Title	Projective dimension of complex bordism modules of CW-spectra. I
Author(s)	Yosimura, Zen-ichi
Citation	Osaka Journal of Mathematics. 1973, 10(3), p. $545-564$
Version Type	VoR
URL	https://doi.org/10.18910/6121
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

PROJECTIVE DIMENSION OF COMPLEX BORDISM MODULES OF CW-SPECTRA, I

Zen-ichi YOSIMURA

(Received December 15, 1972)

Let $M U_{*}()$ be the (reduced) complex bordism theory defined on the Boardman's stable category [4] of $C W$-spectra. Recall that $M U_{*}\left(\equiv M U_{*}\left(S^{0}\right)\right.$) $\simeq Z\left[x_{1}, x_{2}, \cdots\right]$, deg $x_{i}=2 i$. In [3] Baas has constructed a tower of homology theories

$$
M U_{*}()=M U\langle\infty\rangle_{*}() \rightarrow \cdots \rightarrow M U\langle n\rangle_{*}() \rightarrow \cdots \rightarrow M U\langle 0\rangle_{*}() \cong H_{*}()
$$

such that $M U\langle n\rangle_{*}\left(\equiv M U\langle n\rangle_{*}\left(S^{0}\right)\right) \cong Z\left[x_{1}, \cdots, x_{n}\right]$, which factorizes the Thom homomorphism $\mu: M U_{*}() \rightarrow H_{*}()$. When $T d\left(x_{1}\right)=1$ and $T d\left(x_{j}\right)=0$ for all $j \geqq 2$ (it is possible to choose ring generators x_{i} of $M U_{*}$ with such properties), we shall write $M U_{T d}\langle n\rangle_{*}()$ instead of $M U\langle n\rangle_{*}()$ for emphasis. $M U_{T d}\langle 1\rangle_{*}()$ can be identified with the connective homology K-theory $k_{*}()$. Then the tower of homology theories

$$
M U_{*}() \rightarrow \cdots \rightarrow M U_{T d}\langle n\rangle_{*}() \rightarrow \cdots \rightarrow M U_{T d}\langle 1\rangle_{*}() \cong k_{*}()
$$

factorizes the homomorphism $\zeta: M U_{*}() \rightarrow k_{*}()$ lifting the Thom homomorphism $\mu_{C}: M U_{*}() \rightarrow K_{*}()$.

Under the assumption that X is a finite $C W$-complex, Conner, Smith and Johnson ([6] and [9]) investigated conditions that the Thom homomorphism μ : $M U_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism, and that the homomorphism $\zeta: M U_{*}(X)$ $\rightarrow k_{*}(X)$ is an epimorphism. In the present paper we try to extend these results to a $C W$-spectrum.

In §1 we study some basic properties of $C W$-spectra and homology theories $M U\langle n\rangle_{*}()$ for the sake of our later references.

Landweber [10] indicated that there exists a $M U_{*}$-resolution for a $C W$-spectrum as well as a finite $C W$-complex (Theorem 1). In § 2 we construct two spectral sequences
i) $E\langle n\rangle_{p, q}^{2}(X)=\operatorname{Tor}_{p, q}^{M U_{*}}\left(M U\langle n\rangle_{*}, M U_{*}(X)\right) \Rightarrow M U\langle n\rangle_{*}(X)$
and
ii) $\quad E_{2}^{p, q}[X]=\operatorname{Ext}_{Z}^{p, q}\left(K_{*}(X), Z\right) \Rightarrow K^{*}(X)$, using a connective $M U_{*}$-resolution for a connective $C W$-spectrum X. The second spectral sequence yields the following universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(K_{*-1}(X), Z\right) \rightarrow K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right) \rightarrow 0
$$

(Theorem 3).
In §3 we give necessary and sufficient conditions that $\mu: M U_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism (Theorems 4 and 5) and that $\zeta: M U_{*}(X) \rightarrow k_{*}(X)$ is an epimorphism (Theorem 7). Finally we give a new proof of Johnson's theorem [8] (Theorem 8).

In a subsequent paper with the same title we will discuss conditions under which $\mu\langle n\rangle: M U_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)$ is an epimorphism for a general $n \geqq 0$.

1. Homology theories $M U\langle\boldsymbol{n}\rangle_{*}()$ of $\boldsymbol{C} \boldsymbol{W}$-spectra

1.1. Let \mathcal{C} be the category of based $C W$-complexes and \mathcal{S} the stable category of $C W$-spectra defined by Boardman [4] (and also see [11]). We may regard a based $C W$-complex as a $C W$-spectrum via the canonical inclusion functor $J: \mathcal{C} \rightarrow \mathcal{S} . \quad A C W$-spectrum X is said to be l-connected if

$$
\pi_{i}(X)=\left\{\Sigma^{0}, X\right\}_{i} \cong\left\{\Sigma^{i}, X\right\}_{0}=0 \quad \text { for all } i \leqq l
$$

When a $C W$-spectrum X is l-connected for some l, we say X is connective. Notice that a based $C W$-complex is (-1)-connected.

Let X be a l-connected $C W$-spectrum. We define an additive cohomology theory on \mathcal{C} by

$$
h^{p}(B)=\{J B, X\}^{p}
$$

According to Brown's theorem [5] there exists an Ω-spectrum $\left\{Y_{p}\right\}$ such that $\{J B, X\}^{p} \cong\left[B, Y_{p}\right]$. Remark that Y_{p} is a $(l+p)$-connected $C W$-complex. Any n-connected $C W$-complex is homotopy equivalent to a certain $C W$-complex having no cells in dimensions $<n+1$ (except the base point). So we can assume that Y_{p} has no cells in dimensions $<l+p+1$. Let $Y=\cup J_{p} Y_{p}$ be the $C W$ spectrum associated with the prespectrum $\left\{Y_{p}\right\}$. Since $J_{p} Y_{p}$ is a $C W$-spectrum without cells in dimensions $<l+1, Y$ has no cells in dimensions $<l+1$. Furthermore the associated spectrum Y is homotopy equivalent to X [11, Theorem 14.4]. Thus we obtain the following proposition [4].

Proposition 1. Let X be a l-connected $C W$-spectrum. Then there exists a CW-spectrum Y such that
i) Y has no cells in dimensions less than $l+1$ (except the base point), and
ii) Y is homotopy equivalent to X.

Let X be a finite $C W$-spectrum and $\left\{X^{p}\right\}$ the skeleton filtration of X. By an induction process on p we shall construct the function dual $D\left(X^{p}\right)$ of X^{p} such that the number of n-cells in X^{p} coincides with that of $(-n)$-cells in $D\left(X^{p}\right)$. Assume that $D\left(X^{p-1}\right)$ satisfies the required property. X^{p} / X^{p-1} is a finite wedge of p-spheres, i.e., $X^{p} / X^{p-1}=\vee \Sigma^{p}$. We can take $\vee \Sigma^{-p}$ as $D\left(X^{p} / X^{p-1}\right)=$ $D\left(\vee \Sigma^{p}\right)$, because $\left\{Z, \vee \Sigma^{-p}\right\} \cong \oplus\left\{Z, \Sigma^{-p}\right\} \cong\left\{\vee \Sigma^{p} Z, \Sigma^{0}\right\} \cong\left\{Z, F\left(\vee \Sigma^{p}, \Sigma^{0}\right)\right\}$ for arbitrary $C W$-spectra Z. So $D\left(X^{p} / X^{p-1}\right)$ satisfies the required property. Let $\delta: \Sigma^{-1} D\left(X^{p-1}\right)=D\left(\Sigma X^{p-1}\right) \rightarrow D\left(X^{p} / X^{p-1}\right)=\vee \Sigma^{-p}$ be the induced morphism of the boundary $X^{p} / X^{p-1} \rightarrow \Sigma X^{p-1}$. We define the function dual $D\left(X^{p}\right)$ of X^{p} as the mapping cone of δ. As is easily seen, there is a one to one correspondence between the set of n-cells in X^{p} and that of $(-n)$-cells in $D\left(X^{p}\right)$. By choosing a large enough skeleton of X we get

