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ON F-PROJECTIVE HOMOTOPY OF SPHERES

Hipeakt OSHIMA

(Received December 16, 1975)

We write F for the real (R), complex (C) or quaternoinic (H) numbers. Let
FP* be the F-projective space of n F-dimensions and

hp: S®+i-1 s P

the canonical fibration with fibre S¢-!, where d=dim, F. We work in the
topological category of pointed spaces and pointed maps. Given a space X
and a positive integer m, we define the F-projective homotopy sets

KE[FP*, X]if m = (n+1)d—1

(X)) = {0 if m= —1(d)

and similarly the stable F-projective homotopy groups

KE{FP*, X} if m = (n+1)d—1

' (X) = {0 if m=—1(d)

here {X, Y} =m[S'X, S7Y], the limit maps being induced by suspension.

For small j, {37 (S") has been calculated by Bredon [6], Rees [11], Strutt
[13] and Randall [10]. In this note we restrict our attention to the case F=C
or H. We calculate the Adams e-invariants of elements in z{’*(S™) in §1 and
estimate the order of a canomical element in 7 ()%, 1y4-1(S™) for n=1 in §2 and
n=0(M,+,(F)) in §3 (see §82, 3 for the definitions of “canonical” and (k-+1)-th
F-James number M,,,(F)). For example we show that under some assumptions
on k and a prime p, if n=0(M,.,(F)) and v, (n)=v,(M,+(F)), 7&5ns1a-1(S™)
(C7s1yd—1, the stable (k+1)d—1 stem) contains an element of order p“s%*P*!,
where »,(¢g) denotes the exponent of p in the prime factorization of g.

1. e-invariants of F-projective elements

It is clear that 7{,,1-1(S™)=7{r1ya-1(S*)=0 for m<n. For m=n, by
cellularity

s 1ya—1(S™) = ﬁ#[FP,’,", S*]
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and similarly for the stable case, here FP?=FP®/FP*! and F, denotes the
composition of k5 and the natural projection FP*—FP}.
We introduce the following notations:

exp(x)—1 if F=C

Vi

&%) = {{ZS“T}Z ifF=H

(sh(x) — exp(*) ——2exp(—x)>; the rational numbers a,(n, j) defined by

(¢7* denotes the inverse function of ¢.); e, e;’, the Adams complex and real e-
invariants [1]; ‘
deg: [FP}*", S™] (or {FP}*", S"})—> Z

maps f to the degree of S™=FP,CFP}* ”i Snd; E=Ep(m), the underlying

complex vector bundle of the canonical F line bundle over FP™; g=zp(m)=
f—%EK(FP'"); t=tp(m)=(—1)"**¢, ()€ HY(FP™; Z) (d/2-th Chern class);
B=2,(1)€K(S?), the Bott generator; y*: K( )—K( ), the Adams operation;
ch: K( )—=H*( ;0Q), the Chern character.  Then the followings are well
known. ’
~ K(FP™) = Z[z][z"*
H*(FP™; Z) = Z[t][t"*
ch(z) = ¢4(?) -
Now we prove the following.

Theorem 1.1. For f €[FP}*", S"] (or f € {FP%*", S*}), we have
e(RE(f)) = —deg(f) ax(m, k+1).

Proof. Consider the following commutative diagram

h
q- F 3 N &
Sk+nt1)d-1 FPt+ > FPkent > Sk+niDd

lzflfilfjl:

S k+n+1)d-1 > S C}-' > Sk+ntl)d

where the horizontal sequences are cofibrations. Then we have the commuta-
tive diagram of the short exact sequences
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0 *-,K(FPﬁ“) — IZ(FP£+n+1) (__IZ(S(k—f-n+l)d) «—0
i i o |7 j* I=
0e— K(S™) «— K(C;) «— K*(S<_k+n+1)4) «—0.

