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Gentzen Method in Modal Calculi

By Masao OHNISHI and Kazuo MATSUMOTO

A decision procedure by Gentzen style has been given by H. B. Curry
[4] only for S4. J. Ridder [16] intended to give the decision procedures
for My S4 and S5 by Gentzen style'l By using the different methods,
the decision procedures for the various modal systems have been obtained
by J. C. C. McKinsey [12], R. Carnap [3], G. H. von Wright [17], J. Ridder
[15], Alan Ross Anderson [1], and M. Itoh [8].

The object of this paper is to give decision procedures by Gentzen
style for modal sentential calculi S2, S4, S5 and M2\

(I ) Formulation

§1 Definitions of S5*, S4*, M* and Q2.

1.1 Our formulation of the above systems is based upon " Sequen-
zenkalkϋl LK", which was constructed by G. Gentzen [6]. Namely :

[logical symbols:

- (and), ~ (not), v (or), 5 (if— , then)

[rules of inference:

[structural rules

< weakening, contraction, exchange and cut.

I logical rules

(-» ) UES, (-» v ) OES, (̂ ~) NES, (-O) FES,

( ->) UEA, (v-») OEA, (—) NEA, (}->) FEA.

Next, we add to LK two kinds of logical symbols:

<C> (possible),

D (necessary),

and we define as follows: if a is a formula, then O<* and Πtf are also
formulae.

Numbers in brackets refer to the bibliography at the end of this paper.
1) The authors have communicated to Prof. J. Ridder and he has admitted that his

system was found to be unsatisfactory for the decision problem.
2) C. I. Lewis and C. H. Langfcrd [9]. G. H. von Wright [17].
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New rules for modality are:

Γ -» @, a
T->Θ. OΛ

o<*, or >Θ

Θ

a
ΠΘ->Π-Γ, Π«

By Γ, Θ we mean a series of formulae as in LK. <>Γ(ΠΓ or — Γ)
means the series of formulae which is formed by prefixing O(D or ~)
in front of each formulae of Γ.

Thus established sentential calculus which contains LK is S5*.

S4* is the special case of S5*, where Γ is empty in the rules (O -*0

and H>D)3).
M* is defined by replacing the rules «>->) and (-> D) in S5* by

the following rules:

<x->Θ

a
Θ-^α

Π®
(-Π)

The system Q2 is the special case of M*, where Θ is non-empty in
the above two rules.

The systems S5*, S4*, M* and Q2 thus defined are distiguished from
one another only by the rules «>-*) and (-> D), other rules including
(->O) and (D->) being in common. Therefore the rules (O->), (~> Π)
are put into explicit forms as follows:

S5*

S4*

O9

u:, \y j. — > \j \-j

a -> O®

α -> Θ.
,ς> α -> O ®

a -> Θ

1 1 ̂  ~^ 1 — 1 -1- > *-*

Π® -> DΓ, Π^

Q @ _> a

Θ — > . α:

. Π®-^ D«

• o: O' ΠΘ DO:

is non-empty in Q2.

1. 2 Symmetry

In our systems, the symmetry (Spiegelbildlichkeit) of and v and
of D and O are preserved. Namely considering D a is the abbreviation
of ~ O ~ Λ, we can easily verify that the rules of D (at the right side)

3) This formulation has been already treated in R. Feys [5] and H. B. Curry [4J. See
also §9.
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can be derived from the corresponding rules of O (at the left side) and
vice versa. It results that, assuming D# — ~O~<*, we can do without
one half of the above rules (right or left side).

§ 2 Equivalences of M*, S4*, S5* and M, S4, So.

2. 14) The definitions of M, S4 and S5, due to von Wright, are as
follows :

I signs
Group A* : The constants — , &, v , -> and <-> of propositional

logic.
Group Aβ : The constants O and D of modal logic.
Group B : Sentence- variable a, b, cy

(an unlimited multitude)

II Rules of Formation
RF-l : A sentence-variable is a formula.
RF-ll : A formula preceded by ~, by O or by Π is a formula.
RF-HI : Two formulae joined by &, v , -> or <-» constitute a

formula.

