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1 Introduction

The content of this doctoral thesis is a theory of affine deformations related

to the twist deformations in the hyperbolic geometry. The goal of the thesis

is to prove the three main theorem in [26]. We also mention the general

results of the theorems, which are shown in [27].

In the theory of affine deformations, the cocycles play important roles.

Indeed, we regard the cycles as mathematical objects in the two aspects, the

Lorentzian geometry and the deformation theory of hyperbolic structures.

In the Lorentzian geometry, cocycles correspond to the translation parts of

the affine actions, and in the deformation theory of hyperbolic structures,

cocycles represent the infinitesimal deformations of the structures. We will

define special cocycles, which are called the affine twist cocycles, and observe

an analogue between the two aspects.

1.1 Affine deformation

Let G be a finitely generated Fuchsian group, which is isomorphic to a free

group in PSL(2,R). An affine deformation of G is a homomorphism of G

into the isometry group on the Minkowski space-time R3
1, whose restriction to

the the linear part is an identity map through the identification SO(2, 1)◦ ∼=

PSL(2,R). We call the restricted map to the translation part a cocycle. With

G fixed, a space of affine deformations is canonically identified with the space

of the cocycles up to translational conjugacy, which we denote by H1(G,R3
1).

We define the affine twist cocycle ATg for g ∈ G which corresponds to a

separating loop on the quotient surface S = H/G.
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Suppose that S is homeomorphic to an interior of a compact orientable

surface with boundary, which consists of more than three boundary compo-

nents. Let us take a pants-decomposition of S, and assign each of the dividing

curves and the original boundary curves to an real value, respectively. We

denote the set of the values by a ∈ R2b−1, where b is the number of the

boundary components of S. Then there exists a cocycle ua
0 whose Margulis

invariants corresponding to the above closed curves are equal to the given

value in a ∈ R2b−1 (cf. Proposition 11), where the Margulis invariant is a

translation length of an affine action of R3
1. By using the affine twist cocycles

and Proposition 11, we will parametrize H1(G,R3
1). Namely, we will prove

the following:

Theorem 1 (Theorem 1.1 in [26]). Fix a pants-decomposition of a punctured

sphere S without cusps. For the values (a, t) ∈ R2b−1 ×Rb−2, the map corre-

sponding to the following cocycle gives a canonical linear isomorphism from

R3b−3 to H1(G,R3
1);

ua
0 +

b−2∑
k=1

tkATgk , (1)

where tk ∈ t and gk is the separating simple closed curve (k = 1, . . . , b − 2)

with respect to the pants-decomposition.

This claim is a little stronger than Theorem 1.1 of [26], however it follows

from the same argument as that for the proof of Theorem 1 in [26].

On the other hand, the works of Goldman and Margulis [24] implies the

parametrization of H1(G,R3
1), however our parametrization is different from

theirs.

The cases that G be the free group of rank two are concretely studied by
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V.Charette T.Drumm and Goldman(See [8, 9, 10]). Theorem 1 in this thesis

is recognized as a natural extension of their works of an affine deformation

theory.

1.2 Infinitesimal deformation

We discuss the deformation of hyperbolic structures along the affine twist

cocycles. Since there is a canonical isomorphism between R3
1 and the Lie

algebra psl2(R), Goldman and Margulis applied the cocycles and the Mar-

gulis invariant for investigating the infinitesimal deformation of a hyperbolic

surface. They regards a cocycle as an infinitesimal deformation of σ ∈ G as

follows:

σu(s) := σ exp(su(σ) + o(s)), (2)

where s moves in the small interval containing 0. Through this correspon-

dence, it is shown that the value of the Margulis invariant of σ is equal to

half of d
ds
L(σu(s))|s=0, where L is the displacement length of an element of

G in the hyperbolic geometry. Above results are referred to Section 5 and 6

in [24]. We apply the two relations to show the following formula.

