

Title	On nonexistence of global solutions for some nonlinear integral equations
Author(s)	Sugitani, Sadao
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. 45-51
Version Type	VoR
URL	https://doi.org/10.18910/6078
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Sugitani, S.
Osaka J. Math.
12 (1975), 45-51

ON NONEXISTENCE OF GLOBAL SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS

SADAo SUGITANI

(Received February 1, 1974)

1. Statement of the problem

Let $a(x)$ be a nonnegative continuous function defined on the m -dimensional Euclidean space R^m and let Δ be the Laplacian. Consider the following semi-linear parabolic equation

$$(1.1)_1 \quad \frac{\partial u}{\partial t} = \frac{1}{2} \Delta u + u^{1+\alpha},$$

with the initial condition

$$(1.1)_2 \quad u(0, x) = a(x),$$

and be concerned with non-negative solutions.

H. Fujita [1] has proved that equation (1.1) has a global solution $u(t, x)$ for sufficiently small $a(x)$ when $m\alpha > 2$ but (1.1) has no global solution for any $a(x) \not\equiv 0$ when $m\alpha < 2$. Recently, K. Hayakawa [2] has proved that (1.1) has no global solution even in the critical case $m\alpha = 2$ if the dimension m equals 1 or 2 (and hence $\alpha = 2$ or 1, respectively).

In this paper we shall treat this kind of blowing-up problem for a more general equation as follows. Let $0 < \beta \leq 2$. Let $F(u)$ be a nonnegative continuous function with $F(0) = 0$, defined on $[0, \infty)$, satisfying the following conditions:

(F.1) F is increasing and convex.

(F.2) There exists some $\alpha \in \left[0, \frac{\beta}{m}\right]$ and $c' \in (0, \infty)$, such that

$$\lim_{u \downarrow 0} \frac{F(u)}{u^{1+\alpha}} = c'.$$

$$(F.3) \quad \int_1^\infty \frac{du}{F(u)} < \infty.$$

It is obvious that, for $0 < m\alpha \leq \beta$, $u^{1+\alpha}$ satisfies the above conditions.

Here and hereafter, u denotes a single variable as well as function in obvious

contexts.

For $0 < \beta \leq 2$, let $\left(-\frac{\Delta}{2}\right)^{\beta/2}$ denote the fractional power of the operator $-\frac{\Delta}{2}$. As a generalization of (1.1), we consider the equation

$$(1.2) \quad \begin{cases} \frac{\partial u}{\partial t} = -\left(-\frac{\Delta}{2}\right)^{\beta/2} u + F(u), \\ u(0, x) = a(x). \end{cases}$$

Let $p(t, x)$ be the fundamental solution of (1.2) for $F(u) \equiv 0$, i.e., the density of the semigroup of (m -dimensional) symmetric stable process with index β . It is well known that $p(t, x)$ is given by

$$(1.3) \quad \int_{R^m} e^{iz \cdot x} p(t, x) dx = e^{-t^{1/\beta}} \quad 0 < \beta \leq 2.$$

Using this $p(t, x)$, we can transform (1.2) into the integral equation

$$(A) \quad u(t, x) = \int_{R^m} p(t, x-y) a(y) dy + \int_0^t ds \int_{R^m} p(t-s, x-y) F[u(s, y)] dy, \quad t > 0, \quad x \in R^m.$$

What we are going to prove is the following.

Theorem. *Let $0 < \beta \leq 2$. Suppose that $a(x)$ is a nontrivial ($\not\equiv 0$), non-negative, and continuous function on R^m , that $F(u)$ satisfies (F.1), (F.2), (F.3), and that $p(t, x)$ is defined by (1.3). Then the nonnegative solution $u(t, x)$ of the integral equation (A) blows up, i.e., there exists some $t_0 > 0$ such that $u(t, x) = \infty$ for every $t \geq t_0$ and $x \in R^m$.*

