

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

RING STRUCTURES OF K^r -COHOMOLOGIES OF DOLD MANIFOLDS

Michikazu FUJII

Dedicated to Professor Atuo Komatu for his 60th birthday

(Received October 3, 1968) (Revised October 17, 1968)

Introduction

In [4] we determined the K_U -cohomologies of the Dold manifold $D(m, n)$ additively. But we could not determine the ring structures of them, because we could not find a generator of the 2-torsion part in $\tilde{K}_{U}^{1}(D(m, 2r+1))$. The purpose of this paper is to determine the ring structures of K_{U} -cohomologies of the Dold manifold *D(m^y n).* The stunted Dold manifold plays an important role in the present discussions.

Let S^k , $k \geq 0$, denote the unit *k*-sphere in R^{k+1} , each point of which is represented by a sequence (x_0, \dots, x_k) of real numbers x_i with $\sum x_i^2 = 1$, and S^{2l+1} , $l \ge 0$, denote the unit (2l+1)-sphere in C^{l+1} , each point of which is repre- S^{2i+1} , $l \ge 0$, denote the unit $(2l+1)$ -sphere in C^{i+1} , each point of which is represented by a sequence (z_0, \dots, z_l) of complex numbers z_i with $\sum |z_i|^2 = 1$. Then the Dold manifold $D(k, l)$ is defined as the quotient space of the product space $S^k \times S^{2l+1}$ under the identification $(x, z) = (-x, \overline{\lambda z})$ for $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$ and all $\lambda \in C$ with $|\lambda| = 1$. Let $[x_0, \dots, x_k, z_0, \dots, z_l] \in D(k, l)$ denote the class of $(x_0, \dots, x_k, z_0, \dots, z_l) \in S^k \times S^{2l+1}$. The manifold $D(k', l'), k' \leq k$ and $l' \leq l$, is naturally imbedded in $D(k, l)$ by identifying $[x_0, \dots, x_{k'}, x_0, \dots, x_{l'}]$ with $[x_0, \dots, x_{l'}]$ $x_{k'} 0, \dots, 0, z_0, \dots, z_{l'}, 0, \dots, 0].$

Denote by *ξ* the canonical real line bundle over the real projective &-space *RP(k)*, and $\xi_i = p^i \xi$ the induced bundle of ξ by the projection $p: D(k, l) \rightarrow RP(k)$; and denote by η ₁ the canonical real 2–plane bundle over $D(k, l)$ (cf. [4], § 2).

Theorem 1. The Thom space $T(m\xi_1 \oplus n\eta_1)$ and the stunted Dold manifold $D(k+m, l+n)|D(m-1, l+n) \cup D(k+m, n-1)$ are homeomorphic, where $m\xi_1$ and m_1 are the m-fold and n-fold sum of ξ_1 and η_1 respectively.

From this theorem we have the following

Proposition 2. *We have the following homeomorphίsms:*

108 M. Fujii

- i) $h: D(k, n)/D(k, n-1) \approx S^n \wedge (RP(n+k)/RP(n-1))$,
- ii) $D(m, l)/D(m-1, l) \approx S^m \wedge CP(l)^+$,

where $S^n \wedge (RP(n+k)/RP(n-1))$ is the n-fold suspension of the stunted real pro*jective space, and CP (l)⁺ is the disjoint union of the complex projective l-space CP(l) and a point.*

Let g is the generator of $\tilde{K}_U^0(S^2)$ given by the reduced Hopf bundle and $g^{[r]}$ is the generator of $\tilde{K}_U^0(S^{2r})$ given by the external product $g \wedge \cdots \wedge g$. Also, let $\nu^{(r+1)}$ is the generator of $\tilde{K}_{U}^{0}(RP(2r+s)/RP(2r))$ (cf. [1], Theorem 7.3), then $g^{[r]}\nu^{(r+1)}$ is the generator of $\widetilde{K}_{U}^{-2r}(RP(2r+s)/RP(2r))$. Now, using Proposition 2, i), we can define a generator ω of the 2-torsion part in $\tilde{K}_U^1(D(m, 2r+1))$ as follows: $\omega = \pi^l h^l g^{[r]}\nu^{(r+1)}$, where π is the projection $D(m, 2r+1) \rightarrow D(m,$ $2r+1$ /*D(m, 2r),* and determine the multiplicative structures of $\tilde{K}^*(D(m, n))$, namely

