

Title	An integral representation on the path space for scattering length			
Author(s)	Takahashi, Yoichiro			
Citation	Osaka Journal of Mathematics. 1990, 27(2), p. 373-379			
Version Type	VoR			
URL	https://doi.org/10.18910/6081			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

AN INTEGRAL REPRESENTATION ON THE PATH SPACE FOR SCATTERING LENGTH

Dedicated to Professor N. Ikeda on the occasion of his sixtieth birthday

Yoichiro TAKAHASHI

(Received June 22, 1989)

0. The scattering length Γ is the limit of the scattering amplitude $f_k(e, e')$ as the wave number k tends to 0. It is independent of the choice of unit 3-vectors e and e'. The scattering amplitude is defined as the unique constant $f_k(e, e')$ such that there holds the asymptotics

$$\phi_k(x) \sim e^{ik\langle u,e\rangle} + f_k(e,e') e^{ik\langle u,e'\rangle}/|x|$$
 as $|x| \to \infty$ $\left(e' = \frac{x}{|x|}\right)$

for a solution ϕ_k , called the scattering solution, of the equation

$$\Delta\phi_k - v\phi_k = -k^2 \phi_k \,,$$

where v is a given potential which is assumed to be nonnegative and integrable. As M. Kac proved,

(1)
$$\Gamma = \frac{1}{2\pi} \int_{\mathbb{R}^3} v(x) \,\phi_0(x) \,dx$$

where $\phi_0(x)$ is the solution of

(2)
$$\phi_0(x) = 1 - \frac{1}{2\pi} \int_{\mathbb{R}^3} \frac{v(y) \phi_0(y)}{|x - y|} dy.$$

In [4], M. Kac gave the formula

(3)
$$\Gamma = \frac{1}{2\pi} \lim_{t \to \infty} \frac{1}{t} \int_{\mathbb{R}^3} E_x [1 - \exp(-\int_0^t v(w(s)) \, ds)] \, dx$$

where E_{\star} denotes the expectation with respect to the three dimensional Brownian motion starting at x. He conjectured that

- (C1) the scattering length $\Gamma = \Gamma(\alpha v)$ for the potential αv has limit as α goes to infinity and
- (C2) the limit, say γ_v , is independent of the choice of potential v and depends only on the support $U = \{x; v(x) > 0\}$.

The purpose of the present note is to prove the conjecture C1-2 by giving an integral representation of the scattering length $\Gamma(v)$ on the path space W,

where $W=\mathcal{C}((-\infty, +\infty), \mathbb{R}^3)$ for the above case.

1. Let us state the result in a little more general setup. Consider a transient Markov process with state space R which admits a reversible invariant measure λ . Assume that R is a Polish space, λ is a Radon measure on R and the path is continuous. Now we define the *scattering length* by the formula

(3)'
$$\Gamma(v) = \lim_{t \to \infty} \frac{1}{t} \int_{R} E_{x} [1 - \exp\left(-\int_{0}^{t} v(w(s)) ds\right)] \lambda(dx)$$

for continuous functions v with compact support on R, where E_x denotes the expectation with respect to the Markov process starting at x. A proof of the existence is given in Lemma 2 below.

By the reversibility the path may be considered to be defined for both positive and negative time and then, given a starting point x=w(0) at time 0, the process w(-t), $t \ge 0$, is an independent copy of w(t), $t \ge 0$. So we take

$$W = \mathcal{C}((-\infty, +\infty), R)$$

and define a measure Λ on the path space W by

$$\int_{W} \Lambda(dw) \, \Phi(w) = \int_{R} \lambda(dx) \int_{W} P_{x}(dw) \, \Phi(w)$$

for bounded Borel function Φ on W, where P_x denotes the law of the Markov process starting at x at the initial time 0.