Lemma 2. Let X be a finite $C W$-spectrum. The function dual $D X$ of X can be taken as a finite $C W$-spectrum such that the number of n-cells in X coincides with that of $(-n)$-cells in $D X$.
1.2. Let $M U$ denote the unitary Thom spectrum. We recall that

$$
\pi_{*}(M U) \cong Z\left[x_{1}, x_{2}, \cdots\right]
$$

where $x_{i} \in \pi_{2 i}(M U)$. Baas [3] has constructed a tower of CW-spectra

$$
\begin{equation*}
M U=M U\langle\infty\rangle \rightarrow \cdots \rightarrow M U\langle n\rangle \rightarrow \cdots \rightarrow M U\langle 0\rangle \tag{1.1}
\end{equation*}
$$

such that

$$
\pi_{*}(M U\langle n\rangle) \cong Z\left[x_{1}, \cdots, x_{n}\right]
$$

Denote by $\mu_{m, n}, 0 \leqq n<m \leqq \infty$, the canonical morphism $M U\langle m\rangle \rightarrow M U\langle n\rangle$.
Let us denote by $M U_{*}()\left(=M U\langle\infty\rangle_{*}()\right)$ and $M U\langle n\rangle_{*}()$ the (reduced) homology theories represented by the spectra $M U$ and $M U\langle n\rangle$ respectively. Proposition 1 implies that

$$
\begin{equation*}
M U\langle m\rangle_{j}(X)=0 \quad \text { for } j \leqq l \text { and } 0 \leqq m \leqq \infty \tag{1.2}
\end{equation*}
$$

when X is l-connected. We have the following basic relation between $M U\langle n\rangle_{*}()$ and $M U\langle n-1\rangle_{*}()$ [3]: There is a natural exact sequence

$$
\begin{equation*}
\cdots \rightarrow M U\langle n\rangle_{j}(X) \xrightarrow{\bullet_{n}} M U\langle n\rangle_{j+2 n}(X) \xrightarrow{\tau\langle n\rangle} M U\langle n-1\rangle_{j+2 n}(X) \rightarrow \cdots \tag{1.3}
\end{equation*}
$$

for any $C W$-spectrum X where $\tau\langle n\rangle=\left(\mu_{n, n-1}\right)_{*}$ and $\cdot x_{n}$ denotes the multiplication by x_{n}.

Let $K(Z)$ denote the Eilenberg-MacLane spectrum. The Thom map $\mu: M U \rightarrow K(Z)$ admits a factorization

$$
M U \xrightarrow{\mu_{\infty, 0}} M U\langle 0\rangle \xrightarrow{\nu_{0}} K(Z) .
$$

ν_{0} induces an isomorphism $\left(\nu_{0}\right)_{*}: \pi_{*}(M U\langle 0\rangle) \rightarrow \pi_{*}(K(Z))$, and hence ν_{0} is a homotopy equivalence. Therefore $M U\langle 0\rangle_{*}()$ becomes the ordinary (reduced) homology theory, i.e.,

$$
\begin{equation*}
M U\langle 0\rangle_{*}() \cong H_{*}() . \tag{1.4}
\end{equation*}
$$

So we may regard $\left(\mu_{\infty, 0}\right)_{*}$ as the Thom homomorphism μ. Let us denote by $\mu\langle n\rangle$ and $\nu\langle n\rangle$ the homomorphisms $\left(\mu_{\infty, n}\right)_{*}$ and $\left(\mu_{n, 0}\right)_{*}$ respectively.

Now we shall prove two lemmas using the exact sequenence (1.3).
Lemma 3. Let X be a $C W$-spectrum such that $M U\langle n\rangle_{i}(X)$ is a torsion free abelian group for $i \leqq k$. Then $\tau\langle n\rangle: M U\langle n\rangle_{j}(X) \rightarrow M U\langle n-1\rangle_{j}(X)$ is an epimorphism for $j \leqq k+2 n+1$.

Proof. In the following commutative diagram

for $i \leqq k$, the upper row is exact and $\cdot x_{n}: M U\langle n\rangle_{*}(X) \otimes Q \rightarrow M U\langle n\rangle_{*}(X) \otimes Q$ is a monomorphism by virtue of Dold's theorem [7]. Hence we get the required result immediately.

Lemma 4. Let X be a connective $C W$-spectrum. If $\mu\langle n\rangle: M U_{i}(X) \rightarrow$ $M U\langle n\rangle_{i}(X)$ are epimorphisms for all $i \leqq k$, then $\mu\langle n+1\rangle: M U_{i}(X) \rightarrow M U\langle n+1\rangle_{i}(X)$ are also so for the same i.

Proof. By an induction on $i, i \leqq k$, we shall prove the lemma. For sufficiently small $i, \mu\langle n+1\rangle_{i}$ is an epimorphism because of (1.2). Next, assume that $\mu\langle n+1\rangle_{i}$ are epimorphisms for all $i, i \leqq j-1$ and $j \leqq k$. Consider the following commutative diagram
in which the bottom row is exact. $\mu\langle n+1\rangle_{j-2 n-2}$ and $\mu\langle n\rangle_{j}$ are epimorphisms by the assumptions. By chasing the above diagram we see easily that $\mu\langle n+1\rangle_{j}$ is an epimorphism.
1.3. Let X be a connective $C W$-spectrum and $0 \leqq n<m \leqq \infty$. We observe the Atiyah-Hirzebruch spectral sequences $\left\{E\langle m\rangle^{r}(X)\right\}$ for $M U\langle m\rangle_{*}(X)$. Let $\left\{F_{p} M U\langle m\rangle_{*}(X)\right\}$ be the usual increasing filtration of $M U\langle m\rangle_{*}(X)$ defined by skeletons. Note that $F_{j} M U\langle m\rangle_{*}(X)=0$ for sufficiently small j. As is well known, we have isomorphisms

$$
E\langle m\rangle_{p, *}^{2}(X) \cong H_{p}(X) \otimes M U\langle m\rangle_{*}
$$

and

$$
E\langle m\rangle_{p, *}^{\infty}(X) \cong F_{p} M U\langle m\rangle_{*}(X) / F_{p-1} M U\langle m\rangle_{*}(X)
$$

of $M U\langle m\rangle_{*}$-modules. Since the Atiyah-Hirzebruch spectral sequences for $M U\langle m\rangle_{*}(X) \otimes Q$ collapse, the differentials of $\left\{E\langle m\rangle^{r}(X)\right\}$ are torsion valued. As an elementary result we have that

$$
\begin{array}{ll}
E\langle m\rangle_{j, 0}^{2}(X) \cong E\langle m\rangle_{\rho, 0}^{\infty}(X) & \text { for } \quad j \leqq k+3, \text { and } \\
E\langle m\rangle_{p, 9}^{2}(X) \cong E\langle m\rangle_{p, 9}^{\infty}(X) & \text { for } \quad p \leqq k, \tag{1.5}
\end{array}
$$

provided X is a connective $C W$-spectrum such that $H_{i}(X)$ is torsion free abelian for $i \leqq k$.

Proposition 5. Let X be a connective $C W$-spectrum and $0 \leqq n<m \leqq \infty$. If the Atiyah-Hirzebruch spectral sequence for $M U_{*}(X)$ collapses, then $\left(\mu_{m, n}\right)_{*}$ induces an isomorphism

$$
\left(\widetilde{\mu}_{m, n}\right)_{*}: M U\langle n\rangle_{*^{\mu V}\langle m\rangle_{*}} M U\langle m\rangle_{*}(X) \rightarrow M U\langle n\rangle_{*}(X) .
$$

Proof. Since the spectral sequence $\left\{E^{r}(X) \equiv E\langle\infty\rangle^{r}(X)\right\}$ for $M U_{*}(X)$ collapses, $\left\{E\langle n\rangle^{r}(X)\right\}$ collapse for all $n \geqq 0$. On the other hand,

$$
\operatorname{Tor}_{1}^{M U\langle m\rangle_{*}\left(M U\langle n\rangle_{*}, H_{p}(X) \otimes M U\langle m\rangle_{*}\right) \cong \operatorname{Tor}_{1}^{Z}\left(M U\langle n\rangle_{*}, H_{p}(X)\right)=000 .}
$$

for $0 \leqq n<m \leqq \infty$. Here we have the commutative diagram

with exact rows. By an induction on p we can show that

$$
M U\langle n\rangle_{*} \bigotimes_{M U\langle m>*} F_{p} M U\langle m\rangle_{*}(X) \rightarrow F_{p} M U\langle n\rangle_{*}(X)
$$

are isomorphisms for all p. Passing to the direct limit, it follows that

$$
\left(\widetilde{\mu}_{m, n}\right)_{*}: M U\langle n\rangle_{*} \bigotimes_{m U<m>*} M U\langle m\rangle_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)
$$

is an isomorphism.
Proposition 6. Let X be a connective $C W$-spectrum and $1 \leqq m \leqq \infty$.
I) The following conditions are equivalent:
0) $H_{*}(X)$ is a free abelian group;
i) $)_{m} M U\langle m\rangle_{*}(X)$ is a free $M U\langle m\rangle_{*}-m o d u l e$;
ii) $m_{m} M U\langle m\rangle_{*}(X)$ is a projective $M U\langle m\rangle_{*}$-module.
II) The following conditions are equivalent:
$0)^{\prime} H_{*}(X)$ is a torsion free abelian group;
$\mathrm{iii}_{m} \quad M U\langle m\rangle_{*}(X)$ is a flat $M U\langle m\rangle_{*}$-module.
Proof. 0$) \rightarrow \mathrm{i})_{m}$ and 0$\left.)^{\prime} \rightarrow \mathrm{iii}\right)_{m}$: Since the spectral sequences $\left\{E\langle m\rangle^{r}(X)\right\}$ for $M U\langle m\rangle_{*}(X)$ collapse, there exist exact sequences

