

Title	A note on axiomatic Dirichlet problem
Author(s)	Ikegami, Teruo
Citation	Osaka Journal of Mathematics. 1969, 6(1), p. 39-47
Version Type	VoR
URL	https://doi.org/10.18910/6106
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A NOTE ON AXIOMATIC DIRICHLET PROBLEM

TERUO IKEGAMI

(Received October 7, 1968)

1. Introduction

Axiomatic Dirichlet problem was first discussed by M. Brelot in connection with a metrizable compactification of Green space Ω and a positive harmonic function h in Ω . In his paper [1] the theory was developed under the assumption \mathcal{Q}_h , that is, *all bounded continuous functions on the boundary are h -resolutive*. In our present paper we call a compactification with this property *h -resolutive*.

This axiomatic treatment of Dirichlet problem yields some complicated situations. For instance, Brelot gave many definitions for the regularity of boundary points, such as strongly h -regular, h -regular, weakly h -regular. A strongly h -regular boundary point is h -regular and weakly h -regular, but an h -regular boundary point is not weakly h -regular in general. It has been asked by M. Brelot [1] and L. Naïm [4] whether the complementary set of all h -regular boundary points is of h -harmonic measure zero (h -négligable) or not. We can not yet give an answer to this question. However we can prove the following theorem:

Theorem. *Let $\hat{\Omega}$ be an arbitrary metrizable h -resolutive compactification of Green space Ω . Then there exists a metrizable h -resolutive compactification having $\hat{\Omega}$ as a quotient space and in which the complementary set of all h -regular and weakly h -regular boundary points is of h -harmonic measure zero.*

As a corollary of this theorem we can construct a family of filters $\{\mathcal{F}_x\}$ converging in $\hat{\Omega}$ and satisfying axioms

A_h) *If s is subharmonic in Ω , s/h is bounded from above and $\limsup_{\mathcal{F}} s/h \leq 0$ for every \mathcal{F} in $\{\mathcal{F}_x\}$, then $s \leq 0$.*

B_h') *Every filter in $\{\mathcal{F}_x\}$ is h -regular and weakly h -regular,* where the latter is weaker than that of Brelot-Choquet [2].

2. Preliminaries

Let Ω be a Green space in the sense of Brelot-Choquet [2]. For a real valued function f defined in Ω we shall define a family \bar{W}_f (\underline{W}_f) of superharmonic (subharmonic) functions s such that $s \geq f$ ($s \leq f$) on $\Omega - K$, where K is a compact

set depending on s in general. If \bar{W}_f (\underline{W}_f) is not empty its lower (upper) envelope will be denoted by $\bar{d}_f(d_f)$. \bar{d}_f and \underline{d}_f are harmonic and $\underline{d}_f \leq \bar{d}_f$. When $\underline{d}_f = \bar{d}_f$ they are denoted by d_f simply.

Throughout this paper we shall take a positive harmonic function h in Ω and fix it.

DEFINITION 1. A function f defined in Ω is h -harmonizable if the following conditions are satisfied:

- 1) there exists a superharmonic function s such that $|fh| \leq s$,
- 2) $\underline{d}_{fh} = \bar{d}_{fh}$

If f is h -harmonizable and $d_{fh} = 0$ then f is termed an h -Wiener potential, and the class of all h -Wiener potentials is denoted by $W_{0,h}$ ¹⁾.

Proposition 2.1. Every $f \in W_{0,h}$ has a potential p such that $|fh| \leq p$.

Let $\hat{\Omega}$ be a compactification of Ω , that is $\hat{\Omega}$ is compact and contains Ω as an everywhere dense subspace. Set $\Delta = \hat{\Omega} - \Omega$. In this paper it is always assumed that $\hat{\Omega}$ is metrizable.

For an arbitrary real valued function φ on Δ , which is permitted to take the values $\pm\infty$, $\bar{\mathcal{G}}_{\varphi,h}$ denotes the class of all superharmonic functions s such that

- a) s/h is bounded from below,
- b) $\lim_{a \rightarrow x} s(a)/h(a) \geq \varphi(x)$ for every $x \in \Delta$.

