<table>
<thead>
<tr>
<th>Title</th>
<th>A note on axiomatic Dirichlet problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikegami, Teruo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 6(1) P.39-P.47</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1969</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6106</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6106</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

Axiomatic Dirichlet problem was first discussed by M. Brelot in connection with a metrizable compactification of Green space Ω and a positive harmonic function h in Ω. In his paper [1] the theory was developed under the assumption G_h, that is, all bounded continuous functions on the boundary are h-resolutive. In our present paper we call a compactification with this property h-resolutive.

This axiomatic treatment of Dirichlet problem yields some complicated situations. For instance, Brelot gave many definitions for the regularity of boundary points, such as strongly h-regular, h-regular, weakly h-regular. A strongly h-regular boundary point is h-regular and weakly h-regular, but an h-regular boundary point is not weakly h-regular in general. It has been asked by M. Brelot [1] and L. Naïm [4] whether the complementary set of all h-regular boundary points is of h-harmonic measure zero (h-négligeable) or not. We can not yet give an answer to this question. However we can prove the following theorem:

Theorem. Let $\hat{\Omega}$ be an arbitrary metrizable h-resolutive compactification of Green space Ω. Then there exists a metrizable h-resolutive compactification having $\hat{\Omega}$ as a quotient space and in which the complementary set of all h-regular and weakly h-regular boundary points is of h-harmonic measure zero.

As a corollary of this theorem we can construct a family of filters $\{\mathcal{F}_x\}$ converging in $\hat{\Omega}$ and satisfying axioms

A_h) If s is subharmonic in Ω, s/h is bounded from above and $\limsup_{\mathcal{F}} s/h \leq 0$ for every \mathcal{F} in $\{\mathcal{F}_x\}$, then $s \leq 0$.

B_h) Every filter in $\{\mathcal{F}_x\}$ is h-regular and weakly h-regular, where the latter is weaker than that of Brelot-Choquet [2].

2. Preliminaries

Let Ω be a Green space in the sense of Brelot-Choquet [2]. For a real valued function f defined in Ω we shall define a family $\overline{W}_f(W_f)$ of superharmonic (subharmonic) functions s such that $s \geq f$ ($s \leq f$) on $\Omega - K$, where K is a compact
set depending on \(s \) in general. If \(W_f(W_f) \) is not empty its lower (upper) envelope will be denoted by \(\bar{d}_f(d_f) \). \(d_f \) and \(d_f \) are harmonic and \(d_f \leq \bar{d}_f \). When \(d_f = \bar{d}_f \) they are denoted by \(d_f \) simply.

Throughout this paper we shall take a positive harmonic function \(h \) in \(\Omega \) and fix it.

DEFINITION 1. A function \(f \) defined in \(\Omega \) is \(h \)-harmonizable if the following conditions are satisfied:
1) there exists a superharmonic function \(s \) such that \(|fh| \leq s \),
2) \(d_{fh} = \bar{d}_{fh} \)

If \(f \) is \(h \)-harmonizable and \(d_{fh} = 0 \) then \(f \) is termed an \(h \)-Wiener potential, and the class of all \(h \)-Wiener potentials is denoted by \(W_{0,h} \).

Proposition 2.1. Every \(f \in W_{0,h} \) has a potential \(p \) such that \(|fh| \leq p \).

Let \(\tilde{\Omega} \) be a compactification of \(\Omega \), that is \(\tilde{\Omega} \) is compact and contains \(\Omega \) as an everywhere dense subspace. Set \(\Delta = \tilde{\Omega} - \Omega \). In this paper it is always assumed that \(\tilde{\Omega} \) is metrizable.

For an arbitrary real valued function \(\varphi \) on \(\Delta \), which is permitted to take the values \(\pm \infty \), \(\mathcal{G}_{\varphi,h} \) denotes the class of all superharmonic functions \(s \) such that
a) \(s/h \) is bounded from below,
b) \(\lim_{a \to x} s(a)/h(a) \geq \varphi(x) \) for every \(x \in \Delta \).

Similarly we define the class of subharmonic functions \(\mathcal{L}_{\varphi,h} \). When \(\mathcal{G}_{\varphi,h}, \mathcal{L}_{\varphi,h} \) are not empty, we set
\[
\mathcal{G}_{\varphi,h} = \inf \{ s ; s \in \mathcal{G}_{\varphi,h} \}, \\
\mathcal{L}_{\varphi,h} = \sup \{ s ; s \in \mathcal{L}_{\varphi,h} \}.
\]
\(\mathcal{G}_{\varphi,h} \) and \(\mathcal{L}_{\varphi,h} \) are both harmonic and \(\mathcal{G}_{\varphi,h} \leq \mathcal{L}_{\varphi,h} \). When \(\mathcal{G}_{\varphi,h} = \mathcal{L}_{\varphi,h} \), \(\varphi \) is called \(h \)-resolutive and the envelopes are denoted by \(\mathcal{D}_{\varphi,h} \) simply.

