

Title	Ring structures of K_u -cohomologies of Dold manifolds
Author(s)	Fujii, Michikazu
Citation	Osaka Journal of Mathematics. 1969, 6(1), p. 107-115
Version Type	VoR
URL	https://doi.org/10.18910/6127
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Fujii, M.
Osaka J. Math.
6 (1969), 107-115

RING STRUCTURES OF K_U -COHOMOLOGIES OF DOLD MANIFOLDS

Michikazu FUJII

Dedicated to Professor Atuo Komatu for his 60th birthday

(Received October 3, 1968)

(Revised October 17, 1968)

Introduction

In [4] we determined the K_U -cohomologies of the Dold manifold $D(m, n)$ additively. But we could not determine the ring structures of them, because we could not find a generator of the 2-torsion part in $\tilde{K}_U^1(D(m, 2r+1))$. The purpose of this paper is to determine the ring structures of K_U -cohomologies of the Dold manifold $D(m, n)$. The stunted Dold manifold plays an important role in the present discussions.

Let S^k , $k \geq 0$, denote the unit k -sphere in R^{k+1} , each point of which is represented by a sequence (x_0, \dots, x_k) of real numbers x_i with $\sum x_i^2 = 1$, and S^{2l+1} , $l \geq 0$, denote the unit $(2l+1)$ -sphere in C^{l+1} , each point of which is represented by a sequence (z_0, \dots, z_l) of complex numbers z_i with $\sum |z_i|^2 = 1$. Then the Dold manifold $D(k, l)$ is defined as the quotient space of the product space $S^k \times S^{2l+1}$ under the identification $(x, z) = (-x, \bar{\lambda}z)$ for $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$ and all $\lambda \in C$ with $|\lambda| = 1$. Let $[x_0, \dots, x_k, z_0, \dots, z_l] \in D(k, l)$ denote the class of $(x_0, \dots, x_k, z_0, \dots, z_l) \in S^k \times S^{2l+1}$. The manifold $D(k', l')$, $k' \leq k$ and $l' \leq l$, is naturally imbedded in $D(k, l)$ by identifying $[x_0, \dots, x_{k'}, z_0, \dots, z_{l'}]$ with $[x_0, \dots, x_{k'}, 0, \dots, 0, z_0, \dots, z_{l'}, 0, \dots, 0]$.

Denote by ξ the canonical real line bundle over the real projective k -space $RP(k)$, and $\xi_1 = p^* \xi$ the induced bundle of ξ by the projection $p: D(k, l) \rightarrow RP(k)$; and denote by η_1 the canonical real 2-plane bundle over $D(k, l)$ (cf. [4], § 2).

Theorem 1. *The Thom space $T(m\xi_1 \oplus n\eta_1)$ and the stunted Dold manifold $D(k+m, l+n)/D(m-1, l+n) \cup D(k+m, n-1)$ are homeomorphic, where $m\xi_1$ and $n\eta_1$ are the m -fold and n -fold sum of ξ_1 and η_1 respectively.*

From this theorem we have the following

Proposition 2. *We have the following homeomorphisms:*

- i) $h: D(k, n)/D(k, n-1) \approx S^n \wedge (RP(n+k)/RP(n-1))$,
- ii) $D(m, l)/D(m-1, l) \approx S^m \wedge CP(l)^+$,

where $S^n \wedge (RP(n+k)/RP(n-1))$ is the n -fold suspension of the stunted real projective space, and $CP(l)^+$ is the disjoint union of the complex projective l -space $CP(l)$ and a point.

