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Thermo-Mechanical-Metallurgical Model of Welded Steel”

Part I: Evolution Equations for Internal Material Structures

Yukio UEDA¥*, Jacek RONDA,** Hidekazu MURAKAWA***, Kenji IKEUCHI****

Abstract

The transient and residual stress distribution in a welded joint is affected by solid-liquid and solid phase
transformation in the HAZ. Metallurgical phenomena are coupled with stress and elastic strain in a dispersed
material particle provided with a multiphase structure. Phase growth laws presented in the literature are given
usually as exponential parabolic forms which are not suitable for incremental finite element analysis of a
coupled thermo-mechanical-metallurgical problem of welding or quenching. Hence an attempt has been made
to rectify the situation with transformation kinetic laws. A unified mathematical procedure applied to several
transformation models yield phase growth laws in forms of evolution equations . Kinetic equations of various
types have been reviewed to deduce the general forms of diffusional and diffusionless transformation laws. such
generalised kinetic equations will be used in finite element formulation of welding problems with phase

transformation

KEY WORDS: (Welding) (PhaseTransformation) (Microstructure of alloys) (Evolution Equations)
(Kinetic equations) (Thermodynamics) (Gibbs energy)

1. Introduction

In simulation of welding, the model for heat flux gen-
erated by an arc or torch, the model for the weld-
ing bath, and the model of the heat affected zone
(HAZ) are coupled. The weld pool and HAZ fol-
low the arc or torch motion. In the weld pool two
opposing processes: melting and solidification dom-
inate. In the HAZ, a number of phenomena occur
and the most important are: phase transformation,
thermal dilatation, inelastic deformation, and trans-
formation induced plasticity accompanying volumetric
strain effects. Material state in thermo-mechanical-
metallurgical process is defined by the following vari-
ables: the stress rate S, the strain rate E, temperature
#, and vector of phase fractions y. The state vari-
ables called also constitutive variables are defined in a
dispersed particle with internal multiphase structure,
which is called the microregion. The dispersed particle
is of the size of several grains and the Heat Affected
Zone or its greater part is called the mesodomain. The
microregion is considered here as a material portion
like a particle in the classical continuum mechanics.

State variables are coupled and coupling is provided
by a system of three equations expressing: the bal-
ance of virtual work, the balance of internal energy,
and evolution laws for phase fractions. The volu-
metric strain effects, transformation-induced plasti-
city, and plastic straining generate transient and re-
sidual stresses during welding and post-weld heat
treatment. A reaction of welded material through
thermo-mechanical-metallurgical process is determ-
ined by evolution laws for phase fractions, hardening
parameters, constitutive equations for thermoelasti-
city, classical plasticity and transformation-induced
plasticity. Forms of these equations show an influ-
ence of stress, strain, and temperature on the kinet-
ics of phase transformation and, reversely, an effect
of multi-phase material composition on material reac-
tion under combined thermo-mechanical loading. In
this thermo-mechanical-metallurgical modelling, it is
required to know the temperature 6, density of each
phase, thermal and mechanical properties, and their
temperature dependent characteristics for every mi-
croregion at each time throughout the process.
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Thermo-Mechanical-Metallurgical

The main purpose of the first part of this paper is
to give a summary of information related to thermo-
dynamics and kinetics of phase transformation which
is necessary to develop an algorithm for solution of
thermo-mechanical- metallurgical problem of welding.
Formulas for Gibbs free energy at nuclei, equations
for the rate of nucleation, and numerical data related
to micromechanics are presented together with evol-
ution laws for phase transformation. This section
of the paper is also an attempt to rectify the cur-
rent situation with kinetic laws for diffusional and dif-
fusionless phase transformations, and evaluate their
applicability for simulation of HAZ during the cool-
ing process. Basic postulates and notions for vari-
ous transformation laws are studied and their final
forms of ordinary differential equations, called evolu-
tion equations, are presented. These equations show
relations between a phase fraction rate g; and rates
of quantities controlling a phase transformation ex-
pressed in terms of constitutive variables S, E, 6, and
time t. Evolution equations are more suitable for
incremental analysis and they can be used together
with rate type balance laws derived for internal en-
ergy, and virtual work. Balance laws and evolution
equations complete thermo-mechanical-metallurgical
problem formulation. A brief study of mechanisms of
phase transformation helps in motivation of basic as-
sumptions for phase transformation modelling. Vari-
ous types of phase growth laws are reviewed here and
they are found to have heuristic or phenomenological
nature. The kinetic laws are usually presented in the
form of exponential parabolic equations which are not
suitable for consistent incremetal thermo-plastic ana-
lysis. Hence evolution equations have been derived
here for:

o the Johnson-Avrami-Mehl law [29], [41] for the
partial pearlitic transformation which relates
phase fractions of diffusional transformations
with the rate of internal stress, temperature rate
and time,

e the extended Koistinen-Marburger law [27], [28]
for diffusionless transformation modified by in-
ternal stress and pressure, which relates the

" martensite fraction with the rate of hydrostatic
pressure, the rate of equivalent stress, and tem-
perature rate,

o the three-dimensional generalization of the kin-
etic law obtained from thermodynamics and stat-
istical analysis, and shown in [39] for the uniaxial
load. This relates the rate of martensitic fraction
transformation with the rate of strain energy and
the rate of temperature.

The evolution law originally proposed in [38] for the
martensitic transformation and formulated following
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thermodynamical postulates is derived here from the
basic assumption of proportionality of the martensitic
fraction to an increment of the reaction driving force.
This law relates the external loading stress and the av-
erage hydrostatic pressure with the rate of martensitic
fraction, and can also be seen as a generalization of the
Koistinen-Marburger parabolic equation.

Evolution laws reviewed here require more or less
expensive identification of material parameters and
functions due to the involvement of metallurgy in de-
scription of transformation kinetics. The comparison
of different evolution laws accounting for metallurgical
phenomena of various scales helps in choosing models
which do not require expensive experiments for iden-
tification of material functions and model parameters.

Numerical schemes with FEM for several combin-
ations of evolution laws for diffusional and diffusion-
less transformations, and derivations of the consistent
or algorithmic tangent moduli for thermo-mechanical-
metallurgical model of material and numerical results
will be presented in the second part of this paper.

2. Phase Transformations

In making an attempt at modelling of phase
changes, occuring due to welding of steel, the com-
plexity of this task must be realized. Simultaneous
processes which are coupled and accompanied with in-
ternal energy transformations make this task difficult.
Simplifications in a mathematical description of weld-
ing process have been proposed after identification
of physical mechanisms involved in complex thermo-
mechanical-metallurgical phenomena The proposed
model of the process compromises a target preci-
sion and non-complete physical treatment of material
problems. A full physical treatment of such a prob-
lem may not be possible as the plastic deformation of
a body and its thermal loading causes microstructure
evolution, modification of volume fractions, chemical
free energy changes, surface energy changes, and lat-
tice deformation due to relief of internal stresses and
formation of stress-free states [14]. Simplifications
proposed for the mathematical description of solid
phase transformations aim at representing coupled
thermo-mechanical phenomena as a chain of success-
ive processes, ignoring secondary reactions proceed-
ing simultaneously which involve less internal energy
than others, and idealizing the cooling process. An as-
sumption of continuity of cooling is widely adopted as
a common feature of phase transformation modelling.

2.1 Reactions and Transformations

Phase transformations in solids, like all chemical
reactions, are caused by the free energy difference
between a parent and a product phase. The difference
is called a transformation driving force, and can be



aided by pressure, stress and strain as well as temper-
ature. The majority of phase transformations, occur-
ring in the solid state, take place by thermally activ-
ated atomic movement and they are called diffusional
transformations. These transformations are induced
by a change of temperature of an alloy of fixed bulk
composition. The different types of transformations
that are possible can be divided into the following five
groups {10], [19], [41]:

e precipitation reaction,

e cutectoid transformation,
e ordering reaction,

e massive transformation,

e polymorphic changes.

