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Throughout R will represent a ring with unit element 1, and all modules
will be unitary 7?-modules. We call a module M a completely indecomposable
module if the endomorphism ring of M is a local ring. Let 9Jί= {Ma}j be a set
of completely indecomposable right 7?-modules, and SI the full subadditive
category of the category of all right 7?-modules, whose objects consist of all R-
modules which are isomorphic to direct sums of Mα

rs in 311. We define the
subclass Qί' of the morphisms in St as follows: for any objects M—ΣθΛf/,

N= Σ ®Nβ ίn 3l> 3' Π Hom^(M, N)= {/e HomΛ(M, N) \ ρβfia is not isomor-

phic, for all a^K, /3eL, where iΛ\ MΛ'-*M is the inclusion and pβ: N-*Nβ is
the projection} . Then, 3f' does not depend on the decompositions of M and N
(see Corollary to Lemma 5 in [5]).

M. Harada and Y. Sai [4], [5] gave several equivalent conditions for SMΓ\ &
to be equal to the Jacobson radical J(SM) of SM, where Me SI and SM= Hom^
(M, N). Among those conditions, they made great use of structures of the
factor cagegory Sl/Qf' in order to show the following fact: if J(SM)=SMΓ\$',
then for any two decompositions M— Σ ®MΛ= Σ Θ^Vβ and any subset Kf of

Ky there exists a one-to-one mapping φ of K' into L such that M^Nφ^ for

The purpose of this note is to give a ring-theoretical proof of the above fact
by using a few structure of SI/3?7. We shall define a concept of locally direct
summands of M in SI for this purpose. Let N=^@Ny be a submodule of

M in St. If Σ ΘΛ/V is a direct summand of M for every finite subset Z/ of

L, we call a locally direct summand of M (with respect to the decomposition
JV=ΣΦ ̂ y) We shall give a relation between some locally direct summands

of M and dense submodules of M defined in [4], and using this relation we shall
give a proof of the statement above.

The author would like to express his hearty thanks to the referee and Prof.
M. Harada for their advices and suggestions.
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We begin with preliminary definitions and results on 3f and SM. From

now, we understand that a module M is in SI and that Mrt's are completely
indecomposable, if there are no confusions.

Let M, N be in SI, and / e Hom#(M, N). /is said to be left regular modulo

3' if, for any homomorphism g of any L in Sί to M, ̂  in Qf' implies £ in Qf .
The right regularity of / modulo & is defined similarly. / is said to be an
isomorphism modulo & if there exists some g: N-*M such that gf=\M mod.S'

zndfg=lN rnod.S'.

REMARK 1. Let M= Σ 0Mβ, N= 2 ΘMβ/ be in SI where ϋC7 is a subset

of K, i the inclusion of TV to M and p the projection of M onto JV. Then, i is
left regular mod.Qf' and p is right regular mod.^f'.

Lemma 1. For any morphism f in SI and any g in 3f', fg and gf are in 3f .
See Lemma 5 in [5].

Lemma 2. Let M= 2 ®MΛ be in Sϊ, and SM the endomorphίsm ring of M.
«euc

Then,

(1) SMJSM Π 3f' is a regular ring (in the sense of von Neumann), moreover
(2) for any fin SM with /— f2 modulo &Γ\SMf there exist some elements a

and e in SM such that a is regular in SM/SM Π 3f' , e is a projection of M to Y] 0MΛ/
α/e^/

for some subset K' of K and f=aeaf modulo &, where aa/=a/a=l modulo ̂  and

a?<=SM.
See [1], Lemma 6 and Theorem 7 in [5] and [6].

Corollary 1. Let M, N be in SI, andf: M-+N. Then,

( 1 ) f is left (resp. right) regular mod. & if and only if there exists some g : N-+M
such that gf=lM (resp.fg=lN) mod.^} and

(2) f is an isomorphism mod. 3ί' if and only iff is left and right regular mod. ^'.

Proof. (1) "If" part is trivial. Conversely, we assume that/ is left regular

mod.^ Since SM/SM Π 3f7 is a regular ring by the lemma, there exists some
g: N->M such that fgf=f mod.Qί7. The left regularity of / mod.Qf7 implies

that gf—^M mod.^. The right regularity is similar. (2) is clear.