DEFINITION 2. If all bounded continuous functions on \(\Delta \) are \(h \)-resolutive, \(\tilde{\Omega} \) is called an \(h \)-resolutive compactification of \(\Omega \).

In the sequel, \(\tilde{\Omega} \) always denotes a metrizable \(h \)-resolutive compactification of \(\Omega \). Then, for \(a \in \Omega \) there exists a Radon measure \(\omega_a^\varphi \) on \(\Delta \) such that
\[
\mathcal{D}_{\varphi,h} = \int \varphi d\omega_a^\varphi \quad \text{for every } \varphi \in C(\Delta)^{\mathbb{R}}.
\]
\(\omega_a^\varphi \) is called an \(h \)-harmonic measure (with respect to \(a \)).

1) In the case that \(h=1 \) and \(\Omega \) is a hyperbolic Riemann surface, this definition is slightly different from [3].

2) \(C(\Delta) \) denotes the family of all bounded continuous functions on \(\Delta \).
Proposition 2.2. Let \(F \) be bounded and continuous on \(\hat{\Omega} \) and \(\varphi, f \) be its restrictions on \(\Delta \) and on \(\Omega \) respectively, then \(f \) is \(h \)-harmonizable and \(d_{fh} = \Omega_{\varphi,h} \).

Proposition 2.3. In order that an arbitrary compactification \(\hat{\Omega} \) of \(\Omega \) be \(h \)-resolutive, it is necessary and sufficient that for every bounded continuous function \(F \) on \(\Omega \), its restriction on \(\Omega \) is \(h \)-harmonizable.

Definition 3. For potential \(p \) we set

\[
\Gamma_{p,h} = \{x \in \Delta; \lim_{a \to x} p(a)/h(a) = 0\},
\]

\(\Gamma_h = \bigcap_{p} \Gamma_{p,h} \).

\(\Gamma_h \) is called an \(h \)-harmonic boundary.

\(\Gamma_h \) is non-empty and compact.

Proposition 2.4. If \(s \) is subharmonic in \(\Omega \) such that \(s/h \) is bounded from above and \(\lim_{x \to \Gamma_h} s(a)/h(a) \leq 0 \) for all \(x \in \Gamma_h \) then \(s \leq 0 \).

Proposition 2.5. Let \(F \) be a bounded continuous function on \(\hat{\Omega} \). The restriction of \(F \) on \(\Omega \) is an \(h \)-Wiener potential if and only if \(F \) vanishes on \(\Gamma_h \).

Proposition 2.6. \(\Gamma_h \) is the carrier of \(h \)-harmonic measure \(\omega_h \).

In the case that \(h=1 \) and \(\Omega \) is a hyperbolic Riemann surface, Constantinescu-Cornea [3] have given these propositions. Proofs of our propositions will be obtained from them with slight modifications.

3. \(Q \)-compactification of Green space

1. Let \(h \) be a positive harmonic function on Green space \(\Omega \) and \(\hat{\Omega} \) be an arbitrary metrizable, \(h \)-resolutive compactification of \(\Omega \). Set \(\Delta = \hat{\Omega} - \Omega \).

For \(F \in C(\hat{\Omega}) \), its restrictions on \(\Omega \) and on \(\Delta \) are denoted by \(F|_{\Omega} \) and \(F|_{\Delta} \) respectively.

We set \(Q_0' = \{F|_{\Omega}; F \in C(\hat{\Omega})\}, \quad Q_0'' = \{d_{fh}/h; f \in Q_0'\} \) and

\[
Q_0 = Q_0' \cup Q_0'' \cup \left\{ A \frac{\min (G_{a_0} h)}{h} + B \right\},
\]

where \(G_{a_0} \) is a Green function of \(\Omega \) with pole at \(a_0 \) and \(A, B \) are constants. The compactification \(\Omega^{Q_0} \) of \(\Omega \) is the one on which all functions of \(Q_0 \) are extended continuously and the boundary \(\Delta^{Q_0} = \Omega^{Q_0} - \Omega \) is separated by functions in \(Q_0 \). We have

Proposition 3.1. \(\Omega^{Q_0} \) is a metrizable \(h \)-resolutive compactification of \(\Omega \).

