
Title Characteristic classes with values in complex
cobordism

Author(s) Nakaoka, Minoru

Citation Osaka Journal of Mathematics. 1973, 10(3), p.
521-543

Version Type VoR

URL https://doi.org/10.18910/6114

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Nakaoka, M.
Osaka J. Math.
10 (1973), 521-543

CHARACTERISTIC CLASSES W I T H VALUES
IN COMPLEX COBORDISM

MINORU NAKAOKA

(Received November 21, 1972)

Introduction

This paper is concerned with the characteristic classes for complex bundles
with values in the complex cobordism £/*(•). These are the dual Chern classes
cR> the Wu classes uR and the classes q corresponding to the power operations P.
On these classes with values in the classical cohomology, Haefliger and Wu have
proved some interesting theorems in [11], [19], [20]. The aim of this paper is
to show the complex cobordism version of their theorems.

Quillen [17] has given a formula relating the power operation P to the
Landweber-Novikov operations s*, and a formula relating the class q to the Chern
classes c*. These formulae play a central role in this paper.

The layout of this paper is as follows.

§ 1 contains a recall of the Landweber-Novikov operations and the conjuga-
tion in Hopf algebras. In §2 we consider the dual Chern classes cR(ξ) and the
Wu classes uR(ξ) of a complex bundle ξ in connection with the Landweber-
Novikov operations s1* and their conjugations sR. §3 is devoted to the dual Chern
classes cR(M) and the Wu classes uR(M) of a weakly complex manifold M, with
which a Riemann-Roch type theorem is proved along the line of Atiyah-Hirze-
bruch [4]. We have in particular the following formula which may be regarded
as a complex cobordism version of the formulae in Wu [19], [20]:

where « £ U*{M) and [M]e U*(M) is the fundamental class of M.

In §4 and §5, we consider the power operations P and the corresponding

characteristic classes q> and give a proof of the formulae due to Quillen.

In §6 an element AeU*(EGxMp) is defined after Haefliger [11] for a

closed almost complex manifold M, where EG is the universal G-bundle for a
cyclic group G of order/) (prime). We prove a formula connecting Δ to uR(M)
in terms of P, which may be regarded as a complex cobordism version of Theorem
3.2 in Haefliger [11].
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§7-§9 are concerned with immersions and imbeddings of closed almost
complex manifolds. In §8 we prove a complex cobordism version of the theorem
of Haefliger [11] on immersions and imbeddings. This is given in a form of
integrality condition in localization. In §9, this is converted to a theorem given
in terms of ^-theory, and is employed to give another proof of the results due
to Atiyah-Hirzebruch [5] and Sanderson-Schwarzenberger [18] on non-imbedd-
ability and non-immersibility of complex protective spaces in Euclidean spaces.
This fact make us expect that the theorems of § 8 would yield better results on
immbedding and immersion problem if we could manage well the complex co-
bordism theory, but I am not successful.

1. Landweber-Novikov operations

We shall consider the complex cobordism theory, that is, the generalized
cohomology theory with values in the Milnor spectrum M£/(see [2]). We denote
by U*(X, A) the complex cobordism of a CW pair (X, A).

We shall first recall some facts on characteristic classes and cohomology
operations in the complex cobordism theory from Landweber [12] and Novikov
[16] (see also [1]).

Let <5* denote the ϋΓ-algebra (under composition) of stable cohomology
operations of complex cobordism, and C* the 2Γ-algebra of stable characteristic
classes of complex bundles with values in complex cobordism. Each of these
contains U*(pt) naturally as a subalgebra. An isomorphism ψ: cS*^C* of graded
modules can be defined by

where r^cS*, ξ is a complex bundle over X, and φ$ is the Thorn isomorphism
of ξ in complex cobordism. Later on ψ(τ)(ξ) will be denoted by ty(r, ξ).

Let R=(rlf r2> •••) be a sequence of non-negative integers which are almost
all zero, and jR be the set of such sequences. We put

= Σ*>.-
1 I

For I=(i19 ί2, —),J=Ui>J2> — )e-&> we define

We write O = ( 0 , 0, •••, 0, •••).