Similarly we define the class of subharmonic functions $\underline{\mathcal{G}}_{\varphi,h}$. When $\bar{\mathcal{G}}_{\varphi,h}$, $\underline{\mathcal{G}}_{\varphi,h}$ are not empty, we set

$$\begin{aligned}\bar{\mathcal{D}}_{\varphi,h} &= \inf \{s; s \in \bar{\mathcal{G}}_{\varphi,h}\}, \\ \underline{\mathcal{D}}_{\varphi,h} &= \sup \{s; s \in \underline{\mathcal{G}}_{\varphi,h}\}.\end{aligned}$$

$\underline{\mathcal{D}}_{\varphi,h}$ and $\bar{\mathcal{D}}_{\varphi,h}$ are both harmonic and $\underline{\mathcal{D}}_{\varphi,h} \leq \bar{\mathcal{D}}_{\varphi,h}$. When $\underline{\mathcal{D}}_{\varphi,h} = \bar{\mathcal{D}}_{\varphi,h}$, φ is called h -resolutive and the envelopes are denoted by $\mathcal{D}_{\varphi,h}$ simply.

DEFINITION 2. If all bounded continuous functions on Δ are h -resolutive, $\hat{\Omega}$ is called an h -resolutive compactification of Ω .

In the sequel, $\hat{\Omega}$ always denotes a metrizable h -resolutive compactification of Ω . Then, for $a \in \Omega$ there exists a Radon measure ω_h^a on Δ such that

$$\mathcal{D}_{\varphi,h} = \int \varphi d\omega_h^a \quad \text{for every } \varphi \in C(\Delta)^{2)}.$$

ω_h^a is called an h -harmonic measure (with respect to a).

1) In the case that $h=1$ and Ω is a hyperbolic Riemann surface, this definition is slightly different from [3].

2) $C(\Delta)$ denotes the family of all bounded continuous functions on Δ .

Proposition 2.2. *Let F be bounded and continuous on $\hat{\Omega}$ and φ, f be its restrictions on Δ and on Ω respectively, then f is h -harmonizable and $d_{fh} = \mathcal{D}_{\varphi, h}$.*

Proposition 2.3. *In order that an arbitrary compactification $\bar{\Omega}$ of Ω be h -resolutive, it is necessary and sufficient that for every bounded continuous function F on $\bar{\Omega}$, its restriction on Ω is h -harmonizable.*

DEFINITION 3. For potential p we set

$$\begin{aligned}\Gamma_{p,h} &= \{x \in \Delta; \lim_{a \rightarrow x} p(a)/h(a) = 0\}, \\ \Gamma_h &= \bigcap_p \Gamma_{p,h}.\end{aligned}$$

Γ_h is called an *h -harmonic boundary*.

Γ_h is non-empty and compact.

Proposition 2.4. *If s is subharmonic in Ω such that s/h is bounded from above and $\overline{\lim_{a \rightarrow x} s(a)/h(a)} \leq 0$ for all $x \in \Gamma_h$ then $s \leq 0$.*

Proposition 2.5. *Let F be a bounded continuous function on $\hat{\Omega}$. The restriction of F on Ω is an h -Wiener potential if and only if F vanishes on Γ_h .*

Proposition 2.6. *Γ_h is the carrier of h -harmonic measure ω_h .*

In the case that $h=1$ and Ω is a hyperbolic Riemann surface, Constantinescu-Cornea [3] have given these propositions. Proofs of our propositions will be obtained from them with slight modifications.

3. Q -compactification of Green space

1. Let h be a positive harmonic function on Green space Ω and $\hat{\Omega}$ be an arbitrary metrizable, h -resolutive compactification of Ω . Set $\Delta = \hat{\Omega} - \Omega$.

For $F \in C(\hat{\Omega})$, its restrictions on Ω and on Δ are denoted by $F|_{\Omega}$ and $F|_{\Delta}$ respectively.

We set $Q'_0 = \{F|_{\Omega}; F \in C(\hat{\Omega})\}$, $Q''_0 = \{d_{fh}/h; f \in Q'_0\}$ and

$$Q_0 = Q'_0 \cup Q''_0 \cup \left\{ A \frac{\min(G_{a_0}, h)}{h} + B \right\},$$

where G_{a_0} is a Green function of Ω with pole at a_0 and A, B are constants. The compactification Ω^{Q_0} of Ω is the one on which all functions of Q_0 are extended continuously and the boundary $\Delta^{Q_0} = \Omega^{Q_0} - \Omega$ is separated by functions in Q_0^3 . We have

Proposition 3.1. *Ω^{Q_0} is a metrizable h -resolutive compactification of Ω .*

3) We say functions in Q_0 separate points of Δ^{Q_0} if for every pair of distinct points x, y of Δ^{Q_0} there exists a function F in Q_0 such that $F(x) \neq F(y)$.

$\hat{\Omega}$ is a quotient space of Ω^Q .

