

Title	バナジウム触媒を用いるエナンチオ選択的炭素-炭 結合形成反応の開発			
Author(s)	佐古, 真			
Citation	大阪大学, 2017, 博士論文			
Version Type	VoR			
URL	https://doi.org/10.18910/61482			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士論文

論文題名 バナジウム触媒を用いるエナンチオ選択的炭素-炭素結合形成反応の開発

平成 29 年 2月 2日

専 攻 名 化学専攻

氏 名 佐古 真

大阪大学大学院理学研究科

略語表

便宜上、本論文全般について以下に示す略語及び記号を用いた。

Ac	acetyl
acac	acetylacetonate
APCI	atmospheric pressure chemical ionization
aq.	aqueous solution
Ar	aryl
BINAM	1,1'-binaphthyl-2,2'-diamine
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BINOL	1,1'-bi-2-naphthol
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
BOX	bis(oxazoline)
BOXAX	2,2'-bis(oxazolyl)-1,1'-binaphthyl
BSA	N,O-bis(trimethylsilyl)acetamide
Bu or <i>n</i> -Bu	butyl or normal butyl
Bz	benzoyl
Cbz or Z	benzyloxycarbonyl
cod	1,5-cyclooctadiene
Су	cyclohexyl
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3-dichloro-5,6-dicyano-p-benzoquinone
DIOP	4, 5-bis (diphenyl phosphinomethyl)-2, 2-dimethyl-1, 3-dioxalan
DMA	N,N-dimethylacetamide
DMEDA	N,N'-dimethylethylenediamine
DMF	N,N-dimethylformamide
DMPU	N,N'-dimethylpropyleneurea
DMSO	dimethyl sulfoxide
ee	enantiomeric excess
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz

<i>i</i> -Pr	isopropyl
L	ligand
Me	methyl
Mes	mesityl (2,4,6-trimethylphenyl)
MS	mass spectrometry
Ms	mesyl (methanesulfonyl)
MTBE	methyl <i>tert</i> -butyl ether
nbd	norbornadiene
ND	not determined
NMP	N-methylpyrrolidone
NMR	nuclear magnetic resonance
Ns	nosyl (2-nitrobenzenesulfonyl)
PG	protecting group
Ph	phenyl
ppm	parts per million
Pr or <i>n</i> -Pr	propyl or normal propyl
Ру	pyridyl
quant	quantitatively
R	alkyl
rac	racemic
rt	room temperature
SEGPHOS	5,5'-bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole
SFDP	9,9'-spirobifluorene-1,1'-diphosphine
SILOP	2,3-bis(siloxy)-1,4-bis(diphenylphosphino)butane
SPINOL	1,1'-spirobiindane-7,7'-diol
SPRIX	spiro bis(isoxazoline) ligand
TBAB	tetrabutylammonium bromide
TBDM	tert-butyldimetyl
<i>t</i> -Bu	<i>tert</i> -butyl
Tf	trifluoromethanesulfonyl
TfO	trifluoromethanesulfonate
THF	tetrahydrofuran
TMEDA	N,N,N',N'-tetramethylethylenediamine
TMS	trimethylsilyl
TMS Ts	trimethylsilyl tosyl (<i>p</i> -toluenesulfonyl)

目次

序論

第一節	触媒的不斉合成	1
第二節	軸性キラリティーを有するビアリール化合物とその不斉合成法	2
第三節	有機合成反応におけるバナジウム	4
第四節	バナジウム錯体を用いる不斉酸化的カップリング反応	5
第五節	本研究の概要	10
	参考文献	11

第一	章	2-ナフトールのエナンチオ選択的な完全水中酸化的カップリング反応	13
	第一節	緒言	13
	第二節	反応条件の検討	16
	第三節	基質一般性の検討	19
	第四節	BINOL のラセミ化	20
	第五節	グラムスケール合成	21
	第六節	まとめ	21
		実験項	22
		参考文献	27

