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Introduction. We denote by C” the n-th Cartesian product of the com-
plex plane C. Let W=(W,0) be the germ of open balls in C" with the center
0=(0,::+,0). A finite covering germ is, by definition, a germ z:X—W of sur-
jective proper finite holomorphic mappings, where X=(X,p) is a germ of ir-
reducible normal complex spaces.

Every normal singularity (X,p) has the structure of a finite covering germ
7: X— W, (see Gunning-Rossi [4]).

Finite covering germs were discussed in Gunning [3] from the ring theore-
tic point of view.

In this paper, we introduce the notion of finite Galois covering germs and
prove two basic theorems (Theorems 2 and 3 below) on it.

1. Some definitions. Let M be an n-dimensional (connected) complex
manifold. A finite covering of M is, by definition, a surjective proper finite
holomorphic mapping #:X-—>M, where X is an irreducible normal complex
space. Letz:X—>M and p:Y—M be finite coverings of M. A morphism (resg.
an isomorphism) of = to p is, by definition, a surjective holomorphic (resp. biho-
lomorphic) mapping @: X—Y such that up==. We denote by G, the group
of all automorphisms of = and call it the automorphism group of =. G, acts on
each fiber of z.

A finite covering z: X—M is called a finite Galois covering if G, acts transi-
tively on every fiber of z. In this case, the quotient complex space X/G, (see
Cartan[1]) is biholomrophic to M.

For a finite covering z: X—M, put

R, = {p=X|x is not biholomorphic around p},
B, = n(Ry).

They are hypersurfaces (i.e. codimension 1 at every point) of X and M, res-
pectively and are called the ramification locus and the branch locus of =, respec-
tively.
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Let B be a hypersurface of M. A finite covering z: X—M is said to branch
at most at B if the branch locus B, of x is contained in B. In this case, the res-
triction

z': X—n~YB)->M—B

of 7 is an unbranched covering. The mapping degree of z' is called the
degree of = and is denoted by deg .
By a property of normal complex spaces, we have easily (see Namba[5])

Proposition 1. (1) G,=G, naturally. (2) = is a Galois covering if and
only if =’ is a Galois covering.

Corollary. #G.<deg =, where $G, is the order of the group G,. More-
over, the equality holds if and only if = is a Galois covering.

The following theorem is a deep one.

Theorem 1 (Grauert-Remmert [2]). If z': X'->M—B is an unbranch-
ed finite covering, then there exists a unique (up to isomorphisms) finite covering
7 : X—M which extends r’'.

Take a point gM—B and fix it. We denote by =,(M—B, g,) the fun-
damental group of M— B with the reference point g.

Corollary. There is a one-to-ome correspondence between isomorphism clas-
ses of finite (resp. Galois) coverings w: X—M which branches at most at B and
the set of all conjugacy classes of subgroups (resp. normal subgroups) H of =,(M—
B, q,) of finite index. If H is normal, then r corresponding to H satisfies

Ge=n(M—B, q,)/H.
ExampLE 1. Put X = C", M = C" and
7 (% e, %,) EC"—(ay, +++, a,) EC”,
where

ay = —(%+r+x,),

Ay = XX+ %, %3 o+ + %, 1%y,

a, = (—1)"%+x,.
In other words, x; (1< j <) are the roots of the equation
x"+ax" "+ -+a, = 0.

Then 7 is a Galois covering of M=C" such that (i) B,=A is the discriminant
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locus and (ii) Gx==5S, (the n-th symmetric group).
We may identify G, and S, through the isomorphism. S, is then regarded
as a finite subgroup of the general linear group GL(n,C).

ExampLE 2. We regard S, as a finite subgroup of GL(n,C) as in Example
1. Put Y=C". Let G be a subgroup of S, The quotient space Y/G is an
irreducible normal comgqlex space and the canonical projection

w: Y=Y/G=N
is a holomorphic mapping. Let

a: M—-N

be a resolution of singularity of N. Then the finite Galois covering z: X—M
of M, defined by the following diagram, satisfies G,—=G'"

X MXyY—Y

P
M- B, ~-M p” N.

m

Here, M X Y is the fiber product, p is the normalization and id is the identity
mapping.

2. Finite Galois covering germs. Now, let W=(,0) be the germ
of open balls in C”" with the center O=(0, ---,0). Let z: X—W be a finite cov-
ing germ (see Introduction). Every notion in §1 can be easily extended to
finite covering germs. In particular, a finite covering germ z: X - W is called
a finite Galois covering germ if G, acts transitively on every fiber of z. Also, a
similar assertion to Corollary to Theorem 1 holds in the case of finite covering
germs, if z,(M— B, q,) is replaced by the local fundamental group =, ;oc,o (W—DB)
of W—B at O.

ExampLE 3. Let #y: X—W be the restriction of the covering z: C"—C" in
Example 1 to W=(W,0) and X=(X,0)=="YW). Then =, is an a finite Galois
covering germ such that G,=S,.

There exist a lot of finite Galois covering germs in the following sense:

Theorem 2. For n>2, let W=(W,0) be the germ of balls in C" with the
center O. For every finite group G, there exists a finite Galois covering germ
7w : X—>W such that G,.~G.

