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1. Introduction

Axiomatic Dirichlet problem was first discussed by M. Brelot in connection
with a metrizable compactification of Green space Q and a positive harmonic
function % in Q. In his paper [1] the theory was developed under the assump-
tion @,, that is, all bounded continuous functions on the boundary are h-resolutive.
In our present paper we call a compactification with this property k-resolutive.

This axiomatic treatment of Dirichlet problem yields some complicated
situations. For instance, Brelot gave many definitions for the regularity of
boundary points, such as strongly A-regular, h-regular, weakly A-regular. A
strongly A-regular boundary point is k-regular and weakly A-regular, but an A-
regular boundary point is not weakly A-regular in general. It has been asked by
M. Brelot [1] and L. Naim [4] whether the complementary set of all A-regular
boundary points is of A-harmonic measure zero (h-négligeable) or not. We can not
yet give an answer to this question. However we can prove the following
theorem:

Theorem. Let O be an arbitrary metrizable h-resolutive compactification of
Green space Q). Then there exists a metrizable h-resolutive compactification having
Qasa quotient space and in which the complementary set of all h-regular and weakly
h-regular boundary points is of h-harmonic measure zero.

As a corollary of this theorem we can construct a family of filters {&F,}
converging in @ and satisfying axioms

A,) If s is subharmonic in Q, s/h is bounded from above and lim supg s/h<0
for every F in {F,}, then s<0.

B)') Every filter in {¥F,} is h-regular and weakly h-regular,
where the latter is weaker than that of Brelot-Choquet [2].

2. Preliminaries

Let Q be a Green space in the sense of Brelot-Choquet [2]. For a real
valued function f defined in Q we shall define a family W (W) of superharmonic
(subharmonic) functions s such that s> f (s< f) on Q—K, where K is a compact
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set depending on s in general. If W, (WW,) is not empty its lower (upper)
envelope will be denoted by d;(d,). d,and d,are harmonic and d,<d,. When
d,=d, they are denoted by d, simply.

Throughout this paper we shall take a positive harmonic function % in  and
fix it.

DerINITION 1. A function f defined in Q is h-harmonizable if the following
conditions are satisfied:
1) there exists a superharmonic function s such that | fz| <s,
2) dp=d,
If f is h-harmonizable and d,=0 then f is termed an h-Wiener potential,
and the class of all ~-Wiener potentials is denoted by W, ,".

Proposition 2.1. Every f € W, ,, has a potential p such that | fh| <p.

Let O be a compactification of , that is O is compact and contains
as an everywhere dense subspace. Set A=Q—Q. In this paper it is always
assumed that O is metrizable.

For an arbitrary real valued function @ on A, which is permitted to take
the values + oo, &, , denotes the class of all superharmonic functions s such that

a) s/h is bounded from below,
b) lalTn} s(a)[h(a) = p(x) for every xEA.

Similarly we define the class of subharmonic functions ¢, ,. When ?ﬂp,h,
&, » are not empty, we set

Dy, = inf {s; s€EF, ,} ,
Dy, = sup {s; seg‘(’,h} .

Dy pand D, ,, are both harmonic and 9, ,<D,, When D, ,=D,,, P is

called h-resolutive and the envelopes are denoted by 9, , simply.

DerinITION 2. If all bounded continuous functions on A are k-resolutive,
O is called an h-resolutive compactification of Q.

In the sequel, Q always denotes a metrizable A-resolutive compactification of
Q. Then, for acQ there exists a Radon measure wj on A such that

Do j= S<pdco;‘: for every @&C(A)» .

wy is called an h-harmonic measure (with respect to a).

1) In the case that =1 and Q is a hyperbolic Riemann surface, this definition is slightly
different from [3].
2) C(A) denotes the family of all bounded continuous functions on A.
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Proposition 2.2. Let F be bounded and continuous on O and @, f be uts
restrictions on A and on S respectively, then f is h-harmonizable and d ;=D .

Proposition 2.3. In order that an arbitrary compactification Q of Q be
h-resolutive, it is necessary and sufficient that for every bounded continuous function
F on Q, its restriction on Q) is h-harmonizable.

