

Title	A note on axiomatic Dirichlet problem
Author(s)	Ikegami, Teruo
Citation	Osaka Journal of Mathematics. 1969, 6(1), p. 39-47
Version Type	VoR
URL	https://doi.org/10.18910/6106
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A NOTE ON AXIOMATIC DIRICHLET PROBLEM

TERUO IKEGAMI

(Received October 7, 1968)

1. Introduction

Axiomatic Dirichlet problem was first discussed by M. Brelot in connection with a metrizable compactification of Green space Ω and a positive harmonic function h in Ω . In his paper [1] the theory was developed under the assumption Ω_h , that is, all bounded continuous functions on the boundary are h-resolutive. In our present paper we call a compactification with this property h-resolutive.

This axiomatic treatment of Dirichlet problem yields some complicated situations. For instance, Brelot gave many definitions for the regularity of boundary points, such as strongly h-regular, h-regular, weakly h-regular. A strongly h-regular boundary point is h-regular and weakly h-regular, but an h-regular boundary point is not weakly h-regular in general. It has been asked by M. Brelot [1] and L. Naïm [4] whether the complementary set of all h-regular boundary points is of h-harmonic measure zero (h-négligeable) or not. We can not yet give an answer to this question. However we can prove the following theorem:

Theorem. Let $\hat{\Omega}$ be an arbitrary metrizable h-resolutive compactification of Green space Ω . Then there exists a metrizable h-resolutive compactification having $\hat{\Omega}$ as a quotient space and in which the complementary set of all h-regular and weakly h-regular boundary points is of h-harmonic measure zero.

As a corollary of this theorem we can construct a family of filters $\{\mathcal{F}_x\}$ converging in $\hat{\Omega}$ and satisfying axioms

- A_h) If s is subharmonic in Ω , s/h is bounded from above and $\limsup_{\mathcal{F}} s/h \le 0$ for every \mathcal{F} in $\{\mathcal{F}_x\}$, then $s \le 0$.
- B_{h}') Every filter in $\{\mathcal{F}_{x}\}$ is h-regular and weakly h-regular, where the latter is weaker than that of Brelot-Choquet [2].

2. Preliminaries

Let Ω be a Green space in the sense of Brelot-Choquet [2]. For a real valued function f defined in Ω we shall define a family $\overline{W}_f(\underline{W}_f)$ of superharmonic (subharmonic) functions s such that $s \ge f(s \le f)$ on $\Omega - K$, where K is a compact

set depending on s in general. If $\overline{W}_f(\underline{W}_f)$ is not empty its lower (upper) envelope will be denoted by $\overline{d}_f(\underline{d}_f)$. \overline{d}_f and \underline{d}_f are harmonic and $\underline{d}_f \leq \overline{d}_f$. When $d_f = \overline{d}_f$ they are denoted by d_f simply.

Throughout this paper we shall take a positive harmonic function h in Ω and fix it.

DEFINITION 1. A function f defined in Ω is h-harmonizable if the following conditions are satisfied:

- 1) there exists a superharmonic function s such that $|fh| \le s$,
- $2) \quad \underline{d}_{fh} = d_{fh}$

If f is h-harmonizable and $d_{fh}=0$ then f is termed an h-Wiener potential, and the class of all h-Wiener potentials is denoted by $W_{0,h}^{(1)}$.

Proposition 2.1. Every $f \in W_{0,h}$ has a potential p such that $|fh| \le p$.

Let $\hat{\Omega}$ be a compactification of Ω , that is $\hat{\Omega}$ is compact and contains Ω as an everywhere dense subspace. Set $\Delta = \hat{\Omega} - \Omega$. In this paper it is always assumed that $\hat{\Omega}$ is *metrizable*.

For an arbitrary real valued function φ on Δ , which is permitted to take the values $\pm \infty$, $\overline{\mathcal{F}}_{\varphi,h}$ denotes the class of all superharmonic functions s such that

- a) s/h is bounded from below,
- b) $\lim_{a\to x} s(a)/h(a) \ge \varphi(x)$ for every $x \in \Delta$.