Theorem 3. As for the ring structures of $\tilde{K}_{U}^{*}(D(m, n))$ we have the *following relations:*

a)
$$
\gamma^2 = g'^2 = \beta^2 = g'\beta = 0
$$
, $g'\alpha = 2\beta$,

- b) $\alpha^{r+1} = 0$, $\gamma \alpha^r = 0$ (for $n = 2r$) or $\gamma \alpha^{r+1} = 0$ (for $n = 2r+1$), $\beta \alpha^r = 0$ (for $n=2r$) or $\beta \alpha^r = 2^t \omega$ (for $n=2r+1$),
- c) $\alpha v_1 = \gamma v_1 = g'v_1 = \beta v_1 = 0$, $\alpha \omega = \gamma \omega = g' \omega = \beta \omega = 0$,
- d) $v_1^2 = -2v_1$, $\omega v_1 = -2\omega$, $\omega^2 = 0$,

where α, γ *, g',* β *and* ν *₁ are the generators given in* [4], *Theorem* (3.14)*, and ω is the generator of the 2–torsion part in* $\tilde{K}_{U}^{1}(D(m, 2r+1))$ given by the above *formula.*

1. Proof of Theorem 1

The total space $E(m\xi_1 \oplus n\eta_1)$ of $m\xi_1 \oplus n\eta_1$ is the quotient space of the product space $S^k \times S^{2l+1} \times R^m \times C^n$ under the identification $((x, z), (u, v)) = ((-x, \overline{\lambda z}),$ $(-u, \overline{\lambda v})$ for $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$, $u \in R^m$, $v \in C^n$ and all $\lambda \in C$ with $|\lambda| = 1$. Moreover, the associated unit disk bundle $D(m\xi, \bigoplus n\eta)$ is homeomorphic to the quotient space of the product apace $S^k \times S^{2l+1} \times D^m \times D^{2n}$ under the identification $((x, z), (u, v)) = ((-x, \overline{\lambda z}), (-u, \overline{\lambda v}))$, where $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$, $u \in D^m$, $v \in D^{2m} \subset C^m$ and λ is as above. Let $[(x, z), (u, v)]$ denote the class of $((x, z), (u, v))$ in $D(m\xi_1 \oplus n\eta_1)$. Then $[(x, z), (u, v)]$ is an element of the associated unit sphere bundle $S(m\xi_1 \oplus n\eta_1)$ if and only if $||u|| = 1$ or $||v|| = 1$.

We define a map

$$
f: S^k \times S^{2l+1} \times D^m \times D^{2n} \to S^{k+m} \times S^{2l+2n+1}
$$

by

$$
f((x, z), (u, v)) = ((u, \sqrt{1 - ||u||^{2}}x), (v, \sqrt{1 - ||v||^{2}}z)).
$$

Since

$$
f((-x,\overline{\lambda z}),(-u,\overline{\lambda v}))=(-(u,\sqrt{1-||u||^2}x),\,\overline{\lambda(v,\sqrt{1-||v||^2}z)}),
$$

the map f defines a map

$$
g\colon D(m\xi_1\oplus n\eta_1)\to D(k+m,\ l+n)
$$

such that $g(S(m\xi_1 \oplus n\eta_1)) \subset D(m-1, l+n) \cup D(k+m, n-1)$. The map

$$
g\colon D(m\xi_1\oplus n\eta_1)-S(m\xi_1\oplus n\eta_1)\to D(k+m,\,l+n)-D(m-1,\,l+n)
$$

$$
\cup D(k+m,\,n-1)
$$

is a homeomorphism. Therefore, the map *g* defines a quotient map

$$
h\colon T(m\xi_1\oplus n\eta_1)\to D(k+m,\ l+n)/D(m-1,\ l+n)\cup D(k+m,\ n-1)
$$

which is a homeomorphism.

