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0. Introduction

Let X be a minimal, complex, projective, Gorenstein variety of dimension n. We

say that X is canonical if for some (any) desingularization σ : Y —> X, the map

associated to the canonical linear series \Kγ\ is birational.

We note Kx for the canonical divisor of X and ωx = Oχ(Kχ) the canonical sheaf.

Let pg = h°(X, ωx), q = hι(X, Oχ). There are several known bounds for Kx depend-

ing on pg, the most general one being the bound Kx > {n + l)pg + dn (dn constant)

given by Harris ([9]). Bounds including other invariants are known for canonical sur-

faces, Kj > 3pg + q — Ί ([12], [7]), and for surfaces and threefolds fibred over curves

([20], [25]).

In this paper we prove some results for canonical surfaces and threefolds. In the

case of canonical surfaces there are some known results which show that under some

additional hypotheses, the bound K\ > 3pg +q — 7 can be considerably improved (see

Remark 2.2). We give here some other special cases (Remark 2.2) for which is not

sharp and prove (Theorem 2.1) that, in fact, K2

S = 3pg+q — 7 only if q = 0 whenever

pg(S) > 6.

Canonical surfaces with Kj = 3pg — 1 are known to exist and classified ([1]).

Then we can hope that a good bound for canonical surfaces including the irregularity

should be of type Kj > 3pg + aq — 7, a > 1. Since for q = 1 it is known ([16]) that

Kj > 3pg, a should be 7, although unfortunately examples of low Kj (with q > 2)

are not known.

In the case of canonical threefolds we prove that Kx > 4pg+6q — 32. In particular,

we prove that the results of Ohno for canonical fibred threefolds are not sharp.

We use basically a result on quadrics containing irreducible varieties due to Reid

([21]) and several techniques originated in [24] and developed by Konno ([16], [17],

[18]) for the study of the slope of fibred surfaces. In particular we include in an Ap-

pendix the dimension 3 version of the relative hyperquadrics method used by Konno

in [18].

After this manuscript was written, the author was informed that Theorem 2.1 was

known yet to K. Konno (unpublished).
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1. A general inequality

We need the following result due to Reid ([21], p. 195).

Lemma 1.1. Let Σ c P^ be an irreducible variety spanning ΨN of dimension

w. Then

- min{deg Σ, 2(N -w)+l).

Then we have an immediate consequence.

Proposition 1.2. Let X be a normal projective variety of general type and di-

mension n. Let L e Div(X), C = Oχ(L) e PicX and φ the rational map associated to

C. Assume φ is birational, then

(a) Λ°(X, OX(2L)) >{n + 2)[A°(X, OX(L)) - (n + l)/2]

(b) If equality holds in (a) then

(i) Σ := φ(X) is contained in a minimal degree variety of Ψh ( X ' £ ) - 1 of di-

mension n + 1 obtained as the intersection of quadrics containing Σ.

(ii) Σ C ψh (*'£)-* is linearly and quadratically normal.

(iii) Bs|L| =Bs|2L|.

(iv) IfBs\L\ = 0 and p,q e X then \L\ separates p and q if and only if so

does \2L\.

Proof. We can always consider

where r = h°(C)— 1, X is smooth, σ is birational and φ is defined by the moving part

M of the linear system |σ*(L)|, which has no base point.

By construction we have φ*Oψr(l) = OX(M) and 2M < moving part of |σ*(2L)|.

Then, since X is normal and σ has connected fibres

(1) h\X, OX(2L)) = h\X, σ*σ*Ox(2L))

= h°(X, σ*Ox{2Q) > h°(X, OX(2M))

= h°(X, φ*OPr(2))
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= A°(Σ, φ*φ*OΨr{2)) > A°(Σ, OΣ(2)).

Now if we consider

0 —> / / ° J Σ , F ( 2 ) —• H°OΨr(2) -^> H°OΣ(2).

Lemma 1.1 gives

(2) h°(Σ, OΣ(2)) > dimlm/ > (r ^λ - (r + 2 Λ +min{degΣ, 2(r -

= (n + 2)[r - 1 ^ 1 ] = (n +

if deg Σ > 2(r — n) + 1. If /// (/ = 1, . . . , n) are general hyperplanes in Fr and Σ^ =

Έ Π H\ Γ\ - Π Hn-k is a general section of Σ of dimension k we have that Σ2 is an

irreducible surface of general type and then ([2], p. 115):

deg Σ = deg Σ 2 > 2(r - n + 2) - 1 > 2(r - ή) + 1.