第二章	オキサ[9]ヘリセンの効率的エナンチオ選択的合成	29
第一節	緒言	29
第二節	2-ヒドロキシベンゾ[c]フェナントレンの合成	35
第三節	反応条件の検討	35
第四節	単核バナジウム錯体の検討	38
第五節	オキサ[9]ヘリセンの絶対配置の決定	42
第六節	基質一般性の検討	43
第七節	オキサ[9]ヘリセンの誘導体合成	45
第八節	反応機構の考察	46
第九節	酸化的ヘテロカップリングの検討	49
第十節	他のヘテロヘリセン誘導体の合成検討	50
第十一節	まとめ	53
	実験項	54
	参考文献	95
総括		98

Ц (Дир	
謝辞	9

第一節 触媒的不斉合成

キラリティーとは、三次元の物体や現象がその鏡像体と互いに重なり合わない性質である。こ の性質を有する分子をキラル分子と呼び、互いに鏡像の関係にある立体異性体が存在することか ら、それらは鏡像異性体あるいはエナンチオマーと称される。これらキラル分子は光学活性(旋 光性)を持ち、近年、光学活性化合物は、医薬品、農薬、香料、さらには液晶や液体クロマトグ ラフィー用のキラル識別剤といった機能性材料に利用されており、その合成法の開発は様々な分 野において重要な課題となっている。例えば医薬品産業においては、サリドマイド事件を契機に 光学活性体への認識が強まり、ラセミ体は 50%不純物と言われるまでの考え方が定着し、光学活 性な医薬品が年々増加している。

光学活性化合物を得る方法としては光学分割法、キラルプール法、酵素法、触媒的不斉合成法 などが挙げられる。光学分割法はコスト面では有利であるものの、一方のエナンチオマーのみを 必要とする場合においてその効率性は半減する。アミノ酸や糖などの天然のキラル源を利用する キラルプール法は、化学量論量あるいはそれ以上のキラル源が必要となる上に、適当な出発物質 が得られない場合も多い。酵素法は非常に高い選択性で生成物が得られるものの、耐溶媒性、pH 依存性、基質特異性といった条件の制限が多い。これらの方法に対し、少量の不斉源から大量の 光学活性体を生成できる触媒的不斉合成法は非常に有用であり、これまでに数多くの反応が開発 されている。2001年度のノーベル化学賞が「触媒的不斉合成」の分野で卓越した業績を上げた野 依良治教授、W.S. Knowles 博士、K.B. Sharpless 教授の3氏に贈られたことからも、この分野が学 術と産業の両面で極めて重要であると分かる。近年の触媒的不斉合成技術の発展により、不斉水 素化 ¹、不斉エポキシ化 ²⁾などの諸反応が工業化されるに至り、今後も多くの反応で実用化が進む と期待されている。触媒的不斉合成において鍵を握るのが、反応を促進、かつ立体選択性を制御 する「触媒」である。一般に用いられる触媒は、酵素触媒、金属を含まない有機分子触媒、およ び金属を含む金属触媒の三つに大別される。酵素触媒や有機分子触媒は、比較的安価で取り扱い 易く、低毒性であるという利点を持っている。一方、金属触媒は酵素触媒や有機分子触媒よりも 高い活性を示し、通常の条件では実現困難な分子変換を達成できるため、幅広い反応への適用が 期待されている。触媒として働くキラルな遷移金属錯体は金属中心とキラル配位子から成り、こ れら二つの調和が高度な不斉制御を可能とする。そのため、キラル遷移金属錯体の電子的・立体 的情報を必要に応じて精密に設計し、高い立体選択性やターンオーバー数を示す新規不斉触媒を 開発することが、触媒的不斉合成において最も重要な課題の一つである。

分子のキラリティーを決定する不斉源は次の四つに大別することができる(Figure 0-1)³⁾。

- 中心性キラリティー:ある原子のまわりの 4 つの結合に全て異なる置換基を有する場合に生じる
- ② 軸性キラリティー:構成原子がある仮想軸の周りにキラルに配置する場合に生じる
- ③ 面性キラリティー:一つの面の分子内の表と裏で原子配列が異なる場合に生じる
- ④ ヘリシティー:らせん構造に由来する三次元構造をとる場合に生じる。

Figure 0-1. 不斉源の種類

これら四つの不斉源の中でも、軸性キラリティーを有する化合物の研究は最も盛んに行われている。特にビアリール化合物は有用な不斉補助基、不斉配位子および不斉有機分子触媒に利用されているだけでなく、天然物にも見受けられる重要な骨格である(Figure 0-2)⁴。

Natural products

Figure 0-2.