Consider the elementary symmetric functions σlf σ2, ••• in a sufficiency of

variables tly t2, •••, tny and define for each R^Sl a polynomial fR by

where the sum runs over w-tuples (mu m2, •••, mn) such that rx of the mys are 1, r2
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of the m's are 2, and so on, while the rest of the rris are 0.
Given a complex bundle ξ over X, we define the Chern class c*(£)e U2nRn(X)

by

where Ci(ξ)^U2i(X) are the characteristic classes of Conner-Floyd [7]. Since
*, the cohomology operation s^^cS* of degree 2||2?|| is defined by

(1.1) ψ(s*)=c* or c*(ξ) = Λ K Λ ξ) •

sR is called the Landweber-Novίkov operation. It holds that

(1-2) c*(ξ®V) = Σ C{ξ)cHrj),

(1.3) ^(aβ) = Σ ί 7α ί7yS .

Let 5*CcS* denote the submodule generated by all s*. Then {ίΛ}B e^ is a
basis of the module 5*, and S* is a subalgebra of <5*. Furthermore 5* is a
connected Hopf algebra with a commutative coproduct ψ: 5*-^5*®*Sf* defined

by

= Σ *J® *7

The Hopf algebra S* is called the Landweber-Novίkov algebra.
Next we shall recall the following result due to Milnor-Moore [15]. Let A

be a connected Hopf algebra with commutative coproduct. Then there is asso-
ciated to each flGUan element a^A so as to satisfy the following properties:

i) deg<z=dega, ii) 1 = 1,

iii) a=a, iv) a-\-b=a-\-b>

v) a~b=(-l)deeadegbba,

vi) if ψ(a)=*Σi CLi®di[ for the coproduct yjr, then

The element a is called the conjugation of <z.
We shall denote by sR the conjugation of sR in the Landweber-Novikov

algebra 5*. It follows that

(14) Σ f V Σ 5 V

( 1 Λ ) r+^/5 ,+W {id (R=0).

We have also

(1.5) s*(aβ)= Σ fci'Pβ.
I + J^R
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This is proved as follows by induction. To do this we introduce an order
in SR. such that i?<i? ' if \R\< \R'\. Since (1.5) is obvious if R=0, we assume

Then (1.3) and (1.4) imply

Since K.R, we have inductively

= - Σ ( Σ spsκa)( Σ ϊ°^/8)+ Σ spa-sPβ
I + J=*R JP + K=Ί Q+L=*J P + Q^B

2. Wu classes and the dual Chern classes

Corresponding to (1.1) we put

U*(ξ) =

for a complex bundle ξ over X. We have

(2.1)

which is shown as follows (compare [10], Appendix 2).
Let Z>(£), £(£) denote respectively the disc bundle, the sphere bundle asso-

ciated to ξ, and π$: D(ξ)-+X the projection. Then, for the Thorn isomorphism
φt: U*(X)^ U*{D(ξ), S(ξ)), we have φξ(a)=πf(a) φξ(ί). Therefore it follows

Consequently we have

Σ *(s', ξ) Ψ(sJ, v))
+ JR

+ J—R
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by (1.5)

where d* is induced by the diagonal map. Since φ$φ, is an isomorphism, we
get (2.1).

For a complex bundle ξ over X and R^Sί, we define the Wu class
U*"*"(X) and the dual Chern class SR(ξ)<= C/2 | |R | I(X) by

Obviously uR, ZR^C*, and it follows from (1.4) that

= Σ
IJ*

Moreover it follows from (1.2), (1.5) that

(2.4) uR{ξ®v) = Σ

and from (1.3), (2.1) that

(2.5) ?*(£ θ ? ) = Σ

We have also

(2-7) j + Σ β

In fact, it follows from (1.5), (1.4) that

= ΦK Σ f
K+L + J=*R

7Γξ S

^ 1

Σ
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(0 (RΦO),

U(l) (R=O).

This proves (2.6). Similar for (2.7).
By (2.4) and (2.6) and by (1.2) and (2.7), we have

Lemma 1. If ξ and η are complex bundles such that ξ®η is trivial, then

C-«(ξ) = ««(,), u«(ξ) = M*(V) .

The following relations can be proved by the argument similar to the proof
of (2.1).

( 2 ' 8 ) Φ

REMARK 1. Let C * c C * be the subalgebra generated by c{ (i=Q> 1, 2, •••).
Then y]r gives rise to an isomorphism S * ^ C * of modules. We see cF> M Λ G C * ,

and hence cR, uR<=C* by (2.6) and (2.7).