This proves (a).

Assume from now on that equality holds in (a). In particular equality must hold

at every step of (1) and (2). Then / is an epimorphism and ZΪ1J7Σ,PK2) = 0. Since

>r(\) is always zero we have (ii). Moreover we have

S2H°OΨr(l) — • S2H°OΈ(l) = S2H°(X,σ*C) = S2H°(X,C)

la

- ^ H°OΈ(2) = H°(X, σ*Ox(2L)) = H°(X, Oχ(2L))

and hence a is an epimorphism and (iii) follows immediately.

In order to prove (iv), consider local trivializations of C at p and q. For a, β e

H°(C) we confuse a, β with their local expressions at these trivializations.

We need

CLAIM. If Bs \L\ = 0 then \L\ does not separate p and q if and only if for all or,

p) β(p)
β e H°(L),

ot{q) β(q)
= 0.

Proof of Claim. Let β e H°(C) be such that β(p) = 0. Since p is not a base

point of \L\ there exists a e H°(C) such that a(p) ^ 0 . Then, from
oc{p) 0

= 0
a(q) β(q)

we get β(q) = 0 and then β does not separate p and g.

Assume there exist a, β e H°(C) such that a(p) = a, a(q) = b, β(p) = a, β(q) = δ

and ab — bά ^0. Let σ =aβ —άa e H°(C). Then clearly σ separates /? and q. D
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If \2L\ does not separate p and q then trivially so does not \L\.

Assume \L\ does not separate p and q. Since S2H°(C) —> H°(£®2) is surjective

for every α, β e H°(2L), a = ΣaVsisj> β = ΣbUsisj> s< G H°(C). Since \L\ has no

base point and does not separate p and q we can take s e H°(C) such that s(p) = a ^

0, s(q) = b 7̂  0. Since by the claim we have
Si(p) a

λ, = {Si(p))/a = (Si(q))/b. Then
iλjd2, β(q) = Σbijλiλjb2, and then

= 0 for every 57 we can define

b\ β(p) =

<*(P) β(p)

<x(q) β(q)
= a2b2 = 0

and hence, by the claim, |2L| does not separate p and q.

For the proof of (i) we refer again to [21] p. 195. If we call Σ o = ΣΠ//| Π C\Hn

we have that Σo is a set of d = deg Σ > 2(r — n) + 3 points in p r ~ n . Proof of Lemma

1.1 (cf. [21] p. 195) shows that if we consider

H°OΨr(2) -U H°OΣ(2)

H°OFr-n(2) - Λ H°OΣQ(2)

then

2A (r + 2-n\1-1 l +dimlm/odimlm/ >

Under our hypothesis equality holds and then we have that Σo is a set of d points in

P r~" imposing exactly 2(r — n) + 1 conditions on quadrics. Then Σo is contained in

a rational normal curve Γ intersection of the quadrics containing Σo Let Tk be the

intersection of quadrics of ψr~n+k containing Σ*. We have Tk c Γ +̂1 Γ\Hn-k and hence

Γ = 7b c Tn Π H\ Π Π Hn. Then Tn has an irreducible component W containing Σ

of dimension at least n + 1. But then

r — n

2

since Σ c W c Γn. Again applying Lemma 1.1 to W, if u; = dimW >n + 2\

So dim W = n + 1 and, since W Π H\ Π -- Π Hn = Γ, W is a variety of mini-

mal degree in P r . Since such varieties are always intersection of quadrics we have in

particular W = Tn. D
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2. Canonical surfaces

As a consequence of Proposition 1.1 we get the following result for minimal

canonical surfaces. The first part is a well known fact (cf. [7], [12]).

Theorem 2.1. Let S be a minimal canonical surface. Then

(a) K2>3pg+q-Ί.

(b) Assume pg(S) > 6. // Kj = 3pg + q - 7, then q = 0.

Proof, (a) By the pluri-genus formula, we have h°(2Ks) = Kj + χ(Os). Hence

the inequality K$ > 3pg + q — 7 follows immediatly from Proposition 1.2 (see [7],

[12]).

(b) In order to prove the statement we need first some properties of surfaces ly-

ing on the border line; let Σ = φ(S) c ψPκ~}.

CLAIM 1. If Kj = 3pg + q - 7 then

(i) Σ lies in a threefold Z of minimal degree,

(ii) \Ks\ is base point free,

(iii) \Ks\ does not separate p,q e S (possibly infinitely near) if and only if so does

not \2KS\.
(iv) q = 0 or q > 3.

(v) If dim Sing Σ = 1 and K$ > 13 then the one dimensional components of Sing Σ

are double lines.

Proof of Claim 1. (i), (ii) and (iii) are direct consequence of Proposition 1.2 and

the fact that \2KS\ has no base points if pg > 4 ([5]).

(iv) If q ^ 0 and q < 2, Ks = 3pg +q —Ί, then K2

S < 3χOs and the canonical

map of S can not be birational (cf. [11]).

(v) Assume dim Sing Σ = 1. Let D be a one dimensional component of SingΣ.

The canonical map φ is not an embedding over D. Since Kj > 10 and since, by (iii)

points which are not separated by \KS\ are those which are not separated by |2^fs|

we can apply Reider's Theorem (see [23]). Let q e D be a general point of D and let

pi, P2 £ S (possibly infinitely near) such that φ(p\) = φ{pi) = q. By Reider's Theorem

we have that there exists an effective divisor E passing through p\, p2 and verifying

(KSE,E2) = (0,-2), (1,-1), (2,0).

Since q e D is general, E can not be contracted by φ. Since φ(p\) = φ(pi), we

have that άeg(ψ\E) > 2 and hence that (KSE, E2) = (2, 0) holds.

Note that moving q e D the curve E can not move because then we would have

the surface S covered by curves of genus at most two and this is impossible since S is

canonical. So we must have φ(E) = D (set-theoretically), άcgφ\E = 2 and that D is a
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line P ^ " 1 . In order to prove that it is a double line, assume that, for q e D general,

there are 3 points P\,P2,P3 (possibly infinitely near) such that φ(pι) = q. Consider

the 0-cycle Z = p\ + P2 + p?>. Then Z is clearly in special position with respect to

\2KS\ (following Reider's notation in [23]). Then if Kj > 4degZ + 1 = 13, we have a

decomposition Ks = M + F as in [23], where F is an effective curve passing through

Z (and so that KSF > 3) with the following numerical conditions:

M2 > F2, MF > 0, M2 > 0

2 < WF)2

~ (M2)

K2; = M2 + 2MF + F2 > 13

MF is even.

An easy computation show that these conditions have no solution. Then a general

point q e D has two pre-images through φ. D

It is a well known fact that the only possibilities for a threefold Z of minimal degree

in P ^ " 1 are

(A) Z = P 3 (pg = 4).

(B) Z is a cone over the Veronese surface (pg = 7).

(C) Z is a smooth quadric in P 4 (pg = 5).

(D) Z i s a s c r o l l o f t y p e Fa,b,c, 0 < a < b < c , 2<a + b + c = p g - 3 .

CLAIM 2. If pg(S) > 6 and Kj = 3pg + q - 7, then q = 0.

Proof of Claim 2. We will often use the following results on the irregularity of

a surface of general type:

(*) (Beauville, [4]): pg > 2q - 4. If S is canonical, then pg(S) > 2q - 3.

(**) (Xiao, [25]): if / : S —> P 1 is a linear pencil of general fibre F, then q <

(* * *) (Konno, [19]): with the same notation as in (**), is r is the rank of the sub-

sheaf of f*ωs generically generated by its global sections, then q < min{g(F) —

r,r + l}.

Assume first that pg(S) = 1 and that Z is a cone over the Veronese surface.

Choosing hyperplane sections of Z passing through the vertex and decomposing as

two components as sections of the Veronese surface, we have a decomposition:

KS^2D + D

where |D | is a linear pencil on 5, DD' > 1 (by the connectedness of canonical divi-

sors) and that KsD = 0 (D is contracted by φ to the vertex of Z; possibly D =0) .

Then, the only possibility is that (Kj, q) - (18, 4) and hence that g(D) < 7. But using
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(* * *) we obtain than r < 3 wich is impossible since φ(D) is not a plane curve.

Assume Z is a scroll. Consider

S >- Σ C Z >- P 1

c Z

where Z is the desingularization of Z. Let a : S —> P 1 be the induced fibration and

G be a general fibre. Note that, by construction (φoσ)\Q : G —> P ^ - 1 induces on G

a base point free sublinear system of \KQ\ and that (φ o σ)(G) c F 2 = Γ, where Γ is

a general ruling of Z.

Note that the singularities of (φ o σ)(G), for G general, lie on SingZ (produced

by the base points of \σ(G)\ on S) or on Sing Σ ΠΓ. If a+b + c > 2 (we only exclude

the case Z = P 3 which is Case (A)) then pg > 6 and Kj > 11 + q > 14 if q J 0.

Then, if Sing Σ has one dimensional components, they must be double lines by Claim

1. Moreover we can assume that they are transversal to the general ruling. Since any

such line in Z corresponds to an epimorphism Oψ\(a) 0 Oψ\(b) 0 Oψ\(c) —> Opi(l),

under the assumption a + b + c > 4 (pg > 7) we have that the lines transversal to

the ruling cut a general plane T in points which are on a line ί c T. Then we can

proceed as follows.

Assume first Z is smooth, i.e. 1 < a < b < c. We have then that S = S, σ(G) =

G and φ(G) is a plane curve of degree d = 2g(G) — 2 with only double points as

singularities, lying all of them on a line if pg > 1. Let m be the number of such

double points (possibly m = 0). Then we have:

d > 2m,

d = GO(1) = GKS = GKS + G2 = 2g-2,

2g-2=l-{d-\){d-2)-m,

which forces d < 5 and hence g = g(G) < 3. By (**) we get a contradiction.

If pg(S) = 6 and Z is a smooth scroll of P 5 we can proceed as follows. Since

G C P 2 we have that r - 3 and hence that g(G) > 6 by (* * *).

Take a general hyperplane section of Σ and Z. We get an irreducible curve C ly-

ing on a smooth ruled surface V of minimal degree in P 4 . Let h, f be the hyperplane

divisor class and the fibre divisor class in V. We have that h1 = deg V = pg — 3 = 3

and that C = ah + βf with a > 1, β > - α (obeserve that V is P(OPi 0 OPi(l))

embeded in P 4 by Co + 2/ (C2 = -e) , and hence β = 1, C ~ αC 0 + (j8 + 2α)/ and so

^ + 2a > ea = a, following [2] page 69 and [10] Corollary V.2.18). Let C e \KS\ be

the smooth curve lying over C. Using that Kv = —2h + (pg — 5)/ we get

d = deg G = GH = fC = a
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d = GKS = KSG + G2 = 2g(G) - 2 > 10

K2 = deg(C) = Ch= a(pg - 3) + β > 2a

K\ = 3pg + q — Ί=l\+q

which is impossible.

Assume dim Sing Z = 1, i.e. 0 = a = b < c. Take a general section Γ of Σ

containing SingZ. Γ corresponds to a section \Ks\ 3 C = cG + L where L is the

component of the sublinear system containing Sing Z (possibly L = 0).

We have then, since pg > 2q — 3

-c + 5 > 3pg + q - 1 = K2 = cKG + KL> cKG.

Then, using c > 3, cG2 < K$G and evenness of K$G + G2 we get that, in any

case 2pa(G) - 2 = KSG + G2 < 6. Then g(G) < pa(G) < 4. Again by (**) we get

q < 2 and hence q = 0.

Finally assume dim Sing Z = 0, i.e. 0 = a < b < c. We have a Hirzebruch surfce

Σc_£ C P^'~2 as a smooth hyperplane section of Z embedded by |Co + cf\ (CQ =

— e = —(c — b)). If we take now hyperplane sections of Z passing through its vertex

and having exactly the above decomposition when meeting Σc_£, then we produce a

decomposition

Ks = cD + D' + D"

KSD > 1

KSD' > 1

KSD = 0

such that \D\ is a linear pencil on S with φ(D) a plane curve. Note that if b = c (then

e = 0), then \D'\ also moves on S. A case by case computation of the cases c > 4,

c = 3, c = 2, b = 1, and c = b = 2 shows that we always get a contradiction by using

(**) and (* * *).

We get then that the only possibilities for S with q ^ 0 occur when pg < 5.

D

REMARK 2.2. Part (b) of Theorem 2.1 shows that inequality Kj > 3pg +q — 1 is

not sharp if pg > 0. Since surfaces with Kj = 3pg — 7 are known to exist (and are

completely understood, see [1]), it seems that a sharp bound should look like Kj >

3pg + aq — 7, with a > 1. There are several partial results in this direction:

(i) Let alb : S —> alb(S) be the Albanese map of S. As a direct consequence of

the study of the slope of fibrations, Konno ([16]) shows that, if άimalb(S) = 1 then

K2>3pg + Ίq-Ί.
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(ii) In the same paper Konno proves that if the cotangent sheaf of S is nef then

Kj > 6χOs = 6pg - 6q + 6 which is better than K2

S > 3pg + q - 7 if pg > q.