$$
0 \rightarrow F_{p-1} M U\langle m\rangle_{*}(X) \rightarrow F_{p} M U\langle m\rangle_{*}(X) \rightarrow H_{p}(X) \otimes M U\langle m\rangle_{*} \rightarrow 0
$$

of $M U \backslash m\rangle_{*}$-modules for all p. On the other hand, we note that

$$
\operatorname{Tor}_{k}^{M U\left\langle m>_{*}\right.}\left(H_{p}^{\prime}(X) \otimes M U\langle m\rangle_{*}, C\right) \cong \operatorname{Tor}_{k}^{Z}\left(H_{p}(X), C\right), \quad k \geqq 0,
$$

for any $M U\langle m\rangle_{*}$-module C. Then 0$\left.) \rightarrow \mathrm{i}\right)_{m}$ and 0$\left.)^{\prime} \rightarrow \mathrm{iii}\right)_{m}$ follow immediately.
iii) $\left.)_{m} \rightarrow 0\right)^{\prime}: \quad$ By an induction on p we shall show that $H_{p}(X)$ is torsion free abelian. Assume that $H_{j}(X)$ is torsion free abelian for $j \leqq p-1$. Because of (1.5) $\nu\langle m\rangle: M U\langle m\rangle_{i}(X) \rightarrow H_{i}(X)$ is an epimorphism for $i \leqq p+2$. Consider the following commutative square

The upper horizontal map is a monomorphism and the right vertical one is an isomorphism (Proposition 5). So we find that the bottom horizontal map is a monomorphism, i.e., $H_{p}(X)$ is torsion free abelian.
i) $)_{m} \rightarrow$ ii) $)_{m}$ is obvious.
ii) $\left.)_{m} \rightarrow 0\right): \quad H_{*}(X)$ is torsion free abelian because a projective $M U\langle\boldsymbol{m}\rangle_{*^{-}}$ module is flat. Making use of Proposition 5 we get an isomorphism

Then the projectivity of $M U\langle m\rangle_{*}(X)$ implies that $H_{*}(X)$ is free abelian.

2. Spectral sequences arising from $M U_{*}$-resolutions

2.1. First we introduce (connective) $M U\langle m\rangle_{*}$-resolutions, $0 \leqq m \leqq \infty$, for a (connective) $C W$-spectrum X.
I) A partial (connective) $M U\langle m\rangle_{*}$-resolution of X of length 1 is a cofibration of (connective) $C W$-spectra

$$
W \xrightarrow{f} X \subset Y
$$

such that
i) $M U\langle m\rangle_{*}(W)$ is a projective $M U\langle m\rangle_{*}$-module, and
ii) $f_{*}: M U\langle m\rangle_{*}(W) \rightarrow M U\langle m\rangle_{*}(X)$ is an epimorphism.
II) $A M U\langle m\rangle_{*}$-resolution of X is a diagram consisting of $C W$-spectra and morphisms

$$
\begin{gathered}
X=X_{0} \subset X_{1} \subset \cdots \subset X_{k} \subset X_{k+1} \subset \cdots \\
\nwarrow W_{0} \quad W_{1} \overleftarrow{W}_{k}
\end{gathered}
$$

such that $W_{k} \rightarrow X_{k} \subset X_{k+1}$ is a partial $M U\langle m\rangle_{*}$-resolution of X_{k} (of length 1) for each $k \geqq 0$.

It is said to be connective if W_{k}, X_{k} and the union $X_{\infty}=\cup X_{k}$ of X_{k} are all connective.
III) We say that a (connective) $M U\langle m\rangle_{*}$-resolution $\left\{X_{k}, W_{k}\right\}$ of X has length l when $M U\langle m\rangle_{*}\left(X_{l}\right)$ is a projective $M U\langle m\rangle_{*}$-module.

Note that a $M U\langle m\rangle_{*}$-resolution $\left\{X_{k}, W_{k}\right\}$ of X yields a projective $M U\langle m\rangle_{*-}$ resolution

$$
\begin{align*}
\rightarrow M U\langle m\rangle_{*+k}\left(W_{k}\right) \rightarrow \cdots \rightarrow M U\langle m\rangle_{*+1}\left(W_{1}\right) & \rightarrow M U\langle m\rangle_{*}\left(W_{0}\right) \tag{2.1}\\
& \rightarrow M U\langle m\rangle_{*}(X) \rightarrow 0
\end{align*}
$$

of $M U\langle m\rangle_{*}(X)$.
Let X be a connective $C W$-spectrum and $W(X)=\left\{X_{k}, W_{k}\right\}$ a connective $M U_{*}$-resolution of X. The union $X_{\infty}\left(\equiv X_{\infty}^{W(X)}\right)$ of X_{k} has the following property.

Lemma 7. X_{∞} is contractible.
Proof. Let X be l-connected. First we shall show by an induction on k that

$$
\mu: M U_{j}\left(X_{k}\right) \rightarrow H_{j}\left(X_{k}\right)
$$

is an epimorphism for each $j \leqq l+3 k$. Assume that $\mu: M U_{j}\left(X_{k}\right) \rightarrow H_{j}\left(X_{k}\right)$ is an epimorphism for $j \leqq l+3 k$. Then $H_{j}\left(X_{k+1}\right)$ is free abelian for the same j. (1.5) implies that $\mu: M U_{i}\left(X_{k+1}\right) \rightarrow H_{i}\left(X_{k+1}\right)$ is an epimorphism for $i \leqq l+3(k+1)$. This means that $H_{j}\left(X_{k}\right) \rightarrow H_{j}\left(X_{k+1}\right)$ is a zero map for $i \leqq l+3 k$. Therefore we get

$$
H_{*}\left(X_{\infty}\right) \cong \xrightarrow[\longrightarrow]{\lim } H_{*}\left(X_{k}\right)=0 .
$$

Consider the Atiyah-Hirzebruch spectral sequence $\left\{E^{r}\right\}$ for $\pi_{*}\left(X_{\infty}\right)$. Since $E^{2}=H_{*}\left(X_{\infty} ; \pi_{*}\right)=0$ and X_{∞} is connective, we can easily see that $\pi_{*}\left(X_{\infty}\right)=0$ and hence X_{∞} is contractible.

Next we discuss the existence of (connective) $M U_{*}$-resolutions. The following result was given by Landweber [10] (and also see [1]).

Proposition 8. Let X be a (l-connected) $C W$-spectrum. Then there exists a partial (l-connected) $M U_{*}$-resolution

$$
W \rightarrow X \subset Y
$$

of X of length 1 . In particular, W can be taken as a wedge sum of finite $C W$ spectra.

Proof. Assume that X is l-connected. By Proposition 1 we may assume that X has no cells in dimensions $<l+1$. Take any element $x \in M U_{p}(X) \cong$ $\left\{\Sigma^{p}, X \wedge M U\right\}, p>l$. Then there exists finite $C W$-subspectra X^{\prime} and E_{x} of X and $M U$ respectively and x is factorized in the form

$$
\Sigma^{p} \xrightarrow{x^{\prime}} X^{\prime} \wedge E_{x} \subset X \wedge M U .
$$

In virtue of Lemma 2 we may insist that the function dual $D X^{\prime}$ of X^{\prime} has no cells in dimensions $>-(l+1)$. So $\Sigma^{p} \wedge D X^{\prime}$ is a finite $C W$-spectrum of dimension $\leqq p-l-1$. Since $M U^{p-l-1}=\cup J_{2 n} M U(n)^{p-l-1+2 n}$, we can choose E_{x} to be in the form $J_{2 n} M U(n)^{p-l-1+2 n}$. Putting $W_{x}=\Sigma^{p} \wedge D E_{x}$, it is a finite $C W$-spectrum having no cells in dimensions $<l+1$, and hence l-connected. Since $H_{*}(M U(n))$ is free abelian, Proposition 6 implies that $M U_{*}\left(W_{x}\right)$ is a free $M U_{*}$-module. Let $f_{x}: W_{x}=\Sigma^{p} \wedge D E_{x} \rightarrow X^{\prime} \subset X$ be the dual morphism of x^{\prime}. By construction we see that

$$
x \in \operatorname{Im}\left\{\left(f_{x}\right)_{*}: M U_{*}\left(W_{x}\right) \rightarrow M U_{*}(X)\right\}
$$

Put $W=\vee W_{x}$ and $f=\vee f_{x}: W=\vee W_{x} \rightarrow X$ where x runs over a set of generators for $M U_{*}(X)$. As is easily seen,
i) W is a l-connected $C W$-spectrum such that $M U_{*}(W)$ is a free $M U_{*}$-module, and
ii) $f_{*}: M U_{*}(W) \rightarrow M U_{*}(X)$ is an epimorphism. Consequently, the cofibration $W \xrightarrow{f} X \subset Y$ forms a partial l-connected $M U_{*}$-resolution of X.