Let g is the generator of $\tilde{K}_U^0(S^2)$ given by the reduced Hopf bundle and g^{tr} is the generator of $\tilde{K}_U^0(S^{2r})$ given by the external product $g \wedge \cdots \wedge g$. Also, let $\nu^{(r+1)}$ is the generator of $\tilde{K}_U^0(RP(2r+s)/RP(2r))$ (cf. [1], Theorem 7.3), then $g^{tr}\nu^{(r+1)}$ is the generator of $\tilde{K}_U^{2r}(RP(2r+s)/RP(2r))$. Now, using Proposition 2, i), we can define a generator ω of the 2-torsion part in $\tilde{K}_U^1(D(m, 2r+1))$ as follows: $\omega = \pi^!h^!g^{tr}\nu^{(r+1)}$, where π is the projection $D(m, 2r+1) \rightarrow D(m, 2r+1)/D(m, 2r)$, and determine the multiplicative structures of $\tilde{K}_U^*(D(m, n))$, namely

Theorem 3. *As for the ring structures of $\tilde{K}_U^*(D(m, n))$ we have the following relations:*

- a) $\gamma^2 = g'^2 = \beta^2 = g'\beta = 0$, $g'\alpha = 2\beta$,
- b) $\alpha^{r+1} = 0$, $\gamma\alpha^r = 0$ (for $n=2r$) or $\gamma\alpha^{r+1} = 0$ (for $n=2r+1$),
 $\beta\alpha^r = 0$ (for $n=2r$) or $\beta\alpha^r = 2^t\omega$ (for $n=2r+1$),
- c) $\alpha\nu_1 = \gamma\nu_1 = g'\nu_1 = \beta\nu_1 = 0$, $\alpha\omega = \gamma\omega = g'\omega = \beta\omega = 0$,
- d) $\nu_1^2 = -2\nu_1$, $\omega\nu_1 = -2\omega$, $\omega^2 = 0$,

where α, γ, g' , β and ν_1 are the generators given in [4], Theorem (3.14), and ω is the generator of the 2-torsion part in $\tilde{K}_U^1(D(m, 2r+1))$ given by the above formula.

1. Proof of Theorem 1

The total space $E(m\xi_1 \oplus n\eta_1)$ of $m\xi_1 \oplus n\eta_1$ is the quotient space of the product space $S^k \times S^{2l+1} \times R^m \times C^n$ under the identification $((x, z), (u, v)) = ((-x, \bar{z}), (-u, \bar{v}))$ for $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$, $u \in R^m$, $v \in C^n$ and all $\lambda \in C$ with $|\lambda| = 1$. Moreover, the associated unit disk bundle $D(m\xi_1 \oplus n\eta_1)$ is homeomorphic to the quotient space of the product space $S^k \times S^{2l+1} \times D^m \times D^{2n}$ under the identification $((x, z), (u, v)) = ((-x, \bar{z}), (-u, \bar{v}))$, where $x \in S^k$, $z \in S^{2l+1} \subset C^{l+1}$, $u \in D^m$, $v \in D^{2n} \subset C^n$ and λ is as above. Let $[(x, z), (u, v)]$ denote the class of $((x, z), (u, v))$ in $D(m\xi_1 \oplus n\eta_1)$. Then $[(x, z), (u, v)]$ is an element of the associated unit sphere bundle $S(m\xi_1 \oplus n\eta_1)$ if and only if $\|u\| = 1$ or $\|v\| = 1$.

We define a map

$$f: S^k \times S^{2l+1} \times D^m \times D^{2n} \rightarrow S^{k+m} \times S^{2l+2n+1}$$

by

$$f((x, z), (u, v)) = ((u, \sqrt{1-||u||^2}x), (v, \sqrt{1-||v||^2}z)).$$

Since

$$f((-x, \bar{z}), (-u, \bar{v})) = (-u, \sqrt{1-||u||^2}x), \bar{\lambda}(v, \sqrt{1-||v||^2}z)),$$

the map f defines a map

$$g: D(m\xi_1 \oplus n\eta_1) \rightarrow D(k+m, l+n)$$

such that $g(S(m\xi_1 \oplus n\eta_1)) \subset D(m-1, l+n) \cup D(k+m, n-1)$. The map

$$g: D(m\xi_1 \oplus n\eta_1) - S(m\xi_1 \oplus n\eta_1) \rightarrow D(k+m, l+n) - D(m-1, l+n) \cup D(k+m, n-1)$$

is a homeomorphism. Therefore, the map g defines a quotient map

$$h: T(m\xi_1 \oplus n\eta_1) \rightarrow D(k+m, l+n)/D(m-1, l+n) \cup D(k+m, n-1)$$

which is a homeomorphism.