Let ae K(Cy) be such that 7*(a)=@"/2. Let b=j*(B%*+*+b4/2), Then
VY¥(a) = d"a+Xb for some AEZ,

and
e(f)= W €0/Z.
Let
Fo = $lase.
Then

k+

WiFHa) = 31 a( (@) = 3 a (st dz)

-

o

+

-
+
i
=
-

i a;

("+1)dn+21 Izﬂ‘i—l
=0 i

<.
}I
©

and this equals

k
Fry(a) = FHd"a+ab) = d* S azmtiaghenn
i=o
so that comparing the coefficients of 2*+"+! we have

k

A = 2 a. (kn-n )d"+2i_(k+l)+d”(dk+l—l)akﬂ

and so
k

E (n+t )dn+2: (k+1)
(1.2) «f) = By

Consider the commutative diagram

K(FP’“”) ARy

ool
H*(FP“" Q)«*H*(S””’ 0).
Then
S = 3 ar

and
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(13)  deg(f)1" = f*ch(87) = chf*(8"") = 3 a(ch(z)"*

= ,_Z: a;pp(t)"+ .
By definition
(7 = Zasn, )=
x = pr'pp(%)
so that

" = 2 as(m, ety
Then by (1.3)

a; = deg(f)ap(n, i) for 0<i=<k,
so that by (1.2)

deg(f) fk‘.- ap(n, j) (542 ;)dr+2i- ¢+
(14') e(f) = j=0 d,,(d,,+1_1)

Next we observe that the function ¢7! satisfies the equation

PF (¥ +dx) = dor(x) .

Then
(¢F1(x2—f—dx))” = Z:]aF(n, j) (x2+dx)n+j
= ,-2: ?;:) ar(n, j) ({-‘j‘_;:)dwzj—ixnﬂ
equals

(A7) = d" 23 xslm, D
so that comparing the coefficients of x**"+!, we have
3V telm, ) (5L )40 = (1 axy(m, Rt-1)

and then by (1.4)
e(f) = —deg(flae(n, k+1).
This completes the proof of Theorem 1.1.

Using KO*-theory, we can obtain lower bounds of deg(f) (e.g. [8], [9]), but
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now we need upper bounds and unfortunately we have not sharp estimation
with the exception of the two special cases n=1 and n=0(M,,(F)). In the
following two sections we will study these two cases.

d —
2. =@l paa(S) for n=1

For a positive integer ¢, it is well known that the order of the composition

q

S2-1 ﬁ.; FP'= 8¢ — §¢
is infinite, so that
deg(f) =0 for f&[FP*!, S%] (k>0)
and so by Theorem 1.1
e=0: 7Gni1(S) —> Q/Z (k>0).

By induction on & we know that the rank of {FP*", S*} is one. We will
call a generator of this free part (and its image by k%) a canonical element. Let
fe {FP%*" S} be a canonical element, then (take —f if necessary)

deg(f) = k(FPL*", S™)

where the right hand side has been defined in [8] and called the stable James
number of the pair (FP%**, S*). In particuler we have used the notation

dp(k+1) = k(FP*!, S%)
and this has been estimated in [7], [8] and [9].

Proposition 2.1. For an odd prime p and an integer =1, e-invariant of a
canonical element in 34i_1(S?) (or m354.(S*)) is of order p (or a multiple of p).

Proof. (i) F=C. We have
¢c'(x) _ log(1+2) _ s (=1)

x x =0 741
so that
_1)k+l
1, k1) = (=D
ac( +1) k+2

and then for a canonical element f € {CP*+!, S?%

() = (— 1 Sk D).

Suppose that k+2=uv, where « and v are relatively prime integers and not one.
Then by [8], u, v and hence uv devide d.(k+1). Therefore e(h¥(f))=0. In



184 H. OsHIMA

case with k+2=2" for w=2, 2 devides d(2*—1) [8] and hence e(A¥(f))=0.
If k+2=p' for an odd prime p and a positive integer /, [8] says that »,(d (p'—1))
=/—1 so that the order of e(h¥(f))is p. This completes the proof of Proposi-
tion 2.1 for F=C.

(i) F=H. We have

( ) Sh_lg ? ( l) (2 )|(2 )|
or(®) [T 2 ) & (=1) (200 |
Ta T\ Vx| TR A e ) @D
2
so that
ag(l, k1) = & (29)! (2))!

25 GG 1) (24 1)
Therefore if 2k+3=p, a prime,
v(au(l, k1) = —1.
On the other hand by [9]
dy(k+1)| (2k+2)!(2k)!---4!
so that by Theorem 1.1 for a canonical element f € {HP**!, S
vy(e(hE(f)) = —1.

This completes the proof of Proposition 2.1.