By an iterated application of Proposition 8 we have the following result which is the extension of Conner-Smith's theorem [6].

Theorem 1. Let X be a (connective) $C W$-spectrum. Then there exists a (connective) $M U_{*}$-resolution of X.
2.2. Let X be a connective $C W$-spectrum and $W(X)=\left\{X_{k}, W_{k}\right\}_{k \geq 0}$ a connective $M U_{*}$-resolution of X. By setting $\bar{X}_{k}=X_{k+1} / X_{0}$ and $\bar{X}_{\infty}=X_{\infty} / X_{0}$ we define an increasing filtration $\left\{\bar{X}_{k}\right\}$ of \bar{X}_{∞}. Fix $n, 0 \leqq n<\infty$, and observe the spectral sequence $\left\{E\langle n\rangle^{r}(W(X))\right\}$ of $M U\langle n\rangle_{*}(X)$ associated with the filtration $\left\{X_{k}\right\}$ (see [1] and [6]). Making use of Lemma 7 we define an increasing filtration of $M U\langle n\rangle_{*}(X)$ by

```
\(F_{p}^{W} M U\langle n\rangle_{k}(X)\)
\[
=\operatorname{Im}\left\{M U\langle n\rangle_{k+1}\left(X_{p+1} \mid X_{0}\right) \rightarrow M U\langle n\rangle_{k+1}\left(X_{\infty} \mid X_{0}\right) \cong M U\langle n\rangle_{k}(X)\right\}
\]
```

By definition of the spectral sequence we have

$$
\begin{align*}
& D\langle n\rangle_{p, q}^{1}=M U\langle n\rangle_{p+q+1}\left(X_{p+1} / X_{0}\right) \tag{2.2}\\
& E\langle n\rangle_{p, q}^{1}=M U\langle n\rangle_{p+q+1}\left(X_{p+1} / X_{p}\right) \cong M U\langle n\rangle_{p+q}\left(W_{p}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\underset{r>p}{\lim } E\langle n\rangle_{p, q}^{r} \cong E\langle n\rangle_{p, q}^{\infty} \cong F_{p}^{W} M U\langle n\rangle_{p+q}(X) \mid F_{p \rightarrow-1}^{W} M U\langle n\rangle_{p+q}(X) . \tag{2.3}
\end{equation*}
$$

The differential operator $d\langle\boldsymbol{n}\rangle^{1}$ is defined as the composition $E\langle\boldsymbol{n}\rangle_{p, q}^{1} \rightarrow$ $D\langle\boldsymbol{n}\rangle_{p-1, q}^{1} \rightarrow E\langle n\rangle_{p-1, q}^{1}$. Since the following diagram

is commutative, the E^{2}-term is the homology of the complex

$$
\rightarrow M U\langle n\rangle_{*+p}\left(W_{p}\right) \rightarrow \cdots \rightarrow M U\langle n\rangle_{*+1}\left(W_{1}\right) \rightarrow M U\langle n\rangle_{*}\left(W_{0}\right) \rightarrow 0 .
$$

By proposition $5 \mu\langle n\rangle$ induces an isomorphism

$$
\widetilde{\mu}\langle n\rangle: M U\langle n\rangle_{*} \otimes_{\mu V_{*}} M U_{*}\left(W_{p}\right) \rightarrow M U\langle n\rangle_{*}\left(W_{p}\right)
$$

for each $p \geqq 0$. On the other hand, we recall that

$$
\rightarrow M U_{*+p}\left(W_{p}\right) \rightarrow \cdots \rightarrow M U_{*}\left(W_{0}\right) \rightarrow M U_{*}(X) \rightarrow 0
$$

is a free $M U_{*}$-resolution of $M U_{*}(X)$. At present it follows immediately that

$$
E\langle n\rangle_{p, q}^{2} \cong \operatorname{Tor}_{p, q}^{M U_{*}}\left(M U\langle n\rangle_{*}, M U_{*}(X)\right) .
$$

Considering the commutative square

it is trivial that

$$
F_{0}^{W} M U\langle n\rangle_{*}(X) \cong \operatorname{Im}\left\{\tilde{\mu}\langle n\rangle: M U\langle n\rangle_{*} \bigotimes_{k U V_{*}} M U_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)\right\}
$$

And the edge map of the spectral sequence coincides with the reduced map $\tilde{\mu}\langle n\rangle: M U\langle n\rangle_{*_{k V_{*}}}^{\otimes} M U_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)$.

Next we shall show that the spectral sequence $\left\{E\langle n\rangle^{r}(W(X))\right\}$ is independent of the choice of a connective $M U_{*}$-resolution $W(X)$ of X.

Let $W(X)=\left\{X_{k}, W_{k}\right\}$ and $V(Y)=\left\{Y_{k}, V_{k}\right\}$ be connective $M U_{*}$-resolutions of X and Y respectively, and $f: X \rightarrow Y$ be a morphism of $C W$-spectra. Then there exist a connective $M U_{*}$-resolution $U(Y)=\left\{Z_{k}, U_{k}\right\}$ of Y and morphisms $\phi: W(X) \rightarrow U(Y)$ and $\psi: V(Y) \rightarrow U(Y)$ of connective $M U_{*}$-resolutions which lift f and 1_{Y} respectively. Moreover we can take as $U_{k} C W$-spectra of the form $W_{k} \vee V_{k} \vee U_{k}^{\prime}$. Thus we have a family $\left\{Z_{k}, U_{k}^{\prime}, \phi_{k}, \psi_{k}\right\}_{k \geq 0}$ of connective $C W$-spectra and morphisms such that
i) $U_{k}=W_{k} \vee V_{k} \vee U_{k}^{\prime} \rightarrow Z_{k} \subset Z_{k+1}$ is a partial connective $M U_{*}$-resolution of Z_{k} of length 1 , and
ii) the following diagram

is commutative where $Z_{0}=Y, \phi_{0}=f$ and $\psi_{0}=1_{Y}$.
In fact, we shall construct the desired family $\left\{Z_{k}, U_{k}^{\prime}, \phi_{k}, \psi_{k}\right\}$ by an induction process. Assume that there is a family $\left\{Z_{j}, U_{j-1}^{\prime}, \phi_{j}, \psi_{j}\right\}_{0 \leq j \leq k}$ with the required properties. By Proposition 8 there exists a partial connective $M U_{*^{-}}$ resolution

$$
U_{k}^{\prime} \xrightarrow{\theta_{k}^{\prime}} Z_{k} \subset Z_{k+1}^{\prime}
$$

of Z_{k}. Let $\theta_{k}: U_{k}=W_{k} \vee V_{k} \vee U_{k}^{\prime} \rightarrow Z_{k}$ be the morphism induced by ϕ_{k}, ψ_{k} and θ_{k}^{\prime}. We define a $C W$-spectrum Z_{k+1} as the mapping cone of θ_{k}. Clearly

$$
U_{k} \xrightarrow{\theta_{k}} Z_{k} \subset Z_{k+1}
$$

is a partial connective $M U_{*}$-resolution of Z_{k}. Besides we see that ϕ_{k} and ψ_{k} induce the desired morphisms ϕ_{k+1} and ψ_{k+1} respectively.

The morphisms $\phi: W(X) \rightarrow U(Y)$ and $\psi: V(Y) \rightarrow U(Y)$ of connective $M U_{*}$-resolutions yield morphisms

$$
\left\{E\langle n\rangle^{r}(W(X))\right\} \xrightarrow{\left\{\phi_{*}^{r}\right\}}\left\{E\langle n\rangle^{r}(U(Y))\right\} \stackrel{\left\{\psi_{*}^{r}\right\}}{\longleftrightarrow}\left\{E\langle n\rangle^{r}(V(Y))\right\}
$$

of spectral sequences and

$$
F_{p}^{W} M U\langle n\rangle_{*}(X) \xrightarrow{F_{p} \phi_{*}} F_{p}^{U} M U\langle n\rangle_{*}(Y) \stackrel{F_{p} \psi_{*}}{\longleftrightarrow} F_{p}^{V} M U\langle n\rangle_{*}(Y)
$$

of the increasing filtrations. Note that $F_{p} \phi_{*}$ and $F_{p} \psi_{*}$ coincide with f_{*} and $i d$ respectively. From the identification of the E^{2}-terms we find that

$$
\phi_{*}^{2}=\operatorname{Tor}^{M U^{*}}\left(M U\langle n\rangle_{*}, f_{*}\right) \quad \text { and } \quad \psi_{*}^{2}=\operatorname{Tor}^{M U_{*}}\left(M U\langle n\rangle_{*}, i d\right) .
$$

So ψ_{*}^{r} are isomorphisms for all $r, 2 \leqq r \leqq \infty$. From the bijectivity of ψ_{*}^{∞} it follows immediately that $F_{p}^{V} M U\langle n\rangle_{*}(Y)=F_{p}^{U} M U\langle n\rangle_{*}(Y)$.

