+3.

Since KO~*(PBn+2)=Q we see that p8Λ+3 lies in the image ofp*: KO-*(SBn+3)-*

£θ-5(P8*+3), so that *|n*3=0.

We have £-6(P8n+3) = Z24,+ 1 (̂̂ +3) by [4] and S(v3c(<YBn+3)) = v47Bn+3

using r(μ2)= )74. Therefore, since ί74γ8w+3 has order 24n there is an element

such that

24V<<)W3) (b)

Hence by observing Atiyah's exact sequence we see readily that ^i^+g and μ8Λ+3

generate KO~6(PBn+3)^Z2®Z2 additively.

7l : ^O-6(P8Λ+3)->^O-7(P8Λ+3) is injective because c: KO(PBn+3)-*S:(PBn+3)

is surjective. This leads to KO-7(PBn+3)=Z2 ηl v8Λ+30Z2 ^μβ +β
Since the order of c(78rt+3) is 24n+1 by [4], £(24n+1γ8rt+3)=0 and hence

By (a) we get ^L^HO^because 2<»+*c(Ύ&n+3)=0. But c:

%-\PBn+3) is injective since J£O-3(P8n+3)=:(), therefore we have μiw+3=
Using r(xc(y))=r(x)y, c(^)=2μ2 and r(μ2)=^ we have

τ?*μsn+3 by (b), so that τ?4μ8n+3=Q by exactness. _

The relation v&n+sμBn+s=Q is clear because of KO"3(P8n+3)— 0.
Using r(μ)—-η\ it follows from (a) that S(v8n+3)=-η2ιvBn+3 which is of order 2.

Also by (a) we have <974pgΛ+3)-2z;8n+3. These lead to

Consider the following exact sequence:

ΛO(G) ω8Λ,0Λω4,4

Through the obvious identifications above we then have
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(l+#)ω8Λ,0Λω4,4 (c).

By (1.1) and (1.2) we have j*(ω^/\ω^)=2^(l~H)^ and so Kerj»'*=

((l+#)ω8MΛωM). Hence we can write δ(p8Λ+3)=/(l+Jfϊ)ω8ΛoΛω4>4, /eZ.

Applying ψc to both sides of this equality and arguing as in Proof of Lemma 1.8

in [14] we get 1=1 under the assumption stated in § 1, a).

Since δ(γBn+3$8n+3) = (H--l)S(ϊ8n+s) we have S (<y8ll+3 v8n+3) = 0 by (c) and

therefore 7^+3^+3—0 because 8 is injective.

Observe the following isomorphism with an evident identification:

Since δfoiWuH (^+H)rίlωBn>Q/\ω^ by (c) we then have δ(^8n+3)—

where £ =1 or H. Hence we have δ(γ8n+3μ8n+3)=δ(η1v8n+3)y from which it fol-

lows immediately that γ8n+3μ8^=^ιίW3 _

It is clear from 1) that KO-2(PBn+3)=Z2'η
2

lΎ8n+3ί because i* : KO-2(PB»+3)

O~2(PBn+2).
3) In the exact sequence

we have K:-&(PB»+*)=Z2*n+2.μ*c(Ύ8n+4)by [4], KO-4(P8»-M) = Zi4.+i^4r8e+4 and

S(^3c('y8w+4))=97478n+4. Hence we see δ(24n+VM'/8«+4))1=:=0, which shows that

there is an element μ8n+^KO~6(PBn+4)^Z2 such that

so that KO-*(PB«+4)=Z2- μ8n+t.

Clearly c(fγ8n+4μ8n+4)=c(μln+ 4) = 0, therefore we see that

-0, because c: ^O-'XP8w+4)^£ -''(P8w+4) is is injective for ί = 4, 6. Since

^ : ^O"6(P8M+4)^^O-7(P8w+4) we get ̂ O-7(P8«+4)-Z2 ^^+4 immediately.

Moreover, from the fact that ^ : ̂ O"7(P8w+4)->^O°(P8w+4) is injective and

£(24Λ+2γ8n+4)=0 it follows that ^?^8n+4-=24M+278n+4. Observe the equality

^(24Λ974τ
p

8Λ+4)=24n+1)L6M^8»+4) Then applying δ to both sides of this and using
the above formula for μ8Λ+4 we have η4μ8n+4= 0.

