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1. Introduction

In this paper we shall give some improvements of the following four results:

Resurt 1 (E. Bannai [5] Theorem 1). Let p be an odd prime. Let G
be a permutation group on a set Q={1, 2, :--, n}which satisfies the following
condition: For any p* elements ay, -+, a2 of Q, a Sylow p-subgroup P of the
stabilizer in G of the p* points a,, **+, @,, is nontrivial and fixes p’+r points
of Q, and moreover P is semiregular on the set Q—I(P) of the remaining
|Q|—p*—r points, where 7 is independent of the choice of aj, +, etz and
0<r<p—1. Then n=p*+p+r, and one of the following three cases holds:
(1) There exists an orbit Q, of G such that |[Q—Q,| <7 and G*:>4%. Moreo-
ver, (Ga_q,)>A%. (2)r=p—1, and G has just two orbits Q and Q, (with
| Q4] > Q,] > p) such that G%1>A4%. Moreover (Gg,)*>A% and G° is pri-
mitive and contains an element of a p-cycle (therefore G®2>A4%if |Q,| > p+3).
(3) r=p—1, and G is imprimitive on Q with just two blocks Q;, and Q,.
Moreover, (Gg,)%>A4% and (Gg,)% > 4.

ResuLt 2 (E. Bannai [4] Theorem 1). Let p be an odd prime. Let G be
a 2p-transitive permutation group such that either (i) each element in G of
order p fixes at most 2p+ (p—1) points, or (ii) a Sylow p-subgroup of G, ;... , is
cyclic. Then G is one of S, (2p<n<4p—1) and 4, 2p+2<n<4p—1).

Resurt 3 (D. Livingstone and A. Wanger [10] Lemma 10). If Gis a
k-transitive group on a set Q) of z points, with #>k>4, then there exists a
subset II of k41 points such that G{,> A"

Resurt 4 (H. Wielandt [13] Satz B). If G is a nontrivial #-transitive

group on £ of n points, and if ¢ is sufficiently large, then log(n—t)>%t.

In §2 and § 3, we shall prove the following two theorems which improve
Result 1 and Result 2.

Theorem A. Let p be an odd prime. Let G be a permutation group on a
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set Q=1{1, 2, -+, n} which satisfies the following condition. For amy 2p points
ay, Az of Q, a Sylow p-subgroup P of the stabilizer in G of the 2p points
ay, *+, Oy, 15 nontrivial and fixes exactly 2p+-r points of Q, and moreover P
is semiregular on the set Q—I(P) of the remaining n—2p—r points, where r is
independent of the choice of ay, -+, ay, and 0<r<p—2. Then n=3p+r, and
there exists an orbit T' of G such that |T'| >3p and G*>A".

Theorem B. Let p be an odd prime >11. Let G be a permutation group
on a set Q={1, 2, -, n} which satisfies the following condition. For amy 2p
points ay, +++, ayy of Q, a Sylow p-subgroup P of the stabilizer in G of the 2p
points oy, =+, dty, 15 nontrivial and fixes exactly 3p—1 points of Q, and moreover
P is semiregular on the set Q—I(P) of the remaining n—3p+1 points. Then
n=4p—1, and one of the following two cases holds: (1) There exists an orbit
T of G such that |T'| =3p and G*>A". (2) G has just two orbits Ty and T, with
ITy|=p, Tyl =p and |Ty|+|Ty|=4p—1, and G*i is (|T;| —p+1)-transitive
on T; (i=1, 2). Moreover, G'iz= A i if |T;| >p+3.

ReMARK. We note that T. Oyama proved:

Resurt 5 (T. Oyama [12] Theorem 1). Let G be a permutation group on
Q={1, 2, --,n}. Assume that a Sylow 2-subgroup P of the stabilizer of
any four points in G satisfies the following condition: P is a nonidentity semi-
regular group and P fixes exactly 7 points. Then (I) =4, then [Q]=6, 8 or
12, and G=S,, As or My, respectively. (II) If »=5, then |Q|=7, 9 or 13.
In particular, if |Q]=9, then G<4, and if |Q|=13, then G=S,XM,,
(III) If r=7 and Ng(P)'® < A4,, then G=M,,.

Theorem A and Theorem B might look to be too technical. However
they are useful in applications. In §4, we shall prove the following two con-
sequences of them which improve Result 3 and Result 4 respectively.

Theorem C. Let p be an odd prime. Let G be a nontrivial 2p-transitive
group on Q={1,2,«,n}. Then there exists a subset T of Q such that |T'| >3p—1
and Giry=A".

Theorem D. Let G be a nontrivial t-transitive group on Q=1{1, 2, -+, n}.

If t is sufficiently large, then log(n—t)> %t.

We give the outline of § 2. Let G be a group satisfying the assumption of
Theorem A. Then, G has the only one orbit whose length is not less than p.
So, we may assume that G is transitive on Q. Moreover, we find that if p>5,
then G is (p+3)-transitive on Q, and that if p=3, then G is 5-transitive on
Q. Suppose that GZ3»A4°. Similarly to Bannai [4, §1], we get a contradic-
tion by using the idea of Miyamoto and Nago which uses the formula of
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Frobenius ingeniously (cf. [11, Lemma 1.1]).
Next we give the outline of §3. Let G be a counter-example to Theorem
B with the least degree. So, we may assume that G is transitive on Q. More-

over, we find that G is (p—{—j%—l +2)—transitive on Q. Again by the similar
argument to that of [4, § 1], we get a contradiction.

NoTATION. Our notation will be more or less standard. Let Q be a
set and A be a subset of Q. If G is a permutation group on Q, then G, denotes
the pointwise stabilizer of A in G, and G(,) denotes the global stabilizer of
Ain G. When A={ay, -+, a4}, we also denote G, by G, .., The tota-
lity of points left fixed by a set X of permutations is denoted by I(X), and if
asubset ' of Q is fixed as a whole by X, then the restriction of X on T is
denoted by XT. For a permutation x, let a;(¥) denote the number of i-cycles
of ¥ and a(x)=a,(x). S° and A° denote the symmetric and alternating groups
on Q. If |Q], the cardinality of Q, is #, we denote them S, and A4, instead of
S© and A4°.

Acknowledgement. The author would like to thank Professor E. Bannai
for suggesting him the present research and giving him many advices.

2. Proof of Theorem A
Let G be a permutation group satisfying the assumption of Theorem A.
Step 1. G has an orbit T such that |T'| >3p and |Q—T"|<p.

Proof. Since a Sylow p-subgroup of the stabilizer in G of 2p points is
nontrivial and fixes exactly 2p+r points, we have |Q|>3p-r and that G has
an orbit T" whose length is at least p. Set |T'| =k (mod p) with 0<k<p—1.

Suppose that |T'|=p+k. We take k41 points @, **, @441 from T' and
2p—k—1 points @iz *+, Az from Q—T. A Sylow p-subgroup of G, .. 4,,
fixes at least 3p—1 points, which contradicts the assumption of Theorem A.
Hence we have |T'| >2p+k.

Suppose that |Q—T'| >p. We take p+k-+1 points @y, **+, @psps1 from T
and p—k—1 points @y4p4z ***, &z, from Q—T". A Sylow p-subgroup of G, ... 4,
fixes at least 3p—1 points, which contradicts the assumption of Theorem A.
Hence we have |Q—T|<<p. So, we have [T'| >3p. (qe.d.)

By Step 1, from now on we may assume that G is transitive on Q.

Step 2. Let 1<t<p+2. If G is t-transitive on Q, then G is t-primitive
on Q.

Proof. Suppose, by way of contradiction, that G is f-transitive on Q,
and that G, .., is imprimitive on Q—{l, --,t—1}. Let T}, -+, T be a system
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of imprimitivity of G ..,;. Let |T|=k (mod p), where 0<k<p—1. We
divide the consideration into the following two cases: (I) 2p—(t—1)>k.
(II) 2p—(t—1)<k.