Corollary 2. If f: M-+N is left regular mod.^' for M, N in SI and SM

Π S7 is equal to the Jacobson radical J(SM) of SM, then f is an R-monomorphίsm
and M is R-isomorphic to a direct summand of N.

Proof. By Corollary 1(1), there exists some g: N-*M such that gf=^M
mod. $', since /is left regular mod.gf. Hence, lM—gf^SMΓ(^=J(SM) and
so gf is an ^-isomorphism. Therefore, / is an Λ-monomorphism and M is R-
isomorphic to a direct summand of N.
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Let Uy V be right Λ-modules, /: U-> V, and U= Σ θ C/v a direct sum of
y(ΞK

right /?-submodules of U. Then, we consider the following condition:

/ is an R-monomorphίsm and •• (*)

for any finite subset Kr of K, f( Σ Φ ^V) ^ a direct summand of V.
Ί'^K.'

If/satisfies the above (*)-condition, we call/a (*)-monomorphism (with respect
to this decomposition of U).

For example, let/, U and V be as above. If /is an Λ-monomorphism and

each t/y is injective, then / is a (*)-monomorphism (with respect to the decom-

position C7=Σ0Z7γ).
y&jζ

From now on, (*)-monomorphisms will be considered in SI.
The following lemma on (*)-monomorphisms is essential in this note.

Lemma 3. Let M= Σ @MΛ) N be in 21 and f: M-»N. Then, f is left
αejs:

regular mod.^ if and only if f is a (*)-monomorphism (w.r.t. the decomposition

Proof. First, we assume that/ is left regular mod.Qί'. Put M0= Σ
α/eX'

for any finite subset Kf of K. Let i be the inclusion of M0 to M. Then, fi is

left regular mod.Qί' and *Sr

M 0Π3>/=(*S'Af0) by Lemma 8 in [5], because Kr is a
finite set. Hence, fi is an Λ-monomorphism and fi(M0) is a direct summand of
N by Corollary 2 to Lemma 2. Therefore, / is an Λ-monomorphism and/(M0)
is a direct summand of N, i.e. / is a (*)-monomorphism (w.r.t. the decomposition

M= Σ ΘMJ. Conversely, let gϊΞ Hom^(Γ, M) for any module T= Σ θ TΊ in
<*<=κ Ύ(ΞL

SI and assume that^ in $'. Put gy=giy, where iy is the inclusion of TΊ to T for
all γei. Then, we can express^ as a column-summable matrix for all γ^L.
Hence, gΊ is a column-matrix whose finite components are isomorphic and the

others are all non-isomorphisms. We can rearrange gy as follows: the first n
n

components are isomorphisms. Put Λf0=ΣΦΛ^* Let i be the inclusion of M0
ί = l

to M, and^> the projection of M onto Λf0. Then, fipgy=fgy=fgifγ=Q mod. Qί7.

Since ĵ ί is left regular mod.QK, /^Y is in Qf' Hence, ^v and so g are in Qί7, because

°f Pgv-^(l~P)gv=gi mod.S' Therefore, / is left regular mod.^i7.
We note that a (*)-monomorphism does not depend on the decomposition

of M from Lemma 3.

Corollary 1 (cf. Lemma 3.2.3 in [3]) (1) // /: M-*N is left regular

mod.^', then f is an R-monomorphίsm. (2) For any f in SM{\^, \M~ f is
an R-monomorphίsm.

Proof. (1) is clear by the lemma. (2) Since / is in SM Π S7, IM — / is left
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regular mod.^' and hence an Λ-monomorphism by (1).

Corollary 2. Let M, N be in 31, and f: M-*N an isomorphism

Then f is an R-ίsomorphism provided either SMΓ\^=J(SM) or SNΓi^/=J(SN).
Especially, if M is a finite direct mm of M#s in 2JΪ, then an isomorphism mod. $'

means an R-isomorphism.

Proof. Since / is isomorphic mod.3^, there exists some g: N-+M such
that gf— \M mod.S' and^— 1̂  mod.^. Hence, / and g are left regular mod. 3f',

that is, both are Λ-monomorphisms by Corollary 1. In case SNΓ\&=J(SN),

^N~fs^J(>^N) Hence, fg is an Λ-isomorphism and so is /. On the other
hand, if SMf}$' is equal to J(SM), then lM—gf^J(SM} and hence gf is an R-
isomorphism. Therefore, / is an Λ-isomorphism. The latter assertion is clear
by Lemma 8 in [5].