2. Proof of Proposition 2

i). By taking $m=l=0$ in Theorem 1, we have the homeomorphism

$$T(n\eta_1) \approx D(k, n)/D(k, n-1).$$

Since η_1 over $D(k, 0)$ is the 2-plane bundle $1 \oplus \xi_1$ (cf. [4], Theorem (2.2)), we have

$$T(n\eta_1) = T(n \oplus n\xi_1) \approx S^n \wedge T(n\xi_1).$$

If we identify $D(k, 0)$ with $RP(k)$, the line bundle ξ_1 is the canonical line bundle ξ over $RP(k)$. Therefore we have the homeomorphism

$$T(n\xi_1) \approx RP(n+k)/RP(n-1).$$

Combining the above three homeomorphisms, we have the homeomorphism

$$h: D(k, n)/D(k, n-1) \approx S^n \wedge (RP(n+k)/RP(n-1)).$$

ii). By taking $n=k=0$ in Theorem 1, we have the homeomorphism

$$T(m\xi_1) \approx D(m, l)/D(m-1, l).$$

Since ξ_1 over $D(0, l)$ is the trivial line bundle, if we identify $D(0, l)$ with $CP(l)$, we have

$$T(m\xi_1) = T(m) \approx S^m \wedge CP(l)^+.$$

Therefore we have the homeomorphism

$$D(m, l)/D(m-1, l) \approx S^m \wedge CP(l)^+.$$

3. Proof of Theorem 3

Firstly we show that ω is a generator of the 2-torsion part in $\tilde{K}_U^1(D(m, 2r+1))$. Consider the exact sequence of the pair $(D(2t, 2r+1), D(2t, 2r))$

$$\tilde{K}_U^1(D(2t, 2r+1)/D(2t, 2r)) \rightarrow \tilde{K}_U^1(D(2t, 2r+1)) \rightarrow \tilde{K}_U^1(D(2t, 2r)).$$

According to [4], Theorem (3.14), we have $\tilde{K}_U^1(D(2t, 2r))=0$ and $\tilde{K}_U^1(D(2t, 2r+1))=Z_{2^t}$. Also, in virtue of Proposition 2, i), and [1], Theorem 7.3, we have

$$\tilde{K}_U^1(D(2t, 2r+1)/D(2t, 2r)) \cong \tilde{K}_U^{-2r}(RP(2t+2r+1)/RP(2r)) \cong Z_{2^t},$$

whose generator is $g^{[t]}\nu^{(r+1)}$. Therefore, ω is the generator of $\tilde{K}_U^1(D(2t, 2r+1))$.

Using the exact sequence of the pair $(D(2t+1, 2r+1), D(2t+1, 2r))$

$$\tilde{K}_U^1(D(2t+1, 2r+1)/D(2t+1, 2r)) \rightarrow \tilde{K}_U^1(D(2t+1, 2r+1)) \rightarrow \tilde{K}_U^1(D(2t+1, 2r)),$$

it is easy to see that ω is the generator of the 2-torsion part $Z_{2^{t+1}}$ of $\tilde{K}_U^1(D(2t+1, 2r+1))$ in the same way as the above case.

Next we show the relations. Since $(g^{[k]})^2=0$ in $\tilde{K}_U^0(S^{2k})$, the relations $\gamma^2=g'^2=\beta^2=g'\beta=0$ and $\omega^2=0$ follow from $g'=(sf)^\dagger g^{[t+1]}$, $\beta=(sf)^\dagger g^{[t+1]}\mu$, $\gamma=f^\dagger g^{[t]}\mu$ and $\omega=\pi^h h^\dagger g^{[t]}\nu^{(r+1)}$. The relation $\nu_1^2=-2\nu_1$ follows from the relation $\nu^2=-2\nu$ in $\tilde{K}_U^0(RP(m))$.

Since $\tilde{K}_U^1(D(2t+1, 2r))$ has no torsion, Chern character $ch: \tilde{K}_U^1(D(2t+1, 2r)) \rightarrow H^*(D(2t+1, 2r); Q)$ is monomorphic. Therefore the relations $g'\alpha=2\beta$ and $\beta\alpha'=0$ follow from

$$ch g'\alpha = 2b(a/2!+\cdots+a^r/(2r)!) = 2 ch \beta \quad \text{and} \quad ch \beta\alpha' = 0$$

respectively. The relation $g'\nu_1=\beta\nu_1=0$ is trivial for $n=2r$.

In case of $n=2r-1$, since the elements α , ν_1 , g' and β of $\tilde{K}_U^*(D(2t+1, 2r-1))$ are induced from the elements α , ν_1 , g' and β of $\tilde{K}_U^*(D(2t+1, 2r))$ by the inclusion map $i: D(2t+1, 2r-1) \subset D(2t+1, 2r)$, multiplicativity of the homomorphism i^* shows the relations $g'\nu_1=\beta\nu_1=0$ and $g'\alpha=2\beta$ for $n=2r-1$. Also, the element $\beta\alpha'^{-1} \in \tilde{K}_U^1(D(2t+1, 2r-1))$ is the image of $\beta\alpha'^{-1} \in \tilde{K}_U^1(D(2t+1, 2r))$ by i^* . On the other hand, consider the exact sequence

$$\tilde{K}_U^1(D(2t+1, 2r)) \xrightarrow{i^*} \tilde{K}_U^1(D(2t+1, 2r-1)) \rightarrow \tilde{K}_U^2(D(2t+1, 2r)/D(2t+1, 2r-1)).$$

In virtue of Proposition 2, i), and [1], Theorem 7.3, we have

$$\tilde{K}_U^2(D(2t+1, 2r)/D(2t+1, 2r-1)) \cong \tilde{K}_U^{-2r+2}(RP(2t+2r+1)/RP(2r-1)) \cong Z + Z_{2^t},$$

so that we have $i^! \beta \alpha^{r-1} = 2^r \omega$ for $\beta \alpha^{r-1} \in \tilde{K}_U^1(D(2t+1, 2r))$. Therefore we have the relation $\beta \alpha^{r-1} = 2^r \omega$ in $\tilde{K}_U^1(D(2t+1, 2r-1))$.

Since $\text{ch } \alpha^{r+1} = 0$ and $\text{ch } \gamma \alpha^r = 0$ (for $n=2r$) ($\text{ch } \gamma \alpha^{r+1} = 0$ (for $n=2r+1$)), the elements α^{r+1} and $\gamma \alpha^r$ (for $n=2r$) ($\gamma \alpha^{r+1}$ (for $n=2r+1$)) lie in $p^! \tilde{K}_U^0(RP(m))$. Therefore the relation $r^! \alpha = 0$ implies $\alpha^{r+1} = p^! r^! \alpha^{r+1} = 0$ and $\gamma \alpha^r = p^! r^! (\gamma \alpha^r) = p^! ((r^! \gamma)(r^! \alpha^r)) = 0$ (for $n=2r$) ($\gamma \alpha^{r+1} = p^! r^! (\gamma \alpha^{r+1}) = 0$ (for $n=2r+1$)), where r is the cross section defined in [4], Lemma (3.4).

Since $\gamma \nu_1 \in p^! \tilde{K}_U^0(RP(2t))$ and $r^! \gamma = 0$, we have $\gamma \nu_1 = p^! r^! (\gamma \nu_1) = p^! ((r^! \gamma)(r^! \nu_1)) = 0$. The relation $\alpha \nu_1 = 0$ was showed in [4].

The elements $g' \omega$ and $\beta \omega$ lie in $p^! \tilde{K}_U^0(RP(2t+1))$. Since the diagram

$$\begin{array}{ccc} \tilde{K}_U^1(D(2t+1, 2r+1)/D(2t+1, 2r)) & \xrightarrow{\pi^!} & \tilde{K}_U^1(D(2t+1, 2r+1)) \\ r^! \downarrow p^! & & r^! \downarrow p^! \\ \tilde{K}_U^1(*) & \xrightarrow{\pi^!} & \tilde{K}_U^1(RP(2t+1)) \end{array}$$

is commutative, we have $r^! \omega = \pi^! r^! (h^! g^! r^! \nu^{(r+1)}) = 0$. Therefore we have $g' \omega = p^! r^! (g' \omega) = p^! ((r^! g')(r^! \omega)) = 0$ and $\beta \omega = p^! r^! (\beta \omega) = p^! ((r^! \beta)(r^! \omega)) = 0$.

Finally we show the relations $\omega \alpha = 0$, $\omega \gamma = 0$ and $\omega \nu_1 = -2\omega$ in $\tilde{K}_U^1(D(m, 2r+1))$. For simplicity we put $Y_1 = RP(m+2r+1)$, $Y_2 = RP(2r)$, $X_1 = D(m, 2r+1)$, $X_2 = D(m, 2r)$ and $Z = D(m+2r+1, 2r+1)$.

Lemma 1. *We have the homotopy-commutative diagram*

$$\begin{array}{ccccccc} X_1 \wedge X_1 & \xrightarrow{\pi \wedge 1} & (X_1/X_2) \wedge X_1 & \xrightarrow{h \wedge 1} & S^{2r+1} \wedge (Y_1/Y_2) \wedge X_1 & \xrightarrow{1 \wedge 1 \wedge i} & S^{2r+1} \wedge (Y_1/Y_2) \wedge Z \\ \uparrow d_1 & & \uparrow \bar{d}_1 & \approx & \uparrow 1 \wedge 1 \wedge r & & \uparrow 1 \wedge 1 \wedge r \\ X_1 & \xrightarrow{\pi} & X_1/X_2 & \xrightarrow{h} & S^{2r+1} \wedge (Y_1/Y_2) \wedge RP(m) & \xrightarrow{1 \wedge 1 \wedge d_2} & S^{2r+1} \wedge (Y_1/Y_2) \wedge Y_1 \\ & & & & \uparrow q & & \uparrow 1 \wedge d_2 \\ & & & & S^{2r+1} \wedge (Y_1/Y_2) & = & S^{2r+1} \wedge (Y_1/Y_2) \end{array}$$

where i is the inclusion map $X_1 \subset Z$, h is the homeomorphism of Proposition 2, i), d_1 is the diagonal map, \bar{d}_1 and d_2 are the maps induced by the diagonal maps, r is the cross section of [4], Lemma (3.4), and q is the map given by

$$q([a] \wedge [b, \sqrt{1 - \|b\|^2} x]) = [a] \wedge [b, \sqrt{1 - \|b\|^2} x] \wedge [x].$$

Proof. It is sufficient to show the followings:

- i) the maps $u = (1 \wedge 1 \wedge i) \circ (h \wedge 1) \circ \bar{d}_1 \circ h^{-1}$ and $v = (1 \wedge 1 \wedge r) \circ (1 \wedge d_2)$ are homotopic,
- ii) the map q is well defined and the maps $\bar{u} = (h \wedge 1) \circ \bar{d}_1 \circ h^{-1}$ and $w = (1 \wedge 1 \wedge r) \circ q$ are homotopic.

For this purpose we investigate the details of the homeomorphism h . If we identify $D(m, 0)$ with $RP(m)$, the canonical real 2-plane bundle η_1 over $D(m, 0)$ is the 2-plane bundle $1 \oplus \xi$ over $RP(m)$. The homeomorphism

$$h_1: T((2r+1) \oplus (2r+1) \xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2)$$

is induced from the map

$$\begin{aligned} f_1: (S^m \times D^{2r+1} \times D^{2r+1}, S^m \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r})) \\ \rightarrow (D^{2r+1} \times S^{m+2r+1}, S^{2r} \times S^{m+2r+1} \cup D^{2r+1} \times S^{2r}) \end{aligned}$$

given by

$$f_1(x, a, b) = (a, (b, \sqrt{1-||b||^2}x)),$$

and the homeomorphism

$$h_2: T((2r+1) \eta_1) \rightarrow X_1/X_2$$

is induced from the map

$$\begin{aligned} f_2: (S^m \times S^1 \times D^{2(2r+1)}, S^m \times S^1 \times S^{2(2r)+1}) \\ \rightarrow (S^m \times S^{2(2r+1)+1}, S^m \times S^{2(2r)+1}) \end{aligned}$$

given by

$$f_2(x, z, v) = (x, (v, \sqrt{1-||v||^2}z)),$$

where D^{2r+1} and $D^{2(2r+1)}$ are unit disks of R^{2r+1} and C^{2r+1} respectively.

We define a map

$$\begin{aligned} \phi: (S^m \times D^{2r+1} \times D^{2r+1}, S^m \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r})) \\ \rightarrow (S^m \times S^1 \times D^{2(2r+1)}, S^m \times S^1 \times S^{2(2r)+1}) \end{aligned}$$

by

$$\phi(x, a, b) = (x, 1, \theta(a, b)),$$

where θ is the standard homeomorphism $D^{2r+1} \times D^{2r+1} \rightarrow D^{2(2r+1)}$ given by

$$\theta(a, b) = \max(||a||, ||b||)(||a||^2 + ||b||^2)^{-1/2}(a + bi).$$

Since

$$\phi(-x, a, -b) = (-x, 1, \overline{\theta(a, b)}),$$

the map ϕ defines a quotient map

$$\psi: T((2r+1) \oplus (2r+1) \xi) \rightarrow T((2r+1) \eta_1)$$

which is a homeomorphism. The homeomorphism h is the composition $h_1 \circ \psi^{-1} \circ h_2^{-1}$ of the three homeomorphisms.

Now, the homeomorphism h is given by

$$h^{-1}([a] \wedge [b, \sqrt{1-||b||^2}x]) = [x, (\theta(a, b), \sqrt{1-||\theta(a, b)||^2})].$$

Therefore we have

$$u([a] \wedge [b, \sqrt{1-||b||^2}x]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [(x, 0), (\theta(a, b), \sqrt{1-||\theta(a, b)||^2})]$$

and

$$v([a] \wedge [b, \sqrt{1-||b||^2}x]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [(b, \sqrt{1-||b||^2}x), (1, 0)].$$

We define two maps F_t^1 and F_t^2 , for $0 \leq t \leq 1$,

$$\begin{aligned} & (S^m \times D^{2r+1} \times D^{2r+1}, S^m \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r})) \\ & \rightarrow (D^{2r+1} \times S^{m+2r+1} \times (S^{m+2r+1} \times S^{2(2r+1)+1}), (S^{2r} \times S^{m+2r+1} \cup D^{2r+1} \times S^{2r}) \\ & \quad \times (S^{m+2r+1} \times S^{2(2r+1)+1})) \end{aligned}$$

by

$$F_t^1(x, a, b) = (a, (b, \sqrt{1-||b||^2}x)) \times ((x, 0), (t\theta(a, b), \sqrt{1-||t\theta(a, b)||^2}))$$

and

$$F_t^2(x, a, b) = (a, (b, \sqrt{1-||b||^2}x)) \times ((tb, \sqrt{1-||tb||^2}x), (1, 0)).$$