The precipitation reaction transforms a metastable
supersaturated solid solution, Fe — C-ferrite ie. a-
phase into a more stable solid solution which is the
low-carbon ferrite phase ie. a-phase and a stable pre-
cipitate ie. a high-carbon product cementite, FezC.
The eutectoid transformation consists of replacement
of a metastable phase by a more stable mixture of two
other phases. The pearlite reaction is the example
of eutectoid transformation where the significant fea-
ture is the cooperative growth of two phases: the ce-
mentite, as well as the ferrite. The precipitation and
eutectoid transformation are caused by a long-range
diffusion which is involved when phases of different
composition to the matrix are produced. The order-
ing reaction transforms the disordered phase into an
ordered one. The massive transformation is charac-
terized by short range diffusion and consists of a de-
composition of the parent y-phase into one or more
daughter phases, which have the same composition as
the original phase, but different crystal structures. A
product of this transformation can either be stable
or metastable. Such reactions can be illustrated by
the remaining austenite transformation into martens-
ite of a lath or bundle structure. The polymorphic
transformation is observed in a single component sys-
tem when different crystal structures are stable over
different temperature ranges. This transformation
can be illustrated by the transformation of the f.c.c.-
Fe into the b.c.c.-Fe atomic arrangements. Order-
ing, massive, and polymorphic transformations pro-
ceed without any composition change and long-range
diffusion.

In all metals and alloys the diffusional movement
of atoms can be blocked by a rapid cooling, when
a phase transformation can proceed by a cooperat-
ive movement of atoms which is an alternative mech-
anism of atomic movement. The diffusionless trans-
formation which proceeds by cooperative movement
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of atoms during quenching is called the martensitic
transformation. The product of this reaction is either
bainitic ferrite, when reaction occurs below the Wid-
manstatten temperature, or martensite for transform-
ation temperature below M,. Martensite [36], [41]
is characterized by: the atomic movement less than
inter-atomic spacing, lack of chemical decomposition,
the surface relief, and the presence of many lattice im-
perfections. The crystal structure of martensite ob-
tained by quenching of austenite v-phase in carbon
steel has a body-centered tetragonal (b.c.t.) lattice
which may be regarded as the a-lattice with one of
cubic axes elongated. The tetragonality, measured by
the relation of the elongated axis to the basal plane
axis, and the volume of the unit cell increase with the
carbon content.

Each transformation can be split into two stages:
nucleation and growth. The nucleation can be seen as
the new phase incubation period and will appear in
analysis as time-delay of the growth period.

Emphasis has to be put on the fact that only two
long-range diffusional reactions: precipitation and eu-
tectoid transformation will be accounted for by kinetic
laws postulated for diffusional transformations. The
remaining three: ordering, massive, and polymorphic
transformations will be neglected. These assumptions
can be considered as the first step of phase change
idealization. Further simplifications are related to a
thermodynamical process occuring in a material por-
tion.

2.1.1 Mechanisms of Diffusional Transformations

Three distinct steel phases are produced from the
supersaturated y-phase decomposition due to continu-
ous cooling and two diffusional transformations: fer-
ritic, and pearlitic. All quantities related to them will
be marked by the subscript 7. The subscript ¢ assumes
the following values: i = 2 for ferrite ¢ = 3 for pearl-
ite, and 7 = 5 for cementite. The allocation of values
for 7 is arbitrary but the value i = 1 is reserved for
austenite, ¢ = 4 for bainite, and 7 = 6 for martensite,
which is produced by the diffusionless reaction. Such
arrangement of 7 values follows the transformation se-
quence.

The kinetic equations for diffusional phase trans-
formations have been proposed for the idealized ther-
modynamical process based on the following assump-
tions [15], [20]:

e the body is subjected to the continuous cooling
process,

e the microstructure obtained at the end of a con-
tinuous cooling is the result of a succession of
elementary isothermal transformations, and each
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one is independent of the preceding thermal his-
tory.

The later assumption is called the additivity prin-
ciple and is the concept for approximation of a real
cooling process which is different at each material
point of the considered body B. Hence the pro-
gress of an isothermal phase change can be conveni-
ently represented by plotting the phase fraction y
as a function of time ¢ and temperature 6, i.e. the
Transformation-Time-Temperature (TTT) diagram.
The TTT diagram replaces the Continuous-Cooling-
Transformation (CCT) diagram which must be given
for each particular cooling process and material mi-
croregion. The phase fraction y(t, 6) is determined by
the following factors: the nucleation rate, the growth
rate, the density and distribution of nucleation sites,
overlapping of diffusion fields by adjacent transformed
volumes, and the impingment of adjacent transformed
volumes.

The metastable vy-phase (austenite) contains many
nucleation sites after cooling and the following three
schemes of transformation are possible:

o nucleation at the constant rate during the whole
transformation,

e site saturation when all potential nucleation sites
are consumed at the beginning of transformation,

o cellular transformation, when vy = a or v = o +

FesC.

The last scheme is most important for a description
of transformations in steel because this reaction cat-
egory contains the formation of pearlite and bainite,
cellular precipitation, massive transformation and re-
crystallization. The cellular transformation can be
terminated by the impingement of adjacent cells grow-
ing with the constant rate, that reveals an interaction
between mechanical and metallurgical phenomena.

2.1.2 Mechanisms of Diffusional-Diffusionless Bainitic
Transformation

The theory of bainitic reaction based on descrip-
tion of transformation mechanism has been developed
in [2], [45], [46]. The bainitic reaction is partially
diffusional and partially diffusionless transformation
which has been indicated in (3], [4], [5], [6], [7]. The
bainitic ferrite appears due to diffusionless-martensitic
transformation after heterogeneous nucleation on the
austenite grain boundary. Such ferrite sub-unit has a
form of disc. ”Sub-units” form a ”sheaf” which grows
by martensitic propagation of ”sub-units”. A ”sheaf”
size is limited by friction stress on ”sub-units” bound-
aries. This stress oposes and finally terminates the
growth of a sub-unit. The redistribution of carbon
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in ferritic sub-units occurs after actual transforma-
tion event due to carbide, Fe3C, diffusional migration
towards unit boundaries. The nucleation of bainitic
ferrite is consistent with isothermal nucleation theory
proposed in [6]. Hence, the activation energy for the
bainitic reaction is a linear function of a chemical com-
ponent of Gibbs free energy.

2.1.3 Mechanisms of Diffusionless Martensitic
Transformation

The martensitic diffusionless transformation starts
at the M, temperature which depends on the carbon
content in steel, and is also associated with a differ-
ence of Gibbs free energy between martensite and aus-
tenite. This difference is called the driving force and
is influenced by internal pressure, external stress and
temperature. The formation of martensite is a ran-
dom process and this new phase appears in the shape
of lens and spans. A martensitic plate in austenite
grows in 105 to 10~7 seconds at velocity 800 to 1100
m/s and remains coherent with the austenitic mat-
rix. The density of martensitic plates is not related
to the grain size of austenite. The volume fraction
of martensite increases by systematic transformation
of the austenite remaining between the plates already
formed. The martensitic transformation is terminated
at the M; temperature and further cooling does not
increase the amount of martensite. The cooperative
movement of atoms due to martensitic transformation
is influenced by pressure, temperature and external
stress. External tensile or compressive stress can in-
crease the rate of martensitic nucleation when corres-
ponding elastic strains contribute to the Bain strain
produced by the Bain deformation due to the creation
of the b.c.t. lattice from the f.c.c. atomic arrange-
ment. In such cases the temperature M, is raised
[32], [40], [42] and the energy of such additional de-
formation provides the new term in the equation of
the total free energy. The M, is raised in a body
under shear stress because the transformation driving
force is reduced by a portion of the mechanical work
performed by the shear stress [25], [26]. The M, is
affected only by stresses lower than yield stress [12]
and it can not exceed the limiting value My even in
appearance of plastic deformations. The temperature
M, can be suppressed to lower temperatures by hy-
drostatic compression [32] because of a stabilization of
the close-packed austenite under high pressure. This
effect decreases the atomic volume and reduces the
transformation driving force AGy.

