

Title	Equivariant point theorems for fibre-preserving maps
Author(s)	Nakaoka, Minoru
Citation	Osaka Journal of Mathematics. 1984, 21(4), p. 809-815
Version Type	VoR
URL	https://doi.org/10.18910/6116
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nakaoka, M.
 Osaka J. Math.
 21 (1984), 809-815

EQUIVARIANT POINT THEOREMS FOR FIBRE-PRESERVING MAPS

MINORU NAKAOKA

(Received December 9, 1983)

1 Introduction

Let $p: X \rightarrow B$ and $p': X' \rightarrow B'$ be local trivial fibre spaces with fibre-preserving involutions $T: X \rightarrow X$ and $T': X' \rightarrow X'$ respectively, and let $f: X \rightarrow X'$ be a fibre-preserving map. Denote by A_f the set of equivariant points of f :

$$A_f = \{x \in X; fT(x) = T'f(x)\},$$

and by \bar{A}_f its orbit space under T . In this paper we shall study $H^*(\bar{A}_f)$ in connection with $H^*(B)$, where H^* is the Čech cohomology with coefficients in Z_2 . Two theorems will be proved by making use of the technique of establishing a transfer homomorphism, which was initiated by Becker and Gottlieb ([1], [2]).

In case $p: X \rightarrow B$ is an m -sphere bundle with the antipodal involution and $p': X' \rightarrow B$ is an R^n -bundle with the trivial involution, Jaworowski gave in [4], [5] the following theorem which is a “continuous” version of the Borsuk-Ulam theorem: If $k=m-n \geq 0$ and the all the Stiefel-Whitney classes of $p': X' \rightarrow B$ are zero then the composition

$$H^i(B) \xrightarrow{\bar{p}^*} H^i(\bar{A}_f) \xrightarrow{\sim \omega(A_f)^k} H^{i+k}(\bar{A}_f)$$

is injective for every i , where $\bar{p}: \bar{A}_f \rightarrow B$ is induced by $p|A_f$, and $\omega(A_f)$ is the characteristic class of the double covering $A_f \rightarrow \bar{A}_f$. It is seen in this paper that the assumption on the Stiefel-Whitney classes is superfluous in the theorem of Jaworowski.

Throughout this paper we use the Čech cohomology with coefficients in Z_2 .

2 Equivariant fundamental cohomology class

Let $M \rightarrow X \xrightarrow{p} B$ be a local trivial fibre space such that both the fibre M and the base B are manifolds without boundary. Suppose that there is given a fibre-preserving involution $T: X \rightarrow X$, that is, an involution satisfying $pT=T$.

We take the fibre square $X \times_B X$ of the map $p: X \rightarrow B$, and define an involution on it by permutation of factors. Then there is an equivariant imbedding $\Delta: X \rightarrow X \times_B X$ defined by $\Delta(x) = (x, Tx)$. Consider now the normal bundle of $\Delta X \subset X \times_B X$ in which the total space E is regarded as an invariant tubular neighborhood of ΔX in $X \times_B X$. Then we have an R^m -bundle $\pi: E \rightarrow \Delta X$ with involution, where $m = \dim M$. Let S^∞ be the infinite dimensional sphere with the antipodal involution, and consider the orbit spaces $S^\infty \times_{z_2} E$ and $S^\infty \times_{z_2} (\Delta X)$ under the diagonal action. Then we have an R^m -bundle $1 \times \pi: S^\infty \times_{z_2} E \rightarrow S^\infty \times_{z_2} (\Delta X)$, so that the Thom class $U(1 \times \pi) \in H^m(S^\infty \times_{z_2} E, S^\infty \times_{z_2} E - S^\infty \times_{z_2} (\Delta X)) = H_{z_2}^m(E, E - \Delta X)$. We define $\hat{U}(p) \in H_{z_2}^m(X \times_B X, X \times_B X - \Delta X)$ to be the element corresponding to $U(1 \times \pi)$ under the excision isomorphism, and call it the *equivariant fundamental cohomology class of $p: X \rightarrow B$* . The restriction $\hat{U}(p)|_{X \times_B X} \in H_{z_2}^m(X \times_B X)$ is denoted by $\hat{U}'(p)$ and is called the *equivariant diagonal cohomology class of p* . If B is a single point, then $\hat{U}(p) \in H_{z_2}^m(M \times M, M \times M - \Delta M)$ and $\Delta(p) \in H_{z_2}^m(M \times M)$ are denoted by $\hat{U}(M)$ and $\hat{U}'(M)$ respectively. If M is a closed manifold, we have $\hat{U}'(M) = \Delta_!(1)$ for the Gysin homomorphism $\Delta_!: H_{z_2}^*(M) \rightarrow H_{z_2}^*(M \times M)$.