2. Some properties of $p(t, x)$

We here collect some properties of $p(t, x)$ which are required to show our Theorem. By (1.3), we have

$$(2.1) \quad p(t, x) = t^{-m/\beta} p(1, t^{-1/\beta} x),$$

$$(2.2) \quad p(ts, x) = t^{-m/\beta} p(s, t^{-1/\beta} x).$$

Note that $p(t, 0)$ is a decreasing function of t . It is known (see [3; pp. 259–268.]) that

$$\begin{aligned} p(t, x) &= \int_0^\infty f_{t, \beta/2}(s) T(s, x) ds \quad \text{for } 0 < \beta < 2, \\ &= T(t, x) \quad \text{for } \beta = 2, \end{aligned}$$

$$\text{where } f_{t, \beta/2}(s) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{zs - t z^{\beta/2}} dz \geq 0, \quad \sigma > 0, \quad s > 0,$$

$$T(s, x) = \left(\frac{1}{2\pi s}\right)^{m/2} \exp\left(-\frac{|x|^2}{2s}\right).$$

The above relation implies that $p(t, x)$ is a decreasing function of $|x|$, i.e.,

$$(2.3) \quad p(t, x) \leq p(t, y) \quad \text{whenever } |x| \geq |y|.$$

We sometimes write $p(t, |x|)$ for $p(t, x)$. Combining (2.1) and (2.3),

$$(2.4) \quad p(t, x) \geq \left(\frac{s}{t}\right)^{m/\beta} p(s, x) \quad \text{for } t \geq s.$$

Finally, it follows that

$$(2.5) \quad \text{if } p(t, 0) \leq 1 \text{ and } \tau \geq 2, \text{ then } p\left(t, \frac{1}{\tau}(x-y)\right) \geq p(t, x)p(t, y).$$

Because $\frac{1}{\tau}|x-y| \leq \frac{2}{\tau}|x| \vee \frac{2}{\tau}|y| \leq |x| \vee |y|$, and hence $p\left(t, \frac{1}{\tau}(x-y)\right) \geq p(t, |x| \vee |y|) \geq p(t, |x|) \wedge p(t, |y|) \geq p(t, x)p(t, y)$.

3. Preliminary lemmas

Lemma 1. *If F satisfies (F.1) and (F.3), then*

$$(3.1) \quad \lim_{u \rightarrow \infty} \frac{1}{u} F(u) = \infty.$$

Proof. Since F is convex, it is obvious that $\frac{1}{u}(F(u) - F(0))$ is a monotone increasing function. If $\lim_{u \rightarrow \infty} \frac{1}{u}(F(u) - F(0)) = M < \infty$, then $\frac{1}{u}(F(u) - F(0)) \leq M$ for all $u > 0$, i.e., $\frac{1}{Mu} \leq \frac{1}{F(u) - F(0)}$. This contradicts assumption (F.3).

If $F(u)$ is increasing, $F(\infty)$ is defined by

$$(3.2) \quad F(\infty) = \lim_{u \rightarrow \infty} F(u) \leq \infty.$$

Lemma 2. (Jensen's inequality) *Let ρ be a probability measure on R^m and $u(x)$ a nonnegative function. Suppose that $F(u)$ satisfies (F.1). Then we have*

$$(3.3) \quad F\left(\int_{R^m} u d\rho\right) \leq \int_{R^m} F \circ u d\rho.$$

Note that this inequality is valid even when $\int_{R^m} u d\rho = \infty$.

Lemma 3. *Suppose that $F(u)$ ($\not\equiv 0$) satisfies (F.1). Let $u(t, x)$ be a nonnegative solution of (A) and let*

$$(3.4) \quad f(t) = \int_{R^m} p(t, x)u(t, x)dx.$$

Then the following two conditions are equivalent:

- (a) $u(t, x)$ blows up.
- (b) $f(t)$ blows up, i.e., there exists some $t_1 > 0$ such that $f(t) = \infty$ whenever $t \geq t_1$.