工業的に使用されている例として、野依教授らによって報告された 2,2'-ビス(ジフェニルホス フィノ)-1,1'-ビナフチル(BINAP)-ロジウム錯体を触媒とする(-)-メントールの製造過程の不斉 水素移動反応⁵⁾が知られている(Scheme 0-1)。

Scheme 0-1.

軸性キラリティーを有するビアリール化合物は学術・産業の両分野において重要な役割を担っ ており、その効率的な供給法や合成法の開発が強く望まれている。これまでに報告されている合 成法は、大きく三つに分類される(Figure 0-3)⁴⁾。一つは、二分子のアリール化合物間における 炭素--炭素結合形成を伴うビアリールカップリング反応である。古典的本手法は、不斉誘導が起こ ると同時にアリール間の結合が形成される、最も直接的な合成法である。二つ目は、ビアリール 化合物の光学分割や非対称化反応を利用する合成法である。すなわち、先ず非立体選択的な反応 によりビアリール骨格を構築した後、ラセミ体の場合はキラル補助基やキラルカラムによって光 学分割、あるいはアキラル分子の場合は結合軸に対して立体的要因を付与することで光学活性体 ビアリール化合物を与える。この手法では2段階以上の合成、煩雑な光学分割や化学量論量のキ ラル試薬を必要とする。三つ目は、脱水素化反応や付加環化反応によって芳香環を構築し、ビア リール化合物を合成する手法である。この反応を用いて光学活性ビアリール化合物を与える場合、

第三節 有機合成反応におけるバナジウム ⁶

バナジウムは生物学的に必須元素のひとつである。ハロペルオキシダーゼやニトロゲナーゼの ような酵素に含まれており、生体酸化還元反応においてその重要性を示している。有機バナジウ ム化合物を含むバナジウム錯体は、それらの酸化状態と配位数に依存して-3価から+5価までの幅 広い酸化状態で存在を取り、一般には一電子酸化還元過程を経てその酸化状態を変える。その特 性がバナジウム化合物のレドックス過程を制御し、様々な有機反応の開発を可能としている。

ラジカル種は有機合成において有用な中間体であり、ラジカル種を選択的に発生させる手法は 数多く開発されている(Scheme 0-2)。金属のレドックス過程によって引き起こされる有機化合物 の一電子還元あるいは一電子酸化は、アニオンラジカルあるいはカチオンラジカルを発生させる 実用的な手法であり、特にバナジウム、チタンそしてマグネシウムを含む前周期遷移金属が用い られている。V(II)から V(III)のレドックス過程は一電子還元を促進することが知られており、V(I) 種もまた同様の還元剤として作用する。5価バナジウム化合物は、一般に V(V)-V(IV)間で一電子 酸化を引き起こす。また、一電子酸化は V(IV)-V(III)間でも可能ではある。

Scheme 0-2.

バナジウムを還元剤あるいは酸化剤として反応に利用する場合、反応を完結させるために化学 量論量あるいは過剰量の金属塩を使用することが合成上の制限の一つとなっている。環境調和型 プロセスを指向する現代有機化学において、それらの使用量を触媒量に抑えることが重要である。 その際、化学量論量の共還元剤あるいは共酸化剤の適切な選択が触媒の可逆的なサイクルの実現 のために必要不可欠である。金属共還元剤を用いる場合、それらは最終的に対応する酸化状態の より高い金属塩へと変換され、Lewis 酸として働き還元反応を促進する可能性がある一方で、触 媒反応自体を遅らせる可能性もある。また、配位子を用いれば立体的な制御も可能となり、立体 選択的または/あるいは立体特異的な化学変換も達成することができる。

