<table>
<thead>
<tr>
<th>Title</th>
<th>On ((r,p))-capacities for Markov processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kaneko, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 23(2) P.325-P.336</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6143</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6143</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Kaneko, H.
Osaka J. Math.
23 (1986), 325–336

ON \((r, \rho)-CAPACITIES\) FOR MARKOV PROCESSES

HIROSHI KANEKO

(Received October 11, 1984)

1. Introduction

For a general Markovian semi-group \(\{P_t; t \geq 0\}\) on a measure space, we consider the image \(F_{r, \rho}\) of \(L_\rho\)-space of the \(r\)-th order \(\Gamma\)-transformation of \(P_t\). Then \(F_{r, \rho}\) gives rise to a set function \(C_{r, \rho}\) satisfying certain properties of capacity (M. Fukushima and H. Kaneko [6]). When \(P_t\) is a symmetric operator on \(L_2\)-space, the capacity \(C_{1,2}\) coincides with the capacity related to the Dirichlet space associated with \(P_t\), and consequently, the set of zero \(C_{1,2}\)-capacity can be identified with the polar set of the Hunt process corresponding to \(P_t\), if the latter ever exists ([5]). But as \(r\) or \(\rho\) becomes greater, the set of \((r, \rho)\)-capacities zero become finer. For instance, when \(P_t\) is the heat kernels on \(\mathbb{R}^n\), the \(\Gamma\)-transformations of \(P_t\) are equal to the so-called Bessel kernels. Therefore, in that case, \(C_{r, \rho}\) coincides with the Bessel capacity \(B_{r, \rho}\) presented in [11], for which there exists no non-empty sets of zero capacity whenever \(rp > n\) ([11]).

The purpose of this paper is to examine whether some basic theorems related to the Markovian semi-group \(\{P_t; t \geq 0\}\) can be refined, so that one may take the sets of \(C_{r, \rho}\)-capacity zero for various \(r\) and \(\rho\) as exceptional sets in the statement of the theorems. Assuming the analyticity of \(P_t\), we shall show that two refinements (Theorem 1 in §2 and Theorem 3 in §4) of this kind are indeed possible. The first one is for ergodic theorem due to G.C. Rota [13], E.M. Stein [16] (which concerned \(m\)-a.e. statements) and due to M. Fukushima [4] (which concerned \(C_{1,2}\)-q.e. statement). The second is for the construction of a Hunt process which has been established by M. Fukushima [5] and M. Silverstein [14] in the case that \((r, \rho) = (1, 2)\) and \(P_t\) is symmetric and by S.C. Menendez [10] in a non-symmetric case. In §3, a refinement in the construction of a transition function will be presented.

In this connection, we mention the work of Y. Le Jan [8] who started with a general Markovian semi-group on an \(L_\infty\)-space and constructed a Hunt process with exceptional set being related to a certain family of supermedian functions. While the above mentioned papers and ours start with a Markovian semi-group acting on an \(L_2\)-space or \(L_\rho\)-space, D. Feyel and A. de La Pradelle [3] started with the one acting on a Banach space of functions which are already refined in relation to a capacity. Further we mention a related work of N.G.

In this paper, we always assume that the space of potentials $F_{r,p}$ is regular in the sense that $F_{r,p}$ contains sufficiently many continuous functions. For instance, when the semi-group is generated by a strongly elliptic partial differential operator of second order with smooth coefficients, then $F_{r,p}$ coincides with $W^r_p(R^n)$ (see example at the end of this paper). But in general, it is rather hard to check the regularity of the space $F_{r,p}$ for $(r, p) \neq (1, 2)$.

Finally, as an application of a theory of (r, p)-capacities to other kinds of problems, we like to mention the works by A. B. Cruzerio [2] and A. Nagel, W. Rudin and J.H. Shapiro [12] concerning the boundary limit theorems and by P. Malliavin [9] and M. Takeda [17] concerning infinite dimensional analysis.

The author wishes to thank Professor M. Fukushima for his valuable suggestions and encouragement.