2. Proof of Proposition 2

i). By taking $m = l = 0$ in Theorem 1, we have the homeomorphism

$$
T(n\eta_1) \approx D(k, n)/D(k, n-1).
$$

Since η_1 over $D(k, 0)$ is the 2-plane bundle $1 \oplus \xi_1$ (cf. [4], Theorem (2.2)), we have

$$
T(n\eta_1)=T(n\oplus n\xi_1)\approx S^n\wedge T(n\xi_1)
$$

If we identify $D(k, 0)$ with $RP(k)$, the line bundle ξ_1 is the canonical line bundle *ξ* over *RP(k).* Therefore we have the homeomorphism

$$
T(n\xi_1) \approx RP(n+k)/RP(n-1).
$$

Combining the above three homeomorphisms, we have the homeomorphism

$$
h\colon D(k,n)/D(k,n-1) \approx S^{n} \wedge (RP(n+k)/RP(n-1)) \ .
$$

ii). By taking $n = k = 0$ in Theorem 1, we have the homeomorphism

$$
T(m\xi_1) \approx D(m, l)/D(m-1, l).
$$

Since ξ_1 over $D(0, l)$ is the trivial line bundle, if we identify $D(0, l)$ with $CP(l)$, we have

$$
T(m\xi_1)=T(m)\approx S^m\wedge CP(l)^+.
$$

Therefore we have the homeomorphism

$$
D(m, l)|D(m-1, l) \approx S^m \wedge CP(l)^+.
$$

3. Proof of Theorem 3

Firstly we show that ω is a generator of the 2-torsion part in $\tilde{K}_{U}^{1}(D(m, 2r+1))$. Consider the exact sequence of the pair $(D(2t, 2r+1))$, *D(2t, 2r))*

$$
\tilde{K}_{U}^{1}(D(2t, 2r+1)/D(2t, 2r)) \to \tilde{K}_{U}^{1}(D(2t, 2r+1)) \to \tilde{K}_{U}^{1}(D(2t, 2r)) .
$$

According to [4], Theorem (3.14), we have $\tilde{K}_{U}^{1}(D(2t, 2r))=0$ and $\tilde{K}_{U}^{1}(D(2t, 2r))$ $(2r+1)) = Z_{2^t}$. Also, in virtue of Proposition 2, i), and [1], Theorem 7.3, we have

$$
\tilde{K}_U^1(D(2t, 2r+1)/D(2t, 2r)) \simeq \tilde{K}_U^{-2r}(RP(2t+2r+1)/RP(2r)) \simeq Z_{2^t},
$$

whose generator is $g^{[r]}\nu^{(r+1)}$. Therefore, ω is the generator of $\tilde{K}_U^1(D(2t, 2r+1))$.

Using the exact sequence of the pair
$$
(D(2t+1, 2r+1), D(2t+1, 2r))
$$

 $\tilde{K}^1(D(2t+1, 2r+1)/D(2t+1, 2r)) \rightarrow \tilde{K}^1(D(2t+1, 2r+1)) \rightarrow \tilde{K}^1(D(2t+1, 2r))$

$$
\Lambda_{U}(D(2l+1, 2l+1)|D(2l+1, 2l)) \rightarrow \Lambda_{U}(D(2l+1, 2l+1)) \rightarrow \Lambda_{U}(D(2l+1, 2l)),
$$

it is easy to see that ω is the generator of the 2–torsion part $Z_{z^{t+1}}$ of $\tilde{K}_{U}^{1}(D(2t+1, 2r+1))$ in the same way as the above case.

Next we show the relations. Since $(g^{[k]})^2 = 0$ in $\tilde{K}_U^0(S^{2k})$, the relations *γ*²=*g*^{*'2*}=*β*^{*2*}=*g'β*=0 and *ω*²=0 follow from *g'*=(*sf*)^{*l*}*g*^{*t+*¹*i*}, *β*=(*sf*)^{*l*}*g*^{*t+*¹*µ*}, $\gamma = f^{\prime}g^{[t]} \mu$ and $\omega = \pi^{'}h^{\prime}g^{[t]} \nu^{(t+1)}$. The relation $\nu_1^2 = -2\nu_1$ follows from the relation $v^2 = -2\nu$ in $\tilde{K}_U^0(RP(m))$.

Since $\tilde{K}_{U}^{1}(D(2t+1, 2r))$ has no torsion, Chern character *ch*: $\tilde{K}_{U}^{1}(D(2t+1, 2r))$ $(2r)$) \rightarrow *H**(*D*(2*t*+1, 2*r*); *Q*) is monomorphic. Therefore the relations $g' \alpha = 2\beta$ and *βa^r =0* follow from

$$
\operatorname{ch} g' \alpha = 2b(a/2! + \dots + a^r/(2r)!) = 2 \operatorname{ch} \beta \quad \text{and} \quad \operatorname{ch} \beta \alpha^r = 0
$$

respectively. The relation $g'\nu_1 = \beta \nu_1 = 0$ is trivial for $n=2r$.

In case of $n=2r-1$, since the elements α , ν_1 , g' and β of $\tilde{K}_U^*(D(2t+1))$, $(2r-1)$) are induced from the elements α , ν_1 , g' and β of $\tilde{K}_U^*(D(2t+1, 2r))$ by the inclusion map i: $D(2t+1, 2r-1) \subset D(2t+1, 2r)$, multiplicativity of the homomorphism i^1 shows the relations $g'\nu_1 = \beta \nu_1 = 0$ and $g'\alpha = 2\beta$ for $n=2r-1$. Also, the element $\beta \alpha^{r-1} \in \tilde{K}_{U}^{1}(D(2t+1, 2r-1))$ is the image of $\beta \alpha^{r-1}$ $\in \tilde{K}_{\text{U}}^1(D(2t+1, 2r))$ by i. On the other hand, consider the exact sequence

$$
\tilde{K}_{U}^{1}(D(2t+1, 2r)) \stackrel{t}{\rightarrow} \tilde{K}_{U}^{1}(D(2t+1, 2r-1)) \rightarrow \tilde{K}_{U}^{2}(D(2t+1, 2r)/D(2t+1, 2r-1)).
$$

In virtue of Proposition 2, i), and [1], Theorem 7.3, we have

$$
\tilde{K}_{U}^{2}(D(2t+1, 2r)/D(2t+1, 2r-1)) \cong \tilde{K}_{U}^{-2r+2}(RP(2t+2r+1)/RP(2r-1)) \cong Z+Z_{2^{t}},
$$

so that we have $i^!\beta \alpha^{r-1} = 2^t \omega$ for $\beta \alpha^{r-1} \in \tilde{K}^1_U(D(2t+1, 2r)$. Therefore we have the relation $\beta \alpha^{r-1} = 2^t \omega$ in $\tilde{K}_U^1(D(2t+1, 2r-1))$.

Since ch $\alpha^{r+1} = 0$ and ch $\gamma \alpha^r = 0$ (for $n = 2r$) (ch $\gamma \alpha^{r+1} = 0$ (for $n = 2r+1$)), the elements α^{r+1} and $\gamma \alpha^r$ (for $n=2r$) ($\gamma \alpha^{r+1}$ (for $n=2r+1$)) lie in $p^{\dagger} \tilde{K}_U^0(RP(m))$. Therefore the relation $r^{\dagger}\alpha=0$ implies $\alpha^{r+1}=p^{\dagger}r^{\dagger}\alpha^{r+1}=0$ and $\gamma\alpha^{r}=p^{\dagger}r^{\dagger}(\gamma\alpha^{r})$ $= p^{1}(r^{1}\gamma)(r^{1}\alpha^{r})) = 0$ (for $n=2r$) ($\gamma\alpha^{r+1} = p^{1}r^{1}(\gamma\alpha^{r+1}) = 0$ (for $n=2r+1$)), where r is the cross section defined in [4], Lemma (3.4) .