Suppose that Case (I) holds. First assume that |T',| >2p. We take k+1
points ay, **, @44 from T’y and 2p—t—k points @ipe1, -+, Qg from T A
Sylow p-subgroup of Gi ... ;_1,4,-as, fixes at least 3p—1 points, which is a con-
tradiction. Next assume that p<<|T'y| <2p. We take k+1 points ay, **+, dtp1s
from T',. Moreover, we are able to take 2p—t—£k points @yiz41, ***, Otz from
Q—TU {1, -, t—1}). A Sylow p-subgroup of Gi.. 14, 4, fixes at least
3p—1 points, which is a contradiction. Hence we may assume that |T';| <p.
Let 7; be a point of T'; (=1, --+,5). Assume s<2p—2¢+1. Then a Sylow p-
subgroup of Gi...;_1y,,.. 3, is trivial, a contradiction. Hence s>2p—¢+1. Since
a Sylow p-subgroup of G .., 1y,,..1,,.,., fixes at most 3p—2 points, we have
(A—1<(2p—t+1)<p—2. But, since t< p+2 and k>2, we have a contradic-
tion.

Suppose that Case (II) holds. In this case, we have t=p-2 and k=p—1.
We take a point @ from I'; and p—2 points B,, -+, B,-, from T,. A Sylow
p-subgroup of G .. ;11.4.8,,-8,_, fixes at least 3p—1 points, which is a contra-
diction. (q.e.d)

Step 3. G is (p+3)-transitive on Q when p>5, and G is 5-transitive on
Q when p=3.

Proof. In order to prove Step 3, we show that if G is Z-transitive on Q
then G is (¢+1)-transitive on £, where 1<¢<p+2 when p>5 and 1<t<4
when p=3. Suppose, by way .of contradiction, that G is ¢-transitive on Q,
but G is not (¢4 1)-transitive on Q. By Step 2, G is ¢-primitive on Q. Let
A,, -+, A, be the orbits of G, ..; on Q—{l, -+, t}, where s>2. By Theorem
18.4 in [14], |A;| = p for every A; (i=1, +--,5). Let |A;| =u; (mod p), where
0<u;<p—1 (¢=1,---,5). By the assumption of ¢, we have that p—2<2p—t<
2p—1 when p>5, and 2<2p—¢<5 when p=3. We divide the consideration
into the following two cases: (I) 2p—t>p. (II) 2p—t<p.

Suppose that Case (I) holds. First assume that 2p—t—u,—1<p. We
take %11 points ay, **, @, 1, from A; and 2p—t—wu;—1 points By, *++, Bap_s—u;1
from A, A Sylow p-subgroup of Gi . ;4 ¢y, +181 sy s_u,2 1X€S at least
3p—1 points, which is a contradiction. Next assume that 2p—z—u;—1>p and
[A| >2p. we take u,+p+1 points ay, *+, &, 4541 from A; and p—t—u,—1 points
B **s By—t-u;-1 from A;. A Sylow p-subgroup of Gl'...,‘,¢1’...,¢u‘+p“'pl'...‘pp_t_“‘_l
fixes at least least 3p—1 points, which is a contradiction. Hence we may assume
that 2p—t—u;—1>p and |A,| <2p. We take u;+1 points ey, -+, Qy,+1 from
A,. Moreover we are able to take 2p—t—u,—1 points B, -+, Bap—t-u,—1 from
Q—({1, -+, UA)). A Sylow p-subgroup of G.., fixes

17 %uy +1,81,B2p g uy -1
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at least 3p—1 points, which is a contradiction.

Suppose that Case (II) holds. In this case, we have that 2p—¢=p—2 or
p—1 when p>5, and 2p—t=2 when p=3. Assume that there is an orbit A;
of G,,.., with u;<2p—t. We take u;4-1 points ay, ***, a,,+1 from A; and
2p—t—u;—1 points By, **+, Byp—t-u;-1 from Q—({1, -+, 2} UA,). A Sylow p-
subgroup of G ... ;a0 ¢y 1 1.81,-/Bsp-r—u;_1 11X€S at least 3p—1 points, which is a
contradiction. Hence u;>2p—t for every A, (i=1,-,5). Assume that s>3 or
p=3. We take a point @, from A, and a point a, from A, If p=3, then a
Sylow p-subgroup of G 53 4,4,,4, fixes at least 8 points, which is a contradiction.
If p>5, we take 2p—t—2 points By, **+, B354, from A;.  Then a Sylow p-sub-
group of G ..; 4, 45.8,,-.8,,_;_, fiXes at least 3p—1 points, which is a contradiction.
Thus we have p>5 and s=2. So, Q={1, «-,#} UA,UA,. Hence 2p+r=
t+u+u,. Let Q be a Sylow p-subgroup of G..,. Then, Ny (Q)'@ is t-
transitive and has an element of order p. Since 3p—2> |1(Q)| = t+u,+u,>
t+2(2p—1t)=2p+ (2p—t), we have | I(Q)| =3p—2, and N (Q)! D >4 by [14,
Theorem 13.10].  So, N4(Q)i®); has an element of order p. Hence Q is not a
Sylow p-subgroup of G| ... ;, a contradiction. (q.e.d)

Step 4. G>A°, or a,(x)>4 for any element x of order p of G.

Proof. Let us assume that min{a,(X)|x is an element of order p of G} =
m<3. Hence |Q|>2p+mp. Since G is 5-transitive, we have G >A4° by [14,
Theorem 13.10]. (q.e.d.)

From now on we assume that GZ3>4%, and prove that this case does not
occur.

Step 5. Let a be an element of order p of G with a(a)=2p-+r. Then there
exists an orbit A of Cg(a)'® such that C(a)*>A* and |A| >2p.

Proof. We may assume that

a=(1)@) - Qp+n2p+r+1, =+, 3p+7) -

Set T=C4(a)s2r+1...3p4r- For any p points ay, -, a, of I(a), a
normalizes Gy 2ptrtl, o 3ptre Hence a centralizes an element of order p of
G, ap2ptritgprr 50, Ty . o, has an element of order p for any p elements
ay, -+, a, of I(@). Thus T has an orbit I with |T'| > p. Let |T'|=p-+k. Sup-
pose that 0<k<p—1. We take k+1 points §,, *, 841 from I" and p—k—1
points 85, ++, 8, from I(a)—T. Then T; . ;, has no element of order p,
which is a contradiction. Therefore T has an orbit I'" whose length is at least
2p. Since it is easily seen that 7™ is primitive, we have 7T > A" by [14, Theo-
rem 13.9]. Let A be an orbii of maximal length of C¢(a)’®, then Cy(a)*>A4"
and |A|>2p. (q.e.d.)
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Step 6. For any 2p points a, *++, aty, of Q, the order of a Sylow p-sub-
group of G, ... 4y, 15 D

Proof. Suppose, by way of contradiction, that for some 2p points @y, ***, 0z,
the order of a Sylow p-subgroup P of G, ..., is more than p. We may
assume that {ay, -, agp}={1, -+, 2p} and I(P)={l, -, 2p, --+, 2p+7}. For
any 2p points vy, **+, 72, of I(P), the order of a Sylow p-subgroup of Gy, ...y, is
|P|. Let a be an element of order p of Z(P). We may assume that

a = (@)~ QpFn)@pFr+1, =, 3p+r) -

Since a normalizes G| ... , 2p+r+1, 3p+r> G1 e p 294741, 3p+, has an element b of order
p commuting with a. We may assume that

b= (1) - (B)(p+1, -+, 2p)(2p+1) -+ (2p+7)(2p+7+1) - (Bp+7)--- .
Then we may assume that P°—=P. Since Cp(b) is semiregular on I(b)—({1, -,
YU {2p+1, -+, 2p+1})= {2p+r+1, -+, 3p+7r}, we have |Cp(db)|=p, and b
does not centralize P. On the other hand, since <P, b>=P+<{b>, we have {a)X
B> Cp p(b)2Z(KP, bD). Hence |Z(KP, b))| = |<a>|=p, since [P, b]=*1.