III Axiom
Group A : A set of axioms for propositional logic.
Group B : 1 a^>Oa (The axiom of Possibility)

2 O ( 0 v δ ) < - > O 0 v O δ (The axiom of Distribution)
Group C: 1 O O # -̂  O # (The first axiom of Reduction)

2 O ~ O # -̂  — O # (The second axiom of Reduction)

IV Definitions
If the axioms in Group A are so selected that not all the constants

— , &, v, -*• and <-> occur in them, the missing constants have to be
introduced by definition in the usual way.

The constant D we introduce by the definition

V Rules of Transformation
Group A : The rules of transformation of propositional logic.
Group B : 1 If /Ί <^>f2 is provable, then O/Ί *-» O/2 is also

provable. (The rule of Extentionality)
2 If / is provable, then Π/ is also provable.

(The rule of Tautology)

If from the above description we omit the axiom of Group C, we

4) 2.1 is a quotation from von Wright [17], pp. 84-85.
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obtain the system M. If to the system M we add the first or second
Reduction axiom, we obtain the system S4 or S5 respectively.

2. 2 We prove here the equivalences of M*, S4*, S5* and M, S4, S5.

What we must prove are :

III Axiom Group B 1, 2.
V Rules of Transformation Group B 1, 2.

As to V,

2° -pr —— (O -*, ® being empty)

As to III,

•v)
*-«v* ^O f f ^ Q (αv/3)

avβ-+a, β
ϊ, 0/3

O(αv^) -» <

4° and 5° yield O (α v β) <-> O α v

As we have the rule of Tautology in M, what we must prove
essentially is the rule (O->) for non-empty Θ, namely

β-»/9, 7 _
, Oγ

In other words, we have only to prove that if cOβvγ then
in M.

If eθ£v7 then O«^O(/5vγ). (V. B.I)
We have 0(£v7) 5 o^v Oγ. (Ill, B. 2)
Accordingly, using modus ponens (V, A), we get Oa
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S4* =Φ S4

III Group C, 1 is shown by

£4 =Φ S4*

Essentially, we must prove O0OO#v<>7 from the assumption
cθθ£vθ7. If 0OO£v<>7 then O^O O(O/3v 07).

On the other hand, we have O(Oβv Oγ) 5 OO/^v OOγ, hence
O<OO/8vθ7 by OOβ^Oβ and Oθ7^θ7-

S5* =Φ S5

The only rule to be proved is III, Group C, 2, i.e.

,<><*,

As has been proved we are able to use all rules of S4*.
We must prove:

> 07

The proof is:

a, Qβ -> Qy
Q/3, a -> Q7

(*->O7, ~Q/3 "̂
# _^ />ry />^^/\/5 V-^ \»

O^Sγ,S~θg j£^ i n S4*>

"̂ ^ ̂ ? . ^^r^- (characteristic formula of S5)
Q/3, Qrt-^Qγ

(II) Hauptsatz

§3 Hauptsatz for Q2, M* and S4.5)

We shall prove in this § the following Hauptsatz (elimination of
cuts) for Q2, M* and S4*.

5) The extentions of Lewis' systems to the functional calcili have been tried by R. Carnap
[3] for S5, and R. C. Barcan [2] for S4. Our formulation can be extended to the func-
tional calculi in a natural way, i.e., Gentzen's AES, AEA, EES and EEA are added to our
systems. It is almost obvious that the establishment of the Hauptsatz for functional Q2, M*
and S4* are justified in these extended calculi.
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Hauptsatz: Any Q2 (or M* or S4*) proof-figure can be transformed
into a Q2 (or M* or S4*) proof-figure with the same endsequent and with-
out any cut as a rule of inference.

Its proof is treated along the line of Gentzen.
We replace cut-rule by mix (Mischung)-rule as in Gentzen. Then,

we have only to prove the following

Lemma: Any proof-figure which has the mix-rule only as its lowest
rule and does not include this rule elsewhere, can be transformed into the
proof-figure which has the same endsequent and has no mix at all.

Degree (Grad) and rank being the same as in LK, the proof of our
lemma can be treated by the induction on rank p and degree 7.

The cases which are to be added to the proof for LK are the
following:

(1) When p = 2, and the outermost symbol of the mix formula 2Jϊ
is O (3.113. 37).

(2) When p> 2, right rank > 1, and the upper sequent on the
right side of mix is derived by the rule of O (3.121. 223).

(3) When p > 2, right rank = 1, and the upper sequent on the left
side of mix is derived by the rule of O (3.121. 224).

