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Introduction

 Human epithelial and mucosal surfaces are a host 

defense barrier to prevent intrusion by harmful mate-

rials and bacteria. In case of gingival sulcus, multi-

layered squamous gingival epithelium functions a 

central role in innate immunity against periodontal 

pathogens, including Porphyromonas gingivalis, 

capable of entering gingival epithelial cells using 

various host cellular defi ciencies. Our previous fi ndings 

showed that P. gingivalis organisms were fi rst encap-

sulated by early endosomes at the entry process to 

cells1). Followed by localization in early endosomes, 

some bacteria were sorted to late endosomes/lyso-

somes, which likely led to degradation of bacteria, and 

others became co-localized with Rab11A and RalA, 

host recycling regulator proteins. We also showed that 

knockdown of Rab11A or RalA disturbed bacterial exit 

from the infected gingival epithelial cells to the culture 

media. However, the molecular machineries utilized by 

P. gingivalis for its exit from infected host cells 

remains unknown.

 Basically endosomes consist of three different 

compartments: early endosomes, late endosomes/lyso-

somes, and recycling endosomes. Early endosomes 

receive molecules delivered form the plasma 

membrane and functions as a sorting station of the 

endocytic and recycling pathways. It was previously 

reported that the endocytic and recycling pathways in 

mammalian cells are regulated by specifi c small Rab 

GTPases2), regulators of many steps of membrane 

traffi c. Approximately 40 members of Rab proteins 

have been identifi ed in humans. Some endocytic Rab 

proteins are also shown to be involved in intracellular 

traffi cking of various pathogens. However, no Rab 

GTPases have been shown to be involved in bacterial 

exit from infected host cells.

 Specifi c membrane fusions are mediated by soluble 

N-ethylmaleimide-sensitive factor attachment protein 

receptor (SNARE) proteins3), consisting of at least 38 

members in mammalian cells. A SNARE protein 

contains one SNARE domain, approximately 60-70 

amino acids in its N-terminus, except that SNAP23, 

SNAP25, or SNAP29 contains two SNARE domains. On 

membrane fusions, SNARE complexes comprise four 

parallel helix bundles. Because each combination of 

SNARE complexes has a high specifi city, it is crucial 

for functional membrane fusions that each SNARE 

protein appropriately localize on its target membrane 

of organelles. As for the bacterial exit from infected 

cells, however, the endosomal SNARE remains to be 

identifi ed.

 In this short review, we illustrate the molecular 

process involved in the exit of intracellular 

Porphyromonas gingivalis from gingival epithelial 

cells, focused on Rab GTPases and SNARE proteins.
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VAMP2 is involved in P. gingivalis exit

 To identify the molecular machineries involved in 

the exit of intracellular P. gingivalis from infected 

host cells, we examined its association with SNARE 

proteins in human immortalized gingival epithelial 

(HIGE) cells4) using confocal laser microscopy. At 1 h 

after infection, we found that monomeric Cherry 

(mCherry)-VAMP2-positive puncta structures were 

co-localized with enhanced green fl uorescent protein 

(EGFP)-FYVE5) (early endosome marker) and 

recruited to intracellular P. gingivalis ATCC 33277 in 

gingival epithelial cells (Fig. 1A). Thereafter, its 

co-localization with the VAMP2 and FYVE was 

decreased at 5 h after infection in a time-dependent 

manner (Fig. 1B). 

 To analyze the involvement of VAMP2 in the bacte-

rial exit from host cells, we performed RNAi knock-

down against VAMP2 in HIGE cells. Knockdown of 

VAMP2 caused the increased co-localization of intra-

cellular bacteria with EGFP-2xFYVE even at 5 h after 

infection (Fig. 2A-2C). 

 Moreover, VAMP2 knockdown increased the bacte-

rial accumulation in HIGE cells (Fig. 3A-3C). These 

Figure 1.  VAMP2 located in early endosomes containing P. gingivalis in HIGE cells.
(A) HIGE cells were transiently transfected with the EGFP-2xFYVE and mCherry-
VAMP2 plasmids. Following 48 h of incubation, cells were infected with P. gingivalis 

ATCC 33277 at an MOI of 100 for 1 h. Cells were then stained with DAPI and 
analyzed by confocal microscopy. Arrows indicate co-localization. Scale bars, 5 µm. (B) 
Quantifi cation of intracellular P. gingivalis associated with markers at the indicated 
times after infection; white: FYVE (+)/VAMP2 (-), gray: FYVE (+)/VAMP2 (+), black: 
FYVE(-)/VAMP2 (+). Data shown represent the mean ± SD of 3 biological replicates. 
At least 20 HIGE cells and 100 bacteria were analyzed per test.
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results indicate that VAMP2 is involved in the exit of 

P. gingivalis from infected cells.

Involvement of Rab4A in P. gingivalis exit

 Rab4A is necessary for recycling of the transferrin 

receptor (TfR) from early endosomes back to the 

plasma membrane via a fast recycling6). We found that 

mCherry-Rab4A co-localized with intracellular P. 

gingivalis for up to 5 h after infection (Fig. 4A and 

4B). RUN and FYVE domain containing 1 (RUFY1) is 

an Rab4A effector and involved in early endosomal 

trafficking7). Thus, we examined whether RUFY1 

translocates to Rab4A-positive endosomes containing 

P. gingivalis. As expected, we found that Myc-RUFY1 

was co-localized with EGFP-Rab4A-positive puncta 

containing P. gingivalis (Fig. 4C).

 Next we examined the involvement of Rab4A in 

intracellular traffi c with RNAi knockdown. Compared 

with control siRNA-treated cells, we showed the 

increased number of bacterial co-localization with 

EGFP-2xFYVE (Fig. 5A-5C). 

 In addition, Rab4A-knockdown increased the 

viable bacterial organisms in HIGE cells, and reduced 
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Figure 3. Eff ects of VAMP2-knockdown on viability of P. gingivalis in HIGE cells or culture media.
(A-C) HIGE cells were treated with control siRNA or VAMP2 siRNA oligonucleotides. Following 48 h of incubation, cells 
were infected with P. gingivalis at an MOI of 100 for 1 h, incubated for 1 h with antibiotics and then for the indicated 
time periods without antibiotics. Quantifi cation of numbers of P. gingivalis organisms in HIGE cells (A, B) and in culture 
media (C) were determined using a CFU assay, as described in Experimental procedures. Data shown represent 2 
biological replicates, with mean represented by lines (n = 5). *p<0.05, Dunnett’s test.

Figure 2. Eff ects of VAMP2-knockdown on localization of P. gingivalis in early endosomes.
(A) HIGE cells were treated with control siRNA or siRNA oligonucleotides against VAMP2. Following 48 h of incubation, 
cells were analyzed by immunoblotting using the indicated antibodies. (B) HIGE cells stably expressing EGFP-2xFYVE 
were treated with control siRNA or VAMP2 siRNA oligonucleotides. Following 48 h of incubation, cells were infected with 
P. gingivalis at an MOI of 100 for 1 h, then incubated for 1 h with antibiotics and further for 3 h without antibiotics (5 
h after infection). They were then stained with DAPI and analyzed by confocal microscopy. Scale bars, 5 µm. (C) 
Quantifi cation of intracellular P. gingivalis associated with EGFP-2xFYVE at the indicated time periods after infection. 
Data shown represent the mean ± SD of 3 biological replicates. At least 20 IHGE cells and 100 bacteria were analyzed 
per test. *p<0.05, Dunnett’s test.
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the number of viable bacteria at 6 h after infection 

(Fig. 6A-6C). These results indicate that Rab4A is 

involved in the exit of intracellular P. gingivalis from 

host cells.

Conclusion and Future Directions

 Based on our fi ndings, we propose the following 

model (Fig. 7). The entering P. gingivalis is fi rst 

sorted to early endosomes, some bacteria are trans-

ported to late endosomes/lysosomes or autophaogo-

somes likely for degradation, while others exploit fast 

recycling to bacterial exit from host cells by recruit-

ment of VAMP2 and Rab4A.

 Our results strongly suggest that this pathogen 

positively utilizes Rab GTPases and SNARE proteins 

for intracellular trafficking and bacterial survive, 

further molecular analyses will be needed to answer 

the following questions: 1) Which proteins(s) is a host 

receptor in early endosomes sensing for P. gingivalis 

to lead extraordinary fast recycling; 2) How does this 

pathogen evade intracellular degradation as a whole; 

and 3) What is the physiological signifi cance for this 

bacteria in periodontitis. 

 Because microorganisms have abilities to adapt to 

various environment changes, their habitat ranges are 

basically found in many different environments. P. 

gingivalis has a unique habitat in periodontal sites 

including subgingival dental biofilm and gingival 

cells10). It will be interesting to discover whether the 

exit of intracellular P. gingivalis or its pathogens from 

gingival epithelial cells is features of pathogens, 

particularly keystone pathogens in mixed bacterial 

communities.
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Figure 5. Eff ects of Rab4A-knockdown on localization of P. gingivalis in early endosomes.
(A) HIGE cells were treated with control siRNA or siRNA oligonucleotides against Rab4A. Following 48 h of incubation, 
cells were analyzed by immunoblotting using the indicated antibodies. (B) HIGE cells stably expressing EGFP-2xFYVE 
were treated with control siRNA or Rab4A siRNA oligonucleotides. Following 48 h of incubation, cells were infected with P. 

gingivalis at an MOI of 100 for 1 h, incubated for 1 h with antibiotics, and then for 3 h without antibiotics (5 h after 
infection). They were then stained with DAPI and analyzed by confocal microscopy. Scale bars, 5 µm. (C) Quantifi cation 
of intracellular P. gingivalis associated with EGFP-2xFYVE was performed at the indicated times after infection. Data 
shown represent the mean ± SD of 3 biological replicates. At least 20 IHGE cells and 100 bacteria were analyzed per 
test. *p<0.05, Dunnett’s test.

Figure 6. Eff ects of Rab4A-knockdown on viability of P. gingivalis in HIGE cells or culture media.
(A-C) HIGE cells were treated with control siRNA or Rab4A siRNA oligonucleotides. Following 48 h of incubation, cells 
were infected with P. gingivalis at an MOI of 100 for 1 h, incubated for 1 h with antibiotics, and then for the indicated 
time periods without antibiotics. Quantifi cation of numbers of viable P. gingivalis organisms in HIGE cells (A, B) and in 
culture media (C) was performed with a CFU assay, as described in Experimental procedures. Data shown represent 2 
biological replicates, with mean presented by lines (n = 5). *p<0.05, Dunnett’s test.
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Figure 7.  Proposed model of P. gingivalis traffi  cking in 
human gingival epithelial cells.

P. gingivalis enters gingival epithelial cells and becomes 
localized in early endosomes. Subsequently, some bacteria 
are sorted to lytic compartments (late endosomes/
lysosomes) likely for degradation, whereas others recruit 
VAMP2 and Rab4A onto early endosomes. RUFY1 is then 
recruited and interacts with Rab4A. RUFY1 is 
phosphorylated by P. gingivalis infection and 
translocated onto endosomes containing bacteria. Finally, 
the endosomes fuse with the plasma membrane, which 
allows P. gingivalis to escape via the fast recycling 
pathway for further penetration of gingival tissues.
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