Now, since I(a)=1I(P), we have Cg(a) SG;(p)»=N¢(G (). By the Frattini-
Sylow argument, Ng(G»)=N¢(P):Gyp). So, Cgla) S Ng(P)G ). Hence
Co(a)!D=C4(a)' S Ny(P)'™®. Thus by Step 5, Ng(P)"® has an orbit A of
maximal length such that Ng(P)*>A4* and |A[>2p. We may assume that
A={1,2,., |A]}. SetT'=4{2,3, -, 2p}, then No(P){y=A". Since |I(P)—
T'|<p—1, [Ng(P)rl, (=the order of a Sylow p-subgroup of Ng(P)p)=|P]|.
Moreover since |Ng(P){m|,=p, we have Ng|(P)m|,=p+|P|. Thus <P, b>
is a Sylow p-subgroup of Ny(P)(p).

Suppose that Cg(P){m=1. Since N(P)m/Ce(P)m <Aut(P), A,,_, is in-
volved in Aut(P). But, we can easily seen that A,,_; is not involved in Aut(P)
(cf. [2. §2, (3)]), which is a contradiction. Therefore we have Cg(P){ry=>AT.
Since the center of a Sylow p-subgroup of Ng(P)(p is of order p, this is a con-
tradiction. (q.e.d.)

Step 7.  |Q| —(2p+7r)=Ep (mod p?).
(The proof of this step is the same as that of [4, § 2], but we repeat it for
the completeness.)

Proof. We may assume that there exist two elements @ and b of order p
which commute to each other such that

a= (1) (2p)2p+1) -+ 2p+7)2p47+1, =+, 3p+7)(3p+7+1, --, 4p+7) -+,
and
b= (1, p)(p+1, -, 2p)(2p+1) -+ 2p+1)(2p+7+1) -

e BpFr)Ept 1) e (Apetr) o
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Since <a, b> normalizes Gi1,... 35 291741, 3941 G6(K@y BD)pt1,m 2 2p+r+1, 3p+r haS 2N
element ¢ of order p. The element ¢ must be of the form

¢= (L, p)%(p+1) -+ (2p) -+ 2p+7) -+ BpA7)Bp+7+1, -, 4pt1)P -,

where 1<a, B<p—1. Suppose, by way of contradiction, that |Q| —(2p+r)=p

(mod p?). <a, ¢> has at least p+-2 orbits of length p. Hence there is an integer

¥ (1<v<p—1) such that |I(ac")| >3p, which is a contradiction. (q.e.d)
From now on, let @ be an element of order p of G such that

a=(1) - (2p)2p+1) =+ @p+7)(2p 741, -, 3p+1)(Bp+r4-1, oo, dp+7) o

By Step 5, Cg(a)’™ has an orbit A such that Cg(a)*>A4* and |A]|>2p. Here-
after we may assume that A={1, 2, ---,|A|}.

Step 8. Set Cs(a)y=C¢(a). If p=5, then there is an integer i(0<i<2) such
that Cg(a),,...; and C(Q),,...; i1 have exactly m orbits on .Q—1I1(a), where m is at
most three, and moreover m is at most two when |Q| —(2p+7)=%=0 (mod p?). If
p=3, then there is an integer i (0<i<1) such that C(a); and C(a); ;41 have
exactly m orbits on Q—1I(a), where m is at most two, and moreover m is one when
|2 —(2p+7) 0 (mod 1?).

Proof. Suppose that p>5. In order to prove Step 8 for p=>5, it is suffi-
cient to show that Cg(a),,; has at most three orbits on Q—I(a), and that
C¢(a)1 23 has at most two orbits on Q—1I(a) when |Q|—(2p+7)==0 (mod p?).

Set H=G,,;. Then H is p-transitive on Q— {1, 2, 3} by Step 3. By the
remark following Lemma 1.1 in [11], we get the following expression:

1l _s Hl 15y
Ap\X) = 2 _2 a*(y),
) A2 TCuw)l 7
where u, ranges all representatives of conjugacy classes (in H) of elements of
order p, and y ranges all p’-elements in Cyx(,) and a*(y)=a(y* '“»). Hence,

IHl, [H] 1
?p lCH()l ?

Assume that | Q| —(2p+7) =0 (mod p?). Since a normalizes G ... , 254741, 3p+rs
G\, p2pir+1gp+r has an element b of order p with ab=ba. If [ I(X)|=2p+r
for any nontrivial element x of <a, b>, then <a, b)> has just p—1 orbits of length
ponQ—{l,--,3p+r}. So |Q|—(2p+7)=0 (mod p?), a contradiction. Hence
H (2X<a, b)) contains an element of order p which fixes less than 2p--r points,
and so, the equality in the above expression does not hold. Now, assume that
x&€Cy(a) and p{ |x|. Set |x|=p-s. Since |I(x")| <2p+r, we have a*(x")<
Pra,((x°)1@).  So, a*(x)<p-a,(x' @)+ 2p-ay,(x'®). Hence, we have that

— 27 a*(3)-
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S at3)> 3 ()b 3 a(y ) =2 3 ay(y). Since Cyla)* 02

€0 g

> 4A-123 and |A| >2p, we getp Z a (yl(a))—P SV at,(yA 2= | Cy(a) |

yel g

by the formula of Frobenius. S1m1larly, if 2pe 2V ap(y'@) 0, then
Y07
2p- Z‘ agp(y’("))* |Cy(a)|. On the other hand, GE( a*(y)=f+|1Cy(a)|, where
yE0 7(%)

YEC g

fis the number of orbits of Cy(a) on Q—I(a). Hence we get

@>@(f—2), and hence f<3.
b b
In the above expression, if |Q|—(2p+7) = 0 (mod p?), the equality does not
hold.

Suppose that p=3. Then r=0 or 1. If r=0, then G is 6-transitive on
Q by [10, Lemma 6]. So, we have G >A4° by [4, Theorem 1]. But this con-
tradicts our assumption. Hence r=1. Since <a>& Syl;(G,2345), we have
Ne(ap)'9>A4, by Step 3. Hence Cy(a)’@>4;. Set H=G,,. Then H is
3-transitive on Q— {1, 2}, and Cy(a)!@~®**>4,. By the similar argument as
in the case p=>5, we have that Cy(a) has at most two orbits on Q—I(a), and
that Cy(a) is transitive on Q—1I(a) when [Q|—7%0 (mod 9). Therefore, the
consequences of Step 8 hold. (q.e.d.)

Step 9. Cg(a)rz,...1a1 has at most 2m orbits on Q—1I(a). Moreover

Co(@)1,.. 5 tp+1,p+2) ,p43,, 18] (:CG((p+1,p+z))(a)l»"'»ﬂ.ﬁ&"','“) has exactly m orbits on
Q—1I(a).

