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1. Introduction

Let (B, H, ) be an abstract Wiener space. Let ¢ : B — R be an H—continuous
function and define U := {z € B | ¢(z) > 0}. Assume p(U) > 0. Then U satisfies
that for any z € U, there exists an open set V, in H such that z + V, C U. Hence
we may define an H —derivative for the function on U as in the Wiener space itself.
In fact, Kusuoka [13, 14, 15] defined an H —derivative on U and define a Dirichlet
form & on U and gave a criterion of the irreducibility of the Dirichlet form. Actu-
ally his assumption on U, namely H—connectivity and the regularity of ¢, i.e., strong
C*® — Cy property implies a stronger property, uniform positivity improving property,
(see [5] and Remark 11 in §2) than irreducibility. The author made use of his theo-
rem to prove the irreducibility of the Dirichlet forms on loop spaces. The aim of this
article is to prove the irreducibility of £y without “strong C* — Cy property” and pro-
vide a simpler proof than Kusuoka’s proof. Our proof does not use special properties
of Gaussian measures and so our theorem may hold in more general situation (see Re-
mark 10 in §2).

The organization of this paper is as follows. In §2, we will prove our main thorem
and in §3, we will prove the irreducibility of the Dirichlet form on loop group using
our method.

ACKNOWLEDGEMENT.  This work started during the 7-th Workshop on Stochastic
Analysis in Kusadasi, Turkey, July, 1998. The author is very grateful for the useful
discussion with Professor Ustiinel and Professor Gross on the topic of this paper. Also
the author thank Professor Decreusefond and Professor @ksendal for their kindness.
This research was partially supported by the Inamori foundation.

2. Main Results

Let (B, H, u) be an abstract Wiener space. Let a measurable function ¢ : B — R
to be an H—continuous function, i.e. for any z € B, ¢(z+-) : H — R is a continuous
function. Let us set U = {z € B | ¢(z) > 0}. Assume that u(U) > 0 and we denote
duy :=dply/u(U). Let us recall the definition of the Dirichlet form on U ([13]).
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DEFINITION 1. A function u on U is in Dy if and only if the following holds:
(1) for any v € H, define V,(z) = {t € R| z+tv € U}. Then there exists a measur-
able function u, on U such that

u(z) = uy(2) u-a.s. z.
t (€ Vy(2)) = uy(z+tv) € R is an absolutely continuous function.

(2) there exists a measurable function F € L*(U — H,duy) such that for any

ve H
>5>=0

Now we are in a position to define our Dirichlet form (£y, Dy). For u € Dy,
define

u(z +tv) —u(z)

lim (z c U|z +tveU,zeU and —(FQ), )
t—

For u in the above, we define Du(z) := F(2)

Ey(u, u) ¢=fU(Du(Z), Du(z))ndpy (2).

The Markovian property of &y is clear and the proof of the closedness can be found
in [13]. Also see [7] and Remark 10 in this section. Our main theorem is concerned
with the irreducibility of this Dirichlet form.

Theorem 2. Let the above subset U to be H-connected, i.e. for any z € U,
U(iz) ={h € H| z+h € U} is a connected open set in H. Then (Ey, Dy) is irre-
ducible.

Note that when U is open connected set in B, then U is H-connected. However
in infinite dimensional space with measure, the topology is meaningless sometimes.
The reader may think whether there are different examples. We will present an exam-
ple.

ExampLE 3. Let X(f, x, w) be the solution of a stochastic differential equation
(= SDE) of elliptic type on a compact Riemannian manifold M. Let O be an open
connected set in C([0, 1] — M;~(0) = x). Let us consider the inverse image X~!(0).
Then we can prove that there exists an H-connected measurable subset Up such that
w(X~1(0)AUp) = 0 using the property of SDE. Note that Uy is not a connected open
set in usual sense. In [4], these kind of results were applied to the Dirichlet forms on
submanifolds and loop spaces. So the H-connectivity is well fitted in with the property
of the solution of an SDE.