2. Some limit theorems of semi-groups

Let X be a separable metric space and m be a positive σ-finite measure with the support X. Through the paper, let us consider a strongly continuous contractive semi-group $(P_t)_{t \geq 0}$ on $L_p(X; m)$ $(1 < p < \infty)$, which is Markovian;

\[
0 \leq f \leq 1 \quad m\text{-a.e.} \Rightarrow 0 \leq P_t f \leq 1 \quad m\text{-a.e.}
\]

We also require that it is analytic in $t > 0$ as a bounded operator valued function of t.

Let us recall some notations formulated in [6]. The Markovian contractive operator V_r $(r > 0)$ is defined by

\[
V_r = \Gamma(r/2) \int_0^{\infty} e^{s^2 - 1} e^{-s t} P_s ds.
\]

We let $\|u\|_{r,p} = \|f\|_{L_p}$ for $u = V_r f, f \in L_p$, then the space $F_{r,p} = V_r(L_p)$ with the norm $\| \|_{r,p}$ is a Banach space. We define a set of function $C_{r,p}$ by

\[
C_{r,p}(A) = \inf \{ \|u\|_{r,p}^r; u \in F_{r,p}, \text{ satisfies } u \geq 1 \text{ m-a.e. on some open set which contains } A \}.
\]

"$C_{r,p}$-quasi-everywhere" or briefly "$C_{r,p}$-q.e." means that the statement holds except on a $C_{r,p}$ (capacity) zero set. A function u is called $C_{r,p}$-quasi-continuous if for any $\varepsilon > 0$ there exists an open set G such that $C_{r,p}(G) < \varepsilon$ and the function is continuous on $X - G$. A sequence of functions u_n is said to be $C_{r,p}$-quasi-uniformly convergent to a function u if for any $\varepsilon > 0$ there exists an open set G such that $C_{r,p}(G) < \varepsilon$ and the sequence of functions u_n converges to u uniformly on $X - G$.

We make the following assumption:
(2) \(F_{r,p} \cap C(X) \) is dense in the Banach space \(F_{r,p} \).

We can show the following ([6]):

(a) \(C_{r,p} \) is an outer capacity and stable under the increasing limits of sets.

(b) \(C_{r,p} \) is non-decreasing in \(r \).

(c) A function \(u \) is \(C_{r,p} \)-quasi-continuous and \(u \geq 0 \) m.a.e. \(\Rightarrow u \geq 0 \) \(C_{r,p} \)-q.e.

(d) \(u \in F_{r,p} \) \(\Rightarrow \) a \(C_{r,p} \)-quasi-continuous modification \(\bar{u} \) of \(u \) exists, and it enjoys

\[
C_{r,p}(|\bar{u}| > \lambda) \leq \lambda^{-p} ||u||_{r,p}, \lambda > 0.
\]

(e) The convergence of \(C_{r,p} \)-quasi-continuous functions in \(F_{r,p} \) implies \(C_{r,p} \)-quasi-uniform convergence of some subsequence to a \(C_{r,p} \)-quasi-continuous function.

We know that the semi-group restores some potential theoretic feature. Let \(r > 0 \) and \(1 < p < \infty \) be fixed.

Lemma 1. For each \(f \in L_p \), we can take a function \(\hat{P}_t f(x) \) of \(x \in X \) and \(t > 0 \) which has the following properties.

(i) For each \(t > 0 \), \(\hat{P}_t f(x) \) is a \(C_{r,p} \)-quasi-continuous version of \(P_t f(x) \), moreover for any \(\varepsilon > 0 \) there exists an open set \(G \) independent of \(t \) such that \(C_{r,p}(G) < \varepsilon \) and the functions \(\{\hat{P}_t f(x)\}_{t > 0} \) are continuous on \(X - G \).

(ii) For \(C_{r,p} \)-quasi-everywhere \(x \in X \), the function \(\hat{P}_t f(x) \) is analytic in \(t \).