Plastic deformation raises to some extent nucleation
and growth of martensite but the large deformation
can suppress the transformation. This mechanism can
be explained by considering dislocations generated by
plastic deformation and nucleation sites. The increase
of dislocation density initially raises the number of



potential nucleation sites but large deformation may
introduce restraints against the growth of nucleus.

2.2 Microstructure in Alloys

2.2.1 Microstructural Topology

The smallest piece of a multiphase polycrystalline
alloy B of the size of one grain is called a microre-
gion [17], [44] or dispersed particle. The microre-
gion is composed of the manifold of particles such
as eg. crystals. This microstructural element occu-
pies a volume V{™° and has a surface AT at time
t = 0. A much larger domain M which is an assembly
of grains is called mesodomain and has a volume
V3¢ and a surface A7*®°. The mesodomain contains
a large number of microregions. A phase is a portion
of the manifold of particles of an alloy whose prop-
erties and composition are homogenous and which is
physically distinct from other properties of an alloy.
The distribution of phases within a mesodomain is as-
sumed statistically homogeneous. The mesodomain
M and the microregion, at arbitrary time ¢, occupies
the volume V™% (¢) and V™#¢(t), respectively. Several
nucleus sites can exist in one microregion and they
generate a number of nuclei of the new phase. Each
nucleus has its own volume V"¢ and a surface A™"°.

2.2.2 Averaging over Mesodomain

An average value {q) over a mesodomain V™€ of
arbitrary microscopic quantity ¢(x), given in microre-
gion V™ is defined by the formula [17]

_ S mes W(X)q(x)dx
(q) = vamu w(x)dx ’

(1)

where x € V™ and the weighting function w(x)
is the density distribution function [16] characterizing
the crystallographic axes of the microregions. The ex-
ample of such averaging is the evaluation of the mac-
rofraction y™¢® which measures the extent of trans-
formation in the mesodomain V™¢* and is defined by

mes __ fVmes w(X)y'”“dx
Y B fVmes w(x)dx ’

mic

(2)

where the microfraction y is taken in the micro-
domain V™€  and Z',A:fl Vme = vmee, Latter the
microfraction y™*® will be marked simply by v.

2.3 Free Energy and Nucleation
2.3.1 Gibbs Energy for Diffusional Transformations

Diffusional transformations: ferritic, and pearlitic
are associated with heterogeneous nucleation. Hence,
the change of Gibbs free energy driving such reactions
is related to heterogeneous nucleation and has the fol-
lowing four contributions:
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e a volume free energy reduction called also the
chemical energy, V,*“*AG.s,, caused by the cre-
ation of volume V;*“¢ of the new phase at tem-
perature where this phase is stable,

¢ a free energy increase, A“%y;, caused by the cre-
ation of an area A}“® of interface of the parent
and daughter phase,

e strain energy, V*“°*AG,,, proportional to the
volume of the new phase inclusion and given per
unit volume,

e afree energy, AGy;,, released by the destruction of
a defect and reducing the activation energy bar-
rier due to the creation of the new phase nucleus.

The subcsript 7 assumes here two values: ¢ = 2 for fer-
ritic transformation, and ¢ = 3 for pearlitic reaction.
The free energy change can be expressed as

AGP* = —V™(AG.u, — AGy,)

+ A?uc‘)/i — AGd,‘: (3)

where V;*%¢ is the nucleus volume, v; is the interfacial
free energy per unit area and it is also the work that
must be done at constant temperature 8 to create unit
area of phases interface. Units of AG?"° are joules per
nucleus. Ignoring the variation of ¥; with interface
orientation and assuming the spherical shape of the
new phase nucleus, Eq.(3) becomes

AGMe = ——%wra(AGchi - AG,,)
+ 4rr’y; — AGy,, (4)

where r is a diameter of the spherical nucleus. The
critical value of r can be evaluated by differentiation

of the RHS with respect to r, and comparing aAgrwc
to zero. These operations yield
P = 271 .
 AGe, — AG,,’
1673
aG; = ] 6
3(AGeh, — AGy,)

where AG? is the critical value of the free energy
AG?™e.
The rate of heterogeneous nucleation [41] is given by

AGn, AG;*
Ni:wicl,'exp(_ ’C30 )exp(— k‘30 )a

(6)

where w; 1s the factor that includes the vibration fre-
quency and the area of the critical nucleus, Cj; is the
concentration of heterogeneous nucleation sites per
unit volume, AGy,, is the activation energy for atomic
migration per atom, AG;* is a change of Gibbs free
energy for the critical nucleus diameter r;, kp is the
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Boltzman constant. The Bolzman constant is given
by kg = R/N,, where N, is the Avogadro number
equal to 6.023 x 10723 and R is the universal gas con-
stant. The rate of nucleation gives number of nuclei
per cubic meter and per second, and the unit of N; is
[nuclei m=3s~1).

2.3.2 Gibbs Energy for Diffusionless Transformations

Two phases are produced due to diffusionless trans-
formations: bainitic ferrite, and martensite. Bainitic
ferrite is marked with subscript £ = 4, and quantities
related to martensite are labelled by subscript &£ = 6.

The Gibbs free energy associated with the forma-
tion of one coherent inclusion, which appears due to
diffusionless transformation, see [41], [30], is expressed
as:

AGR™ = APy, + VP*(AGy, — AGe,), (1)
where AZ%¢y; is the elastic coherency interfacial en-
ergy, v is the austenite-daughter phase interfacial
free energy, AG,, is the strain energy, AGc, Is
the volume free energy release, V“¢ is the nucleus
volume, and AZ%¢ is the nucleus surface. The strain
energy of the coherent nucleus is more important than
the surface energy because of high shear strain produ-
cing relatively large strains in the austenitic matrix.
Moreover, twinning of a nucleus is also evaluated by
shear strain.

A martensitic or bainitic ferrite nucleus is considered
as a thin ellipsoidal disc, with radius a and thickness
2c.

The free energy Eq.(7) for the coherent nucleus gen-
erated by a simple shear strain, s, can be written

AGE*® = 2ma’y;, + gw(szuac“) —a’c AG.n,), (8)
where 7 is the coherent interfacial energy, u is the
elastic shear modulus of austenite. The critical nuc-
leus dimensions a* and ¢* can be found differentiating
Eq.(8) with respect to a and ¢, and comparing de-
rivatives: 228K d 228E™ t5 zero. The critical

; ? 3a v e
dimensions are expressed by

¢ = 2yt /| AGeh,;
@ = dyeps’ [ (AGan,). ©)

Substituting the above results into Eq.(8) yields an
expression for the maximum value of AGZ*¢

If

32 7
AGh = = —k—s%)%r. 10
k 3 AGChk4s u T ( )
The nucleation barrier to form coherent nuclei can be
reduced by the elastic strain field of dislocation which
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interacts with the strain field of the martensite nuc-
leus and results in the reduction of the total energy
of nucleation. Such interaction modifies the total free
energy Eq.(7) which can be written [49] by

AGR* = APy — AGy

+ V¥(AGs, — AGe,), (11)

where AGy is the energy of dislocation interaction
which reduces the nucleation energy barrier. Assum-
ing that a complete loop of dislocation is interacting
with the nucleus, the interaction energy is expressed

by

AGg=2macp s b, (12)
where b represents a length of the Burgers vector of
dislocation. Subtracting Eq.(12) from the RHS of
Eq.(8) results in the expression of the total energy
of a martensite nucleus

4
AGR* = 2ma’y, + —3—7r(a62/.z s

— a®cAG.h,) — 2mac pu s b. (13)

The energy AG7"° is related to diameter a and thick-
ness ¢ of the ellipsoidal disc representing a nucleus, the
simple shear strain s, and the strain field generated by
dislocation.