(iii) Note that even if άimalb(S) = 2 but there exists a fibration π : S —> B with

b = g(B) > 2 we have Kj > 3pg + 2q — 1. Indeed, for a general fibration we have

Kj > λχθs + (8 - λ)(b - l)(g - 1) (g = g(F\ F smooth fibre of π). Note that if

S is canonical g > 3. Under our hypothesis π ^ alb and then Xiao ([24]) proves that

λ > 4. Finally note that since b + g > q ([4]) we have

l ) > ( b - l ) + ( g - l ) > q - 2 i f b > 3

and (b - l)(g - 1) > (b - 1) + (g - 1) - 1 > q - 3 if b = 2.

But if b = 2 and (b — l)(g — 1) = q — 3 we have g = b + g. Again by [4] we can

say that S = B x F with Z? = g(2?) = 2. This is not possible if S is canonical. Finally

we can apply (*) and we get the desired bound,

(iv) Let C e \KS\\ then we have

0 -+ H°(Os) -> H°(ωs) -+ H°(C, ωS\C) -+ H\θs) ^ Hx(ωs) -• .

Note that the above sequence is self-dual and then we can consider pc € SymCX
Φ

The correspondence HΌ(S, ωs) —> SymC^ is clearly linear since it is induced by the

natural map H°(S, ωs) 0 Hι(Os) —> Hι(S, ωs). Then, if pg > (q * ) there must

exist C e \Ks\ such that pc = 0. For such C we have /z°(C, ωs\c) = Pg + q — 1.

Assume C to be irreducible. Since the linear system |^s | | c is birational we can

apply "Clifford plus" ([21] p. 195) and get

and hence Kj > 3pg + 3q — 7.

3. Canonical threefolds

Theorem 3.1. Let T be a canonical threefold. Then

K3

T > 4pg + 6q-32

Proof. Since T is canonical (in particular, T is minimal), Kτ is nef and big and

hence by the general Kawamata-Viehweg Theorem ([14] Thm. 2.17) and Proposition

1.2 we get

(1) \κ\ - 3χOτ = χτ{ωf) = A°(Γ, ωf) > 5(λ°(7\ ωτ) - 2)
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and hence

K3

T > 4pg + 6(h2(Oτ) - h\OT)) - 14.

Assume h2(Oτ) > 2hι(Oτ) - 3; then we get

(2) K\ > 4pg + 6q - 32,

and then the Theorem is proved under this hypothesis.

From now on we assume h2(Oτ) < 2h\Ότ)-4; then by [2] Lemma X.7 and [3]

Proposition 1 we obtain the existence of a fibration π : T —> B where B is a smooth

curve of genus b > 2.

Let F be a general fibre of π. Since Kτ + F\F = KF we have that the general

fibre is a smooth canonical minimal surface (note that Kj is nef so in particular it is

7Γ-nef).

Then we can apply the results of Ohno ([20]) and state that (Main Theorem 2):

(3) K3

T - 6(b - \)K2

F = K\JB > 4(χOBχOF - χθτ)

except for a finite number of exceptions. We have

K3

T > 2(b - l)[3K2

F - 2χOF] + 4pg - A(h\θτ) - h\θτ)) - 4

> 2(b - l)[3K2

F - 2χOF]+4pg -4q + l2

since we are assuming h2θτ < 2h1(Oτ) — 4. Note that since F is canonical

3K2

F -2χOF> Ίpg(F) + 5q(F) - 23 > 5(q(F) - 1)

and

2{b - \)[3K2 - 2χOF] > 10(6 - l)(q(F)+ 1) > \0(q(F) + b) - 10

since b > 2, q(F) > 0.

Note also that from the Albanese maps associated to F ^ Γ —> B we get

q(F) + b > q(T) = q and so

which is stronger than we wanted.

Finally we must deal with the exceptions of Main Theorem 2 in [20]. Notice that

since F is a canonical surface we must have, by Section 2, KF > 3pg(F) + q(F) — 7.

From this, only a few exceptional cases hold. We divide them in three cases (following

[15] a canonical surface verifying pg(F) = 6, q(F) = 0, K2

F = 3pg(F) - 6 = 12 is
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classified in two types according its canonical image is contained in a threefold of Δ-

genus 0 or 1). In all of them we will prove K\jB > 4(χOBχOF - χθτ). Then the

same argument as above works.

CASE 1. pg(F) = 4,5.