Putting $X=Y$ and $f=1_{X}$, we obtain that

$$
E\langle n\rangle^{r}(W(X)) \cong E\langle n\rangle^{r}(V(X)) \quad \text { for all } \quad r, 2 \leqq r \leqq \infty
$$

and

$$
F_{p}^{W} M U\langle n\rangle_{*}(X)=F_{p}^{V} M U\langle n\rangle_{*}(X) \quad \text { for each } \quad p \geqq 0 .
$$

Thus the spectral sequence $\left\{E\langle n\rangle^{r}(W(X))\right\}$ is independent of the choice of a connective $M U_{*}$-resolution $W(X)$.

In addition the above discussion shows the naturality of our spectral sequence.

Theorem 2. Let X be a connective $C W$-spectrum and $0 \leqq n<\infty$. Then there exists a natural spectral sequence $\left\{E\langle n\rangle^{\gamma}(X)\right\}$ associated with $M U\langle n\rangle_{*}(X)$ such that

$$
E\langle n\rangle_{p, \ell}^{2}(X)=\operatorname{Tor}_{p, q}^{M U *}\left(M U\langle n\rangle_{*}, M U_{*}(X)\right) .
$$

As an immediate corollary of Theorem 2 we have
Corollary 9. Let X be a connective $C W$-spectrum and $0 \leqq n<\infty$. If $\operatorname{Tor}_{p, *}^{M U *}\left(M U\langle n\rangle_{*}, M U_{*}(X)\right)=0$ for all $p \geqq 1$, then

$$
\widetilde{\mu}\langle n\rangle: M U\langle n\rangle_{*_{\mu \sigma_{*}}} M U_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)
$$

is an isomorphism.
2.3. Let K_{*} and K^{*} denote the complex homology and cohomology K-theories, i.e., the Z_{2}-graded (reduced) homology and cohomology theories represented by the $B U$-spectrum. Now we discuss the duality between $K_{*}(X)$ and $K^{*}(X)$ for a connective $C W$-spectrum X. The Kronecker index gives a natural homomorphism

$$
\begin{equation*}
\kappa: K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right) \tag{2.4}
\end{equation*}
$$

First we shall need the following special case [1].
Lemma 10. Let X be a connective $C W$-spectrum with $H_{*}(X)$ free abelian. Then $\kappa: K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right)$ is an isomorphism.

Proof. Let $\left\{E^{r}(X)\right\}$ and $\left\{E_{r}(X)\right\}$ be the Atiyah-Hirzebruch spectral sequences for $K_{*}(X)$ and $K^{*}(X)$ respectively. The duality homomorphism $\kappa: K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right)$ yields morphisms

$$
\kappa_{r}: E_{r}(X) \rightarrow \operatorname{Hom}\left(E^{r}(X), Z\right)
$$

for $2 \leqq r \leqq \infty$. Since $H_{*}(X)$ is free abelian, the spectral sequence $\left\{E^{r}(X)\right\}$ collapses and moreover

$$
\kappa_{2}: H^{*}(X) \rightarrow \operatorname{Hom}\left(H_{*}(X), Z\right)
$$

is an isomorphism. This implies that the spectral sequence $\left\{E_{r}(X)\right\}$ collapses, and then it is strongly convergent [2, Proposition 9]. Thus

$$
E_{2}^{p, *}(X) \cong F^{p} K^{*}(X) / F^{p+1} K^{*}(X) \quad \text { and } \quad \cap F^{p} K^{*}(X)=\{0\}
$$

where $\left\{F^{p} K^{*}(X)\right\}$ is the usual decreasing filtration of $K^{*}(X)$ defined by skeletons. Consider the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow H^{p}(X ; Z) \rightarrow K^{*}(X) / F^{p+1} K^{*}(X) \rightarrow K^{*}(X) / F^{p} K^{*}(X) \rightarrow 0 \\
& \downarrow \\
& \downarrow \downarrow \\
& 0 \rightarrow \operatorname{Hom}\left(H_{p}(X ; Z), Z\right) \rightarrow \operatorname{Hom}\left(F_{p} K_{*}(X), Z\right) \rightarrow \operatorname{Hom}\left(F_{p-1} K_{*}(X), Z\right) \rightarrow 0
\end{aligned}
$$

with exact rows. We can show by an induction on p that

$$
K^{*}(X) / F^{p+1} K^{*}(X) \rightarrow \operatorname{Hom}\left(F_{p} K_{*}(X), Z\right)
$$

are isomorphisms for all p. Remark that $K^{*}(X) \cong \lim K^{*}(X) / F^{p+1} K^{*}(X)$ [2, (3.5) and (3.6)] and $\operatorname{Hom}\left(K_{*}(X), Z\right) \cong \lim \operatorname{Hom}\left(F_{p} \overleftarrow{K_{*}(X)}, Z\right)$. We pass to inverse limits and get that

$$
\kappa: K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right)
$$

is an isomorphism.
By $M U_{* *}()$ we mean that $M U_{*}()$ is treated as Z_{2}-graded by its even and odd components. The homomorphism of coefficients

$$
\mu_{C}: M U_{* *} \rightarrow Z
$$

induced by the Thom map $\mu_{C}: M U \rightarrow B U$ may be identified (up to sign) with the classical Todd genus. $\mu_{C}=T d$ makes Z into a Z_{2}-graded $M U_{* *}$-module, and then denote it by $Z_{T d}$.

There exist a $C W$-spectrum of the form $A=\vee A_{a}$ and a morphism $f: A \rightarrow X$ such that
i) A_{a} is a finite $C W$-spectrum with $H_{*}\left(A_{a}\right)$ free abelian, and
ii) $f_{*}: K_{*}(A) \rightarrow K_{*}(X)$ is an epimorphism.
(Cf., Proposition 8). On the other hand, a similar discussion to Proposition 5 shows that μ_{C} induces an isomorphism

$$
\begin{equation*}
\tilde{\mu}_{C}: Z_{T d} \otimes_{\Delta U_{* *}} M U_{* *}(B) \rightarrow K_{*}(B) \tag{2.5}
\end{equation*}
$$

for any connective $C W$-spectrum B with $H_{*}(B)$ free abelian. Therefore we find immediately that

$$
\begin{equation*}
\mu_{C}: M U_{* *}(X) \rightarrow K_{*}(X) \tag{2.6}
\end{equation*}
$$

is an epimorphism.
Let X be a connective $C W$-spectrum and $W(X)=\left\{X_{k}, W_{k}\right\}_{k \geq 0}$ a connective $M U_{*}$-resolution of X. Since $\mu_{C}: M U_{* *}\left(X_{k}\right) \rightarrow K_{*}\left(X_{k}\right)$ is an epimorphism and $K_{*}\left(W_{k}\right)$ is free abelian, the sequence

$$
\begin{equation*}
\rightarrow K_{*+k}\left(W_{k}\right) \rightarrow \cdots \rightarrow K_{*+1}\left(W_{1}\right) \rightarrow K_{*}\left(W_{0}\right) \rightarrow K_{*}(X) \rightarrow 0 \tag{2.7}
\end{equation*}
$$

becomes a free Z-resolution of $K_{*}(X)$. Associated with the increasing filtration $\left\{\bar{X}_{k}=X_{k+1} / X_{0}\right\}$ we have the spectral sequence $\left\{E_{r}[X]\right\}$ of $K^{*}(X)$ such that

$$
\begin{aligned}
& D_{1}^{p, q}[X]=K^{p+q+1}\left(X_{p+1} / X_{0}\right) \\
& E_{1}^{p, q}[X]=K^{p+q+1}\left(X_{p+1} / X_{p}\right) \cong K^{p+q}\left(W_{p}\right)
\end{aligned}
$$

The E_{2}-term is the homology of the complex

$$
0 \rightarrow K^{*}\left(W_{0}\right) \rightarrow K^{*+1}\left(W_{1}\right) \rightarrow \cdots \rightarrow K^{*+p}\left(W_{p}\right) \rightarrow \cdots
$$

By virtue of Lemma 10 the E_{2}-term is the homology of the complex

$$
0 \rightarrow \operatorname{Hom}\left(K_{*}\left(W_{0}\right), Z\right) \rightarrow \operatorname{Hom}\left(K_{*+1}\left(W_{1}\right), Z\right) \rightarrow \cdots
$$

Hence it follows that

$$
E_{2}^{p, q}[X] \cong \operatorname{Ext}^{p, q}\left(K_{*}(X), Z\right)
$$

The usual argument (cf., Theorem 2) shows that our spectral sequence is independent of the choice of a connective $M U_{*}$-resolution and it is natural.