Then the maps F_t^1 and F_t^2 are compatible with the identification, so that they define maps G_t^1 and G_t^2 respectively

$$\begin{aligned} & (D((2r+1) \oplus (2r+1)\xi), S((2r+1) \oplus (2r+1)\xi)) \\ & \rightarrow (D^{2r+1} \times RP(m+2r+1) \times D(m+2r+1, 2r+1), (S^{2r} \times RP(m+2r+1) \\ & \quad \cup D^{2r+1} \times RP(2r)) \times D(m+2r+1, 2r+1)). \end{aligned}$$

Therefore, they define quotient maps H_t^1 and H_t^2 respectively

$$T((2r+1) \oplus (2r+1)\xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2) \wedge Z,$$

and we have

$$u = H_1^1 \circ h_1^{-1} \quad \text{and} \quad v = H_1^2 \circ h_1^{-1}.$$

Since the maps F_0^1 and F_0^2 are homotopic, the maps H_0^1 and H_0^2 are homotopic. Therefore the maps H_1^1 and H_1^2 are homotopic, so that the maps u and v are homotopic. This shows i).

The map q is defined as follows: We define a map

$$\begin{aligned} f: & (S^m \times D^{2r+1} \times D^{2r+1}, S^m \times (S^{2r} \times D^{2r+1} \cup D^{2r+1} \times S^{2r})) \\ & \rightarrow (D^{2r+1} \times S^{m+2r+1} \times S^m, (S^{2r} \times S^{m+2r+1} \cup D^{2r+1} \times S^{2r}) \times S^m) \end{aligned}$$

by

$$f(x, a, b) = (a, (b, \sqrt{1-||b||^2}x), x).$$

Since

$$f(-x, a, -b) = (a, (-b, -\sqrt{1-||b||^2}x), -x),$$

the map f defines a quotient map

$$g: T((2r+1) \oplus (2r+1)\xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2) \wedge RP(m),$$

and we have $q = g \circ h_1^{-1}$.

Now, we can define a map, for $0 \leq t \leq 1$,

$$H_t: T((2r+1) \oplus (2r+1)\xi) \rightarrow S^{2r+1} \wedge (Y_1/Y_2) \wedge X_1$$

by

$$H_t([x, a, b]) = [a] \wedge [b, \sqrt{1-||b||^2}x] \wedge [x, (t\theta(a, b), \sqrt{1-||t\theta(a, b)||^2})],$$

and we have $\bar{u} = H_1 \circ h_1^{-1}$. Since the maps w and $H_0 \circ h_1^{-1}$ are homotopic, the maps \bar{u} and w are homotopic. This shows ii).

This completes the proof of Lemma 1.

Lemma 2. *We have the commutative diagram*

$$\begin{array}{ccccc}
 \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2)) \otimes \tilde{K}_U^0(Z) & \xrightarrow{1 \otimes i^!} & \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2)) \otimes \tilde{K}_U^0(X_1) & \xrightarrow{h^! \otimes 1} & \\
 \downarrow & & \downarrow & & \\
 \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2) \wedge Z) & \xrightarrow{(1 \wedge i)^!} & \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2) \wedge X_1) & \xrightarrow{(h \wedge 1)^!} & \\
 \downarrow (1 \wedge r)^! & & \downarrow (1 \wedge r)^! & & \\
 \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2) \wedge Y_1) & & \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2) \wedge RP(m)) & & \\
 \downarrow (1 \wedge d_2)^! & & \downarrow q^! & & \\
 \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2)) & \xlongequal{\quad} & \tilde{K}_U^1(S^{2r+1} \wedge (Y_1/Y_2)) & \xrightarrow{h^!} & \\
 & & & & \\
 & & \tilde{K}_U^1(X_1/X_2) \otimes \tilde{K}_U^0(X_1) & \xrightarrow{\pi^! \otimes 1} & \tilde{K}_U^1(X_1) \otimes \tilde{K}_U^0(X_1) \\
 & & \downarrow & & \downarrow \\
 & & \tilde{K}_U^1((X_1/X_2) \wedge X_1) & \xrightarrow{(\pi \wedge 1)^!} & \tilde{K}_U^1(X_1 \wedge X_1) \\
 & & \downarrow \bar{d}_1^! & & \downarrow d_1^! \\
 & & \tilde{K}_U^1(X_1/X_2) & \xrightarrow{\pi^!} & \tilde{K}_U^1(X_1).
 \end{array}$$

