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1. Statement of the problem

Let a(x) be a nonnegative continuous function defined on the m-dimensional
Euclidean space R™ and let A be the Laplacian. Consider the following semi-
linear parabolic equation

Ou 1
1.1 ) v __A 1+ R
(1.1 ot 2T
with the initial condition

(1.1), u(0, x) = a(x),

and be concerned with non-negative solutions.

H. Fujita [1] has proved that equation (1.1) has a global solution u(z, x)
for sufficiently small a(x) when ma>>2 but (1.1) has no global solution for any
a(x)=0 when ma<<2. Recently, K. Hayakawa [2] has proved that (1.1) has no
global solution even in the critical case ma=2 if the dimension m equals 1 or 2 (and
hence a=2 or 1, respectively).

In this paper we shall treat this kind of blowing-up problem for a more
general equation as follows. Let 0<B=<2. Let F(x) be a nonnegative con-
tinuous function with F(0)=0, defined on [0, ), satisfying the following con-
ditions:

(F.1) Fis increasing and convex.

(F.2) There exists some aE[O, ﬁ] and ¢’€(0, o), such that
m

imf® _ .

wyo it

- d
(F.3) SIWZ)QX"

It is obvious that, for 0<ma<p3, u'*® satisfies the above conditions.
Here and hereafter, u denotes a single variable as well as function in obvious
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contexts.

B/2
For 0<B<2, let ( —%) denote the fractional power of the operator

—%. As a generalization of (1.1), we consider the equation

PR

u(0, x) = a(x).
Let p(¢, x) be the fundamental solution of (1.2) for F(u)=0, i.e., the density

of the semigroup of (m-dimensional) symmetric stable process with index 3.
It is well known that p(¢, x) is given by

(1.2)

(1.3) [ e=sp(t, e = eome? 0<ps2.
Using this p(¢, x), we can transform (1.2) into the integral equation
@ ) ={ e a—yaidy+{as | pe—s, x—y)Flus y)1ay,
t>0, x=R™.
What we are going to prove is the following.

Theorem. Let 0<B=<2. Suppose that a(x) is a nontrivial (%0), non-
negative, and continuous function on R™, that F(u) satisfies (F.1), (F.2), (F.3),
and that p(t, x) is defined by (1.3). Then the nonnegative solution u(t, x) of the
integral equation (A) blows up, i.e., there exists some t,>>0 such that u(t, x)=oco
for every t=t, and x= R™.

2. Some properties of p(t, x)

We here collect some properties of p(¢, x) which are required to show our
Theorem. By (1.3), we have

(2.1) P2, x) = t™"Pp(1, t/Px),
2.2) Pts, x) = £/ p(s, t/Px) .

Note that p(¢, 0) is a decreasing function of . It is known (see [3; pp. 259-
268.]) that

(2, %) = S“’ foon(&)T(s, x)ds  for 0<B8<2,
= T(t, x) for =2,

h — 1 fotie s—12P/?
where Sepn(s) = - e* dz=0, 0>0,5s>0,

=5
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1\ lxl 2
o= (L) o2
(s, x) 7 exp 5
The above relation implies that p(¢, x) is a decreasing function of |x|, i.e.,
(2.3) Pt ¥)=p(ty)  whenever |l =yl .
We sometimes write p(¢, |x|) for p(¢, x) . Combining (2.1) and (2.3),

2.4) at, x)z<%>m/pp(s, %) for t=s.
Finally, it follows that

2.5) if p(t,0)<1 and 7=2, then p(z, %(x—y))@ 2t Dp(E, 9) -

Because 1 |x—y] ég || v zly[ <|x| v|yl|, and hence p(t, ~1—(x——y)>
T T T T
Zp@, |x] vIyD)zp, %) A o [ y1)Z p(2, %)p(2, 3)-
3. Preliminary lemmas
Lemma 1. If F satisfies (F.1) and (F.3), then
(3.1) lim-L F(u) = oo .

4poo 7Y
Proof. Since F is convex, it is obvious that l(F (#)—F(0)) is a monotone
u
increasing function. If lim 1 (F(#)—F(0))=M< oo, then 1 (F(u)—F@0) =M
e u
1 _ 1

Mu~ F(u)—F(0)
If F(u) is increasing, F(co) is defined by

for all u>0, i.e., This contradicts assumption (F.3).

(3.2) F(o0) = }om.} Flu)ysoo.

Lemma 2. (Jensen’s inequality) Let p be a probability measure on R™ and
u(x) a nonnegative function. Suppose that F(u) satisfies (F.1). Then we have

(3.3) F(S udp>§g Foudp .
R™ R™
Note that this inequality is valid even when g udp=roo.
Rm

Lemma 3. Suppose that F(u) (%£0) satisfies (F.1). Let u(t, x) be a
nonnegative solution of (A) and let

(3.4) f(t) = Sm P2, X)u(t, x)dx .
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Then the following two conditions are equivalent:

(@) u(t, x) blows up.

(b) f(2) blows up, i.e., there exists some t,>0 such that f(t)=oco whenever t=t,.
Proof. It is enough to show that (b) implies (a). We may assume p(t,, 0)

t, then

=<1, so that p(¢, 0)<1 for any t=¢,. If t,<t, t<s< Zf"i—l

p(8t—s, x—y) = p(s (8 ts—s), x—y)

= (8 t‘_s)mmp(s, (Ws_s)w(%y)) by (2.1)

2 (5,5) " b6 a)p(s, ) by (25).