Since $E_{2}^{p, q}[X]=0$ for $p \neq 0$, 1 , our spectral sequence $\left\{E_{r}[X]\right\}$ collapses, and it is strongly convergent [2]. From an elementary discussion about spectral sequences we obtain a universal coefficient sequence relating K_{*} and K^{*}.

Theorem 3. Let X be a connective $C W$-spectrum. Then there exists a natural exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(K_{*-1}(X), Z\right) \rightarrow K^{*}(X) \rightarrow \operatorname{Hom}\left(K_{*}(X), Z\right) \rightarrow 0
$$

3. $\boldsymbol{C} \boldsymbol{W}$-spectra with low $\boldsymbol{M} \boldsymbol{U}_{*}$-projective dimension

3.1. Let X be a $C W$-spectrum and $0 \leqq n<m \leqq \infty$. Making use of Dold's theorem we have

$$
\begin{aligned}
& \operatorname{Tor}_{p, *}^{M U<m\rangle_{*}}\left(M U\langle n\rangle_{*} \otimes Q, M U\langle m\rangle_{*}(X)\right) \\
\cong & \operatorname{Tor}_{p, *_{2}}^{M U\langle \rangle_{*}}\left(M U\langle n\rangle_{*}, M U\langle m\rangle_{*}(X) \otimes Q\right) \\
\cong & \operatorname{Tor}_{p, *}^{M U<m>*}\left(M U\langle n\rangle_{*}, H_{*}(X ; Q) \otimes M U\langle m\rangle_{*}\right) \\
\cong & \operatorname{Top}_{p, *}^{z}\left(M U\langle n\rangle_{*}, H_{*}(X ; Q)\right) \cong 0
\end{aligned}
$$

for all $p \geqq 1$. This yields that

$$
\begin{gather*}
\operatorname{Tor}_{p, *}^{M U\langle m\rangle_{*}\left(M U\langle n\rangle_{*}, M U\langle m\rangle_{*}(X)\right)} \tag{3.1}\\
\cong \\
\operatorname{Tor}_{p+1, *}^{M U\langle m\rangle_{*}}\left(M U\langle n\rangle_{*} \otimes Q / Z, M U\langle m\rangle_{*}(X)\right)
\end{gather*}
$$

for all $p \geqq 1$.
We denote by hom $\operatorname{dim}_{M U<m>*} M U\langle m\rangle_{*}(X)$ the projective demension of $M U\langle m\rangle_{*}(X)$ as a $M U\langle m\rangle_{*}$-module. Now Conner-Smith's theorem [6] is extended to a connective $C W$-spectrum as follows (cf., [10]).

Theorem 4. Let X be a connective $C W$-spectrum. Then the following conditions are equivalent:
$0)$ hom $\operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 1$;
I) the Thom homomorphism $\mu: M U_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism;
II) the Thom homomorphism μ induces an isomorphism $\widetilde{\mu}: Z \underset{\mu V_{*}}{\otimes} M U_{*}(X) \rightarrow H_{*}(X)$;
III) $\operatorname{Tor}_{p, *}^{M U_{*}^{*}}\left(Z, M U_{*}(X)\right)=0$ for all $p \geqq 1$.

Proof. We prove in the order: III) $\rightarrow \mathrm{II}) \rightarrow \mathrm{I}) \rightarrow 0$) $\rightarrow \mathrm{III}$). "II) $\rightarrow \mathrm{I}$)" is trivial. "III) \rightarrow II)" and " 0) \rightarrow III)" follow immediately from Corollary 9 and (3.1).
I) $\rightarrow 0$): Let $W \rightarrow X \subset Y$ be a partial connective $M U_{*}$-resolution of X. By the surjectivity of $\mu: M U_{*}(X) \rightarrow H_{*}(X), W \rightarrow X \subset Y$ forms a (partial) connective H_{*}-resolution of X of length 1 . Therefore $M U_{*}(Y)$ is a free $M U_{*^{-}}$ module by Proposition 6, so

$$
\operatorname{hom} \operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 1
$$

Let X be a connective $C W$-spectrum with hom $\operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 1$. Then, by Theorem 4 and Lemma 4, $\mu\langle n\rangle: M U_{*}(X) \rightarrow M U\langle n\rangle_{*}(X)$ is an epimorphism for each $n \geqq 0$. This implies that a connective $M U_{*}$-resolution of X of length 1 forms a connective $M U\langle n\rangle_{*}$-resolution of X of length 1. Thus
(3.2) X admits a connective $M U\langle n\rangle_{*}$-resolution of length 1 ,
and hence

$$
\begin{equation*}
\text { hom } \operatorname{dim}_{M U\langle n\rangle_{*}} M U\langle n\rangle_{*}(X) \leqq 1 \text {, } \tag{3.3}
\end{equation*}
$$

provided hom $\operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 1$.
The exact sequence $0 \rightarrow M U\langle n\rangle_{*} \xrightarrow{\boldsymbol{x}_{n}} M U\langle n\rangle_{*} \rightarrow M U\langle n-1\rangle_{*} \rightarrow 0$ of $M U\langle n\rangle_{*}$-modules, $1 \leqq n<\infty$, yields an exact sequence

$$
\begin{aligned}
0 \rightarrow & \operatorname{Tor}_{1, *}^{M U\langle n\rangle *}\left(M U\langle n-1\rangle_{*}, M U\langle n\rangle_{*}(X)\right) \rightarrow M U\langle n\rangle_{*}(X) \\
& \xrightarrow{\cdot x_{n}} M U\langle n\rangle_{*}(X) \rightarrow M U\langle n-1\rangle_{*_{n}} \bigotimes_{V<n\rangle *} M U\langle n\rangle_{*}(X) \rightarrow 0 .
\end{aligned}
$$

Combining this with (1.3) we get a natural exact sequence

$$
\begin{align*}
\dot{0} \rightarrow M U\langle n-1\rangle_{*} & \bigotimes_{\Delta U \cup n\rangle_{*}} M U\langle n\rangle_{*}(X) \xrightarrow{\tilde{\tau}\langle n\rangle} M U\langle n-1\rangle_{*}(X) \tag{3.4}\\
& \rightarrow \operatorname{Tor}_{1, *-1}^{M U\rangle_{*}\left(M U\langle n-1\rangle_{*}, M U\langle n\rangle_{*}(X)\right) \rightarrow 0}
\end{align*}
$$

[3, Theorem 5.3].
Let M be a $M U\langle n\rangle_{*}$-module and N and $L \cdot M U\langle n-1\rangle_{*}$-modules. Every $M U\langle n-1\rangle_{*}$-module may be treated as a $M U\langle n\rangle_{*}$-module via the map $\tau\langle n\rangle$: $M U\langle n\rangle_{*} \rightarrow M U\langle n-1\rangle_{*}$. We have two strongly convergent spectral sequences $\left\{E_{r}\right\}$ and $\left\{\bar{E}_{r}\right\}$ associated with the same graded $M U\langle n-1\rangle_{*}$-module such that

$$
E_{2}^{p . q}=\operatorname{Ext}_{M U<n>_{*}}\left(M, \operatorname{Ext}_{M U<n-1>_{*}}^{q}(N, L)\right)
$$

and

$$
\bar{E}_{2}^{p, q}=\operatorname{Ext}_{M U<n-1>*}^{p}\left(\operatorname{Tor}_{q}^{M U<n>*}(M, N), L\right)
$$

(cf., [12, (1.7)]). Replacing M and N by $M U\langle n\rangle_{*}(X)$ and $M U\langle n-1\rangle_{*}$ respectively, we find that
(3.5) there exists a strongly convergent spectral sequence $\left\{\bar{E}_{r}\right\}$ associated with $\operatorname{Ext}_{M U\langle n\rangle *}^{*}\left(M U\langle n\rangle_{*}(X), L\right)$ such that

$$
\bar{E}_{2}^{p, q}=\operatorname{Ext}_{M U\langle n-1\rangle_{*}^{p}}\left(\operatorname{Tor}_{q}^{M U<n\rangle_{*}}\left(M U\langle n\rangle_{*}(X), M U\langle n-1\rangle_{*}\right), L\right) .
$$

Proposition 11. Let X be a $C W$-spectrum and $1 \leqq n<\infty$. If hom $\operatorname{dim}_{M U\langle n\rangle_{*}} M U\langle n\rangle_{*}(X) \leqq 1$, then
i) $\tilde{\tau}\langle n\rangle: M U\langle n-1\rangle_{*} \otimes_{\mu \sigma\langle n\rangle_{*}} M U\langle n\rangle_{*}(X) \rightarrow M U\langle n-1\rangle_{*}(X)$ is an isomorphism, and
ii) hom $\operatorname{dim}_{M U<n-1\rangle_{*}} M U\langle n-1\rangle_{*}(X) \leqq 1$.