Therem 2 is closely related to Theorem 6.1 in [15]. The difference is that in the
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above theorem we donot assume the strong C* — C, property of ¢. However the con-
clusion is weaker than Kusuoka’s results (see Remark 11 in §2). Note that to prove
the irreducibility of the Dirichlet form on loop space (see [4]), we need only the fol-
lowing weaker result which is an easy consequence of the above theorem because
]D)é(B) = Dpg, where ]I))é(B) is the Sobolev space in the sense of Watanabe which con-
sists of the L2-functions whose first derivatives are also in L2.

Corollary 4. Let U be the domain in Theorem 2. Assume u € D)(B) satisfies
that Du(z) =0 p-a.s. z € U. Then u is a constant function on U p-a.s.

To prove our main theorem, we need the following result for functions in Dy.
This is a similar result to Kusuoka’s Proposition 3.2 in [12].

Lemma S. Let u € Dy and fix ve H. Let A C U be a measurable subset with
A+sv CU for any 0 <s <t. Then there exists a subset A, C A with y/(A\ A,) =0
and

s
Uy(z +sv) = uv(z)+/ (Du(z +Tv),v)y dt forany z€ A, and 0 <s <t,
0
where u, is a version in Definition 1(1).
Proof. Let us set

d
QL= {(z, s) € A x [0, t] | there exists the derivative d—uu(z +sv)]
s

Then Q is a measurable subset of A x [0, t]. Also by the absolute continuity, m{s €
[0,¢] | (z,s) € Q} =t where m denotes the Lebesgue measure. So by the Fubini
theorem, 2 has full measure in A x [0, ¢]. Hence again by the Fubini theorem, a.s.
s € [0,t], there exists A(s) C A with u(A \ A(s)) = 0 such that for any z € A(s),
d/dsu,(z + sv) exists. On the other hand, by the Definition 1 (2) and quasi-invariance
of u, for any s € [0, t] there exists A(s) with u(A \ A(s)) = 0 and #, — O such that
for any z € A(s)
lim Uy(z+sv+1t,v) — uy(z+sv) = (F(z+5v), v)

n—o00 tn

Consequently a.s. s € [0, t], for any z € A(s) N A(s),

N iuv(z+sv)=(F(z+sv), v).
ds
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Let

Q= {(z,s) € A x[0,1] %uv(zhvv) = (F(z +sv), v)]

Then €2 is measurable and by (1), (1 ® m)(A x [0, ]\ €2) = 0. Using the Fubini again,
there exists A, with u(A \ A,) =0 such that for any z € A, a.s. s € [0, t],

iuv(z +sv) = (F(z +sv),v).
ds

This completes the proof. |
Our proof of Theorem 2 is based on the ergodicity of u.

Lemma 6 (Ergodicity of Wiener measure). Let V be a countable dense subset
of H. Let A;, Ay be measurable subsets of B with u(A;) > 0 (i = 1,2). Then there
exists v € V such that u({A, + v} N Az) > 0.

We will prove the “arcwise connectedness of U” in Lemma 9 if U is H-
connected using the ergodicity of u. To this end, we will deduce some regularity prop-
erty of ¢. We fix a countable dense subset V in H and for v € V, let C, be a count-
able dense subset of C([0, 1] — H | h(0) = 0, h(1) = v) consisting of piecewise linear
functions. We will set Cy = U,eyCy = {h,(s)}u=1,2,.... The infinite product topologi-
cal space of real number R* is a separable Fréchet space and the space of continuous
functions C([0, 1] — R*) is itself a separable Fréchet space and homeomorphic to the
infinite product space C([0, 1] — R)> naturally. Let us consider the following Fréchet
semi-norm || || on C([0, 1] - R*®),

gl = 30 LU0zt Ps)
" n=1 2n 1+ SUPp<s<1 | X ()] '

Let us denote By ({yn}) = {{xa} | [{xn} — {yu}ll <7}.

Lemma 7. Let ¢ : B — R be an H-continuous function. Then the map ®y :
B — C([0, 1] = R*) such that

Dy(2)(s) = {P(z + hn(s)}p=t 2,...

is a measurable map.