(iii) For each \(t_0 \geq 0 \), there exist positive constants \(C \) and \(\varepsilon \) such that

\[
C_{r,p}(\sup_{|t-t_0| < \varepsilon} |\hat{P}_t f(x)| > \lambda) \leq C \lambda^{-p} ||f||_{r,p}, \quad f \in L_p, \quad \lambda > 0.
\]

Proof. Take a natural number \(n > r/2 \). Since \(V_r \) has a semi-group property in \(r \), we have

\[
P_t f = (V_r)^{2n}(I-A)^n P_t f = V_r V_{2n-r} ((I-d/dt)^n P_t) f,
\]

where \(A \) is the generator of the semi-group \((P_t)_{t \geq 0} \) and \(d/dt \) stands for the derivative in the operator topology. Hence, \(P_t f \) is an element of \(F_{r,p} \). Consider an operator valued function \(S_t = V_{2n-r} ((I-d/dt)^n P_t) \). Then analyticity of \(S_t \) in \(t \) admits the Taylor expansion around \(t = t_0 \):

\[
S_t = \sum_{n=0}^{\infty} B_n (t-t_0)^n, \quad |t-t_0| < \varepsilon,
\]

where the \(B_n \)'s are bounded operators in \(L_p \) such that \(\sum_{n=0}^{\infty} ||B_n||e^n < \infty \).
Take any \(f \in L_\rho \) and quasi-continuous versions \(\widehat{V_rB_nf} \), \(n = 0, 1, 2, \ldots \). Then by (e), \(\sum_{n=0}^\infty |\widehat{V_rB_nf}(x)| \in \mathbb{E}^n \) converges except on some Borel set \(N \) with \(C_{r\rho}(N) = 0 \). Therefore, if we set, for \(|t-t_0| < \varepsilon \)

\[
P_t f(x) = \begin{cases}
\sum_{n=0}^\infty \widehat{V_rB_nf}(x) (t-t_0)^n, & \text{if } x \in X-N, \\
0, & \text{otherwise},
\end{cases}
\]

and patch the functions in \(t \), then we have \(\widehat{P_t f}(x) \) which enjoys properties (i) and (ii). (iii) is clear from (3) and

\[
\sup_{|t-t_0| < \varepsilon} |P_t f(x)| \leq V_r(\sum_{n=0}^\infty |B_nf| \in \mathbb{E}^n)(x). \quad \text{q.e.d.}
\]

In the remainder of this section, we only consider a strongly continuous contraction semi-group \((P_t)_{t \geq 0} \) which is determined by Markovian symmetric operator \((P_t)_{t \geq 0} \) on \(L_2(X; m) \). E. M. Stein ([16]) shows that \((P_t)_{t \geq 0} \) then becomes an analytic semi-group on \(L_\rho \) for each \(\rho > 1 \). We introduce for \(f \in L_\rho(X; m) \) the maximal function \(Mf \) by

\[
Mf(x) = \sup_{t \geq 0} |\widehat{P_t f}(x)|,
\]

where \(\widehat{P_t f} \) is the function in Lemma 1. Then we have the \(L_\rho \)-estimate ([16]):

\[
\|Mf\|_{L_\rho} \leq C_{r\rho}\|f\|_{L_\rho}, \quad f \in L_\rho
\]

for some positive constant \(C_{r\rho} \).

Lemma 2. For each \(\lambda > 0, u \in F_{r\rho} \), we have

\[
C_{r\rho}(Mu > \lambda) \leq C_{r\rho}\lambda^{-\rho}\|u\|_{r,\rho}^\rho
\]

Proof. For \(f \in L_\rho(X; m) \) and \(u = V_rf \), we have

\[
|P_t V_rf| = |V_rP_t f| \leq V_rMf \quad m\text{-a.e.}
\]

and consequently

\[
Mu \leq \widehat{V_rMf} \quad C_{r\rho}\text{-q.e.}
\]

Hence, by (5)

\[
C_{r\rho}(Mu > \lambda) \leq C_{r\rho}(\widehat{V_rMf} > \lambda) \leq \lambda^{-\rho}\|Mf\|_{L_\rho}^\rho
\]

\[
\leq C_{r\rho}\lambda^{-\rho}\|f\|_{L_\rho}^\rho = C_{r\rho}\lambda^{-\rho}\|u\|_{r,\rho}^\rho, \quad u \in F_{r\rho}. \quad \text{q.e.d.}
\]
Theorem 1. Assume that $(P_t)_{t \geq 0}$ is determined by a Markovian symmetric operator on L_2.
(i) For any $u \in F_{r,p}$, the limit $\lim_{t \to \infty} \hat{P}_t u(x)$ exists $C_{r,p}$-q.e. which is $C_{r,p}$-quasi-continuous version of u, where $r > 0, p > 1$.
(ii) The limit $\lim_{t \to \infty} \hat{P}_t f(x) = h(x)$ exists $C_{r,2}$-q.e., for any $f \in L_2(X; m)$. h satisfies
$$\hat{P}_t h(x) = h(x), \quad t > 0, \quad C_{r,2}$-a.e.$$