3. Kinetics of Transformation

The unified mathematical approach has been ap-
plied to all reviewed kinetic laws which can be derived
from a basic assumption of proportionality of the new
phase increment and a variation of a model variable
which is controlling a transformation. The following
quantities: time, temperature, stress, a reaction driv-
ing force, and a potency of material structural de-
fects are considered here as variables controlling phase
changes. The growth laws for phase fraction are ex-
pressed usually in the form of parabolic laws or ordin-
ary differential equations called also evolution equa-
tions. Evolution laws reveal a rate type nature of in-
teractions between constitutive variables and a trans-
formation products.

3.1 Kinetics of Diffusional Transformations

3.1.1 Kinetic Equations for Ferritic and Pearlitic
Transformations

The kinetic equation for two diffusional transforma-
tions: ferritic, and pearlitic, has the form of the para-
bolic growth law known as the Johnson-Avrami-Mehl
equation [29], [41]

y;i = 1 —exp(—b; "), (14)
where y; is the volume fragtion of i-th phase in the
considered microregion V™*¢ n; and b; are empirical



parameters related to cooling rate and the nucleation
rate, t is time equal to zero at the end of the nucle-
ation period. This equation can be derived from the
basic assumption that the daughter phase increment
dy; is proportional to the decrement of transformation
driving force measured by the differential of the Gibbs
free energy, dAG™ where i = 2 or 3 for ferritic and
pearlitic reactions. Therefore, the Johnson-Avrami-
Mehl equation can be expressed in one of the following
incremental forms:

dy;

Eyg- =1-y; (15)
dy; _ .
yz _ .

Lo, (1)

where the differential of the Gibbs free energy is de-
noted by

dG = dAGT°. (18)
Identifying the rate of the Gibbs free energy change,
G, as an explicit function of time

G=nib ™, (19)

and substituting to Eq.(17) yields to the expression

dy;

=n; b; il gt
I—wu

(20)

The following operations gives the parabolic growth
law Eq.(14) for ferritic and pearlitic transformations:

o Integration of Eq.(20) gives

In(l - y,') = ‘—b,; the. (21)
e Expressing the above in exponential form leads

to

1 — y; = exp(—b; t"™¥). (22)

Eq.(14) was originally proposed for the case when
the cells of the new phase were continuously nucleated
throught the transformation at a constant rate. Ex-
ample values of parameters n3 and b3 are given in [21]
for for austenite-pearlite transformation for 1080 steel.
The exponent n; is not related directly to temperature
as long as the nucleation mechanism does not change
during cooling. The growth parameter b; is temper-
ature dependent [41] and related to both the rate of
heterogeneous nucleation N;(8), see Eq.(6), and the
cell growth rate v;(#). This is defined by

1

bi(0) =3

TN (6)v:3(6). (23)
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The phase growth law expressed by Eq.(14) assumes
the complete transformation of austenite into the new
phase. Such reaction does not proceed instantan-
eously and therefore the growth law appropriate for
the partial transformation during a continuous cooling
process is defined by introducing the fictitious fraction
(20], [22]

Y;
et
y’Y Yimax

= 1 - exp[-bi(6) 1", (24)

where y; .. is the final fraction of phase ¢, and y,
is the fraction of austenite at the beginning of trans-
formation 7.

Expressing Eq.(24) in the logarithmic form
In(1 — y?) = —bi(8) t™, (25)
and differentiating this with respect to time ¢, yields
the following evolution equation

X . ) ,
Yi — M [db‘ 0+ b,(B)n,:I )

1-yf o t 9

3.1.2 Modified Kinetics

The kinetics of isothermal decomposition of austen-
ite is influenced by hydrostatic pressure and stress [1],
[12], [15]. The effect of hydrostatic pressure is ob-
served as a decrease of the temperature Az of v —
iron transformation, a reduction of the eutectoid tem-
perature A; of the F'e — C diagram, and shifting the
eutectoid transformation point toward lower carbon
composition [18], [24], [35]. Following these modi-
fications of specific temperatures and the eutectoid
point relocation, the TTT and CCT diagrams show a
displacement of curves towards longer transformation
times and lower temperatures. Tensile or compress-
ive stresses have the opposite effect on the pearlitic
transformation as they accelerate the transformation
and result in displacing of the TTT and CCT curves
towards shorter times of transformation [37).

The nucleation and growth rates are influenced by
the stress [13], [37], and such effect is modelled by re-
lating material parameter b3 of the Johnson-Avrami-
Mehl model with the nucleation rate N3. The situ-
ation with the exponent ng is vague because it is either
decreasing [37] or increasing [13] respectively to in-
ternal stresses.

The influence of internal stress on kinetics of the
pearlitic transformation has been presented in [13].
This concept consists of shifting of TTT diagrams
either towards shorter times for tensile and compress-
ive stresses or towards longer times for hydrostatic
pressure. The shift D of the TTT diagram is postu-
lated as the function of the second invariant J4 of the
Piola Kirchhoff stress deviator S, the spherical part
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of stress ie. hydrostatic pressure, and the second in-
variant Ig of plastic Green-Lagrange strain EF!. This
relation can be written as

D:TD(Jé,p,IE), (27)

where Jj = [18:S]3, Iy = [2EPLEP)3, p = L Sk,
and ”:” means the full contraction of the second order
tensor.

The simple example of Fp, shown in [13], is given by
the linear function of J3, such that,

D=CJ (28)

where C = 8.5 x 10~3 [M Pa]~! for the isothermal
transformation at temperature § = 663°C.

Postulating relation between the growth parameter
b; and the shift D in the form

b;

bp, = —7
Dl (I_D)n,i

(29)
and substituting this to Eq.(24), the modified growth
law for the partial transformation becomes

”
y=—"
y’y y’ max

= 1—exp(—bp, t"). (30)
A plastic deformation of austenite grains during the
pearlitic transformation, called the transformation in-
duced plasticity, TRIP, acts almost similarly as tensile
and compressive stresses, and results in shifting of the
TTT and CCT curves towards shorter times. The
TRIP effect accelerates the phase transformation [12],
[33], [37], [48], [52] by increasing the rate of hetereo-
geneous nucleation N; .

The evolution equation for Eq.(30) with Eq.(29) and
Eq.(28) can be expressed in the following form

y:f’ _ i I:—c—l—bi .
1-—- yf T (1=CJyrs L do
b,-(a)n,;C dJé : b,:(&)n,-
1o as St |
where the relation between rates of the phase fraction,
temperature and stress is written explicitly.

(31)

3.2 Kinetics of Diffusional-Diffusionless
Bainitic Transformation

The kinetic equation for the bainitic transformation
proposed in [2], [45] is based on the assumption of the
linear relation between an increment of the bainitic
volume fraction dyf and volume increment of nucleus
dN4. This can be written as

vdyf = (1-4) V™'e(dNa); (32)
Y= Y. sy =2
Y maz ) J4 7’
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where y4,,.. is the maximum volume fraction of bain-
ite, y, is the fraction of residual austenite, V™mic is the
volume of a microregion, Ny = ‘%"1 is the nucleation
rate per unit volume, and angular brackets () mean
the volume average. Division of both sides of Eq.(32)
by time increment dt leads to the rate type form of
the bainitic transformation kinetic law

'f _ thc

= N.
1_y15 v ( 4)

(33)

Nucleation of bainite sub-unit starts below the Wid-
manstatten temperature W;. The nucleation rate N4
is related to quantities measured on two graphs: the
first is a free energy diagram, which consists of free
energy curves for ferrite and austenite versus a car-
bon content, and the second is the universal curve
representing the minimum free energy change, which
is necessary for displacive nucleation of ferrite at tem-
perature W,. The Gy is the value measured on the
universal curve of minimum energy. The change of
maximum nucleation free energy, AGy,,, ., is determ-
ined from the free energy diagram following a pro-
cedure described in [8], [23]. This method consists
of the estimation of the free energy change as a dis-
tance between two paraliel straight lines which are
tangents respectively to ferrite and austenite energy
curves. Knowing the content of carbon at a nucleus,
a locus on the austenite free energy curve, and the
corresponding tangent direction can be found. When
such direction is known, the parallel line, which is tan-
gent to the second curve, can be drawn. The location
of a common point of a curve and a tangent line de-
termines a carbon content at the bainitic ferrite.