REMARK 2. For a prime/), let μp: [/*(•)->#*(• Z^ be the natural trans-
formation. Let zA(j)^3i be a sequence with i in the -th place and zero else-
where. Then s'A(p~l:> corresponds to £P* or Sq2i according as p> 2 or p=2 under
μp (see [12], p. 107). Therefore μ2 sends MίΔfl) to the classical Wu class Ul2),
and ?'ΔC1) to the dual Stiefel-Whitney class W2i. Similarly μp(p>2) sends

> t 0 jjip)f a n a ^AC/»-I) t o Qi ( s e e μ η f o r t h e notations).

3. Riemann-Roch type theorem

Let M be a weakly complex manifold. Then the stable tangent bundle T is
endowed with the complex structure. We write uR(M) for uR(τ), and call it the
Wu class of M. Similar for £*(τ) and ZR(τ).

The following Riemann-Roch type theorem holds.

Theorem 1. Let M and N be closed weakly complex manifolds, and f: M-*
N be a continuous map. Then, for the Gysin homomorphismβ: U^M)-^ Ui+n~m(N)
(τw=dim My w=dim N), we have

Σ s'fict'C-'iN) =

Σ sIfχa>u'{N)=

for αeE7'(M).

Proof (compare [10], Theorem 10). Take a differentiable imbedding / of M
into the interior of the A-dimensional disc Dk such that the imbedding (/, i):
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M->NχDk is homotopic to a differentiable imbedding / : M^>NχDk, where k
is a sufficiently large interger such that n-\~k—m is even. The normal bundle
v(f) of the imbedding f is endowed with the complex structure. Consider the
collapsing map c of the Thorn complex T(k)=NχDkINχSk~1 to the Thorn
complex T(v(f))y where k denotes the real ^-dimensional trivial bundle over N.
By definition/! is the composite

U\M) -^^> Ui+n+k-m(T(v(f))

Ϊ ^-> Ui+n-m(N).

Take a differentiable imbedding j of N into the interior of Dι, where / is a
sufficiently large integer such l—n is even. Let v(M) be the normal bundle of
the imbedding

and v(N) the normal bundle of the imbedding/. Then it follows that

as complex bundles. Therefore we have the following commutative diagram:

O*(T(v(f)φv(N)))-^-> O*(T(k®v(N))) <^ U*(T(v(N)))

U*(M) j
_ c* φ
U*(T(v(f))) > U*(T(lή) <—•~ U*(N)

(see [6], p. 97). Thus we have

(3.1) /t = φϊc

Since φk is ihe iterated suspension, it commutes with sR. Therefore it follows
from Lemma 1, (2.8) and (3.1) that

= Σ /ι(?(α) β ^ (
I+J=*R

= Σ s*fχ{μya'(v(N))= Σ ?/!(α)
Γ+J=B r+j=*R

and the second equality has been proved. Similar for the first equality.
Let Ui(X) denote the complex bordism group of a CW complex X, and let

< , >: U'(X)®UJ(X)-»Uj-i(pt)= U'-'(pt)
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be the Kronecker product.

Theorem 2. If M is a closed weakly complex manifold, we have

= Σ
I J

for αG £/*(M), where [M]e U*(M) is the fundamental class of M.

Proof. Let c: M-^pt be the collapsing map. Then it is easily seen that

Cχ(a)=ζa, [M]). Therefore the first equality is equivalent to

cιsR(a)= Σ

It follows from Theorem 1 that

5 R φ ) = Σ β
Γ + J-22

Hence in virtue of (1.4) we have

w*(α) = Σ

= Σ ί7 Σ c.
J + P + Q^K J + £=»P

= Σ Λι( Σ
T+T + U^R K+Q^

= Σ
Γ+J=β

This proves the first equality. Similarly we can prove the second equality.

REMARK 1. If V is a closed weakly complex manifold of dimension i and v

is its stable normal bundle, it is known by Novikov [16] that ί* sends the element

of U~i(pt)= Ui(pt) represented by V to c^D'^v), where D: U*(V)^ U*(V) is

the Atiyah-Poincarό duality and c*: U*(V)-*U*(pt) is induced by the collapsing

map (see also [1]).