3) We say functions in \(Q_0 \) separate points of \(\Delta^{Q_0} \) if for every pair of distinct points \(x, y \) of \(\Delta^{Q_0} \) there exists a function \(F \) in \(Q_0 \) such that \(F(x) \neq F(y) \).
is a quotient space of Ω^o.

To prove this proposition, we require some lemmas.

In $C(\hat{\Omega})$ we select a countable subfamily $\{F_k\}$ which is dense in the topology of uniform norm ($\|F\| = \sup_{\alpha \in \hat{\Omega}} |F(\alpha)|$).

If we set $f_k=F_k|_{\Omega}$, f_k is h-harmonizable (Prop. 2.2). We form the family of a countable number of functions

$$Q = \{f_k\} \cup \{d_{f_k|h}\} \cup \left\{\frac{\min \{G_{a_0^h}|h\}}{h}\right\},$$

which is a subfamily of Q_o.

The Q-compactification Ω^Q of Ω is compact and contains Ω as an everywhere dense subspace. Functions in Q are extended continuously on Ω^Q and separate two distinct points of $\Delta^Q=\Omega^Q-\Omega$.

Theory of general topology tells us Ω^Q is metrizable (for instance, N. Bourbaki: Topologie générale, Chap. IX, §2).

Lemma 3.1. For every $F \in C(\hat{\Omega})$, if we set $f=F|_{\Omega}$, then f and $d_{f|h}$ are extended continuously on Ω^Q.

Proof. (i) Case of f. It will be sufficient to show that for every $x \in \Delta^Q$ and for every sequence of points $\{a_n\}$ in Ω converging to x in the topology of Ω^Q $\{f(a_n)\}$ has the unique limit. If it were not, there should exist two sequences $\{a_n\}$, $\{b_n\}$ in Ω such that $a_n \rightarrow x$, $b_n \rightarrow x$ (in the topology of Ω^Q) and $\alpha = \lim\limits_{n \to \infty} f(a_n) > \lim\limits_{n \to \infty} f(b_n) = \beta$.

We take a positive number $\varepsilon=(\alpha-\beta)/4$. For this ε and $F \in C(\hat{\Omega})$ we can find F_k in our countable family such that

$$\sup_{\hat{\Omega}} |F_k-F| \leq \varepsilon.$$

Then we have

$$\alpha = \lim\limits_{n \to \infty} f(a_n) \leq \lim\limits_{n \to \infty} f_k(a_n) + \varepsilon, \quad \lim\limits_{n \to \infty} f_k(b_n) - \varepsilon \leq \lim\limits_{n \to \infty} f(b_n) = \beta.$$

where $f_k=F_k|_{\Omega}$. Since f_k is extended continuously on Ω^Q,

$$\alpha - \varepsilon \leq \lim\limits_{n \to \infty} f_k(a_n) = \lim\limits_{n \to \infty} f_k(b_n) \leq \beta + \varepsilon,$$

this leads to a contradiction $4\varepsilon = \alpha - \beta \leq 2\varepsilon$.

(ii) Case of $d_{f|h}$. We take f_k as above. Then we have

$$\frac{d_{f|h}}{h} - \varepsilon \leq \frac{d_{f|h}}{h} \leq \frac{d_{f|h}}{h} + \varepsilon$$

and we can proceed quite in the same way as in (i).
Lemma 3.2. Let \mathcal{H} be a class of all functions F' each of which is bounded and continuous on Ω^{Q_0} and its restriction on Ω is h-harmonizable. Then \mathcal{H} is dense in $C(\Omega^{Q_0})$ in the topology of uniform norm in Ω^{Q_0}.

Proof. Clearly \mathcal{H} contains all constant functions and \mathcal{H} is a linear space. All functions in Q_o are extended continuously on Ω^{Q_0} and these extended functions are contained in \mathcal{H}, therefore Ω^{Q_0} is separated by functions in \mathcal{H}. To see \mathcal{H} is closed under the maximum and minimum operations, that is $F'_1, F'_2 \in \mathcal{H}$ implies $\max(F'_1, F'_2), \min(F'_1, F'_2) \in \mathcal{H}$, let $F'_1, F'_2 \in \mathcal{H}$ and $f_i = F'_i|_{\Omega}$ ($i = 1, 2$). $\min(F'_1, F'_2)|_{\Omega} = \min(f_1, f_2)$ and $d_{\min}(f_1, f_2) = d_{\min}(f'_1, f'_2) = d_{f_1h} \wedge d_{f_2h}$, where $u \wedge v$ denotes the greatest harmonic function which is dominated by u and v. This means $\min(f_1, f_2)$ is h-harmonizable. By Stone’s theorem \mathcal{H} is dense in $C(\Omega^{Q_0})$.