The magnitude of AGy,,,, exceeds value Gy at
temperature W,. The nucleation rate is expressed in
terms of AGy,,,,, its initial value AGY _ _, and value
Gn. This can be written in the form
AGy,,, = AGS . —y$ (AGS,.. —Gn). (34)
The nucleation rate of bainite is defined in [45] by the
following expression:

K,

Ky K {AGa,..)
RO ’

(N4) = K exp (— TRb (35)
where K is the parameter related to austenite grain
size, K is constant, R is the gas constant, and » is
the positive constant which appears in approximation
of G given by
Gyn=pW, —r, (36)
with p = 3.6375, and r = 2540 [J mol~!]. The para-
meter K is a linear function of austenite grain size as
has been postulated in [45].



Substituting Eqs.(34),(35) to Eq.(33), the evolution
equation for bainitic transformation can be expressed
by

- mic .~
Yy _ V 1\1 &
1_y:§," ~ (1—'ﬂ7y4)x
K AGS
exp [(I‘z)yff - _R\zg (1 - ———~< r’””))] ; (37)
K2(AGY, - GN)

T'y) =
(T} rRO ’

where (3 is the autocatalysis factor. The effect of
autocatalysis is observed when the increase of the fer-
rite volume fraction is accompanied with the increase
in number density of nucleation sites.

An analytical solution of Eq.(37), shown in [45], is
obtained for the time ¢ taken to form bainitic volume
fraction yjf at reaction temperature . This can be
written as

7 e
e [~ A (1 - )+

B )+ S (1—emmaut) |,
(1= 1) + >(1 e y)] (38)

(Ta
1 - Ky K2(G%
M 0 - — mic _ e .
G5 =V I‘lexp( RO rRG )’
go = AGgma:t’
with parameters A.B, C' defined in [2] as following:
_ exp(=T)
T 1+8y°
1—exp (%) [1—%+-§-+A7]
C= . N (39)
o -ee (] ()
B=1-A-C,
where the factor
gO
P=11 22, (40)

is related to reduction of the driving force for nucle-
ation as yff increases.

3.3 Kinetics of Diffusionless - Martensitic
Transformation

Kinetic equations for martensitic transformation
can be divided into three groups:

¢ heuristic laws,

¢ relations derived from thermodynamics and stat-
istics,

o equations derived form thermodynamics of con-
tinua.
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3.3.1 Heuristic Laws

Heuristic laws are represented by the Koistinen-
Marburger law [31] and its modifications proposed in
[27], [28] and [51] which were obtained from iden-
tification techniques to achieve the best coincidence
of a transformation model with experiment. The
Koistinen-Marburger law is based on the assumption
of the linear relation between the martensitic frac-
tion increase dys and temperature decrease df below
the temperature M, where martensitic transformation
starts. This can be expressed by

djs L
0 = «(—5s); (41)
o = —o—

1—y2+5’

with the constant coefficient o which for most steels
equals to 1.1 x 1072[K Y], and ys.5 = E?:z Y ac-
counted for fractions of already formed phases.

Taking all terms of Eq.(41) with s to the left

=adf

- : 42
T (42)

introducing the new variable z = 1 — gg, and integrat-
ing

/12-El—d5=a/1: dv,

the Koistinen-Marburger law can be written in the
form

(43)

€|} = a(6 - M), (44)
which is equivalent to
In(1 - g6) = —a(M, —9). (45)

This relation reveals the exponential form of kinetic
equation for martensitic transformation, i.e.
go = 1 — expl—a(M, — 0)] (46)
The simple evolution equation for the martensitic frac-

tion can be obtained from Eq.(42) assuming a con-
stant, and gg(t), 0(t) being functions of time

1 . .
—§¢ = af (47)

1—gs

with the initial condition g6(0) = 0 for 6(0) = M,.
However, parameter o depends on: composition of the
alloy, crystallography of the martensite habit planes,
cooling rate, stress state, and is somehow related to
transformation driving force AGT*®,
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The improved Koistinen-Marburger law which ac-
counts for the effect of pressure and stress on trans-
formation temperature has been proposed in [27], [28].
The modification of M; is a linear function of hydro-
static pressure and the equivalent stress

AM,=Ap + BS, (48)

where A and B are material parameters, and S =
1

(J3)2.

Substituting Eq.(48) in Eq.(46) results in the extended

Koistinen-Marburger law

96 = 1 — exp[—a(M, — 0 + Ap + BS)]. (49)

Differentiation of the logarithmic form of Eq.(49) in

respect of time yields the evolution equation corres-
ponding to the extended Koistinen- Marburger law

1 aS .
ny_a(Ap+B S - 0)

1= (50)

0s
with the initial condition g6(0) = 0 for 6(0) = M,
p(0) = 0, and S(0) = 0.

The other proposition of the modified Koistinen-
Marburger law is given in [17], [51] and has the form

jo = (l—explac(M,—0)—£:8]; (1)
ag = kMVMic(a_A_aqg_G_>; g:kMsz.cE:,

where S is the global stress tensor corresponding to
the macroscopic strain tensor E, AGE”¢ is the dif-

ference of the free energy per unit volume of the mi-

croregion, parentheses (-) mean the average of wf—

over the mesodomain, E} is the critical value of the
macroscopic strain reached when entire microregion
transforms to martensite i.e. yg = 1, V™ is the mi-
croregion volume, anad ks is a proportionality factor
defined by Magee [34], such that

—ﬂ ;dG =

kv =5 (dAGP),

(52)
with the number n of microregions transforming to
martensite per unit volume of parent phase.

The evolution equation for Eq.(52) is not presented
here because of detailed study of more advanced ther-
modynamical model encompassing effects of stress,
strain and driving force on a phase transformation,
which is given in the following subsection.

3.3.2 Kinetic Equation Arising from
Thermodynamics and Statistics

A growth law proposed in [39] is the example of the
kinetic equation obtained from thermodynamics and
statistical analysis. This kinetic law for martensitic
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transformation is based on the identification of the
fraction g with the probability pyrop and written in
the form

U6 = pprop = 1 — exp[— V™ Ny (n)], (53)
where pprop measures the probability [11] that at least

one nucleation site is contained in V™, and Ny (n)
is a cumulative structural defect potency defined by

Nv(n) =

with the total number density of defects of all poten-
cies NJ, a constant shape factor a, and the defect
size parameter n. The parameter n is postulated in
the form

NY exp(—a n) (54)

27

AGE dy (55)

n=

with the close-packed interplanar spacing ds, the nuc-
leus specific interfacial energy 76, and the total volume
free-energy change AGT°. The free-energy change
in diffusionless transformation, previously given by
Eq.(7), is expressed now by

AGT* = AP vs — AGHY + AGT + AGF™, (56)
where AGT¢ is the strain energy generated by in-
ternal stress and strain, and AGE® is the frictional
work of interfacial motion. The cumulative structural
defect potency Ny is modified by the change of mech-
anical energy on habit planes, and is given

gmes

Nv(Go) = /g .

— Asz’c;’
g;naa: —_ AG:’naz’
where M (G) is a linear function of %, and AGJ**

is the maximal change of mechanical energy on habit
planes which will be defined later.

M(G) exp[—an(G)]dG;  (57)

The mechanical contribution of AGP# is orienta-
tion dependent and requires a decomposmon of the
true stress vector in microregion t into its normal &"
and tangential 7* components on each habit plane h.
The true stress is assumed to be homogeneous in a
microregion V™, The total number of habit planes
H is a sum of habit planes of b.c.c. austenitic crys-
tals in a microregion. Each habit plane has the same
area A", The true stress vector respectively to the
Kirchhoff (or Treftz) stress tensor ¢;; is defined by

i}-L = ﬁt,'jn"L (58)

with initial and actual density pp and p, and direc-
tional vectors n" which define the orientation of the



h-th habit plane normal. Components of such vectors
are given by
n? = cos29?, (59)
where 9! is the angle between stress axis and the nor-
mal to the habit plane, where the new phase appears.
Then the mechanical contribution of the free energy
change can be decomposed into the tangential and
normal part:

. Ah.ab
AGTe = AL (AGmi+ AGTE); (50
. H 1&
AGTe = (P F) =53 (i)
h=1 h=1
. H 1 &
AG;ngzc — Z(Eh ,E‘h) = 5201"6?

with vector product e, the normal displacement e,
the tangent displacement (shear) ¥”. The directional

tensor m is defined by
mg'j = cos(ihj, (61)

where C{} is the angle between the transformation tan-
gent displacement ¥* and 7" direction.

A particular value of AGT¢ varies between the min-
imum and maximum value, i.e.

AGT™" < AGTY < AGR” (62)
with
: 1 &
AGT™ = 52 st 4 oleh);
. "
AGTT = —g 2Rl (63)
where s?° is the transformation tangent displacement

parallel with the shear stress vector resolved on the
habit plane.

When deformation is controlled by stress coupled
with phase transformation, experimental results avail-
able for a one-dimensional test [9] show the linear re-
lation between the martensite fraction g and the res-
ulting plastic strain EP. This originally has been used
in [39] to propose a kinetic equation suitable for one-
dimensional microregion. The newly proposed three-
dimensional generalization of this evolution law has
been obtained by using Eq.(55) in Eq.(57), and sub-
stituting the resultant relation to Eq.(53). This gen-
eralized kinetic equation is written in the form:
I E_‘p mic
o= 5 = L= exp [V Ny (G,

(64)
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- 1 ) . .
where FP = (%IE,,) 2 is the effective plastic strain, and

E, = (%IE)% is the effective total strain for the fully
martensitic structure of a microregion when yg = 1.
Assuming G, = G7" and splitting the integral in
Eq.(57) into two

gme= gres gmrin
/ ‘..dg=/ ...dg—/ ...dG,
min 0 0

the nucleation-site potency Ny can be expressed as

(65)

NV =Tmaz — Imin- (66)
Integrals Zpin, Zmae are defined by
i g;nin L
L@ = [ M@exp (£ ) dgi (67
0 1

g;na.r

Tnasl@5*) = [ M(@ex (2%) ag; (69)

0

Dy = (Amz'c,},6 — A mzc +A mzC)d
D2 D1+ G,ds
=2 a7;

gmz’n ___" AGmtn
dG = d(AG™).

. omazx _ mac .,
ago _ AGO )

Substituting Eq.(66) into Eq.(64) results in

ys =1- exp[ szc( mazx _Imin)]- (69)

Estimated values of the following quantities: o = 0.84,
N? = 2.0E +17 [m=3], 76 = 0.15 [J/m?], AT~ +
AGR® = 6.1E + 7 [J/m3], can be found in [11] and
[39].

A simpler model is obtained by postulating the
structural defect potency as a function of G, and G in
the following form:

Ny = N9 (G,) exp(G);

2a6
G= - - —.
de(ATi¢ys — AG™ic 4 Gmaz + AGR®)

che

(70)

Then the martensitic fraction can be defined by

U6 =1 —exp [—-Vm”N{}(g,,) exp(G)] . (71)

Assuming n = N (G,, ) in Eq.(53) results in

In(1 - g6) = =V™Ny (G,,0) (72)
which after differentiation in respect of time is written

as

: ‘ No -
ySA — pmic (6 Vg0+

6NV dgch 9>
11— 8G,

9Gon do (73)
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where

Go = AGT*; Gen = AGTE. (74)
Partial derivatives of Ny can be eliminated using

Eqgs.(54), (55) and assuming N{ as a function of G.

The final form of the evolution equation derived
from thermodynamics and statistical analysis follows:

P ' 9
Ys  _ V"”Cexp( ;76) X

1—9e
dNy ; dG.h ;

[( i, —P1) G, + P 20 6

Gar = ATv6 + AGE;

M =de(GaF — Gen + Go);

2dsa
P =Ny =L

Unfortunately replacing Eq.(57) by Eq.(54) eliminates
the coupling effect between Ny and G, expressed by
the integration of M (G) at the range of the mechanical
contribution of the free energy change.

; (75)

A simpler evolution equation is obtained from
Eq.(71) in the form

Ys — sz'c exp <_2a 76) %

1— 76 M
dNY . dGon
.d(]g go + Pl do 0 ) (76)

where G, is replaced by G7%® in M.

3.3.3 Kinetic Equations Derived from
Thermodynamics

Growth laws developed on the basis of thermody-
namics of continua and micromechanics have been
presented in [38] and [50]. Both of them are based

on the following observations:

e a volume average of the total driving force,
(dAGE*°), together with temperature # controls
the martensitic transformation,

o the macroscopic increment of the daughter phase
dye 1s proportional to the increment of the total
driving force.

These notions are used to express the fraction yg as a
function of temperature 8 and external loading stress

8, such as ys = Y1[S(S), 6] = V2(S, ).

In this section a kinetic law, originally shown in {38]
for the case when the growth of martensitic fraction is
the only reaction, is slightly generalized to be used for
a description of transformation occuring-in the pres-
ence of products of diffusional transformations ys, ys,
ya and ys.
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The proportional relation between a phase fraction
and the driving force is expressed here in terms of dyg
and dG, and is written in the form:

dgs ; X

— = —kpV™(1 - gs); 77

(dg) F ( ys) ( )
G = G(S,0) = AGT*(S,0),

where § is the total stress related linearly to S,

V™ is the microregion volume average, (AGT") is
the volume average of AGT® taken for the parent
phase, and kp is a constant given for steel in [38] as
kpV™ie = 0.0206 m?/N.

Eq.(77), as all previously reviewed kinetic equa-
tions, is subjected to another assumption about the
exponential form of the function s = Yi(S,6). This
becomes obvious due to the following transformations:

e move all terms with g to the left

dy .
y6A — —ka'"'“(dg), (78)
11—
¢ integrate
In(1 - g6) = krV™<(G) +C, (79)
e express Eq.(79) in the exponential form
g6 = Vi(S,0)
= 1-—explkrV™(G(S,0)) +C], (80)

with the integration constant C ,

¢ assume C equal to zero.

Eq.(80) reveals the interaction between the
martensitic transformation product gs, the total stress
S, and temperature 6. '

The required function g = Y2(S,0) is derived by
considering chemical and mechanical components of
the total Gibbs free energy. The total driving force
can be represented by a difference of mechanical and
chemical components of the total Gibbs free energy:

(81)

when neglecting frictional effects on habit planes
AG‘"F“ZC and the elastic coherency interfacial energy
AP**v6 in Eq.(56). The strain energy is given by

AGE™ = MG — AGT*

AGT* =S : E*. (82)

The chemical free energy is derived using Egs.(7), (8),
and is defined by
N(t)
Z V;nUCAGche
=1
N(t)
> afaiAG.n,,
=1

AGH* =

(83)



where E* is the microscopic transformation strain,
and N(t) is the time related number of nuclei in a
microregion. The strain E* is measured in the stress
free state as a difference of strains before and after
phase transformation.

The total stress S in Eq.(82) is a sum of the follow-
ing components:

act

e an actually self-equilibrating stress geq ,

e a further generated self-equilibrating stress g{;",
e the loading external stress § assumed to be ho-
mogeneous in the mesodomain.