Theorem 2 ([26, 27]). Let S = H/G be a punctured sphere without cusps,

and g be any separating simple closed curve in S. Then

d

ds

∣∣∣∣
s=0

L(σATg(s)) = 2
∑

p∈σ ∩ g

cos θp (3)

holds, where σ is a simple closed curve in S. Plus, θp is the angle at p between

the geodesics g and σ.
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The angle at p is chosen by the segment of the left side of g along σ. The

equation (3) is observed when σ is only a special loop in [26] and when σ is

a general closed loop in [27]. The equation (3) is regarded as an analogue of

the formula of Wolpert, which shows the correspondence between the twist

deformation and the angles by the closed curves(introduced in Section 3 of

[28]).

Theorem 3. The affine twist cocycle ATg along the separating simple closed

curve g can be regarded as a cocycle corresponding to the infinitesimal twist

deformation along g.

1.3 Case of surfaces with positive genus

When G is a Fuchsian group whose associated surface is not planer, the

same conclusions are shown as the extended results of the three theorems

(cf. [27]). The arguments of the proofs in the higher genus case is almost

same as that for the planer case. However, we need some discussion for

getting over difficulties rising from the complexity from the handles.

1.4 Organization of this thesis

This thesis is organized as follows:

Some definitions and notations are introduced briefly in Section 2, in-

cluding topics from a Lorentzian geometry and a hyperbolic geometry. In

Section 3 and 4, we state the theories related directly to our main theorems.

In Section 3, we define the affine deformation and its related topics. Further-

more, we mention proper affine deformations in Subsection 3.2. In Section 4,
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we introduce the theory of infinitesimal deformations of hyperbolic surfaces.

There are two topics in this section: First is the application of the Lorentzian

geometry to the theory of infinitesimal deformations of a surface, and second

is the theory of infinitesimal Fenchel-Nielsen twist deformations.

Finally we show the main results in Section 5. An affine twist cocycle is

formally defined in Subsection 5.1. In Subsection 5.2, we prove Theorem 1

on the basis of Section 3. In Subsection 5.3, we show the corollary following

immediately by Theorem 2, and subsequently prove Theorem 2. With the

two topics of Section 4, we obtain Theorem 3 as mentioned above.
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2 Basic theory and Notation

In this section, basic topics will be introduced briefly, and notations will be

defined.

Lorentzian geometry The Lorentzian space-time R3
1 of three dimension is

a vector space equipped with the Lorentzian inner productB. The Minkowski

space-time of dimention three is an affine space with R3
1 as the base space.

By abuse of the notation, we use the same notation R3
1 as both a vector space

and an affine space. A linear isometry on R3
1 is represented by the matrix

g of the Lorentzian group O(2, 1), which is denoted by Isom(R3
1). An affine

isometry on R3
1 has a form (g,u) for u ∈ R3

1, where (g,u) acts on R3
1 by

(g,u)x = gx+ u, x ∈ R3
1. (4)

Affine isometries forms the isometry group O(2, 1) ⋉ R3 on the Minkowski

space-time, which is denoted by AfIsom(R3
1). From now on, we will only

consider the identity component G := SO(2,1)◦ of O(2, 1).

The hyperbolic plane H is realized as a subspace of the Lorentzian space-

time R3
1; the following subset consists of two disjoint sheets:

{x ∈ R3
1 | B(x,x) = −1} (5)

We take one sheet from the set (5) and fix it, then we can naturally regard

the sheet as a hyperbolic plane H. We call a vector starting the origin in

R3
1 future-pointing if a ray defined by the vector intersects the sheet H. The
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restriction of the action of an isometry ofG on H corresponds to the action of

Möbius transformation of PSL(2,R), which preserves the hyperbolic metric

on H. This gives the identification

G = SO(2, 1)◦ ∼= PSL(2,R). (6)

Lie algebra The Lie algebra psl(2,R) is a tangent space at the identity of

PSL(2,R) as a Lie group. The Lie algebra psl(2,R) admits a Killing form B̃

as follows:

B̃(x,y) :=
1

2
trace(ad(x)ad(y)), (7)

where x,y ∈ psl(2,R) and the adjoint map ad maps to SL(2,R). There is a

natural linear isomorphism ψ : psl(2,R)→R3
1 such that the Killing form B̃ is

compatible with B on R3
1.