To prove this proposition, we require some lemmas.

In $C(\hat{\Omega})$ we select a countable subfamily $\{F_k\}$ which is dense in the topology of uniform norm ($\|F\| = \sup |F(a)|$).

If we set $f_k = F_k|_{\Omega}$, f_k is h -harmonizable (Prop. 2.2). We form the family of a countable number of functions

$$Q = \{f_k\} \cup \{d_{f_k/h}\} \cup \left\{ \frac{\min(G_{a_0}, h)}{h} \right\},$$

which is a subfamily of Q_0 .

The Q -compactification Ω^Q of Ω is compact and contains Ω as an everywhere dense subspace. Functions in Q are extended continuously on Ω^Q and separate two distinct points of $\Delta^Q = \Omega^Q - \Omega$.

Theory of general topology tells us Ω^Q is metrizable (for instance, N. Bourbaki: Topologie générale, Chap. IX, §2).

Lemma 3.1. *For every $F \in C(\hat{\Omega})$, if we set $f = F|_{\Omega}$, then f and $d_{f/h}/h$ are extended continuously on Ω^Q .*

Proof. (i) Case of f . It will be sufficient to show that for every $x \in \Delta^Q$ and for every sequence of points $\{a_n\}$ in Ω converging to x in the topology of Ω^Q $\{f(a_n)\}$ has the unique limit. If it were not, there should exist two sequences $\{a_n\}$, $\{b_n\}$ in Ω such that $a_n \rightarrow x$, $b_n \rightarrow x$ (in the topology of Ω^Q) and $\alpha = \lim_{n \rightarrow \infty} f(a_n) > \lim_{n \rightarrow \infty} f(b_n) = \beta$.

We take a positive number $\varepsilon = (\alpha - \beta)/4$. For this ε and $F \in C(\hat{\Omega})$ we can find F_k in our countable family such that

$$\sup_{\hat{\Omega}} |F_k - F| \leq \varepsilon.$$

Then we have

$$\alpha = \lim_{n \rightarrow \infty} f(a_n) \leq \overline{\lim}_{n \rightarrow \infty} f_k(a_n) + \varepsilon,$$

$$\overline{\lim}_{n \rightarrow \infty} f_k(b_n) - \varepsilon \leq \lim_{n \rightarrow \infty} f_k(b_n) = \beta.$$

where $f_k = F_k|_{\Omega}$. Since f_k is extended continuously on Ω^Q ,

$$\alpha - \varepsilon \leq \lim_{n \rightarrow \infty} f_k(a_n) = \lim_{n \rightarrow \infty} f_k(b_n) \leq \beta + \varepsilon,$$

this leads to a contradiction $4\varepsilon = \alpha - \beta \leq 2\varepsilon$.

(ii) Case of $d_{f/h}/h$. We take f_k as above. Then we have

$$\frac{d_{f_k/h}}{h} - \varepsilon \leq \frac{d_{f_k/h}}{h} \leq \frac{d_{f_k/h}}{h} + \varepsilon$$

and we can proceed quite in the same way as in (i).

Lemma 3.2. *Let \mathcal{H} be a class of all functions F' each of which is bounded and continuous on Ω^{Q_0} and its restriction on Ω is h -harmonizable. Then \mathcal{H} is dense in $C(\Omega^{Q_0})$ in the topology of uniform norm in Ω^{Q_0} .*

Proof. Clearly \mathcal{H} contains all constant functions and \mathcal{H} is a linear space. All functions in Q_0 are extended continuously on Ω^{Q_0} and these extended functions are contained in \mathcal{H} , therefore Ω^{Q_0} is separated by functions in \mathcal{H} . To see \mathcal{H} is closed under the maximum and minimum operations, that is $F_1', F_2' \in \mathcal{H}$ implies $\max(F_1', F_2')$, $\min(F_1', F_2') \in \mathcal{H}$, let $F_1', F_2' \in \mathcal{H}$ and $f_i = F_i'|_{\Omega}$ ($i=1,2$). $\min(F_1', F_2')|_{\Omega} = \min(f_1, f_2)$ and $d_{\min(f_1, f_2)h} = d_{\min(f_1h, f_2h)} = d_{f_1h} \wedge d_{f_2h}$, where $u \wedge v$ denotes the greatest harmonic function which is dominated by u and v . This means $\min(f_1, f_2)$ is h -harmonizable. By Stone's theorem⁴⁾ \mathcal{H} is dense in $C(\Omega^{Q_0})$.