Proof. It is enough to show that (b) implies (a). We may assume $p(t_1, 0) \leq 1$, so that $p(t, 0) \leq 1$ for any $t \geq t_1$. If $t_1 \leq t$, $t \leq s \leq \frac{8}{2^\beta + 1}t$, then

$$\begin{aligned} p(8t-s, x-y) &= p\left(s\left(\frac{8t-s}{s}\right), x-y\right) \\ &= \left(\frac{s}{8t-s}\right)^{m/\beta} p\left(s, \left(\frac{s}{8t-s}\right)^{1/\beta}(x-y)\right) \quad \text{by (2.1)} \\ &\geq \left(\frac{s}{8t-s}\right)^{m/\beta} p(s, x)p(s, y) \quad \text{by (2.5).} \end{aligned}$$

Therefore,

$$\int_{R^m} p(8t-s, x-y)u(s, y)dy \geq \left(\frac{s}{8t-s}\right)^{m/\beta} p(s, x)f(s) = \infty.$$

Finally, applying Jensen's inequality to (A) and noting that $F(\infty) = \infty$, we have $u(8t, x) \geq \int_t^{(8/2^\beta+1)t} ds F\left[\int_{R^m} p(8t-s, x-y)u(s, y)dy\right] = \infty$, so that $u(t, x) = \infty$ for any $t \geq 8t_1$ and $x \in R^m$.

4. Proof of the theorem

Let $u(t, x)$ be a nonnegative solution of (A) , then we can find $t_0 > 0$, $c > 0$, $\gamma > 0$ such that $u(t_0, x) \geq cp(\gamma, x)$. In fact, if we choose $t_0 > 0$ such that $p(t_0, 0) \leq 1$, we have

$$\begin{aligned} p(t_0, x-y) &= p\left(t_0, \frac{1}{2}(2x-2y)\right) \\ &\geq p(t_0, 2x)p(t_0, 2y) \quad \text{by (2.5)} \\ &= 2^{-m}p\left(\frac{t_0}{2^\beta}, x\right)p(t_0, 2y) \quad \text{by (2.2).} \end{aligned}$$

Therefore, $u(t_0, x) \geq \int_{R^m} p(t_0, 2y)a(y)dy \cdot 2^{-m} \cdot p\left(\frac{t_0}{2^\beta}, x\right)$. But $u(t+t_0, x)$ satisfies

$$\begin{aligned} (4.1) \quad u(t+t_0, x) &= \int_{R^m} p(t, x-y)u(t_0, y)dy \\ &+ \int_0^t ds \int_{R^m} p(t-s, x-y)F[u(s+t_0, y)]dy \\ &\quad t > 0, x \in R^m, \end{aligned}$$

so that

$$(4.2) \quad u(t+t_0, x) \geq cp(t+\gamma, x) + \int_0^t ds \int_{R^m} p(t-s, x-y) F[u(s+t_0, y)] dy.$$

Hence, by the comparison theorem, it is enough to show that the solution $v(t, x)$ of the equation

$$(B) \quad v(t, x) = cp(t+\gamma, x) + \int_0^t ds \int_{R^m} p(t-s, x-y) F[v(s, y)] dy$$

blows up, or by virtue of Lemma 3, that

$$(4.3) \quad f(t) = \int_{R^m} p(t, x) v(t, x) dx$$

blows up. Multiplying both sides of (B) by $p(t, x)$, and integrating, we have

$$\begin{aligned} (4.4) \quad f(t) &= cp(2t+\gamma, 0) + \int_0^t ds \int_{R^m} p(2t-s, y) F[v(s, y)] dy \\ &\geq cp(1, 0)(2t+\gamma)^{-m/\beta} + \int_0^t ds \left(\frac{s}{2t-s}\right)^{m/\beta} \int_{R^m} p(s, y) F[v(s, y)] dy \\ &\quad \text{(by (2.1), (2.4))} \\ &\geq cp(1, 0)(2t+\gamma)^{-m/\beta} + \int_0^t ds \left(\frac{s}{2t-s}\right)^{m/\beta} F\left[\int_{R^m} p(s, y) v(s, y) dy\right] \\ &\quad \text{(by Jensen's inequality)} \\ &\geq cp(1, 0)(2t+\gamma)^{-m/\beta} + \int_0^t ds \left(\frac{s}{2t}\right)^{m/\beta} F[f(s)]. \end{aligned}$$

Let $\delta > 0$ be a fixed positive constant. Hereafter we always assume $t \geq \delta$.

