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Kernel Functions of Diffusion Equations I1

By Hidehiko YAMABE

The present paper is a continuation of the author’s previous paper
“Kernel Functions of Diffusion Equation I”, Osaka Mathematical Journal
Vol. 9, 1957, pp. 201-214. Some notations which were defined in the

gevmus paper will be used without repeating the definitions.

2. Suppose that D be regularly open and 9D be smooth. Then
Theorem 1 of the previous paper holds and K(x, y; ¢) is a well defined
continuous non-negative function, which is smaller than E,(x, ¥). In"this
paber the dimension d is assumed to be =3. Set

(1) Gz, ) = lim (" K(x, 3 tydt = " Kix, y; tyat
>0 Jn +o
Lemma 2.1. G(x, y) is the Green’s function of the Laplacian over D
with zero boundary.
Proof. Take a C*-function ®(y) and set ‘Ps(y)=g Kx, y; s)®(»)dy
D
over D. Then

A,G(x, y)P(y)dy

D

DS A K(x,y; t+s)dto(y)dy

20 A cw e -

lim K(x, y; h+s)®(y)dy

D k>0

|
- |
S S atK(x y; t+s)dtp(y)dy
- |

_ limSDK(x, y; h+s)p(y)dy

= Py(x),

Therefore by making s towards 0, we have the required relation, which
proves the lemma.

Now take an arbitrary bounded open set D and consider an increasing
sequence of bounded open sets {D,} with smooth boundaries converging
to D. To each D, we can associate the kernel function K,(x, y; #) which
forms an increasing sequence of non-negative functions.
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Define for each k&
(3) lim (Ey*p,)" = Kilx, ¥5 1) .

Here *,, should be understood as a convolution over D,. Evidently
K,(x, y; 1) is an increasing function in k2 and

(4) (hqnmua;mngamw@ég.
'k

Hence everywhere in D
lim K,(x, y; ) = K(x, y; 1)
k

exists.

Lemma 2.3. Suppose that both x and y are in D. Then K(x,y; t)
is continuous in x and in y at least separately.

Proof. Because of being the strong limit of K,’s, K(x, y; £) is non-
negative and is a strong solution of a diffusion equation 9U/9¢=AU.
Hence K is a genuine solution”. Therefore % is continuous in x and in
y at least separately.

Since

(5) 0= K(x,y; t)y=< E\x, ),
(6) amw:hmrxuu;nw
20 Jn

_ S | Ky fdt = Sm E(x, y)dt

is a well defined function unless x=y.
Clearly

- Sm K(x, v; t)dt
+0

when both x and v are in D. This G(x, y) is called as a generalized
Green’s function® of the Laplacian over D.

Suppose that there are given a point y on 9D and a sequence of
points {y,,} in D convergent to y. We further assume that
(8) lim G(x, y,,) = 0.

m.yoo

1) See (15) of the previous paper I. There are other papers where this result or a more
generalized one is given.

2) The author does not claim at all that the introduction of such a definition is original.
Indeed, Bouligand, Kellogg and de la Vallée-Poussin already had introduced such definition. How-
ever, the author does not have any decisive information as to who was the first to have done it.
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Remark : Kellogg’s® result says that except for y on a set of
capacity 0, (8) holds.

Lemma 2. 3.

(9) limSmK(x, v Hdt = 0.
Proof.
(10) 0= limSmK(x, .5 t)dt

< Iimgm K(x, v, ; t)dt
mJio

= lim G(x, »,,) = 0.

My oo
Hence the lemma is proved.

Lemma 2.4. The sequence

(11) {S: K, »,,; t)dt}

constitutes a family of equi-continuous functions over any compact set C
contained in D.

Proof.
(12) SmK(x, y,,; t)dt — SWSDK(x, z; 5/2)K(z, 3,,; t—s/2)dzdt

= SD[K(x, ; S/Z)S K(z, 3,,; t)dt]dz

However
(13) | Ktz s 0at | B 3,5 1t
< —d d (—d/2)+1
var 5 (3)
Sd\/——d
Therefore
(14) CK(x, 35 tdt= [ K, 3,5 |
g%\/;ﬂ H (K(x, z; s/2)—K(#/, 2; s/2))dzl

3) See (14) of the previous paper I.
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The right hand side can be made arbitrarily small if x and &’ are
sufficiently near to each other, because the function S K(x, z; s/2)dz
D

itself is a solution of the diffusion equation, and is therefore uniformly
continuous over C. This proves the lemma.

Lemma 2.5.

(15) limSD< S“’K(x 9 ) dt)zdx —0.

My co

Proof. Given small positive & there exists a compact subset C of
D such that

(16) gD_quK(x, 9,3 t)dt)zdx

S

sd\* —d
=, (7)o
Sd 2 -d
= <Z> (s7) ¢ meas (D—C)
< €.
For this C there exists a large m. such that if m=m,, then
17) (K 35 at = vE

uniformly over C because of Lemmas 2. 3. and 2. 4.
Hence

(18) S (SNK(x, Y} t)dt)zdx < &+&meas C
D s
<& (l4+measD),
if m=mc. This proves the lemma.

Lemma 2. 6.
19) S <Sm K(x,y; t)dt)zdx_2_ S ‘ (K(x, y; 8))Vdx.
D\ Js/2 2.D

Proof. In order to prove this lemma, the Fourier expansion with
respect to A with 0 boundary condition will be employed.

Since D,’s are bounded domains with smooth boundaries, this type
of Fourier expansion is available. Namely there exist eigenvalues
—A’s and nomalized eigenfunctions 0¥ of A satisfying :

(20) AP = AP OP
for i=1,2, -+, and k=1, 2, ---
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(21) AP >0 and
21y lim AP = oo,
Then, in the L*-sense

(22) Sc; Ky(x,y; t)dt

> exp(— AP 5/2) /AP 0P(2) 0°(3)

Therefore
(23) < S Kyx, v; 8) dt>2dx
gj (eXp ( X(IZ) S/2)/X§k))2(0§k)(y))2

exp (M5 )/0) (exp (—1 ) 0P ()

uMg

z: (exp (—MP )} (0°(5)Y

I
e Do
(./ﬁ

(Ki(x, 5 8)Pdx.
Dy

By making %k tend to infinity we have
24) { ({ Kx, v; t)dt> dx>_-S (K(x, y; s)dx
D
which proves the lemma.

Immediately from Lemma 2.5 and Lemma 2.6,

Lemma 2.7.

m.yo0

(25) limg (K(x, v,,; $)dx =0

Now we are going to prove that
Theorem 2. If lim G(x, ¥,,)=0,
then

(26) lim K(x, 3,,; s) =0

m.yo0

for any positive s.
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Proof.

@7) 0 < Kz, 3,5 9) = K<x,z; ;)K(z Y i)dz
D

= (1, (ke w5 ) ae) (1, (1o 5)) )
év ”%‘d(meas D)<SDK<Z’ 5, _%)>2d2>1/2

where the right hand side will go to 0 as m goes to infinity because of
Lemmas 2.5, 2.6 and 2.7. Hence the theorem is proved.

Remark: Throughout this paper A does not have to be the Lap-
lacian, but has only to be a Laplace-Beltrami operator with respect to a
C?-Riemannian structure which is continuous on the boundary 9D.
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