The rest is easily checked by arguments parallel to 1). This completes the

proof.

Let

p,: SO(l)dGL(l, R)

be the obvious inclusion and let us denote by the same letter p; the composite
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p,κ: Spin(/) -» SO(l)cGL(l, R) .

As we noted before, the half spin representations of Spin(8w+4) are viewed as

homomorphisms

Δ8

+

B+4, Δϊ,+4: Spin(8w+4) -* GL(24», H)

According to [11; § 13], similarly we may view the spin representations Δ8B+3

and Δ8n+5 of Spin(8w+3) and Sρin(8«+5) as homomorphisms

Δ8Λ+8: Spin(8n+3) -» GL(2<», H)

and

Δ8,+5: Spin(8«+5) -* GL(24»+1, H) .

Set

and

«8»

Then we have

Proposition 3.5.

KO*(Spin(8«+5)) = Λxo*(+)()β(λ1p8»+5), -, β(\4n+1

as KO*(-\-)-modules ΐϋhere there hold the relations:

/or l^ί^l and l=8n+3, 8w+4, 8/z+5,

/— 8w+3, Sn+5 and

Proof. See Theorem 5.6 in [15] for the additive structures and [7] (also

(1.7) in [14]) and Corollary 2.3 for the relations.

We now show how to express the right sides of relations in Proposition 3.5

in terms of the basic generators. First we recall that for base point preserving

maps /: X-+GL(p, R) and g: X-»GL(q, R) there hold the following formulas

in KO-\X]
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(3.6) β(f®g) = β(f)+β(g) , β(f®g) = qβ(f)+ρβ(g)

(cf. [10; I, §4]). Here/θ£ and/®£ are maps from X to GL(p+q, R) and

GL(pq, R) given by (f®g)(x)=f(x)®g(x) and (f®g)(x)=f(x)®g(x) for
We consider the case of Sρin(8τz+3). Because λ*p8n+3= λ8w+3~*pδn+3

O^Λ^8/z+3, X2(X'"p8lH.3) and λcΔ8n+3 are polynomials of λ*pβn+3> 0^

clearly. Using (3.6) we hence see that /3(λ2(λ*'p8n+3)) and /3(λcΔ8n+3) are expres-
sed in the form of linear combinations of /3(λ*p8n+3), O^Λ^4w+l. On the

other hand, from Theorem 10.3 in [11; § 13] it follows that

Δ8n+3®cΔ8n+3 =

as a real representation, so that

Hence we see that it suffices only to describe β(Δ8n+3®cΔ8n+B) in terms of the

basic generators.

Let tι denote the constant map from X to GL(l> H). Then

for # e X. Therefore it follows that

Because β(t1®cΔBtt+3)=εffΛcβ(Δ8n+3) by construction, applying σ/\cσ to both
sides of this we have

By (1.5) we hence have

since σ Λc^(Δ8n+3)=/c8Λ+3 by definition.
Analogously we have β(Δ8n+z®ct1)=-η4ίc8n+3. Thus we obtain

/3(Δ8Λ+3®cΔ8n+3) =

so that we get

(3.7)

Arguing as above we have
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/3(Δ8),+5<8>cΔ8),+5) = 24

so that

(3.8)

-/3(λ4"p8))+5) -----

Using these formulas we can similarly express the relations in the other
cases in terms of the basic generators.

4. KO*(SO(l)) for 1=3, 4, 5 mod 8

In this section, for a compact free G-space X we identify KO%(X) and
K$(X) with KO*(XIG) and K*(XIG) via natural isomorphisms.

Let G act diagonally on S" °xSpin(/). Then we have a homeomorphism

(4.1) 5' °xcSpin(/)«ίP'-1xSpin(/) [9]

which is induced by the map

(x, g) h-> (π(x), l(x)g)

for Λ eS' 0, #e Spin(/). According to Proposition 3.5, when /=3, 4 or 5
mod 8.KΌ*(Spin(/)) is a free module over KO*(-\-) and therefore the above
hoemomorphism yields an isomorphism

KO$(S' °X Spin(/))^JK:0*(P/-1)®Jro*(-1-)^0*(Spin(/)) .