Similarly we define the class of subharmonic functions $\underline{\mathcal{G}}_{\varphi,h}$. When $\overline{\mathcal{G}}_{\varphi,h}$, $\underline{\mathcal{G}}_{\varphi,h}$ are not empty, we set

$$\overline{\mathcal{D}}_{\varphi,h} = \inf \left\{ s; s \in \overline{\mathcal{G}}_{\varphi,h} \right\},
\underline{\mathcal{Q}}_{\varphi,h} = \sup \left\{ s; s \in \underline{\mathcal{G}}_{\varphi,h} \right\}.$$

 $\underline{\mathcal{D}}_{\varphi,h}$ and $\overline{\mathcal{D}}_{\varphi,h}$ are both harmonic and $\underline{\mathcal{D}}_{\varphi,h} \leq \overline{\mathcal{D}}_{\varphi,h}$. When $\underline{\mathcal{D}}_{\varphi,h} = \overline{\mathcal{D}}_{\varphi,h}$, φ is called *h-resolutive* and the envelopes are denoted by $\mathcal{D}_{\varphi,h}$ simply.

Definition 2. If all bounded continuous functions on Δ are h-resolutive, $\hat{\Omega}$ is called an h-resolutive compactification of Ω .

In the sequel, $\hat{\Omega}$ always denotes a metrizable h-resolutive compactification of Ω . Then, for $a \in \Omega$ there exists a Radon measure ω_h^a on Δ such that

$$\mathscr{D}_{\varphi,h} = \int \varphi \, d\omega_h^a \quad \text{for every} \quad \varphi \in C(\Delta)^{2}$$
.

 ω_h^a is called an h-harmonic measure (with respect to a).

¹⁾ In the case that h=1 and Ω is a hyperbolic Riemann surface, this definition is slightly different from [3].

²⁾ $C(\Delta)$ denotes the family of all bounded continuous functions on Δ .

Proposition 2.2. Let F be bounded and continuous on $\hat{\Omega}$ and φ , f be its restrictions on Δ and on Ω respectively, then f is h-harmonizable and $d_{fh} = \mathcal{Q}_{\varphi,h}$.

Proposition 2.3. In order that an arbitrary compactification $\overline{\Omega}$ of Ω be h-resolutive, it is necessary and sufficient that for every bounded continuous function F on $\overline{\Omega}$, its restriction on Ω is h-harmonizable.

DEFINITION 3. For potential p we set

$$\begin{split} &\Gamma_{p,h} = \{x \in \Delta; \lim_{a \to x} p(a)/h(a) = 0\}, \\ &\Gamma_h = \bigcap_p \Gamma_{p,h}. \end{split}$$

 Γ_h is called an *h-harmonic boundary*. Γ_h is non-empty and compact.

Proposition 2.4. If s is subharmonic in Ω such that s/h is bounded from above and $\overline{\lim} s(a)/h(a) \le 0$ for all $x \in \Gamma_h$ then $s \le 0$.

Proposition 2.5. Let F be a bounded continuous function on $\hat{\Omega}$. The restriction of F on Ω is an h-Wiener potential if and only if F vanishes on Γ_h .

Proposition 2.6. Γ_h is the carrier of h-harmonic measure ω_h .

In the case that h=1 and Ω is a hyperbolic Riemann surface, Constantinescu-Cornea [3] have given these propositions. Proofs of our propositions will be obtained from them with slight modifications.

3. Q-compactification of Green space

1. Let h be a positive harmonic function on Green space Ω and $\hat{\Omega}$ be an arbitrary metrizable, h-resolutive compactification of Ω . Set $\Delta = \hat{\Omega} - \Omega$.

For $F \in C(\hat{\Omega})$, its restrictions on Ω and on Δ are denoted by $F|_{\Omega}$ and $F|_{\Delta}$ respectively.

We set
$$Q_0' = \{F|_{\Omega}; F \in C(\hat{\Omega})\}, \quad Q_0'' = \{d_{fh}/h; f \in Q_0'\}$$
 and
$$Q_0 = Q_0' \cup Q_0'' \cup \left\{A \frac{\min(G_{a_0}, h)}{h} + B\right\},$$

where G_{a_0} is a Green function of Ω with pole at a_0 and A, B are constants. The compactification Ω^{Q_0} of Ω is the one on which all functions of Q_0 are extended continuously and the boundary $\Delta^{Q_0} = \Omega^{Q_0} - \Omega$ is separated by functions in $Q_0^{(3)}$. We have

Proposition 3.1. Ω^{Q_0} is a metrizable h-resolutive compactification of Ω .

³⁾ We say functions in Q_0 separate points of Δ^{Q_0} if for every pair of distinct points x, y of Δ^{Q_0} there exists a function F in Q_0 such that $F(x) \pm F(y)$.

 $\hat{\Omega}$ is a quotient space of Ω^{Q_0} .