3.1 Hauptsatz for Q2.

(1) When p = 2, and the outermost symbol of the mix formula
9Jϊ is O, the mix has the following form:

~* ' a a~—^-^- (® is non-empty)
^—^— (mix of O<2)

(Δ does not contain
We transform this into:

Γ -> Δ, a a -> Θ , . - .
fi- A* ja (mlx of α)J_ —> /A ̂  \y

Θ

This shows that we can omit the mix from the assumption of the
induction, as the degree of the mix formula is decreased by 1.

(2) When /o>2, and the right rank >1, and the upper sequent
on the right side of mix is the lower sequent of the rules of O, we
have to treat only the following case :

Π
II, Γ* -» 2*, A, <>«
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We transform this into:

Π^Σ Γ ->Δ. a
Π, Γ*->Σ*, Δ, a
Π, Γ*->Σ*, Δ, a v v;

This shows that we can omit the mix from the assumption of the
induction, as the rank of the mix formula is decreased by 1.

(3) When p > 2, and the right rank = 1, and the upper sequent
on the left side of mix is the lower sequent of the rules of O, we have
to treat only the following:

Γ^Δ, a
Γ-*Δ,. O« Π-*
Γ, Π*-Δ*,

(Δ includes 3ft)

We transform this into:

In case 3ft =O<*,

Γ->Δ, a Π-^Σ Π^Σ
Γ, Π*->Δ*, a, Σ ^ ' a, Π^Σ

Γ, II*, Π* -> Δ*, 2*, Σ l<;> '
Γ, Π* -> Δ*, 2

in case 3ft Φ

_
Γ, Π* -> Δ*,
Γ Π*

TTTS* -> Δ*, <>«, 2 π
Γ, Π*, Π* -» Δ**, (Qα)*, Σ*, Σ

This shows that we can omit the mix from the assumption of the

induction, as the rank of the mix formula is decreased by 1.

3.2 Hauptsatz for M*.

The case (1) is the same with the case (1) in Q2, even if Θ is empty.
The two cases (2) and (3) are quite the same as in Q2.

3.3 Hauptsatz for S4*.
The case (1) does not occur. The case (2) is the same as before.
In case (3) we have to consider the following mix in addition :

(O®)*, 2
/ - r y χ * v(mix of O<>)
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As the right rank equals to 1 by the assumption, the only non-
trivial case is the following form:

a-+ O®
/ x Λ -^ / X P (0S)
, (OH*

We transform this into:

(OS)

Thus we have completed the proof of Hauptsatz in each case.

(Ill) Decision Procedures

§4 Decision procedure of S2.

4.1 Relations between S2 and Q2.
We shall prove the following four propositions : 6)

Proposition 1° Q2 μ -» a ̂  Q2

Proposition 2° Q2μ -* Λ ^ S2
Proposition 3° S2 f- Λ Φ^ Q2

Proposition 4° S2 μ ^ ̂  S2 \-p-3p : -3.

Proof of Proposition 1°

==>

. . "̂  — - (weakening)

Let p^p-^Πoί be provable in Q2.
Even if /? appears in tf, because of

for ^ which does not appear in oίy we may without substantial loss of
generality assume that p does not appear in a.

Then, since p-3p-*Π<x is not a beginning sequent, there exists a
proof-figure with at least one inferential rule and without any cut.

6) S\-a means that a formula a is provable in the system S. p denotes here a sentence
variable.

7) Proposition 4° holds also in SI. See § 8.
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Eliminating all formulae in form of D# appearing in this proof -
figure, this proof-figure can no more rest as a Q2 proof-figure. For
otherwise, p-^p-> is provable. But on the other hand, if we eliminate
all O's and D's appearing in this proof-figure of />-?£->, we get a
proof -figure of p^p-*, which is impossible.

Therefore there exists at least one rule — especially logical rules
which has D# as a principal formula — which is not kept in Q2 by the
elimination of D# mentioned above.

But in case that G<* appears as a side formula or a parameter of
one of these rules, the rule holds also after the elimination of D<x
Furthermore since Π^ is not p-3p by the assumption, Π# never appears
in the antecedent of any sequent.

Therefore
Γ -+a

DΓ (-Π)

must appear at least once in the proof -figure of p-3p-^ϋ\a. And here,
Πtf appears in the succedent of each sequent appearing in the lower side
of this rule. Then evidently any subformula of Π<* does not occur in
DΓ.