Viewing this as an equality and applying J£OG-functor to the cofibering
5' °χSpin(/)-*β'>0xSpin(/)->Σ'>0ΛSpin(/), we have an exact sequence

(4.2) -

ί- KO*(SO(l)) ί xδ?(S' βΛSpin(/)+)

for 1 = 3, 4, 5 mod 8 provided with the formula

(4.3) S

a) KO*(SO(8n+3))
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Let us define a map

6: SO(8n+3) -> GL(24", H)

by ε(π(g))=ΔBn+s(g)2 for £(ΞSpin(8/M-3) and set

We consider (4.2) when l=8n+3.

Lemma 4.4. i) /

iii) I(κ8n+3) = (γ8n+2

Proof, i) Immediate from definition.

ii) Consider the map from P8»+2χ Spin(8rc+3) to GZ/2^ 8//^~3 j , Λ^ given

by

\-ι

for Λ;e58Λ+3 °, ̂ eSpin(8w+3). By observing (4.1) we then see that this map

represents /08(λ*p8Λ+3)), so that

Since KO~1(P8n+2)=Z2 η1γSn+2 by Proposition 3.4, we can write

Let denote by j the inclusions Plc:P*n+2 and 5O(2)c5O(8w+3) such that

jι=tj. Then obviously 7 *(β(\k p8n+3))=( A_ι)/?(p2) an^ because p2 viewed as

a map from SO(2) to t/(l) in a natural way defines a generator of ^'""1(ASrO(2))=

Z μ and r(A»)=,ϊ, we have y*(/3(λV8B+3))=(8^ί })̂  ™ S5-1(5O(2))=Z2.,f.

Also * : P1 C SO(2) becomes a homeomorphism and hence we have i*j *(/3(X*p8Λ+3))

= (8ϊί l)^ in ^O"1(ί>1)=^ ^ϊ On the other hand> J *(VιΎsn+3)=vl There-

fore we get

/8»+l\ε~\ k-ι)
iii) Define maps

/: P8"+2 -+ GL(2'», H)

and

h: P8s+2x Spin(8«+3) -* GL(2*", H)
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)) = A8Λ+3(Z(*))-2 and h[τe(x), g) = \n+3(l(x))Δ,&n+3(g)\n+3(l(x)Γl for
0, £eSpin(8w+3). Then it is verified by observing (4.1) again that

in urO'^P'^X Sρin(8ra+3)) under our identification.

Since 5θ-5(P8Λ+2)— 0 by Proposition 3.4

Next we consider t(β(h)). Let CX= [0, 1] x X\ {1} x X for a space JT and
define isomorphisms of vector bundles

a: (S*m+3 »XGH)®R(C Spm(Sn+3)xH2n)^P*»+2X C

b: P'»+2χ {0} xSpin(8ra+3)x#24W8«+2χ {0}

~(Ssn+3.o χ GH)®R( {0} X Spin(8n+3) X H**

by

(*(*), [0, rf, ») = (π(x\ [0, ̂ ],

, d, ϋ)) - [x,

for Λ?e58n+3»°, ^eSρin(8w+3), λeίί, v^H2*" respectively. Here we denote
by [ ] the equivalence classes. Let ξb and ξc be the quaternionic vector
bundles over P8Λ+2χ2 Spin(8w+3) with b and c as clutching functions where

denotes an unreduced cone of X. Then clearly we have

through the isomorphism a and since &— 24*£JΪ can be viewed as an element of
KH-\PBn+2χSpm(8n+3)) we then see by construction that β(h}=ξb—2*»eH,
so that

From this it follows that

WO) =

since σf\εH=ηι by (1.5). However 24n^478n+2— 0 by Proposition 3.4. Hence
we have

which proves iii).
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Let ί: S0'0e23'° be the inclusion. Then i*: OG4(Σ3'°)->O54(Σ0 0) =