Hyperbolic surfaces Let G ⊂ G be a finitely generated Fuchsian group,

where a Fuchsian group, by definition, is a discrete subgroup of G. Then the

action of G as the Möbius transformation on H is properly discontinuous.

Throughout this thesis, we always suppose that G is isomorphic to the free

group of rank b. In fact, the quotient surface H/G is homeomorphic to the

interior of a compact orientable surface with boundary. Any component of

the boundary of the surface are funnels or cusps. A funnel corresponds to a

hyperbolic element of G and a cusp corresponds to a parabolic elements of

G. Note that G consists of hyperbolic elements if the associated surface S

has no cusp.

Finally we define the translation length L in H with respect to the hy-
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perbolic distance d of H; for a hyperbolic element g ∈ G,

L(g) := inf
x∈H

{ d(g(x),x) }, (8)

where the action g(x) is as the Möbius transformation.
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3 Affine deformation

In the former part of this section, we define affine deformations. The study

for affine deformations is mainly developed by Drumm and Goldman(for

example, [15, 20, 21]). The definitions and the notations in this section are

based on the papers ([8, 20]). In the latter part of this section, we refer to

the result of the author about properness of affine deformations.

3.1 Affine deformation

Affine deformations Let G ⊂ G be a Fuchsian group. An affine deforma-

tion of G is a homomorphism ρ : G → AfIsom(R3
1) such that the restriction

on the linear part is the identity map. Since the concept of affine deformation

is in the affine geometry, it is natural to treat affine deformations up to trans-

lational conjugacy. Let H1(G,R3
1) denote the set of all affine deformations of

G up to translational conjugacy.

Cocycles A cocycle u on G is a map :G→ R3
1, which satisfies the following

cocycle condition: For any h1, h2 ∈ G = SO(2,1)0,

u(h1h2) = h1u(h2) + u(h1). (9)

The restriction of an affine deformation ρ on the translation part is a cocycle.

Conversely, a cocycle u defines an affine deformation by h → (h,u(h)) for

h ∈ G. So we may denote an affine deformation by ρu if the cocycle u

is specified. Thus, the space H1(G,R3
1) of affine deformations of G can be

regarded as a space of all cocycles up to translational conjugacy.
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Principal vector A hyperbolic element g ∈ G has three distinct fixed

lines Latt, Lres and Lpri passing the origin in R3
1; Latt (resp. Lrep) is tangent

to H and has an eigenvalue larger (resp. smaller) than 1. The last line Lpri

is a space-like line and its eigenvalue is just 1.

Let us take future-pointing vectors X+
g and X−

g in the lines Latt and Lres

respectively. We can define a unique vector X0
g of g with the following two

conditions satisfied, regardless of the choice of X+
g and X−

g :

Det{X0
g,X

−
g ,X

+
g } > 0 ; (10)

B(X0
g,X

0
g) = 1. (11)

We call X0
g the principal vector of g.

Margulis invariant Margulis [25] introduced an invariant with respect

to affine deformations, which is recently called the Margulis invariant. The

Margulis invariant is a function αu : G → R, which assigns g ∈ G to the

translation length of ρu(g) in R3
1; for an affine deformation ρu and g ∈ G,

αu(g) := B(ρ(g)(x)− x,X0
g), (12)

where any x ∈ R3
1. In fact, the choice of x ∈ R3

1 is independent of the

value of this function(cf. 3 of [25]). The following lemma tells us that the

Margulis invariant is one of the fundamental invariants in the theory of affine

deformations.