Proof. By Step 8, Cy(a),,... ; has exactly m orbits on Q—1I(a). LetT},---, T,
be the orbits. We take an arbitrarily fixed orbit T';. Let 3, -+, 3, be the
orbits of Cg(a);,..,1ay on T';.  Since Cg(a),,..iLS>Cg(a);,..,1a) and T'; is an orbit of

Cc(a)0 Li» Co(a)s ") acts on the set {X, -+, 3,} transitively. Let Y=

(“)(z) Then |[Cg(a)s iy YA =k, Similarly, we have
ICG(a)A “, il Yt | =k Hence, |Cga)s it : Cela)elh; ,H| =
| YA- @ity YAS T "|=|A|—i. Therefore Y is transitxve on A—{1, .-+, ¢}.
Let (,81, -, B,) be a p-cycle of a such that {@8,, -, 8,} ==, Forany p—i
elements ay, *+*, a,—, of A—{1, -, 1}, Gy..;q, . Ly By, By has an element & of

order p commuting with a. Then be Y and b* is a p-cycle, and so, Y517
has the p-cycle. Since a3, ***, &,;_1, @¢,-; are any p—i elements of A— {1, ---,7},
we have Y2~ i > 424~ 04 (cf, [14, Theorem 8.4, Theorem 13.9]). Therefore
k<2. If k=2, then Y2 -il=42- 09 and Cy(a)s ' =S4~ ®3, There-
fore T'; is an orbit of Cg(a);.... . (p+1,p+2 p+3,,1a1 ON Q—I(a), even if k=2. (q.e.d.)

Step 10. | Q| —(2p-+r)=2p (mod p*) and p>5.

Proof. Since a is an element of order p of the form
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a= (1) (p)p+1) - (2p)(2p+1) -+ 2p+1)(2p+7+1, -+, 3p+7)
Bp+7+1, o, 4p+7) oo,

we may assume that Cg(a),i1,.. 29 2p+r+1, 3p+ has an element b of order p. By
Step 7, we may assume that

b= (1, -, P)(p+1) -+ 2)2p+1) - @p+7)(2p+7+1)
(pHn)Bptr 1, o, Aprtr) oo

Let K=G. .. ip+1,p+2p+3,,1a1 2a0d L=<b>-K. Then |C,(a): Cx(a)|=p. By
Step 9, Cx(a) and C,(a) have exactly m orbits on Q—I(a). Since m|Cg(a)|=
2 a*(y) and m|Cy(a)| =y6§‘_,( )a*(y), we have
L a

YECK (%)

YEC (- Cr(ad

m-”—;—llcmﬂ — 3 aX(y).

Next we show that the elements of order p of <a, b> are not conjugate to
each other in Cy(a). Suppose @b’ and a”b’” are conjugate to each other,
where 0<1, j, ¢, j'<p—1. If j=&j', then (a’d))®#+(a"'b") 0P, which is a
contradiction. Hencej=j’. Assume 7=7’. There exists an element x in C\(a)
such that (¢'b)*=a’®. Then (b)*=a’~b. Since (b/)*=a"¥' I?Hi=b/, we
have p‘ |x|. Hence there exists a p-element x, in C ;(a) NN (a, b>) such that
x,&E C1(<a, b). Since <a, b€ Syl,(C(a)), this is a contradiction. Thus i=7"
and j=j’.

Let s be the number of orbits of length p of <a, b> on Q—1I(a). For each
fixed j (1<j< p—1), there are s elements 7, -+, 7, of {0, 1, ---, p—1} such that
| (@) | = | I(a)| (k=1,+:,5). Let i be an arbitrarily fixed element of {z,,--+,7.},
and let {v,, -+, v,} =1(a’b’) N (Q—1(a)). Since <a, b> is a Sylow P-subgroup of
Ci(Ka, b>), C.(£a, b>) has the normal subgroup Y such that C,(<q, b>)=
<a,b>x Y, where (|Y|,p)=1, and Y &Cg(a). Since Y acts on I(<{a, bD)=
{p+1, -+, 2p, 2p+1, -+, 2p+7}, Y acts on {vyy, -+, 7,}. Since a"™ is a p-
cycle and [Y, a]=1, we have Y0r™"l=1. Hence any element of a'b’-Y fixes
at least p points of Q—1I(a). Moreover, it is clear that a'd/-Y N Cx(a)=¢.
Therefore

* _ .
yevt,(@.b))“b'x(“)a (9)>5(p—1)p|Cul<a, B3): <a, b1

Let d be any element of C;(a) such that d is conjugate to b in Cy(a) and
d=+b. Then <a, b>N<a, d>=<a>. Hence C(a, b)) NC (<a, d>) S Cg(a).

Therefore, we have
a¥(y)=s(p—1)p|C(a): Ccp(®)|1Ci(Ka, b3): <a, b}

={2=Dicyal.

YEC L@ - CRr(D
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Hence, m—(pi)_—-l—)lCL(a)l >s(—p;—1)|CL(a)l. Then m>s. On the other hand,

if |Q|—(2p+7r)=hp (mod p?), where 2<A< p, then we have s=h. Therefore,
we have that [Q|—(2p47)=2p (mod p?) and p>5, by Step 8. (q.e.d.)

Step 11.  We complete the proof.

Proof. By Step 10, {2p+7+1, .-+, 3p+7} and {3p+r+1, -, 4p+r} are
the orbits of length p of <a, b> on Q—1I(a), and m=2 and p>5. By Step 4 we
have a,(a)>4, hence |Q—I(a)|>p*+2p. Let Ty, -+, T, be the orbits of
Ce(a)1z,.1a1 on Q—I(a), where 2<I<4by Step 9. Since |b|=p, b acts
on the set {I'y, -+, T} trivially. If /=2, then T, and T, are the orbits of
Co(@)s,.. plp+1,p+2 p+3,, 181 ON Q—I(a) by Step 9, and one of the following three
cases holds: (i) |T',| =2p (mod p?)), |T;| =0 (mod p?)). (ii) |T;| =0 (mod p?),
[T, =2p (mod p?). (iii) |Ty|=|T,|=p (mod p?). If /=3, then we may
assume that I, UT'; and TY; are the orbits of Cg(a);.... 5 (p+1,p+2p+3,.-,1a1 OD Q—1(a),
and one of the following two cases holds: (i) |T;|=|T,| =0 (mod p?), |T;|=
2p (mod p?). (ii) |Ty| =T =p (mod p?), |T;| =0 (mod p?). If I=4, then we
may assume that I'; UT; and T, U T, are the orbits of Cg(a),... pip+1,p+2 p+3,--,1a1 ON
Q—1I(a), and one of the following two cases holds: (i) |T';| = |T;| =0 (mod p?),
Tyl =Tl =p (mod £2). (ii) IT| = |Ty| = p (mod £2), | Ty| = | Tyl =0 (mod p?).
We have the following for any value of /: There is a I'; (1<j<4) such that
IT;|=0or p (mod p?) and |T;|>p? Let (B, -, B,) and (74, **+, 7,) be two
p-cycles of a such that {8y, -, 8,, 71, =+, V,} ST, Ce(a)s,....8,,,v, has an
element ¢ of order p. Hereafter we examine the relation between a and ¢. We
may assume that

¢ = (L, =+ P)(p+1, -5 29)(2p+1) -+ (2p+1)(By) =+ (B)(V1) ==+ () -

Since |T';| #2p (mod p?%), <a, ¢ has at least p+-2 orbits of length p on Q—1I(a).
Let K=G\,,..1a;, and L={c>-K. By the same argument as in the proof of

Step 10, we have that / ?%1 |C(a)l= >3 a*(y), and that the elements

€0 @5~ CR(®
of <a, c)— {1} are not conjugate to each other in Cy(a). For each fixed j (1<

j<p—1), there are at leastp%3 elements 7, *+, i1 Of {0, 1, -, p—1} such

that [I(a'sc?)| > p+r (k=1, ,2—;—3) Let ¢ be an arbitrarily fixed element of

{t1, =+, i} Since <a, ¢> is a Sylow p-subgroup of C.(<a,c)) there exists
the normal subgroup M of C,(<a, ¢)>) such that C;(<a, ¢))=<a, c)X M. First
assume that a’c’ fixes exactly p points §,, -++,8, in Q—1I(a). Then, by the same
argument as in the proof of Step 10, any element of a’c/-M fixes {8, -, §,}
pointwise. Next assume that &'c’ fixes exactly 2p points 7, +++, 75, in Q—I(a)
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and a fixes {181’ °*t Bp} and {'yh ) 'yp} with {Bh ) ﬂp} u {'Yl) ) 'yp} =
{m, =+, m,}. If M fixes {8y, -, B,} and {7, ---,7,}, then any element of
a’c’-M fixes {m, -, n,} pointwise. And if M transposes {8, -, B,} and
{71, *++, 7,} then there exists the subgroup M, of index two of M such that any
element of a‘c’- M, fixes {ny, -+, 7} pointwise. Therefore, by the same argu-
ment as in the proof of Step 10, we have that

(>3- (0—1)-p1Cula): Ceol@)11Col<a, ©): o, 03]

YECL(4)-CK(%
=(P+3g;P—1). |Cy@)] -
Hence I>P——g3—. So, we have p=>5 and I=4.

