

Title	On finite Galois covering germs
Author(s)	Namba, Makoto
Citation	Osaka Journal of Mathematics. 28(1) P.27-P.35
Issue Date	1991
Text Version	publisher
URL	https://doi.org/10.18910/6095
DOI	10.18910/6095
rights	
Note	

Osaka University Knowledge Archive : OUKA

 $\verb|https://ir.library.osaka-u.ac.jp/|$

Osaka University

ON FINITE GALOIS COVERING GERMS

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Макото NAMBA

(Received March 15, 1990)

Introduction. We denote by C^n the *n*-th Cartesian product of the complex plane C. Let W=(W,O) be the germ of open balls in C^n with the center $O=(0,\dots,0)$. A *finite covering germ* is, by definition, a germ $\pi:X\to W$ of surjective proper finite holomorphic mappings, where X=(X,p) is a germ of irreducible normal complex spaces.

Every normal singularity (X,p) has the structure of a finite covering germ $\pi:X\to W$, (see Gunning-Rossi [4]).

Finite covering germs were discussed in Gunning [3] from the ring theoretic point of view.

In this paper, we introduce the notion of finite Galois covering germs and prove two basic theorems (Theorems 2 and 3 below) on it.

1. Some definitions. Let M be an n-dimensional (connected) complex manifold. A finite covering of M is, by definition, a surjective proper finite holomorphic mapping $\pi: X \to M$, where X is an irreducible normal complex space. Let $\pi: X \to M$ and $\mu: Y \to M$ be finite coverings of M. A morphism (resp. an isomorphism) of π to μ is, by definition, a surjective holomorphic (resp. biholomorphic) mapping $\varphi: X \to Y$ such that $\mu \varphi = \pi$. We denote by G_{π} the group of all automorphisms of π and call it the automorphism group of π . G_{π} acts on each fiber of π .

A finite covering $\pi: X \to M$ is called a *finite Galois covering* if G_{π} acts transitively on every fiber of π . In this case, the quotient complex space X/G_{π} (see Cartan[1]) is biholomrophic to M.

For a finite covering $\pi: X \rightarrow M$, put

$$R_{\pi} = \{ p \in X | \pi \text{ is not biholomorphic around } p \}$$
 , $B_{\pi} = \pi(R_{\pi})$.

They are hypersurfaces (i.e. codimension 1 at every point) of X and M, respectively and are called the *ramification locus* and the *branch locus of* π , respectively.

28 M. Namba

Let B be a hypersurface of M. A finite covering $\pi: X \to M$ is said to branch at most at B if the branch locus B_{π} of π is contained in B. In this case, the restriction

$$\pi': X - \pi^{-1}(B) \rightarrow M - B$$

of π is an unbranched covering. The mapping degree of π' is called the degree of π and is denoted by deg π .

By a property of normal complex spaces, we have easily (see Namba[5])

Proposition 1. (1) $G_{\pi} \simeq G_{\pi'}$ naturally. (2) π is a Galois covering if and only if π' is a Galois covering.

Corollary. $\sharp G_{\pi} \leq \deg \pi$, where $\sharp G_{\pi}$ is the order of the group G_{π} . Moreover, the equality holds if and only if π is a Galois covering.

The following theorem is a deep one.

Theorem 1 (Grauert-Remmert [2]). If $\pi': X' \rightarrow M - B$ is an unbranched finite covering, then there exists a unique (up to isomorphisms) finite covering $\pi: X \rightarrow M$ which extends π' .

Take a point $q_0 \in M - B$ and fix it. We denote by $\pi_1(M - B, q_0)$ the fundamental group of M - B with the reference point q_0 .

Corollary. There is a one-to-one correspondence between isomorphism classes of finite (resp. Galois) coverings $\pi: X \to M$ which branches at most at B and the set of all conjugacy classes of subgroups (resp. normal subgroups) H of $\pi_1(M-B, q_0)$ of finite index. If H is normal, then π corresponding to H satisfies

$$G_{\pi} \simeq \pi_1(M-B, q_0)/H$$
.

Example 1. Put $X = C^n$, $M = C^n$ and

$$\pi: (x_1, \dots, x_n) \in \mathbb{C}^n \mapsto (a_1, \dots, a_n) \in \mathbb{C}^n$$

where

$$a_1 = -(x_1 + \dots + x_n),$$

$$a_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$$

$$\dots \dots$$

$$a_n = (-1)^n x_1 \dots x_n.$$

In other words, x_i $(1 \le j \le n)$ are the roots of the equation

$$x^{n} + a_{1}x^{n-1} + \cdots + a_{n} = 0.$$

Then π is a Galois covering of $M=\mathbb{C}^n$ such that (i) $B_{\pi}=\Delta$ is the discriminant

locus and (ii) $G_{\pi} \simeq S_n$ (the *n*-th symmetric group).