RO(G) η4 is injective because of KO~\P2)—Q. We can choose a generator ωM

Let set

δ =

Then we have

Lemma 4.5. i) δ(l®£8n+3)= — ω8.4Λl,
ii)

Proof, i) Let a be the automorphism of the vector bundle S8»+3 °χ

Spin(8/*+3)X Jr4" given by *(*, £, *) - (*, g, ΔBn+2(ϊ(x)g)v) for ̂ e58w+3 °, ^ e

Spin(8n+3), v^H2" and fβ denote the quaternionic vector bundle over
ΣS8Λ+3'°X Sρin(8w+3) with έi as a clutching function. We view ξa—24*εH as an

element of X£Γ(28n+3'°ΛSρin(8w+3)+) in a natural manner. Then by consider-
ing (4.1) we obtain

in KθG4(Σ8n+3'°ΛSpm(8n+3)+).
Define the isomorphism of vector bundles

b: CS8Λ+3'°xSpin(8n+3)xtf®Λ£^

by b([t9X]ίgίί®v)==([ΐίX]ίg9A8tt+,(gΓ1^ for fe=[0, 1], ^eS8«+3 °, gς=
Spin(8w+3), v^If2*" and denote by b the restriction of b to S8n+3'°X Sρin(8ra+3)

χH®RH2'n where we take ίS
8Λ+3»°— {0} x S8*+3 °. Also let ξa-b be the vector

bundle with ab as a clutching function. Then clearly ξaι^ξa. Hence

^̂We consider t(ξa-b-24»εH)(ΞKθG\ΣBn+3'0). Let : 2°'0c28w+3'° be the in-
clusion. By construction we then have

-2^£H) = 2*»+\L-l)μ*

since σ Λ8ff=η4 by (1.5) and c(η4)=2μ2, so that
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Here;* is injective because KOG4(ΣBn+3tQl^Q)^KO'5(P&n+2)=G by Proposition
3.4. Therefore by our choice of ωM and (1.1) we see that

so that we get

S(l 0*811+3) = —

which proves i).
ii) Consider the exact sequence for (B8n+3 °, S8w+3'°) in £ΌG-theory. Then

δ: KO~6(PSn+2) =
II II

Λf0 Λ ωM

Hence clearly 8(μ8tt+2) = η1ω8ntQ/\ω3^. From this and an inspection of (4.1)

immediately we have S(/,t8rt+2®l)='}71ω3>4Λl, which completes the proof.
From Lemma 4.5 it follows that δ(μ8Λ+2®l + l®371/c8M_H3)==(). Hence by

exactness we see

(4.6) There exists an element z;8Λ+3e^O"6(*SΌ(8/z+3)) such that

Using this we determine the order of 374£8»+3 Observe the exact sequence
(3.4) in [3]:

Since 8(μίc(fγ!ta+2))='η4Ύίn+2, we have δ(24"μ3c( y8B+2))=0. Evidently this implies

Let us write /,. for / in complex case. Then it follows from (4.6) that

+s))=24V3<78B+2), while Ie(2*"μ3c(ξSn+3))=2<»μ

3c(Ύsn+ί) and Ie is injective
by Lemmas 3.8 and 3.7 in [14]. Hence we have

Consider again the exact sequence (3.4) when X=SO(8n-{-3) in [3]. Then
analogously we have 8(μ3c(ξSn+3))= >}4ξ&n+3 and therefore

so that by exactness we obtain

= 0 .
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On the other hand, ^(^fsn+s)— η*Ύ8n+2> which has order 24n by Proposition
3.4. Hence we see

(4.7) η.ξ^has order 2".

Lemma 4.8.
_^ c>

0 «- ίΓOo*(Σ3 0ΛSpin(8/ι+3)+) «-

Ί- KO*(SO(Sn+3)) «- 0

ix exact and there holds

Proof. The equality follows from (4.3) immediately and so it suffices to

show

/=0: Og(Σ8Λ+3»°ΛSpin(8w+3)+) -* KO*(SO(8n+3))

in (4.2) when l=8n+3.