3. =% . paa(S™) for n=0(M,..(F))

First we repeat the basic relations of the James number M,.,(F), ag(n, j)
and the coreducibility of FP;*" as given in Adams-Walker [2], Atiyah [4] [5],
Atiyah-Todd [3] and Sigrist-Suter [12].

Let M,.,(F) be the order of J(£) in the J-group J(FP*) [4].

Lemma 3.1. ([2], [12]) For a prime p, we have
k.
(1) vy (Mn(C)) = {PCTTOD 1=7= g P =Rt
0 if p>k+1.
(i1)  v(M,+(H)) = max(2k+1, 2r+wy(r)), 1 <r=k,
vy (Myi(H)) = v,(Mp+o(C)) if p Odd-

Lemma 3.2. ([5, p. 143], [3], [12]) Tke following three statements are
equivalent.
(1) n=0(M,+(F))
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. . : Z if F=C or F=H and j even
0< i<k, as(n, e{
(ii) for0=j=k a:(mj)< |, if F—H and j odd

(ili) FP3*" is coreducible, that is, there exists a retraction FPy*"—S".

When above equivalent conditions are satisfied, for a retraction f: FP}*"—
S we have

(3.3) e(hE(f) = —ag(n, k+1).

Therefore next we have to compute ay(n, k+1). Remark that f represents
a canonical element in the stable category.

Lemma 3.4. ([3], [12]) Let n be a positive integer, k a non negative integer
and p a prime (an odd prime if F=H). Then we have
(i) vylar(n )Z0 for 0=<j<k if and only if v,(n) Zv (M, n(F)),

(i) vl )z | j"”e” for 0= <k if and only if vn) Zv( My (H)),
(i) o vo(n) 22j—1, vy(n)=2j+v,(j)+vau(n, j))-
In §1 we defined the coefficients a(#, j) by the formula
S Noi = (P @)Y (log(L+x)\w _ (Sh(=1) 4.
Sectm ot = (#€0)) = (B0 (53 ‘;:f’“) :

Using the multinomial expansion we find

j
3.5 D=1y gL
(3.5) adn.f) = (1Y B i

= (—1) 28} T(n, j, s), say,

where the summation extends over all ordered sets s=(sy, s;, =+, 5;) of non
negative integers such that >3s,=n, >3is,=j.

Lemma 3.6. ([3, 6.5]) Let p be a prime and k a non negative integer.
Suppose that v,(ac(n, j)) =0 for 0<j=<k. Then

v(T(n, k+1, 8))=0 for all sequences s in (3.5), with the following possible
exception: if k+1=s(p—1) with s integral, and if s is the sequence in which
So=n—S, $,-,=S, and all other s; are zero, we have

v (T, kt1, 8)) = v(n)—v,(5)—s.
Lemma 3.7. (i) Let p be a prime (an odd prime if F=H), n and k non
negative integers. Suppose that v (M, \(F))=v,(n)<v,(M,+(F)). Then (!H‘Tl),d

=s(p—1) for some integer s and

vy(ap(n, k+1)) = v, (n)—v (M, (F)) .



186 H. OsHIMA

(i1)  1If vy(M 1 (H)) Svy(n), vo(ay(n, k41)) = vy(n)—2(k+1)—vy(k+1).
Proof. By (3.1)
Vz(Mkﬂ(H)) =2k+1

so that (ii) follows from (3.4).
(1) for F=C follows from (3.1), (3.5) and (3.6) immediately.
We define the rational numbers d,(n) by

Sy = ()"
i=0 y
then
(38) dZi(n) = zziaH(n: l)’ d2i+1 =0.
Recall that sh™'y=log(y++'1+%?. The power series of y++/143? is of the
form 1+4-g(y), where g(y) has the inverse g“(x):x-% ‘2 (—1)x’. We have
2 di(my " = (sh™y)*" = (log(1-+g(y))y" = 23 ac(2n, i)g(y)™*" .