バナジウムの優れたレドックス能や Lewis 酸性を活かし、過去 30 年にわたりバナジウムの化学 は幅広い発展を遂げ、有機合成化学の分野において重要な領域となっている。例えば、バナジウ ム錯体はエポキシ化反応、スルフィドの酸化反応やハロペルオキデーションなど数多くの酸化反 応やビアリールカップリング反応、マンニッヒ型反応やポリマー合成などの炭素・炭素結合形成反 応の触媒として効果的である 7。最近では、不斉触媒反応への応用も活発に行われ 8、キラルバナ ジウム錯体の開発が盛んとなっている。実際に、エポキシ化反応⁸¹、スルフィドのスルホキシド への酸化反応⁸⁹、2-ナフトール類の酸化的カップリング反応⁸¹、α-ヒドロキシカルボニル化合物 の酸化反応⁸¹、Diels-Alder 反応⁸⁴、カルボニル化合物のシアノ化反応⁸¹、メソエポキシドの開環 反応⁸¹¹およびフェノール類とアルジミンの Friedel-Crafts 型反応⁸¹¹などの不斉触媒反応が達成さ れている。また、バナジウムのレドックス能と Lewis 酸性の両方を協調的に活用する連続反応も 報告されている⁸⁰⁻⁹。

第四節 バナジウム錯体を用いる不斉酸化的カップリング反応

軸性キラリティーを有するビアリール化合物の最も直接的な合成法の一つはフェノール類の不 斉酸化的カップリング反応である。フェノール類の酸化的カップリング反応に頻繁に用いられる 銅、ルテニウムおよび鉄と同様に、バナジウムも本反応を促進する。

2001 年に Chen らと Uang らはそれぞれ独立して、単核バナジウム触媒による 2-ナフトール類 1 の不斉酸化的カップリング反応を報告している。キラルバナジウム錯体(S)-3 は酸化硫酸バナジウム (VOSO₄)、アルデヒド化合物そして不斉源である(S)-アミノ酸から調製し、BINOL 誘導体 2 を 最高 68% ee で得ることに成功している (Scheme 0-3)^{8h,i)}。しかしながら、触媒自体の活性は低く、 反応完結までに最高で 360 時間を要した。Uang らは触媒量のトリメチルシリルクロリド(TMSCI) を添加することで、反応時間の短縮に成功しているものの、生成物のエナンチオ選択性は中程度 に留まっている。

Scheme 0-3.

不斉収率のさらなる向上を目的に、2002 年に Chen らは *N*-ketopinidene 由来のバナジウム錯体 (*S*)-**5** を開発し⁹、2003 年に Uang らはバナジウム錯体の分子内に Brønsted 酸部位を導入した触媒 (*S*_a,*R*)-**6** を調製し¹⁰、それぞれ最高 87% ee、73% ee にて BINOL 誘導体を得ている。2002 年に Gong らは二つのバナジウム原子が酸素原子で架橋された二核バナジウム(V)錯体7が有効であることを 見出し、0 ℃、酸素雰囲気下で進行し、最高 98% ee で BINOL 誘導体を与えることを見出してい る¹¹⁾。しかしながら、バナジウム錯体の触媒活性は低く、反応完結には長時間(36-168 時間)を 必要とする(Scheme 0-4)。

Scheme 0-4.

筆者の研究室でも Scheme 0-5 で示した、「二重活性化機構」に基づく二核バナジウム(V)触媒 (*R*_a,*S*,*S*)-8 を開発している¹²)。本触媒は同一分子内の二つのバナジウム原子がそれぞれ基質である 2-ナフトールを活性化し、分子内カップリング反応を促進すると同時に配向制御を行い、高収率、 高エナンチオ選択的に目的物の(*S*)-BINOL 誘導体を与える^{12a-f}。

Scheme 0-5.

多環式フェノール誘導体の不斉酸化的カップリング反応^{12g)}

当研究室で開発した二核あるいは単核バナジウム錯体は基質や生成物が不安定でこれまで不斉 酸化的カップリング反応が困難であった多環式フェノール誘導体 10~13 に対しても有効であり、 対応するカップリング生成物を高いエナンチオ選択的で得ることに成功している(Scheme 0-6)。 例えば、2-ナフトールのπ系を拡張した 2-アントラセノール(10)または 9-フェナンスレノール (11)を反応基質とし、二核バナジウム触媒(*Ra,S,S*)-8 を作用させたところ、対応するホモカップ リング体 14 が 80%収率、75% ee で、15 が定量的に 93% ee でそれぞれ得られる。3-フェナンスレ ノール(12)を H8-BINOL 由来の二核バナジウム錯体(*Ra,S,S*)-18 の存在下で反応させると、ホモ カップリング体 16 が 32%収率、68% ee で得られる。このカップリング生成物は分子内脱水環化 反応を経て、らせん状非平面性芳香族化合物であるオキサ[7]へリセンへの誘導化が可能である。4 つのベンゼン環が縮環した 5-クリセノール(13)の不斉酸化的カップリングも同様に進行し、類 似の単核バナジウム錯体(*S*)-19 を用いることで、目的のカップリング生成物 17 が 83%収率、75% ee で得られる。