We may assume that |T|=|T;|=0 (mod 5%)). Let (&, -,3d) and
(m, **+, 15) be two 5-cycles of a such that {§,, -+, &} ST, and {n,, -+, 75} ST,.
Cs(a)s,,...55,n,,ns has an element d of order 5. Since d acts on the set {I'}, I,
T, T} trivially, <a,d)> has at least 2542 orbits of length 5 on Q—I(a).
Hence, there exists an element x of order 5 of <a, d) such that [I(x)|>3+54r7,
which is a contradiction. (q.e.d.)

3. Proof of Theorem B

In the proof of Theorem B, we shall use the following Lemma.

Lemma. There is no group satisfying the following condition: Let G be a
3-transitive group on Q. Let o and B be two points of Q. G, p is an imprimitive

group on Q— {at, B} with two blocks A,, A, of length M—1, and moreover, for

any point v of A, and any point 8 of A,, G353} and G325 3%} are 2-transitive groups.

(I think that this lemma is esentially known already in [7, § 1, Proof of
Theorem 1])

Proof of Lemma (cf. [7, §1, Proof of Theorem 1]). Let G be a group
satisfying the above condition.

Set |Q]|=n and |A;|=v+1 (i=1, 2). Then G,py has just two orbits =,
and 3, on Q— {a, B, v} such that |Z;|=v+1 and |3,| =v.

For any subset A of Q with |A|=4, G, has two orbits IT; and II,on Q—A
such that |II,|=|II,| or I [T, | — |11, ,=2. In either case, G, is a subgroup
of G, a0, Which satisfies the assumption of the Witt’s Lemma [14, Theorem
9.4], where ay, a,, a; are three elements of A. Hence G, is a 3-transitive
group. Thus, G{,=S,. Therefore, G acts on Q®, the set of unordered pairs
of elements of (), as a transitive permutation group of rank 4, where the orbitals,
Ty, Ty, T, and T of this permutation group are defined as follows: for {a, B} €
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Q®, Ty({a, B})= {a, B}

T({a, BY) = {{v, +€Q®]{a, BN {7, 8} | =1}
Ly({e, BY) = {{r, 8}€0®{a, B} N {v, 8} = ¢.

d is in the orbit of length v of G,gy on Q—{a, B, 7}}
Ty({a, BY) = {{r, & €Q®{a, B} N {7, 8} = ¢.

8 is in the orbit of length v+1 of G,ey on Q—{a, B, 7}} .

The degrees corresponding to T'; (=0, 1, 2, 3) are respectively
1, 2(n—2) = 4(v+1), (ﬁ._;_)l’ — (v 4-1), (i__w — (1)

Moreover, these orbitals T'; (=0, 1, 2, 3) are all self-paired.
Let us define the intersection matrices M; (=0, 1, 2, 3) for the permuta-
tion group G on Q@ as follows:
M; = (p§¥) with 0<j <3, 0<k<3, where
w2 = |T,(%) NT(y) | with yETy(x)
(where x, y€Q®).

Now we can obtain the intersection matrix M, (cf. [9, §4]). This is,

0 0 1 0

0 v 20—2 20
M, = | o(o+1) ”(L;D —o42 o(o—1)

0 ”_(”;Fl) w1 0

By direct calculations, we obtain the eigenvalues ,, 0,, 0, and 6, of M,.

— gt ———
90:7)(7)+1), 91=; —v, 02= k4 —|—Z+\2/1) +4v+4 and

o _ —OH2—V o T hutd
3= 2 .

Since (V¥ <v*+4v+4 <(v*+2)3 it is clear that 6, and 0, are irrational numbers.

Let us denote by #® the permutation character of G on Q®. Then
7@ is multiplicity free and z®@=1+4+X;4+X,+X;, where X;=X®"1D|G and
X, and Xj are irreducible characters appearing in X * 22|G corresponding to
0, and 0, respectively. Since @, and 6; are irrational, X, and X, are not
rational characters (cf. [6, Lemma 1]), so X, and X, are algebraic conjugate
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and especially of the same degree. Therefore X,(1)=X;(1)=n(n—3)/4 and
X(1)=n—1. By a theorem of Frame [14, Theorem 30.1 (A)], we obtain
that the number

g= {n(n—— 1)}2 2(n—2)-v(n—2)/2+(n—2)(v+1)/2
2 (n—1)-n(n—3)/4-n(n—3)/4

must be an integer. But, since n=2v+4, we have a contradiction. (q.e.d.)

Proof of Theorem B. Let G be a counter-example to the theorem with
the least possible degree.

Step 1. The number of orbits of G on Q is at most two.

Proof. By Theorem A and the assumption for G, G has no orbit on  whose
length is less than p.

Suppose, by way of contradiction, that G' has three orbits A,;, A; and A,
with |A;| >p (=1, 2, 3). Set |A;|=k; (mod p), where 0<k,<p—1 (1=1, 2,
3). Assume that 2p—(k+-k,+2)>p. We take k-+p—1 points ay, =+, Q4521
fiom Ay, k-1 points By, -+, Bi,+1 from A, and p—k,—k, points 7y, =+, Vpop s,
from A;. A Sylow p-subgroup of Ga,,~--, e p-1B1 s BhgasT1r s Tp—by ks fixes at
least 3p points, which contradicts the assumption of Theorem B. Hence
2p—(ki+-k,+-2)<p. We take k,+1 points a, *++, @t 41 from Ay, k+1 points
B, =%y By from A, and 2p—Fk,—k,—2 points 7y, =+, Vap_p, 4,2 from Ay A
Sylow p-subgroup of Gal, ey @iy 15 B s Bk 1T 10 s T2 by ~ k- fixes at least 3p points,
which is a contradiction. (q.e.d.)

Step 2. We may assume that G is transitive on Q. (|Q|=p—1 (modp).)

Proof. Suppose that G is not transitive on Q. By Step 1, G' has two
orbits A; and A, such that AjUA,=Q and |A;|>p (1=1, 2). Set |A;|=
s;p+k;, where 0<k,<p—1(i=1,2). In this case k+k=p—1. By the
assumption of Theorem B, 5;>2 or s,>>2. We may assume that 5,>2 and 5;,>s,.
We divide the consideration into the following three cases: (I) s;=>3. (II) s,=
=2. (III) 5;=2, s,=1.

Suppose that Case (I) holds. By Theorem A and the assumption for G,

G*1> A%, and so, s;=3. For k1 points ay, ***, as,+1 of A, Gé}, oy gy 18
(p+k)-transitive by [10, Lemma 6]. Since G;‘li,,,,, - has an element x of

order p with a,(¥)=2, we have G}
is a contradiction.

Suppose that Case (IT) holds. We may assume that k,>k,. For p+k,+1
points @y, ***, Qprpy1 Of Ay thi."-, @pragen has an element of order p, and
moreover G 3;, eyt is k-transitive by [10, Lemma 6]. Since k,>35,

GS > A% by [14, Theorem 13.10]. This is a contradiction.

1
Oy Aptkg+1

> A* by [14, Theorem 13.10]. 'This

RETIN PSS
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Suppose that Case (III) holds. By [10, Lemma 6] and [14, Theorem
13.10], G is a group satisfying the consequence (2) of Theorem B. Thisis a
contradiction. (q.e.d.)