Lemma 4 ([25, 21, 7]). Two affine deformations ρu and ρũ of G are same

class in H1(G,R3
1) if and only if αu(g) = αũ(g) holds for every g ∈ G.
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Namely the image of the Margulis invariant determines a conjugacy class

of an cocycle in H1(G,R3
1). With only this lemma, we need to check all

values of the image in order to estimate the conjugacy classes of cocycles. A

necessity of affine twist cocycles derives from this idea.

3.2 Proper affine deformation

Here the author refers to proper affine deformations. A proper affine de-

formation ρ is an affine deformation, whose image acts on the Minkowski

space-time R3
1 properly discontinuously. Then the quotient manifold is a

(geodesically) complete flat Lorentz 3-manifold.

Though the works [12, 13, 14] by J.Danciger, F.Gueritaud and F.Kassel

revealed the classification of proper affine deformations, the author constructs

the proper affine deformations in the case of the punctured sphere. This re-

sult is an application of the works [8, 10] by Charette, Drumm and Godlman

of proper affine deformations to other surfaces. Their works are to construct

proper affine deformations and its fundamental domain concretely. Our ap-

plication to the surface gives a part of proper affine deformations with respect

to the parametrization in Theorem 1. This application is mentioned as the

examples in Section 6 of [26].

14



4 Review of infinitesimal deformation

In this section, we introduce some topics of a theory of infinitesimal defor-

mations of hyperbolic structures, which is mainly based on two papers [24]

and [28].

4.1 Relationship between R3
1 and psl(2,R)

The theories here are introduced in the works [24] of Goldman and Margulis.

By using the identification between the Lorentzian space-time R3
1 and the

Lie algebra psl(2,R) of PSL(2,R), they showed the relation between the

Margulis invariant and the first derivariation of the translation length L in

the hyperbolic geometry.

Infinitesimal deformations An infinitesimal deformation of a hyperbolic

surface S is an tangent vector of the Teichmüller space of S at S.

Let G be a finitely generated Fuchsian group. A cocycle is regarded as

the infinitesimal deformation of σ ∈ G thorough the following equation: by

u(σ) ∈ psl(2,R) ,

σu(s) := σ exp(su(σ) + o(s)), (13)

where s is in the small interval containing 0.

Margulis invariant Under the equation (13), a value of the Margulis in-

variant may be interpreted as half of the first derivariation of translation

length L in the hyperbolic geometry.
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Lemma 5 ( Lemma 2 in Section 6 of [24]). The following equation holds:

d

ds

∣∣∣∣
s=0

L(σu(s)) = 2αu(σ) (14)

for any cocycle u and σ ∈ G.

4.2 Infinitesimal twist deformation

Here we introduce a topic associated with Fenchel-Nielsen twist deformations.

The infinitesimal deformation of a twist deformation is estimated by the

formula (mentioned as in Section 3 of [28], which combines the first derivation

of translation length of hyperbolic metrics with the angles.

Wolpert formula Let g ∈ G be a hyperbolic element corresponding to the

closed geodesic on S = H/G. The Fenchel-Niesen twist deformation along g

can be defined, and then we consider its infinitesimal deformation.

Lemma 6 (Section 3 in [28]). We take any σ ∈ G, which corresponds to a

closed curve. The first derivariation of the length of σ along g is equal to

∑
p∈g ∩σ

cos θp, (15)

where θp is the angle between the tangents at p of g and σ. The angle at p is

chosen by the segment of the left side of g along σ.
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5 Study of affine twist deformations

Let S be a hyperbolic surface S with boundaries. We take a separating

simple closed curve g on S.

The cocycles corresponding to the infinitesimal twist deformations along

g can be represented explicitly in Section 5.1, and we call the cocycle an affine

twist cocycle. We apply the affine twist cocycles to the affine deformation in

Subsection 5.2. We will discuss in Theorem 3 whether the affine twist cocycle

truly corresponds to the representation of the infinitesimal twist deformation.