REMARK 2. With the classical (co)homology, Wu proves

9 [M]> = <«• ^?2), [M]>, (/> = 2),

>'*, [M]> = <α C/^, [M]> , (p > 2)

for a^H*(M; Zp), where M is a closed manifold and is assumed to be oriented

if p>2. The first formula in Theorem 2 may be regarded as a complex cobord-

ism version of these formulae (see Remark 2 of §2). The classical form of the

second formula in Theorem 2 is seen in Massey-Peterson [14].
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4. The classes q

Throughout the remainder of this paper, we denote by G a cyclic group of
order k, where A is a fixed integer.

Denote by L the complex 1-dimensional G-module where the generator mul-

tiplies by exp (2πχ/ — l/k), and define a complex (k— l)-dimensional G-module

Λ as a linear subspace

of Ck on which G acts by the cyclic permutation of coordinates. Let p resp. λ

denote the bundle associated to the universal G-bundle EG->BG with fibre L

resp. Λ. Since there is an isomorphism Λ ^ L Θ L 2 © - - - © ^ " 1 of complex G-

modules, we have an isomorphism

(4.1) λ

of complex bundles.

We shall put

v = e(P)e U\BG),

where e stands for the Euler class, i.e. the top dimensional Chern class.

For a complex m-dimensional bundle ξ over a CW complex X, we put

q(ξ) = e(\®ξ)<= U"<*-»(BGxX),
Λ

where ® denotes the external tensor product. It follows that q is natural and

multiplicative:

?(/*£) = (1 Xf)*q(ξ), q(ξ®v) = q(ξ)q(v) •

Let

F(x, y) = * + y + Σ y / e U*(pt)[[x, y]]

be the formal group law for the complex cobordism theory, that is, a formal

power series on x and y with coefficients in U*(pt) such that

for complex line bundles vx and v2 (see [9], [16]). Define [ί\(x)<Ξ U*(ρt)[[x]]

( ί = l , 2, - ) b y

and define «y(*)e ίλ*(pί) [[*]](/=0, 1, 2, •••) by
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Since e(ρi)=[t\(v)y it follows from (4.1) that

It is easily seen that βy(»)e U2(k-^-^{BG). We shall write

forR=(rurt, -,rh » )e=3l.

Theorem 3 (Quillen [17]). For a eomplex m-dimensional bundle ξ, we

have

?(?)= Σ υr-ι**a(vfxc*(ξ).

Proof. For a complex line bundle η over X> we have

q(v) = K Σ P 1"®^) = Π
ί l l

where px\ BGXX->BG,p2: BGXX-+Xare the projections. Therefore, if ξ
is a sum of line bundles, it follows that

q(ξ) = Π (wxί+a1(v)Xe(Vi)+a2(v)Xe(vif+-)
ι l i a l

To prove the result for f which is general, we apply the splitting principle.
Let/: Y->X be a splitting map. Since f*ξ is a sum of line bundles, we have

(lx/)*?(lr) = ?(/*!)

Since (1X/)* is monic, we have the desired result.
We shall regard U*(BG xX) as a £/*(jBG)-module via the homomorphism
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U*(BG)^>U*(BGxX) induced by the projection, and consider the localization
U^BGXX)^'1] of U*(BGχX) with respect to the multiplicative set generated
by w.

We put

u*(BG x x) [w-»]

for a complex w-dimensional bundle ξ over X Then it follows that q0 is natural,
multiplicative and stable.

Corollary. For a complex bundle ξ over a finite dimensional complex X, we
have

Proof. Since q(i)=wi for a trivial complex bundle of dimension i, Theorem
3 implies

Since c*(f) is in ?72||/?II(X) which is zero if 2||i?|| > dim X, we have for a sufficiently
large /

which proves the corollary.

REMARK. Suppose k is a prime/), and let e^H*(BG; Zp) denote the usual
Euler class of p. Then it is easily seen that

and hence

-j \— ) ^ ^}tJ \ζ) \P •^ ) >

(see Remark 2 of §2).

5. Power operations

Let Y be a pointed CW complex, and consider the smash product BG/\ Y,
where BG is the disjoint union of BG and a point. In [8] tom-Dieck defines the
A-th power operation

P: U2i(Y)-*U2ik(BGΛY),
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where £/*(•) is the reduced complex cobordism theory. For a CW complex Xy

taking Y=X+ he defines the power operation

P: U2i(X)->U2ik(BGxX).