To prove this proposition, we require some lemmas.

In $C(\hat{\Omega})$ we select a countable subfamily $\{F_k\}$ which is dense in the topology of uniform norm $(||F|| = \sup |F(a)|)$.

If we set $f_k = F_k|_{\Omega}$, f_k is h-harmonizable (Prop. 2.2). We form the family of a countable number of functions

$$Q = \{f_{\mathbf{k}}\} \cup \{d_{f\mathbf{k}}/h\} \cup \left\{\frac{\min{(G_{a_0},h)}}{h}\right\},$$

which is a subfamily of Q_0 .

The Q-compactification Ω^Q of Ω is compact and contains Ω as an everywhere dense subspace. Functions in Q are extended continuously on Ω^Q and separate two distinct points of $\Delta^Q = \Omega^Q - \Omega$.

Theory of general topology tells us Ω^Q is metrizable (for instance, N. Bourbaki: Topologie générale, Chap. IX, §2).

Lemma 3.1. For every $F \in C(\hat{\Omega})$, if we set $f = F|_{\Omega}$, then f and d_{fh}/h are extended continuously on Ω^{Q} .

Proof. (i) Case of f. It will be sufficient to show that for every $x \in \Delta^Q$ and for every sequence of points $\{a_n\}$ in Ω converging to x in the topology of Ω^Q $\{f(a_n)\}$ has the unique limit. If it were not, there should exist two sequences $\{a_n\}$, $\{b_n\}$ in Ω such that $a_n \to x$, $b_n \to x$ (in the topology of Ω^Q) and $\alpha = \lim_{n \to \infty} f(a_n) > \lim_{n \to \infty} f(b_n) = \beta$.

We take a positive number $\mathcal{E}=(\alpha-\beta)/4$. For this \mathcal{E} and $F\in C(\hat{\Omega})$ we can find F_k in our countable family such that

$$\sup_{\hat{\Omega}} |F_{k} - F| \leq \varepsilon.$$

Then we have

$$\alpha = \lim_{n \to \infty} f(a_n) \le \overline{\lim}_{n \to \infty} f_k(a_n) + \varepsilon$$
,

$$\underline{\lim}_{n\to\infty} f_{k}(b_{n}) - \varepsilon \leq \lim_{n\to\infty} f(b_{n}) = \beta.$$

where $f_k = F_k|_{\Omega}$. Since f_k is extended continuously on Ω^Q ,

$$\alpha - \varepsilon \leq \lim_{n \to \infty} f_k(a_n) = \lim_{n \to \infty} f_k(b_n) \leq \beta + \varepsilon$$
,

this leads to a contradiction $4\varepsilon = \alpha - \beta \le 2\varepsilon$.

(ii) Case of d_{fh}/h . We take f_k as above. Then we have

$$\frac{d_{f_kh}}{h} - \varepsilon \leq \frac{d_{fh}}{h} \leq \frac{d_{f_kh}}{h} + \varepsilon$$

and we can proceed quite in the same way as in (i).

Lemma 3.2. Let \mathcal{H} be a class of all functions F' each of which is bounded and continuous on Ω^{Q_0} and its restriction on Ω is h-harmonizable. Then \mathcal{H} is dense in $C(\Omega^{Q_0})$ in the topology of uniform norm in Ω^{Q_0} .

Proof. Clearly $\mathcal H$ contains all constant functions and $\mathcal H$ is a linear space. All functions in Q_0 , are extended continuously on Ω^{Q_0} and these extended functions are contained in $\mathcal H$, therefore Ω^{Q_0} is separated by functions in $\mathcal H$. To see $\mathcal H$ is closed under the maximum and minimum operations, that is F_1' , $F_2' \in \mathcal H$ implies $\max{(F_1', F_2')}$, $\min{(F_1', F_2')} \in \mathcal H$, let F_1' , $F_2' \in \mathcal H$ and $f_i = F_i' \mid_{\Omega} (i = 1, 2)$. $\min{(F_1', F_2') \mid_{\Omega} = \min{(f_1, f_2)}}$ and $d_{\min{(f_1, f_2)}} = d_{\min{(f_1, f_2)}} = d_{f_1 h} \wedge d_{f_2 h}$, where $u \wedge v$ denotes the greatest harmonic function which is dominated by u and v. This means $\min{(f_1, f_2)}$ is h-harmonizable. By Stone's theorem⁴) $\mathcal H$ is dense in $C(\Omega^{Q_0})$.