Indeed, we will observe an analogue between the Teichmüller theory and the

theory of the affine deformations by comparing between the relations studied

by Goldman and Margulis with the formula by Wolpert (cf. Subsection 5.3).

5.1 Definition of affine twist cocycle

Let g be a separating simple closed curve on S as above, and set S − h =

S1 ∪ S2. We only consider this decomposition when both S1 and S2 are

compatible with hyperbolic metrics.

Definition 7 (Definition 4.2 in [26] and Section 4 of [27]). A canonical affine

twist cocycle ATg along g is a cocycle on S, which is defined as follows:

ATg(σ) :=


0, σ ∈ π1(S1)

X0
g − σX0

g, σ ∈ π1(S2)

defined by the cocycle condition, Otherwise.

(16)

Definition 8. A cocycle v is an affine twist cocycle along g on S if the
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following equation

v = κATg (17)

holds for a certain κ ∈ R.

Pants-decomposition Suppose that S is homeomorphic to a punctured

sphere. We fix a pants-decomposition of S:

S = ⊔kSk, (18)

where Sk is each pair of pants in the pants-decomposition of S. Let the

associated Fuchsian groups denoted by {Pk}k respectively.

Lemma 9 (Section 4 of [26]). Let S be a punctured sphere with (b + 1)

boundaries(b ≥ 3). For a given pants-decomposition, there exists a sequence

of standard affine twist cocycles which are defined along the dividing curves.

Proof. We define the pants-decomposition (18) as S = S1 ∪ · · · ∪ Sb−1 such

that Sk and Sk+1 share a boundary curve (k = 1, . . . , b−2). Let the boundary

curve denote gk(k = 1, . . . , b − 2). Then we define a sequence of canonical

affine twists ATgk by the following:

ATgk(σ) :=

0, σ ∈ π1(S1 ∪ · · · ∪ Sk)

X0
gk
− σX0

gk
, σ ∈ π1(Sk+1 ∪ · · · ∪ Sb−1)

(19)

and a image for a general loop σ in S is defined by the cocycle condition.

The case that S have genus is discussed In [27].
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5.2 Application to Lorentzian deformations

Here we treat Theorem 1. Let P be the associated Fuchsian group, and then

P can be represented as

P := ⟨g1, g2, g3 | g1g2g3 = id⟩, (20)

where g1, g2 and g3 represent three boundary curves of the pair of pants.

Lemma 10 (Theorem A in [8]). There exists a canonical linear isomor-

phism Φ : R3 → H1(P,R3
1), which satisfies: For (α1, α2, α3) ∈ R3 and

u := Φ(α1, α2, α3), the equations

αi = αu(gi) (21)

hold when i = 1, 2, 3.

Proof. By using vectors v1 and v2 such that B(vi,X
0
gi
) = 0(i = 1, 2), a

cocycle u is represented by

u(g1) = α1X
0
g1
+ v1 (22)

u(g2) = α2X
0
g2
+ v2. (23)

The cocycle condition indicates the relation

u(g3) = −g−1
2 g−1

1 (α1X
0
g1
+ v1)− g−1

2 (α2X
0
g2
+ v2). (24)
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If we represent, by using v3 with B(Xg3 ,v3) = 0, as

u(g3) = α3X
0
g3
+ v3, (25)

then a direct calculation find a triple (v1,v2,v3) of the vectors, which satisfies

the equation of (24) and (25). This correspondence defines a linear map to

the set of cocycles. Furthermore, this linear map is naturally extended to a

linear map Φ : R3 → H1(P,R3
1). Lemma 4 says that Φ is injective. Since

H1(P,R3
1) is three dimensional, the map Φ is surjective.

