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Throughout R will represent a ring with unit element 1, and all modules
will be unitary R-modules. We call a module M a completely indecomposable
module if the endomorphism ring of M is a local ring. Let M= {M,} be a set
of completely indecomposable right R-modules, and 2 the full subadditive
category of the category of all right R-modules, whose objects consist of all R-
modules which are isomorphic to direct sums of M,’s in M. We define the
subclass ' of the morphisms in U as follows: for any objects M =m§€BMm’ ,
N=3 ®Nsin ¥, T Homg(M, N)={f=Homg(M,N) \ pefiis not isomor-

peL

phic, for all e K, B L, where i,: M,/—Mis the inclusion and pg: N— N, is
the projection} . Then, 3’ does not depend on the decompositions of M and N
(see Corollary to Lemma 5 in [5]).

M. Harada and Y. Sai [4], [5] gave several equivalent conditions for .S, N/
to be equal to the Jacobson radical J(Sa)of Sy, where MU and Sy=Homp
(M, N). Among those conditions, they made great use of structures of the
factor cagegory 2/’ in order to show the following fact: if J(Su)=S»NZ’,
then for any two decompositions M— X @M ,=3 @N, and any subset K’ of

vEK BEL
K, there exists a one-to-one mapping ¢ of K'into L such that M, ~N,,, for
all g€ K’ and M= 73" GBN‘,,(M@M 3N KEBM,,/.
aEK’ /EK -K’/

The purpose of this note is to give a ring-theoretical proof of the above fact
by using a few structure of 2/Y’. We shall define a concept of locally direct
summands of M in 2 for this purpose. Let N=3> PN, be a submodule of

YEL

Min A. If T BNy is a direct summand of M for every finite subset L’ of

yer
L, we call a locally direct summand of M (with respect to the decomposition
N= Z;;EB N,) We shall give a relation between some locally direct summands
ye

of M and dense submodules of M defined in [4], and using this relation we shall
give a proof of the statement above.

The author would like to express his hearty thanks to the referee and Prof.
M. Harada for their advices and suggestions.
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We begin with preliminary definitions and results on & and Sp. From
now, we understand that a module M is in ¥ and that M,’s are completely
indecomposable, if there are no confusions.

Let M, Nbe in 2, and f € Homg(M, N). fis said to be left regular modulo
Q if, for any homomorphism g of any L in ¥ to M, fg in ¥ implies g in ¥’
The right regularity of / modulo &’ is defined similarly. / is said to be an
isomorphism modulo ¥’ if there exists some g: N—M such that gf=1,mod.J’
and fg=1, mod.".

REMARK 1. Let M=3 @My, N= 2 PEMpy be in A where K’ is a subset
BEK p'EK’

of K, i the inclusion of N to M and p the projection of M onto N. Then, 7 is
left regular mod.’ and p is right regular mod. .

Lemma 1. For any morphismfin S1 and any g in X, fg and gf are in .
See Lemma 5 in [5].

Lemma 2. Let M=) ®M,be in N, and Sy the endomorphismring of M.
®EK
Then,
(1)  Spm/Sud1 Y is a regular ring (in the sense of von Neumann), moreover

(2) for any fin Sy with f= f* modulo ' N Spy,there exist some elements a
and e in Sysuch that a is regular in Sy SNy, e is a projection of M to 33, BM

/SR’
Jor some subset K’ of K and f=aea’ modulo ', where ad’=a’a=1 modulo Y’ and
ae SM.
See [1], Lemma 6 and Theorem 7 in [5] and [6].

Corollary 1. Let M, N be in U, and f :M—N. Then,

(1) fis left (resp. right) regular mod. ' ifand only if there exists some g : N—M
such that gf=1,(resp. fg=15'mod. ', and

(2) fis an isomorphism mod. ' if and only iff is left and right regular mod. Y.

Proof. (1) “If” part is trivial. Conversely, we assume that f is left regular
mod.”  Since Sp/SM\ Y is a regular ring by the lemma, there exists some
g N—M such that fgf=mod.Y. The left regularity of / mod.y implies
that gf=1mod.’. The right regularity is similar. (2) is clear.