Proof of Proposition 3.1. On account of Lemma 3.1 all functions of Q_0 are extended continuously on Ω^{Q_0}. Thus Ω^{Q_0} is homeomorphic to Ω^{Q} and therefore Ω^{Q_0} is metrizable. Since Ω is homeomorphic to Ω^{Q_0}, Ω is a quotient space of Ω^{Q_0}. For arbitrary $F' \in C(\Omega^{Q_0})$ and any positive number ε, by Lemma 3.2 we can find $F'_0 \in \mathcal{H}$ such that

$$\sup_{\Omega^{Q_0}} |F' - F'_0| \leq \varepsilon.$$

Setting $f = F'|_{\Omega}$, $f_0 = F'_0|_{\Omega}$ we have

$$d_{f_0h} - \varepsilon h \leq d_{f_0h} \leq d_{f_0h} \leq d_{f_0h} + \varepsilon h.$$

Since f_0 is h-harmonizable we get $0 \leq d_{f_0h} - d_{f_0h} \leq 2\varepsilon h$. f is h-harmonizable, and by Proposition 2.3 Ω^{Q_0} is h-resolutive.

2. For an arbitrary metrizable h-resolutive compactification Ω of Ω we have constructed Ω^{Q_0} of the same type which contains Ω as a quotient space. If we start from Ω^{Q_0} it will be expected that we can arrive at a new larger compactification of the same type, but this is not so, that is

Proposition 3.2. Let Ω^{Q_0} be the compactification of Ω constructed in the above paragraph. If we set $Q_i' = \{f = F|_{\Omega}; F \in C(\Omega^{Q_0})\}$, $Q_i'' = \{d_{f_0h}/h; f \in Q_i'\}$ and $Q_i = Q_i' \cup Q_i''$ the compactification Ω^{Q_i} is homeomorphic to Ω^{Q_0}.

Before proving this proposition we remark the following:

Lemma 3.3. For every $f \in Q_i'$, and for every positive number ε there exists $g \in Q_i''$ such that

$$\sup_{\Omega} \left| \frac{d_{f_0h}}{h} - \frac{d_{g}h}{h} \right| \leq \varepsilon.$$

4) Cf. [3], p. 5.
Proof. For arbitrary distinct points \(x_1, x_2 \in \Omega^0 \) and for any numbers \(\alpha_1, \alpha_2 \) there exists a function \(\lambda \in C(\Omega^0) \) which satisfies the following conditions:

1) \(\lambda \big|_\Omega \in Q_0^\varepsilon \).
2) \(\lambda(x_i) = \alpha_i \) \((i=1,2) \).

Since continuous extensions of functions in \(Q_0 \) separate points of \(\Omega^0 \), we can find \(l \in C(\Omega^0) \) with \(l(x_1) \neq l(x_2) \) among these extensions. Thus, either (i) \(l|_\Omega = f \in Q_0' \) or (ii) \(l|_\Omega = d_f/h \) for some \(f \in Q_0' \) or (iii) \(l|_\Omega = A \frac{\min(G_{a_0}, h)}{h} + B \). In cases (i) and (iii) we have

\[
\lambda(x) = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} l(x) - \frac{\alpha_1 l(x_2) - \alpha_2 l(x_1)}{l(x_1) - l(x_2)},
\]

in the case (ii) we take, as \(\lambda \), the continuous extension on \(\Omega^0 \) of \(d_f/h \), where

\[
f_0 = \frac{\alpha_1 - \alpha_2}{l(x_1) - l(x_2)} f - \frac{\alpha_1 l(x_2) - \alpha_2 l(x_1)}{l(x_1) - l(x_2)} \in Q_0'.
\]

Let \(F \in C(\Omega^0) \), \(f = F|_\Omega \), \(\varepsilon > 0 \). For arbitrary \(x, y \in \Omega^0 \) we can take \(\lambda_{xy} \in C(\Omega^0) \) satisfying the following:

1) \(\lambda_{xy} \big|_\Omega \in Q_0^\varepsilon \).
2) \(\lambda_{xy}(x) = F(x), \lambda_{xy}(y) = F(y) \).