Since $\gamma \nu_1 \in p^1 \tilde{K}_U^0(RP(2t))$ and $r^1 \gamma = 0$, we have $\gamma \nu_1 = p^1 r^1(\gamma \nu_1) = p^1((r^1 \gamma)$ $(r^{\mu} \nu_1)$ = 0. The relation $\alpha \nu_1 = 0$ was showed in [4].

The elements $g' \omega$ and $\beta \omega$ lie in $p^{\dagger} \tilde{K}_{II}^0(RP(2t+1))$. Since the diagram

$$
\tilde{K}_{U}^{1}(D(2t+1, 2r+1)/D(2t+1, 2r)) \xrightarrow{\pi^{!}} \tilde{K}_{U}^{1}(D(2t+1, 2r+1))
$$
\n
$$
r^{!} \rvert p^{!}
$$
\n
$$
\tilde{K}_{U}^{1}(r) \xrightarrow{\pi^{!}} \tilde{K}_{U}^{1}(RP(2t+1))
$$

is commutative, we have $r^! \omega = \pi^! r^! (h^! g^{[r]} \nu^{(r+1)}) = 0$. Therefore we have $g' \omega$ $=p^1 r^1 (g' \omega) = p^1 ((r^1 g')(r^1 \omega)) = 0$ and $\beta \omega = p^1 r^1 (\beta \omega) = p^1 ((r^1 \beta)(r^1 \omega)) = 0$.

Finally we show the relations $\omega \alpha = 0$, $\omega \gamma = 0$ and $\omega \nu = -2\omega$ in $\tilde{K}_{U}^{1}(D(m, 2r+1)).$ For simplicity we put $Y_{1}=RP(m+2r+1), Y_{2}=RP(2r),$ $X_1 = D(m, 2r+1), X_2 = D(m, 2r)$ and $Z = D(m+2r+1, 2r+1).$

Lemma 1. *We have the homotopy -commutative diagram*

$$
X_1 \wedge X_1 \xrightarrow{\pi \wedge 1} (X_1/X_2) \wedge X_1 \xrightarrow{\hat{h} \wedge 1} S^{2r+1} \wedge (Y_1/Y_2) \wedge X_1 \xrightarrow{\hat{1} \wedge 1 \wedge i} S^{2r+1} \wedge (Y_1/Y_2) \wedge Z
$$
\n
$$
\downarrow d_1
$$
\n
$$
X_1 \xrightarrow{\pi} X_1/X_2 \xrightarrow{\hat{h}} S^{2r+1} \wedge (Y_1/Y_2) \wedge RP(m) \xrightarrow{\hat{S}^{2r+1} \wedge (Y_1/Y_2) \wedge Y_1}
$$
\n
$$
\downarrow d_1
$$
\n
$$
X_1 \xrightarrow{\pi} X_1/X_2 \xrightarrow{\hat{h}} S^{2r+1} \wedge (Y_1/Y_2) \xrightarrow{\hat{S}^{2r+1} \wedge (Y_1/Y_2)},
$$

i is the inclusion map $X_1 \subset Z$, h is the homeomorphism of Proposition 2, i), d_1 *is the diagonal map,* \bar{d}_1 *and* d_2 *are the maps induced by the diagonal maps, r is the cross section of* [4], *Lemma* (3.4), *and q is the map given by*

$$
q([a] \wedge [b, \sqrt{1-||b||^2}x]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [x].
$$

Proof. It is sufficient to show the followings:

i) the maps $u=(1\wedge 1\wedge i)\circ (h\wedge 1)\circ \bar{d}_1\circ h^{-1}$ and $v=(1\wedge 1\wedge r)\circ (1\wedge d_2)$ are homotopic,

ii) the map *q* is well defined and the maps $\bar{u} = (h \wedge 1) \circ \bar{d}_1 \circ h^{-1}$ and $w=(1 \wedge 1 \wedge r)$ *oq* are homotopic.