Consider the exact sequence

- -> Jf ί(S1 °ΛSpin(8ιι+3)+) ̂  K*(SO(8n+3))

which arises from the cofibering 51>0-^fi1'°->21'° under obvious identifications.
Then by Theorem 3.10 and Proposition 2.3 in [14] we see that Im% is addi-
tively generated by

for 0^i^3, bl9 -, b4n=Q, 1 where IΛ&, -, b4n)=β(\lp8n+^ . β(\*» p8n+y*».

Let h=K, KO and let %Λ denote the homomorphism Ag(Σ3'°Λ Spin(8w+3)+)

->A*(5O(8w+3)) induced by an evident inclusion 2°'°C23'0. Using (1.3) and
(3.2) we can verify from the result above that Im Xκ is additively generated by

for 0^/^3, bl9 •••, £4n=0, 1, so that we see that 2ImXKO is additively gene-
rated by

22?8»+sM&ι> -> b*n) and 2974?8Λ+3m(61, -, δ4Λ)

for 6,, — ,&4Λ=0, 1.

Thus for x&KO$(Σ3 0ΛSpin(8n+3)+) we can write
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c1, —, c4n)m(cl9 — ,

for #(#!, •••, x4n)&Z. Using (1.1) we therefore have

because 24Λτ74f8M+3=0 by (4.7). Applying /to this formula, by Lemma 4.4 we
have

which equals zero by exactness. Moreover because by Propositions 3.4 and

3.5 the order of j8n+2 is 24n+2 and {m(bly •••, i4n)} is a basis of a free submodule

of ^O*(Sρin(8w+3)) we see that a(b19 •••, b4n) are divisible by 2, so that since

by (3.3) ξBn+3 has order 24n+2 we obtain

which completes the proof.

Theorem 4.9.

KO*(-}-)-module and the following relations hold:

8«+3 >

in which (g)z is- fe/ί out.

Proof. We begin with the relations. The first two ones are already shown

in (3.2) and [7; p. 67] (also (1.7) in [14]). According to Lemma 4.8, / is an

injection of algebras. Hence using the formulas in Lemma 4.4 and (4.6) the

others follows from the relations in Propositions 3.4, 3.5, (3.3) and (3.7).

Let .R8n+3 denote the right side of the above equality together with the rela-

tions. Then by a similar argument it is verified that Λ8rt+3 is a subalgebra of

KO*(SO(8n+3)).
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Moreover, in virtue of the surjectivity of δ and the formulas of Lemmas 4.5

and 4.8 it follows that iEΌί(23 0Λ Spin (8w+3)+) is generated by ωMΛ* for
as a .ίCO*(+)-module.

Let X be a G-space with base point. We consider the exact sequence in

associated with a cofibering jr=2

where i,p are evident maps. Since S^/Σ^Λ-X^Si'1 ΛΣ^Λ-X" there is an

isomorphism XOίίS^/Σ^ΛA JβXO^^Λ-ϊ). By observing the above
homeomorphism we can check that the composite of this isomorphism with p*
agrees with a transfer

r:

so that we have an exact sequence

- -* XO^^Λ-X) ̂  XOίίΣ' 'Λ*) U KO%(X) -> - .

Here take X to be Σ3'4Λ Sρin(8«+3)+. Then this yields the following exact
sequence :

II II
»+ 3)) ψ(ωM) ^O*(5O(8τz+ 3))

with Thorn isomorphisms. From (1.2) and the definition of ω3t4 it follows

that *'*(ωM)=ω3f4Λl. Therefore by the result above we see that

4,4) - g(Σ3 4ΛSpin(8/z+3)+) (a).

By construction we obtain

Using this and the properties of T such that

τψ(y) = (l+H)y and τ(xψ(y)) = r(oc)y

we see by Proposition 3.5 that

ImτcΛ8Λ+3 ω4,4 (b).

