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Introduction

In [4] we determined the Ky -cohomologies of the Dold manifold D(m, =)
additively. But we could not determine the ring structures of them, because we
could not find a generator of the 2-torsion part in K}(D(m, 2r+1)). The
purpose of this paper is to determine the ring structures of K ;-cohomologies of
the Dold manifold D(m, n). The stunted Dold manifold plays an important role
in the present discussions.

Let S*, k=0, denote the unit k-sphere in R**') each point of which is

represented by a sequence (¥,,-::, ¥;) of real numbers x; with > x?=1, and
S¥+1 =0, denote the unit (2/+1)-sphere in C’*', each point of which is repre-
sented by a sequence (2, ,**, 2;) of complex numbers 2; with 37 |2;|>=1. Then

the Dold manifold D(k, I) is defined as the quotient space of the product space
S*x S?** under the identification (x, 2)=(—x, Az)for x& S* .S C'* and
all neC with |A|=1. Let [x,,, %z, %, ", 2/] ED(k, I) denote the class of
(%o »***s Xy Z570+,2) ES¥X S, The manifold D(k’, I'), K’ <k and I'<], is
naturally imbedded in D(k, /) by identifying [x,,-:*, %y, 2y, **, 8] With [x,,---,
w7 0,0+, 0, 25,0+, 27, 0,00+, 0].

Denote by £ the canonical real line bundle over the real projective k-space
RP(k), and £,=p'¢ the induced bundle of & by the projection p:D(k, [)—>RP(k);
and denote by 7, the canonical real 2—plane bundle over D(k, [) (cf. [4], § 2).

Theorem 1. The Thom space T(m& @nn,) and the stunted Dold manifold
D(k+m, I4+n)/D(m—1, I4-n)U D(k+m, n—1) are homeomorphic, where mg, and
nn, are the m-fold and n-fold sum of &, and 7, respectively.

From this theorem we have the following

Proposition 2. We have the following homeomorphisms:
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i) h: D(k, n)/D(k, n—1) ~ S" A(RP(n+k)|RP(n—1)),
ii) D(m, I)|D(m—1,1) ~ S"ACP()",

where S" N\ (RP(n+k)/RP(n—1)) is the n-fold suspension of the stunted real pro-
jective space, and CP (I)* is the disjoint union of the complex projective l-space CP(l)
and a point.

Let g is the generator of KY(S?) given by the reduced Hopf bundle and
g1 is the generator of KJ(S*) given by the external productg A---Ag. Also,
let »+V is the generator of KY(RP(2r-+s)/RP(2r)) (cf. [1], Theorem 7.3), then
g *Y is the generator of Kz (RP(2r+s)/RP(2r)). Now, using Proposi-
tion 2, i), we can define a generator o of the 2-torsion part in K g(D(m, 2r+1))
as follows: o=n'h'gl'ly*> where = is the projection D(m, 2r+41)—D(m,
2r+1)/D(m, 2r), and determine the multiplicative structures of K#(D(m, n)),
namely

Theorem 3. As for the ring structures of K¥(D(m, n)) we have the
following relations:

a) y'=g"=F'=g'p=0, ga=28,

b) a’t'=0, ya"=0 (for n=2r) or «ya"t'=0 (for n=2r+1),
Ba"=0 (for n=2r) or PLa =2 (for n=2r+1),

) av,=vv,=g'v,=0r,=0, ao=vo=g'o=Lw=0,

d) »/=—2, or,=—20, =0,

where a, v, g', B and v, are the generators given in [4], Theorem (3.14), and »
is the generator of the 2-torsion part in K}(D(m, 2r-+1)) given by the above
Sformula.

1. Proof of Theorem 1

The total space E(m& Pnn,) of mg,Pny, is the quotient space of the pro-
duct space S*x S*%*' x R™ x C*under the identification ((x, 2), (&, v))=((—x, 1),
(—u, A0)) for xES*, & S¥' CCH', ueR™, v=C" and all AeC with |r|=1.
Moreover, the associated unit disk bundle D(mg PBnn,) is homeomorphic to
the quotient space of the product apace S*x S**'x D™ x D** under the identi-
fication ((x, 2), (%, v))=((—%, A2), (—u, Av)), where xES* xS CCH,
ueD™ veD™CC” and A is as above. Let [(x, 2), (4, v)] denote the class of
((x, =), (w, v)) in D(mE Dnn,). Then [(x, 2), (¥, v)] is an element of the
associated unit sphere bundle S(mg Pny,) if and only if |Ju||=1 or ||o||=1.