We define here an important concept as follows (see [3]): let M, N be in

SI, and N= Σ ®Nβ a submodule of M. Then, N is said to be a locally direct
βGK

summand of M (with respect to the decomposition N= 2 @Nβ) if the inclusion
βSjFC

/: N->M is a (*)-monomorphism (with respect to this decomposition of N).

In the following lemma, we consider the existence of locally direct
summands of a module M in SI.

We remark that in the above definition, the concept of locally direct

summands of M in SI does not depend on the decomposition of M, since (*)-

mononorphisms do not depend on the decomposition of M.

Lemma 4. Let M, N be in SI, and f: M-*N. Then, there exist a locally

direct summand N' of N in SI via the inclusion i: N'->N and some /': M->N'

such that f=ίf mod.^', i is left regular mod.^ and f is right regular mod.^'.

Proof. We begin with the case M—N and f=f2 mod.^. There exist a
projection e of M=^®MΛ onto 2 0MΛ' for some subset Kf of K and

Oί^K Λ'eΞΛ/

elements a, a' in SM such that f=aea' mod.^7 and aa'=a'a=l mod.Qf', by
Lemma 2(2). Put N'=aeM, N"=eM, and consider the inclusions i: N'-*M,

i'\ N"->M. Then, by Lemma 3, N' is a locally direct summand of M and i is

left regular mod.Qf', since N' is isomorphic to TV" under ai' that is left regular

mod.^ Moreover, ea! is right regular mod.^7, and hence so is f'—aea':
M—>N'. Thus, our lemma holds. In the general case, for /: M—>, there exist
some homomorphisms g: N—*N and k: N-*M such that g=g2 mod.^, f=gf
mod.^ and g=fk mod.^, by Lemma 2. For g: N-*N with g=g2 mod.^,
there exist a locally direct summand N' of N in SI, some gr \ N~>N/ and the
inclusion /: N'-*N such that g=ig/ mod.^,^ and i are right and left regular

mod.3^ respectively, by the above argument. We can easily show that g'f is
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right regular mod.^7 sinceg'ί— \N' mod.Qί7, and/— ig'f mod.$'.

Lemma 5. For M and N in Sϊ, a homomorphίsm f: M-+N is right regular
mod. Qί7 if and only if there exist a locally direct summand M' of M in Si and some
g: N-*M' such that fig— 1N mod.^ξ' and g is an isomorphism mod.^', where i is
the inclusion of Mr to M.

Proof. "If" part is trivial. Conversely, suppose that / is right regular

mod.3f'. Then there exists some gΊN-*M such that fgr=\N mod.^', by
Corollary 1 to Lemma 2. Since g/ is left regular mod.ίV7, there exists a locally

direct summand M7of M in SI such that g'=ig mod.^ί7, where g: N-^Mf is right
regular mod.ξj' and the inclusion ί: M'-*M is left regular mod.Qf7, by Lemma 4.
Therefore, fig=lN mod.S7 and g is an isomorphism mod.Qf'.

Lemma 6. Let M, N be in SI, e an idempotent element in SM where N is
contained in eM, and let the inclusion i: N->M be left regular mod.^. Then,
there exists a locally direct summand N' of M in St such that e^ίp+ί'p' mod.&,
pi—\N mod.^r ,p'i'=\N

f mod.& and pi'=p'i= 0 mod.&, where if is the inclusion

of N' to M andp, pf are homomorphίsms of M to N, N' respectively. Furthermore,
the formal direct sum N@N' is R-ίsomorphic to a locally direct summand of eM.

Proof. For /: JV-^M, there exists some pQ: M-^N such that ip0i=i mod. Q7.
Since ei=i, ip0ei=i mod.$7. Put p=p0e, that is, p: M->N and ipi—i mod.^.

Since i is left regular mod.^f', ρi=lN mod.^. Now, we putf=ip and g=e~f.