Step 3. G is primitive on Q. For any element x of order p of G, a,(x)>8
holds.

Proof. Suppose, by way of contradiction, that G is imprimitive on Q.
Let Ay, -+, A, be a system of imprimitivity of G. Set |A;|=k (mod p), where
0<k<p—1. First assume that |A;|<p. Then s>2p and we are able to take
2p points §), +-+, 8, from Q such that §,€A,; (i=1, .-+, 2p). A Sylow p-sub-
group of G .. 5,, fixes atleast 4p points, which is a contradiction. Next assume
that either p<<|A;| <2p, or |A;|>2p and s>3. We take k+1 points ay, **-,
iy from A; and k+1 points By, -, By41 from A,. We are able to take
2p—2k—2 points vy, ***, Vzyp_z-» from Q—(A;UA;). A Sylow p-subgroup of

i ich is a contradiction.
1y ooy Qp 1581y s B 13 T1s-os T2y s s TXCS At least 3p points, which is a contradictio

Therefore, we have that |A;| >2p and s=2. Then Q=A,UA,; and k=£_§_—1.

By Theorem A, |A,~|=3p—|—1—>;—1 or Zp—l—%l. By the similar argument to

that of Case (II) of Step 2, we have a contradiction. Thus G is primitive on .
By [14, Theorem 13.10], for any element x of order p of G, we have a,(x)>38.
(q.e.d.)

Step 4. Let 2<t< p+1%1+2. If G is t-transitive on Q, then G is -
primitive on Q.

Proof. Suppose, by way of contradiction, that G is ¢-transitive on Q
and G, is imprimitive on O—{1, -+, #—1}. Let A, «-+, A, be a system of
imprimitivity of G, .. ;-; on Q— {1, -, 2—1}. Set |A;| =k (mod p) and |A;|=
Ip+k, where 0<k<p—1. In this case, (t—1)+sk=p—1 (mod p). We divide
the consideration into the following two cases: (I) 2p—t+1>p. (II) 2p—
t+1<p.

Suppose that Case (I) holds. First assume that /=0. Then s>2p—t+41
and we are able to take 2p—z-+1 points 8y, **-, 8,1 Of Q such that §;€A,;
(i=1, -+, 2p—1t+1). A Sylow p-subgroup of Gi...., 15,5, ,,, fixes at least 3p
points, which is a contradiction. Secondly assume that /=1. By Step 3, we

get s>8. Assume that k> 1%—1- We take a point « from A,, a point B from

A,, a point ¥ from A; and 2p—t—2 points 8y, +++, 85,4 from A,UAs. A Sylow

p-subgroup of G, t-1,0,8,7,8,, .3, otz fixes at least 3p points, which is a contra-

diction. Hence we have k<P—;§ when /=1. We take k1 points a, ***, 0ty
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from A,, k41 points 8y,, B4+, from A, and 2p—t—2k—1 points Vise*s Vap-t-26-1
from A;U A, A Sylow p-subgroup of Gi.. 1. iy BBy e Yag 21
fixes at least 3p points, which is a contradiction. Thirdly assume "that />2 and
2p—t—k=+k, k+p. We take k+1 points ay, =+, @441 from A, and 2p—t—Fk
points By, ++, By_;-; from A, A Sylow p-subgroup of G, t-1,y, - 0p 41,8y, Bap—t -k
fixes at least 3p points, which is a contradiction. Fourthly assume that {>2
and 2p—t—k=k-+p. Assume that s>3. We take k+1 points ay, ***, Qs
from A,, k1 points 3y, -+, 841 from A, and p—1 points v, *=+, ¥,-; from A;.
A Sylow p-subgroup of G ... : 1,4, a41.8~Bes1 Yy, 11XES at least 3p points,
which is a contradiction. Hence we have Q={1, «--,t—1} UA,UA, when [>2

and 2p—t—k=~k+p. Since k=?%E and ¢>2, we get t>3. Let v be any

point of A;, and 8 be any point of A,. By [10, Lemma 6], it is easily seen that
Gio vy and G120, 4, are (k—14-p)-transitive. By Lemma, we have a
contradiction. Fifthly assume that />2 and 2p—t—k==%k. In this case,

k=%_t>2;—1. Assume that s>3. We take k+1 points a, ***, oty from

A, k—1 points By, +++, B4-; from A, and a point ¥ from A;. A Sylow p-sub-
group of G ...s_1,a,, w4, 1.8, s,y 11XES at least 3p points, which is a contradic-
tion. Hence, we have Q={1, ---, t—1} UA,UA; when />2 and 2p—t—k=k.
Let O be a Sylow p-subgroup of G, ..,. Then Ng(Q)'®@ is a t-transitive group
and |I(Q)| >t—1+2k=2p—1. Let x be an element of order p of Q with
| I(x)| =3p—1, and (7, **, 7,) be a p-cycle of x. Let {3,, -+, §,} be a subset of
Q such that if |I(Q)|=2p—1, then {8, -, §,} =I(x)—I(Q), and if |I(Q)|=
3p—1, then xPr™% is a p-cycle of x different from (7y,++,%,). Ce(*)y,,..3,,8,,.5,
has an element y of order p. Since y fixes I(Q), we may assume that ye Ng(Q).
Then y'@ is an element of order p of N¢(Q)'@ which is 2-transitive on I(Q)
and we have N (Q)'@ >4, Since G, ... ;_; is imprimitive on Q— {1, --+,z—1},
this is a contradiction.

Suppose that Case (II) holds. In this case, p—|—2<t<p—|—p 1—|—2 Let

O be a Sylow p-subgroup of G, ..,. Then Ng(Q)'?@ is t-transitive on I(Q).
Since [Q|=p—1 (mod p), we have |I(Q)|=p—1 (mod p), and so, |I(Q)|=
2p—1or 3p—1. Since t>p+2, No(Q)'@ has an element of order p, and so,
we get Ng(Q)@>A/@, We may assume that {A,, -+, A} is the subset of
{A, ++, A} such that (Q)NA;=+¢ for 1<i<u and [(Q)NA,=¢ for u<i<s.
Since G;.... ;- is imprimitive on Q— {1, -, t—1}, we have that k<1 or u=1.
Assume that k>2. Then u=1, and so, (t—1)4+k=p—1 (mod p). Hence

t—14k=2p—1. Then p—P;—1—2<k< p—2. Onthe other hand, (t—1)-+sk
=p—1 (mod p). Then (t+k)+(s—1)k=0 (mod p), and so, p|s—1. Hence



790 M. YosHIzAWA

s>p+1. Let a; be a point of A; (i=1,+,s5). A Sylow p-subgroup of
oy HXes at least 2p-+(k+1)(k—1) points. But, (k+1)(k—1)>

( p_?_;_l_ 1> ( ? —P—;—l—— 3> > p, which is a contradiction. Therefore =0 or

G t-1,,,

1. We take two points a;, @, from A; and 2p—¢—1 points B,, -, By,_;-; from
A, A Sylow p-subgroup of Gi...: 1a,,0:8,,a,-;, fX€S at least 3p points,
which is a contradiction. (q.e.d.)

Step 5. Gis (p —{—j%l—i— 2)-transitive on Q.

Proof. By Step 3 and Step 4, in order to prove Step 5 we show that if G
is z-primitive on Q then G is (¢4 1)-transitive on Q, where 1<#< p+1’—2-1 +2.

Suppose, by way of contradiction, that G is ¢-primitive on , but G is not
(¢+1)-transitive on Q. Let A,, -+, A, be the orbits of G, .., on Q—{1, -, #},
where s>2. We may assume that |A;| > |A,| >+ > | A,| >p (cf. [14, Theorem
18.4]). Set |A;|=k; (mod p) (i=1, -+, 5), then t+4k+--+k,=p—1 (mod p).
We divide the consideration into the following two cases: (I)2p—t=>p+1.
(II) 2p—t< p.