DeriNiTION 3. For potential p we set
Ty = {xEA; lim p(a)/h(a) = 0},
Fh = Q I‘p,h .
T, is called an A-harmonic boundary.
T',, is non-empty and compact.

Proposition 2.4. If s is subharmonic in Q such that s|h is bounded from above
and lim s(a)/h(a) <0 for all xET, then s<0.

Proposition 2.5. Let F be a bounded continuous funcﬁ'on on Q. The restric-
tion of F on Q is an h-Wiener potential if and only if F vanishes on T,

Proposition 2.6. T, is the carrier of h-harmonic measure w,.

In the case that =1 and Q is a hyperbolic Riemann surface, Constantinescu-
Cornea [3] have given these propositions. Proofs of our propositions will be
obtained from them with slight modifications.

3. Q-compactification of Green space

1. Let & be a positive harmonic function on Green space Q and & be an
arbitrary metrizable, h-resolutive compactification of Q. Set A=0—Q.

For F EC(Q), its restrictions on Q and on A are denoted by F |, and F|,
respectively.

Weset Q)= {F|g; FECD)}, Q. = {d/h;f€0Q,} and
0, = 0/ ufamt e 1)

I

where G, is a Green function of Q with pole at a,and 4, B are constants. The
compactification Q% of Q is the one on which all functions of Q, are extended
continuously and the boundary A%=Q%—Q is separated by functions in Q.

We have

Proposition 3.1. Q% is a metrizable h-resolutive compactification of Q.

3) We say functions in Q, separate points of A% if for every pair of distinct points x, 3 of
A% there exists a function F in Q, such that F(x)=%F(y).
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O is a quotient space of Q%.

To prove this proposition, we require some lemmas.

In C(Q) we select a countable subfamily {F,} which is dense in the topology
of uniform norm (||F||=sup | F(a)|).

acQ
If we set fy=F}| g, fz is h-harmonizable (Prop. 2.2). We form the family of
a countable number of functions

0 = {f} U{d, /iU {W}

which is a subfamily of Q,.

The Q-compactification Q9 of Q is compact and contains  as an every-
where dense subspace. Functions in Q are extended continuously on Q€ and
separate two distinct points of A?=0°—Q.

Theory of general topology tells us Q° is metrizable (for instance, N.
Bourbaki: Topologie générale, Chap. IX, §2).

b

Lemma 3.1. For every Fe C(Q), if we set f[=F|q, then f and d,[h are
extended continuously on Q°.

Proof. (i) Case of f. It will be sufficient to show that for every x& A® and
for every sequence of points {a,} in Q converging to x in the topology of Q°
{f(as)} has the unique limit. If it were not, there should exist two sequences
{a,}, {b.} in Q such that a,—x, b,—x (in the topology of Q°) and a=Ilim f(a,)>
lim /(8,)= . i

We take a positive number é=(a—3)/4. For this & and F EC(Q) we can
find F,, in our countable family such that

sup |F,—F|<E€.
Then we have ¢
a = lim f(a,)<lim f,(a,)+€,
lim £,(,)—€<lim f(b,) = 8.
where f,=F,|o. Since f, is extended continuously on QF,

a—E<1im fy(a,) = lim fo(b,) <B+E,

this leads to a contradiction 46=a— B < 2¢€.
(i) Case of ds/h. We take f, as above. Then we have

dfkh dfh dfkh
R T

and we can proceed quite in the same way as in (i).
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Lemma 3.2. Let Y be a class of all functions F' each of which is bounded
and continuous on Q% and its restriction on Q) is h-harmonizable. Then 9 is dense
in C(Q%) in the topology of uniform norm in Q.

Proof. Clearly 4 contains all constant functions and 4 is a linear space. All
functions in Q,, are extended continuously on Q%% and these extended functions
are contained in 4, therefore Q% is separated by functions in 4. To see 4 is
closed under the maximum and minimum operations, that is F,’, F,/’& 4
implies max (F,’, F,’), min (F/, F,/))e Y, let F,’, F,'’=Y( and f;=F;" |4 (1=1,2).
min (F\', F,')|g=min (f,, ;) and duincs, rpn = dumincrip, r00 = pn Ny, Where
uAv denotes the greatest harmonic function which is dominated by # and v.
This means min (f,, f,) is A-harmonizable. By Stone’s theorem® 4 is dense
in C(Q%).