We define a map

fi SEX S X DX D s SEEm s S
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by

A, 2), (u, 2)) = (4, VT [ulPx), (v, VI [[oll’2)).
Since

f((—%, X3), (—u, M) = (—(u, VI—[[ull), Az, VI-[[2[2)) ,
the map f defines a map

g: D(m £, ®nn,) > D(k-+m, I4-n)
such that g(S(m&,Hnn,))cD(m—1, I+n)U D(k+m, n—1). The map

g: D(mg Dnn,)—S(mE Pnn,) — D(k+m, I4+n)—D(m—1, l+n)
UD(k-+m, n—1)

is a homeomorphism. Therefore, the map g defines a quotient map
h: T(m g,Dnn,) — D(k+m, I4+n)/D(m—1, I4+n)U D(k-+m, n—1)
which is a homeomorphism.

2. Proof of Proposition 2

i). By taking m=I=0 in Theorem 1, we have the homeomorphism
T(nn,) =~ D(k, n)|D(k, n—1).

Since 7, over D(k, 0) is the 2-plane bundle 1PE, (cf. [4], Theorem (2.2)), we
have

T(nn,) = T(n®n&,) ~ S"N\T(nt,) .

If we identify D(k, 0) with RP(k), the line bundle £, is the canonical line
bundle £ over RP(k). Therefore we have the homeomorphism

T(ng,) =~ RP(n+k)/RP(n—1).
Combining the above three homeomorphisms, we have the homeomorphism
h: D(k, n)|D(k, n—1) ~ S"A\(RP(n+k)|RP(n—1)).
ii). By taking n=k=0 in Theorem 1, we have the homeomorphism
T(mE)) ~ D(m, I)|D(m—1, 1) .

Since £, over D(0, [) is the trivial line bundle, if we identify D(0, /) with CP(l),
we have

T(mg,) = T(m) ~ S™ ACP(l)* .
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Therefore we have the homeomorphism
D(m, I)|D(m—1, ) ~ S" ACP(l)".

3. Proof of Theorem 3
Firstly we show that o is a generator of the 2-torsion part in

KE(D(m, 2r+1)). Consider the exact sequence of the pair (D(2¢, 2r-+1),
D(2t, 2r))

RY(D(2t, 2r+-1)] D(2t, 2r)) — RH(D(2t, 2r+1)) — R(D(2t, 27)) .

According to [4], Theorem (3.14), we have K}(D(2t, 2r))=0 and Kp(D(2t,
2r4-1))=Z,. Also, in virtue of Proposition 2, i), and [1], Theorem 7.3, we have

Ry(D(2t, 2r+1)/D(2t, 2r)) =~ K5 (RP(2t+2r+1)/RP(2r)) = Z

whose generator is gI’ly >, Therefore,  is the generator of K} (D(2¢, 2r+1)).
Using the exact sequence of the pair (D(2t+1, 2r+1), D(2t+1, 2r))

RY(DQ2t+1, 2r+1)/D(2t+1, 27)) = RY(D2t+1, 2r+1)) — RY(D(2t+1, 27)),

it is easy to see that w is the generator of the 2-torsion part Z,+: of
KY(D(2t+1, 2r+-1)) in the same way as the above case.

Next we show the relations. Since (gl¥1)’=0 in K(S**), the relations
v'=g"=F=g'8=0 and w’=0 follow from g'=(sf)'gl*""l, B=(sf)'g ¥+,
y=f'¢"l and o=='A'glWw"*>, The relation »v,’=-—2», follows from the
relation v’=—2v in KY(RP(m)).

Since K}(D(2t+1, 2r)) has no torsion, Chern character ch: Kj(D(2t+1,
2r))—H*(D(2¢t+1, 2r); Q) is monomorphic. Therefore the relations g'a=28
and Ba”=0 follow from

chg'a = 2b(aj2!+---+a"|(2r)))=2ch B and chpBa"=0

respectively. The relation g'v,= Bv,=0 is trivial for n=2r.

In case of n=2r—1, since the elements «, v,, g’ and B of K#(D(2t+1,
2r—1)) are induced from the elements «, v,, g’ and B of K#(D(2t+1, 2r)) by
the inclusion map i: D(2t+4-1, Zr—l)CD(Zt—I—l 2r), multiplicativity of the
homomorphism #* shows the relations g’'v,=8v,=0 and g’'a=20 for n= 2r—1
Also, the element Ba’'€Ky(D(2t+1, 2r—1)) is the image of Ba’~
eKy(D(2t+1, 2r)) by *.  On the other hand, consider the exact sequence

H(D(2t+1, 2r)) 4 KH(D2t+1, 2r—1)) - K¥(D(2t+1, 2r)/D(2t+1, 2r—1)).
In virtue of Proposition 2, i), and [1], Theorem 7.3, we have

RY(D(2t+1, 2¢)/D2t+1, 2r—1))= R " *(RP(2t+2r+1)|RPQ2r—1))=Z+Z, ,
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so that we have #'Ba” '=2'w for fa’ '€ K}(D(2t+1, 2r). Therefore we have
the relation Ba’ '=2'o in K}(D(2t+1, 2r—1)).