From (a) and (b) it follows that XΌ*(SO(8/*+3))cΛ8n+3, that is,

KO*(SO(8n+3)) = R&n+,

which completes the proof.
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To express /3(λ2(λ*p8»+3)) and β(λ2Δ8)l+3)) appeared in Theorem 4.9 in terms
of the generators of KO*(SO(8n+3)) it is sufficient to know about /3(X4"+1p8»+s)
as in XΌ*(Spin(8w4-3)). In virtue of the injectivity of / and Lemma 4.4, this

is easily obtained from (3.7) as follows:

(4.10)

b) KO*(SO(8n+4))

Let us define maps

δ, 6 : SO(8«+4) -* GL(2in, H)

by δ(^))=Δ8-Λ+4(^-1Δ8

+

a+4(^, ε(π(g)}=ΔίnM* for £e=Spin(8«+4) and put

«8Λ+4 = t(β(S)), θ =

We consider (4.2) when l=

Lemma 4.11. i)

ii)

iii)

Proof, i), ii) Similar to the proofs of i), ii) of Lemma 4.4.

iii) Considering (4.1) we see that /(/c8n+4) is represented by the map

/: P8*+3x Spin(8/ί+4) -> GL(24«, ff)

given by /(^),^)-ΔΓn,4(^-1Δ8-w+4(^))Δ?n+4(^)) for *eΞS8*+4»°,

<§reSpin(8/z+4). But the composite o f / with an inclusion GL(24Λ, jff)c

GL(3 24n, J9Γ) is evidently homotopic to the map from P8Λ+3xSpin(8n+4) to
GZ,(3 24*, fl') given by

for ^eίS^"1"4'0, ̂ eSpin (8w+4). iii) is immediate from this.
iv) Define a map

by /(7r(*0)=Ai«+4(7(*))2 for Λ?eS8n+4'0. Then by arguments parallel to iii) of
Lemma 4.4 we have

where t(β(f})^KO-*(P*»+*)=Z p8B+3.
Because
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R-*(S»+*) = ^'(Spin(8n+5)/Spin(8fi+4)) = Z μ

(see e.g. Theorem 13.3 in [11; § 13]), observing the composite

we have by definition

«M«WΛ = 2/Λ(/?(Δ8

+,,+4)) and π*c(t(β(f)) = -

This shows

which completes the proof.
In proving Proposition 3.4 we showed that S^(μ8n+3)=εη1ωBn>Q/\ω4t4y 6=1

or fl for the coboundary homomorphism δ': KO*(P*n+3)=KO$(S8n+4'°)^KO$
(28Λ+4'°). However by definition we may assume that

Take ω8Λ+4,4 to be ω8Λ>0ΛωM and set

8 = φiί+M5: KO*(P*»+3)®κo*MKO*(Spm(8n+4)) -+ KO*(SO(8n+4)) .

Then we have

Lemma 4.12. i) S(l®^n+,)=ξSn+4+ί, 8(l®«u+4)=-l,

Proof, i) As in the proof of Lemma 4.5, i), by using the half spin repre-

sentations Δ8»+4, ΔΓ«+4 we can define quaternionic vector bundles ξ+aτ, ξ~aτ> over
2?8»+4,o sjmjιar to ξ

and

Hence i) is clear.
ii) Immediate from (c) in the proof of Proposition 3.4, 2), that is,

iii) Similarly immediate from the formula for μ8n+3 above.
From Lemma 4.12 it follows that S(μSH+z®l-\-l®η1κ^n+3)=0 and hence

by exactness we have
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(4.13) There exists an element v&n+^KO"6(SO(&n+3)) such that

Making use of (4.13), by arguments parallel to (4.6) we get

(4. 14) i]4ξBn+4 has order 24».

Observe / in (4.2) when /=8#+4. Similarly using (1.1) and (1.2) we
then have

for x<=KO*(SO(8n+4)), so that by (4.14) we see that

/=0.

Clearly from this and (4.3) we get

Lemma 4.15.

0 <- KO*(SO(8n+4)) i KO*(P*»+*)®κo*MKO*(Spin(8n+4))

<-

is exact and there holds

Using Lemmas 4.11, 4.12, 4.15, (4.13), Propositions 2.4, 3.5, (3.3) and

(4.14), by arguments similar to Theorem 4.9 we obtain

Theorem 4.16.