Proof. Using (3.1) we get that

$$
\begin{aligned}
& \operatorname{Tor}_{p, *}^{M U<n\rangle_{*}}\left(M U\langle n-1\rangle_{*}, M U\langle n\rangle_{*}(X)\right) \\
\cong & \operatorname{Tor}_{p+1, *}^{M U\left\langle\lambda^{\prime}\right.}\left(M U\langle n-1\rangle_{*} \otimes Q \mid Z, M U\langle n\rangle_{*}(X)\right)=0
\end{aligned}
$$

for all $p \geqq 1$, and by means of (3.4) that

$$
\tilde{\tau}\langle n\rangle: M U\langle n-1\rangle_{*} \bigotimes_{\mu V<n\rangle_{*}} M U\langle n\rangle_{*}(X) \rightarrow M U\langle n-1\rangle_{*}(X)
$$

is an isomorphism. In the spectral sequence $\left\{\bar{E}_{r}\right\}$ of (3.5) we have

$$
\bar{E}_{2}^{p, 0}=\operatorname{Ext}_{M U<n-1\rangle_{*}}\left(M U\langle n-1\rangle_{*}(X), L\right) \quad \text { and } \quad \bar{E}_{2}^{p, q}=0
$$

for $q \neq 0$. This implies that

$$
\operatorname{Ext}_{M U<n-1\rangle_{*}, *}\left(M U\langle n-1\rangle_{*}(X), L\right) \cong \operatorname{Ext}_{M U<n>*}^{p, *}\left(M U\langle n\rangle_{*}(X), L\right)=0
$$

for all $p \geqq 2$. So hom $\left.\operatorname{dim}_{M U<n-1\rangle *} M \dot{U} \dot{\langle } n-1\right\rangle_{*}(X) \leqq 1$,
3.2. Let $b u$ denote the connective $B U$-spectrum. The Thom map $\mu_{c}: M U \rightarrow B U$ is lifted to a morphism

$$
\zeta: M U \rightarrow b u
$$

of ring spectra. The usual morphism $\mu: M U \rightarrow K(Z)$ coincides with the composition $M U \xrightarrow{\zeta} b u \xrightarrow{\eta} K(Z)$. Let us denote by k_{*} the connective homology K-theory represented by $b u$.

Using the Stong-Hattori theorem we obtain
Proposition 12. Let X be a connective $C W$-spectrum. $\mu: M U_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism if and only if $\eta: k_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism.

Remark. Looking carefully at the proof given in [9] we can show that $\mu: M U_{j}(X) \rightarrow H_{j}(X)$ are epimorphisms for all $j \leqq k$ if and only if $\eta: k_{j}(X) \rightarrow H_{j}(X)$ are so for the same j. (Or use Lemma 13).

As generators of the polynomial algebra $M U_{*}$ we can choose $y_{i} \in \pi_{2 i}(M U)$ such that

$$
T_{d}\left(y_{1}\right)=1 \quad \text { and } \quad T_{d}\left(y_{j}\right)=0 \quad \text { for } j \geqq 2
$$

Whenever we restrict our interest to the $C W$-spectra $M U\langle n\rangle$ with $M U\langle n\rangle_{*} \cong$ $Z\left[y_{1}, \cdots, y_{n}\right]$, we denote them by $M U_{T_{d}}\langle n\rangle$. The morphism $\zeta: M U \rightarrow b u$ lifting $\mu_{C}: M U \rightarrow B U$ admits a factorization

$$
\left.M U \xrightarrow{\mu_{\infty, 1}} M U_{T d}<1\right\rangle \xrightarrow{\lambda_{1}} b u .
$$

Since λ_{1} induces an isomorphism in the homotopy groups, λ_{1} is a homotopy equivalence. Hence

$$
\begin{equation*}
M U_{T d}\langle 1\rangle_{*}() \cong k_{*}() \tag{3.6}
\end{equation*}
$$

Then $\left(\mu_{\infty, 1}\right) *$ may be regarded as the homomorphism ζ.
Making use of Theorem 4, Propositions 11 and 12 and (3.3) we obtain

Theorem 5. Let X be a connective $C W$-spectrum and $1 \leqq n<\infty$. The following conditions are equivalent:
$0) \quad \mathrm{hom} \operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 1$;
$0)_{n} \quad \operatorname{hom} \operatorname{dim}_{M U_{T_{d}}<n>*} M U_{T d}\langle n\rangle_{*}(X) \leqq 1$;
$0)^{\prime} \quad$ hom $\operatorname{dim}_{k *} k_{*}(X) \leqq 1$;
I) . $\mu: M U_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism;
I) $\quad \eta: k_{*}(X) \rightarrow H_{*}(X)$ is an epimorphism.

Conner-Smith [6, Theorem 9.1 and Proposition 9.5] proved the following theorem for a finite $C W$-complex. Therefore we can show by taking the direct limits that it is also true for any $C W$-spectrum. Neverthless we shall directly prove it along the line of [6].

Theorem 6. Let X be a $C W$-spectrum. Then μ_{C} induces an isomorphism

$$
\tilde{\mu}_{C}: Z_{T_{d} d V_{* *}} M U_{* *}(X) \rightarrow K_{*}(X)
$$

and

$$
\operatorname{Tor}_{y, *}^{M U_{* *}^{*}\left(Z_{T d}, M U_{* *}(X)\right)=0 \quad \text { for all } p \geqq 1 . . . ~}
$$

Proof. Take a partial $M U_{*}$-resolution $W \rightarrow X \subset Y$ of X. By Proposition 8 we may assume that W is a wedge sum of finite $C W$-spectra. Consider the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}_{1, *}^{M U_{* * *}^{*}\left(Z_{T d}, M U_{* *}(X)\right) \rightarrow Z_{T d} \otimes M U_{* *+1}(Y) \rightarrow} \\
& 0 \rightarrow K_{*+1}^{M U_{* *}}(Y) \rightarrow
\end{aligned}
$$

The vertical maps are all epimorphisms by (2.6), and in particular the center is an isomorphism because of (2.5). Hence the bottom row becomes exact. Of course the upper row is exact. With an application of "four lemma" we see that the right vertical map is an isomorphism. Thus

$$
\tilde{\mu}_{C}: Z_{T_{d}} \bigotimes_{\boldsymbol{\mu} \sigma_{* *}} M U_{* *}(X) \rightarrow K_{*}(X)
$$

is an isomorphism for any $C W$-spectrum X. Since this means that the left vertical map is also an isomorphism, we get

$$
\left.\operatorname{Tor}_{1, *}^{M U^{* *}(} Z_{T d}, M U_{* *}(X)\right)=0
$$

And a routine discussion involving an induction shows that

$$
\operatorname{Tor}_{p, *}^{M U_{* *}\left(Z_{T d} ; M U_{* *}(X)\right)=0 \quad \text { for all } p \geqq 1 . . . ~}
$$

The following theorem is the extension of [9, Theorem 2] to a connective $C W$-spectrum.

Theorem 7. Let X be a connective $C W$-spectrum. The following conditions are equivalent:
0) hom $\operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 2$;
I) $\zeta: M U_{*}(X) \rightarrow k_{*}(X)$ is an epimorphism;
II) ζ induces an isomorphism $\tilde{\zeta}: k_{*} \otimes_{k V_{*}} M U_{*}(X) \rightarrow k_{*}(X)$;
III) $\operatorname{Tor}_{p, *^{*}}^{M U_{*}}\left(k_{*}, M U_{*}(X)\right)=0$ for all $p \geqq 1$;
IV) $\operatorname{Tor}_{p+1, *}^{M U_{*}^{*} *}\left(Z, M U_{*}(X)\right)=0$ for all $p \geqq 1$.