Since ch ¢"*'=0 and ch ya"=0 (for n=2r) (ch ya"*'=0 (for n=2r+1)),
the elements a”** and ya” (for n=2r) (ya’** (for n=2r-+1)) lie in p'K H(RP(m)).
Therefore the relation 7'a=0 implies a’"'=p'r'a’*'=0 and ya"=p'r'(ya")
=p ("' v)(r'a"))=0 (for n=2r) (ya'"'=p'r'(ya’*")=0 (for n=2r+1)), where
r is the cross section defined in [4], Lemma (3.4).

Since yv,€p' KY(RP(2t)) and r'yv=0, we have yv,=p'r'(yv)=p'((r'Y)
(r'v,))=0. The relation ar,=0 was showed in [4].

The elements g'o and Bo lie in p' KYH(RP(2¢t+1)). Since the diagram

RY(D(2t--1, 2r4-1)/D(2t+1,2r)) —— RY(D(2t+1, 2r+1))

1 1 1

e
(%) RY(RPQ2t+1))

is commutative, we have r'w=r'r'(k'gl"ly"*)=0. Therefore we have g'w
—pP(g'0)=p((g)(r'0))=0 and Bo—p'r'(Bw)=p|(rB)(r'a))=0.

Finally we show the relations wa=0, 0y=0 and ov,=—20 in
Ky(D(m, 2r+1)). For simplicity we put Y,=RP(m+2r+1), Y,=RP(2r),
X,=D(m, 2r+1), X,=D(m, 2r) and Z=D(m+2r+1, 2r4-1).

Lemma 1. We have the homotopy-commutative diagram

X A%, x xoax, A gran v vyax, LA g (v vy Az
! ~ T1 A Ar [1 AAr
4, a S A(Y,]Y,) A RP(m) STHA(Y Y)Y,
Tq 1/d,
x, % xJx, % STHA(Y]Y,) ——ee ST (YY),

where i is the inclusion map X,CZ, h is the homeomorphism of Proposition 2, i),
d, is the diagonal map, d, and d, are the maps induced by the diagonal maps, r is
the cross section of [4], Lemma (3.4), and q is the map given by

g([a] A[6, V' 1—BIPx]) = [a] A[b, V' I—[IBIPx] A[#] -
Proof. It is sufficient to show the followings:

i) the maps u=(1A1AZo(hA1)odoch™ and v=(1A1A7)o(1Ad,) are
homotopic,

ii) the map ¢ is well defined and the maps #=(hAl)od,oh™' and
w=(1/A\1Ar)ogq are homotopic.
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For this purpose we investigate the details of the homeomorphism 4. If
we identify D(m, 0) with RP(m), the canonical real 2-plane bundle », over
D(m, 0) is the 2-plane bundle 16D¥ over RP(m). 'The homeomorphism

h: T (2r+1)®2r+1)§) — S"'A(Y,]Y))
is induced from the map
fi: (S”X D7 x D1 8™ X (S x DU D' x §))
— (D¥HI X SmErH L §P ST Y D X S8
given by
fi(x, a, b) = (a, (b, V'1—[IbI%)) ,
and the homeomorphism
byt T((2r+1)n,) - X,/X,
is induced from the map
for (S X S*X D*@+b) 87 ' x SPENH)
— (8™ x SPerHOH G SEENH
given by
fix, 2, 0) = (x, (v, VI=[[o[F2)),

where D**' and D**"*® are unit disks of R**' and C**' respectively.

We define a map
¢: (Sm >< Dz?’-l—l X D27+1’ Sm >< (SZ’X D2"+1 U sz-{—l X SZ)’))
s (Smx St XD2(2r+1)’ Smx S < Sz(zr)+1)

by
o(x, a, b) = (x, 1, 0(a, b)),

where 0 is the standard homeomorphism D**'x D**'—D*®"*D given by
O(a, b) = max (|lall, [16]1)(/lal+1B]I")(a+bi)