We may identify G_{π} and S_n through the isomorphism. S_n is then regarded as a finite subgroup of the general linear group $GL(n, \mathbb{C})$.

EXAMPLE 2. We regard S_n as a finite subgroup of GL(n,C) as in Example 1. Put $Y=C^n$. Let G be a subgroup of S_n . The quotient space Y/G is an irreducible normal complex space and the canonical projection

$$\mu: Y \rightarrow Y/G = N$$

is a holomorphic mapping. Let

$$\alpha: M \rightarrow N$$

be a resolution of singularity of N. Then the finite Galois covering $\pi: X \to M$ of M, defined by the following diagram, satisfies $G_{\pi} \simeq G$:

Here, $M \times_N Y$ is the fiber product, ρ is the normalization and id is the identity mapping.

2. Finite Galois covering germs. Now, let W=(W,O) be the germ of open balls in C^n with the center $O=(0, \dots, 0)$. Let $\pi\colon X\to W$ be a finite coving germ (see Introduction). Every notion in §1 can be easily extended to finite covering germs. In particular, a finite covering germ $\pi\colon X\to W$ is called a finite Galois covering germ if G_{π} acts transitively on every fiber of π . Also, a similar assertion to Corollary to Theorem 1 holds in the case of finite covering germs, if $\pi_1(M-B, q_0)$ is replaced by the local fundamental group $\pi_{1,\text{loc},0}(W-B)$ of W-B at O.

EXAMPLE 3. Let $\pi_0: X \to W$ be the restriction of the covering $\pi: \mathbb{C}^n \to \mathbb{C}^n$ in Example 1 to W = (W, O) and $X = (X, O) = \pi^{-1}(W)$. Then π_0 is an a finite Galois covering germ such that $G_{\pi_0} \cong S_n$.

There exist a lot of finite Galois covering germs in the following sense:

Theorem 2. For $n \ge 2$, let W = (W, O) be the germ of balls in \mathbb{C}^n with the center O. For every finite group G, there exists a finite Galois covering germ $\pi: X \to W$ such that $G_{\pi} \cong G$.

Proof. Case 1. We first prove the theorem for the case n=2. Let W

30 M. Namba

be a ball in \mathbb{C}^2 with the center O. Let L_j $(1 \leq j \leq s)$ be mutually distinct (complex) lines in \mathbb{C}^2 passing through O. Put $D_j = L_j \cap W$ $(1 \leq j \leq s)$ and

$$B = D_1 \cap \cdots \cap D_s$$
,

(see Figure 1).

Figure 1

Take a point $q_0 \in M-B$ and fix it. Let γ_j be a loop in M-B starting from q_0 and rounding D_j-O once counterclockwisely as in Figure 2. We identify γ_j with its homotopy class.

Figure 2

Then, as is well known, $\pi_1(W-B, q_0)$ is a group generated by $\gamma_1, \dots, \gamma_s$ with the generating relations

$$\gamma_i \delta = \delta \gamma_i \qquad (1 \leqslant j \leqslant s),$$

where $\delta = \gamma_1 \cdots \gamma_s$.

Let F_{s-1} be the free group of (s-1)-letters b_1, \dots, b_{s-1} . Put $b_s = (b_1 \dots b_{s-1})^{-1}$. Then there is the surjective homomorphism

$$\Phi: \pi_1(W-B, q_0) \rightarrow F_{s-1}$$

defined by $\Phi(\gamma_i) = b_i \ (1 \le j \le s)$.

For any finite group G, there is a surjective homomorphism

$$\Psi: F_{\bullet-\bullet} \rightarrow G$$

for a sufficiently large s.

Now, the kernel K of the surjective homomorphism

$$\Psi\Phi: \pi_1(W-B, q_0) \rightarrow G$$

has a finite index such that

$$\pi_1(W-B, q_0)/K \simeq G$$
.

The finite Galois covering $\pi: X \to W$ corresponding to K in Corollary to Theorem 1 satisfies $G_{\bullet} \simeq G$.

The finite Galois covering germ determined by π is a desired one.

Case 2. Next, we prove the theorem for the case $n \ge 3$. Let W be a ball in \mathbb{C}^n with the center O. Let P and Q be a 2-plane and an (n-2)-plane in \mathbb{C}^n , respectively, passing through O such that $P \cap Q = \{O\}$. Let H_j $(1 \le j \le s)$ be mutually distinct hyperplanes in \mathbb{C}^n passing through O and containing Q (see Figure 3). Put

$$D_j = H_j \cap W$$
 $(1 \leqslant j \leqslant s)$ and $B = D_1 \cap \cdots \cap D_s$.

Then W-B and $W \cap P-B \cap P$ are homotopic. Hence, by Case 1, taking sufficiently large s, there exists a normal subgroup K of $\pi_1(W-B, q_0)$ of finite index such that

$$\pi_1(W-B, q_0)/K \simeq G.$$

The rest of the proof is similar to Case 1.

q.e.d.