Proof. We prove in the order: IV) $\rightarrow \mathrm{III}) \rightarrow \mathrm{II}) \rightarrow \mathrm{I}) \rightarrow 0) \rightarrow \mathrm{IV}$). "II) $\rightarrow \mathrm{I}$)" is trivial, and "III) \rightarrow II)" and " 0) \rightarrow IV)" follow from Corollary 9 and (3.1).
I) $\rightarrow 0$): Let $W \rightarrow X \subset Y$ be a partial connective $M U_{*}$-resolution of X. The surjectivity of $\zeta: M U_{*}(X) \rightarrow k_{*}(X)$ implies that $W \rightarrow X \subset Y$ is a partial connective k_{*}-resolution of X. Remark that $k_{*}(Y)$ is free abelian. By the aid of Lemma 3, Proposition 12 and Theorem 4 we see that hom $\operatorname{dim}_{M U_{*}} M U_{*}(Y) \leqq 1$, and hence

$$
\operatorname{hom} \operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq 2
$$

IV) \rightarrow III): The proof is due to [6]. From the exact sequence $0 \rightarrow k_{* *}$ $\xrightarrow{\cdot\left(1-x_{1}\right)} k_{* *} \rightarrow Z_{T d} \rightarrow 0$ and Theorem 6 we obtain an isomorphism

$$
\cdot\left(1-x_{1}\right): \operatorname{Tor}_{p, * *}^{M U_{* *}}\left(k_{* *}, M U_{* *}(X)\right) \rightarrow \operatorname{Tor}_{p, *}^{M U * *}\left(k_{* *}, M U_{* *}(X)\right)
$$

for each $p \geqq 1$. Take any $\alpha \in \operatorname{Tor}_{p, \phi}^{M U^{*}}\left(k_{*}, M U_{*}(X)\right), p \geqq 1$. Then there exists $\beta=\left\{\beta_{q+2 i}\right\} \in \sum_{i} \operatorname{Tor}_{p, 4+2 i}^{M U *}\left(k_{*}, M U_{*}(X)\right)$ such that $\left(1-x_{1}\right) \cdot \beta=\alpha$. Since $\beta_{q_{-2 N}}$ $=\beta_{q_{+2 N}}=0$ for large $N, \beta_{q_{+2 N}}=x_{1}^{N} \cdot \alpha=0$. However our assumption yields that

$$
\cdot x_{1}: \operatorname{Tor}_{p, *}^{M U_{*}^{*}}\left(k_{*}, M U_{*}(X)\right) \rightarrow \operatorname{Tor}_{p, *+2}^{M U^{*}}\left(k_{*}, M U_{*}(X)\right)
$$

is a monomorphism for each $p \geqq 1$. So $\alpha=0$, i.e.,

$$
\operatorname{Tor}_{p, *}^{M U_{*}}\left(k_{*}, M U_{*}(X)\right)=0 \quad \text { for all } p \geqq 1
$$

3.3. Let X be a connective $C W$-spectrum and $\left\{X^{p}\right\}$ the skeleton filtration of X. As is easily seen, we have that

$$
\begin{align*}
& M U\langle m\rangle_{j}\left(X^{p}\right) \cong M U\langle m\rangle_{j}(X) \quad \text { for } j \leqq p-1 \text { and } 0 \leqq m \leqq \infty, \text { and } \\
& H_{j}\left(X^{p}\right)=0 \quad \text { for } j \geqq p+1 . \tag{3.7}
\end{align*}
$$

Moreover we get that

$$
\begin{equation*}
M U\langle 1\rangle_{p+8}\left(X^{p}\right) \cong M U\langle 1\rangle_{p+2 j+8}\left(X^{p}\right) \text { for } j \geqq 0 \text { and } \varepsilon=0 \text { or }-1, \tag{3.8}
\end{equation*}
$$

making use of the exact sequence
$H_{p+\varepsilon+2 j+3}\left(X^{p}\right) \rightarrow M U\langle 1\rangle_{p+\varepsilon+2 j}\left(X^{p}\right) \xrightarrow{\bullet x_{1}} M U\langle 1\rangle_{p+\varepsilon+2 j+2}\left(X^{p}\right) \rightarrow H_{p+\varepsilon+2 j+2}\left(X^{p}\right)$.
Under the condition that $n=0$ or 1 ,
(3.9) $M U\langle n\rangle_{*}(X)$ is a (torsion) free abelian group if and only if $M U\langle n\rangle_{*}\left(X^{p}\right)$ are so for all p.

Proof. Assume that $M U\langle 1\rangle_{*}(X)$ is (torsion) free abelian. By means of (3.7) $M U\langle 1\rangle_{j}\left(X^{p}\right)$ is (torsion) free abelian for $j \leqq p-1$. In the exact sequence $0 \rightarrow M U\langle 1\rangle_{p}\left(X^{p-1}\right) \rightarrow M U\langle 1\rangle_{p}\left(X^{p}\right) \rightarrow M U\langle 1\rangle_{p}\left(X^{p} / X^{p-1}\right)$,

$$
M U\langle 1\rangle_{p}\left(X^{p-1}\right) \cong M U\langle 1\rangle_{p-2}\left(X^{p-1}\right) \cong M U\langle 1\rangle_{p-2}(X)
$$

and $M U\langle 1\rangle_{p}\left(X^{p} / X^{p-1}\right)$ is free abelian. So $M U\langle 1\rangle_{p}\left(X^{p}\right)$ is (torsion) free abelian. Making use of (3.8) again we find that $M U\langle 1\rangle_{*}\left(X^{p}\right)$ is (torsion) free abelian.

The other cases are evident.
Lemma 13. Let X be a connective $C W$-spectrum, $n=0$ or 1 , and $n<m \leqq \infty$. Then $\left(\mu_{m, n}\right)_{*}: M U\langle m\rangle_{j}(X) \rightarrow M U\langle n\rangle_{j}(X)$ is an epimorphism for each $j \leqq p$ if and only if $\left(\mu_{m, n}\right)_{*}: M U\langle m\rangle_{*}\left(X^{p}\right) \rightarrow M U\langle n\rangle_{*}\left(X^{p}\right)$ is an epimorphism.

Proof. The "if" part is immediate.
The "only if" part: Because of (3.7) $\left(\mu_{m, n}\right)_{*}: M U\langle m\rangle_{j}\left(X^{p}\right) \rightarrow M U\langle n\rangle_{j}\left(X^{p}\right)$ is an epimorphism for $j \leqq p-1$. Consider the following commutative diagram

$$
\begin{aligned}
& M U\langle m\rangle_{p+1}\left(X / X^{p}\right) \rightarrow M U\left\langle\downarrow^{\downarrow}\right\rangle_{p}\left(X^{p}\right) \rightarrow M U\langle m\rangle_{p}(X) \rightarrow 0 \\
& M U\langle n\rangle_{p+1}\left(X \mid X^{p}\right) \rightarrow M U\langle n\rangle_{p}\left(X^{p}\right) \rightarrow M U\langle n\rangle_{p}(X) \rightarrow 0
\end{aligned}
$$

with exact rows. The right vertical map is an epimorphism by the assumption. And the left one is so as is easily seen. With an application of "four lemma" we see that the central map is an epimorphism.

In the $n=0$ case we recall that $H_{i}\left(X^{p}\right)=0$ for $i \geqq p+1$. Consequently we obtain that $M U\langle m\rangle_{*}\left(X^{p}\right) \rightarrow H_{*}\left(X^{p}\right)$ is an epimorphism. In the $n=1$ case we have the commutative square

where $\varepsilon=0$ or -1 and $j \geqq 1$. The left vertical map is an epimorphism and the
bottom horizontal map is an isomorphism by (3.6). Therefore we get that $M U\langle m\rangle_{*}\left(X^{p}\right) \rightarrow M U\langle 1\rangle_{*}\left(X^{p}\right)$ is an epimorphism.

Combining (3.9) with Proposition 6 and Lemma 13 with Theorems 4 and 7 we obtain the following theorem (cf., [8]).

Theorem 8. Let X be a connective $C W$-spectrum and $n=0,1$ or 2. Then hom $\operatorname{dim}_{M U_{*}} M U_{*}(X) \leqq n$ if and only if hom $\operatorname{dim}_{M U_{*}} M U_{*}\left(X^{p}\right) \leqq n$ for all p.

Osaka City University

References

[1] J.F. Adams: Lectures on generalized cohomology theories, Lecture notes in Math. 99, Springer Verlag, 1969, 1-138.
[2] S. Araki and Z. Yosimura: A spectral sequence associated with a cohomology theory of infinite CW-complexes, Osaka J. Math. 9 (1972), 351-365.
[3] N.A. Baas: On bordism theory of manifolds with singularities, Preprint series 31, Aarhus Univ. (1969/70).
[4] J.M. Boardman: Stable homotopy theory, mimeographed notes, Warwick Univ., 1965.
[5] E.H. Brown: Cohomology theories, Ann. of Math. 75 (1962), 467-484 and 78 (1963), 201.
[6] P.F. Conner and L. Smith: On the complex bordism of finite complexes, Inst. Hautes Etudes Sci. Publ. Math. 37 (1970), 117-221.
[7] A. Dold: Relations between ordinary and extraordinary homology, Colloq. on A1gebraic Topology, Aarhus Univ. (1962), 2-9.
[8] D.C. Johnson: Skeleta of complexes with low MU_{*} projective dimension, Proc. Amer. Math. Soc. 32 (1972), 599-604.
[9] D.C. Johnson and L. Smith: On the relation of complex cobordism to connective Ktheory, Proc. Cambridge Philos. Soc. 70 (1971), 19-22.
[10] P.S. Landweber: Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175-179.
[11] R. Vogt: Boardman's stable homotopy category, Lecture notes series 21, Aarhus Univ., 1970.
[12] Z. Yosimura: On cohomology theories of infinite CW-complexes, II, Publ. Res. Inst. Math. Sci. 8 (1972/73), 483-508.

