<table>
<thead>
<tr>
<th>Title</th>
<th>A note on axiomatic Dirichlet problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikegami, Teruo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 6(1) P.39-P.47</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1969</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6106</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6106</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A NOTE ON AXIOMATIC DIRICHLET PROBLEM

TERUO IKEGAMI

(Received October 7, 1968)

1. Introduction

Axiomatic Dirichlet problem was first discussed by M. Brelot in connection with a metrizable compactification of Green space Ω and a positive harmonic function \(h \) in Ω. In his paper [1] the theory was developed under the assumption \(G_h \), that is, all bounded continuous functions on the boundary are \(h \)-resolutive. In our present paper we call a compactification with this property \(h \)-resolutive.

This axiomatic treatment of Dirichlet problem yields some complicated situations. For instance, Brelot gave many definitions for the regularity of boundary points, such as strongly \(h \)-regular, \(h \)-regular, weakly \(h \)-regular. A strongly \(h \)-regular boundary point is \(h \)-regular and weakly \(h \)-regular, but an \(h \)-regular boundary point is not weakly \(h \)-regular in general. It has been asked by M. Brelot [1] and L. Naïm [4] whether the complementary set of all \(h \)-regular boundary points is of \(h \)-harmonic measure zero (\(h \)-négligeable) or not. We can not yet give an answer to this question. However we can prove the following theorem:

Theorem. Let \(\hat{\Omega} \) be an arbitrary metrizable \(h \)-resolutive compactification of Green space \(\Omega \). Then there exists a metrizable \(h \)-resolutive compactification having \(\hat{\Omega} \) as a quotient space and in which the complementary set of all \(h \)-regular and weakly \(h \)-regular boundary points is of \(h \)-harmonic measure zero.

As a corollary of this theorem we can construct a family of filters \(\{ \mathcal{F}_x \} \) converging in \(\Omega \) and satisfying axioms

\[A_h \] If \(s \) is subharmonic in \(\Omega \), \(s/h \) is bounded from above and \(\limsup_{\mathcal{F}} s/h \leq 0 \) for every \(\mathcal{F} \) in \(\{ \mathcal{F}_x \} \), then \(s \leq 0 \).

\[B'_h \] Every filter in \(\{ \mathcal{F}_x \} \) is \(h \)-regular and weakly \(h \)-regular, where the latter is weaker than that of Brelot-Choquet [2].

2. Preliminaries

Let \(\Omega \) be a Green space in the sense of Brelot-Choquet [2]. For a real valued function \(f \) defined in \(\Omega \) we shall define a family \(\mathcal{W}_f(\mathcal{W}_f) \) of superharmonic (subharmonic) functions \(s \) such that \(s \geq f (s \leq f) \) on \(\Omega - K \), where \(K \) is a compact
set depending on \(s \) in general. If \(\overline{W}_f(W_f) \) is not empty its lower (upper) envelope will be denoted by \(\bar{d}_f(d_f) \). \(d_f \) and \(\bar{d}_f \) are harmonic and \(d_f \leq \bar{d}_f \). When \(d_f = \bar{d}_f \) they are denoted by \(d_f \), simply.

Throughout this paper we shall take a positive harmonic function \(h \) in \(\Omega \) and fix it.

Definition 1. A function \(f \) defined in \(\Omega \) is \(h \)-harmonizable if the following conditions are satisfied:

1) there exists a superharmonic function \(s \) such that \(|fh| \leq s \),
2) \(d_{fh} = \bar{d}_{fh} \)

If \(f \) is \(h \)-harmonizable and \(d_{fh} = 0 \) then \(f \) is termed an \(h \)-Wiener potential, and the class of all \(h \)-Wiener potentials is denoted by \(W_{0,h} \).

Proposition 2.1. Every \(f \in W_{0,h} \) has a potential \(p \) such that \(|fh| \leq p \).

Let \(\hat{\Omega} \) be a compactification of \(\Omega \), that is \(\hat{\Omega} \) is compact and contains \(\Omega \) as an everywhere dense subspace. Set \(\Delta = \hat{\Omega} - \Omega \). In this paper it is always assumed that \(\hat{\Omega} \) is metrizable.