We use the results of the relative hyperquadrics method of the Appendix. If E =

π*ωT/B and we consider the relative canonical image of T:

= Z.

B

Then formula (A.2) gives

K\/B > (2Pg(F) - 4)(χOBχOF -χOτ)-2dcgK- 21(2)

where K = φ*Jγ,z(2). Note that since T is Gorenstein, 1(2) = 0 ([8]).

If Pg(F) = 4, K = 0 and

K3

τ/B>4(χOBχOF-χOτ)

which produces, as in (3)

(4) K*>4pg + 6q + 2.

If pg(F) = 5 then rkK - 1 and deg^Γ = x for some relative hyperquadric Q =

2Lε—xF containing Y (see proof of Lemma A.4). Lemma A.5 of the Appendix gives

that degK = x < (2/3)deg£ since rk Q > 3. Then from the proof of Corollary A.2

we get

K3

T/B > 2(pg(F)+l)degS -6(χOBχOF - XOτ)-2degK

> γ(χOBχOF-χOτ)

>4(χOBχOF-χOτ)

which gives again (4).

CASE 2. pg(F) = 6, 7, q(F) = 0 and K\ = 3pg - 7 or p g ( F ) = 6, q(F) = 0,

^ | , = 3pg — 6 and the canonical image of F is contained in a threefold of Δ-genus 0,

intersection of the quadrics containing it.
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Consider again the relative canonical image of T.

Ψ

B

If A e Pic B is ample enough we have an epimorphism

H°(Jγ,z(2Lε®φ*(A)) —> H°(JFtψP8-ι

Let W be the horizontal irreducible component of the base locus of the linear sys-

tem given by the sections of H°(JΎ^z(2L£<g>φ*(A))). Since under our hypothesis inter-

sections of quadrics containing F is a threefold of minimal degree (see [1] and [15])

W is a fourfold fibred over B by threefolds of minimal degree. Let W be a desingu-

larization of W.

We want to relate the invariants of π : T —> B with those of Φ : W —> B. In

[17], Konno gives a general method for this. We refer there for details. Let H be the

pull-back of the tautological divisor of Z to W.

Lemma 3.2. (a) Φ*Oψ(H) = π*ωT/B.

(b) deg Φ*Oψ(2H) = H4 + 4 deg π*ωτ/B.

(c) K3

τ/B>2H4 + 2(χOBχOF-χOτ).

Proof, (a) Follows directly from the construction of W and H.

(b) Note that the formula we want to prove is invariant under the change of H

by H + Φ*(Λ), A e Pic B. So we can assume \H\ is base point free and hence get a

smooth ladder W = W4 ̂  W3 ̂  W2 ̂  W{ ̂  Wo (i.e., Wt is smooth and W{ e \H\Wι+{ |).

Notice that W2 is a ruled surface over B. By induction one easily proves that

VΪ > 0 Vm > 1 V/i > 0 RmΦ*OWι(nHιw.) = 0

and hence that

deg Φ*OWi(2H\W.) = deg Φ^O^(H) + deg Φ

Finally note that degΦ*CV0(2//) = H4.

(c) The natural map 0 —> Φ*Oψ(2H) —> π*ωfjB has a torsion cokernel since

it is an isomorphism at a general fibre. Then the result follows calculating degπ^i ί ;^

as in proof of Corollary A.2 and applying (b). D

In order to finish Case 2 note that, since part (c) of Lemma holds, it is enough to

prove that H4 >
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CLAIM. Let X be a smooth variety and / : X —> B a filtration onto a

smooth curve. Let D e Div(X) be a nef divisor and let S = f*Ox(D). Then Dn >

Proof of Claim. It follows easily by induction from [17] Lemma 2.1. D

CASE 3. Pg(F) = 6, q(F) = 0, K2

F = 12 and the canonical image of F is con-

tained in a threefold of Δ-genus 1, intersection of quadrics containing it.

In this case (see [15]) the canonical image of F is a complete intersection of two

quadrics and a cubic. We follow the notations of Case 2. Denote Hi = H\Wr Now

W = W4 is fibred over B by threefolds of degree four in P 5, complete intersections of

two quadrics, and W2 —• B is an elliptic surface over B.

Then we have

(b)

(c)

Lemma
degΦ*
KT/B -

3.3.

> H4

(a)
\H) >
+ 4(χ(

Φ*Ow(H) = π*ωτ/B.
{\/2)HA + 5άegΦ,Oi
0BχOF-χΌτ).

Proof, (a) Follows as in Case 2.