Therefore,

s \m/8
[ 8=, x—yuts, vz ()", 2)ft6) =eo

Finally, applying Jensen’s inequality to (4) and noting that F(co)=o0, we have
8/2841

u(st, x);g( /2641
t

t=8¢, and x= R™.

tdsF [S p(8t—s, x—y)u(s, y)dy]= oo, so that u(t, x)=oo for any
Rﬂl

4. Proof of the theorem

Let u(t, x) be a nonnegative solution of (4), then we can find ¢,>0, ¢>0,
v>0 such that u(t,, x)=cp(v, x). In fact, if we choose £,>>0 such that p(%, 0)
<1, we have

Pt x—y) = P(to: % (2x—2y))
> Pt 26)p(te 29) by (2.5)
=27k, )pa ) by 22).

Therefore, u(t, %)= _p(t, Zy)a(y)dy-Z"”-p(%, x). But u(t-+1, %) satisfies
Rm

(4.1) e+, %) = | plt, s—y)ulte, )by

+ (s | pte—s, x—3)Fluts+-1, 31y
t>0, x€R™,

so that
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(4.2)  u(t+t, x)=cpt+y, x)+ S'ds Sm P(t—s, 5—)Flu(s+to, y)1dy .

Hence, by the comparison theorem, it is enough to show that the solution (%, x)
of the equation

(B) ot, ¥) = ep(t+v, 9+ [ ds | __plt—s, x—9)Flo(s, 5)1dy
blows up, or by virtue of Lemma 3, that
(4.3) ft) = ng (2, X)o(t, %)dx
blows up. Multiplying both sides of (B) by p(,x), and integrating, we have
@4 f) = cpetr, 0+ as | pat—s, »FLts, yldy
-m/, ¢ s m/p
2 ap(1, 0)2t-+1) 0+ [ as ()™ pts, ) Flets, ey
(by (2.1), (2.4))

2 (1, 0) e+ e+ (s (LY FI{_pte, ot )]

(by Jensen’s inequality)
m t s m/B
2 op(1, 0)@+7) o+ ds () FLfo]

Let 6>0 be a fixed positive constant. Hereafter we always assume £=3.
Put f,(1)=t™/#f(t), then by (4.4),

@5 foza,0( )"+ [ a (L) Faee.

254 2
Let £,(t) be the solution of ‘
_ 5 \™B (*, [s\™* -
@8 Lo =al0) (=) "+ as(5) FLe.

By assumption (F.2) and Lemma 1, there exists >0 such that

max (E(_u)_ , F—??})@a for all u>0. Since
u u

SMBE(f(s)s™™B) = F%?%Q < fils) = (1;((35{)':?’/:;@- . fi(s) HasmIe @

it follows that
SBE(f(5)5™™P) Za-min (fs), £ P?).

Therefore,
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f=ep(1, 0) (Qg%;yw*‘ S;ds (é-)m/ﬂ-a-min (f(5)s fo(s) o518 @)

Let f,() be the solution of the integral equation

(4.7) fit) = ep(1,0) (28—?_;>m/3+5:d3 (%)"" P a-min (fi(s), fuls) T4 ),

or, equivalently, the ordinary differential equation

PO _ (LY aemin (1), ey ),
. |-

£8) = a1, 0)(5:2 )"

=cp(L, O)|=——) -

3 b 261

We shall show that f(£) increases exponentially fast. This is obvious if a=0.
Next we consider the case a>0. By the comparison theorem, ¢ can be chosen

arbitrarily small. We choose ¢, if necessary, satisfying the following three con-
ditions (4.9), (4.10) and (4.11).

49) f(8)< 8™
Put 6(c)=inf {t=38; f()=t""*}. For te[s,0(c)], min {£i(t), fi()+ ™"}

m/B
=fy(t)"**t"™/®* by (4.9). Therefore, f,(t) satisfies the equation %(tt) = (%)
af(£)**t~™/®%  which implies that (c)<co. (We here use the condition ma

=g in (F.2)). On the other hand lim 6(c)=cc. Hence, if ¢ is small enough,

cy0

we have
()7 ]_el(3)""ot]
(+.10) o B t20(0),
_ 1\™/8 (¢
4.11 mipo< o — -m/B oo | s-m/p o > .
(4.11) 8(c) _a(2> asws ds+-t t=0(c)

For t=6(c),

’ f(0(e)) = 0(cy™*,

P — (1) a-min (10 Sy

dt 2

Let x,(t) and x,() be the solutions of the following equations;
{ x,(0(c)) = 0(c)™*,

dx, _ (L)"’”‘ax
dt 2 v

(4.12)
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{ x2(6(c)) = 0(c)™*

(4.13)
2

Then it follows that, for £=0(c), x,(#)=t"? by (4.10) and x,(¢)=¢""* by (4.11).
From this, it is not difficult to see that fy(t)=x,(f) for £=0(c). Thus f,(¢) in-
creases exponentially fast. Hence there exists 5>0 such that

(4.14) ft)=zbe" .

By the comparison theorem, f,= f,= f,=be®. Put h(t)=¢""/8f,(t). Then, since
f(®)=h(2), it is sufficient to show that ()= if ¢ is large enough. Suppose that
h(t)< oo for every t>3. Noting that k(f)—co as —co and using Lemma 1, we
have

(4.15) sup 2. h) )mmﬂ for some #>0.
2P B Fhie)

By (4.6), (4.15), we have for t=¢'

did(tt_) — IB t-"’/ﬂf (t)‘l‘ B 2\ q z(t)

—memip () e
1\™/# m
— (5) F((0)~ b
> (%)"WHF(h(t)).
It then follows that

(%)mm+ (t=t)= sha /) F(Zi) <$:(t’)li% <o

for any t=¢, which is a contradiction.
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