 $D(m, 0)$ is the 2-plane bundle $1 \oplus \xi$ over $RP(m)$. The homeomorphism For this purpose we investigate the details of the homeomorphism *h.* If we identify $D(m, 0)$ with $RP(m)$, the canonical real 2-plane bundle η_1 over

$$
h_1
$$
: $T((2r+1) \oplus (2r+1) \xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2)$

is induced from the map

$$
f_1: (S^{m} \times D^{2r+1} \times D^{2r+1}, S^{m} \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r})) \rightarrow (D^{2r+1} \times S^{m+2r+1}, S^{2r} \times S^{m+2r+1} \cup D^{2r+1} \times S^{2r})
$$

given by

$$
f_{\mathfrak{1}}(x, a, b) = (a, (b, \sqrt{1 - ||b||^{2}}x)),
$$

and the homeomorphism

$$
h_{2}: T((2r+1)\eta_{1}) \to X_{1}/X_{2}
$$

is induced from the map

$$
f_2\colon (S^{\boldsymbol{m}}\times S^1\times D^{2(2\boldsymbol{r}+1)},\ S^{\boldsymbol{m}}\times S^1\times S^{2(2\boldsymbol{r})+1})\\\to (S^{\boldsymbol{m}}\times S^{2(2\boldsymbol{r}+1)+1},\ S^{\boldsymbol{m}}\times S^{2(2\boldsymbol{r})+1})
$$

given by

$$
f_{\scriptscriptstyle 2}(x,\,z,\,v) = (x,\,(v,\,\sqrt{1 - ||v||^2}z))\,,
$$

where D^{2r+1} and $D^{2(2r+1)}$ are unit disks of R^{2r+1} and C^{2r+1} respectively.

We define a map

$$
\begin{aligned} \phi\colon (S^{m}{\times}D^{2r+1}{\times}D^{2r+1},\ S^{m}{\times}(S^{2r}{\times}D^{2r+1}\cup D^{2r+1}{\times}S^{2r}))\\ \to (S^{m}{\times}S^{1}{\times}D^{2(2r+1)},\ S^{m}{\times}S^{1}{\times}S^{2(2r+1)})\end{aligned}
$$

by

$$
\phi(x, a, b) = (x, 1, \theta(a, b)),
$$

where θ is the standard homeomorphism $D^{2r+1} \times D^{2r+1} \rightarrow D^{2(2r+1)}$ given by

$$
\theta(a, b) = \max (||a||, ||b||)(||a||2+||b||2)-1/2(a+bi)
$$

Since

 $\phi(-x, a, -b) = (-x, 1, \overline{\theta(a, b)})$,

the map ϕ defines a quotient map

$$
\psi\colon T((2r+1)\oplus (2r+1)\xi)\to T((2r+1)\eta_1)
$$

which is a homeomorphism. The homeomorphism *h* is the composition $h_1 \circ \psi^{-1} \circ h_2^{-1}$ of the three homeomorphisms,

Now, the homeomorphism *h* is given by

$$
h^{-1}([a] \wedge [b, \sqrt{1-||b||^2}x]) = [x, (\theta(a, b), \sqrt{1-||\theta(a, b)||^2})].
$$

Therefore we have

$$
u([a] \wedge [b, \sqrt{1-||b||^2}x]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [(x, 0), (\theta(a, b), \sqrt{1-||\theta(a, b)||^2})]
$$

and

$$
v([a] \wedge [b, \sqrt{1-||b||^2}x]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [(b, \sqrt{1-||b||^2}x), (1, 0)].
$$