Proof. It suffices to prove that <I>;1(B,({y,,})) is a measurable subset in B. Since
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¢ is H-continuous,

i 1 supg<y<i, 5eq 9@z +hn(9)) = yu(s)|
2" 1+ SUPy<s<1 5eq |D(Z + An(s)) — ya(s)]

@, (B ({y}) = {z €B

n=1

Cleary this is a measurable set. Ol

Lemma 8 (Lusin’s theorem). Let E be a separable Fréchet space and F : B —
E be a measurable map. Then for any € > 0, there exists a compact subset K. such
that |(KZ) < e and F|g, : K. — E is a continuous map.

The following is a main lemma.

Lemma 9 (“Arcwise connectedness”). Let U be the domain in Theorem 2. Then
the following property holds.

For any measurable sets Ay, A, of positive measure in U, there exists a compact
subset Ky C A1 with u(Ky) > 0 and h € Cy such that

Ky +h(s) C U for any s € [0, 1]
Ki+h(1) C A,.

Proof. By the ergodicity of p, there exists v € V such that u({A; +v}NAy) > 0.
Hence by Lemma 7 and Lemma 8, there exists a compact subset of positive measure
K C A, such that
(1) K+vcCA;

(2) @4:K — C([0,1] — R*) is continuous map.

Also there exists zop € K and for any neighbourhood B(zp), u(B(zp) N K) > 0 holds.
Since zgp, zo + v € U, by the H-connectivity of U, there exists a continuous curve
h; € C, such that mingepo,1) $(z0 + #i(s)) > 0 holds. By the continuity of &4 on K,
there exists a closed neighbourhood B(zg) such that for any z € B(z0) N K,

srer[léf}] d(z + hy(s)) > 0.
This proves the theorem where K; = B(zg) N K and h = h;. O

Proof of Theorem 2. Assume that u is not a constant function. Then there exist
measurable subsets A; and A, of U with u(A;) > 0 and positive number § such that
infrea, u(z) — sup,c4, #(z) > 6. Let K; be the subsets and h(s) be the element in Cy
as in Lemma 9. Since h(s) is a piecewise linear function, there exists a finite partition
O=pp<y<...<ty=1land forany 0 <i <n-—1,

h(s)=v; s €t ti),vi €V
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holds. We will apply Lemma 5 to the case where A = Ky +h(t;), v=v;, t =ty — t;.
Let us denote K;; = (K + h(t;)),, — h(;). Note that u(K \ K;;) = 0. Consequently we
have

@)ty @+ A1) = (2 + h(6)) + f " (Duz + h(s)), v)y ds. for z € Ki .

i

Set for0<i<n-—2,
S1i={z € K1 | thy,, (2 + h(ti1)) = uy, (2 + h(ti11)) = u(z + h(ti1))}
and

So = {z € Ky | uy,_,(z+h(1)) = u(z + h(1)), uy,(2) = u(2)}
Ky = Nigg n—251,i N So

.........

Then u(K \ K;) = 0. Summing up the equalities (2) from i =0 to i =n — 1, we see
that for z € I~(1,

1
0 <u(z+h()—u(x)= f (Du(z + h(s)), h(s))ds =0
0

This is a contradiction. O

RemARK 10. Our method can be applied to the Dirichlet forms which were stud-
ied by Albeverio and Rockner [7]. Let us recall their setting. Let E be a locally con-
vex Hausdorff topological vector space with probability measure pu. We assume that
there exists a Hilbert space H such that the embedding E’ € H C E is continuous
and dense. Also we assume that u is quasi-invariant in the direction of H. For h € H,

we denote
dp(-+h)
—7—(2) = ap(2)
u
and assume that the limit
A/ -1
Br(2) = lim YEHD =1

exists in L2(E,dp) and for any #; < t
B

3) / |B(z + tk)|dt < o0 p-as. z.
3]

Then exactly by the same argumet to [7], we can define the Dirichlet form £y on U C
E. In the case of abstract Wiener space, the definition coincides with the definition in
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Definition 1. Also if we assume the ergodicity of p in the direction of H, then our
method proves the irreducibility of & if U is H-connected.