不斉酸化的カップリング反応を利用した天然物合成の例¹³⁾

2012 年 Shaw らはキラルバナジウム錯体を用いる不斉酸化的カップリングを鍵段階とする生理 活性物質の効率的な全合成を報告している (Scheme 0-7)。キラルな三環式のナフトピラノン (20) を基質とし、20 mol %の Gong らが開発した二核バナジウム錯体(*R*a,*S*,*S*)-22 を用いると、対応する カップリング生成物(*R*a,*R*,*R*)-21 が定量的に高いジアステレオ選択性 (88% de) で得られ、その後 の二段階の反応を経て、Pigmentosin A の全合成を達成している。Shaw らは同様の合成法を用いて、 類縁体である Telaroderxine A および B の全合成も併せて報告している。

<u>不斉酸化的カップリング反応を利用したポリマー合成の例¹⁴</u>

2005年にはバナジウム錯体を活用する BINOL 骨格を主鎖とするポリマーのエナンチオ選択的 な合成反応が報告されている (Scheme 0-8)。Habaue らはバナジウム塩とキラルビスオキサゾリン 配位子(*R*)-Phboxを組み合わせ、2,3-ジヒドロキシナフタレン (DHN)の不斉酸化的カップリング を成長反応とするポリマー化により、DHNの多量体の合成に成功している。ポリマー化過程にお ける酸化的カップリングのエナンチオ選択性は、80% ee 以上であると推測される。また、バナジ ウムのステアリン酸塩とキラル配位子として酒石酸リチウム塩を触媒とした場合、より高い立体 選択性が観測されている。

第五節 本研究の概要

以上のように、近年、キラルバナジウム錯体を活用する不斉触媒反応の開発が活発に行われて いる。前節では特に不斉酸化的カップリングに着目し、2-ナフトール類や多環式フェノール誘導 体を基質とした例、天然物合成およびポリマー合成に応用した例を述べた。しかしながら、多く の反応でハロゲン系溶媒を必要とすることや、反応基質が2-ナフトール誘導体に限られているな ど、多くの改善点が残っている。それ故に、バナジウムの新たな反応性の開拓や新規バナジウム 錯体の開発は、触媒的不斉合成のさらなる発展に繋がると期待できる。そこで筆者は、バナジウ ム錯体の新たな可能性を見出すために次の二つの研究課題に着手した。