We define two maps F_t^1 and F_t^2 , for $0 \le t \le 1$,

$$
\begin{aligned}(S^{\pmb{m}}\times D^{2\pmb{r}+1}\times D^{2\pmb{r}+1},\ S^{\pmb{m}}\times(S^{2\pmb{r}}\times D^{2\pmb{r}+1}\cup D^{2\pmb{r}+1}\times S^{2\pmb{r}}))\\ \to(D^{2\pmb{r}+1}\times S^{\pmb{m}+2\pmb{r}+1}\times(S^{\pmb{m}+2\pmb{r}+1}\times S^{2(2\pmb{r}+1)+1}),\ (S^{2\pmb{r}}\times S^{\pmb{m}+2\pmb{r}+1}\cup D^{2\pmb{r}+1}\times S^{2\pmb{r}})\\ \times(S^{\pmb{m}+2\pmb{r}+1}\times S^{2(2\pmb{r}+1)+1}))\end{aligned}
$$

by

$$
F_{t}^{1}(x, a, b) = (a, (b, \sqrt{1-||b||^{2}}x)) \times ((x, 0), (t\theta(a, b), \sqrt{1-||t\theta(a, b)||^{2}}))
$$

and

$$
F_t^2(x, a, b) = (a, (b, \sqrt{1 - ||b||^2}x) \times ((tb, \sqrt{1 - ||tb||^2}x), (1, 0)).
$$

Then the maps F_t^1 and F_t^2 are compatible with the identification, so that they define maps G_t^1 and G_t^2 respectively

$$
(D((2r+1)\oplus (2r+1)\xi), S((2r+1)\oplus (2r+1)\xi))
$$

\n
$$
\rightarrow (D^{2r+1} \times RP(m+2r+1) \times D(m+2r+1, 2r+1), (S^{2r} \times RP(m+2r+1))
$$

\n
$$
\cup D^{2r+1} \times RP(2r)) \times D(m+2r+1, 2r+1)).
$$

Therefore, they define quotient maps H_t^1 and H_t^2 respectively

$$
T((2r+1)\oplus (2r+1)\xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2) \wedge Z,
$$

and we have

 $u = H_1^1 \circ h_1^{-1}$ and $v = H_1^2 \circ h_1^{-1}$.

Since the maps F_0^1 and F_0^2 are homotopic, the maps H_0^1 and H_0^2 are homotopic. Therefore the maps H_1^1 and H_1^2 are homotopic, so that the maps u and v are homotopic. This shows i).

The map *q* is defined as follows: We define a map

$$
f\colon (S^m \times D^{2r+1} \times D^{2r+1}, S^m \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r}))
$$

\n
$$
\rightarrow (D^{2r+1} \times S^{m+2r+1} \times S^m, (S^{2r} \times S^{m+2r+1} \cup D^{2r+1} \times S^{2r}) \times S^m)
$$

114 M. FUJII

by

$$
f(x, a, b) = (a, (b, \sqrt{1 - ||b||^2}x), x).
$$

Since

$$
f(-x, a, -b) = (a, (-b, -\sqrt{1-||b||^2}x), -x),
$$

the map f defines a quotient map
\n
$$
g\colon T((2r+1)\oplus (2r+1)\xi) \to S^{2r+1}\wedge (Y_1/Y_2)\wedge RP(m)\,,
$$

and we have $q = g \circ h_1^{-1}$.

Now, we can define a map, for $0 \le t \le 1$,

$$
H_i: T((2r+1) \oplus (2r+1)\xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2) \wedge X_1
$$

by

$$
H_{t}([x, a, b]) = [a] \wedge [b, \sqrt{1-||b||^{2}}x] \wedge [x, (t\theta(a, b), \sqrt{1-||t\theta(a, b)||^{2}}],
$$

and we have $\overline{u} = H_1 \circ h_1^{-1}$. Since the maps w and $H_0 \circ h_1^{-1}$ are homotopic, the maps \bar{u} and w are homotopic. This shows ii).

This completes the proof of Lemma 1.