The actually self-equilibrating stress reveals the in-
teraction of all actually transformed microregions with
the microregion under consideration. The further self-
equilibrating stress is generated by the interaction of
the microregion which undergoes transformation and
the surrounding mesodomain. The load stress is as-
sumed to be homogeneous in the mesodomain. This
stress distribution can be written as

S=8t+8lv ¢+ 8. (84)
Substituting Eq.(84) in Eq.(82) results in
AGT(S) = AGT(S, 82", 81vr)
=8¢ E* +S/¥ :E"+ S E". (85)

The total differential of AGT¢(S, Sa¢t

g ,Sf’“") with re-

spect of S components is given as
dAG] = dSS* : E* +dS[!" :E* +dS:E*.  (86)

Substituting Eq.(86) in Eq.(81)
dAGT over volume gives

and averaging

(dG) = (dAGT) — (dAGT®)
= (dSi':E*)+ (dSY:E")
(dS : E*) — (dAG™*). (87)

The volume average of work done by the external
stress S on the microscopic strain E* is replaced by
the contraction of & and the volume average of E*,
which is expressed by
(dS:E*) = dS : (E*). (88)
This replacement can be done because at the start
of transformation; s < 1, the martensitic inclusions
are oriented ”optimally” in respect to & and when the
transformation develops, internal stress increases and

martensitic microregions get less favourable orienta-
tion [38]. Substituting Eq.(87) and Eq.(88) in Eq.(78)
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gives
dys
1—9s
x [(dSest - E*) + (4817 E7)
+dS: (E7) — (dAGT?)] |

- _ kF Vmic

(89)

Rearranging of Eq.(89) by shifting the first two RHS
terms, which are evidently related to the progress of
martensitic transformation and g, to the LHS results
in

1 ., dSTur
—:"IE*
g TRV g B
) Qact
+k‘FVm”(—$ E*)| dys
dgs
. dAGm’lC
p— mac
= kp VT ——=— 70 ydb
- kam”( *y: dS. (90)

Considering gs, temperature ¢, and external stress
S as time dependent functions, the kinetic equation
given as Eq.(90) can be written as the evolution equa-
tion

fur

dA

+ k szc( E*)

1 —9e
act

ds

d mzc
— k szc( A 0

— kpV™(E*):S.

+k Vmw( E*> 1

h_yg
(91)

The simple form of the above evolution equation is
obtained due to the following operations and assump-
tions:

e The third term of LHS of Eq.(91) can be ex-
pressed by

dsest dF

” EY) = — — I: E*
(G ) = i L)

= —2p yge trE*, (92)
when the stress ég;‘ is substituted by

—(pF(y6)I), and the function F(js) is assumed
to be the quadratic one i.e. F(Js) = 92. The av-
erage final hydrostatic stress at yg = 1 is p, and
I is the unit second order tensor.

o The second term of RHS of Eq.(91) can be re-
placed by

kpV™e(E") - § = kpV™egd B, - 8, (93)
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with E, being E* when ys = 1 and the entire mi-
croregion transforms to martensite, and the expo-
nent n > 1. This replacement reflects a decrease
of deformation and E° due to the internal stress
increase during trans%lormatlon

e The term with S{;” in Eq.(91) can be neglected
because its influence is indirectly accounted for
by evaluation of thermo-e¢lastic stresses. This as-
sumption follows the Eshelby concept presented
in [14] and utilised previously in [50].

The simplified evolution equation for the martens-
itic transformation has the form

( 1
1—-9e

— kFVmic(

— 2kpV™p jg trE* )

dAG™ic. .
dé )0
— kpV™cgr EL S, (94)
The solution of Eq.(91) and/or Eq.(94) is the func-
tion Y2(S, ) which determines the martensitic volume
fraction gs as a function of the external load stress S
and temperature 6.

Parameters of evolution equation Eq.(94) have the
following values given in [38]: kpV™i¢ equals to
0.0206 m?/N, hydrostatic pressure p ranges from 0
to 50 M Pa, the first invariant of strain tensor lt;rE*

is equal to 0.04, [kpV™e(225I 7)) = 0.0484°C~, the
microscopic transformation strain E* at the stress-free
state is ranging from 0.07 to 0.29.

4. Approximation of Cooling Process

The growth law for incomplete diffusional reactions
Eq.(30) together with the law for bainitic transforma-
tion, and one of the equations describing the martens-
itic transformation, the Scheil sum, and the additiv-
ity principle are essential notions for the incremental
evaluation of the material composition and determ-
ination of nonhomogeneous material functions which
are stress, temperature and time dependent.

4.1 Approximation of Cooling Curve

An incremental analysis of thermo-mechanical-
metallurgical problem requires an approximation of a
continuous cooling process, which describes temperat-
ure changes in a microregion and is called the cooling
rule. The cooling process is replaced by a sequence of
isothermal processes due to the additivity principle for
incubation fractions, proposed by Scheil [47]. Hence,
the cooling process 6(t), can be approximated by a
stepped-function with isothermal ”steps” 4. Each iso-
thermal step-process lasts A°? and starts at t.

A transformation time for approximated cooling
process is separated into the nucleation period and

162

the growth period. The growth period of a phase
transformation starts when a graph representing cool-
ing process intersects the TTT (Time- Temperature-
Transformation) curve which is determined either by
dilatometric or thermal analysis for a particular wel-
ded steel. The incubation period delays the daughter
phase growth and terminates, when the Scheil sum is
equal to unity. This requirement can be written in the
form

s Aitcp
> iy

=1

=1, (95)

which is related to two graphs: a curve repres-
enting a cooling process, and one of curves of the
TTT diagram. The length At°? of temperature step
‘§ results from the step-approximation of a cooling
curve, and ' Z "™ is time measured on the TTT curve
which corresponds to the same temperature ‘6. Pairs
{iﬂ,iZTTT} determine points of the TTT curve. The
pair {°6,°t} represent a point of intersection of a par-
ticular cooling curve and one of the TTT curves. The
growth period starts at time °¢, and temperature *6
corresponds to this moment of time.

4.2 Approximation of TTT Diagram

Each curve of the TTT diagram is approximated by
a sequence of piecewise straight lines and saved in a
computer program in the form of two columns matrix.
Intersections of a cooling curve with one of the TTT
branches can be found numerically using one of the
searching procedures.

4.3 Schemes for Approximation of
Transformation Sequence

Assuming that material state variables: S, E, and
# are known, and diffusional transformations are fol-
lowed by diffusionless transformations, when decreas-
ing temperature reaches values either W, or M, two
numerical schemes can be proposed for evaluation
of material phase fractions y;.

The first scheme is suitable for the modified
Johnson- Avrami- Mehl evolution equation Eq.(31),
the evolution equation for bainitic transformation
Eq.(37), and the extended Koistinen-Marburger law
given by Eq.(49). Time is not involved explicitly in the
last two equations. The Johnson-Avrami-Mehl law ex-
pressed by Eq.(30), is the basis for evaluation of the
fictitious time 7¢% related to the fictitious fraction 7 y?.
The fictitious time for the isothermal transformation
at temperature 74 is given by

1/m(j)
igé = <___"‘“(A1‘”y? )) , (96)



where 7bp, and m(j) = In; are growth parameters
taken at j-th time step.

Knowing the fictitious time /¢% at the end of j-step
of an isothermal process, the fictitious phase fraction
v at (j + 1)-th time instant is evaluated from the
equation, such that

if =F(ryf) = A (1B
+9€ 8+ 9D) (1-9f),  (97)

which is obtained from Eq.(31) substituting the fol-
lowing notations:

IA=(1-CIT)™;

. db;
JB:W”M
j bi(Y0)n;C dJ,
C=—"—— =
1-CilJy ds
j'D - bi(jﬁ)ni.
it®

This evolution equation is valid for time 7 taken at
the interval /1%, (ft% 4+ AJt)).

The fourth order Runge-Kutta method is applied to

solve Eq.(97) for (j+1)yf. Phase fraction U1y, can
be found from
G0y, = GHDyS g e (98)
Diffusional -pearlitic transformation terminates
when temperature 76 reaches the Widmanstatten
temperature W,, and the bainitic transformation
starts. The bainitic volume fraction can be calculated
from the algebraic expression which is obtained from
Eq.(38) due to linearization of terms related to yj.
Such a formula is written as

: 1
iy = - -
ypy = l—exp [J'Ax

(j3+jC—j—tb jM(gO’%))] | .

, B - ,

ip—-_2 _ (4-1),9Y.

B—‘rﬁln<1 B y4>,

~ ic ipay G=1)yé

ig= 2O (1o emtra) 40

€= Ty (1-e )
where time ¢, is calculated from the beginning of the
bainitic transformation.