Proof of Proposition 3.1. On account of Lemma 3.1 all functions of Q,
are extended continuously on Q9. Thus Q% is homeomorphic to Q° and there-
fore Q% is metrizable. Since € is homeomorphic to Q’, & is a quotient
space of Q%. For arbitrary FV& C(Q%) and any positive number &, by Lemma
3.2 we can find F,’€= 9 such that

sup |[F'—F,/|<é€.
(1N

Setting f=F"| o, fo=F,'| o we have
dry—eh<dp<dp<dp+&h.

Since f, is h-harmonizable we get 0<d,,—d,,<2¢h. f is h-harmonizable, and
by Proposition 2.3 Q% is A-resolutive.

2. For an arbitrary metrizable A-resolutive compactification O of O we
have constructed Q% of the same type which contains Qoasa quotient space.
If we start from Q% it will be expected that we can arrive at a new larger
compactification of the same type, but this is not so, that is

Proposition 3.2. Let Q% be the compactification of Q constructed in the
d
above paragraph. If we set Q,'={f=F |o; F=€C(Q%)}, O0,"= {7;1, fe Q,'} and
0,=0,"UQ," the compactification Q% is homeomorphic to Q.
Before proving this propostition we remark the following:

Lemma 3.3. For every f€Q,’, and for every positive number € there exists
2€ 0, such that

drn_dan

<€.
h h

sup
Q

4 CL[3)p. S
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Proof. For arbitrary distinct points &, x, in Q% and for any numbers a,,
o, there exists a function A € C(Q%) which satisfies the following conditions:

1) Ao€0,.
2) AMx)=a; (=12).
Since continuous extensions of functions in Q, separate points of Q% we can
find /eC(Q%) with I(x,)%I(x,) among these extensions. Thus, either (i)
lla=f€0," or (ii) I| gq=d /h for some fEQ, or (iii) 1|Q=Am—m—(-g—h)+3
In cases (i) and (iii) we have

ay

_ I(x)— al(x,)—al(x,;)
l( 1) l(xZ) l(xl)_l(xz)

in the case (ii) we take, as A, the continuous extension on Q% of d ,/h, where

Mx) =

)

— a,—a, __all(xZ)_aZI(xl) ’.
fo l(xl)*l(xz)f I(,)—U(x,) <O

Let FECQ%), f=F|qo, €>0. For arbitrary x, y€Q% we can take
M.y € C(Q%) satisfying the following:
1) A,le€0,.
2) Ap(®) = F(x), N\,)(9) = F().
U,,={z=Q%; A\, ,(2)<F(2)+&} is open and contains x, . From an open
covering {U,,; yEQ%} of Q% we select a finite subcovering {Usy;35=1,2, -, n}.
Set

u, = min A

xy; )
i<jsn 0

where A, is a function corresponding to U, (j=1,2,-*,n). u,<F+& on Q%
and u,(x)=F(x). Then, there exists a function g, of Q,” such that d, ,=d,,.

d d d min (G, , h
In fact, let Xx,jlg be fnfz, '"’fk; fk+lh) fk+2h) R fk+lh; Ak+l+1 (h . )

h h h
min (G, k)
— B, then

+Bk+l+11 Tty An

dyy= d(min Nxy ) = /\ Arry,n = (/\ dy, h)/\( /\ df 2 A( min B))h

Eri1<i<n
n+l

—(/\ dfh)/\( /\ ch)_dgoh)

where g,=min (151,-21:4}1]["’& . Irggnsn B,)e0Q,’". Since U,={z€Q%; u(2)>F(z)—&}

is open and contains x, we can form a finite subcovering {le,; j=1,2, .-, 1l'}

of Q%. Setting v= max u,, where u, is a function corresponding to U,,
1<ji<i’

(j=1,2,--,1I), we have |[u—F| <& on QQO and as above we can find g€0Q,
such that d,,=d,,,.