(b) Note that, as in Case 2, formula (b) is invariant under changing H by H +

Φ*(A) so we can construct a smooth ladder of (W, H). For / > 2 and / e B general

(Wi)t <Ξ P ί + 1 is a complete intersection so it is projectively normal. On the other side

RιΦ*OWi is locally free for / > 1 (see [14]) and in fact RιΦ*OWi = 0 except for

/ = 2, for which it is a line bundle of degree —χθψ2. Let E = (W2)t any fibre of

Φ : W2 —> B. Since H2 + E is nef and big on W2 we have from Kawamata-Viehweg

vanishing and the exact sequence

0 -> H°(W2, -E - H2) -• H°(W2, -H2) -+ H°(E, OE(-l)) -> Hι(W2, -E - H2)

that h\E, OE(l)) = h°(E, OE{-\)) = 0 (recall that KE = OE since W2 is elliptic) and

hence that RλΦ*Ow2(H) = 0. Then again by induction we have

Vi > 0 Vn > 1 RιΦ*OWi(nH) = 0,

Vi ^ 2 RιΦ*OWi = 0 .

Therefore we have exact sequences

0 —• Φ*OWM{H) —+ Φ*OWi+ι(2H) —> Φ*OWi(2H) ^ 0 for i > 0

0 — • Φ*OWM — • Φ*OWM(H) — • Φ*OWι(H) —> 0 for / 4 1

0 —• Φ*OW 2 —• Φ*OW2(H) — • Φ*O W l (H) — • ^Φ*Ow 2 — ^ 0.
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Denote d = degΦ*Oψ(H) = degπ*ωτ/c> Then we have

d = deg Φ*OWΛ(H) = deg Φ*OW3(H) = deg Φ*OW2(H)

= dεgΦ*OW](H) - άtgRιΦ,OW2

and then

degΦ*Ow(2H) = 4d + H4 + degR ιΦ*OW l = 4d + H4 - χOWl.

Note that, since Φ : W2 —> B is an elliptic fibration, we have that Kψ2 = Φ*(L)+

M, where M > 0 and contained in fibres and degL = χθψ2 + 2(b — 1). So, Riemann-

Roch on W2 and Leray spectral sequence yields

d - 4(b - 1) = XΦ*OW2(H) = χOW2(H) = χOW2 + l-HJ - λ-H2KWl

< -χOWl-4(b-\)+λ-H4

since H\ = //4, H2 is nef and HΦ~ι(t) = 4 for t e B. Then -χOWl >d- (1/2)//4

and hence deg Φ*O^(2H) > 5J + (l/2)//4.

(c) The same argument as in Case 2 works. •

Now we only have to use H4 > 0 and get K.\,B > 4{χOBXOf — χθτ) as needed.

Note that using good lower bounds for H4 as in Case 2 we can obtain stronger bounds

for KJIB in this case. D

REMARK 3.4. The bounds obtained in Theorem 3.1 for fibred canonical threefolds

hold when simply \Kp\ induces a birational map (it is not necessary that T be canon-

ical).

Appendix. The relative hyperquadrics method for threefolds

The method of counting relative hyperquadrics, originated in [22] and [6] was suc-

cessfully applied by Konno in [18] to study the slope of fibred surfaces with small fi-

bre genus. Here we construct the fundamental sequence and prove the first elementary

conclusions which are needed in the previous Section.

Let T be a normal, Q-factorial, projective threefold with only terminal singulari-

ties, and let π : T —> B be a relatively minimal fibration onto a smooth curve of

genus b. Following Ohno ([20]), if D is a Weil divisor on T and S = π*Oτ(D) we
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have

T

μ

rp

φ

B

where (1) ψ is induced by π*π*Oτ(D) —> OT(D) and Y = Έaψ.

(2) μ : T —> T is a desingularization of T such that λ = ψ o μ is everywhere

defined.

(3) (λ* o i*)Lε ~ Q μ*(D - D\) — E, being L^ the tautological divisor on Z, D\

the codimension one base Weil divisor of Oτ(D) and E is an effective Q-divisor μ-

exceptional.

Proposition A.I. Under the above hypothesis we have an exact sequence

0 — • φ*Jγ,z(2Lε) —• S2π*Oτ(D) —> 7r*OΓ(D) [ 2 ]

(ί/z£ generalized Max-Noether sequence associated to π).

Proof. From the exact sequence

0 —> Jγ,z(2Lε) — • OZ(2L£:) —> /#Oy (8) Oz(2L£:) —> 0

we have

0 —• φ*Jγ,z(2Lε) —> S2π*Oτ(D) —> φ*(i*Oγ <g> Oz{2Lε)).