Put $M_b = p^{-1}(b)$ for $b \in B$. Then the restriction of the normal bundle $\pi: E \rightarrow \Delta X$ on ΔM_b may be regarded as the normal bundle of $\Delta(M_b) \subset M_b \times M_b$. Therefore it follows that

$$\hat{U}(p)|(M_b \times M_b, M_b \times M_b - \Delta M_b) = \hat{U}(M_b),$$

so that

$$\hat{U}'(p)|(M_b \times M_b) = \hat{U}'(M_b).$$

In some cases, the equivariant diagonal cohomology class $\hat{U}'(M)$ of a closed manifold M with an involution T is expressed in terms of cohomology of M . Let $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ be a homogeneous basis of $H^*(M)$, and let $C = (c_{ij})$ be the inverse of the matrix $Y = (y_{ij})$ with $y_{ij} = \langle \alpha_i \cup T^* \alpha_j, [M] \rangle$. Let $\pi_!: H^*(M \times M) \rightarrow H_{z_2}^*(M \times M)$ denote the transfer homomorphism for the covering $S^\infty \times (M \times M) \rightarrow S^\infty \times_{z_2} (M \times M)$. We have

Proposition 1. (i) *If T is trivial, then*

$$\hat{U}'(M) = \sum_{i=0}^{\lfloor m/2 \rfloor} q^* \omega^{m-2i} \cup P_0(V_i) + \sum_{i < j} (c_{ij} + c_{ii}c_{jj}) \pi_!(\alpha_i \times \alpha_j),$$

where $q: S^\infty \times (M \times M) \rightarrow S^\infty / Z_2$ is the projection, $\omega \in H^1(S^\infty / Z_2)$ is the generator,

V_i is the i -th Wu class of M , and P_0 is the external Steenrod square (See [3], [7], [8]).

(ii) If T is free, then

$$\hat{U}'(M) = \sum_{i,j} c_{i,j} \pi_i(\alpha_i \times \alpha_j) \quad (\text{See [7], [8]}).$$

3 Equivariant point theorem of Borsuk-Ulam type

For any space X with a free involution, we denote by \bar{X} the orbit space of X under the involution, and by $\omega(X) \in H^1(\bar{X})$ the characteristic class of the double covering $X \rightarrow \bar{X}$.

Theorem 1. Let $M \rightarrow X \xrightarrow{p} B$ and $M' \rightarrow X' \xrightarrow{p'} B'$ be local trivial fibre spaces over ENR's (=Euclidean neighborhood retracts), where the fibre M is a closed m -manifold, and M' is a compact n -manifold with or without boundary. Let $f: X \rightarrow X'$ be a fibre-preserving map covering a map $g: B \rightarrow B'$, and let $f_b: M_b = p^{-1}(b) \rightarrow M'_{g(b)} = p'^{-1}(g(b))$ ($b \in B$) denote the restriction of f . Suppose that X provides a fibre-preserving free involution T , and put $A_f = \{x \in X; f(x) = f(Tx)\}$. If $k = m - n \geq 0$ and, for some point b of each connected component of B ,

$$\omega(M_b)^m \neq 0, \quad f_b^* = 0: \check{H}^*(M'_{g(b)}) \rightarrow \check{H}^*(M_b),$$

then the composition

$$H^i(B) \xrightarrow{\bar{p}^*} H^i(\bar{A}_f) \xrightarrow{\omega(A_f)^k} H^{i+k}(\bar{A}_f)$$

is injective for every $i \geq 0$.

Proof. Case 1: B and B' are manifolds without boundary, and M' is a closed manifold.

By the continuity property of Čech cohomology, it suffices to prove that, for any invariant neighborhood V of A_f , the composition

$$\bar{p}_k: H^i(B) \xrightarrow{\bar{p}^*} H^i(\bar{V}) \xrightarrow{\omega(V)^k} H^{i+k}(\bar{V})$$

is injective for every $i \geq 0$. To do this we shall establish a transfer homomorphism

$$\tau_k: H^{i+k}(\bar{V}) \rightarrow H^i(B)$$

such that $\tau_k \circ \bar{p}_k = id$.