Suppose that Case (I) holds. First assume that |A;|=p or p+1. We
take two points q;, o, from A, and two points B3,, B, from A,. We are able to
take 2p—2—4 points 7y, *++, Vzy_s—4 from A;U---UA,. A Sylow p-subgroup of
G, t-1,01,02,B1,B2. 01, Y2ps -, 1XES at least 3p points, which is a contradiction.
Therefore |A;|>p+2. Secondly assume that 2p—t—k,>p and |A,| >2p+k,.
We take p—t—k,; points B8y, +*+, By_s—, from A,U---UA,. By [10, Lemma 6],
G1tt.8,-8y-s, 18 (p+FRi)-transitive, which contradicts Theorem 17.7 in [14].
If 2/;=0 or 1 then our assumptions are satisfied. Therefore k,>2. Thirdly
assume that either 2p—t—k,>p and |A,|=p+ky, or 2p—t—k,<p. We are
able to take 2p—t—k, points By, -+, B¢, from A,U--UA,. By [10, Lemma
6}, G f.l...’;,ﬂl....'pz’_ - is kj-transitive, which contradicts Theorem 17.7 in [14].

Suppose that Case (IT) holds. In this case, p<t< p—{-j%l—i—Z. Let Q be

a Sylow p-subgroup of G; .. ;, then Ng(Q) 9 is ¢-transitive, and |1(Q)|=2p—1
or 3p—1. Since ¢>p, we have Ny(Q)'@>4'@, Hence, there is a unique
orbit A; such that k;&0. Since #+k;=p—1 (mod p), we have that k,=
2p—1—t>3. By [10, Lemma 6], G{i., is k;-transitive, and so, we have j#1
by [14, Theorem 17.7). Assume that s>3. We take a point a from A,
2p—1t—2 points B, **+, By-s-» from A; and a point v from A; where 1<i<s
and i%j. A Sylow p-subgroup of Gi..; 148, 8,,_, fixes at least 3p points,
which is a contradiction. Therefore s=j=2. If p>13, then k,=2p—1—1>4.
This is a contradiction by [1]. Hence, we have p=11. Moreover, we have
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k;=2p—1—t=3 by [1]. By [8, Theorem 5], we have that either (i) |A,|+
|A2|+1=%('A2|2+|Azl+2)’ or (i) |A1]+[Ae +1=A+1Y(A+4), |Al=
(A+1)(A*+51+5), for some positive interger . Case (i) does not hold, since
3+1 $%(32—|—3—|—2) (mod 11). Moreover Case (ii) does not hold, since for

every A (A=0, 1, ---, 10), we have 3-+13= (A4 1) (A +4)? (mod 11) or 3= (A+1)-
(A*+4-5A+5) (mod 11). (q.e.d.)

Step 6. Let a be an element of order p of the form

a= (1) (p) vee (ZP) ver (3P~1)(3P, oo, 4?_1) .,

Then one of the following holds for C=C¢(a)55". 4p-1.

(1) C has an orbit A such that C*>A* and |A| >2p.

(i1) There exist two orbits Ay and A, of C such that |A;| = p and C*i is
(1A;] = p4-1)-transitive (1=1, 2), and A,UA,=I(a). Moreover, if |A;| > p+3,
then C*iz A*i.

(iii) C ds an imprimitive group with two blocks T'; and T, of length p—i—p%l

such that CTi= A" (1=1, 2).
Proof. For any p points ay, -+, at, of I(a), C,, .. ., has an element of order
p. Since C has an element of order p, it has an orbit whose length is at least
p. Assume that C has two orbits A; and A, with [A;|>p ((=1,2). Set
|A;l =p+k; (=1, 2). If AUA,FI(a), then k+k+2<p. We take k+1
points ay, **+, @41 from A; and k,+1 points By, -+, By from A, so
g, ok + 1By By 1 has no element of order p, a contradiction. Hence A, UA,
=1I(a). By [10, Lemma 6], we have that C is a group satisfying (ii). Assume
that C has a unique orbit A with |A|>p. Then we have [A|>2p. If C* is
pritmitive, by [14, Theorem 13.9] we have that C* is a group satisfying (i)
Assume that C* is imprimitive. Let I', «++, T'; be a system of imprimitivity of
Cs. If |TyI<p, then |Ty|=2. We take p points a, -, a, with ;€T
(i=1, -, p), so C,,... 4, has no element of order p, a contradiction. Hence

|Ty| = p, and so we have s=2 and |T';|=|T}| =p—|—£€1. By [10, Lemma 6],
we have that C is a group satisfyirg (ii1). (q.e.d.)

Step 7. For any 2p points oy, *++, otz of Q, the order of a Sylow p-subgroup
of Gay, o, 15 P-

Proof. Suppose, by way of contradiction, that for some 2p points
ay, *++, Qg the order of a Sylow p-subgroup P of G, .. ,,, is more than p. We

may assume that {a,, -, ap}={1,,2p} and I(P)={l, .-, 2p, --, 3p—1}.
Let a be an element of order p of Z(P). We may assume that
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a= (1) (=13, = 4p—1) -

Since C¢ (a)’®~® is a permutation group of degree 3p--2, one of the following
two cases holds:

(I) Cg(a)'™~W has an orbit A such that C¢ (a)*>A4* and |A]| >2p—1.

(II) Cg,(a)'™~" has two orbits A, A; such that |A;|>p and Cg (a)® is
(1A;| —p~+1)-transitive (i=1, 2), and A,UA,=I(a)—{1}. Moreover, if [A;| >
p+3, then Cg (a)*> A%

Suppose that Case (I) holds. We may assume that A={2, 3, -, |A],
|Al+1}. Let I'={2,3,-,2p}, then TCA. Since Cg(0)*>A4*, we have
Gin=>A". On the other hand, by the Frattini-Sylow argument, Gyqp=
NGI(I‘)(GII‘) = NGI(F)(P) 'GII" HCDCC, NGI(P){‘I‘) = G{‘(I‘) = AP, so we have
Ne,(P)m|, (=the order of a Sylow p-subgroup of Ng (P)y)=|P]|-p.
C(@)12p+1,.3p-1,3p,4p-1 has an element b of order p. Since |T'|<2p, b” is a p-
cycle. Since b normalizes G,,... 3,-1, we may assume that P°’=P. Then (b, P>
Syl,(Ne,(P))- Since Cp(b) is semiregular on (Q—I(P)) N I(b)= {3p, -+, 4p—1},
we have |Cp(b)|=p. Hence, since [P,b]=41 we have | Z(<P, b>)|=p. Assume
that Cg(P){m=1. Since Ng (P)w/Cs (P)ry<Aut(P), A, is involved in
Aut(P). But, we can easily seen that 4,,_; is not involved in Aut(P) (cf. [2,
§2. (3)]), which is a contradiction. Hence Cs (P),>4". Since the center of
a Sylow p-subgroup of N¢ (P) is of order p, this is a contradiction.

Suppose that Case (II) holds. 'Then, one of the following two cases holds:

(i) Ng(Py®-wzgio-w,

(i) A, and A, are the orbits of N¢ (P)"®~". Ng (P)% is (|A;|—p-+1)-
transitive (1=1, 2), and if |A;| >p-3, then N (P)*>A%.