Corollary 2. Iff: M—N is left regular mod.Y for M, N in W and Sy

MY is equal to the Jacobson radical J(Sy) of Sy, then fis an R-monomorphism
and M is R-isomorphic to a direct summand of N.

Proof. By Corollary 1(1), there exists some g: N—M such that gf=1y
mod. , since fis left regular mod.y’. Hence, 1y—gfeSuNI'=J(SHdnd
so gfis an R-isomorphism. Therefore, / is an R-monomorphism and M is R-
isomorphic to a direct summand of V.
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Let U, Vbe right R-modules, /: U—V, and U=3}6U, a direct sum of

YEXK
right R-submodules of U. Then, we consider the following condition:

/ is an R-monomorphism and ~(*)
Jor any finite subset K’ of K, f( Z O Uy) is adirect summandof V.
y'eK’

If f satisfiesthe above (*)-condition, we call f a (*)-monomorphism (with respect
to this decomposition of U).

For example, let f; Uand Vbe as above. Iffis an R-monomorphism and
each Uy is injective, then/is a (*)-monomorphism (with respect to the decom-

position U= 3P U,).
YEK

From now on, (*)-monomorphisms will be considered in 2L.
The following lemma on (*)-monomorphisms is essential in this note.

Lemma 3. Let M=3 ®M,,N be in N and f: M—-N. Then,f is left

aEK
regular mod. Y’ if and only iff is a (*)-monomorphism (w.r.t. the decomposition
Mzng}Mw).

Proof. First, we assume that f is left regular mod.Q’. Put M,= - > DM,
a/'eEK’

for any finite subset K’of K. Let i be the inclusion of M, to M. Then, fi is
left regular mod.J” and Sy,NJ'=(Sx,) by Lemma 8 in [5], because K’is a
finite set. Hence, fi is an R-monomorphism and fi(M,) is a direct summand of
N by Corollary 2 to Lemma 2. Therefore, / is an R-monomorphism and f(M,)
is a direct summand of N, i.e. /is a (*)-monomorphism (w.r.t. the decomposition
M=3Y®M.,). Conversely, let geHompg(T, M) for any module 7= >0 T, in

aEK YEL
A and assume that fg in Y. Put gy=gi,, where i, is the inclusion of Tyto T for
allye L. Then, we can express gy as a column-summable matrix for all ye L.
Hence, gy is a column-matrix whose finite components are isomorphic and the
others are all non-isomorphisms. We can rearrange g, as follows: the first n

components are isomorphisms. Put M,=>1@M,; Let i be the inclusion of M,
i=1

to M, and p the projection of M onto M,. Then, fipg=fg=fzgi, =0 mod. J'.
Since fi is left regular mod. ', pgyisin I’ Hence, gy and so g are in Y, because

oipgy+(1—p)gy=gymod.J’  Therefore, / is left regular mod.’.
We note that a (*)-monomorphism does not depend on the decomposition
of M from Lemma 3.

Corollary 1 (cf. Lemma 3.2.3 in [3]) (1) ///: M—N is left regular
mod. Y, then f is an R-monomorphism. (2) For any f in SyN, ly— f is
an R-monomorphism.

Proof. (1) is clear by the lemma. (2) Since / is in Sy N Y/, 1y — f is left
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regular mod.Y’ and hence an R-monomorphism by (1).

Corollary 2. Let M, N be in A, and f: M—N an isomorphism mod.J’.
Then f is an R-isomorphism provided either Sy, NI =J(Su)or SxNIF'=J(Sn).
Especially, if M is a finite direct mm of M,/s in R, then an isomorphism mod. ¥’
means an R-isomorphism.

Proof. Since / is isomorphic mod.’, there exists some g: N—M such
that gf=1,mod.J’ and fg= 1, mod.y. Hence, / and g are left regular mod. ¥,
that is, both are R-monomorphisms by Corollary 1. In case SyNY'=J(Sn),
Iy—fg= J(Sy) Hence, fg is an R-isomorphism and so is /. On the other
hand, if Sy NJis equal to J(Sy), then 1,,—gf € J(Spy)and hence gfis an R-
isomorphism. Therefore, / is an R-isomorphism. The latter assertion is clear
by Lemma 8 in [5].