Then, ef=fe=f and eg=ge=g. For g: M-+M there exist a locally direct
summand TV7 of M in SI and some pf: M-^>N' such that g=i/p/ mod.^7, the

inclusion /': N'-*M is left regular mod.^7 and pr is right regular mod.^7, by
Lemma 4. Therefore, e=f+g=ip+i'p' mod.Sf7. Since gf=fg=Q, ίpi'p'=i'p'ip

—0 mod.^7 implies/>i7= p'i—Q mod.^7, because i and /' are left regular mod.^7

andp y p' are right regular mod.^7. Moreover, g= g2 mod..^57 implies ρrir—\Nf

mod.^7. Finally, we show that the formal direct sum N@~N' is Λ-isomorphic

to a locally direct summand of eM. Let 7=(ί, i'): N®N'-»M and ί=(?1V. Γ-»
\^2/

N®N' for any T in Sϊ. Suppose that It-=ίtl+i/t2 is in ^7. Then, pit.+pi't, is

in 37. Since pi' is in $57, ^ is in & and so is t2. Hence, t is in $7. It follows

that / is a (*)-monomorρhism. Therefore, N®Nf is a locally direct summand
of M in St. On the other hand, g=eg and g=i'p' mod.^7 imply eir=if mod..^7,

and so we may assume eir=ir in the above. Since i' is a (*)-monomorphism,
Im(ί') is contained in eM. Hence, Im(7) is contained in eM, whence N@Nf is
jR-isomorphic to a locally direct summand of eM.

Corollary. Let NdM be in SI. If the inclusion ί: N-+M is left regular

mod. S?7, then there exist a locally direct summand N' of M in Sϊ, the inclusion i':
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N'-*M and some p, pf of M to N, N' respectively such that lM=ip+i'p'

pi=lN mod.$',p'i'=lN' mod.%' a

Proof. Put e— \M in the lemma.

Let N be an Λ-module, and {N j \ = Σ ΘΛfp} .eJ the set of submodules of
ίSly

N in Si which are locally direct summands of N. We define an order > in the

set {Nj} j as follows :

for each locally direct summand Nj of N,

Nj>NΛ if and only if {#{"} 7,Z> W'}/,, for any φA in/.

Then, there exists a maximal submodule of N among the set {Nj} j with respect

to this order > , by Zorn's lemma. We call it a maximal locally direct summand

of N.

Proposition 7. Assume that all Ma in 9ίl are infective. Let NdM be in

SI. Then, N is essential in M if and only if N is a maximal locally direct summand

ofM.

Proof. "Only if" part is trivial. Conversely, if N is not essential, there

exists a cyclic submodule N' of M with NΓ\N'=(Q). Then, the injective hull

E(N') in M is a direct summand of M. On the other hand, NΓlE(N')=(0).

Since E(N') contains an injective submodule Mβ for some /3, this contradicts

the maximality of N. Hence, N is an essential submodule of M.

Next, we show that a dense submodule of a module in SI defined in [4] is

equal to a maximal locally direct summand of the module.

Lemma 8. Let NdM be in SI. Then, N is a maximal locally direct sum-

mand of M if and only if the inclusion i of N to M is an isomorphism mod.&.

Proof. First, we assume that N is a maximal locally direct summand
of M. If the inclusion i: N-+M is not isomorphic modulo 3f', there exists
a locally direct summand JV' of M in St such that \M=ip-\-i'ρ' mod.Qf',

where ir is the inclusion of N' to M, p : M-+N and p' : Λf-WV, by Corollary to

Lemma 6. Then, 7=(i, ί7): N®N'-*M is a (*)-monomorphism. Hence, the
image of / is equal to a locally direct summand N® Im(zv) of M in 3ί which
contains ΛΓ; this contradicts the maximality of N. Hence, Nf=Q. Therefore,
lM=ip mod.ξy and so i is an isomorphism mod.Qf'. Conversely, suppose that
i is an isomorphism mod.^ Then, there exists some/): M-+N such that/)/—

1N mod. ̂  and ip=lM, mod.^ί7, and also N is a locally direct summand of M.
If N is not maximal in M, there exists a locally direct summand JVr of M in SI
such that Nξ&N' is a locally direct summand of M in St. Hence, the inclusion

/==(/, ί'): N®N'-*M is left regular mod.Qf7, where i' is the inclusion of N' to

M. Therefore, there exists some g: M-*Nξ&N' such that gI=lN®N' mod.Qf,
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by Corollary 1(1) to Lemma 2. Let pl be the projection of N(&N' onto N.
Then, ρίgi=lN=ρi mod. 3̂  and so pιg=p rn.od.9f', which implies that pi'—Q
mod.Qί7. Hence, Λ/^O; a contradiction. It follows that N is a maximal locally
direct summand of M.