Lemma 2. *We have the commutative diagram*

$$
\tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2}))\otimes \tilde{K}_{U}^{0}(Z) \xrightarrow{\begin{subarray}{c}1\otimes i^{1}\end{subarray}} \tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2}))\otimes \tilde{K}_{U}^{0}(X_{1}) \xrightarrow{\begin{subarray}{c}h^{1}\otimes 1\\h^{1}\otimes 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2})\wedge Z) \xrightarrow{\begin{subarray}{c}1\wedge i^{1}\end{subarray}} \tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2})\wedge X_{1}) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2})\wedge X_{1}) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}|Y_{2})\wedge RP(m)) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{0}(X_{1}) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{0}(X_{1}) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{0}(X_{1}) \xrightarrow{\begin{subarray}{c}h\wedge 1\\h\wedge 1\end{subarray}} \begin{pmatrix}h\wedge 1\\h\wedge 1\end{pmatrix}^{i}\otimes \tilde{K}_{U}^{0
$$

Proof. It follows from Lemma 1 by naturality.

Proposition. We have the relations $\omega \alpha = 0$, $\omega \gamma = 0$ and $\omega \nu_1 = -2\omega$ in $\tilde{K}_{U}^{1}(D(m, 2r+1)).$

Proof. Since $r^{\dagger} \alpha = r^{\dagger} \gamma = 0$ in $\tilde{K}_{U}^{0}(RP(m))$, we have $q^{\dagger}(1 \wedge r)^{\dagger}(g^{[r]_{U}(r+1)} \wedge \alpha)$ $f^{(4)}(r) \wedge r^{\dagger} \alpha = 0$ and $q^{\dagger} (1 \wedge r)^{\dagger} (g^{[r]} \nu^{(r+1)} \wedge \gamma) = q^{\dagger} (g^{[r]} \nu^{(r+1)} \wedge r^{\dagger} \gamma) = 0$ in $\tilde{K}_{U}^{1}(S^{2r+1}\wedge (Y_{1}/Y_{2}))$. In virtue of definition of ω and Lemma 2, these show *ωα*=0 and *ω*γ=0 in $\tilde{K}^1_U(X_1)$.

Since the element ν_1 of $\tilde{K}_U^0(X_1)$ is induced from the element ν_1 of $\tilde{K}_U^0(Z)$ by the inclusion map $X \subset Z$, in order to show the relation $\omega v = -2\omega$ in $\tilde{K}_U^1(X)$, in virtue of definition of ω and Lemma 2, it is sufficient to show that we have the relation $v^{(r+1)} \cdot r^1 v_1 = -2v^{(r+1)}$ in $\tilde{K}^0_U(Y_1/Y_2)$ for v_1 of $\tilde{K}^0_U(Z)$.

Since $r^{\dagger}v_1 = v$ in $\tilde{K}_U^0(Y_1)$, we have the relation $v^{r+1} \cdot r^{\dagger}v_1 = -2v^{r+1}$ in The homomorphism, induced by the projection $j: Y_1 \rightarrow Y_1/Y_2$

$$
j^! \colon \tilde{K}_U^0(Y_1/Y_2) \to \tilde{K}_U^0(Y_1)
$$

is monomorphism, so that we have $\nu^{(r+1)} \cdot r^{\dagger} \nu_1 = -2\nu^{(r+1)}$ in $\tilde{K}^0_U(Y_1/Y_2)$). The proof is complete.

This completes the proof of Theorem 3.

OSAKA CITY UNIVERSITY

References

[1] J.F. Adams: *Vector fields on spheres,* Ann. of Math. 75 (1962), 603-622.

[2] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.

[3] A. Bold: *Erzeugende der Thomschen Algebra* 9ΐ, Math. Z. 65 (1956), 25-35.

[4] M. Fujii: *Ku-groups of Dold manifolds,* Osaka J. Math. 3 (1966), 49-64.

[5] D. Husemoller: Fibre Bundles, McGraw-Hill, 1966.