We define here an important concept as follows (see [3]): let M, N be in
A, and N = é?E‘ @Nga submodule of M. Then, N is said to be a locally direct

summand of M (with respect to the decomposition N=2 @Np) if the inclusion
BEkK

i: N=Mis a (*)-monomorphism (with respect to this decomposition of N).

In the following lemma, we consider the existence of locally direct
summands of a module M in SL

We remark that in the above definition, the concept of locally direct
summands of M in 2 does not depend on the decomposition of M, since (*)-
mononorphisms do not depend on the decomposition of M.

Lemma 4. Let M, N be in N, andf: M—N. Then, there exist a locally
direct summand N’ of N in W via the inclusion i: N'->N and some f’: M—>N’
such that f=if'mod.’, i is left regular mod.X’' andf is right regular mod.’ .

Proof. We begin with the case M=2N and f=f*mod.J’. There exist a
projection e of M=> PM, onto >\ &M, for some subset K’ of K and
s 7 aEK /e K/

elements a4, @’ in Sy, such that f=aea’ mod.Y’ and ada’=a’a=1 mod., by
Lemma 2(2). Put N’=aeM, N”=eM, and consider the inclusions i: N'—M,
i N”—M. Then, by Lemma 3, N’ is a locally direct summand of M and i is
left regular mod.$’, since N’ is isomorphic to N’ under ai’ that is left regular
mod.Y  Moreover, ea’ is right regular mod.J’, and hence so is f'=aea’:
M—N’. Thus, our lemma holds. In the general case, for /: M—, there exist
some homomorphisms g: N—N and k: N—M such that g=g* mod.’, f=gf
mod.y’ and g=fkmod.J’, by Lemma 2. For g: N->Nwith g=g>mod.§/,
there exist a locally direct summand N’ of N in SI, some g': N—N’ and the
inclusion 7: N’—N such that g=2¢’ mod., g’ and i are right and left regular
mod. ', respectively, by the above argument. We can easily show that g'fis
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right regular mod.J’ since g’i= 1,/ mod.J’, and f=ig/fmod.J’.

Lemma 5. For M and N in N, a homomorphismf: M—N is right regular
mod. X' if and only if there exist a locally direct summand M’ of M in N and some
g1 N—=M' such that fig— 15 mod.’ and g is an isomorphism mod.’, where i is
the tnclusion of M’ to M.

Proof. "If" part is trivial. Conversely, suppose that / is right regular
mod.J’. Then there exists some g’: N—M such that f¢'=1, mod.g’, by
Corollary 1 to Lemma 2. Since g’ is left regular mod.J’, there exists a locally
direct summand M’of M in 2 such that g’=4g mod.’, where g: N—M’is right
regular mod. Y’ and the inclusion z: M’— M s left regular mod.Y’, by Lemma 4.
Therefore, fig=/, mod.J’ and g is an isomorphism mod.'.

Lemma 6. Let M, N be in N, e an idempotent element in S, where N is
contained in eM, and let the inclusion i: N—M be left regular mod.'. Then,
there exists a locally direct summand N’ of M in W such that e=ip-+i'pmod./,
pi=1y mod.¥, p't'=15'mod. Y and pi’=p'i=0 mod.J’, where i’ is the inclusion
of N" to M and p,p’ are homomorphisms of M to N, N’ respectively. Furthermore,
the formal direct sum NPN’ is R-isomorphic to a locally direct summand of eM.