He shows that P is natural, multiplicative, and

P(^a) = σ\wP(a))

holds for a e U2i{ Y), where σ2: U2i( Y)-> U2Ci+1\ Y/\ S2) is the double suspension,
and U*(BGΛ Y) is regarded as a t/*(J3G)-module as usual. He shows also that
q is the characteristic class corresponding to P in the following sense:

q(ξ) = ΦΓ

where ξ is a complex bundle over X, and φ, rfxg:
U*(B£ΛT(ξ)) is the Thorn isomorphism.

We shall define

Po: U2i(X)->(U^(BGχX)[w-1ψ

by P0(a)=w~iP(a). It follows that P o is natural, additive, multiplicative and
stable.

Theorem 4 (Quillen [17]). For a finite complex X we have

Po(a) = Σ « " l R l a ( v ) R x A*, (αeU2 i{X)).

Proof. Let a be represented by /: X+ΛS2n-2i-*MU(ή)9 where MC7(«) is
the Thorn complex of the universal complex bundle ζ=ζM of dimension n.
Then we have

Therefore it follows from the properties of P mentioned above and Theorem 3
that

'P(α) = P<r2"-2'(α)

)) =

«χ.ffl

= (ix/)*φw x f

|

Since

f*φςc*(ζ) =
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we have

σ2n-2iwn-iP{a) = σ2n~2i Σ wn-Wa(v)RXsRa .

Since σ2n"21 is monic, this proves the desired result.

Corollary. For a complex bundle ξ over a finite complex, we have

Proof. From the corollary of Theorem 3, (2.3) and Theorem 4 it follows that

==Σ«Γl*lα(ιΛ*x
R I

REMARK. The power operations P for A=̂ > (a prime) correspond to the
usual Steenrod reduced power under the transformation μp. Therefore the
formula in Theorem 4 may be regarded as a complex cobordism version of the
Steenrod formula given in 2.5 of [11] (see Remark of §4).

6. The class Δ

Let M be a closed almost complex manifold, and τ(M) be the tangent bundle
of M endowed with the complex structure. Consider the Λ-fold product Mk on
which G acts by the cyclic permutation of coordinates. Let v: W-+M be the
normal bundle of the diagonal imbedding d: M->Mk. Then v is endowed with

a G-equivariant complex structure which is isomorphic with τ(M)®A. This is
seen from an exact sequence

0 -+ r(M) -* τ(Mk) IM -* τ(M)g)Λ -* 0
d

of complex G-bundles over M, which comes from the exact sequence 0 C
C*-»Λ->0 of complex G-modules.

Consider the complex bundle

i/1== idxv: EGxW->BGxM.
G G

Then we have isomorphisms

G

of complex bundles, and hence
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(6.1) e{Vl) = q(τ{M)).

If we regard W as an equivariant tubular neighborhood of d(M) in Mk, we

have the Thorn class

\EG x Mk

f EG x (Mk- W))
G G

(dim M=2m). We define

(6.2) Δ = j*Wyx)) e= V2m"k^\EG x Mk),

where y* is induced by the inclusion.

We have obviously

(6.3) e(vι) = (idxd)*Δ
G

for the homomorphism (tdxd)*: U*(EGxMk)-*U*(BGxM).
a G

REMARK. If we consider the standard G-action on the sphere S2n+1 and

define Δ M e U2mck'Ό(S2n+1 X Mk) to be the Atiyah-Poincarό dual of the element
G

[ScΓ+1 X Mf idx d] e C/2Crt+m)+1(52M+1 X Mk\ then it is seen that An is the image of

Δ under the homomorphism ί7*(£'GxMΛ)-^ί7*(52' l+ 1xMA r) induced by the in-
G θ

elusion.

Let
pext. U2i(X) -+ U2ik(EG X Xk)

β

denote the external power operation. By definition we have

(6.4) P=(idxd)*oP<*<.
G

We shall regard U*(EGχXk) as a t/*(.BG)-module as usual and consider the

localization U*(EG X Xk) [αΓ1]. Define now
G

Plxt: U2<(X) — (U*(EG X X") [w-ψ1

G

by PV'ia^w-'P't'iά), α e U2i{X).