7
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dyy—Eh<d,<d,,+ch
d]h_ dvh

h

dsy,—d
means Yrh “eh | —

<&, gq.ed.

Proof of Proposition 3.2. Since all functions of Q,” are extended con-

tinuously on Q% we have Q,"CQ,’. The closure Q,” of Q,” in the topology of
uniform norm (||f||=sup |f]) is contained in Q,". On the other hand, above
Q

lemma tells us Q,"CQ,”. We have thus Q,"=0,” cQ,” which implies Q,=0Q,’
and the proposition follows.

4. Regularity of boundary points

Let © be an arbitrary metrizable h-resolutive compactification of £, and
A=0—Q.

In this section we give a proof of theorem stated in the introduction. For
definiteness we recall the definition of regularity of boundary points.

DEFINITION 4. A filter F on Q converging to a boundary point x is called
strongly h-regular if there exists an open neighbourhood 8 of x and a positive
superharmonic function s in §NQ such that s/h§7>0 and the infimum of s/k

outside of arbitrary open neighbourhood of x contained in § is positive.
A filter F on Q converging to a boundary point x is called A-regular if for

every bounded continuous function @ on A we have »}17.@,,’ = P(%).

g
A filter & on Q converging to a boundary point x is called weakly h-regular

if there exists a positive superharmonic function s such that s/h—g;O.

A boundary point x is called stromgly h-regular, h-regular and weakly h-
regular according as the filter formed by the trace on Q of filter of neighbourhoods
of x is strongly h-regular, h-regular and weakly A-regular respectively.

It is known that a strongly A-regular filter is h-regular and weakly A-regular.
However an example of one-point compactification of Q shows us that an 4-
regular filter is not necessarily weakly A-regular.

Since by Proposition 2.6 A%—T'% is of A-harmonic measure zero, to
prove our theorem it will be sufficient to show the following proposition:

Proposition 4.1. Let Q% be the compactification constructed in the preceding
section and let A%=Q%—Q. Every point of the h-harmonic boundary T'o of
A% is h-regular and weakly h-regular.

Proof. We use the same notations as in the preceding section. Let x&
'Y and o= C(A%). Let F be a bounded continuous extension of @ on Q% and
set f=F | .
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Since f€Q,’, and dj,/h€Q,”, f and ds,/h can be extended continuously
onto Q%. By Proposition 3.2 Q% is homeomorphic to Q%, therefore f and
dsu/h are extended continuously onto Q9. This is also ture for g=f—d,/h.
Since d,,=0, g is an hA-Wiener potential and by Proposition 2.1 there exists
potential p such that |gh| <p. For an arbitrary sequence of points {a,} in Q
converging to x we have

lim 1g(a”)lgg%2%=o.

Hence
d (a,,)]
Ii [ Th =0,
lim flaz)— Ha
which means lim De.a)_ @(x). Thus, all points of I'§o are A-regular.

h(a)
Since min(Gao, h)/h is extended continuously on Q%, this function assumes
the value zero on T'S, therefore all points of T'Q are weakly k-regular, g.e.d.

If we take at every point x&T'@ the filter formed by the trace on Q of
neighbourhoods of x in Q%, we obtain the family {&F,} of filters converging
in & and satisfying the following axioms:

A,) If s is subharmonic in Q, s/h is bounded from above and lim supg s/h<0
for every F in {F}, then s<0.

B)') Every filters in {F,} is h-regular and weakly h-regular.

Indeed, A4,) follows from Proposition 2.4 and B,’) is a consequence of the
above proposition.

The second axiom B,’) is weaker than the following axiom of Brelot-Choquet
[2]:

B,) Every filter in {F,} is strongly h-regular.

Thus, we have

Proposition 4.2. Let O be an arbitrary metrizable h-resolutive compactifi-
cation of Q. Then, there exists a family of filters in Q converging in Q and
satisfying the axiom A,), B,').

L. Naim gave a family of filters satisfying the axiom A4,), B,) by using
fine neighbourhoods on Martin space. Our filter is quite different from it.

OsakA City UNIVERSITY
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