KO*(SO(8n+4)) = Aκo*

as a KO*(Jr)-module and the following relatoins holds:

= "

in τϋhich ®z is lefto out.

Arguing as in the case a) and noticing that ( 2 U ι = 0 moc^ ^ we
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(4.17)

-2/3(λ<"-2p8)I+4) ----- 2/3(λ2p8Λ+4) ,

from which we can express /3(λ2(λ*p8n+4)) in the form desired.

c) #0*(SO(8«+5))

This case is discussed exactly as in the case a). Define a map

6 : SO(8n+5) -* GL(24"+1, H)

by φr(£))=Δ8n+5(£)2 for£<ΞSpin(8w+5) and set

*8»+5 = t(β(ε))<=KO-\SO(%n+5)) .

We consider (4.2) when /=8«+5.

Lemma 4.18. i)

ii)

iii)

Proof. Similar to the proof of Lemma 4.4.
Take ω8Λ+4>4 to be ωgn>BAωttί as in the case b) and set

Let ω1(0eXOί(Σ1>0)<«Z be a generator such that

»*(ωiΛ) = l-ίfefθG(Σ° °) =

where i: S°'0cS1>0 be the inclusion. Then we have

Lemma 4.19. i) δ(l®Λ^,+ί)=— ω1>0Λl,
ii)

Proof. Also similar to the proof of Lemma 4.5.
By this lemma we see

(4.20) There exisits an element Vgn+5^KO~6(SO(Sn+5)) such that

Analogously from this we have

(4.21) η4 ξsa+s has order 24B+1
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and hence it follows that / in (4.2) when l=Sn+5 is a zero map. Consequently
we obtain

Lemma 4.22.

0 «- XOίφ' 'ΛSpinίSfi+S)*) ̂  KO*(P*«)®κ*MKO*(Spm(*n+5))

+- KO*(SO(8n+5)) <- 0

is exact and there holds

Theorem 4.23.

KO*(SO(Sn+5)) =

α KO*(-\-)-module and the following relations hold:

?8a+5 = — 2^8Λ+5 , 2 * 5?4?8»+5 = 0 )

®z ts left out.

Proof. We write RBn+5 for the right side of the equality together with the
relations above. As in proving Theorem 4.9 we can then verify that jR8n+5 is

a subalgebra of KO*(SO(8n+5)).

To prove that Λ8n+5=) KO*(SO(8n+5)) we make use of exactness at KO$(X)
of the exact sequence stated in the proof of Theorem 4.9. By definition we
see that the homomorphism next to i* coincides with a forgetful homomorphism
under an obvious identification. Hence taking X to be Sρin(8n+5)+, we have
an exact sequence

χδί(S1 °ΛSpίn(8n+5)+) -> KO*(SO(8n+5)) ^> KO*(Spin(Sn+5)) .

Clearly we have

7Γ*(/3(λ*p8n+5)) - /3(λ*P8*+5), π*(ξ*n+s) = 0

and
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Moreover considering TT* in the complex case and using the results for

K*(SO(8n+5)) and £"*(Spin(8ra+5)) [14], we see that £8|H_5 does not lie in

Im 7Γ*, so that we have

In virtue of the surjectivity of δ; by the same argument as in the proof

of Theorem 4.9 it is verified that ^^(Σ1'°ΛSpin(87z+5)+) is generated by
, x^R8n+5. Therefore by exactness we obtain

which completes the proof.

Furthermore we have a relation similar to (4.10):

(4.24)

Similarly the calculation of /3(λ2(λ*p8Λ+5)) an<^ /3(λ2Δ8Λ+5) is reduced to this
formula.

REMARK TO THE PREVIOUS PAPER [14]. Analogously we see that £'s stated in

Lemmas 4.3, 4.10 and 4.14 of [14] are equal to (^Ij), K~l] and

respectively and hence we obtain

with the notations as in [14].
Using these formulas it is also possible to express ^(X2A8n_!), /5(X2Δ8Λ+1)

and /3(λ2(λ*p/)), l=8n— 1, 8/z, 8^+1, in terms of the generators.
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