RemaRk 11. Actually Kusuoka [15] proved a stronger statement under additional
assumption, strong C* — Cy property of ¢. Strong C* — C, property is a kind
of locally uniform continuity in the direction of H. Let us explain the results. Let
p(t,x, A) be the transition probability of the diffusion process which is defined by
the Dirichlet form £y. Also let us denote the transition probability of usual Ornstein-
Uhlenbeck process on B by po(t, x, A). Then p-a.s. x € U, p(t, x,dy) is absolutely
continuous with respect to po(z, x, dy). Let us denote the density function by

dp(t, x,dy)

=p(t, x,y).
dpo(t, x,dy) P Y

Then Kusuoka proved that p(¢,x,y) > 0 puy ® py-a.s. (x,y). This implies immedi-
ately the uniform positivity improving property (= UPIP) of the diffusion semigroup
on U. Namely for any € > 0,

inf{/ p(t,x, B) | py(A), uy(B) > ¢, A, B are measurable subsets} > 0.
A

Note that Hino [10] proved the UPIP is a necessary condition of the existence of spec-
tral gap of the Dirichlet form. For the Dirichlet form which is defined in Remark 10,
we may establish UPIP under the assumption that the original Dirichlet form on E has
the spectral gap.

3. [Irreducibility on loop group

In the previous section, we establish a criterion of the irreducibility of the Dirich-
let form on a domain in Wiener space. However the proof can be carried out on path
space over Lie group too. Let G be a compact Lie group with an Ad-invariant Rie-
mannian metric on its Lie algebra g. The Levi-Civita Laplacian defines the Brownian
motion measure y, on the path group

P.(G)=C(0,11 > G | v(0)=¢)
pinned Brownian motion measure v, on the based loop group
L(G)={y€ P(G) | v(1)=¢}.

By the pointwise multiplication such that (v - 9)(#) = () - (), P.(G), L.(G) are
themselves also groups. Let us denote the energy of the path ¢ € P,(G) by ||c||%> =
fol Ié(t)I%m)Gdt if it is finite. Let us denote the subgroups of P,(G), L.(G) which con-
sist of the energy finite paths by P, L respectively. These spaces correspond to the
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Cameron-Martin subspaces in the case of Wiener spaces. Namely under the multipli-
cation by the finite energy paths, the measures u,, v, are quasi-invariant. In fact,

Lemma 12. For any c € P, there exists a positive measurable function p.(y) on
P.(G) such that for any bounded measurable function f

/ flc-vdp.(y) = / FMpc(v)dpe(y)
P.(G) P.(G)

and for any p > 1

-1
||Pc||LP=eXP<p . ||c||%»)~

Let

H
Hy

i

H'([0, 1] — g | h(0) = 0)
H'([0, 11— g | (0) =0, k(1) = 0)

Let us denote the function spaces of the smooth cylindrical functions on P,(G), L.(G)
by the same notation FC;°. For a function u € FC;° on P,(G) and h € H, define

1
(Vu(y), g = lim (e - 7) —u@),

where e"(t) = exp(eh(t)) and the definition of the derivative on L.(G) is given in sim-
ilar way replacing H by Hy. The gradient operators with the domains (V, FC;°) de-
fine the closable symmetric Markovian forms on P.(G), L.(G). We denote the Marko-
vian extensions by (Epaths Dpath)s (Eloop, Dioop) for the path group and the loop group
respectively. It is already known that the closed extension of these forms are unique
respectively (see Acosta [1] in the case of path group, [2] in the case of loop group).
Namely the essential selfadjointness of the generator on the domain FCj5° holds. We
will denote the Sobolev spaces by

Dy := the completion of FC;° with norm

ullf, = / (G)u(v)’due(7)+ / [ Du(y)|"dpe(y)

Fe(G)

By the quasi-homeomorphism property of Shigekawa’s results [19], the irreducibility
of the Dirichlet form (Eam, Dpan) follows from the irreducibility of the usual Ornstein-
Uhlenbeck process in Wiener space. Our main theorem is the following.

Theorem 13. Let G be a simply connected Lie group. Then (Eioop, Dioop) is irre-
ducible.
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Let us recall the history of the irreducibility problem of the Dirichlet form on
loop group. It is natural to guess that the Dirichlet form &y is irreducible if G is
a simply connected Lie group. The first proof of the irreducibility of the Dirichlet
form was given by Gross [9]. Actually he obtained a deeper results, namely, a char-
acterization of the L? function on P,(G) of the form f(vy(1)) in terms of the (roughly
speaking) universal enveloping algebra of the Lie algebra, where f is a function on G.
This work leads the very interesring by-product, a noncommutative version of the cele-
brated isomomorphism between L2-space with Gaussian measure and the Boson Fock
space. However the proof is not easy. After Gross’ proof, Sadasue [18] gave a short
and simple proof. Our proof of the irreducibility of the Dirichlet form in §2 has the
same spirit as his proof in the sense that the main idea is to reduce the problem to
the ergodicity of the measure on the whole space. Also [3] and Léandre [16] proved
the irreducibility of Dirichlet forms in the case of homogeneous spaces. Actually the
Dirichlet form on loop space can be defined according to each torsion skew symmet-
ric connection. It is proved in [4] and [17] that the irreducibility of the Dirichlet form
holds for the Levi-Civita connection. In [6], the author proved the irreducibility for
any torsion skew symmetric connection.

Note that the irreducibility and the uniqueness of the closed extension of the
Markovian form implies the ergodicity of the measure p, and v,. To see it, we will
prove the following lemma.

Lemma 14. Let D be the space of the functions u on P.(G) such that
(1) for any h € H, there exists a measurable function uy(t,~y) such that uy(t,y) =
u(e™ -v) pe-a.s. vy for all t and the function t (€ [0, 1]) — u,(t, ) is absolutely
continuous.
(2) there exists a map F € L*(P,(G) — H,du,) such that

u(e" ) —u(y)
ltlf})l _———t——— =(F(v),Mn

in probability.
We will denote Du(vy) := F(¥). Let us define for u € D

Eu,u) = f | D) dpey)
P.(G)

Then the symmetric form (€, D) is a Dirichlet form.

Proof. Assume that {u,}72, C D and u, — u in &, sense. By the same argument
as in Lemma 5, for any 4 and ¢ € [0, 00)

(n)n(t, ¥) = (un)n(0, v) + fo ((Dup)(€™ - y), h)gds ~ pe-as. 7.
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Letting n — o0, using the quasi-invariance of p, and pu(y) := per(7y) € Np>1LP(P(G))
we have for 1 < p <2,

lim lu(e™ - v) — un(e™ - NIPdp(7)
n—oo PE(G)

= lim G)|u(7)—un(’y)l”pth(v)due(v)

n—oo Pe(
2-p)/2
< lim [lu—un|} - { / p,hmz/z"’due(v)} =0
e P.(G)
and also by the similar argument, we see
t t P

lim ] (Du(e’ - ), h)ds — f (Duy(e™ - ), h)ds| dpe(y) =0
n—= Jp,G) 1J0 0

Hence we have
t
u(@ 1) = u(y) + / (Du)e™" - 7). hyuds  pe-as. 7.
0

So the right hand side gives the absolutely continuous version of u(e™ - 7). Next we
will prove that for any 1 < p < 2,

p

th . —
ue™ - y) —u) () = 0

t

lim

— (Du(v), h)
0 Jp,©G) !

which implies the validity of (2). By the denseness of FC;° @ H C LY(P.(G) —
H,dp,), for any ¢ > 0, there exists f, € FC;° ® H such that || f. — Dull, < e.
Again using Lemma 12, we have

p

th . —
u" - v) —u(y) ()

t

lim
0 JP,(G)
CP

t
< lim =2 ||n||? / f |Du(e™ - ) — foe™ - y)|” dpe(y)ds
’lO t 0 P.(G)

— (Du(), h)

C t
+lim <2y / / £ ) — fo)| dpe(r)ds
tlo t 0 Pe(G)
+C, IR f 1£o() — DuI? dpe(y)
P.(G)

(2-p)/2
} + Cpe? ||h||?

< Cpe”||h||” sup [/ Pen (V> Pd ()
P.(G)

0<r<1

which completes the proof. O
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Lemma 15. If u satisfies that u(e" - v) = u(y) pe-a.s. for any h € H, then u €
Dpan and Du(y) =0, i.e, u is a constant function.

Proof. There exists 2 C P.(G) with p.(P.(G) \ ) = 0 and uy(t,y) for any
t € [0,00) N Q such that

un(t,7) = ue™ -v)  peasy
up(t,vy) = up(s,vy) forany t,s € Q and v € Q

Therefore we can define the value uy(¢,y) for any v € Q and # € R\ Q as follows

E) = l 5 .
un(t,y) s(ebrgl_”uh(s 00,
Then cleary the function t — uy(¢,~y) is constant function for each +, in particular,
absolutely continuous and lim,_,o{u(e™ - v) — u(y)}/t = 0. By the uniqueness of the
closed extension of (£, FC;°), this implies u € D= Dypan and by the irreducibility of
Epath, # should be a constant function. O

As a corollary of this lemma, we see that the ergodicity of the measure p, holds
as in Lemma 6 if we replace the addition A; + v by the multiplication from the left
side v- Aj. Note that in the present situation, V is a countable dense subset in P. As
in §1, let us introduce the spaces C,, Cy replacing H by P and O by e which is a
constant map such that e(t) = e. Here C, is a dense countable set of {c € P | c(0) =
e, c(1)=v} and set Cy := U,y C, :={h,(¢) |n=1,...,}. As in the Wiener space, let
us introduce the P-continuous function.

DEeFINITION 16. A measurable function ¢ : P,(G) — R is a P-continuous function
if the map ¢ (€ P) — ¢é(c - v) is continuous.

Corresponding to Corollary 4, we see

Theorem 17. Let ¢ : P.(G) — R be a P-continuous function. Assume U := {y €
Pe(G) | ¢(v) > O} is P-connected, i.e. U(y)={c € P |c-~ € U} is a connected open
set in P. Then for u € D] (r > 1) with Du(y) = 0 p-a.s. v € U, u is a constant
function p.-a.s. v € U.

Proof. Assume u is not a constant function in U. Then there exist two subsets
Ay, Ay with p.(A;) > 0 and 6 > 0 such that inf,eq, u(z) — SUp,c4, U(z) = 4. Since
ergodicity holds in (P.(G), p.), by the argument similar to Lemma 8, we see that there
exists a compact subset K; C A; with wu(K;) > 0 and & € Cy such that

h(s)- Ky Cc U for any s € [0, 1]
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h(l)- Ky C Ay

Since u € Df, there exist {u,}32, C FC;° such that lim,_, |lu — unll1,, = 0. For u,,
we have

un(h(2) - 7) = un(y) + /O (Dutn(h(s) - 7), h(s)  ds

Letting n — oo, we get p.-a.s. v € K;

1
0 <uth(l)-v)—u(y) = /0 (Du(h(s) <Y, h(S))H ds =0
This is a contradiction. O

As an application of Theorem 17, we will prove Theorem 13 using the next
lemma.

Lemma 18. Let G be a simply connected Lie group. Let B(e) be the c-ball cen-
tered at the origin in T,G and assume that the exponential map exp: B(e) > V C G
is diffeomorphism. Let U := {y € P,(G) | v(1) € V}. Then U is P-connected.

Proof. For g € V, let
(1) = exp(—t exp~' ()
Assume v € U and define for 0 < s, ¢t <1
D (2) = N1y (s)Y(2).

Then the continuous curve {®}o<s<; is in U and &g =, &; € L.(G). So it suffices
to prove that for any two 7, ¢ -y € L.(G), where ¢ € L, we can find that continu-
ous curve ! : [0,1] — £ with /(0) = e, [(1) = c. This is true because of the simply
connectivity of G. O

Now we are in a position to prove Theorem 13.
Proof of Theorem 13. Let V' :=exp(B(g/2)) and set

_[1 (& € exp(Be/2)
plx) = [0 (x € exp(B(€)))

U ={ylv1)eVv)
Let us define for u : £L — R,

Tu(y) = u(nyay)e(v(1))
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We have

@

[ ruenirduan = [ woirzenave

where Z(v) = fv Pre (MNP, E)p(§)dE and p(t, §) is the heat kernel on G solving the
equation Ou/dt(t,x) = (1/2)Au(t, x), u(0,&) = 6., where A is the Laplace-Beltrami
operator. By the result in Gross [8], if u € Dioop then Tu € D] where 1 <r <2 and

D(Tu)(y)=0 pe-as. yeU.

Hence by Theorem 17 and Lemma 18, we see that Tu is constant function in U/’. By
(4), this implies u is a constant function. O
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