Proof. (i) If we set
$$R(u) = \lim_{n \to \infty} \sup_{0 < t, t' < 1} |\hat{P}_t u(x) - \hat{P}_{t'} u(x)|,$$
then $R(u) = 0$ $C_{r,p}$-q.e., for any $u \in F_{r,p}$. For the last lemma combining with the inequality
$$R(u) = R(u - P_t u) \leq 2M(u - P_t u) \quad C_{r,p}$-q.e.$$
shows that
$$C_{r,p}(R(u) > \lambda) \leq C_{r}(2\lambda)^{-p} ||u - P_t u||_{r,p}^p,$$
which tends to zero as h tends to zero for any $\lambda > 0$. By (e), the pointwise limit $\lim_{t \to \infty} \hat{P}_t u(x)$ must be a $C_{r,p}$-quasi-continuous version of u.
(ii) As in [4], we easily obtain the existence of the $C_{r,2}$-q.e. limit $h = \lim_{t \to \infty} \hat{P}_t f$. h is $C_{r,2}$-quasi-continuous. Recalling the analyticity of $\hat{P}_t h$, we have
$$P_t h(x) = h(x), \quad t > 0, \quad C_{r,2}$-q.e.$$ q.e.d.

3. Construction of a transition function

In this section, we suppose that X is separable complete metric space, X is covered by some countable family of closed sets with finite m-measure and the support of m is X. Given a strongly continuous Markovian semi-group $(P_t)_{t \geq 0}$ on $L_p(X; m)$ ($1 < p < \infty$) satisfying the analyticity in $t > 0$ and the regularity condition (2), we have constructed a regularized version \hat{P}_t, $f \in L_p$ in Lemma 1. We can further construct a transition function as follows.

Theorem 2. There exists a family of kernels $\{p_t(x, E); t > 0, x \in X, E \in \mathcal{B}\}$, where \mathcal{B} stands for the set of all Borel subsets of X, which satisfies the following conditions:
(i) $p_t(x, X) \leq 1, \quad t > 0$.
(ii) $\int_X p_t(x, dy) p_s(y, E) = p_{t+s}(x, E), \quad t, s > 0$.
(iii) For each $f \in L_p$ and $r > 0$, there exists a Borel set N such that $C_{r, p}(N) = 0$ and

$$p_t f(x) = \hat{P}_t f(x)$$

for every $t > 0$ and $x \in X - N$.

Proof. We only give the proof in the case that $m(X) < \infty$ but the proof is similar to the σ-finite case. Let us embed the space X homeomorphically onto a Borel subset Y of $[0, 1]^n$. Take a countable dense subset C_1 of $C([0, 1]^n)$. Denoting by B_b the set of all bounded Borel functions of $[0, 1]^n$ and by \hat{f} the restriction to Y of $f \in B_b$, then $B_b \subset L_p([0, 1]^n)$. By virtue of Lemma 1, we get

$$P_t(af + bg)(x) = a\hat{P}_t f(x) + b\hat{P}_t g(x) \quad C_{r, p} \text{-q.e.}$$

for $f, g \in B_b$, $a, b \in R$,

$$f_n, f \in B_b, f_n \uparrow f \Rightarrow \hat{P}_n f(x) \uparrow \hat{P}_t f(x) \quad C_{r, p} \text{-q.e.}$$

Further we find the set $N \subset X$ with $C_{r, p}(N) = 0$ such that $\hat{P}_t f(x)$ is analytic function of $t > 0$ for $f \in C_1, x \in X - N$.