The bainitic transformation terminates when tem-
perature /0 reaches value M,. Then the martensitic
transformation starts and 7§ is calculated from the
extended Koistinen- Marburger Eq.(49)

96 = {1 — exp[—a(M,; +7AM, =70)]};  (100)
IAM, = Aip+ BIS,

Trans. JWRI, Vol. 23 (1994), No. 2

where time is not involved directly and g is coupled
with temperature, internal pressure and stress state.

The second scheme is obtained by replacing
parabolic exponential law, expressed in the form of
Eq.(49), by the simplified evolution equation for the
martensitic transformation written as Eq.(94). The
evolution equation for g can be expressed by

fo=A(1 -3 (B:S-Cé), (101)
A= [142kpV™p (1 — ge)trE*] ™
B = kpV™egr B,
mic dAG’cr;:c
C=kpV L

Unfortunately, time is represented here implicitly via
functions, such as: S(t),E*(t),p(t),6(t),9s(t). This
results from the fact that time, in contradiction to
stress, elastic strain, internal pressure and temperat-
ure, is not a physical quantity which is controlling
the martensitic transformation. Hence, time ¢ of
martensitic transformation can be introduced expli-
citly due to the purely analytical approximation which
is provided by the following identification:

B:S—Cés%ati+b. (102)

Parameters of this identity are deduced verifying re-
lations shown in [38], and they are given by

4 B 3\, 7

b=C4.

Substituting Eq.(102) in Eq.(101), the evolution
equation for the martensitic transformation can be
written in the form, where reaction time is represented
explicitly. The equation has the following form:

g =F(r,96) = A (g iars +jb) X
(1— ), (103)
where

TA = [1+2kpV™e ipige(1—Tge)tr({E*}]

i 4 i s\, .. 3
Jg=_3211= L2 _2\lin.i .
a= {9 [1 exp (ja2 2)] B: S} ;

ip=icig

B =kpV™e iy JE,;

. . dA mic

i — mic ch |,

C = kpVmic—peh, .

Time 7 is taken at the interval ['t_, (7t + A%t ).
The fourth order Runge-Kutta method can also be
applied to solve Eq.(103) for U+ ys.
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Table 1 Basic assumptions for modeling of diffusional and
diffusionless transformations. The following
abbreviations and symbols are used in the table:
JAM: Johnson -Avrami -Mehl, KM: Koistinen
-Marburger, OTC: Olson -Tsuzaki -Cohen, OFT:
Oberaigner -Fisher -Tanaka, RB: Rees -Bhadeshia,
oc: proportionality symbol.

Model Assumption: proportion of
increments
JAM Eq.(14) dy; o dg
G = n;bytni~1
JAM Eq.(24) dy? dg
G = n; b; -1

modified
JAM Eq.(31) dy? o dG,ds, df
RB Eq.(32) dy? (dNy)
KM Eq.(46) dys do
extended dys dé, dp,
KM Eq.(49) equivalent
stress dS
OTC Eq.(53) dys o structural de-
fect potency
dNv(G,)
OFT Eq.(78) djs o total Gibbs
free energy
(dAGT™)

5. Conclusions

A unified mathematical approach has been applied
to several phase growth laws to derive corresponding
evolution equations from basic postulate of propor-
tionality of the new phase increment to a change of a
physical quantity controlling the transformation pro-
cess. Table( 1) contains a tabulation of basic assump-
tions for the kinetic laws reviewed.

Evolution laws reveal interactions between trans-
formation kinetics and material constitutive variables
or phase transformation driving forces. These equa-
tions are consistent with the rate type balance laws for
conservation of virtual and internal energy. In thermo-
mechanical-metallurgical analysis, constitutive vari-
ables are defined at a dispersed material particle. Ma-
terial parameters and physical quantities are averaged
proportionally to a phase fraction according to the lin-
ear averaging rule. A condensed presentation of fea-
tures of nine models is given in Table( 2) and Table( 3)
which helps in drawing conclusions on complexity of
evolution equations, measurability of model variables,
application, and required level of model variables. The
simplest evolution laws for diffusional and diffusionless
transformations expressed by Eq.(26) and Eq.(47) re-
spectively, reveal only a relation between y and tem-
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Table 2 Microscopic and macroscopic variables of phase
transformation models.

Model Level of model
variables
microscopic mMacroscopic
JAM Eq.(14) n;, b;
JAM Eq.(24) N;(8) 8, n;
modified C, ni, b;(9),
JAM Eq.(31) J5, 6
RB Eq.(33) Ny
RB Eq.(37) AG,,,.,GN,0
Ki,Ko, 8,7, R
KM Eq.(46) 0, a, M,
extended A, B, a,
KM Eq.(49) 9,p, S
OTC Eq.(75) | de, A", AGR*® 0, o, vs
or Eq(76) Ng' 7gaa gch;
OFT Eq.(78) AGT®  kp, IrE*, E:r‘,
0,p, S

perature rate 6. Also they provide comparatively easy
identification of material and process characteristics.
The evolution law deduced in [39] from thermodynam-
ics and statistics for uniaxial loading has been general-
ized here for the three-dimensional case. This 3-D gen-
eralization, expressed by Eq.(75) or Eq.(76), together
with the law derived from thermodynamics, and given
by Eq.(91) or Eq.(94), provides the relation between
the rate of martensitic fraction s and rates of strain

energy AG™°, chemical energy A Z}g, and temper-

“ature . However they account for different scale ef-

fects in dispersed particle. The strain energy G, =
S (6" e 4+ 7 o %) in Eq.(75) is evaluated on
the system of habit planes while the mechanical contri-
bution of free energy change AG7*°(S, S, S/¥") =
Sect . E* + S{¥" . E* + S : E* in Eq.(91) is defined
as the value averaged for the entire microregion. The
kinetic low expressed by Eq.(75) is less attractive than
Eq.(91) because of the high cost of data acquisition
from real experimental tests and rather limited ob-
servation of slips on habit planes. This also requires
very small size of a microregion in analysis and can
be used only in the case of micromechanics when the
body has the diameter of a few grains. The kinetic low
expressed by Eq.(75) is less attractive than Eq.(91)
because of the high cost of data acquisition from real
experimental tests and rather limited observation of
slips on habit planes. This also requires very small
size of a microregion in analysis and can be used only
in the case of micromechanics when the body has the
diameter of a few grains.

The generalized evolution equation for diffusionless-



Table 3 Evaluation of data acquisition, complexity and

application of phase transformation model.
Symbol: 1-to 3-D means that a transformation
model can be applied for one-, two- and three-
dimensional problems.

Model complex- | measur- appli-
ity of ability of | cation
equation | variables

JAM Eq.(14) | simple easy 1- to 3-D

JAM Eq.(24) | simple easy 1- to 3-D

modified expensive

JAM Eq.(31) | complex | hard 1- to 3-D

RB Eq.(37) complex | expensive | 1- to 3-D

easy

KM Eq.(46) | simple easy 1- to 3-D

extended expensive

KM Eq.(49) | simple easy 1- to 3-D

OTC Eq.(75) | complex | generally 1-D

or Eq.(76) impossible | specific

OFT Eq.(78) | complex | hard 1- to 3-D

martensitic transformation is proposed in Table( 4).
Coefficients of this equation are identified for three
kinetic laws: Eq.(47), Eq.(75), and Eq.(94). The gen-
eralized evolution equation for diffusional transforma-
tion is proposed in Table( 5) with coefficients identified
for Eq.(26) and its modification Eq.(26). Two numer-
ical schemes have been postulated for the cooling part
of welding process:

2)

3)

the first is appropriate for the case when diffu-
sional transformations are determined by evolu-
tion law, the bainitic reaction is governed by an
algebraic equation, and time is not accounted dir-
ectly in calculation of martensitic fraction,

the second is proposed for the case when fer-
ritic/pearlitic and martensitic growth laws are
written in forms of evolution equations, Egs.(97),
(103), and where time is represented explicitly.
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