Proof of Proposition 3.1. On account of Lemma 3.1 all functions of Q_0 are extended continuously on Ω^Q . Thus Ω^{Q_0} is homeomorphic to Ω^Q and therefore Ω^{Q_0} is metrizable. Since $\hat{\Omega}$ is homeomorphic to Ω^{Q_0} , $\hat{\Omega}$ is a quotient space of Ω^{Q_0} . For arbitrary $F' \in C(\Omega^{Q_0})$ and any positive number ε , by Lemma 3.2 we can find $F_0' \in \mathcal{H}$ such that

$$\sup_{\Omega^{Q_0}} |F' - F_0'| \leq \varepsilon.$$

Setting $f = F'|_{\Omega}$, $f_0 = F_0'|_{\Omega}$ we have

$$d_{f_0h} - \varepsilon h \leq d_{fh} \leq \bar{d}_{f_0h} + \varepsilon h.$$

Since f_0 is h -harmonizable we get $0 \leq \bar{d}_{fh} - d_{fh} \leq 2\varepsilon h$. f is h -harmonizable, and by Proposition 2.3 Ω^{Q_0} is h -resolutive.

2. For an arbitrary metrizable h -resolutive compactification $\hat{\Omega}$ of Ω we have constructed Ω^{Q_0} of the same type which contains $\hat{\Omega}$ as a quotient space. If we start from Ω^{Q_0} it will be expected that we can arrive at a new larger compactification of the same type, but this is not so, that is

Proposition 3.2. *Let Ω^{Q_0} be the compactification of Ω constructed in the above paragraph. If we set $Q_1' = \{f = F|_{\Omega}; F \in C(\Omega^{Q_0})\}$, $Q_1'' = \left\{ \frac{d_{fh}}{h}; f \in Q_1' \right\}$ and $Q_1 = Q_1' \cup Q_1''$ the compactification Ω^{Q_1} is homeomorphic to Ω^{Q_0} .*

Before proving this proposition we remark the following:

Lemma 3.3. *For every $f \in Q_1'$, and for every positive number ε there exists $g \in Q_0$ such that*

$$\sup_{\Omega} \left| \frac{d_{fh}}{h} - \frac{d_{gh}}{h} \right| \leq \varepsilon.$$

4) Cf. [3], p. 5.

Proof. For arbitrary distinct points x_1, x_2 in Ω^{Q_0} and for any numbers α_1, α_2 there exists a function $\lambda \in C(\Omega^{Q_0})$ which satisfies the following conditions:

- 1) $\lambda|_{\Omega} \in Q_0$.
- 2) $\lambda(x_i) = \alpha_i \quad (i=1,2)$.

Since continuous extensions of functions in Q_0 separate points of Ω^{Q_0} we can find $l \in C(\Omega^{Q_0})$ with $l(x_1) \neq l(x_2)$ among these extensions. Thus, either (i) $l|_{\Omega} = f \in Q_0'$ or (ii) $l|_{\Omega} = d_{f,h}/h$ for some $f \in Q_0'$ or (iii) $l|_{\Omega} = A \frac{\min(G_{a_0}, h)}{h} + B$. In cases (i) and (iii) we have

$$\lambda(x) = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} l(x) - \frac{\alpha_1 l(x_2) - \alpha_2 l(x_1)}{l(x_1) - l(x_2)},$$

in the case (ii) we take, as λ , the continuous extension on Ω^{Q_0} of $d_{f,h}/h$, where

$$f_0 = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} f - \frac{\alpha_1 l(x_2) - \alpha_2 l(x_1)}{l(x_1) - l(x_2)} \in Q_0'.$$

Let $F \in C(\Omega^{Q_0})$, $f = F|_{\Omega}$, $\varepsilon > 0$. For arbitrary $x, y \in \Omega^{Q_0}$ we can take $\lambda_{xy} \in C(\Omega^{Q_0})$ satisfying the following:

- 1) $\lambda_{xy}|_{\Omega} \in Q_0$.
- 2) $\lambda_{xy}(x) = F(x)$, $\lambda_{xy}(y) = F(y)$.