Since
o(—x, a, —b) = (—wx, 1, 0(a, b)),

the map ¢ defines a quotient map
¥ T (2 D)BEr+1)8) — T(2r+1)m)

which is a homeomorphism. The homeomorphism # is the composition
hyo\r~'oh,™" of the three homeomorphisms,
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Now, the homeomorphism £ is given by
h~([a] A[b, vV 1—[[B]Px]) = [x, (6(a, b), V' 1—[|(a, B)|)] .
Therefore we have

u([a] A[b, VI=TIbIFx]) = [al A[b, VI—[BIPx] Al(x, 0), (6(a, b),
V1-[l6(a, B)IF)]

and
o([@] A[b, V' I—I[bIPx]) = [a] A[b, V' I—][BIP*] A[(B, V' 1—[IBIP%), (1, 0)] .
We define two maps F; and F%, for 0<t<1,
(Sm X D2r+l X D2r+1’ Sm >< (Szr >< DZ"+1 U D27+l X Szr))
s (D2r+1 % Sm+2r+1 X (Sm+2r+1>< SZ(2r+l)+1), (Szr>< Sm+zr+1 U D2r+1 X Szr)
X (Sm+2r+1 % Sz(2r+1)+1))
by
Fi(x, a, b) = (a, (b, V' I—b]Fx)) % ((x, 0), (0(a, b), V' 1—[[t0(a, b)|"))
and
F¥(x, a, b) = (a, (b, V' 1—|[b|[*x) X ((tb,v/ 1—[[tb[[x), (1, 0)) .

Then the maps F; and F? are compatible with the identification, so that they
define maps G; and G7 respectively

(D((2r+1)B(2r+1)§), S(2r+1)D(2r+-1)£))
— (DX RP(m~+2r+1)X D(m-+2r+1, 2r+1), (S* X RP(m-+2r+1)
U D¥+'x RP(2r)) X D(m—+2r+1, 2r41)) .

Therefore, they define quotient maps H; and H? respectively
T((2r+1)®@r+1)E) = ST A(YYIAZ,

and we have
w= Hloh,™ and o= Hioh,™".

Since the maps F§and F are homotopic, the maps H and H§ are homotopic.
Therefore the maps Hi and H3 are homotopic, so that the maps « and v are
homotopic. This shows i).

The map ¢ is defined as follows: We define a map

f: (Sm X D¥+t X D2r+1’ S v (Szr % D¥+t U D+ % Szr))
— (D2r+1 < Sm+2r+1 X Sm, (Szr X Sm+2r+l U DY+ < Szr) % Sm)
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by

f, a, 8) = (a, (b, v T=TBIFx), %) .
Since

f(—x, a, —b) = (a, (—b, —V/T—|B]Px), —x),
the map f defines a quotient map

g: T(2r+1)®Qr+1)8) — S™*A(Y,/Y,) ARP(m),

and we have g=goh,™*.
Now, we can define a map, for 0<t<1,
H,: T(2r4-1)®2r+1)E) = S"HA(YY,)AX,
by
H([x, a, b]) = [a] A[b, V' 1—|[b]Px] A[x, (t0(a, b), \/1—]|t0(a, b)][],
and we have #=H oh,”'. Since the maps w and H ok, are homotopic, the

maps # and w are homotopic. This shows ii).
This completes the proof of Lemma 1.

Lemma 2. We have the commutative diagram

164" 1
RU(S™H A (VY Y)RRHZ) —2s RH(STH A (YY) QKYX,) rel
RYUST*A(YJY)AZ) aniy RY(S"H A(YJY)AX) ALY
l(l/v)’ A A7)
KY(S"* N(Y,Y,)AY,) RH(S" " A(Y,]Y,) ARP(m))
(1 Ady) g y
HSTHA(YY) —— RH(S" AT V) e
_ _ 71 N
Ky X,/ X)R®Ky(X,) —> KHy(X,)RKH(X,)
Ry(xyXorx) "M kuxaxy
;! d;
RH(X,/X.) T RYX).

Proof. It follows from Lemma 1 by naturality.



RING STRUCTURES OF Ky-COHOMOLOGIES 115

Proposition.  We have the relations wa=0, wy=0 and wv,=—2w in
K}(D(m, 2r+1)).

Proof. Since r'a=r'y=0 in K}(RP(m)), we have ¢(1 A7) (g" "> Aa)
=g (g Ar'a)=0 and ¢(IA?) (W PAY)=¢(g" WP Ar'y)=0 in
KYS"'A(Y,]Y,)). In virtue of definition of » and Lemma 2, these show
wa=0 and 0y=0 in K}(X)).

Since the element », of K3(X,) is induced from the element », of K¥(Z)
by the inclusion map X, CZ, in order to show the relation wv,—=—2w in K} X)),
in virtue of definition of » and Lemma 2, it is sufficient to show that we have
the relation »"*Per'v,=—20*> in K}(Y,/Y,) for v, of K¥(Z).

Since r'v,=v in K¥(Y,), we have the relation v"*'«7'p,=—20"+'in K(Y)).
The homomorphism, induced by the projection j: ¥,—=Y,/Y,,

j!: IZ?,(YI/YZ) - K?J(Yl)

is monomorphism, so that we have v *+.r'y,=—2o"+ in KH(Y,/Y,). The
proof is complete.
This completes the proof of Theorem 3.
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