Theorem 5. If k is a prime, for a closed almost complex manifold M of di-

mension 1m we have

Λ = Σwm-lRla(v)RPe

0*'(uR(M))

in

Proof. By (6.1), (6.2), (6.4) and Corollary of Theorem 4, we have
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(idχd)*A = q
G

= Σ w""iRίa(v)RP0(uR(M))
R

= (idx d)* Σ w^
G R

in U*(BGX MJfw"1]. Since k is a prime, J(M) is the fixed point set of the G-
space Mk. Therefore, by the localization theorem for the equivariant cohomology
theory U$( )= U*(EGX •) (see [9]), we see that (idxd)* induces an isomorphism

G G

U*(EG X Mk) [w-1] ̂  U*(BG X M) [W1]. Thus we have the desired result.
G

Corollary. For a continuous map f: S2Λ+1-»M to a closed almost complex
manifold M of dimension 2m, we have

(idxfk)*A = wm

G

in ϊ7*(£'cx(SI"+1)*)[«r1].
G

Proof. Since both U2i(S2n+1) and U2i(pt) are zero if *>0, we have
/* UR(M)=0 (RΦ 0). Therefore Theorem 5 implies

(idxfk)*A = Σ wm-Wa(v)RPe

o

xt(f*uR(M))
G R

= wm.

REMARK. Theorem 5 may be regarded as a complex cobordism version of
Theorem 3.2 in [11].

7. The imbedding class and the immersion class

In next section we shall prove theorems on immersions and imbeddings of
closed almost complex manifolds. To do this, given a continuous map /: M—>M'
between closed almost complex manifolds, we shall define for each prime h the
imbedding class φf and the immersion class ψf after Haefliger [11] and Wu [21].

Consider the G-space Mk as in the preceeding section, and identify M with
the diagonal d{M). Since k is a prime, we have a principal G-bundle Mk—M
->(Mk—M)/G. Let h: Mk—M->EG be a bundle map classifying this bundle.

The bundle (Mk-M)xM/k-^(Mk-M)/G associated to Mk-M-*(Mk-
G

M)\G with fibre M'k has a cross section s: (Mk—M)/G^(Mk-M)xM'k deter-
G

mined by fk: Mk-*M'k.
We shall now write Δ7 for the element Δ of (6.2) for Mr, and define φf to

be the image of Δ' under the composite

(hxid)* ^
U*(EGxM'k)

G
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Obviously φf depends on the homotopy class of /. If / is a topological im-
bedding, then (hxidλos takes (Mk—M)/G into EGx(Mrk—M'). Therefore it

G G

follows from the definition of Δ' that φf=0 if / is a topological imbedding.
Thus we have

Lemma 2. Iffis homotopic to a topological imbedding, then <pf=0.

Consider the following diagram:

(hxid)*
U*(EGxM'k) -?—> U*((Mk-M)xM'k)

G I G

{idxf")* U*((M"-M)IG)
G I

\P*
U*(EGxMk) • U*(EGx(Mk-M))>

G G

where p is the projection and i is the inclusion. It follows that p* is an isomor-
phism and the map sending (xly •••, xk)^Mk—M to (h(xly •••, xk)y xly •••, xk) in-
duces the inverse of p*. Therefore the above diagram is commutative, and we
have

(7.1) p*(φ,) = i*(idxf*)*A'.
β

Consider the direct limit lim U*((W—M)/G)7 where W runs over all equi-
variant neighborhoods of M in Mk. We have the canonical homomorphism

JC: U*((Mk-M)/G) ~>]im U*((W-M)/G).

We shall define -ψ>f=κ(φf).

If/is a topological immersion, (hχid)os takes (W—M)/G into EGx(M/k—
G G

Mf) for sufficiently small W. Therefore, as in Lemma 2, we have

Lemma 3. Iff is homotopic to a topological immersion, then <ψy=0.

Consider the homomorphisms
(idxf) i

U*(BG x M'Y W U*(BG x M) < Hm U*(EG x W)
* G

- ^ ] i m U*(EGx(W-M)) ^—Hm U*((W-M)/G),

where c and /* are induced by the inclusion maps and p* is induced by the pro-
jection. It follows that c and p* are isomorphisms. Lemma 3 and (6.3) prove
the following equality by diagram-chasing:
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(7.2) p*(ψf) = i*Γ\idxf)*e{Vl'),

where v/ is the bundle v1 for M'.

8. Theorems on immersion and imbedding

In this section we shall prove a complex cobordism version of the immer-
sion and imbedding theorems due to Haefliger and Wu (see §5 in [11]).

Consider the localization homomorphism Ur¥(BGχM)->U^(BGxM)[w~1].

An element in the image of this homomorphism is said to be ίntegal.

Theorem 6. Let M and Mf be closed almost complex manifolds with dim
M=2m, dim M'=2m'. Letf: M->M' be a continuous map homotopic to a topolo-
gίcal immersion. Then, for any prime k> the element

2 ^'-"-itfiφ)/^ 2 /V(M') c7(M))
R I + J—Έl

of U*{BGχM)[w-λ] is integral

Proof. Consider the bundle vx: EGxW^BGxM. Then we have the

Thorn isomorphism

W(BGxM)- Ui+am<*-ι\EGX W, EGx(W-M)).
β G

Therefore the exact sequence for (EGxW, EGx(W—M)) yields an exact se-
G G

quence

- -^ Ui'2mcM'1\BGxM) - W(EGxW) -> U\EGx(W-M)) -+ - .

Passing to the limit we have an exact sequence

%-^-> lim

with the notations of (7.2). Therefore, in virtue of Lemma 3 and (7.2), there
exists a e U*(BG X M) such that

i.e.

(see (6.1)). This shows that

wm'-m {idxf)*qo{τ{M')) ? 0 (,(M))6 U*(BGXM)[KΓ1]

is integral, where v(M) is the stable normal bundle of M. It follows from
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Corollary of Theorem 3 and Lemma 1 that

(idxf)*qo(τ(M')).qo(V(M))

= (Σ αΓiΊβ(ί;)'χ/*

This completes the proof.

Theorem 7. Let M and M' be closed almost complex manifolds with dim M

=2m, dim M'=2m'. Letf: M->Mr be a continuous map which is null-homotopic.

Then, if f is also homotopic to a topologίcal imbedding, for any prime k the element

'1] is integral

Proof. It follows from Lemma 2 and (7.1) that i*(idxfk)*A'=0 for ί*:
G

U*(EGxMk)->U*{EGχ(Mk-M)) induced by the inclusion. Therefore there
G G

exists /3e U*(BGχM) such that

with the notations in the following diagram:

U*(BGχM) - 2 U

I 1 r*
U*(EGχ(Mk, Mk-M)) >

& 1

U(EGxM*)-^—*

}(idxf»)*

U*(M)

C/*(M*, Λί*-M))

ϋ*(Λf*)

where r0, r, rf and j are the inclusion maps. The diagram is commutative, and
(/*)*=0 since/is null-homotopic. Therefore we havey*φvr?(yβ)=O.

Consider the commutative diagram

U*(EG x (Mk-M)) — UG(EG x (M*, Mk-M))]-> U*(EG x Mk)
G \ G \ \ G

Γ * δ j r * •* |r*
* M ) ^ U*(M», M*-M) - ^ — 7 * ( M

in which the horizontal lines are the exact sequences of pairs. Since r* in the
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left is an isomorphism, it follows that there exists &G U*(EGx(Mk—M)) such
G

that φ^i(β)=r*8(β1). Take /32<= U*{BGxM) such that δ(/51)=Φv1(/?2)) and put
a=β—β2. Then it follows that

and

= r*δ(A)-r*φVl(/32) = r*φVl(/?2)-r*φVl(A) = 0.

Consequently we have

(8.1) j*φVl(a)

(8.2) r*(α

Since

it follows from (6.1), (6,3) and (8.1) that

aq(τ(M)) = {idxd)*(idxf*)*Af

= (idxf)*(idxd')*A' = (idxf)*q(τ(M')).
aa-

Since/is null-homotopic, we have

aq(τ(M)) = wm'.

We know that

X : U*(BG)J& U*(M)^ U*(BGχM),

(see [13]). Therefore it follows from (8.2) that there exists αt<Ξ t/*(£ G xM)

such that a=va1. Thus we have

which shows that

is integral. This completes the proof.

Corollary. If a closed almost complex manifold M of dimension 2m can be
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immersed (resp. imbedded) in R2n, for any prime k the element

(resp. yΣi™
H~m~mv-1a{v)Rx

R

of U*(BG X M) [to"1] is integral

REMARK. Applying μp converts the conclusion for k—p of the above
corollary to the following (see Remark of §4): if p=2 then W2i(M)=0 for i>
n—m (resp. W2i(M)=0 for i^n—m); if p>2 then Qi(M)=0 for i>n—m (resp.
Q« (M))=0 for i^n-m).

9. Imbeddings and immersions of CPm

In this section, we shall give a i^-theory version of Corollary of §8 for
k=2, and apply it to prove non-existence of imbedding and immersion of
complex projective spaces in Euclidean spaces.

For a complex bundle ξ over Xy let γ t ( ξ ) e ί ( Z ) denote the Atiyah class of
ξ (see [3].) There exists a natural transformation μc : C/*( )-*i£*( ) such that
μc(Ci(ξ))=7i(ξ) (see [7]). We define the dual Atiyah class 7i(ξ)£Ξ K(X) (i=0,
1, 2, ".) by

gΈΎ<(ζy?j(ξ) = 0 (k> 0), %{ξ) = 1 .

It follows that μc(Ci(ξ))=yi(ξ). If M is an almost complex manifold and τ is its
tangent bundle, we write % (M) for 7, (τ). It follows that 7 t (M)=0 (i>m) if
dim M=2m.

Theorem 8. Let M be a closed almost complex manifold such that K(M)

has no elements of finite order. Then, if M can be imbedded (resp. immersed) in

R2n, the element

is divisible by 22™-*+1 (resp. 22m~").

Proof. Since y1(v)=V—1 for a complex line bundle η, we have γι(y®y')
=Ύ1(v)+Ύ1(v')+Ύ1(v)Ύ1(v'). Therefore if k=2 it holds

μJίfφ)) = ί+y, μj(a,(v)) = 0 (*^2)

with 7=μc(v) = μc(w) S K(BG).
It is known that K(BG)^Z[y]l(j2+2y) if k=2 (see [3]). Therefore we

have ( l + γ ) 2 = 1 and γ '=(—2) ' "V ( ί ^ 1). From these we see
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in the localization K(BG) [7"1].
It follows now from Corollary in §8 for k=2 that if M can be imbedded in

R2n ,the element

of the localization P ( B G x M ) [γ"1] is integral. Since i£(£G) and K(M) have
no element of finite order, it is easily seen that the above integrality condition
implies that

is divisible by 22 W"n + 1 in K(M). This proves the desired result for imbeddings.
Similarly we have the result for immersions.

REMARK If k is an odd prime p> we see that

*«(«,(«)) = 0 (i^p) ,

Σ (where N=μc(w)= Σ (1—P')

As an application of the above theorem, we shall prove the following result
due to Atiyah-Hirzebruch [5] and Sanderson-Schwarzenberger [18].

Theorem 9. The complex m-dimensional protective space CPm can not be

imbedded (resp. immersed) in R*™-**™ (resp. J R 4 I »-*»W-I) > w}ίere a(m} ^ ^ number

of Vs in the dyadic expansion of m.

Proof. Put θ=η— l^K(CPm)> where η is the canonical line budle over
CPm. Then it is easily seen that

Since K(CPm)^Z[θ]/(θm+1) has no elements of finite order, it follows from
Theorem 8 that if CPm is imbedded in R2n then

is divisible by 22tn~n+\ and hence (2m) is divisible by 22m~n+1. This means
\ m I
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a(m)^2m-n+1. Thus CPm can not be imbedded in R»*-**«"\

To prove the result for non-immersion we borrow the device of [18]. Sup-

pose that CPm is immersed in R2n~x. Take an integer s which is a power of 2

and is greater than m. Since CPS can be imbedded in R4s~\ CPmxCPs can

be imbedded in R2n+4S~2 (see [18]). Apply Theorem 8 to this imbedding. Since

K(CPmxCPs)^K(CPm)®K(CPs),

7k{CPmxCPs) =
» + i

it follows then that

is divisible by 22tn~n+2

y and hence a{m)^2tn—n+l. Thus CPm can not be
immersed in j ^ - a cw-^ This completes the proof.
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