For this reason, the formulae of Γ are all p-3p. That is, the
formulae of Γ are all p^p. Then operating cut with ->/O/> and Γ->#,
we obtain that -*a is provable.

Proof of Proposition 2°.

=Φ

Assume that Q2 proof -figure of -»<* without cut is given.
We interpret each sequent in Q2 as follows :

Πγ,

(The sequent -> does not appear)

It is sufficient to show that for each rule of inference in Q2 there
exists an S2-proof from the S2-formula corresponding to the upper
sequent to the S2-formula corresponding to the lower sequent.

We begin with the structural rules of inference.
Weakening in antecedent.
First we consider the case when both Γ and Θ are non-empty. We

have here only to consider :

a-> β
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Therefore we must show in S2 that if ct-Zβ is provable, then so
is S - tf-3/9.

As we can easily have the rule Kettenschluss from both a -? β /S-3γ :
-5. α:-sy° (B6) and modus ponens, the above results from Kettenschluss
and aβ-^a (B2). If Θ is empty, the above rule can be issued from
O(aβ)-3Oa [19.01], rand if Γ is empty, from Π<*.-3: β-^cί [19.75].

Analogous considerations can be given to each of the rules cited
above.

Namely, weakening in succedent can be obtained from a-%cίv β
[13.2], rule of Becker (if α-3/3 is provable, then O<*^O/3 is also), and
~O<*.-3: « -3/3 [19. 74] contraction, from a-^a a (B3), a\j a-^a
[13.3], and the rule of substitution (a); exchange, from aβ-^βoί (Bl),
avβ-Zβvoί [13.1]. Cut can be omitted from our consideiation.

Secondly, we treat the logical rules of inference. The necessary
rules or formulae for respective logical rules are as follows :

( - ->) aβ-^a (B2)

flO/3: -3 : ay^βj [16.11]

Rule of Becker

O(aβ)-3Oa [19.01]

(->v) a-^avβ [13.2]
0O /3 : -3 r γ v c O γ v β [14. 27]

Rule of Becker.

(-> . ) rtv(/3y) = (r tv/3) .( t fV7) [16.73]
(v->) α(/3 v y) = <*/3 v <xy [16.72]
(~ -rules) Both formulae corresponding to the upper and lower

sequents are identical, on any conditions of Γ and Θ.

Lastly, (D-») can be obtained from [14.27] and the rule of Becker,
and (->D), from the additivity of O [19.82] and the rule of Becker.

Suppose that D# is provable in S2, we can easily show that
D# is provable in Q2 by using the former half of Proposition 3°

(which is deducible from only Proposition 1° as we show below). Then
a is provable in Q2 using the latter half of Proposition 1°.

Proof of Proposition 3°

==>

Suppose that a is provable in S2. As the outermost symbol of all

8) In the following, numbers in brackets ( ) and \_ ] show the numbers of axioms or
theorems in £9].
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the axioms Sίj in S2 is -3, we write simply 31 p.* the formulae which we
get by replacing the outermost symbol -3 of these axioms with ;> .

As p^p-^^i* are all provable in Q2, p-^p-*^. are also provable
in Q2.

It is obvious that the following two rules :

are admissible in Q2.
Finally on the rules of substitution,

should be admissible in Q2, because -> a ^ β is also provable in Q2 from
Proposition 1°, assuming the sequent p-3p-+oL^β is provable in Q2.

a-* a β -> β
a

OflOO/3'

If p-^p-^oί is provable in Q2, then p-%p : -3.D<^ is provable by
Proposition 2° in S2. As we have p-3p, O<% is provable. Therefore a
is provable in S2.

Proof of Proposition 4°

Suppose that a is provable in S2. As p-^p^a is provable in Q2
owing to Proposition 3°, we have p-^p. -3 . oί in S2 by using Proposi-
tion 2°.

The converse is obvious.

4. 2 Decision procedure of S2.
Proposition 3° in the previous section gives the decision procedure

of S2. Namely, the provability of a formula a in S2 is reduced to the
provability of a sequent p-^p^oί in Q2, hence the decision procedure of
the former has been given because of Hauptsatz in Q2 in (II).
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§ 5 Decision procedures for M and S4.

Hauptsatz for M* and for S4* are already proved in (II). Then, in
an analogous way of Gentzen's procedure, we can give the decision
procedures for M and S4.