Theorem. Let v be a nonnegative continuous function with compact support on R. Then,

(4)
$$\Gamma(v) = \int_{S(v)} \Lambda(dw) \frac{1 - \exp\left(-\int_{-\infty}^{+\infty} v(w(t)) dt\right)}{\int_{-\infty}^{+\infty} v(w(t)) dt} v(w(0))$$

where

(5)
$$S = S(v) = \{w; \int_{-\infty}^{+\infty} v(w(t)) dt > 0\}.$$

REMARK 1. It is known [4] that $\Gamma(v) \leq C(K)$, where C(K) is the electrostatic capacity of the closure K of the set

$$U = \{x; v(x) > 0\}$$

for the 3-dimensional Brownian motion. Similar bounds hold in general cases. Hence, $\Gamma(v)$ is finite if so is the capacity C(K).

Corollary. Let u and v be two nonnegative continuous function with common support U. Then the limit $\lim_{\alpha \to \infty} \Gamma(\alpha u)$ exists and is equal to $\lim_{\alpha \to \infty} \Gamma(\alpha v)$.

Consequently, the conjecture (C1-2) is true.

REMARK 2. The proof given below works for certain nonegative Borel functions v, such as the indicator of a compact set which is the closure of its interior. Thus Corollary is also valied for such functions.

Proof of Corollary. From the formula (4) it follows that the monotone limit $\lim_{n\to\infty}\Gamma(\alpha v)$ exists and is equal to

(6)
$$\int_{S} \Lambda(dw) \frac{v(w(0))}{\int_{-\infty}^{+\infty} v(w(t)) dt}.$$

Since λ is an invariant measure for the Markov process (W, P_x) , the measure Λ is invariant under the time shift $w(t) \rightarrow w(t+s)$ for any s. Furthermore, it is invariant under the time reversion $w(t) \rightarrow w(-t)$ by the reversibility of λ .

Keeping in mind these properties and the facts that S is common for u and v and that the functions

$$\int_{-\infty}^{+\infty} v(w(t)) dt \quad \text{and} \quad \int_{-\infty}^{+\infty} u(w(t)) dt$$

are invariant under either of the shift and the reversion, we obtain

$$\begin{split} &\lim \Gamma(\alpha v) \\ &= \int_{S} \Lambda(dw) \frac{v(w(0))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \\ &= \int_{S} \Lambda(dw) \frac{v(w(0))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \frac{\int_{-\infty}^{+\infty} u(w(s)) ds}{\int_{-\infty}^{+\infty} u(w(t)) dt} \\ &= \int_{-\infty}^{+\infty} ds \int_{S} \Lambda(dw) \frac{v(w(0))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \frac{u(w(s))}{\int_{-\infty}^{+\infty} u(w(t)) dt} \\ &= \int_{-\infty}^{+\infty} ds \int_{S} \Lambda(dw) \frac{v(w(-s))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \frac{u(w(0))}{\int_{-\infty}^{+\infty} u(w(t)) dt} \\ &= \int_{-\infty}^{+\infty} ds \int_{S} \Lambda(dw) \frac{v(w(s))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \frac{u(w(0))}{\int_{-\infty}^{+\infty} u(w(t)) dt} \\ &= \int_{S}^{+\infty} \Lambda(dw) \frac{v(w(0))}{\int_{-\infty}^{+\infty} v(w(t)) dt} \frac{\int_{-\infty}^{+\infty} v(w(s)) ds}{\int_{-\infty}^{+\infty} v(w(s)) ds} \\ &= \int_{S}^{+\infty} \Lambda(dw) \frac{u(w(0))}{\int_{-\infty}^{+\infty} v(w(s)) ds} \frac{\int_{-\infty}^{+\infty} v(w(s)) ds}{\int_{-\infty}^{+\infty} v(w(s)) ds} \end{split}$$

$$= \int_{S} \Lambda(dw) \frac{u(w(0))}{\int_{-\infty}^{+\infty} u(w(t)) dt} = \lim_{n \to \infty} \Gamma(\alpha u).$$

Consequently, we obtain Corollary.

2. Now let us proceed to the proof of Theorem. At first we give another expression for the scattering length Γ . For this sake we prepare the following:

Lemma 1. For a continuous function v with compact support on R,

(7)
$$\int_{0}^{T} dt \, E_{x}[v(w(t)) \exp \left\{-\int_{0}^{t} v(w(s)) \, ds\right\}]$$
$$= 1 - E_{x}[\exp \left\{-\int_{0}^{T} v(w(t)) \, dt\right\}] \quad (0 \le T \le \infty).$$

Proof. For $T < \infty$ the left hand side is equal to

$$\int_{0}^{T} dt \, E_{x} \left[-\frac{d}{dt} \exp \left\{ -\int_{0}^{t} v(w(s)) \, ds \right\} \right],$$

which is equal to the right hand side. For $T=\infty$ the convergence is assured by the monotonicity, or, directly, by the transience:

$$\int_0^\infty E_x[v(w(t))] dt < \infty.$$

Lemma 2. Let v be a nonnegative continuous function with compact support on R. Then,

(8)
$$\Gamma(v) = \int_{W} \Lambda(dw) \, v(w(0)) \exp \left\{ -\int_{0}^{\infty} v(w(t)) \, dt \right\}$$
$$= \int_{R} \lambda(dx) \, v(x) \, E_{z} \left[\exp \left\{ -\int_{0}^{\infty} v(w(t)) \, dt \right\} \right].$$

Proof. Note that

$$E_{x}[1-\exp\{-\int_{0}^{t}v(w(s))\,ds\}]$$

$$=E_{x}[\int_{0}^{t}ds\,v(w(s))\exp\{-\int_{0}^{s}v(w(r))\,dr\}].$$

Integrating this against λ , we obtain

$$\frac{1}{t} \int_{W} \Lambda(dw) \left[1 - \exp\left\{ - \int_{0}^{t} v(w(s)) \, ds \right\} \right]$$

$$= \frac{1}{t} \int_{0}^{t} ds \int_{W} \Lambda(dw) \, v(w(s)) \exp\left\{ - \int_{0}^{s} v(w(r)) \, dr \right\}$$

$$= \frac{1}{t} \int_{0}^{t} ds \int_{W} \Lambda(dw) \, v(w(0)) \exp\left\{ - \int_{-s}^{0} v(w(r)) \, dr \right\}$$
(by the shift invariance)

$$= \frac{1}{t} \int_0^t ds \int_W \Lambda(dw) \, v(w(0)) \exp \left\{ - \int_0^s v(w(r)) \, dr \right\}$$
(by the reversibility)
$$\to \int_W \Lambda(dw) \, v(w(0)) \exp \left\{ - \int_0^\infty v(w(t)) \, dt \right\}$$

as $t \rightarrow \infty$, as is desired.

The formula (8) together with (7) enables us to compute the derivative of the functional Γ at v, which will be denoted by $D\Gamma(v)$:

(9)
$$D\Gamma(v)f = \lim_{t \downarrow 0} \frac{1}{t} \left\{ \Gamma(v + tf) - \Gamma(v) \right\}$$

for nonnegative continuous functions f with compact support on R. One can remove the restriction that f is nonnegative and may prove that $D\Gamma(v)$ is the Fréchet derivative. But here we only need the Gateaux derivative from the right, whose existence is obvious from the formula (7) by virtue of the transience.

Lemma 3. The following formula holds for $D\Gamma(v)$:

(10)
$$D\Gamma(v)f = \int_{R} \lambda(dx) f(x) \left(E_{x} \left[\exp \left\{ - \int_{0}^{\infty} v(w(t)) dt \right\} \right] \right)^{2}$$
$$= \int_{W} \Lambda(dw) f(w(0)) \exp \left\{ - \int_{-\infty}^{\infty} v(w(t)) dt \right\}.$$

Proof. Let us differentiate the second expression for Γ in (7). Let us write

$$g(x) = E_x[\exp \left\{-\int_0^\infty v(w(s)) ds\right\}].$$

Then,

$$\begin{split} \frac{d}{dt}|_{t=0+} & \Gamma(v+tf) \\ &= \int_{R} \lambda(dx) f(x) g(x) \\ &+ \int_{R} \lambda(dx) v(x) E_{x} [-\int_{0}^{\infty} f(w(s)) ds \exp \{-\int_{0}^{\infty} v(w(t)) dt\}] \\ &= \int_{R} \lambda(dx) f(x) g(x) \\ &- \int_{0}^{\infty} ds \int_{W} \Lambda(dw) v(w(0)) f(w(s)) \exp \{-\int_{0}^{\infty} v(w(t)) dt\} . \end{split}$$

Now the second term can be written as

$$-\int_0^\infty ds \int_W \Lambda(dw) \, v(w(-s)) \exp \left\{-\int_{-s}^0 v(w(t)) \, dt\right\} \, f(w(0)) \exp \left\{-\int_0^\infty v(w(s)) \, ds\right\}$$
 (by the shift invariance)

$$= -\int_0^\infty ds \int_W \Lambda(dw) \ v(w(-s)) \exp \left\{-\int_{-s}^0 v(w(t)) \ dt\right\} f(w(0)) g(w(0))$$
(by the Markov property)
$$= -\int_0^\infty ds \int_R \lambda(dx) f(x) g(x) E_x[v(w(s)) \exp \left\{-\int_0^s v(w(t)) \ dt\right\}]$$
(by the reversibility)
$$= -\int_R \lambda(dx) f(x) g(x) [1-g(x)]$$

by virtue of Lemma 2. Consequently,

$$D\Gamma(v)f = \int_{\mathbf{R}} \lambda(dx) f(x) g(x)^{2}.$$

Finally, by the reversibility we obtain the expression

$$g(x)^{2} = (E_{x}[\exp \{-\int_{0}^{\infty} v(w(s)) ds\}])^{2} = E_{x}[\exp \{-\int_{-\infty}^{\infty} v(w(s)) ds\}].$$

The proof is completed.

Proof of Theorem. From Lemma 3 it follows that

$$rac{d}{dlpha} \Gamma(lpha v) = \int_{\mathcal{S}} \Lambda(dw) \, v(w(0)) \exp \left\{-lpha \int_{-\infty}^{\infty} v(w(s)) \, ds \right\} + \int_{\mathcal{S}^c} \Lambda(dw) \, v(w(0)) \, .$$

Note that $\Gamma(\alpha v) \to 0$ as $\alpha \to 0$ and that the second term in the right hand side vanishes because of the definition of the set S and the continuity of the path. Consequently, we obtain

$$\Gamma(v) = \int_0^1 d\alpha \int_S \Lambda(dw) v(w(0)) \exp \left\{-\alpha \int_{-\infty}^\infty v(w(s)) ds\right\}$$

$$= \int_S \Lambda(dw) v(w(0)) \frac{1 - \exp \left\{-\int_{-\infty}^\infty v(w(s)) ds\right\}}{\int_{-\infty}^\infty v(w(s)) ds\}}.$$

Hence the proof is completed.

REMARK 3. In the case of three dimensional Brownian motion the constant γ_U with U=int K coincides for "nice" compacts K called *semiclassical* by Kac [2] (cf. [3] for counter-example) with the electrostatic capacity C(K), for which a similar result to (3) (and more) was obtained earlier by F. Spitzer [7]. A further historical remark can be found in [6].

References

- [1] N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes, 2nd edition, Kodansha/Elsevier, 1989.
- [2] M. Kac: On some connection between probability theory and differential and integral equations, Proc. Second Berkeley Symposium on Math. Stat. and Probab., 189-215, Univ. of Calif. Press, 1951.
- [3] M. Kac: Aspects Probabilistes de la Théorie du Potentiel, Les Presses de l'Université de Montréal, 1970.
- [4] M. Kac: Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math. 4 (1974), 511-537.
- [5] M. Kac and J.-M. Luttinger: Scattering length and capacity, Ann. Inst. Fourier, Grenoble, 25 (1975), 317-321.
- [6] H. Kesten: The influence of Mark Kac on probability theory, Ann. Probab. 14 (1986), 1103-1128.
- [7] F. Spitzer: Electrostatic capacity, heat flow and Brownian motion,. Z für Wahrsch., 3 (1965), 110-121.

Department of Pure and Applied Sciences College of Arts and Sciences University of Tokyo, Komaba, Tokyo, Japan