Proof. It follows from Lemma 1 by naturality.

Proposition. *We have the relations $\omega\alpha=0$, $\omega\gamma=0$ and $\omega\nu_1=-2\omega$ in $\tilde{K}_U^1(D(m, 2r+1))$.*

Proof. Since $r^!\alpha=r^!\gamma=0$ in $\tilde{K}_U^0(RP(m))$, we have $q^!(1\wedge r)^!(g^{[r]}v^{(r+1)}\wedge\alpha)=q^!(g^{[r]}v^{(r+1)}\wedge r^!\alpha)=0$ and $q^!(1\wedge r)^!(g^{[r]}v^{(r+1)}\wedge\gamma)=q^!(g^{[r]}v^{(r+1)}\wedge r^!\gamma)=0$ in $\tilde{K}_U^1(S^{2r+1}\wedge(Y_1/Y_2))$. In virtue of definition of ω and Lemma 2, these show $\omega\alpha=0$ and $\omega\gamma=0$ in $\tilde{K}_U^1(X_1)$.

Since the element ν_1 of $\tilde{K}_U^0(X_1)$ is induced from the element ν_1 of $\tilde{K}_U^0(Z)$ by the inclusion map $X_1\subset Z$, in order to show the relation $\omega\nu_1=-2\omega$ in $\tilde{K}_U^1(X_1)$, in virtue of definition of ω and Lemma 2, it is sufficient to show that we have the relation $\nu^{(r+1)}\cdot r^!\nu_1=-2\nu^{(r+1)}$ in $\tilde{K}_U^0(Y_1/Y_2)$ for ν_1 of $\tilde{K}_U^0(Z)$.

Since $r^!\nu_1=\nu$ in $\tilde{K}_U^0(Y_1)$, we have the relation $\nu^{r+1}\cdot r^!\nu_1=-2\nu^{r+1}$ in $\tilde{K}_U^0(Y_1)$. The homomorphism, induced by the projection $j: Y_1\rightarrow Y_1/Y_2$,

$$j^!: \tilde{K}_U^0(Y_1/Y_2) \rightarrow \tilde{K}_U^0(Y_1)$$

is monomorphism, so that we have $\nu^{(r+1)}\cdot r^!\nu_1=-2\nu^{(r+1)}$ in $\tilde{K}_U^0(Y_1/Y_2)$. The proof is complete.

This completes the proof of Theorem 3.

OSAKA CITY UNIVERSITY

References

- [1] J.F. Adams: *Vector fields on spheres*, Ann. of Math. **75** (1962), 603–622.
- [2] M.F. Atiyah: *Thom complexes*, Proc. London Math. Soc. **11** (1961), 291–310.
- [3] A. Dold: *Erzeugende der Thomschen Algebra \mathfrak{N}* , Math. Z. **65** (1956), 25–35.
- [4] M. Fujii: *K_U -groups of Dold manifolds*, Osaka J. Math. **3** (1966), 49–64.
- [5] D. Husemoller: Fibre Bundles, McGraw-Hill, 1966.