Second, by extending Lemma 10 to an affine deformation on G, whose

associated surface is homeomorphic to a punctured sphere, we construct the

following standard cocycles; with respect to the fixed pants-decomposition,

we assign each of the boundary curves to a real value respectively. Let the

set of the values be a ∈ R2b−1.

Proposition 11 (Lemma 3.2 in [26]). There is a linear injection from R2b−1

to the set of cocycles on G, such that every value of a is equal to the value of

the Margulis invariant corresponding to the corresponding closed curve. We

denote this correspondence by ua
0 for a ∈ R2b−1.

Proof. We remind the pants-decompositon of Lemma 9. We denote by Pk

the Fuchsian group associated with Sk(k = 1, . . . , b− 1). For the surface S1,

we define a cocycle u1 by Lemma 10 and the given three values on S1. There

are many choices of this cocycle, however, in fact, the ambiguity is only by

translations . We fix u1 from translation conjugacy.

Next we define a cocycle on S1 ∪ S2. We choose a cocycle u′
2 on P2 from

same discussion about u1. This cocycle has same Margulis invariant on the
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shared boundary curve g1 by definition of the construction of u1 and u2.

By a suitable translation of u2, we can equate the vectors of u1(g1) with

u′
2(g1). We redefine u2 by satisfying the above condition. Then a cocycle u2

on S1 ∪ S2 are defined as follows:

u2(σ) :=

u1(σ), σ ∈ P1

u2(σ), σ ∈ P2,

(26)

and a image for a general loop σ in S1∪S2 is defined by the cocycle condition.

We can define a cocycle ua
0 on S inductively from the above discussions.

Finally a linearity of the relation (a → ua
0) follows the linearity of the con-

struction of the cocycles of each pair of pants.

Now we can prove Theorem 1.

Proof of Theorem 1. For the given the pants-decomposition of S and the

values (a, t) ∈ R2b−1 × Rb−2, we will construct a cocycle on G satisfying the

conditions of Theorem 1.

From Proposition 11, we define the cocycle ua
0 on G for a ∈ R2b−1. Let

the sequence of the affine twist cocycles along the dividing curves gk be ATgk

in Lemma 9. Then we can define the cocycle of the form (1) in Theorem 1;

(a, t) → ua
0 +

b−2∑
k=1

tkATgk , (27)

where tk ∈ t = (t1, . . . , tb−2). Indeed, this is a cocycle because of the lin-

ear sum of the cocycles. Furthermore, the map (27) is linear because of

Proposition 11.
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The quotient by the translations naturally extends the relation (27) to

the map from R3b−3 to H1(G,R3
1). Let us prove that this map is injective;

assume that

ua
0 +

b−2∑
k=1

tkATgk = ua′

0 +
b−2∑
k=1

t′kATgk (28)

for (a, t) and (a′, t′) ∈ R3b−3. Since a and a′ indicate the values of the

Margulis invariant of the cocycle, we have a = a′ and then ua
0 = ua′

0 by

Lemma 4. Thus we obtain

b−2∑
k=1

tkATgk =
b−2∑
k=1

t′kATgk . (29)

By the definition of the sequence of the affine twists, we find tk = t′k, and

then t = t′. Then the map is an injection as desired. The direct calculation

indicates that the extended map of (27) is maximal rank.

5.3 Application to infinitesimal deformations

After we introduce a corollary of Theorem 2, we prove Theorem 2.

By the linearity of the Margulis invariant, Theorem 2 indicates the fol-

lowing result.

Corollary 12 ([26, 27]). For any cocycle u on G, we can represent u as

ua
0 +

∑b−2
k=1 tkATk up to translation conjugacy. Let gk be the dividing curve in

the pants-decomposition of Lemma 9, and σ be a simple closed curve. Then

1

2

d

ds

∣∣∣∣
s=0

L(σu(s)) = αu(σ) +
b−2∑
k=1

tk
∑

pk∈gk ∩σ

cos θpk (30)
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holds.