Now the natural map π*π*Oτ(D) — ^ OT(D) induces a map 7Γ*(S27Γ*e>r(D)) =

S2π*π*Oτ(D) -> (OT(D) ® OΓ(D))** = OT(D)[2] and hence 5 : S2π*Oτ(D) -+

π*Oτ(D)[2]. Let K = kerδ. For general t e B, Kt = (φ*Jγ,z(2Lε))t, and hence

K = φ*Jγ,z(2Lε) since π*Oτ(D)[2] is locally free. D

Corollary A.2. Under the same hypothesis we have

(1) K\/B > (2pg(F) - 4)(χOBχOF - χθτ) -2άtgK- 21(2)

where K = φ*Jγ,z(2Lε) F = π~ι(t) for t e B, and 1(2) is the second order correction

term of Reid-Fletcher to the plurigenera of T (cf [8]).
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Proof. Let D = KT/B (which is in general a Weil divisor) and take degrees in

the generalized Max-Noether sequence. Use

d = άegπ*ωτ/B > (χϋBχOF - χθτ) ([20] p. 656)

?}B = -K3

T/B + 3(χOBχOF - χθτ) +1(2) ([20] Lemma 2.8)

deg S2π*ωτ/B = (pg(F) + l)d

and that if C = cokeτ(S2π*ωT/B -• π*ω{

τJB), degC > 0 since π*ω[

τ}B is semipositive

([20]). D

REMARK A.3. For small values of the invariants pg(F), q(F), KF it could be in-

teresting to consider D = mKT/B for m > 1. We obtain then bounds for K\/B which

are better than (1).

In general deg K is difficult to be computed or bounded. There are some special

cases where this is easier. Notice that r k ^ = /Z°(/Σ,PΓ(2)) where Σ is the canonical

image of F and r = pg(F) — 1. Then following Lemma 1.1 we have

h°(JΈ,ψr(2)) < ( Γ ~ 2 ) ( Γ ~ 3 ) if Σ is a non ruled surface

h°(JΣ,ψr(2)) < ^JZ-JΣLILJ. _ ^ ( Σ ) if Σ is a ruled surface

h°(JΣ,pr(2)) < Γ ( Γ ~ 1 } if Σ is a curve.

Lemma A.4. (a) If pg(F) > 2 and E = π*ωT/B is semistable then άegK <

2(vk K/(pg(F)))d.

(b) If K = C]®- ®CS (s = rkK) then

2
άegK < (xkK)-d

(in particular this happens if s < 1 or b = 0).

Proof, (a) If E is semistable then so it is S2E. Then we use the natural inclu-

sion K -̂> S2E.

(b) If Xi = degCt then there exists a section s e H°(K®Cjλ) = H°(Jγ,z(2Lε)®

Oz(φ*(Ci~1)) ^ H°(Z,O(2Lε) 0 φ*(C[1)) so there exists a relative hyperquadric

Qi = 2Lε — Xiψ~x(t) (numerical equivalence). The result follows then from the fol-

lowing Lemma which is a slight refinement of [18] Remark 1.7, and the fact that for
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every /, rk β/ > 3. D

Lemma A.5. Let Q = 2Lg — xφ~λ(t) be a relative hyperquadric. Let v\ > v^ >

• > vk the virtual slopes of the Harder-Narashiman filtration of S (k = rk£). Let

p = r k β ; then

2
x < min {Vi + yp_/} < — degf.

\<i<P p

Corollary A.6. With the same notations as above, assume pg(F) > 2.

(a) If S = π*cΰτ/B is semistable then

( 24 \
10 — KχOBχOF - χθτ) - 2£(2) if Σ is a non-ruled surface

Pg\r')'

K\,B > (6 - -^-\xOBXOF - χθτ) - 2£(2) if Σ is a ruled surface

K3

T/B > (2 — )(χOBχϋF ~ χθτ) - 21(2) if Σ is a curve,

(b) Ifh°(JΈ,ψr(2)) =

K3

T/B > (2pg(F) - 4)(χOFχOB - χθτ) - 2t(2),

(c) //ft °(J Σ ,p)(2)=l then

K3

T/B > (2pg(F) - ^yχOFχOB ~ χθτ) - 21(2).

Proof. Take degrees at the generalized Max-Noether sequence and use Remark

A.3 and Lemma A.4. D
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