第一章 2-ナフトールのエナンチオ選択的な完全水中酸化的カップリング反応 第二章 オキサ[9]へリセンの効率的エナンチオ選択的合成

- (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932–7934. (b) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008–2022. (c) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007.
- 2) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
- 3) 原田馨、日高人才. 立体化学. 第一版, 東京, 大日本図書, 1986, p 236, (新化学ライブラ リー).
- Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384–5427.
- 5) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73.
- Vanadium: The Versatile Metal; Kustin, K., Pessoa, J. C., Crans, D. C., Eds.; American Chemical Society: Wahington, 2007; 1–27.
- Selected reviews: (a) Hirao, T. Chem. Rev. 1997, 97, 2707–2724. (b) Kirihara, M. Coord. Chem. Rev. 2011, 255, 2281–2302.
- Reviews: (a) Bolm, C. Coord. Chem. Rev. 2003, 237, 245-256. (b) Volcho, K. P.; Salakhutdinov, N. F. 8) Russ. Chem. Rev. 2009, 78, 457-464. (c) Plass, W. Coord. Chem. Rev. 2011, 255, 2378-2387. (d) Pellissier, H. Coord. Chem. Rev. 2015, 284, 93-110. (e) Takizawa, S.; Gröger, H.; Sasai, H. Chem. -Eur. J. 2015, 21, 8992-8997. Selected examples (pioneering work): Epoxidation: (f) Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1990-1992. Sulfoxidation: (g) Nakajima, K.; Kojima, M.; Fujita, J. Chem. Lett. 1986, 15, 1483-1486. Oxidative coupling of 2-naphthols: (h) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869–872. (i) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. **2001**, 980–981. Oxidation of α -hydroxy carbonyl compounds: (j) Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090-1091. Diels-Alder reaction: (k) Togni, A. Organometallics 1990, 9, 3106-3113. Cyanation of aldehydes: (1) Belokon', Y. N.; North, M.; Parsons, T. Org. Lett. 2000, 2, 1617–1619. Ring opening of meso-epoxides: (m) Sun, J.; Dai, Z.; Yang, M.; Pan, X.; Zhu, C. Synthesis 2008, 2100-2104. Friedel-Crafts-type reaction: (n) Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Kodera, J.; Nagata, Y.; Sasai, H. Dalton Trans. 2013, 42, 11787-11790. Epoxidation and ring-opening cascade reaction: (o) Blanc, A.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 2096-2099. (p) Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L. Chem. Commun. 2014, 50, 1231-1233. (q) Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L. Adv. Synth. Catal. 2015, 357, 3064-3068.
- 9) Barhate, N. B.; Chen, C.-T. Org. Lett. 2002, 4, 2529–2532.
- 10) Chu, C.-Y.; Uang, B.-J. Tetrahedron: Asymmetry 2003, 14, 53-55.
- (a) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Chem. Commun. 2002, 914–915. (b) Luo, Z.;
 Liu, Q.; Gong, L.; Cui, X.; Mi, L.; Jiang, Y. Angew. Chem. Int. Ed. 2002, 41, 4532–4535. (c) Guo,

Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 13927–13938.

- (a) Somei, H.; Asano, Y.; Yoshida, T.; Takizawa, S.; Yamataka, H.; Sasai, H. *Tetrahedron Lett.* 2004, 45, 1841–1844. (b) Takizawa, S.; Katayama, T.; Kameyama, C.; Onitsuka, K.; Suzuki, T.; Yanagida, T.; Kawai, T.; Sasai, H. *Chem. Commun.* 2008, 1810–1812. (c) Takizawa, S.; Katayama, T.; Sasai, H. *Chem. Commun.* 2008, 4113–4122. (d) Takizawa, S.; Katayama, T.; Somei, H.; Asano, Y.; Yoshida, T.; Kameyama, C.; Rajesh, D.; Onitsuka, K.; Suzuki, T.; Mikami, M.; Yamataka, H.; Jayaprakash, D.; Sasai, H. *Tetrahedron* 2008, 64, 3361–3371. (e) Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. *Synlett* 2009, 1667–1669. (f) Takizawa, S. *Chem. Pharm. Bull.* 2009, 57, 1179–1188. (g) Takizawa, S.; Kodera, J.; Yoshida, Y.; Sako, M.; Breukers, S.; Enders, D.; Sasai, H. *Tetrahedron* 2014, 70, 1786–1793.
- 13) Grove, C. I.; Maso, M. J. D.; Jaipuri, F. A.; Kim, M. B.; Shaw, J. T. Org. Lett. 2012, 14, 4338-4341.
- 14) (a) Habaue, S.; Murakami, S.; Higashimura, H. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5872–5878. (b) Murakami, S.; Habaue, S.; Higashimura, H. Polymer 2007, 48, 6565–6570.

第一章 2-ナフトールのエナンチオ選択的な完全水中酸化的カップリング反応

第一節 緒言

第一項 遷移金属錯体用いる 2-ナフトール類の不斉酸化的カップリング反応

光学的に純粋な BINOL 誘導体は有機合成化学において最も有用なキラル試薬の一つとして知られている¹⁾。BINOL 自身が不斉配位子として働くだけでなく種々の不斉反応に有効な BINAP 配位子や、リン酸エステルに代表される不斉有機分子触媒へと容易に変換できるため、BINOL の 不斉合成法の開発はきわめて重要である(Figure 1-1)²⁾。これまでに BINOL の触媒的不斉合成は 多くの研究者によって盛んに研究されている^{1c)}。

Figure 1-1.