For an arbitrary real valued function \(\varphi \) on \(\Delta \), which is permitted to take the values \(\pm \infty \), \(\mathcal{F}_{\varphi,h} \) denotes the class of all superharmonic functions \(s \) such that

a) \(s/h \) is bounded from below,

b) \(\lim_{a \to x} s(a)/h(a) \geq \varphi(x) \) for every \(x \in \Delta \).

Similarly we define the class of subharmonic functions \(\mathcal{S}_{\varphi,h} \). When \(\mathcal{F}_{\varphi,h}, \mathcal{S}_{\varphi,h} \) are not empty, we set

\[
\mathcal{D}_{\varphi,h} = \inf \{ s; s \in \mathcal{F}_{\varphi,h} \}, \quad \mathcal{S}_{\varphi,h} = \sup \{ s; s \in \mathcal{S}_{\varphi,h} \}.
\]

\(\mathcal{D}_{\varphi,h} \) and \(\mathcal{S}_{\varphi,h} \) are both harmonic and \(\mathcal{D}_{\varphi,h} \leq \mathcal{S}_{\varphi,h} \). When \(\mathcal{D}_{\varphi,h} = \mathcal{S}_{\varphi,h} \), \(\varphi \) is called \(h \)-resolutive and the envelopes are denoted by \(\mathcal{D}_{\varphi,h} \) simply.

Definition 2. If all bounded continuous functions on \(\Delta \) are \(h \)-resolutive, \(\hat{\Omega} \) is called an \(h \)-resolutive compactification of \(\Omega \).

In the sequel, \(\hat{\Omega} \) always denotes a metrizable \(h \)-resolutive compactification of \(\Omega \). Then, for \(a \in \Omega \) there exists a Radon measure \(\omega_a^h \) on \(\Delta \) such that

\[
\mathcal{D}_{\varphi,h} = \int \varphi \, d\omega_a^h \quad \text{for every} \quad \varphi \in C(\Delta)^{\#},
\]

\(\omega_a^h \) is called an \(h \)-harmonic measure (with respect to \(a \)).

1) In the case that \(h = 1 \) and \(\Omega \) is a hyperbolic Riemann surface, this definition is slightly different from [3].

2) \(C(\Delta) \) denotes the family of all bounded continuous functions on \(\Delta \).
Proposition 2.2. Let F be bounded and continuous on $\hat{\Omega}$ and φ, f be its restrictions on Δ and on Ω respectively, then f is h-harmonizable and $d_{fh} = \Omega_{\varphi,h}$.

Proposition 2.3. In order that an arbitrary compactification $\hat{\Omega}$ of Ω be h-resolutive, it is necessary and sufficient that for every bounded continuous function F on Ω, its restriction on Ω is h-harmonizable.

Definition 3. For potential p we set

$$\Gamma_{p,h} = \{x \in \Delta; \lim_{a \to x} p(a)/h(a) = 0\},$$

$$\Gamma_h = \bigcap_p \Gamma_{p,h}.$$

Γ_h is called an h-harmonic boundary.

Γ_h is non-empty and compact.

Proposition 2.4. If s is subharmonic in Ω such that s/h is bounded from above and $\lim_{a \to x} s(a)/h(a) \leq 0$ for all $x \in \Gamma_h$ then $s \leq 0$.

Proposition 2.5. Let F be a bounded continuous function on $\hat{\Omega}$. The restriction of F on Ω is an h-Wiener potential if and only if F vanishes on Γ_h.

Proposition 2.6. Γ_h is the carrier of h-harmonic measure ω_h.

In the case that $h=1$ and Ω is a hyperbolic Riemann surface, Constantinescu-Corna [3] have given these propositions. Proofs of our propositions will be obtained from them with slight modifications.

3. Q-compactification of Green space

1. Let h be a positive harmonic function on Green space Ω and $\hat{\Omega}$ be an arbitrary metrizable, h-resolutive compactification of Ω. Set $\Delta = \hat{\Omega} - \Omega$.

For $F \in C(\hat{\Omega})$, its restrictions on Ω and on Δ are denoted by $F|_{\Omega}$ and $F|_{\Delta}$ respectively.