\(U_{xy} = \{ z \in \Omega^0; \lambda_{xy}(z) < F(z) + \varepsilon \} \) is open and contains \(x, y \). From an open covering \(\{U_{xy}; y \in \Omega^0\} \) of \(\Omega^0 \) we select a finite subcovering \(\{U_{xy}; j=1,2,\ldots,n\} \). Set

\[
u_x = \min_{i \leq j \leq n} \lambda_{xy}^i,
\]

where \(\lambda_{xy} \) is a function corresponding to \(U_{xy} \). Let \(u_x < F + \varepsilon \) on \(\Omega^0 \) and \(u_x(x) = F(x) \). Then, there exists a function \(g_0 \) of \(Q_0' \) such that \(u_{xy} = d_g/h \). In fact, let \(\lambda_{xy} \big|_\Omega \to f_1, f_2, \ldots, f_n; d_{f_1} = d_{f_2} = \ldots = d_{f_n}$

\[
\min(G_{a_0}, h)
\]

\[
A_{n-1} \frac{\min(G_{a_0}, h)}{h} + B, \text{ then}
\]

\[
d_{xy} = d(\min_{1 \leq i \leq n} \lambda_{xy}^i) = \frac{\sum_{j=1}^n d_{\lambda_{xy}^j h}}{h} = \left(\bigwedge_{j=1}^n d_{f_j} \right) \wedge \left(\bigwedge_{j=k+1}^{k+l} d_{f_j} \wedge \min_{1 \leq i \leq n} \right) \wedge \left(\min_{1 \leq i \leq n} \right) B_j h \]

where \(g_0 = \min(\min_{k+1 \leq i \leq n} B_j) \in Q_0' \). Since \(U_x = \{ z \in \Omega^0; u_x(z) > F(z) - \varepsilon \} \) is open and contains \(x \), we can form a finite subcovering \(\{U_{xy}^j; j=1,2,\ldots,l\} \) of \(\Omega^0 \). Setting \(\upsilon = \max u_{xy} \), where \(u_{xy} \) is a function corresponding to \(U_{xy}^j \) \((j=1,2,\ldots,l) \), we have \(|u - F| < \varepsilon \) on \(\Omega^0 \) and as above we can find \(g \in Q_0' \) such that \(d_{vh} = d_{gh} \).
AXIOMATIC DIRICHLET PROBLEM

\[d_{eh} - \varepsilon h \leq d_{fh} \leq d_{eh} + \varepsilon h \]

means \(\frac{|d_{eh} - d_{fh}|}{h} \leq \frac{|d_{eh} - d_{fh}|}{h} \leq \varepsilon \), q.e.d.

Proof of Proposition 3.2. Since all functions of \(Q_0'' \) are extended continuously on \(\Omega^0 \) we have \(Q_0'' \subset Q_1' \). The closure \(\overline{Q_0''} \) of \(Q_0'' \) in the topology of uniform norm (\(||f||=\sup \{ |f(\xi)|\} \)) is contained in \(Q_1' \). On the other hand, above lemma tells us \(Q_1'' \subset \overline{Q_0''} \). We have thus \(Q_1'' = \overline{Q_0''} \subset Q_1' \) which implies \(Q_1 = Q_1' \) and the proposition follows.

4. Regularity of boundary points

Let \(\hat{\Omega} \) be an arbitrary metrizable \(h \)-resolutive compactification of \(\Omega \), and \(\Delta = \hat{\Omega} - \Omega \).

In this section we give a proof of theorem stated in the introduction. For definiteness we recall the definition of regularity of boundary points.

Definition 4. A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called **strongly \(h \)-regular** if there exists an open neighbourhood \(\delta \) of \(x \) and a positive superharmonic function \(s \) in \(\delta \cap \Omega \) such that \(s|h_\mathcal{F} \rightarrow 0 \) and the infimum of \(s|h \) outside of arbitrary open neighbourhood of \(x \) contained in \(\delta \) is positive.

A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called **\(h \)-regular** if for every bounded continuous function \(\phi \) on \(\Delta \) we have \(-\frac{1}{h} \Delta_{\phi, h} \rightarrow \phi(x) \).

A filter \(\mathcal{F} \) on \(\Omega \) converging to a boundary point \(x \) is called **weakly \(h \)-regular** if there exists a positive superharmonic function \(s \) such that \(s|h_\mathcal{F} \rightarrow 0 \).