Put $f_1(t) = t^{m/\beta} f(t)$, then by (4.4),

$$(4.5) \quad f_1(t) \geq cp(1, 0) \left(\frac{\delta}{2\delta+\gamma}\right)^{m/\beta} + \int_\delta^t ds \left(\frac{s}{2}\right)^{m/\beta} F[f_1(s)s^{-m/\beta}].$$

Let $f_2(t)$ be the solution of

$$(4.6) \quad f_2(t) = cp(1, 0) \left(\frac{\delta}{2\delta+\gamma}\right)^{m/\beta} + \int_\delta^t ds \left(\frac{s}{2}\right)^{m/\beta} F[f_2(s)s^{-m/\beta}].$$

By assumption (F.2) and Lemma 1, there exists $\alpha > 0$ such that

$\max\left(\frac{F(u)}{u}, \frac{F(u)}{u^{1+\alpha}}\right) \geq \alpha$ for all $u > 0$. Since

$$s^{m/\beta} F(f_2(s)s^{-m/\beta}) = \frac{F(f_2(s)s^{-m/\beta})}{f_2(s)s^{-m/\beta}} \cdot f_2(s) = \frac{F(f_2(s)s^{-m/\beta})}{(f_2(s)s^{-m/\beta})^{1+\alpha}} \cdot f_2(s)^{1+\alpha} s^{-m/\beta-\alpha}$$

it follows that

$$s^{m/\beta} F(f_2(s)s^{-m/\beta}) \geq \alpha \cdot \min(f_2(s), f_2(s)^{1+\alpha} s^{-m/\beta-\alpha}).$$

Therefore,

$$f_2(t) \geq cp(1, 0) \left(\frac{\delta}{2\delta + \gamma} \right)^{m/\beta} + \int_{\delta}^t ds \left(\frac{1}{2} \right)^{m/\beta} a \cdot \min(f_2(s), f_2(s)^{1+\alpha} s^{-m/\beta-\alpha}) .$$

Let $f_3(t)$ be the solution of the integral equation

$$(4.7) \quad f_3(t) = cp(1, 0) \left(\frac{\delta}{2\delta + \gamma} \right)^{m/\beta} + \int_{\delta}^t ds \left(\frac{1}{2} \right)^{m/\beta} a \cdot \min(f_3(s), f_3(s)^{1+\alpha} s^{-m/\beta-\alpha}) ,$$

or, equivalently, the ordinary differential equation

$$(4.8) \quad \begin{cases} \frac{df_3(t)}{dt} = \left(\frac{1}{2} \right)^{m/\beta} a \cdot \min(f_3(t), f_3(t)^{1+\alpha} t^{-m/\beta-\alpha}) , \\ f_3(\delta) = cp(1, 0) \left(\frac{\delta}{2\delta + \gamma} \right)^{m/\beta} . \end{cases}$$

We shall show that $f_3(t)$ increases exponentially fast. This is obvious if $\alpha=0$. Next we consider the case $\alpha>0$. By the comparison theorem, c can be chosen arbitrarily small. We choose c , if necessary, satisfying the following three conditions (4.9), (4.10) and (4.11).

$$(4.9) \quad f_3(\delta) < \delta^{m/\beta} .$$

Put $\theta(c) = \inf \{t \geq \delta; f_3(t) = t^{m/\beta}\}$. For $t \in [\delta, \theta(c)]$, $\min \{f_3(t), f_3(t)^{1+\alpha} t^{-m/\beta-\alpha}\} = f_3(t)^{1+\alpha} t^{-m/\beta-\alpha}$ by (4.9). Therefore, $f_3(t)$ satisfies the equation $\frac{df_3(t)}{dt} = \left(\frac{1}{2} \right)^{m/\beta} a f_3(t)^{1+\alpha} t^{-m/\beta-\alpha}$, which implies that $\theta(c) < \infty$. (We here use the condition $m\alpha \leq \beta$ in (F.2)). On the other hand $\lim_{c \downarrow 0} \theta(c) = \infty$. Hence, if c is small enough, we have

$$(4.10) \quad \frac{\exp \left[\left(\frac{1}{2} \right)^{m/\beta} a t \right]}{t^{m/\beta}} \geq \frac{\exp \left[\left(\frac{1}{2} \right)^{m/\beta} a \theta(c) \right]}{\theta(c)^{m/\beta}} \quad t \geq \theta(c) ,$$

$$(4.11) \quad \theta(c)^{-m/\beta-\alpha} \leq \alpha \left(\frac{1}{2} \right)^{m/\beta} a \int_{\theta(c)}^t s^{-m/\beta-\alpha} ds + t^{-m/\beta-\alpha} \quad t \geq \theta(c) .$$