Regard X' as a space with involution by the trivial action. Then we have the equivariant fundamental cohomology class $\hat{U}(p') \in H_{\mathbb{Z}_2}^n(X' \times_{B'} X', X' \times_{B'} X' - dX')$ of $p': X' \rightarrow B'$, where dX' is the diagonal. There is an equivariant map $\hat{f}: (X, X - A_f) \rightarrow (X' \times_{B'} X', X' \times_{B'} X' - dX')$ defined by $\hat{f}(x) = (f(x),$

$fT(x)$). Consider $\hat{f}^*(\hat{U}(p')) \in H_{Z_2}^n(X, X - A_f) = H^n(\bar{X}, \bar{X} - \bar{A}_f)$, and define τ_k to be the composition

$$\begin{aligned} H^{i+k}(\bar{V}) &\xrightarrow{\sim l^* \hat{f}^*(\hat{U}(p'))} H^{i+m}(\bar{V}, \bar{V} - \bar{A}_f) \\ &\xleftarrow{\cong l^*} H^{i+m}(\bar{X}, \bar{X} - \bar{A}_f) \xrightarrow{j^*} H^{i+m}(\bar{X}) \xrightarrow{\bar{p}_!} H^i(B), \end{aligned}$$

where $l: (\bar{V}, \bar{V} - \bar{A}_f) \subset (\bar{X}, \bar{X} - \bar{A}_f)$, $j: \bar{X} \subset (\bar{X}, \bar{X} - \bar{A}_f)$, and $\bar{p}_!$ is the integration along the fibre ([2]) for the fibre space $\bar{p}: \bar{X} \rightarrow B$. We shall show $\tau_k \circ \bar{p}_k = id$.

For any $\beta \in H^i(B)$ we have

$$\begin{aligned} &\tau_k \bar{p}_k(\beta) \\ &= \bar{p}_! j^* l^* \bar{p}^*(\beta) \cup \omega(V)^k \cup l^* \hat{f}^*(\hat{U}(p')) \\ &= \bar{p}_! j^* (\bar{p}^*(\beta) \cup \omega(X)^k \cup \hat{f}^*(\hat{U}(p')) \\ &= \bar{p}_! (\bar{p}^*(\beta) \cup \omega(X)^k \cup \hat{f}^*(\hat{U}'(p'))) \\ &= \beta \cup \bar{p}_! (\omega(X)^k \cup \hat{f}^*(\hat{U}'(p'))). \end{aligned}$$

Therefore it remains to prove

$$\bar{p}_! (\omega(X)^k \cup \hat{f}^*(\hat{U}'(p'))) = 1.$$

We have a commutative diagram:

$$\begin{array}{ccccc} H_{Z_2}^k(X' \times_{B'} X') & \xrightarrow{\hat{f}^*} & H_{Z_2}^k(X) & \xrightarrow{\bar{p}_!} & H^*(B) \\ \downarrow i^* & & \downarrow i^* & & \downarrow i^* \\ H_{Z_2}^k(M'_{g(b)} \times M'_{g(b)}) & \xrightarrow{\hat{f}_b^*} & H_{Z_2}^k(M_b) & \xrightarrow{\bar{p}_!} & H^*(b) \end{array}$$

where i are inclusions. Therefore we see

$$\begin{aligned} &i^* \bar{p}_! (\omega(X)^k \cup \hat{f}^*(\hat{U}'(p'))) \\ &= \bar{p}_! (\omega(M_b)^k \cup \hat{f}_b^*(\hat{U}'(M_b))). \end{aligned}$$

From (i) of Proposition 1 and our assumption $f_b^* = 0$, it follows that

$$\hat{f}_b^*(\hat{U}'(M_b)) = \omega(M_b)^n.$$

Since $\omega(M_b)^n \neq 0$ we have $\bar{p}_! (\omega(M_b)^n) = 1$. Thus it holds that

$$i^* \bar{p}_! (\omega(X)^k \cup \hat{f}^*(\hat{U}'(p'))) = 1$$

which shows the desired result.

Case 2: B and B' are manifolds without boundary, and M' is a compact manifold with boundary.

In this case X' is a manifold with boundary, and a local trivial fibre space

$$DM' \rightarrow DX' \xrightarrow{\tilde{p}'} B'$$

is defined naturally, where DX' and DM' are the doubles of X' and M' respectively. Put $\tilde{f}=i \circ f: X \rightarrow DX'$ where $i: X' \subset DX'$. Obviously $A_{\tilde{f}}=A_f$. Therefore, by applying Case 1 to p , \tilde{p}' and \tilde{f} , we have the result.

Case 3: B and B' are ENR's, and M' is a compact manifold.

There are continuous maps

$$B \xrightarrow{i} W \xrightarrow{r} B, \quad B' \xrightarrow{i'} W' \xrightarrow{r'} B'$$

such that $r \circ i = id$, $r' \circ i' = id$, where W and W' are open sets in Euclidean spaces. Let $q: Z \rightarrow W$ and $q': Z' \rightarrow W'$ be the induced fibre spaces of $p: X \rightarrow B$ and $p': X' \rightarrow B'$ under r and r' respectively. Define $\tilde{r}: Z \rightarrow X$, $\tilde{i}': X' \rightarrow Z'$ and $S: Z \rightarrow Z$ by

$$\begin{aligned} \tilde{r}(w, x) &= x, \quad \tilde{i}'(x') = (i'p'(x'), x'), \\ S(w, x) &= (w, T(x)), \quad (x \in X, x' \in X', w \in W). \end{aligned}$$

Then $h = \tilde{i}' \circ f \circ \tilde{r}: Z \rightarrow Z'$ is a fibre-preserving map, and S is a fibre-preserving free involution. We see $\tilde{r}(A_{\tilde{f}}) \subset A_f$. In a commutative diagram

$$\begin{array}{ccccc} H^i(B) & \xrightarrow{\tilde{p}^*} & H^i(\bar{A}_f) & \xrightarrow{\cup \omega(A_f)^k} & H^{i+k}(\bar{A}_f) \\ \downarrow r^* & & \downarrow \tilde{r}^* & & \downarrow \tilde{r}^* \\ H^i(W) & \xrightarrow{\tilde{q}^*} & H^i(\bar{A}_h) & \xrightarrow{\cup \omega(A_h)^k} & H^{i+k}(\bar{A}_h), \end{array}$$

r^* is injective and the lower composition is injective by Cases 1 and 2. Therefore the upper composition is injective.

Corollary 1. *Let $f: X \rightarrow X'$ be a fibre-preserving map of an m -sphere bundle $p: X \rightarrow B$ with the antipodal involution into an n -sphere bundle $p': X' \rightarrow B'$, where B and B' are ENR's. Then if $k = m - n \geq 0$ the composition*

$$H^i(B) \xrightarrow{\tilde{p}^*} H^i(\bar{A}_f) \xrightarrow{\cup \omega(A_f)^k} H^{i+k}(\bar{A}_f)$$

is injective for every i .

Proof. Taking one point compactification of each fibre, $p': X' \rightarrow B'$ may be regarded as a subbundle of an n -sphere bundle. Regard f as a fibre-preserving map between the sphere bundles, and apply Theorem 1. Then we get the corollary.

Corollary 2. *Let $M \rightarrow X \xrightarrow{p} B$ be a local trivial fibre space with a fibre-preserving free involution, where B is a connected ENR, and M is a closed m -mani-*

fold. Then, if $\omega(M_b)^m \neq 0$ for some $b \in B$, the composition

$$H^i(B) \xrightarrow{\bar{p}^*} H^i(\bar{X}) \xrightarrow{\cup \omega(X)^k} H^{i+k}(\bar{X})$$

is injective for every $i \geq 0$ and $k=0, 1, \dots, m$.

Proof. Take the disc D^{m-k} , and regard a constant map $f: X \rightarrow D^{m-k}$ as a fibre-preserving map of $p: X \rightarrow B$ to $p': D^{m-k} \rightarrow pt$. Then $A_f = X$, and we get the result by Theorem 1.

4 Equivariant point theorem of Lefschetz type

We shall first recall from [7], [8] the definition of *equivariant Lefschetz number* $\hat{L}(f)$ for a continuous map $f: M \rightarrow N$, where M and N are closed n -manifolds with free involutions S and T respectively. There exists a homogeneous basis $\{\alpha_1, \dots, \alpha_r, \alpha'_1, \dots, \alpha'_r\}$ of $H^*(N)$ such that

$$\begin{aligned} \langle \alpha_i \cup T^* \alpha_i, [N] \rangle &= 0, \quad \langle \alpha'_i \cup T^* \alpha'_i, [N] \rangle = 0 \\ \langle \alpha_i \cup T^* \alpha'_j, [N] \rangle &= \delta_{ij}, \end{aligned}$$

where $[N]$ is the fundamental homology class of N . Then the number

$$\sum_{i=1}^r \langle f^* \alpha_i \cup S^* f^* \alpha'_i, [M] \rangle \in \mathbb{Z}_2$$

is independent of the choice of $\{\alpha_1, \dots, \alpha_r, \alpha'_1, \dots, \alpha'_r\}$. This number is $\hat{L}(f)$ by definition. If $M=N$, $S=T$ and $f^*=id$, $\hat{L}(f)$ coincides with the mod 2 semi-characteristic $\hat{\chi}(M)$ of M .

Theorem 2. *Let $M \rightarrow X \xrightarrow{p} B$ and $M' \rightarrow X' \xrightarrow{p'} B'$ be local trivial fibre spaces over ENR's such that the fibres are closed n -manifolds, and let $f: X \rightarrow X'$ be a fibre-preserving map. Suppose there are given fibre-preserving free involutions $T: X \rightarrow X$ and $T': X' \rightarrow X'$, and put $A_f = \{x \in X \mid fT(x) = T'f(x)\}$. If the equivariant Lefschetz number $\hat{L}(f_b)$ is not zero for some point b of each connected component of B , then*

$$\bar{p}^*: H^*(B) \rightarrow H^*(\bar{A}_f)$$

is injective.

Proof. If we use (ii) of Proposition 1, Theorem 2 can be proved similarly to the proof of Theorem 1.

Corollary. *Let $M \rightarrow X \rightarrow B$ be a local trivial fibre space with a fibre preserving free involution, where B is an ENR and M is a closed manifold. If the mod 2 semi-characteristic $\hat{\chi}(M) \neq 0$ then*

$$\bar{p}^*: H^*(B) \rightarrow H^*(\bar{X})$$

is injective.

Proof. Take $f=id$ in Theorem 2.
This corollary can be applied to prove

Theorem 3 ([7], [8], [9]). *If a closed manifold M admits a free action of $Z_2 \times X_2$, then $\hat{\chi}(M)=0$.*

Proof. Let T_1 and T_2 generate $G=Z_2 \times Z_2$. Take an n -sphere S^n for sufficiently large n , and consider the orbit space $X=S^n \times M$ of $S^n \times M$ under the diagonal action of the antipodal involution on S^n and the involution T_1 on M . A fibre space $M \rightarrow X \xrightarrow{p} S^n/Z_2$ and a fibre-preserving free involution T on X are given by $p(z, x)=x$ and $T(z, x)=(z, T_2(x))$, where $z \in S^n$ and $x \in M$. We have also a fibre bundle $S^n \rightarrow X \rightarrow M/Z_2$, so that $H^i(X)=0$ if $m < i < n$, where $m=\dim M$. Therefore $\bar{p}: H^i(S^n/Z_2) \rightarrow H^i(X)$ is not injective if $m < i < n$. Thus $\hat{\chi}(M)=0$ by the above corollary.

References

- [1] J.C. Becker and D.H. Gottlieb: *Applications of the evaluation map and transfer map theorems*, Math. Ann. **211** (1974), 277–288.
- [2] D.H. Gottlieb: *Fibre bundles and the Euler characteristic*, J. Differential Geometry **10** (1975), 39–48.
- [3] A. Haefliger: *Points multiples d'une application et produit cyclique réduit*, Amer. J. Math. **83** (1961), 57–70.
- [4] J. Jaworowski: *A continuous version of Borsuk-Ulam theorem*, Proc. Amer. Math. Soc. **82** (1981), 112–114.
- [5] J. Jaworowski: *Fibre preserving maps of sphere bundles into vector space bundles*, Fixed point theory symposium (Sherbrooke). Lect. Notes in Math. 886 (1981), 154–162.
- [6] M. Nakaoka: *Generalizations of Borsuk-Ulam theorem*, Osaka J. Math. **7** (1970), 433–441.
- [7] M. Nakaoka: *Continuous maps of manifolds with involution I, II*, Osaka J. Math. **11** (1974), 129–145, 147–162.
- [8] M. Nakaoka: *Equivariant point theorems for involutions*, Japan. J. Math. **4** (1978), 263–298.
- [9] R. Stong: *Semi-characteristics and free group actions*, Compositio Math. **29** (1974), 223–248.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