§ 6 Decision procedure for S5.

We can not carry out to prove the Hauptsatz in S5 in an analogous
way to S4 mentioned above. But the decision procedure of S5 has
already been given in the previous paper [11], of which the main result
is the following

Theorem: 7 is provable in S5, if and only if Vγ is provable in
S4, where Vγ means ~O — O~O~7.

In the above paper, this theorem has been proved by using Mc-
Kinsey's result [13], which can be reduced essentially to the following
formulae :

(1) V<* V / 9 . - 3 .

(2)

We notice that the above formulae (1), (2) can be proved without
McKinsey's result, and that the above theorem can be proved as well
without McKinsey's result. The proofs of (1), (2) in S4* are as follows :

Proof of (1) :

#-» a _ β -+ β
ay β-> a a, ~β -> β

a, β -> a - β

This endsequent and the axiom C 10 lead us easily to

V<*, V/9-*

from which we get the following
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-> v<2 V/3-3 V(<xβ) .

As the preparation for the proof of (2), we have

(i)
O~θ7, —07

-> O~θ7

(ii) ->

-* V(γ-3«)

in S4. By using the above two, we obtain the following

Proof of (2) :

Qa Q—OQ; -> Q~O«>α O~<0>o;)
O«)<* O~O<*) -> O~O(O<* O"

/\ /V .γ\ \L /

%~ΛM = (ii)

In Πll] we omitted the proof for 7 which is the result from sub-
stitution. But this proof is reduced to the following : 9)

If χ = is admissible in S5, then ^ is admissible

in S4. And we can easily show that its proof can be treated by
characteristic formula of S3, a , 7 - /9-3δ : -3 : α:/3-^γδ [19. 68], and the

,
rule

The reduction theorem gives the decision procedure for S5.
As regards the sequent, we can show that if Γ-*Θ is provable in

S5, then VΓ-* V® is provable in S4. But the inverse can not be kept
in general. For example, v<*~>v~O~<* ^s Provable in S4, but
#-^~<ς>~α: is not so in S5.

9) A sign = means a strict equivalence as in [9].
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APPENDIX
10)We shall treat here some meta theorems.

We consider at first three following rules :

RT : // a is provable, then Π<* is also provable.
RE : If a^ β is provable, then O<O Oβ is also provable.
RB : // tf-3/3 is provable, then O<*^Oβ is also provable.

7. 1 The rule of Tautology RT.
RT holds in S5*, S4* and M*, but does not hold in S3, S2 and Q2.
It is clear from the rule (-^D) of our formulation that RT holds

in S5*, S4* and M*. That RT does not hold in S3, S2 and Q2 is shown
by the following results :

(i) A system which is obtained from S3 by the addition of RT is
equivalent to S4. This is a result by Parry [14].

(ii) A system which is obtained from S2 by the addition of RT is
equivalent to M.

Proof: Assume that cθ/3 is provable. Then a -3 β is also provable
by RT. As tf-3/9: -3 : O<O Oβ is provable in S2, we obtain OΌ Oβ.

(iii) A system which is obtained from Q2 by the addition of RT is
equivalent to M.

Proof: Q2-proof of a-%β-> O^O Oβ is as follows:

a^a β --» β

a

Therefore we get the results analogously to (ii).

7. 2 The rule of Extentionality RE.
RE holds in S5*, S4* and Q2, but does not hold in S3 and S2.
( i ) A system which is obtained from S2 by the addition of RE is

equivalent to M.
(ii) A system which is obtained from S3 by the addition of RE is

equivalent to S4.

10) It is not generally assured that a rule in a system S holds also in other system
S/ which is deductively equivalent to S.
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Proof of (i) and (ii).
In our systems RT holds, for

-> a

Therefore by the definition of M and S4, we get the results.

7.3 The rule of Becker RB.
RB holds in S5*, S4*, S3 and S2.

§8 Next we can prove Proposition 4° in (III), when we replace S2 by
SI. i.e.,

SI h ct <N> SI h p-Zp : -3 . <*11)12)

For the preparation of the proof we show the following

Lemma : | -- O~# =^ h p-^p . -3 . ~O~<* .

Proof: As we have ~O~# . ^> . β-3α:,13) we have

I- ~o~tf, [- ~O~β =* h Λ = £

Therefore if we assume h ~O — <*, we have \-p^>p. = .a. Using
the rule of substitution (a), we have |- p-3p . = . ~O~<*.