REMARK 3. The sυbmodule N in the lemma is called a dense sub module
of M, in [4]. We note that N®N' in Corollary to Lemma 6 is a dense sub-
module of M.

Corollary 1. Let M,N be in 31, and f: M->N. Then, there exist locally

direct summands Mr and N' of M and N in SI, respectively, such that the restric-
tion f\M' to N' is an R-ίsomorphism. Especially, f is isomorphίc mod.^$' if and
only if M' and N' are dense in M and N, respectively.

Proof. For/: M->N, there exist a locally direct summand N" of N in SI,

the inclusion i ': N"-+N and some/7: M-WV" such that/W/' mod.g', *' is left
regular mod.^f7 and/7 is right regular mod.Qί7, by Lemma 4. Since /7 is right
regular mod.^ί7, there exist a locally direct summand Mr of M in SI and some
g: N"-+M' such tha.tf'ig=lN" mod.^ί7 and^ is isomorphic mod.Qf7, where i is
the inclusion of Mf to M, by Lemma 5. Since fig is left regular mod.S' and g
is isomorphic mod.^7, fi is left regular mod.^f7 and so Λ-monomorphic. LetJV7

be the image of fi in N. Then, β: M'-*Nr is an ^-isomorphism, whence it

follows that N' is a locally direct summand of N. Particularly, in case / is

isomorphic mod.^', *' and/7 are isomorphic mod.Qf7 by Corollary 1(2) to Lemma
2 and fig: 7V77-»j?V7 is isomorphic mod.3>', so that TV7 and M' are dense in N and
My respectively, by the lemma. Conversely, if N' and M' are dense in N and
M7 respectively, i and /' are isomorphic mod.Qί7, and hence / is isomorphic

mod.Qί7 by the lemma.

Corollary 2. // SM Π 3t'=J(SM) for α module M in Si, then M is the only
one dense submodule in M.

Proof. Let N be a dense submodule of M. Then, the inclusion i: N-*M
is isomorphic mod. 3f7 by the lemma. Hence, i is an ^-isomorphism by Corollary
2 to Lemma 3 and so N=M.

Lemma 9. Let e be an idempotent element in SMfor a module M=
αe-e

in SI. Then, there exist a submodule N of eM in SI and p: M-*N such that e=ίp

and pi— I N mod.^ , where i: N-*M is the inclusion.

Proof. Since eM is a direct summand of M, eM contains some MΛ by
[2]. Hence, there exists a maximal locally direct summand of eM in SI. Let
N be the maximal one, and i the inclusion of N to M. Since i is left regular
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7, there exists a locally direct summand N' of M in SI such that e=ip+i'p'

ί', pi = lN' mod.^' and NQ)N' is P-isomorphic to a locally direct
summand of eM, where/): M-WV, />': M-+N' and zv is the inclusion of TV7 to M,

by Lemma 6. Since N is maximal in eM, N'=Q and hence e— ip mod.Qf'

Corollary 1 (cf. Theorem 1 in [4]). Let P= 2 θ^ in Sϊ (not necessarily
αe£

P^ is in 2JΪ). T/zew,, £/zer£ eaώίs # submodule NΛ of P^ in SI sw£/z ίte e^i^p^

^', where pa,: P-*NΛ, iΛ: NΛ-*P is the inclusion and eΛ: P-^P^ is the projec-

tion, for each a^L. Moreover, ΣΦ^α» is a maximal locally direct summand of
Λ^L

P in Sί. (Such N# is called a dense submodule of PΛ, in [4].)

Proof. We can find a maximal locally direct summand NΛ of eΛP=Pcύ

such that ea^ίfipa mod.^7, where pΛ: P-*Nay iΛ: Na-*P is the inclusion
and ea: P-*P# is the projection, for every αeL, by the lemma. Since a

n

finite direct sum X] ®N#. is a direct summand of P, ]Γ] ®NΛ is a locally direct
ί = ι ' αe£

summand of P. Hence, the inclusion /: 2 ΘΛ/"α->P is left regular mod.S' In

αe£

order to see that 2 Θ^Λ is dense in P, we have only to prove that / is right
αe£

regular mod'.Qf'. Let t be a homomorphism of P to any module T in SI and

assume that tl is in $'. If t is not in ̂ , there exists some direct summand Pβ

in P such that the restriction t \ pβ is not in %>'. 2 eai=i and eΛi is non-isomorphic
cte£

for almost all a^L, where i is the inclusion of Pβ to P. Hence, for some integer

n, ^e<»''i—i πιod.37 and so ti=teNi=tINpNi — tIpNi = Q mod.^, where IN:

'Σί®NΛj-+P,pN: P->ΣΘ .̂ and eN: P— Σ®^r Therefore, ίί is in ,̂

which is a contradiction. Thus, t is in Qf' and so / is right regular mod.S7.

Corollary 2. Let M be in Sί, and N a direct summand of M. If SMΠ 3f7

w equal to J(SM)9 then N is in Sϊ.

Proof. Since N is a direct summand of M, there exists a submodule N'

of M such that M=N®N'. Hence, there exist dense submodules N0 and N0'

of N and JV7 in Sί, respectively such that 7V0®ΛV is dense in M, by the above

corollary. Hence, JV00ΛΓ

0

/=M by Corollary 2 to Lemma 8, which implies

that N is isomorphic to a direct sum of completely indecomposable modules

MΛ

xs in 5»i.

Proposition 10. Let M, N be in SI, αnrf/: M-+N. If either S

J(SM) or SN Π &=J(SN), then there exist submodules Ml and M2 of M in Sί such
that M— Ml®M2 and the restrictions of f to Ml and M2 are a zero homomorphism

and an R-monomorphism, respectively.
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Proof. By Corollary 1(1) to Lemma 2 and Lemma 4, there exist a locally

direct summand N' of N in Sί, /': M-+N', g': N'->M and the inclusion i: N'-+

Nsuch that/=*77 mod.^7,/'/- V mod.g7, i is left regular rnod.^7 and /' is

right regular mod. Qf7. In case 5^ Π 3f=/(^), *V Π 3'=/(*V) and hence /7£7

is an ^-isomorphism. Therefore, M=Im(^/)ΘKer(//). We put M1=Ker(//)

and M2=Im(£7). Then, the restriction / 1 MI is a zero homomorphism mod.^'

Since/I Mz=ίf\ MZ mod.^ and/7 | M2 is an isomorphism rn.od.3i', /I M2 is an ^~

monomorphism. On the other hand, if SM Π &=J(SM), SM' Π 3>/=/(«SfM/) where
M7 is a locally direct summand of M in SI such that some g: Λ/r/->M/ is isomor-

phic mod. 3̂  (cf. Lemma 5). Since g is an ^-isomorphism by Corollary 2 to

Lemma 3, SN'Γ\3?=J(SN') and so Λf=Im(^/)® Ker(/7) as above. We put

M2= Im(g'). Then, M1 and M2 satisfy the proposition.

Now, we shall show ring-theoretically the main theorem in this note by

Mi— Ker(/7) and only using the concept "modulo 3'".

Theorem 11. Let M= Σ φMΛ— Σ ®Nβ be any two direct sum decomposi-
Λ^K. βej-

tίons of a module M in §1 into completely indecomposable modules MΛ's and Nβ's,

respectively and assume that SM Π ^=J(SM). Then, for any subset K' of Ky there

exists a one-to-one mapping φ of Kf into J such that M= ^ Θ^CΛO® Σ
' ' " -

Ma» and M>^N

Proof. For any subset K' of K, we put M0= Σ ΘMΛ". Then, there
Λ"ςΞK-Kf

exists a maximal member M* in the set {M00 ̂  φΛΓv }/e/ of locally direct
k^i

summands of M with each subset /,- of/, by Zorn's lemma. Since M is the only

one dense submodule of M by Corollary 2 to Lemma 8, M* is a direct summand

of M, say, M= M*0MX for some submodule M7 of M. By Corollary 2 to

Lemma 9, M7 is in §ί if M7ΦO. And so by [2] there exists some Nβ such that

.M*0JVβ is a direct summand of M. This contradiction shows that M*=M.

Since ^ ®My«M/Λί0« Σ 0ΛV with some subset /7 of/, by [2] we can
Λ'<=K' Y<=J'

find a one-to-one mapping 99 of K' onto/7 such that Mjf&Nφ^ for a!
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