Now, we give a method of concrete constructions of every finite Galois covering germ. Our method is suggested by Professor Enoki and is different from and simpler than Namba[6] in which finite Galois coverings of projective manifolds were treated.

32 M. Namba

Figure 3

Theorem 3. Let $\pi: X \to W$ be a finite Galois covering germ. Put $m = deg \pi$. Then there exists a germ $f: W \to C^m$ of holomorphic mappings and a finite subgroup G of S_m with $G \cong G_{\pi}$ such that π is obtained by the following commutative diagram:

$$X \xrightarrow{\rho} W \times_{N} Y \xrightarrow{C^{m} = Y} \downarrow \mu \qquad \downarrow \mu \qquad \downarrow \mu \qquad \downarrow M \xrightarrow{id} W \xrightarrow{f} C^{m}/G = N,$$

where $W \times_N Y$ is the fiber product, ρ is the normalization and id is the identity mapping. Here S_m is regarded as a finite subgroup of $GL(m, \mathbb{C})$ as in Example 1.

Proof. We may assume that W is a small ball in \mathbb{C}^n with the center O. Take a point $q_0 \in W - B$ and put

$$\pi^{-1}(q_0) = \{p_1, \dots, p_m\}.$$
 $G_{\pi} = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_m\}.$

Put

Note that X is a Stein space. Let h be a holomorphic function on X such that

$$h(p_j) \neq h(p_k) \qquad \text{for } j \neq k \tag{1}$$

Put

$$h_j = \sigma_j^* h = h \cdot \sigma_j \qquad (1 \leq j \leq m).$$

Let $F: X \rightarrow C^m$ be the holomorphic mapping defined by

$$F(p) = (h_1(p), \dots, h_m(p)).$$

Then, for $\sigma \in G$,

$$(\sigma^*F)(p) = F(\sigma(p)) = (h_1(\sigma(p)), \dots, h_m(\sigma(p))$$

$$= (h(\sigma(p)), h(\sigma_2\sigma(p)), \dots, h(\sigma_m\sigma(p))$$

$$= (h_{k(1)}(p), h_{k(2)}(p), \dots, h_{k(m)}(p))$$
(2)

Thus σ gives the permutation

$$R(\sigma) = \begin{pmatrix} 1 & 2 & \cdots & m \\ k(1) & k(2) \cdots k(m) \end{pmatrix}.$$

The corrwspondence

$$R: \sigma \mapsto R(\sigma)$$

is then an isomorphism of G_{π} onto a subgroup G of S_m . (2) can be rewritten as

$$\sigma^* F = R(\sigma) F$$
 for all $\sigma \in G$. (3)

Hence F induces a holomorphic mapping $f:W\to \mathbb{C}^m/G=N$ such that the following diagram commutes:

$$X \xrightarrow{F} C^{m} = Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$W \xrightarrow{f} C^{m}/G = N.$$

By the assumption (1), we can easily show that f has the following two properties:

- (i) $f(W) \subset Fix G$, where Fix G is the union of the fixed points of all elements of G except the identity and
 - (ii) f is not decomposed as follows:

where $H(\pm G)$ is a subgroup of G, ν is the canonical projection and f' is a holomorphic mapping.

A holomorphic mapping f with the properties (i) and (ii) is said to be G-indecomposable (see Namba[6]). For such a mapping f, the fiber product $W \times_N Y$ is irreducible and the finite Galois covering $\pi_0 \colon X_0 \to W$ defined by the commutative diagram

satisfies $G_{\pi_0} \simeq G$. Now, we can easily show that π is isomorphic to π_0 , (see Namba[6]).

REMARK. (1) f(O) is not necessarily equal to $\mu(O)$, where O is the origin of C^m . (2) A similar theorem to Theorem 3 holds for finite Galois coverings of a Stein manifold.

PROBLEM. Characterize normal singularities (X, p) which has the structure of a finite Galois covering germs $\pi: X \rightarrow W$.

References

- [1] H. Cartan: Quotient d'un espace analytique par un groupe d'automorphisms, Algebraic Gemetry and Topology, A sympos. in hoonr of S. Lefschetz, Princeton Univ. Press, 1957, 90-102.
- [2] H. Grauert and R. Remmert: Komplexe Räume, Math. Ann. 136 (1958), 245–318.
- [3] R. Gunning: Lectures on complex analytic varieties: Finite analytic mappings, Math. Notes 14 (1974), Princeton Univ. Press.
- [4] R. Gunning and H. Rossi: Analytic functions of several complex variables, Prentice-Hall, New York, 1965.
- [5] M. Namba: Branched coverings and algebraic functions. Pitman Research Notes

in Math. 161, 1987.

[6] M. Namba: On finite Galois coverings of projective manifolds, J. Math. Soc. Japan, 41 (1989), 391-403.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka, Japan