$U_{xy} = \{z \in \Omega^{Q_0}; \lambda_{xy}(z) < F(z) + \varepsilon\}$ is open and contains x, y . From an open covering $\{U_{xy}; y \in \Omega^{Q_0}\}$ of Ω^{Q_0} we select a finite subcovering $\{U_{xy_j}; j=1, 2, \dots, n\}$. Set

$$u_x = \min_{1 \leq j \leq n} \lambda_{xy_j},$$

where λ_{xy_j} is a function corresponding to U_{xy_j} ($j=1, 2, \dots, n$). $u_x < F + \varepsilon$ on Ω^{Q_0} and $u_x(x) = F(x)$. Then, there exists a function g_0 of Q_0' such that $d_{u_x,h} = d_{g_0,h}$. In fact, let $\lambda_{xy_j}|_{\Omega}$ be $f_1, f_2, \dots, f_k; \frac{d_{f_{k+1},h}}{h}, \frac{d_{f_{k+2},h}}{h}, \dots, \frac{d_{f_{k+l},h}}{h}; A_{k+l+1} \frac{\min(G_{a_0}, h)}{h} + B_{k+l+1}, \dots, A_n \frac{\min(G_{a_0}, h)}{h} + B_n$, then

$$\begin{aligned} d_{u_x,h} &= d\left(\min_{1 \leq j \leq n} \lambda_{xy_j}, h\right) = \bigwedge_{j=1}^n d_{\lambda_{xy_j},h} = \left(\bigwedge_{j=1}^k d_{f_j,h}\right) \wedge \left(\bigwedge_{j=k+1}^{k+l} d_{f_j,h}\right) \wedge \left(\min_{k+l+1 \leq j \leq n} B_j\right) h \\ &= \left(\bigwedge_{j=1}^{n+l} d_{f_j,h}\right) \wedge \left(\bigwedge_{j=k+l+1}^n d_{B_j,h}\right) = d_{g_0,h}, \end{aligned}$$

where $g_0 = \min\left(\min_{1 \leq j \leq k+l} f_j, \min_{k+l+1 \leq j \leq n} B_j\right) \in Q_0'$. Since $U_x = \{z \in \Omega^{Q_0}; u_x(z) > F(z) - \varepsilon\}$ is open and contains x , we can form a finite subcovering $\{U_{x_j}; j=1, 2, \dots, l'\}$ of Ω^{Q_0} . Setting $v = \max_{1 \leq j \leq l'} u_{x_j}$, where u_{x_j} is a function corresponding to U_{x_j} ($j=1, 2, \dots, l'$), we have $|u - F| < \varepsilon$ on Ω^{Q_0} and as above we can find $g \in Q_0'$ such that $d_{v,h} = d_{g,h}$.

$$d_{vh} - \varepsilon h \leq d_{fh} \leq d_{vh} + \varepsilon h$$

$$\text{means } \left| \frac{d_{fh} - d_{vh}}{h} \right| = \left| \frac{d_{fh} - d_{vh}}{h} \right| \leq \varepsilon, \quad q.e.d.$$

Proof of Proposition 3.2. Since all functions of Q_0'' are extended continuously on Ω^{Q_0} we have $Q_0'' \subset Q_1'$. The closure $\overline{Q_0''}$ of Q_0'' in the topology of uniform norm ($\|f\| = \sup_{\Omega} |f|$) is contained in Q_1' . On the other hand, above lemma tells us $Q_1'' \subset \overline{Q_0''}$. We have thus $Q_1'' = \overline{Q_0''} \subset Q_1'$ which implies $Q_1 = Q_1'$ and the proposition follows.

4. Regularity of boundary points

Let $\hat{\Omega}$ be an arbitrary metrizable h -resolutive compactification of Ω , and $\Delta = \hat{\Omega} - \Omega$.

In this section we give a proof of theorem stated in the introduction. For definiteness we recall the definition of regularity of boundary points.

DEFINITION 4. A filter \mathcal{F} on Ω converging to a boundary point x is called *strongly h -regular* if there exists an open neighbourhood δ of x and a positive superharmonic function s in $\delta \cap \Omega$ such that $s/h \xrightarrow{\mathcal{F}} 0$ and the infimum of s/h outside of arbitrary open neighbourhood of x contained in δ is positive.

A filter \mathcal{F} on Ω converging to a boundary point x is called *h -regular* if for every bounded continuous function φ on Δ we have $\frac{1}{h} \mathcal{D}_{\varphi, h} \xrightarrow{\mathcal{F}} \varphi(x)$.

A filter \mathcal{F} on Ω converging to a boundary point x is called *weakly h -regular* if there exists a positive superharmonic function s such that $s/h \xrightarrow{\mathcal{F}} 0$.

A boundary point x is called *strongly h -regular*, *h -regular* and *weakly h -regular* according as the filter formed by the trace on Ω of filter of neighbourhoods of x is strongly h -regular, h -regular and weakly h -regular respectively.