For $t \geq \theta(c)$,

$$\begin{cases} f_3(\theta(c)) = \theta(c)^{m/\beta} , \\ \frac{df_3(t)}{dt} = \left(\frac{1}{2} \right)^{m/\beta} a \cdot \min(f_3(t), f_3(t)^{1+\alpha} t^{-m/\beta-\alpha}) . \end{cases}$$

Let $x_1(t)$ and $x_2(t)$ be the solutions of the following equations;

$$(4.12) \quad \begin{cases} x_1(\theta(c)) = \theta(c)^{m/\beta} , \\ \frac{dx_1}{dt} = \left(\frac{1}{2} \right)^{m/\beta} a x_1 , \end{cases}$$

$$(4.13) \quad \begin{cases} x_2(\theta(c)) = \theta(c)^{m/\beta}, \\ \frac{dx_2}{dt} = \left(\frac{1}{2}\right)^{m/\beta} \alpha x_2^{1+\alpha} t^{-m/\beta-\alpha}. \end{cases}$$

Then it follows that, for $t \geq \theta(c)$, $x_1(t) \geq t^{m/\beta}$ by (4.10) and $x_2(t) \geq t^{m/\beta}$ by (4.11). From this, it is not difficult to see that $f_3(t) = x_1(t)$ for $t \geq \theta(c)$. Thus $f_3(t)$ increases exponentially fast. Hence there exists $b > 0$ such that

$$(4.14) \quad f_3(t) \geq b e^{bt}.$$

By the comparison theorem, $f_1 \geq f_2 \geq f_3 \geq b e^{bt}$. Put $h(t) = t^{-m/\beta} f_2(t)$. Then, since $f(t) \geq h(t)$, it is sufficient to show that $h(t) = \infty$ if t is large enough. Suppose that $h(t) < \infty$ for every $t > \delta$. Noting that $h(t) \rightarrow \infty$ as $t \rightarrow \infty$ and using Lemma 1, we have

$$(4.15) \quad \sup_{t \geq t'} \frac{m}{\beta t} \frac{h(t)}{F(h(t))} \leq \left(\frac{1}{2}\right)^{m/\beta+1} \quad \text{for some } t' > 0.$$

By (4.6), (4.15), we have for $t \geq t'$

$$\begin{aligned} \frac{dh(t)}{dt} &= -\frac{m}{\beta t} t^{-m/\beta} f_2(t) + t^{-m/\beta} \frac{df_2(t)}{dt} \\ &= -\frac{m}{\beta t} t^{-m/\beta} f_2(t) + \left(\frac{1}{2}\right)^{m/\beta} F(f_2(t) t^{-m/\beta}) \\ &= \left(\frac{1}{2}\right)^{m/\beta} F(h(t)) - \frac{m}{\beta t} h(t) \\ &\geq \left(\frac{1}{2}\right)^{m/\beta+1} F(h(t)). \end{aligned}$$

It then follows that

$$\left(\frac{1}{2}\right)^{m/\beta+1} (t - t') \leq \int_{h(t')}^{h(t)} \frac{dx}{F(x)} \leq \int_{h(t')}^{\infty} \frac{dx}{F(x)} < \infty$$

for any $t \geq t'$, which is a contradiction.

OSAKA UNIVERSITY

References

- [1] H. Fujita: *On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$* , J. Fac. Sci. Univ. Tokyo Sect I, **13** (1966), 109–124.
- [2] K. Hayakawa: *On nonexistence of global solutions of some semilinear parabolic differential equations*, Proc. Japan Acad. **49** (1973), 503–505.
- [3] K. Yosida: *Functional Analysis*, Springer, 1966.