Proof. Case 1. We first prove the theorem for the. case n=2. Let W
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be a ball in C* with the center O. Let L; (1<j<s) be mutually distinct (com-

plex) lines in C? passing through O. Put D;=L;N W (1<j<s) and

B = Dln nDs,
(see Figure 1).

\/
o5

Figure 1

Take a point g&M—B and fix it. Let 7; be a loop in M— B starting from
¢, and rounding D;—O once counterclockwisely as in Figure 2. We identify

7; with its homotopy class.

D;
L
o
o)

Figure 2

Then, as is well known, z(W—B, q,) is a group generated by #,,-

with the generating relations
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7i0 = 8v; (1<j<9),

where §=1q,---,.
Let F,_, be the free group of (s—1)-letters b,, -+, b,_,. Put b,=(b,*++b,_,)"".
Then there is the surjective homomorphism

®: 7 (W—B, g)—F,_,

defined by (D('Yj):bl (1<]<S)
For any finite group G, there is a surjective homomorphism

¥: F,_—G

for a sufficiently large s.
Now, the kernel K of the surjective homomorphism

YP: 7, (W—B, ¢,)—>G
has a finite index such that
7(W—B, g)|K=G.

The finite Galois covering z: X—W corresponding to K in Corollary to The-
orem 1 satisfies G,=G.

The finite Galois covering germ determined by # is a desired one.

Case 2. Next, we prove the theorem for the case n>3. Let W be a ball
in C” with the center O. Let P and Q be a 2-plane and an (r—2)-plane in C”,
respectively, passing through O such that PNQO={0}. Let H; (1<j<s) be
mutually distinct hyperplanes in C" passing through O and containing O (see
Figure 3). Put

D;=H,nW  (1<j<s) and
B =D,Nn--ND,.
Then W—B and W N P—BN P are homotopic. Hence, by Case 1, taking suf-

ficiently large s, there exists a normal subgroup K of =(W—B, g,) of finite index
such that

m(W—B, ¢,)/K=G.
The rest of the proof is similar to Case 1. q.e.d.

Now, we give a method of concrete constructions of every finite Galois cov-
ering germ. Our method is suggested by Professor Enoki and is different from
and simpler than Namba[6] in which finite Galois coverings of projective mani-
folds were treated.
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Figure 3

Theorem 3. Let w: X—>W be a finite Galois covering germ. Put m=deg
n. Then there exists a germ f: W—C™ of holomorphic mappings and a finite sub-
group G of S,, with G=G, such that = is obtained by the following commutative
diagram :

X— WXNY———>~ Cm_—_Y
P
”l
w id 4

§7

C"/G=N,
7 /

where WX Y is the fiber product, p is the normalization and id is the identity
mapping. Here S,, is regarded as a finite subgroup of GL(m,C) as in Example 1.

Proof. We may assume that W is a small ball in C" with the center O.
Take a point g W—B and put

ﬂ_l(qO) = {Pl’ '")Pm}°
Put G¢= {0'1= 1, T2y **%y 0',,,}.

Note that X is a Stein space. Let £ be a holomorphic function on X such
that
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h(p;)*h(p)  for j=k (1)
Put
hj=oth=h-o; (I<j<m).

Let F: X—C™ be the holomorphic mapping defined by

F(p) = (hy(D), **+» hm(P))-
Then, for c=G,

(e*F)(p) = F(a(p)) = (hy(o(p)), **s hm(a (D))
= (h(a(p)), h(o20(P)), *++, Ao mo (D))
= (h(P)s e (P)s **» Prem(P)) (2)

Thus o gives the permutation

R(a-):(l 2 wem )
k(1) k(2)++-k(m)/.
The corrwspondence
R: o—R(o)
is then an isomorphism of G, onto a subgroup G of S,. (2) can be rewritten as
o*F = R(e)F  forall c=G. (3)

Hence F induces a holomorphic mapping f:W—>C"/G=N such that the follow-
ing diagram commutes:

X =Y
7[ ‘
w C"|G=N
f

By the assumption (1), we can easily show that f has the following two pro-
perties:

(i) fiW)dEFix G, where Fix G is the union of the fixed points of all ele-
ments of G except the identity and

(i) fis not decomposed as follows:



id v

w C"[G,

where H(#G) is a subgroup of G, v is the canonical projection and f' is a
holomorphic mapping.

A holomorphic mapping f with the properties (i) and (ii) is said to be
G-indecomposable (see Namba[6]). For such a mapping f, the fiber product Wx
»Y is irreducible and the finite Galois covering 7,: X;— W defined by the com-
mutative diagram

X, WxyY c"=Y
o M
w = -W 7 C"|G=N

satisfies G, =G. Now, we can easily show that = is isomorphic to =, (see
Namba(6]). q.e.d.

RemMark. (1) f(O) is not necessarily equal to x(O), where O is the origin
of C". (2) A similar theorem to Theorem 3 holds for finite Galois coverings
of a Stein manifold.

ProBLEM. Characterize normal singularities (X, p) which has the structure
of a finite Galois covering germs z: X —W.
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