The following lemma ties the Margulis invariant and the cosines, which

is a core of the proof of Theorem 2. The relation (31) is a basic relation in

the Lorentzian geometry.

Lemma 13. Let h1, h2 be hyperbolic elements in G. Suppose that the unique

invariant lines which h1, h2 have on H are crossing. Then the equation

B(X0
h1
,X0

h2
) = cos θp (31)

holds, where θp is an angle between the tangent vectors of h1 and h2 at the

intersection p.

Proof. Since the equation (31) is invariant under conjugation, we may set the

intersection p as t(0, 0, 1). Then the vectors X0
h1

and X0
h2

can be represented

as t(1, 0, 0) and t(cos θp, sin θp, 0) respectively. A direct calculation indicates

the equation (31) as desired.

Finally we give the proof of Theorem 2 here.

Proof of Theorem 2. Take a loop σ in S. The decomposition of S along the

dividing curve g defines two surfaces S1 and S2. Note that the affine twist

cocycle ATg follows the representation (16). The equation (14) in Lemma 5

gives the following:

1

2

d

ds

∣∣∣∣
s=0

L(σATg(s)) = αATg(σ). (32)
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By the definition of the Marglis invariant αATg(σ), we have

αATg(σ) = B(gx+ATg(σ)− x,X0
g) (33)

for x ∈ R3
1. In fact, the vector gx − x is in the orthogonal plane of X0

g in

R3
1. Thus we will prove that B(ATg(σ),X

0
g) is equal to the right side of the

equation (3). We complete the proof in the case that the loop σ has the

following form

σ = σ1
1σ

2
1σ

1
2σ

2
2 · · ·σ1

nσ
2
n, (34)

where the loop σξ
j is in Sξ (1 ≤ j ≤ n). Even if σ has the other forms, the

same discussion gives the proof of the case. By the cocycle condition and

ATg(σ
1
j ) = 0, we have

ATg(σ) =
n∑

j=1

σ1
1 · · ·σ1

jATg(σ
2
j ). (35)

Furthermore

αATg(σ) = B(X0
σ,

n∑
j=1

σ1
1 · · ·σ1

jATg(σ
2
j )) (36)

=
n∑

j=1

B((σ1
1 · · ·σ1

j )
−1X0

σ,ATg(σ
2
j )). (37)

Note that, for every ϕ ∈ G, the following relation holds:

ϕX0
σ = X0

ϕσϕ−1 . (38)
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Remind the definition of the affine twist cocycle:

ATg(σ
2
j ) = X0

g − σ2
jX

0
g. (39)

These two relations imply that the equation (37) corresponds to

n∑
j=1

B(X0
σ2
jσ

1
j+1σ

2
j+1···σ2

nσ
1
1 ···σ1

j
,X0

g)−
n∑

j=1

B(X0
σ1
j+1σ

2
j+1···σ2

nσ
1
1 ···σ1

jσ
2
j
,X0

g). (40)

Since these vectors in the above equation are principal vectors, Lemma 13

says that the equation is a sum of the cosines. Notice the orientation of the

vectors. The former terms B(X0
σ2
jσ

1
j+1σ

2
j+1···σ2

nσ
1
1 ···σ1

j
,X0

g) are equal to cos θpj

respectively, where the point pj ∈ S is the intersection between the loops

σ2
jσ

1
j+1σ

2
j+1 · · ·σ1

j and g. The latter terms satisfy

B(X0
σ1
j+1···σ2

j
,X0

g) = cos (π − θqj) = − cos θqj , (41)

where the point qj ∈ S is the intersection between the loops σ1
j+1 · · · σ2

j and

g. Thus we obtain

αATg(σ) =
n∑

j=1

cos θpj +
n∑

j=1

cos θqj , (42)

and the points p1, . . . , pn and q1, . . . , qn are all intersections of the loops σ

and g.
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