Put y=g !(x). Then for non negative integer j we have

(3.9) S ECDT (2, )

s sl|s2 2:+2n sy

where the summation >3 extends over all ordered sets s=(s,, §,, ---) of non
negative integers such that >%s,=i+2n, 3us,=j+2n. Hence for an odd prime
p and a positive integer m we have
(3.10) v(di(n))=0 for 0=i<m if and only if
v(ae(2m, j)=0 for 0=j<m.
If these equivalent conditions are satisfied, (3.9) says that v,(d,+,(n)) or v,(a,
(2n, m+-1)) <0 implies v,(d,,+(n))=v(catc(2n, m+1)). Therefore
(3.11) if v, (ac(2n, 5))=0 for 0=;7=2k+1 and v (ac(2n, 2k+2))
<0, then v (atu(n, k+1) = v(dpan)) = v (arc(2n, 2k+2)).
Suppose that v (M, (H))<v,(n) <v,(M,+,(H)) for an odd prime p. Then
by (3.4)
vy(ay(n, 7)) =0 for 07k
and by (3.8)
v,(dj(n))=0 for 0=;=<2k+1
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and by (3.10)
vy(ac(2n,j))=0 for 0= j<2k+1
so that by (3.1) and (3.11) we know that 2k+2=s(p—1) with s integral and
vy(ac(2n, 2k+2)) = v ,(2n)—v (s)—s = v,(n)—v (M,+,(H)) <0 .
This implies (i) for F=H and completes the proof of Lemma 3.7.

Now we will estimate the order of the e-inavriant of a canonical element.
Let #a denote the order of an element a of a module.

Proposition 3.12. Suppose that n=0(M,+,(F))* and let f: FPt**—S" be a
retraction.

(i) Let p be a prime (an odd prime if F=H) and suppose that v,(M,.,(F))
<v,(n) <vy(M+(F)). Then

v (4e(RE(f)) = v (Mo F))—,(n) .

Moreover, in case k=1 (4) and (F, p)=(C, 2), considering f as a stable map (or if
n=0 (4)), we have

vy(fer (RE(f))) = va(My+o(C))—vy(m)+1.
(ii) If v Mo H)) <o) <2(k+1)F- vk 1),
vy(#e(h¥(f))) = 2(k+1)+vy(k+1)—vy(n) .
Moreover in case k=0 (2) and n=0 (2), we have
v e (AN = 20k-+ 1)+ o+ 1)—n(m)+1
Proof. (3.3), (3.7) and the fact
e = 2e: myyr(S¥) > 0/Z ifr=3(8) [1,7. 14]
imply Proposition 3.12.
Suppose that ,(M,:,(F))<v,(n)<v,(My(F)). Then @irzll’:s(p— 1)

with s integral as seen before. Put s=p'u, uz£0(p) for integers /, u. Then by

(3.1)

I+1  if (F, p)=(H, 2
My )~ ) S My E) = My <+ E DD

max(i+1,2) if (F,p) = (H,2) .

*)  Using S-duality and a theorem of Sigrist (I11. J. Math. 13 (1969), 198-201), we can show that
this hypothesis can be removed but then f must be canonical. The same remark is valid for
the next corollary.
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In the following Corollary 3.13, we will give a condition that implies

I+1 if (F, p)==(H, 2)

l/p(MHz(F))“l'p(”) = max(H—l, 2) if (F, p):(H, 2) .

Corollary 3.13. Let p be a prime. Suppose that n=0(M,.(F)) and v ,(n)=
v, (M,+(F)). Letf: FPi*"—S" be a retraction.
?
(1) If (F, p)=*=(H, 2) and k satisfies

ELDE _ pup—1), uzo(p), <P (P odd)

ul2t (p=2)
for some integers u and 1, then

vy(Be(RE(f)) = I+1.
(ii) If k satisfies
k+1 = 2'u, u=£0(2), u<2'+?

then
if I>1

— I+1
e =1,

and moreover in case k=0 or 2 and n=0 (2) we have
vy(4er (RE(f))) = 3
Proof. Using (3.1) and the fact [3]
My, +1(C) = My,+»(C) for k=1
we can prove this Corollary by elementary calculation, so we omit the proof.
Remark. If n=0(M,(F)), we have
7 (kna)a—1(S™) —=> Ziknr1@-1(S™)

with the exception of (F, k, n)=(C, 0, 1), (C, 1, 2) or (H,0,1). For these
three cases, we list up the results without proof.

Proposition 3.14.
75(S?) = {k*n; keZ}
26(SY) = {k2y+’?ﬁ2__1)a+6za; keZ, 1—0or 1}

2H(SY) = {k2u+’ﬂ2—_1)a; keZ}
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73 6(S?) = 7} = Z,

2§ (S*) = 2SH(SY) = 3§ = Z,, .

where ny(S;)=Z= {n} and n,(SY=ZDZ,= {v} P {5}.
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