By similar way of the proof of Proposition (4.1) in R.K. Getoor [7], we obtain the kernel $q_t(x, E)$ such that

$$q_t f(x) = \hat{P}_t f(x), \quad x \in X - N, f \in C_1, t \in Q^+,$$

where Q^+ is the set of all positive rational numbers. Since $[0, 1]^n$ is compact, the dual space of $C([0, 1]^n)$ is weakly complete and $q_t(x, \cdot) (t \in Q^+)$ has a continuous extension to the half real line. Denote by $p_t(x, \cdot), t \in (0, \infty)$ the restriction of $q_t(x, \cdot)$ to X, then we have

$$p_t \hat{f}(x) = \hat{P}_t f(x) \quad \text{for any } t > 0, x \in X - N, f \in C_1.$$

Hence, we arrive at (iii) by Lemma 1 and a monotone lemma.

On the other hand, there exists a Borel set Y_1 with $C_{r, p}(X - N) = 0$ such that for each $x \in Y_1$

$$p_t(p_s \hat{f})(x) = p_{t+s} \hat{f}(x), \quad t, s \in Q^+, f \in C_1$$

and all the functions $p_t \hat{f}(x)$ and $p_t(p_s \hat{f})(x), s \in Q^+$ are continuous in $t > 0$. Now just as the proof of Lemma 6.1.4. in M. Fukushima [5], we can modify $p_t(x, E)$ slightly to get kernels which satisfy not only (i), (iii) but also (ii) of Theorem 2.

q.e.d.

We call the kernels in Theorem 2 a transition function representing the
Once such a transition function is constructed, we get a nice potential kernel by

$$v_r(x, E) = \Gamma(r/2)^{r-1} \int_0^\infty s^{r/2-1} e^{-s} p_s(x, E) ds.$$

In fact, we have

Corollary. $v_r f(x)$ is a C, r-quasi-continuous version of $V, r f$, for every f in $L_p(X; m)$.

Proof. It suffices to prove this for bounded functions in L_p. If $f \in L_p$ is bounded, we have the pointwise convergence

$$p_t v_r f(x) = v_r p_t f(x) \to v_r f, \quad t \to 0.$$

The convergence also takes place in the Banach space $F_{r, p}$ and hence we get the above conclusion. q.e.d.

4. Construction of Hunt processes

In this section, we assume that the state space X is a locally compact separable metric space and the measure m is positive Radon with support X. Let $(P_t)_{t \geq 0}$ be a Markovian strongly continuous contraction semi-group defined on $L_p(X; m)$ $(1 < p < \infty)$ which is analytic in the sense of §2. When the space $F_{r, p}$ contains continuous functions densely, we saw in §2 and §3 that the semi-group admits some potential theoretic refinements. Our assertion of this section is that under a stronger assumption (6) on $F_{r, p}$ mentioned below we can construct an associated Hunt process starting from C_r-quasi-everywhere point of X, for $r \geq 2$.

Let $X_\Delta = X \cup \{\Delta\}$ be the one-point compactification of X, and extend the transition function of the last section to X_Δ by

$$p_t(x, E) = \begin{cases} p_t(x, E - \{\Delta\}) + (1 - p_t(x, X)) \delta_\Delta(E), & x \in X \\ \delta_\Delta(E), & x = \Delta \text{ or } t = 0 \\ \end{cases}$$

for Borel subset E of X.

By the Kolmogorov extension theorem, there is a Markov process $M = \{\Omega, \mathcal{M}, \mathcal{M}_{0}^\prime, X, P_t\}_{t \in \mathbb{R}}$ with transition probability $(p_t)_{t \in \mathbb{R}^+}$, where $\Omega, \mathcal{M}, \mathcal{M}^\prime_{0}, X^\prime_{0}$ are the following objects:

- $\Omega = X^\prime_{0} \cup \{\emptyset\}$
- $X^\prime_{0}(\omega) = \omega(t), \quad \omega \in \Omega$
- $\mathcal{M} = \sigma[X^\prime_{0}(\omega); t \in \mathbb{R}^+]$
- $\mathcal{M}_{0}^\prime = \sigma[X^\prime_{0}(\omega); s \leq t, s \in \mathbb{R}^+]$.
We let \(r \geq 2 \) and assume that

\[(6) \quad \text{the } F_{r,p} \cap C_{w}(X) \text{ is dense not only in } F_{r,p} \text{ but also in } C_{w}(X), \]

where \(C_{w}(X) = \{ f \in C(X_{\Delta}); f(\Delta) = 0 \} \). Under the assumption, we have a sequence \(\{ t_{j} \}_{j=0}^{\infty} \subseteq \mathbb{Q}^{+} \) decreasing to 0, which satisfies

\[(7) \quad \lim_{j \to \infty} p_{t_j} f(x) = f(x), \text{ for any } f \in C_{w}(X) \text{ and } x \in X - N \]

for some \(N \) with \(C_{r,p}(N) = 0 \), because we can see this for a dense subclass of \(C_{w}(X) \), contained in \(F_{r,p} \), as in the proof of Corollary in §3. An increasing sequence \(\{ F_{k} \}_{k=1}^{\infty} \) of closed sets with \(\lim_{k \to \infty} C_{r,p}(X - F_{k}) = 0 \) is said to be a \(C_{r,p} - \text{nest} \). The condition (6) further implies that each \(u \in F_{r,p} \) admits a \(C_{r,p} - \text{nest} \) \(\{ F_{k} \}_{k=1}^{\infty} \) for which \(u |_{F_{k} \cup \{ \Delta \}} \) are continuous functions vanishing at \(\Delta \), \(k = 1, 2, 3, \ldots \). The totality of such functions is denoted by \(C_{w}(\{ F_{k} \}_{k=1}^{\infty}) \). Here, we shall show a crucial lemma.

Lemma 3. Under the assumption (6), we get the followings:

(i) For any decreasing sequence \(\{ O_{n} \}_{n=0}^{\infty} \) of open sets with \(C_{r,p}(O_{n}) \to 0 \), as \(n \to \infty \), we have

\[P_{x}(\lim_{n \to \infty} \sigma_{0}^{n} = \infty) = 1, \text{ for } C_{r,p} - \text{q.e. } x \in X, \]

where \(\sigma_{0}^{n} = \inf \{ t > 0; X_{t}^{0} \in A \} \).

(ii) If we let \(\Omega_{1} = \{ \omega \in \Omega_{0}; \text{ the sample path } X_{0}^{0}(\omega) \text{ has left- and right-hand limits in } X, \text{ for all } t > 0 \}, \) then

\[P_{x}(\Omega_{1}) = 1, \text{ for } C_{r,p} - \text{q.e. } x \in X. \]

(iii) If we let \(X_{t}(\omega) = \lim_{s \uparrow t, s \in \mathbb{Q}^{+}} X_{s}^{0}(\omega) \text{ and } \Omega_{2} = \{ \omega \in \Omega_{1}; X_{t}(\omega) = X_{s}^{0}(\omega), t \in \mathbb{Q}^{+} \text{ and } X_{0}^{0}(\omega) = x \}, \) then

\[P_{x}(\Omega_{2}) = 1, \text{ for } C_{r,p} - \text{q.e. } x \in X. \]

(iv) Let \(\Omega_{3} = \{ \omega \in \Omega_{2}; \text{ if } X_{t}(\omega) \in X \text{ then the trajectory of the sample path up to the time } t \text{ lies in a compact subset of } X \text{ for all } t > 0 \}, \) then

\[P_{x}(\Omega_{3}) = 1, \text{ for } C_{r,p} - \text{q.e. } x \in X. \]

(v) There exists a Borel set \(Z \subseteq X \) and \(\Gamma_{0} \subseteq \mathcal{M} \) satisfying \(C_{r,p}(X - Z) = 0 \), \(P_{x}(\Gamma_{0}) = 0 \) for all \(x \in Z \) and the inclusion

\[\{ \omega \in \Omega_{3}; \text{ for some } t \geq 0, \text{ either } X_{t}(\omega) \text{ or } \lim_{s \uparrow t} X_{s}(\omega) \text{ is not in } Z \} \subseteq \Gamma_{0}. \]

(vi) Put \(\mathcal{M}_{t} = \bigcup_{s \leq t, s \in \mathbb{Q}^{+}} \mathcal{M}_{s}. \) Consider the restrictions of \(\mathcal{M}, \mathcal{M}_{t}, X_{t} \) and \(P_{x} \) to
the set $\Omega=\Omega_0-\Gamma_0$ and denote them by the same notations. Then the quintuplet $M_z=\{\Omega, \mathcal{M}, \mathcal{M}_t, X_t, P_z\}_{z\in Z}$ becomes a Hunt process on Z.