We set $Q_0' = \{F|_{\Omega}; F \in C(\hat{\Omega})\}$, $Q_{0''} = \{d_{fh}/h; f \in Q_0'\}$ and

$$Q_0 = Q_0' \cup Q_{0''} \cup \left\{A \min (G_{a_0} h) + B\right\},$$

where G_{a_0} is a Green function of Ω with pole at a_0 and A, B are constants. The compactification Ω_{Q_0} of Ω is the one on which all functions of Q_0 are extended continuously and the boundary $\Delta_{Q_0} = \Omega_{Q_0} - \Omega$ is separated by functions in Q_0.

We have

Proposition 3.1. Ω_{Q_0} is a metrizable h-resolutive compactification of Ω.

3) We say functions in Q_0 separate points of Δ_{Q_0} if for every pair of distinct points x, y of Δ_{Q_0} there exists a function F in Q_0 such that $F(x) \neq F(y)$.
is a quotient space of Ω^Ω. To prove this proposition, we require some lemmas.

In $C(\hat{\Omega})$ we select a countable subfamily $\{F_k\}$ which is dense in the topology of uniform norm $||F||=\sup_{a\in\hat{\Omega}} |F(a)|$.

If we set $f_k=F_k|_\Omega$, f_k is h-harmonizable (Prop. 2.2). We form the family of a countable number of functions

$$Q = \{f_k\} \cup \{d_{f_k}/h\} \cup \left\{ \min \left\{ \frac{(G_{a_0^\Omega} h)}{h} \right\} \right\},$$

which is a subfamily of Q_Ω.

The Q-compactification Ω^Q of Ω is compact and contains Ω as an everywhere dense subspace. Functions in Q are extended continuously on Ω^Q and separate two distinct points of $\Delta^Q=\Omega^Q-\Omega$.

Theory of general topology tells us Ω^Q is metrizable (for instance, N. Bourbaki: Topologie générale, Chap. IX, §2).

Lemma 3.1. For every $F\in C(\hat{\Omega})$, if we set $f=F|_\Omega$, then f and d_{f_k}/h are extended continuously on Ω^Q.

Proof. (i) Case of f. It will be sufficient to show that for every $x\in\Delta^Q$ and for every sequence of points $\{a_n\}$ in Ω converging to x in the topology of Ω^Q $\{f(a_n)\}$ has the unique limit. If it were not, there should exist two sequences $\{a_n\}, \{b_n\}$ in Ω such that $a_n\to x$, $b_n\to x$ (in the topology of Ω^Q) and $a=\lim f(a_n)>\lim f(b_n)=\beta$.

We take a positive number $\varepsilon=(\alpha-\beta)/4$. For this ε and $F\in C(\hat{\Omega})$ we can find F_k in our countable family such that

$$\sup_{\hat{\Omega}} |F_k-F| \leq \varepsilon.$$

Then we have

$$\alpha = \lim_{n\to\infty} f(a_n) \leq \lim_{n\to\infty} f_k(a_n) + \varepsilon,$$

$$\lim_{n\to\infty} f_k(b_n) - \varepsilon \leq \lim_{n\to\infty} f(b_n) = \beta.$$

where $f_k=F_k|_\Omega$. Since f_k is extended continuously on Ω^Q,

$$\alpha-\varepsilon \leq \lim_{n\to\infty} f_k(a_n) = \lim_{n\to\infty} f_k(b_n) \leq \beta + \varepsilon,$$

this leads to a contradiction $4\varepsilon = \alpha-\beta \leq 2\varepsilon$.

(ii) Case of d_{f_k}/h. We take f_k as above. Then we have

$$\frac{d_{f_k}}{h} - \varepsilon \leq \frac{d_{f_k}}{h} \leq \frac{d_{f_k}}{h} + \varepsilon$$

and we can proceed quite in the same way as in (i).
Lemma 3.2. Let \mathcal{H} be a class of all functions F' each of which is bounded and continuous on Ω^{Q_0} and its restriction on Ω is h-harmonizable. Then \mathcal{H} is dense in $C(\Omega^{Q_0})$ in the topology of uniform norm in Ω^{Q_0}.

Proof. Clearly \mathcal{H} contains all constant functions and \mathcal{H} is a linear space. All functions in Q_0 are extended continuously on Ω^{Q_0} and these extended functions are contained in \mathcal{H}, therefore Ω^{Q_0} is separated by functions in \mathcal{H}. To see \mathcal{H} is closed under the maximum and minimum operations, that is $F_1', F_2' \in \mathcal{H}$ implies $\max (F_1', F_2') \in \mathcal{H}$, let $F_1', F_2' \in \mathcal{H}$ and $f_i=F_i'|_\Omega$ ($i=1,2$). $\min (F_1', F_2')|_\Omega=\min (f_1, f_2)$ and $d_{\min} (f_1, f_2)^h = d_{\min} (f_1^h, f_2^h)^h = d_{f_1^h} \wedge d_{f_2^h}$, where $u \wedge v$ denotes the greatest harmonic function which is dominated by u and v. This means $\min (f_1, f_2)$ is h-harmonizable. By Stone's theorem⁴ \mathcal{H} is dense in $C(\Omega^{Q_0})$.

Proof of Proposition 3.1. On account of Lemma 3.1 all functions of Q_0 are extended continuously on Ω^{Q_0}. Thus Ω^{Q_0} is homeomorphic to Ω^Q and therefore Ω^{Q_0} is metrizable. Since $\hat{\Omega}$ is homeomorphic to Ω^{Q_0}, $\hat{\Omega}$ is a quotient space of Ω^{Q_0}. For arbitrary $F' \in C(\Omega^{Q_0})$ and any positive number ε, by Lemma 3.2 we can find $F'_0 \in \mathcal{H}$ such that

$$\sup_{\Omega^{Q_0}} |F' - F'_0| \leq \varepsilon.$$

Setting $f=F'|_\Omega$, $f_0=F'_0|_\Omega$ we have

$$d_{f_0^h} - \varepsilon h \leq d_{f^h} \leq d_{f_0^h} + \varepsilon h.$$

Since f_0 is h-harmonizable we get $0 \leq d_{f_0^h} - d_{f^h} \leq 2\varepsilon h$. f is h-harmonizable, and by Proposition 2.3 Ω^{Q_0} is h-resolutive.

2. For an arbitrary metrizable h-resolutive compactification $\hat{\Omega}$ of Ω we have constructed Ω^{Q_0} of the same type which contains $\hat{\Omega}$ as a quotient space. If we start from Ω^{Q_0} it will be expected that we can arrive at a new larger compactification of the same type, but this is not so, that is

Proposition 3.2. Let Ω^{Q_0} be the compactification of Ω constructed in the above paragraph. If we set $Q_1'=\{f=F|_\Omega; F \in C(\Omega^{Q_0})\}$, $Q_1''=\left\{\frac{d_{f^h}}{h}; f \in Q', \right\}$ and $Q_1=Q_1' \cup Q_1''$ the compactification Ω^{Q_1} is homeomorphic to Ω^{Q_0}.

Before proving this proposition we remark the following:

Lemma 3.3. For every $f \in Q_1'$, and for every positive number ε there exists $g \in Q_0'$ such that

$$\sup_{\Omega} \left| \frac{d_{f^h}}{h} - \frac{d_{g^h}}{h} \right| \leq \varepsilon.$$

⁴ Cf. [3], p. 5.
Proof. For arbitrary distinct points \(x_1, x_2 \) in \(\Omega^0 \) and for any numbers \(\alpha_1, \alpha_2 \), there exists a function \(\lambda \in C(\Omega^0) \) which satisfies the following conditions:

1) \(\lambda \mid_\Omega \in Q_0 \).
2) \(\lambda(x_i) = \alpha_i \) \((i=1,2)\).

Since continuous extensions of functions in \(Q_0 \) separate points of \(\Omega^0 \), we can find \(l \in C(\Omega^0) \) with \(l(x_1) \neq l(x_2) \) among these extensions. Thus, either (i) \(l \mid_\Omega = f \in Q_0 \) or (ii) \(l \mid_\Omega = d_{f,h}/h \) for some \(f \in Q_0 \) or (iii) \(l \mid_\Omega = \min (G_{\alpha_0}, h) + B \).

In cases (i) and (iii) we have

\[
\lambda(x) = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} \frac{l(x_2) - \alpha_2}{l(x_1) - l(x_2)},
\]

in the case (ii) we take, as \(\lambda \), the continuous extension on \(\Omega^0 \) of \(d_{f,h}/h \), where

\[
f_0 = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} f - \frac{\alpha_1}{l(x_1) - l(x_2)} l(x_1) \in Q_0.
\]

Let \(F \in C(\Omega^0), f = F \mid_\Omega, \varepsilon > 0 \). For arbitrary \(x, y \in \Omega^0 \) we can take \(\lambda_{xy} \in C(\Omega^0) \) satisfying the following:

1) \(\lambda_{xy} \mid_\Omega \in Q_0 \).
2) \(\lambda_{xy}(x) = F(x), \lambda_{xy}(y) = F(y) \).

\(U_{xy} = \{ z \in \Omega^0; \lambda_{xy}(z) < F(z) + \varepsilon \} \) is open and contains \(x, y \). From an open covering \(\{ U_{xy}; y \in \Omega^0 \} \) of \(\Omega^0 \) we select a finite subcovering \(\{ U_{xy}; j = 1, 2, \cdots, n \} \)

Set

\[
u = \min_{1 \leq i \leq n} \lambda_{xy}, \]

where \(\lambda_{xy} \) is a function corresponding to \(U_{xy}, (j = 1, 2, \cdots, n). \) \(u_x < F + \varepsilon \) on \(\Omega^0 \).

Then, there exists a function \(g_0 \) of \(Q_0 \) such that \(d_{u,h} = d_{g_0,h} \).

In fact, let \(\lambda_{xy} \mid_\Omega \) be \(f, f_2, \cdots, f_{k+1}, d_{f_{k+1},h}/h, d_{f_{k+2},h}/h, \cdots, d_{f_{k+h},h}/h, \cdots, \min (G_{\alpha_0}, h) \)

where \(g_0 = \min \{ \min_{1 \leq s \leq k+1} f_j, \min_{1 \leq s \leq k+1} B_j \} \in Q_0 \). Since \(U_x = \{ z \in \Omega^0; u_x(z) > F(z) - \varepsilon \} \) is open and contains \(x \), we can form a finite subcovering \(\{ U_{x_j}; j = 1, 2, \cdots, l' \} \) of \(\Omega^0 \).

Setting \(v = \max u_{x_j}, \) where \(u_{x_j} \) is a function corresponding to \(U_{x_j} \), \((j = 1, 2, \cdots, l')\), we have \(|u - F| < \varepsilon \) on \(\Omega^0 \) and as above we can find \(g \in Q_0 \) such that \(d_{v,h} = d_{g,h} \).
AXIOMATIC DIRICHLET PROBLEM

\[d_{vh} - d_{fh} \leq d_{vh} + \varepsilon h \]

means \[\frac{|d_{vh} - d_{fh}|}{h} \leq \frac{|d_{vh} - d_{vh}|}{h} \leq \varepsilon, \quad q.e.d. \]

Proof of Proposition 3.2. Since all functions of \(Q_0'' \) are extended continuously on \(\Omega^\varepsilon \) we have \(Q_0'' \subset Q_1' \). The closure \(Q_0'' \) of \(Q_0'' \) in the topology of uniform norm \((\|f\| = \sup_{\Omega} |f|) \) is contained in \(Q_1' \). On the other hand, above lemma tells us \(Q_1'' \subset Q_0'' \). We have thus \(Q_1'' = Q_0'' \subset Q_1' \) which implies \(Q_1 = Q_1' \) and the proposition follows.

4. Regularity of boundary points

Let \(\hat{\Omega} \) be an arbitrary metrizable \(h \)-resolutive compactification of \(\Omega \), and \(\Delta = \hat{\Omega} - \Omega \).

In this section we give a proof of theorem stated in the introduction. For definiteness we recall the definition of regularity of boundary points.

Definition 4. A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called strongly \(h \)-regular if there exists an open neighbourhood \(\delta \) of \(x \) and a positive superharmonic function \(s \) in \(\delta \cap \Omega \) such that \(s/h \to 0 \) and the infimum of \(s/h \) outside of arbitrary open neighbourhood of \(x \) contained in \(\delta \) is positive.

A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called \(h \)-regular if for every bounded continuous function \(\varphi \) on \(\Delta \) we have \(\frac{1}{h} \Omega_{\varphi, h} \to \varphi(x) \).

A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called weakly \(h \)-regular if there exists a positive superharmonic function \(s \) such that \(s/h \to 0 \).

A boundary point \(x \) is called strongly \(h \)-regular, \(h \)-regular and weakly \(h \)-regular according as the filter formed by the trace on \(\Omega \) of filter of neighbourhoods of \(x \) is strongly \(h \)-regular, \(h \)-regular and weakly \(h \)-regular respectively.

It is known that a strongly \(h \)-regular filter is \(h \)-regular and weakly \(h \)-regular. However an example of one-point compactification of \(\Omega \) shows us that an \(h \)-regular filter is not necessarily weakly \(h \)-regular.

Since by Proposition 2.6 \(\Delta_0 = \Gamma_0^\varepsilon \) is of \(h \)-harmonic measure zero, to prove our theorem it will be sufficient to show the following proposition:

Proposition 4.1. Let \(\Omega_0^\varepsilon \) be the compactification constructed in the preceding section and let \(\Delta_0 = \Omega_0^\varepsilon - \Omega \). Every point of the \(h \)-harmonic boundary \(\Gamma_0^\varepsilon \) of \(\Delta_0 \) is \(h \)-regular and weakly \(h \)-regular.

Proof. We use the same notations as in the preceding section. Let \(x \in \Gamma_0^\varepsilon \) and \(\varphi \in C(\Delta_0^\varepsilon) \). Let \(F \) be a bounded continuous extension of \(\varphi \) on \(\Omega_0^\varepsilon \) and set \(f = F \chi_\omega \).
Since \(f \in \Omega^1 \), and \(d_{f,h}/h \in \Omega^1_o \), \(f \) and \(d_{f,h}/h \) can be extended continuously onto \(\Omega^0 \). By Proposition 3.2 \(\Omega^1 \) is homeomorphic to \(\Omega^0 \), therefore \(f \) and \(d_{f,h}/h \) are extended continuously onto \(\Omega^0 \). This is also true for \(g = f - d_{f,h}/h \). Since \(d_{f,h} = 0 \), \(g \) is an \(h \)-Wiener potential and by Proposition 2.1 there exists potential \(p \) such that \(|gh| \leq p \). For an arbitrary sequence of points \(\{a_n\} \) in \(\Omega \) converging to \(x \) we have

\[
\lim_{n \to \infty} |g(a_n)| \leq \lim_{n \to \infty} \frac{p(a_n)}{h(a_n)} = 0.
\]

Hence

\[
\lim_{n \to \infty} \left[f(a_n) - \frac{d_{f,h}(a_n)}{h(a_n)} \right] = 0,
\]

which means \(\lim_{a \to x} \frac{D_{f,h}(a)}{h(a)} = \varphi(x) \). Thus, all points of \(\Gamma^0 \) are \(h \)-regular.

Since \(\min(G_{\Lambda_0}/h) \) is extended continuously on \(\Omega^0 \), this function assumes the value zero on \(\Gamma^0 \), therefore all points of \(\Gamma^0 \) are weakly \(h \)-regular, \(q.e.d. \).

If we take at every point \(x \in \Gamma^0 \) the filter formed by the trace on \(\Omega \) of neighbourhoods of \(x \) in \(\Omega^0 \), we obtain the family \(\{F_x\} \) of filters converging in \(\hat{\Omega} \) and satisfying the following axioms:

\(A_h \) If \(s \) is subharmonic in \(\Omega \), \(s/h \) is bounded from above and \(\lim \sup_s s/h \leq 0 \) for every \(F \) in \(\{F_x\} \), then \(s \leq 0 \).

\(B_h \) Every filter in \(\{F_x\} \) is \(h \)-regular and weakly \(h \)-regular.

Indeed, \(A_h \) follows from Proposition 2.4 and \(B_h \) is a consequence of the above proposition.

The second axiom \(B_h \) is weaker than the following axiom of Brelot-Choquet [2]:

\(B_h \) Every filter in \(\{F_x\} \) is strongly \(h \)-regular.

Thus, we have

Proposition 4.2. Let \(\hat{\Omega} \) be an arbitrary metrizable \(h \)-resolutive compactification of \(\Omega \). Then, there exists a family of filters in \(\Omega \) converging in \(\hat{\Omega} \) and satisfying the axiom \(A_h \), \(B_h \).

L. Naïm gave a family of filters satisfying the axiom \(A_h \), \(B_h \) by using fine neighbourhoods on Martin space. Our filter is quite different from it.

Osaka City University

References