A boundary point \(x \) is called **strongly \(h \)-regular, \(h \)-regular** and **weakly \(h \)-regular** according as the filter formed by the trace on \(\Omega \) of filter of neighbourhoods of \(x \) is strongly \(h \)-regular, \(h \)-regular and weakly \(h \)-regular respectively.

It is known that a strongly \(h \)-regular filter is \(h \)-regular and weakly \(h \)-regular. However an example of one-point compactification of \(\Omega \) shows us that an \(h \)-regular filter is not necessarily weakly \(h \)-regular.

Since by Proposition 2.6 \(\Delta^0 = \Gamma^0 \) is of \(h \)-harmonic measure zero, to prove our theorem it will be sufficient to show the following proposition:

Proposition 4.1. Let \(\Omega^0 \) be the compactification constructed in the preceding section and let \(\Delta^0 = \Omega^0 - \Omega \). Every point of the \(h \)-harmonic boundary \(\Gamma^0 \) of \(\Delta^0 \) is \(h \)-regular and weakly \(h \)-regular.

Proof. We use the same notations as in the preceding section. Let \(x \in \Gamma^0 \) and \(\phi \in C(\Delta^0) \). Let \(F \) be a bounded continuous extension of \(\phi \) on \(\Omega^0 \) and set \(f = F|_\Omega \).
Since \(f \in Q' \), and \(d_{f_n}/h \in Q'' \), \(f \) and \(d_{f_n}/h \) can be extended continuously onto \(\Omega^{\phi} \). By Proposition 3.2 \(\Omega^{\phi} \) is homeomorphic to \(\Omega^{\phi_0} \), therefore \(f \) and \(d_{f_n}/h \) are extended continuously onto \(\Omega^{\phi_0} \). This is also true for \(g = f - d_{f_n}/h \). Since \(d_{f_n}/h = 0 \), \(g \) is an \(h \)-Wiener potential and by Proposition 2.1 there exists potential \(\varphi \) such that \(|gh| \leq p \). For an arbitrary sequence of points \(\{a_n\} \) in \(\Omega \) converging to \(x \) we have

\[
\lim_{n \to \infty} |g(a_n)| \leq \lim_{n \to \infty} \frac{p(a_n)}{h(a_n)} = 0.
\]

Hence

\[
\lim_{n \to \infty} \left[f(a_n) - \frac{d_{f_n}(a_n)}{h(a_n)} \right] = 0,
\]

which means \(\lim_{n \to \infty} \frac{D_{f_n,a}(a)}{h(a)} = \varphi(x) \). Thus, all points of \(\Gamma^{\phi_0} \) are \(h \)-regular.

Since \(\min(G_{a_0}, h)/h \) is extended continuously on \(\Omega^{\phi_0} \), this function assumes the value zero on \(\Gamma^{\phi_0} \), therefore all points of \(\Gamma^{\phi_0} \) are weakly \(h \)-regular, \(q.e.d. \)

If we take at every point \(x \in \Gamma^{\phi_0} \) the filter formed by the trace on \(\Omega \) of neighbourhoods of \(x \) in \(\Omega^{\phi_0} \), we obtain the family \(\{\mathcal{F}_x\} \) of filters converging in \(\hat{\Omega} \) and satisfying the following axioms:

- **A_{h}** If \(s \) is subharmonic in \(\Omega \), \(s/h \) is bounded from above and \(\lim_{a \to x} \sup_{\mathcal{F}} s/h \leq 0 \) for every \(\mathcal{F} \) in \(\{\mathcal{F}_x\} \), then \(s \leq 0 \).

- **B_{h}** Every filter in \(\{\mathcal{F}_x\} \) is \(h \)-regular and weakly \(h \)-regular.

Indeed, \(A_{h} \) follows from Proposition 2.4 and \(B_{h} \) is a consequence of the above proposition.

The second axiom \(B_{h} \) is weaker than the following axiom of Brelot-Choquet [2]:

- **B_{h}** Every filter in \(\{\mathcal{F}_x\} \) is strongly \(h \)-regular.

Thus, we have

Proposition 4.2. Let \(\hat{\Omega} \) be an arbitrary metrizable \(h \)-resolutive compactification of \(\Omega \). Then, there exists a family of filters in \(\Omega \) converging in \(\hat{\Omega} \) and satisfying the axiom \(A_{h} \), \(B_{h} \).

L. Naïm gave a family of filters satisfying the axiom \(A_{h} \), \(B_{h} \) by using fine neighbourhoods on Martin space. Our filter is quite different from it.

Osaka City University

References

Axiomatic Dirichlet Problem