Proof. (i) Every open set O of finite capacity possesses a unique norm-minimizing element e_O in the set $\{u\in F_{r,p}; u\geq 1 \text{ m-a.e. on } O\}$. As a version of e_O, take e_0 a function expressed as $v_r f$ for some non-negative function f in L_p. Clearly we have then

$$e^{-t} p_t e_0(x) \leq e_0(x)$$

which means that $\{Y_t=e^{-t} \hat{e}_0(X_t)\}_{t\geq 0}$ is \mathcal{M}_t, P_x-supermartingale for each $x\in X$.

Applying Doob’s optional sampling theorem to $\{Y_t, \mathcal{M}_t, P_x\}$ $x\in X$ and noting that the process $\{X_t\}_{t\geq 0}$ does not hit the set $\{x\in 0; \hat{e}_0(x)<1\}$ with P_x-a.e. $x\in X$, we obtain

$$E_x(\exp(-\sigma_0^0)) \leq e_0 \quad C_{r,s^*} \text{q.e.}$$

The statement (i) follows from this inequality.

(ii) Take a countably dense subset $C_2\subset C_0(X)$. There exists a nest $\{F_k\}_{k=1}^\infty$ such that

$$\text{The convergence (7) holds on } \bigcup_{k=1}^\infty F_k,$$

$$\bigcup_{l=1,s[r,2+r],\ldots} v_l(C_2) \subset C_\infty(\{F^\infty_{k=1}\}).$$

Here, we know that the family of functions of the left hand side of (9) separates the point of $Z_0=(\bigcup_{k=1}^\infty F_k)\cup \{\Delta\}$. In fact, if we suppose for $x, y\in Z_0$

$$v_l f(x) = v_l f(y), \quad \text{for any } f\in C_2, l = 1+\lfloor r \rfloor, 2+\lfloor r \rfloor, \ldots$$

then $p_t f(x)=p_t f(y), t>0, f\in C_2$, by the uniqueness of the Laplace transformation. Letting t tend to 0 along the sequence $\{t_j\}_{j=1}^\infty$, we see that $f(x)=f(y), f\in C_2$ by (8) and $x=y$.

Hence, for the event $\Omega_0=\{\omega\in\Omega_0; \lim_{k\to\infty} \sigma_{X,F_k}(\omega)=\infty\}$, we have that

$\Omega_0-\Omega_2=\{\omega\in\Omega_0; \text{ for some } k \text{ and some } t<\sigma^0_{X,F_k}\}$

$X^t(\omega)$ does not have the right- or left-hand limit at t.

Since the process $\{e^{-t} v_l f(X_t(\omega)), \mathcal{M}_t, P_x\}$ is a non-negative supermartingale, the P_x measure of the right hand side is zero. In view of (i), we know that $P_x(\Omega_0)=1, C_{r,s^*} \text{q.e.}$ and so is Ω_2. (iii), (iv), (v) and (vi) The proofs can be performed in the same way as in [5; Chapter 6, §2].
We extend the Hunt process of Lemma 3 (vi) to the Hunt process on \(X \) by letting each point of \(X - Z \) be trap.

Theorem 3. There exists a Hunt process \(M = \{ \Omega, \mathcal{M}, X, P_x \} \) satisfying that

\[
(10) \quad \text{for each } f \in L_p, E_x(f(X_t)) \text{ is a } C_{r,p} \text{-quasi-continuous modification of } P_t f.
\]

If \(M' = \{ \Omega', \mathcal{M}', X', P'_x \} \) is another Hunt process with property (10), then the induced probability laws of \(X_t \) and \(X'_t \) on the path space \(\Omega = \{ \omega; [0, \infty) \rightarrow X, \omega(t) \text{ is right continuous with left limits in } t \} \) coincide for \(C_{r,p} \)-a.e. \(x \in X \).