Now a proof of proposition cited above is as follows :
We assume that a is provable. If a is an axiom, the proof is trivial

by the lemma. Next assume that oί is a result of adjunction. That is, we
assume that \- a = βγ and β, 7 are both provable. Then we have only
to show that p ^p . -3 . βy is provable assuming the provabilities of
p-^p . -3 . β and p-3p .-8.7. And this is trivial. Assume that a is a
result of modus ponens. This case is analogous to before.

Lastly assume that OL is a result of substitution (a). Essentially we
have only to prove that \-p-3p .-3 .O<x= Cfi, assuming the provability
of p-^p . -3 . a = βm This proof is the following :

We have easily \-a = j3 from the assumption p^p . -3 . cc = β and
\-p-3p. Therefore we have hO^=O/5, i.e., h O<2-3Oβ, h O/^Otf.
Then, from the lemma we have [- p-^p . -3 . O<*-3Oβ, h P~Zp . -3 . O/3-3
Oα. So h P^P -3 . Otf=O/3 is established.

This case is trivial because of h p-3p

11) We write simply \-a instead of Sl\-a in this proof.
12) This results shows that a solution of decision problem for Si is reduced to a solu-

tion of decision problem for formulae of the form
13) S. Hallden [7].
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As to RE and RB, it can be shown that both RE and RB are not
admissible in SI. Because if RE is admissible in SI, then q ^> q . X
p-^p is obviously provable. Therefore q-^q. ^ .C\(p-^>p) is also provable
by our assumption. This leads us easily that Π(p-3p) is provable.
Hence SI is equivalent to M using the result by Yonemitsu [18]. But
this is impossible.

Next, if RB is admissible in SI, then Si-axiom pq-^q (B2) implies

O(pq)-3θ<2 which is a characteristic formula of S2. But this is impos-
sible, too.

§ 9 We treat here the theorems on reductions of S4 to LJ and of S5
to LK in the domain of functional calculi.

In Maehara's paper10 [10] on interpretation of intuitionistic calculus
within an extended classical calculus, he obtained several results which
are concerned with modal logic syntactically.

We can easily obtain S4 upon replacing "Bew" in his system BLK
everywhere by a symbol Π for necessity. Then his main theorem can

be rewritten by our symbols as follows :
If a symbol D does not occur in Γ and Θ, then Γ ->Θ is L/ provable

if and only if φ(Γ)-*φ(®) is S4-ρrovable, where for any formula tf,
a formula φ(oή is defined inductively in S4 as the formula which
arises from a by replacing every subformula 7 of a by Π 7, and if Γ
is a sequence of formulae a19 a29 ••• , an, then φ(Γ) is φ(oί^9 <p(&2), ••• ,
φ(an) for n>0.

As an easy corollary, we have the following reduction theorem of
S4 to LJ.

Theorem: LJ \ — >oί^^S4 \ — *φ(oε), for an LJ- formula a.
We shall prove here the following reduction of S5 to LK.

Theorem : LK h -*<* ̂  S5 |- -*φ(a)9 for an LK- formula a.

Proof :

=^

As preparatory remarks, we have the following without proof:

( i ) D(tf £) = Πtf.π£ [19.81].

(ii) Π(ΠtfvΠ/2)

(iϋ) π (V* πf(χ)) =
(iv) D Ox D/(Λ)) = 3x Ώf(x).

14) See also a review for [9] by one of the author, J. Symbolic, 22, 79-80 (1957).
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We substitute <p(Γ) -><p(Θ) for each sequent Γ-»Θ appearing in an
LTf-proof -figure which possesses the endsequent -»<X Then the upper-
most sequent is φ(8) -^φ(8) and this is again a beginning sequent.

Hence we have only to show the corresponding new rules are
admissible in S5.

The proof for structural rules of inference is trivial.
Of the logical rules of inference, we take (->F) and (->~) for

example :

As to (-+V)
There is no free variable!in the lower sequent J

°
φ(Γ) - φ(Vxf(X)},

As to (-»~)

are Π

The other cases are easily verified from the above preparatory
remarks.

We have only to show that each rule of S5 still holds for simulta-
neous elimination of all Π's which appear in each sequent of the rule.
And this is trivial.

(Received July 10, 1957)
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