Proof of Proposition 3.1. On account of Lemma 3.1 all functions of Q_0 are extended continuously on Ω^Q . Thus Ω^{Q_0} is homeomorphic to Ω^Q and therefore Ω^{Q_0} is metrizable. Since $\hat{\Omega}$ is homeomorphic to $\Omega^{Q_0'}$, $\hat{\Omega}$ is a quotient space of Ω^{Q_0} . For arbitrary $F' \in C(\Omega^{Q_0})$ and any positive number \mathcal{E} , by Lemma 3.2 we can find $F_0' \in \mathcal{H}$ such that

$$\sup_{\Omega^{Q_0}} |F' - F_0'| \leq \varepsilon.$$

Setting $f = F'|_{\Omega}$, $f_0 = F_0'|_{\Omega}$ we have

$$\underline{d}_{f_0h} - \varepsilon h \leq \underline{d}_{fh} \leq \overline{d}_{fh} \leq \overline{d}_{f_0h} + \varepsilon h$$
 .

Since f_0 is h-harmonizable we get $0 \le \bar{d}_{fh} - \underline{d}_{fh} \le 2\mathcal{E}h$. f is h-harmonizable, and by Proposition 2.3 Ω^{Q_0} is h-resolutive.

2. For an arbitrary metrizable h-resolutive compactification $\hat{\Omega}$ of Ω we have constructed Ω^{Q_0} of the same type which contains $\hat{\Omega}$ as a quotient space. If we start from Ω^{Q_0} it will be expected that we can arrive at a new larger compactification of the same type, but this is not so, that is

Proposition 3.2. Let Ω^{Q_0} be the compactification of Ω constructed in the above paragraph. If we set $Q_1' = \{f = F \mid_{\Omega}; F \in C(\Omega^{Q_0})\}, Q_1'' = \{\frac{d_{fh}}{h}; f \in Q_1'\}$ and $Q_1 = Q_1' \cup Q_1''$ the compactification Ω^{Q_1} is homeomorphic to Ω^{Q_0} .

Before proving this propostition we remark the following:

Lemma 3.3. For every $f \in Q_1'$, and for every positive number ε there exists $g \in Q_0'$ such that

$$\sup_{\Omega} \left| \frac{d_{fh}}{h} - \frac{d_{gh}}{h} \right| \leq \varepsilon.$$

⁴⁾ Cf. [3], p. 5.

Proof. For arbitrary distinct points x_1 , x_2 in Ω^{Q_0} and for any numbers α_1 , α_2 there exists a function $\lambda \in C(\Omega^{Q_0})$ which satisfies the following conditions:

1) $\lambda \mid_{\Omega} \in Q_0$.

2)
$$\lambda(x_i) = \alpha_i \quad (i=1,2)$$
.

Since continuous extensions of functions in Q_0 separate points of Ω^{Q_0} we can find $l \in C(\Omega^{Q_0})$ with $l(x_1) \neq l(x_2)$ among these extensions. Thus, either (i) $l|_{\Omega} = f \in Q_0$ or (ii) $l|_{\Omega} = d_{fh}/h$ for some $f \in Q_0$ or (iii) $l|_{\Omega} = A \frac{\min{(G_{a_0}, h)}}{h} + B$. In cases (i) and (iii) we have

$$\lambda(x) = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} l(x) - \frac{\alpha_1 l(x_2) - \alpha_2 l(x_1)}{l(x_1) - l(x_2)},$$

in the case (ii) we take, as λ , the continuous extension on Ω^{Q_0} of d_{f_0h}/h , where

$$f_{0} = \frac{\alpha_{1} - \alpha_{2}}{l(x_{1}) - l(x_{2})} f - \frac{\alpha_{1}l(x_{2}) - \alpha_{2}l(x_{1})}{l(x_{1}) - l(x_{2})} \in Q_{0}'.$$

Let $F \in C(\Omega^{Q_0})$, $f = F|_{\Omega}$, $\varepsilon > 0$. For arbitrary x, $y \in \Omega^{Q_0}$ we can take $\lambda_{xy} \in C(\Omega^{Q_0})$ satisfying the following:

1) $\lambda_{xy}|_{\Omega} \in Q_0$.

2)
$$\lambda_{xy}(x) = F(x)$$
, $\lambda_{xy}(y) = F(y)$.

 $U_{xy} = \{z \in \Omega^{Q_0}; \ \lambda_{xy}(z) < F(z) + \varepsilon\}$ is open and contains x, y. From an open covering $\{U_{xy}; y \in \Omega^{Q_0}\}$ of Ω^{Q_0} we select a finite subcovering $\{U_{xy_j}; j=1, 2, \cdots, n\}$. Set

$$u_x = \min_{1 \leq j \leq n} \lambda_{xy_j},$$

where λ_{xy_j} is a function corresponding to U_{xy_j} $(j=1,2,\cdots,n)$. $u_x < F + \varepsilon$ on Ω^{Q_0} and $u_x(x) = F(x)$. Then, there exists a function g_0 of Q_0 such that $d_{u_xh} = d_{g_0h}$. In fact, let $\lambda_{xy_j}|_{\Omega}$ be f_1, f_2, \cdots, f_k ; $\frac{d_{fk+1h}}{h}, \frac{d_{fk+2h}}{h}, \cdots, \frac{d_{fk+lh}}{h}$; $A_{k+l+1} = \frac{\min(G_{a_0}, h)}{h} + B_{k+l+1}, \cdots, A_n = \frac{\min(G_{a_0}, h)}{h} + B_n$, then

$$d_{u_{xh}} = d(\min_{1 \le j \le n} \lambda_{xy_j} h) = \bigwedge_{j=1}^n d_{\lambda xy_{jh}} = (\bigwedge_{j=1}^k d_{f_{jh}}) \wedge (\bigwedge_{j=k+1}^{k+l} d_{f_{ih}}) \wedge (\min_{k+l+1 \le j \le n} B_j) h$$

$$= (\bigwedge_{j=1}^{n+l} d_{f_{jh}}) \wedge (\bigwedge_{j=k+l+1}^n d_{B_{jh}}) = d_{g_{0h}},$$

where $g_0=\min(\min_{1\leq j\leq k+l}f_j, \min_{k+l+1\leq j\leq n}B_j)\in Q_0'$. Since $U_x=\{z\in\Omega^{Q_0}; u_x(z)>F(z)-\varepsilon\}$ is open and contains x, we can form a finite subcovering $\{U_{x_j}; j=1,2,\cdots,l'\}$ of Ω^{Q_0} . Setting $v=\max_{1\leq j\leq l'}u_{x_j}$, where u_{x_j} is a function corresponding to U_{x_j} $(j=1,2,\cdots,l')$, we have $|u-F|<\varepsilon$ on Ω^{Q_0} and as above we can find $g\in Q_0'$ such that $d_{vh}=d_{gh}$.

$$d_{vh}$$
 $-\varepsilon h \leq d_{fh} \leq d_{vh} + \varepsilon h$

means
$$\left| \frac{d_{\mathit{Ih}} - d_{\mathit{gh}}}{h} \right| = \left| \frac{d_{\mathit{Ih}} - d_{\mathit{vh}}}{h} \right| \leq \varepsilon$$
, q.e.d.

Proof of Proposition 3.2. Since all functions of Q_0'' are extended continuously on Ω^{Q_0} we have $Q_0'' \subset Q_1'$. The closure $\overline{Q_0''}$ of Q_0'' in the topology of uniform norm ($||f|| = \sup_{\Omega} |f|$) is contained in Q_1' . On the other hand, above lemma tells us $Q_1'' \subset \overline{Q_0''}$. We have thus $Q_1'' = \overline{Q_0''} \subset Q_1'$ which implies $Q_1 = Q_1'$ and the proposition follows.

4. Regularity of boundary points

Let $\hat{\Omega}$ be an arbitrary metrizable h-resolutive compactification of Ω , and $\Delta = \hat{\Omega} - \Omega$.

In this section we give a proof of theorem stated in the introduction. For definiteness we recall the definition of regularity of boundary points.

DEFINITION 4. A filter \mathcal{F} on Ω converging to a boundary point x is called strongly h-regular if there exists an open neighbourhood δ of x and a positive superharmonic function s in $\delta \cap \Omega$ such that $s/h \to 0$ and the infimum of s/h outside of arbitrary open neighbourhood of x contained in δ is positive.

A filter \mathcal{F} on Ω converging to a boundary point x is called h-regular if for every bounded continuous function φ on Δ we have $\frac{1}{h}\mathcal{D}_{\varphi,h}\underset{\mathcal{F}}{\longrightarrow} \varphi(x)$.

A filter \mathcal{F} on Ω converging to a boundary point x is called weakly h-regular if there exists a positive superharmonic function s such that $s/h \underset{CH}{\longrightarrow} 0$.