Proof. The existence is already shown. To prove the part of the uniqueness, it suffices to show that for \(M' \) with the property (10)

\[
E_x(f(X_{t_1})f(X_{t_2}) \cdots f(X_{t_n})) = E_x(f(X'_{t_1})f(X'_{t_2}) \cdots f(X'_{t_n})),
\]

where \(f_1, f_2, \cdots, f_n \in C_2, t_1, t_2, \cdots, t_n \in \mathbb{Q}^+ \). But this is clear from (10). q.e.d.

In the symmetric case, we have a criterion for the sample path continuity of the Hunt process \(M \).

Let us consider a strongly continuous semi-group \((P_t)_{t \geq 0} \) of Markovian symmetric operator on \(L_2 \). As stated in §2, it can be regarded as a strongly contraction analytic semi-group in \(L_p \) \((1 < p < \infty) \). We assume that the regularity (6) for the associate space \(F_{r,p} \) and \(F_{1,2} \).

Theorem 4. The following conditions are equivalent.

(i) The Dirichlet space \(F_{1,2} \) is local in the sense that the pair \(u, v \in F_{1,2} \) with disjoint supports always enjoys the property \((u, v)_{F_{1,2}} = 0 \).

(ii) \(M \) is a diffusion in the sense

\[
P_x(\omega \in \Omega; \text{the sample path is continuous}) = 1, \quad C_{r,p}\text{-a.e.}
\]

Proof. Let us set \(q(x) = P_x(\omega \in \Omega; \text{ for some } t > 0, \lim_{t \uparrow t} X_t(\omega) = X_t(\omega)) \). If \(q(x) \) vanishes \(m \text{-a.e.} \), then \(q(x) = 0 \) \(C_{r,p} \text{-a.e.} \). Because the function \(P_x(\omega \in \Omega; \text{ for some } t > 1/n, \lim_{t \uparrow t} X_t(\omega) = X_t(\omega)) = p_{\mu,q}(x) \) then vanishing \(C_{r,p} \text{-a.e.} \). Since \(M \) can be also regarded as the diffusion as a realization of the \(L_2 \)-semi-group, the first statement of Theorem 4 combined with a general theorem related to the Dirichlet space implies that \(q(x) = 0 \) \(m \text{-a.e.} \). The proof of theorem is completed.

Example. Suppose that a uniformly elliptic partial differential operator
\[L = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + c(x) \] possesses bounded smooth coefficients in the sense that \(a_{ij}(x) \in C^1_c(\mathbb{R}^n), \) \(1 \leq i, j \leq n, \) \(b_i(x) \in C^1(\mathbb{R}^n), \) \(1 \leq i \leq n, \) \(\sum_{i,j=1}^{n} \xi^i \xi^j \geq \delta |\xi|^2 \) for some \(\delta > 0, \) and that \(c(x) \) is bounded non-positive.

The resolvent \(R_\lambda \) on \(L_2(\mathbb{R}^n) \) satisfies \(||R_\lambda|| \leq C/(1+|\lambda|) \) in the domain \(\{ \lambda \in C; \ Re(\lambda) \geq \alpha \} \) with some positive \(C \) and \(\alpha. \) Owing to a well known theorem of K. Yosida [18; Chapter IX, 10], the corresponding semi-group is analytic in \(L_2(\mathbb{R}^n). \) Obviously the semi-group \((P_t)_{t \geq 0}\) is Markovian and contractive. We observe that the dual semi-group has the same properties. By the method of interpolation mentioned in E.M. Stein [16] and above observation, we know that in \(L_p(\mathbb{R}^n) \) \((P_t)_{t \geq 0}\) is analytic whenever \(1 < p < \infty. \)

The Sobolev space \(W^2_p(\mathbb{R}^n) \) as the domain of the closed extension of \(L \) with domain \(C_c^\infty(\mathbb{R}^n) \) coincides with the space of potentials \(F_{2,p} \) with equivalent norms. Since \(W^2_p(\mathbb{R}^n) \) satisfies the assumption (6), Theorem 3 gives us the corresponding Hunt process in the \(C_2,p\)-refined sense. The Sobolev embedding theorem assures that "\(C_2,p\)-q.e." becomes "everywhere" when \(2p > n. \) Consequently the Hunt process is uniquely associated without exceptional starting point.

References

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan