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1. Statement of the problem

Let a(x) be a nonnegative continuous function defined on the m-dimensional
Euclidean space Rm and let Δ be the Laplacian. Consider the following semi-
linear parabolic equation

(1.1), - ^ =

with the initial condition

(1.1)2 n(0, x) = a(x),

and be concerned with non-negative solutions.
H. Fujita [1] has proved that equation (1.1) has a global solution u(ty x)

for sufficiently small a{x) when ma>2 but (1.1) has no global solution for any
φ ) ΐ θ when ma<2. Recently, K. Hayakawa [2] has proved that (1.1) has no
global solution even in the critical case ma=2 if the dimension m equals 1 or 2 (and
hence a=2 or 1, respectively).

In this paper we shall treat this kind of blowing-up problem for a more
general equation as follows. Let 0</3^2. Let F(u) be a nonnegative con-
tinuous function with F(0)=0, defined on [0, oo), satisfying the following con-
ditions :

(F.I) F is increasing and convex.

(F.2) There exists some α e O , - and c'e(0, oo), such that
L mJ

(F.3)
F(u)

It is obvious that, for 0<ma^=β, u1+a satisfies the above conditions.
Here and hereafter, u denotes a single variable as well as function in obvious
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contexts.

( Λ \P/2

— — J denote the fractional power of the operator

——. As a generalization of (1.1), we consider the equation

(1.2) 9*

Let p(t, x) be the fundamental solution of (1.2) for F(u) = ΰ, i.e., the density
of the semigroup of (m-dimensional) symmetric stable process with index β.
It is well known that p(t, x) is given by

(1.3) ( eiz'xp{t, x)dx =
JRm

Using this p(t, x)> we can transform (1.2) into the integral equation

(A) u(t, x) =\Rj{t, x-y)a(y)dy+ \'ds \Rj(ts, x-y)F[u(s, y)]dy ,

t>0y x<=Rm.

What we are going to prove is the following.

Theorem. Let 0</3ig2. Suppose that a(x) is a nontrivial (^0), non-
negative, and continuous function on Rm, that F(u) satisfies (F.I), (F.2), (F.3),
and that p(t, x) is defined by (1.3). Then the nonnegative solution u{t, x) of the
integral equation (A) blows up, i.e., there exists some to>0 such that u(t, #)=oo
for every t^t0 and x e Rm.

2. Some properties of p(t, x)

We here collect some properties of p(ty x) which are required to show our
Theorem. By (1.3), we have

(2.1) p{ty x) = t-^p(h t-Wx),

(2.2) p(ts, x) = r^p(sy t-Wχ).

Note that p(t, 0) is a decreasing function of t. It is known (see [3 pp. 259-

268.]) that

p(t, x) = [~ft Ph(s)T(s, x)ds for 0</3<2 ,
Jo

= T(t,x) for β = 2,

where ft β/2(s) = ~^-[σ+t°°ezs-tzβ/2dz^0f σ>0, ί > 0 ,
2 t J
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The above relation implies that p(t, x) is a decreasing function of \x\> i.e.,

(2.3) p(t, x) ̂ p( t , y) whenever | x | ^ | y | .

We sometimes write pit, \x\) for p(ty x) . Combining (2.1) and (2.3),

(2.4) rtt,x)^(±y'βp(s,x) for t^s.

Finally, it follows that

(2.5) if p(t, 0)^1 and τ^2, then p(t, ~-(x-y)^p(t, x)p(t>y).

1 2 2 / 1 \
Because —\x—y\^—\x\v — \y\^\x\v\y\, and hence pit, — (x—y)j

^P(t, \x\v\y\)^ρ(t, \x\)Λp(ty \y\)^ρ(t,x)p(tyy).

3. Preliminary lemmas

Lemma 1. If F satisfies (F.I) and (F.3), then

(3.1) lim—F(u)= oo .

Proof. Since F is convex, it is obvious that —(F(u)—F(0)) is a monotone
1 u 1

increasing function. If lim — (F(u)-F(0))=M<oo, then — (F(w)-

for all w>0, i.e., 5̂  . This contradicts assumption (F.3).

If F(u) is increasing, F(oo) is defined by

(3.2) F(oo)

Lemma 2. (Jensen's inequality) Let p be a probability measure on Rm and
u(x) a nonnegative function. Suppose that F(u) satisfies (F.I). Then we have

(3.3)

Note that this inequality is valid even when I udp=oo.
jRm

Lemma 3. Suppose that F{u) ( ΐ θ ) satisfies (F.I). Let u(t, x) be a
nonnegative solution of (A) and let

(3.4) f{t) = \Rj{t,x)u{tyx)dx.
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Then the following two conditions are equivalent:
(a) u(t, x) blows up.

(b) /(*) blows up, i.e., there exists some tx>0 such that f(t)=°° whenever

Proof. It is enough to show that (b) implies (a). We may assume p(tly 0)

^ 1 , so thatp{ty 0)^1 for any t^tx. If t^t, t^s^ 8 ty then

p(βt-s, x-y) = p(s (^=ή, x-y)

(^ZJβp(s>x)P(s>y) by (2.5).

Therefore,

-* , x-y)u(syy)dy^ ( - ^ - ^ ^ x)f(s) =oo .

Finally, applying Jensen's inequality to (̂ 4) and noting that F(oo)=oo, we have

dsF[\ p(8t—s, x—y)u(s, y)dy]= oo, so that «(*, x)= oo for any

4. Proof of the theorem

Let u(t,x) be a nonnegative solution of (A), then we can find to>09 c>0,
y>0 such that u(tQy x)^cp(y, x). In fact, if we choose to>O such that p(t09 0)
^ 1 , we have

^p(to,2x)p(toy2y) by (2.5)

= 2->»p(^βix)p(toy2y) by (2.2).

Therefore, u(toy x)^ I ^( ί 0 , 2y)a(y)dy 2~m-p(^-, Λ?j. But u(t+toy x) satisfies

(4.1) u(t+toy x) = J ^ ( ί , Λ?-yMίo,y)rfy

* ( Pits, x-y)F[u(s+toy y)]dy
o JRm

Γ (
Jo JR

t>0yx<=Rm>

so that
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(4.2) u(t+t0, x)^cp(t+y, x)+ i'ds \ p{t-s, x-y)F[u(s+t0, y)]dy.
J o J Rm

Hence, by the comparison theorem, it is enough to show that the solution v(t, x)
of the equation

(B) v(t, x) = cp(t+Ύ, x)+ j*Λ \RmP(ts, x-y)F[v(s, y)]dy

blows up, or by virtue of Lemma 3, that

(4.3) f{t) = \Rj{t,x)v{t,x)dx

blows up. Multiplying both sides of (B) by p{t,x), and integrating, we have

(4.4) fit) = cp{2t+Ύ, 0)+\tds\Rj(2ts,y)F[v(s,y)]dy

(by (2.1), (2.4))

^ cp(ί, 0)(2t+7)-m^ώ(^-J'/βF^RmP(s,y)v(

(by Jensen's inequality)

Let δ>0 be a fixed positive constant. Hereafter we always assume ί^δ.
Put/ 1(ί)=r/γ(0, then by (4.4),

(4.5)

Let/2(ί) be the solution of

(4.6) f2(t) = cp{\, 0)

By assumption (F.2) and Lemma 1, there exists α>0 such that

max ( ^ M , M ) ^ Λ for all u>0. Since
\ +4*

it follows that

Therefore,
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Let/3(ί) be the solution of the integral equation

(4.7) /,(*) = cp(ί,

or, equivalently, the ordinary differential equation

We shall show that/3(£) increases exponentially fast. This is obvious if a=0.
Next we consider the case α > 0 . By the comparison theorem, c can be chosen
arbitrarily small. We choose cy if necessary, satisfying the following three con-
ditions (4.9), (4.10) and (4.11).

(4 9) / 3 ( δ ) < δ ^ .

Put ^ ) = i n f { ί ^ δ ; / , ( ί ) = r ^ } . For t<Ξ[$,θ(c)], min {Mt)J9(t)1+TM'β*}

=f*(t)1+Tm'fi « by (4.9). Therefore, /,(*) satisfies the equation WΔ = (JL)" / β

dt \ 2 /
af3(t)1+*t~cm/v*, which implies that θ(c)< oo. (We here use the condition ma
^β in (F.2)). On the other hand lim θ(c)=oo. Hence, if c is small enough,

cψo

we have

-p [(!)•"««] »p[(l)"'V)]

(4.11)

For ί^

/

V
— )
2 /

Let x^t) and Λ:2(̂ ) be the solutions of the following equations;

(4.12)
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dt

Then it follows that, for t^θ(c), x^ή^t^ by (4.10) and x2(t)^tm/β by (4.11).
From this, it is not difficult to see that fz{t)=x1(t) for t^θ(c). Thus f3(t) in-
creases exponentially fast. Hence there exists 6>0 such that

(4.14) m)^be»*.

By the comparison theorem, /, ̂  /2 Ξ> /3 ̂  be*'. Put h(t)=rm/βf2(t). Then, since
f(t)^h(t), it is sufficient to show that h(t)=ca if t is large enough. Suppose that
h(t)<oo for every t>8. Noting that h(t)-+oo as ί-*oo and using Lemma 1, we
have

(4.15) supjg- W </j_y / β + 1 for some f>0.

By (4.6), (4.15), we have for t^t'

dh(t) m m/β r, , . m/β df2(t)
dt βt J A ! dt

( 1

It then follows that

\>»/β+l ΓΛC« Aγ foo Jχ

ΛF(),2/

for any t^.t'y which is a contradiction.
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