It is known that a strongly h -regular filter is h -regular and weakly h -regular. However an example of one-point compactification of Ω shows us that an h -regular filter is not necessarily weakly h -regular.

Since by Proposition 2.6 $\Delta^{Q_0} - \Gamma_h^{Q_0}$ is of h -harmonic measure zero, to prove our theorem it will be sufficient to show the following proposition:

Proposition 4.1. *Let Ω^{Q_0} be the compactification constructed in the preceding section and let $\Delta^{Q_0} = \Omega^{Q_0} - \Omega$. Every point of the h -harmonic boundary $\Gamma_h^{Q_0}$ of Δ^{Q_0} is h -regular and weakly h -regular.*

Proof. We use the same notations as in the preceding section. Let $x \in \Gamma_h^{Q_0}$ and $\varphi \in C(\Delta^{Q_0})$. Let F be a bounded continuous extension of φ on Ω^{Q_0} and set $f = F|_{\Omega}$.

Since $f \in Q_1'$, and $d_{fh}/h \in Q_1''$, f and d_{fh}/h can be extended continuously onto Ω^{Q_1} . By Proposition 3.2 Ω^{Q_1} is homeomorphic to Ω^{Q_0} , therefore f and d_{fh}/h are extended continuously onto Ω^{Q_0} . This is also true for $g = f - d_{fh}/h$. Since $d_{gh} = 0$, g is an h -Wiener potential and by Proposition 2.1 there exists potential p such that $|gh| \leq p$. For an arbitrary sequence of points $\{a_n\}$ in Ω converging to x we have

$$\lim_{n \rightarrow \infty} |g(a_n)| \leq \lim_{n \rightarrow \infty} \frac{p(a_n)}{h(a_n)} = 0.$$

Hence

$$\lim_{n \rightarrow \infty} \left[f(a_n) - \frac{d_{fh}(a_n)}{h(a_n)} \right] = 0,$$

which means $\lim_{a \rightarrow x} \frac{\mathcal{D}_{\varphi, h}(a)}{h(a)} = \varphi(x)$. Thus, all points of $\Gamma_h^{Q_0}$ are h -regular.

Since $\min(G_{a_0}, h)/h$ is extended continuously on Ω^{Q_0} , this function assumes the value zero on $\Gamma_h^{Q_0}$, therefore all points of $\Gamma_h^{Q_0}$ are weakly h -regular, *q.e.d.*

If we take at every point $x \in \Gamma_h^{Q_0}$ the filter formed by the trace on Ω of neighbourhoods of x in Ω^{Q_0} , we obtain the family $\{\mathcal{F}_x\}$ of filters converging in $\hat{\Omega}$ and satisfying the following axioms:

A_h) *If s is subharmonic in Ω , s/h is bounded from above and $\limsup_{\mathcal{F}} s/h \leq 0$ for every \mathcal{F} in $\{\mathcal{F}_x\}$, then $s \leq 0$.*

B_h') *Every filter in $\{\mathcal{F}_x\}$ is h -regular and weakly h -regular.*

Indeed, A_h) follows from Proposition 2.4 and B_h') is a consequence of the above proposition.

The second axiom B_h') is weaker than the following axiom of Brelot-Choquet [2]:

B_h) *Every filter in $\{\mathcal{F}_x\}$ is strongly h -regular.*

Thus, we have

Proposition 4.2. *Let $\hat{\Omega}$ be an arbitrary metrizable h -resolutive compactification of Ω . Then, there exists a family of filters in Ω converging in $\hat{\Omega}$ and satisfying the axiom A_h), B_h').*

L. Naïm gave a family of filters satisfying the axiom A_h), B_h) by using fine neighbourhoods on Martin space. Our filter is quite different from it.

OSAKA CITY UNIVERSITY

References

[1] M. Brelot: *Le problème de Dirichlet. Axiomatique et frontière de Martin*, J. Math. Pures Appl. (9) 35 (1956), 297–335.

- [2] M. Brelot et G. Choquet: *Espaces et lignes de Green*, Ann. Inst. Fourier (Grenoble) **3** (1951), 199–263.
- [3] C. Constantinescu und A. Cornea: Ideale Ränder Riemannscher Flächen. Ergebnisse der Math. und ihrer Grenzgebiete. Neue Folge Bd. 32, Springer-Verlag, 1963.
- [4] L. Naim: *Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel*, Ann. Inst. Fourier (Grenoble) **7** (1957), 183–281.