Proof. For i: N—M, there exists some p,: M— Nsuch that ipg=imod. J’.
Since ei=i, ipei=imod.J’. Put p=pe, that is, p: M—N and ipi=imod.’.
Since i is left regular mod.J/, pi=1y5 mod.yF’. Now, we put f=ipand g=e—f.
Then, ef=fe=fand eg=ge=g. For g M—M there exist a locally direct
summand N’ of M in 2 and some p’: M—N’ such that g=7p’ mod.J", the
inclusion #/: N'—M is left regular mod.Y’ and p’ is right regular mod. Y/, by
Lemma 4. Therefore, e=f+g=ip+ipmod.J’. Since gf=fg=0,ips'p'=1'p'ip
=0 mod.’ implies pi’= p'i=0 mod. ', because i and 7’ are left regular mod. Y’
and p, p’ are right regular mod.J’. Moreover, g= g* mod.J’ implies p'7'=1,-
mod.. Finally, we show that the formal direct sum N@N’ is R-isomorphic
to a locally direct summand of eM. Let I=(z,7):N@N'—Mand t-——-(:‘): T—

2

N@N’for any Tin A. Suppose that It=4t,+7't,is in . Then, pit,+pi't, is
in . Since p’ is in &, ¢, is in ¥ and so is #,. Hence, fisin J’. It follows
that / is a (*)-monomorphism. Therefore, NN'is a locally direct summand
of Min . On the other hand, g=eg and g=7"p'mod.y’ imply e7’=¢'mod. Y,
and so we may assume e’=¢ in the above. Since #’is a (*)-monomorphism,
Im(?’) is contained in eM. Hence, Im(J) is contained in eM, whence N N'is
R-isomorphic to a locally direct summand of eM.

Corollary. Let NcMbe in W. If the inclusion i+ N—M is left regular
mod. ', then there exist a locally direct summand N’ of M in U, the tnclusion 7':
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N’'—=M and some p, p’ of M to N, N' respectively such that 1y,=ip-+i'p'mod.y,
pi=1y mod. ', pv'=15mod.J" and p'i=pi’=0 mod.¥ .

Proof. Put e= 1,,in the lemma.
Let N be an R-module, and {N,\ = >} @N{"} ; the set of submodules of
- i€l -

N in 2 which are locally direct summands of N. We define an order > in the
set {N,} as follows:

for each locally direct summand NV ;of N,

N;>Njif and only if {N{”};,D{N{¥},,, for any #kin J.
Then, there exists a maximal submodule of N among the set {IN,} with respect
to this order >, by Zorn’s lemma. We call it a maximal locally direct summand
of N.

Proposition 7. Assume that all M, in M are injective. Let NCMbe in

N. Then, N is essential in M if and only if N is a maximal locally direct summand
of M.

Proof. "Only if" part is trivial. Conversely, if N is not essential, there
exists a cyclic submodule N’ of M with NN N’=(0). Then, the injective hull
E(N’)in M is a direct summand of M. On the other hand, N N E(N’)=(0).
Since E(N’) contains an injective submodule Mpg for some (3, this contradicts
the maximality of N. Hence, N is an essential submodule of M.

Next, we show that a dense submodule of a module in U defined in [4] is
equal to a maximal locally direct summand of the module.

Lemma 8. Let NCMbe in N. Then, N is a maximal locally direct sum-
mand of M if and only if the inclusion i of N to M is an isomorphism mod.J .

Proof. First, we assume that N is a maximal locally direct summand
of M. If the inclusion i: N—M is not isomorphic modulo &, there exists
a locally direct summand N’ of M in U such that 1,=ip-+'p’ mod.’,
where 7’ is the inclusion of N'to M, p: M—N and p’: M—N’, by Corollary to
Lemma 6. Then, I=(i, ¢): NGN'—M is a (*)-monomorphism. Hence, the
image of / is equal to a locally direct summand NP Im(’) of M in A which
contains N; this contradicts the maximality of N. Hence, N’=0. Therefore,
1y=ipmod.J and so i is an isomorphism mod.’. Conversely, suppose that
i is an isomorphism mod.J’  Then, there exists some p: M—N such that pi=
1ymod. { and ip=1,,mod., and also N is a locally direct summand of M.
If N is not maximal in M, there exists a locally direct summand N’ of M in U
such that NP N’ is a locally direct summand of M in 2. Hence, the inclusion
I=(, ¢'): NON’'—M is left regular mod., where ¢ is the inclusion of N’ to
M. Therefore, there exists some g: M—N@N’ such that gl=1yex’mod.J’,
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by Corollary 1(1) to Lemma 2. Let p, be the projection of NPN’ onto N.
Then, p,gi=1y=pimod. I and so pig=prn.od.9f,which implies that pi’=0
mod.’. Hence, N'=0; a contradiction. It follows that N is a maximal locally
direct summand of M.

REMARK 3. The submodule N in the lemma is called a dense submodule
of M, in [4]. We note that N@N’in Corollary to Lemma 6 is a dense sub-
module of M.

Corollary 1. Let M,N be in U, andf: M—N. Then, there exist locally
direct summands M’ and N’ of M and N in U, respectively, such that the restric-
tion f|y’ to N’ is an R-isomorphism. Especially,f is isomorphicmod.J’ if and
only if M’ and N’ are dense in M and N, respectively.

Proof. For f: M—N, there exist a locally direct summand N"” of N in ¥,
the inclusion 7 : N”—N and some f’: M—N"such that f=7f' mod.’, 7 is left
regular mod.J’ and f” is right regular mod.J’, by Lemma 4. Since f’ is right
regular mod.$Y, there exist a locally direct summand M’ of M in 2 and some
g: N”—M’ such that f’ig=1y/mod.y and g is isomorphic mod.’, where i is
the inclusion of M’to M, by Lemma 5. Since fig is left regular mod.&’ and g
is isomorphic mod.’, fi is left regular mod. Y’ and so R-monomorphic. Let N’
be the image of fi in N. Then, fi: M’—N"is an R-isomorphism, whence it
follows that N’ is a locally direct summand of N. Particularly, in case / is
isomorphic mod.$, ¢ and f’ are isomorphic mod. Y by Corollary 1(2) to Lemma
2 and fig: N”"—N’is isomorphic mod.$, so that N’ and M’ are dense in N and
M, respectively, by the lemma. Conversely, if N'and M’ are dense in N and
M’ respectively, i and 7/ are isomorphic mod.J’, and hence / is isomorphic
mod.’ by the lemma.

Corollary 2. // SyN X' =J(Sm)for a module M in N, then M is the only
one dense submodule in M.

Proof. Let N be a dense submodule of M. Then, the inclusion i: N—M
is isomorphic mod. ¥ by the lemma. Hence, i is an R-isomorphism by Corollary
2 to Lemma 3 and so N=M.

Lemma 9. Let e be an idempotent element in Sy fora module M=) PM,,
oEK
in SI.  Then, there exist a submodule N ofeM in W andp: M—N such that e=ip
mod.Y andpi= 1y mod. Y, where i: N—Mis the inclusion.

Proof. Since eM is a direct summand of M, eM contains some M, by
[2]. Hence, there exists a maximal locally direct summand of eM in A. Let
N be the maximal one, and i the inclusion of N to M. Since i is left regular
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mod. ¥, there exists a locally direct summand N’ of M in ¥ such that e=ip-+ip’
mod.QY, pi=1y/mod.J’ and NG N’ is R-isomorphic to a locally direct
summand of eM, where p: M—N, p’: M—N"and ¢’ is the inclusion of N’ to M,
by Lemma 6. Since N is maximal in eM, N'=0 and hence e=ip mod.Y

Corollary 1 (cf. Theorem 1 in [4]). Let P=2 @P, in U (not necessarily
oL

each P, is in M). Then, there exists a submodule N, of P, in N such that e,=1,p,

mod. Y ,where p,: P—N,, 1,: N,—Pis the inclusion and e,: P—P, is the projec-

tion, for each a L. Moreover, 3 BN, is a maximal locally direct summand of
aEL

Pin Si. (Such N, is called a dense submodule of P, in [4].)

Proof. We can find a maximal locally direct summand N, of e,P=P,
such that e,=1i,p,mod.¥, where p,: P—>N,, i,: N,—P is the inclusion
and e,: P—P, is the projection, for every oL, by the lemma. Since a
finite direct sum 2” DN,

T—1

summand of P. Hence, the inclusion /: ELGBN,,%P is left regular mod.Y’ In
as

is a direct summand of P, 3 @N,is a locally direct
acl

order to see that > PN, is dense in P, we have only to prove that I is right
acL

regular mod.&’. Let f be a homomorphism of P to any module T in ¥ and

assume that ¢/ is in . If 7 is not in ', there exists some direct summand Pg

in P such that the restriction 7 \pgis not in . 3 e,i=1 and e,i is non-isomorphic
134

for almost all @< L, where i is the inclusion of Pgto P. Hence, for some integer
n, i}edﬁ-izi mod.y and so ti=teyi=tlypni-tIpNt=0 mod.J’, where I:
n j=1 ” n
2ON, —P, py P2 DN,; and ey: P2 DP,,. Therefore, # is in ',
J=1 AL -1

which is a contradiction. Thus, ¢ is in & and so I is right regular mod.$Y .

Corollary 2. Let M be in N, and N a direct summand of M. If SyNY
1s equal to J(Su),then N is in 2.

Proof. Since N is a direct summand of M, there exists a submodule N’
of M such that M=N&N’. Hence, there exist dense submodules N, and N,
of N and N’ in ¥, respectively such that N,ON,’ is dense in M, by the above
corollary. Hence, N @®N/=M by Corollary 2 to Lemma 8, which implies
that N is isomorphic to a direct sum of completely indecomposable modules

M,'sin M.

Proposition 10. Let M, N be in U, and f: M—N. If either SyNY =
J(Su) or SyT1 Y'=J(Sy), then there exist submodules M, and M, of M in S{ such
that M— M,EBM, and the restrictions off to M, and M, are a zero homomorphism
mod.Y’ and an R-monomorphism, respectively.
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Proof. By Corollary 1(1) to Lemma 2 and Lemma 4, there exist a locally
direct summand N' of Nin 2, f’: M—N’, g’: N’—M and the inclusion 7: N'—
N such that f=if’ mod., f’g’=1,5/mod.5/, i is left regular rnod.”” and f is
right regular mod. . In case Sy N J'=J(Sy), Sn/I1 J'=J(Sy’) and hence f'g’
is an R-isomorphism. Therefore, M=Im(g")PKer(f’). We put M,=Ker(f")
and M,=Im(g’). Then, the restriction f| ,is a zero homomorphism mod.3’
Since/1 m,=if’dr, mod.J’ and f’| y,is an isomorphismrn.od.3i', f|a, is an R-
monomorphism. On the other hand, if SpN '=J(Su), Su'N F'=J(Sn’) where
M’ is a locally direct summand of M in ¥ such that some g: N’—M’ is isomor-
phic mod. ¥ (cf. Lemma 5). Since g is an R-isomorphism by Corollary 2 to
Lemma 3, Sy/N'=J(Sy’)and so M= Im(g’)P Ker(f’) as above. We put
M,=Im(g’). Then, M, and M, satisfy the proposition.

Now, we shall show ring-theoretically the main theorem in this note by
M,=XKer(f") and only using the concept "modulo J’”’.

Theorem 11. Let M= PM,=3" D Ngbe any two direct sum decomposi-
wEK BET

tions of a module M in 9 into completely indecomposable modules M,'s and Np's,
respectively and assume that Sy I1 X' = J(Sa). Then,for any subset K’ of K, there
exists a one-to-one mapping @ of K'into J such that M= éZ DNy P ;K @D
o Lt L NEF R
M and M.s~N,, for a€ K’.
Proof. For any subset K’ of K, we put M= X @PM,». Then, there

N ER- K/

exists a maximal member M* in the set {M,P DIPN, },e; of locally direct
kET; "

summands of M with each subset J; of J,by Zorn’s lemma. Since M is the only
one dense submodule of M by Corollary 2 to Lemma 8, M* is a direct summand
of M, say, M=M*PM’ for some submodule M’ of M. By Corollary 2 to
Lemma 9, M’ is in A if M’40. And so by [2] there exists some Ngsuch that
M*®PNg is a direct summand of M. This contradiction shows that M *=1M.
Since ) P My~M|M,~ 3 ¢ Ny with some subset J’ of J, by [2] we can

e K’ ver

find a one-to-one mapping 99 of K’ onto J’ such that M /~N,for a’EK’.
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