A boundary point x is called *strongly h-regular*, *h-regular* and *weakly h-regular* according as the filter formed by the trace on Ω of filter of neighbourhoods of x is strongly *h*-regular, *h*-regular and weakly *h*-regular respectively.

It is known that a strongly h-regular filter is h-regular and weakly h-regular. However an example of one-point compactification of Ω shows us that an h-regular filter is not necessarily weakly h-regular.

Since by Proposition 2.6 $\Delta^{Q_0} - \Gamma_h^{Q_0}$ is of h-harmonic measure zero, to prove our theorem it will be sufficient to show the following proposition:

Proposition 4.1. Let Ω^{Q_0} be the compactification constructed in the preceding section and let $\Delta^{Q_0} = \Omega^{Q_0} - \Omega$. Every point of the h-harmonic boundary $\Gamma_h^{Q_0}$ of Δ^{Q_0} is h-regular and weakly h-regular.

Proof. We use the same notations as in the preceding section. Let $x \in \Gamma_{h^0}^{Q_0}$ and $\varphi \in C(\Delta^{Q_0})$. Let F be a bounded continuous extension of φ on Ω^{Q_0} and set $f = F|_{\Omega}$.

Since $f \in Q_1$ ', and $d_{fh}/h \in Q_1$ ", f and d_{fh}/h can be extended continuously onto Ω^{Q_1} . By Proposition 3.2 Ω^{Q_1} is homeomorphic to Ω^{Q_0} , therefore f and d_{fh}/h are extended continuously onto Ω^{Q_0} . This is also ture for $g=f-d_{fh}/h$. Since $d_{gh}=0$, g is an h-Wiener potential and by Proposition 2.1 there exists potential p such that $|gh| \le p$. For an arbitrary sequence of points $\{a_n\}$ in Ω converging to x we have

$$\lim_{n\to\infty} |g(a_n)| \leq \lim_{n\to\infty} \frac{p(a_n)}{h(a_n)} = 0.$$

Hence

$$\lim_{n\to\infty}\left[f(a_n)-\frac{d_{fh}(a_n)}{h(a_n)}\right]=0,$$

which means $\lim_{a\to x} \frac{\mathcal{D}_{\varphi,h}(a)}{h(a)} = \varphi(x)$. Thus, all points of $\Gamma_h^{Q_0}$ are h-regular.

Since $\min(G_{a_0}, h)/h$ is extended continuously on Ω^{Q_0} , this function assumes the value zero on $\Gamma_{a_0}^{Q_0}$, therefore all points of $\Gamma_{a_0}^{Q_0}$ are weakly h-regular, q.e.d.

If we take at every point $x \in \Gamma_h^{Q_0}$ the filter formed by the trace on Ω of neighbourhoods of x in Ω^{Q_0} , we obtain the family $\{\mathcal{F}_x\}$ of filters converging in Ω and satisfying the following axioms:

- A_h) If s is subharmonic in Ω , s/h is bounded from above and $\limsup_{\mathcal{F}} s/h \le 0$ for every \mathcal{F} in $\{\mathcal{F}_x\}$, then $s \le 0$.
 - B_{h}') Every filters in $\{\mathcal{F}_{x}\}$ is h-regular and weakly h-regular.

Indeed, A_h) follows from Proposition 2.4 and B_h') is a consequence of the above proposition.

The second axiom B_{h}) is weaker than the following axiom of Brelot-Choquet [2]:

 B_h) Every filter in $\{\mathcal{F}_x\}$ is strongly h-regular.

Thus, we have

Proposition 4.2. Let $\hat{\Omega}$ be an arbitrary metrizable h-resolutive compactification of Ω . Then, there exists a family of filters in Ω converging in $\hat{\Omega}$ and satisfying the axiom A_h , B_h .

L. Naïm gave a family of filters satisfying the axiom A_h , B_h) by using fine neighbourhoods on Martin space. Our filter is quite different from it.

OSAKA CITY UNIVERSITY

References

[1] M. Brelot: Le problème de Dirichlet. Axiomatique et frontière de Martin, J. Math. Pures Appl. (9) 35 (1956), 297-335.

- [2] M. Brelot et G. Choquet: Espaces et lignes de Green, Ann. Inst. Fourier (Grenoble) 3 (1951), 199-263.
- [3] C. Constantinescu und A. Cornea: Ideale Ränder Riemannscher Flächen. Ergebnisse der Math. und ihrer Grenzgebiete. Neue Folge Bd. 32, Springer-Verlag, 1963.
- [4] L. Naïm: Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.