If Case (i) holds, then we have a contradiction by the similar argument to
that of Case (I). Hence we assume that Case (ii) holds. We may assume that
|A | > 1A, and A;={2, 3, -, |A], |A|+1}. Let T={2, 3, -+, 2p}. Since

ITNA,| <P;1, we have (Cg(a)pna,)1>4% by [10, Lemma 6]. Then

Ne,(P)tHy =A%, and so, [Ng(P)my|,=|Pl-p. Co(@),2p+1,,3p-1,3,-,4p-1 has an
element b of order p. Then b*1 is a p-cycle, and we may assume that P’=P.
So <b, P>E8Syl,(Ng(P)r). By the same argument as in Case (I), we have
| Z(<b, P))|=p. Assume that C¢ (P)iy=1. Then C¢(a)s,>Cq (a)m- Since
No(P)o|Co,(P)y < Aut(P) and No,(P)cwy/Ne,(P)a,=No,(P)ity>A%, we have
that Ag,_y, is involved in Aut (P). But, we can easily seen that A,y is not
involved in Aut (P) (cf. [2, § 2. (3)]), which is a contradiction. Hence Cg,(P)&,
>A*  Since the center of a Sylow p-subgroup of N¢ (P)y is of order p, this
is a contradiction. (q.e.d.)

By the same argument as in Step 7 in the proof of Theorem A, we have

Step 8. || —(3p—1)= p (mod p?).
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From now on, let a be an element of order p of the form

a= (1) =+ (2p)(2p+1) -+ Bp—1)(3p, -+, 4p—1)(4p, ++, 5p—1) -+ .

We divide the consideration into the following two cases:

() Cg(a)'™ has an orbit A such that |A| >2p and Cg(a)* > 4%,

(B) otherwise.
When Case («) holds, we may assume that A={1, «--, |A|}. When Case (B)
holds, we may assume that A= {1, ---, #} and A,= {w+1, -, 3p—1} are the
orbits or the blocks of C(a)’®, and that |A,| > |A,| > p.

By the same argument as in Step 8, Step 9, Step 10 and Step 11 in the
proof of Theorem A, we have

Step 9. Case () does not hold.
Hereafter we assume that Case (3) holds.

Step 10. Set Cg(@)ys1,0+2,20,0 = Cc(@)ws1,0+2, 2 There is an integer
1 (0<<i<1) such that Cg(a)gi1,042,-,25,i OB C(@) i1, w2, 25,41 Have exactly m
orbits on Q—I(a), where m is at mest two, and moreover m—=1 when | Q| —(3p—1)
%0 (mod p?).

Proof. In order to prove Step 10, it is sufficient to show that Cg(@),41,. 25,12
has at most two orbits on Q—I(a), and is transitive on Q—I(a) when
| Q] —(3p—1)=0 (mod p?).

Set H=G41,.. 5p1,- Then H is p-transitive on Q— {w+-1, .-+, 2p, 1, 2} by
Step 5. By the remark following Lemma 1.1 in [11], we get the following ex-
pression:

1Ho 1H] 1y
? 1C@l p 3
where y ranges all p’-elements in Cy(a) and a*(y)=a(y®®). Here the
equality does not hold when |Q|—(3p—1)=%0 (mod p?) (cf. Step 8 in the
proof of Theorem A). Now, XY a*(y)=> > a*(y)—p+ 20 a,(¥'®). Since
y YEO (%) YECH®)

|A—{1, 2} | >P+j>——2——1—2>p+3, we have Cy(a)*1 3> 4%~ &3 by Step 6.

Hence, p+ 23 a,(y')=p- 23 a,(y*" ") =|Cy(a)| by the formula of
YEC g IECH®
Frobenius. On the other hand, >} a*(y)=f-|Cy(a)|, where f is the number
yel g
of orbits of Cy(a) on Q—1I(a). Hence we get

I_I_ﬂ}l_}:,—l —1 and hence f<2.
> > b (/=1

In the above expression, if |Q|—(3p—1)=E0 (mod p?), the equality does not
hold. (q.e.d.)
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Step 11. Cg(a)s,..0p has at most 2m orbits on Q—1I(a). Moreover,
Co(@)1,p,(p+1,p+2p 43,20 (= G((,H 1m,)(a)l ppt3zp) has exactly m orbits on
Q—I(a).

Proof. By Step 10, Cg(@)y+1,.-2,; has exactly m orbits on Q—I(a). Let
Ty, «++, T, be the orbits. We take an arbitrarily fixed orbit I'; of Cg(@)y+1,.2,:
on Q—I(a). Let %+, 3, be the orbits of Cg(a) .2 on T';. Since
Ce(@)gi1,,29,i5> Ce(@)1 5, 5 and T; is an orbit of Cg(@) 41, 2,0 Co(@)ar7th 55
acts on the set {3, -, 3} trans1t1vely Let Y= CG(z )(a),,,ﬂ 29,0 then
| Co(@)3s i) gp it Yo~ "’l—k Similarly we have that | Ce(a)“331). 550 i1 Y5179
=k. Hence, [Co(@)a") 2.7 Ca(@)ait) 2p i iaa | =1 Y278 Y“l“"l-—lA;l———z
Therefore Y is transntlve on A,— {i}. Let (By, **+, B,) be a p-cycle of a such
that {8y, -+, B,} ©3,. For any w—p—i elements ay, ***, @,-p-; of A—{i},
Ce(@)i 0y, 00 p-i,wt1, 20,88, 128 an element b of order p. Then bEY and b
is a p-cycle, and so, Y5210 _,.: has the p-cycle. Since a, **+, oty_p—i-15 Qpop-i
are any w—p—i points of A;— {1}, we have Y217 >4*~® (cf. [14, Theorem
13.9]). Therefore k<2. If k=2, then Y41 1= 4*~® and C (a)ﬁ,lﬂl 2=
S§#1=6, Therefore T'; is an orbit of Cg(a);,... pip+1,p+21p43,-,2 0N Q—I(a), even if
k=2. (q.e.d.)

Step 12.  We complete the proof.

Proof. Since a is an element of order p of the form

a=(1) - @) (p+1) - Gp—1)(3p, -, 4p—1)(4p, >+, Sp—1) -+,

C (@) p+1,-,29,3p, 4p-1 has an element b of order p. By Step 8, we may assume that

b= (1, p)(p+1) - Bp—1)(3p) -+ (4p—1)(4p, -+, Sp—1) -

Let K=G .. yip+1,p+2p+3,,2p and L=<b>-K. By the same argument as Step 10
in the proof of Theorem A, we have a contradiction. (q.e.d.)

4. Proofs of Theorem C and Theorem D

Proof of Theorem C. Let G be a nontrivial 2p-transitive group on Q=
{1, --,n}. Let P be a Sylow p-subgroup of G| ..,,, then P#1 and P is not
semiregular on Q—I(P) by [3] and [4]. Moreover, Ny(P)'® is S,, (2p<m<
3p—1)or 4, 2p+2<m<3p—1). Hence, if n (=|I(P)|)=p—1 (mod p), then
Theorem C holds. Suppose that n3= p—1 (mod p). Let Q be a subgroup of
P such that the order of Q is maximal among all subgroups of P fixing more
than |I(P)| points. Set N=Ng(Q)"?, then N has an orbit T" such that
NT>AT and |T'| >3p, by Theorem A. (q.e.d.)

Proof of Theorem D. Let G be a nontrivial ¢-transitive group on Q=:
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{1,++,n}. Suppose that ¢ is sufficiently large. By Satz B in [13], log(n—2)> %

By the proof of [13, Satz B], we can see that log (n—t)> (%—I—é‘o)t for some

&>0. Moreover, we can see that, in the proof of [13, Satz B], it was only
used that for any k-transitive group H on X, there exists a subset IT of 3 such
that |II| =k and HE,> A",

Let p,=2, p,=3, +, and p; be the -tk prime number. Then lim%fi‘el.
(This result is well known in the theory of numbers.) ’
Since ¢ is sufficiently large, by the above remark and Theorem C, there

exists a positive number & which is sufficiently close to 0, and exists a
subset A of Q such that |A] 2(—32——8)t and G{)=>A4". Therefore we have

log (n—t) > % t. (q.e.d.)
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