BINOL 誘導体の初めての不斉合成は 1978 年、Wynberg らによって化学量論量の硝酸銅と(S)-フ エニルエチルアミンを用いて達成されている(Scheme 1-1A)³⁾。しかしながら、得られた BINOL (2a)のエナンチオ過剰率はわずか 3% ee であり実用的な反応とは言えなかった。1985 年、Brussee らはキラル源として(S)-α-アンフェタミンを 2-ナフトール(1a)に対して 8 当量用いることにより 2aの不斉収率を 96% ee にまで改善している(Scheme 1-1B)⁴⁾。これらの報告以降、過剰量の遷 移金属およびキラル配位子の使用を避けるために、BINOLの触媒的不斉合成が活発に研究される ようになっている。

Scheme 1-1.

BINOL 誘導体の遷移金属触媒による不斉酸化的カップリング反応は、序論第四節で述べたバナジウム錯体の他、銅、ルテニウムおよび鉄錯体を用いて達成されている。

基質適用範囲が限られるものの、BINOL 誘導体の触媒的不斉合成の初期の研究段階は主として キラル Cu 触媒によって開拓されてきた。1993 年に Kočovský らは、10 mol %の CuCl₂、20 mol % の(–)-sparteine 及び酸化剤として 1.1 当量の AgCl を用いる 1a の酸化的カップリングにより、化学 収率 70%、不斉収率 3% ee にて 2a の合成に成功している ⁵⁾。しかしながら依然として不斉収率は 低かった(Scheme 1-2)。

高エナンチオ選択性且つ実用的な BINOL 誘導体の触媒的不斉合成は、1999 年 Koga らによって 達成されている⁶。キラルなプロリンから誘導されるジアミンを不斉配位子に用いて Cu(I)錯体に よる 2-ナフトール誘導体の触媒的不斉カップリング反応に成功している (Scheme 1-3)。3 位にエ ステル置換基を有する基質からは高いエナンチオ選択性が観測され、最高 78% ee で(S)-BINOL 誘 導体が得られている。さらに Cu の酸化剤として分子状酸素を用いており、環境負荷が小さくクリ ーンな反応といえる。

2001年に Kozlowski らは、1,5-diaza-cis-decaline を配位子とする Cu(I)錯体を開発し、基質 **23** を 用いて不斉収率を 93% ee にまで向上させている(Scheme 1-4)⁷⁾。しかしながら、2-ナフトール の 3 位にエステル基を持たない基質の場合、不斉誘起は観測されていない。

Scheme 1-4.

~ 14 ~

ー方、2000年に香月らはキラル Ru(salen)触媒 25 を用い、紫外線照射下において、1aの不斉酸 化的カップリング反応において 65% eeの不斉誘起を達成している(Scheme 1-5)⁸⁾。本触媒は、 2-ナフトールの3位にエステル置換基を必要としないという点で、前述した Cu 触媒系とは全く異 なる。

Scheme 1-6.

第二項 水を溶媒とした 2-ナフトールの酸化的カップリング反応

近年、水を溶媒として用いる有機合成反応が注目を集めている¹¹⁾。水は有機溶媒と比べて、低価格低毒性であり、安全性が高いなど多くの利点を有している。経済的・環境的な両分野の観点から水を媒体とすることは非常に興味深く、環境調和型の化学プロセスの一つして期待される。 序論第四節と第一章第一項で述べたように、遷移金属触媒を用いる 2-ナフトールの酸化的カップ リング反応は有機溶媒、特にハロゲン系溶媒中で実施されている。それに対して、これまでに水 を溶媒とする 2-ナフトールの酸化的カップリング反応の例は少ない。

2005 年に Mizuno らは、無機酸化物担体上に高分散担持した水酸化ルテニウム錯体 Ru(OH)_x/Al₂O₃が、分子状酸素を酸化剤とする 2-ナフトールの水中酸化的カップリングにおいて高 い触媒活性を示すことを報告している。本反応系では、溶媒に溶出したルテニウム種が反応に関 与しているのではなく、Ru(OH)_x/Al₂O₃ 固体表面上で反応が進行しており、触媒の回収・再利用も 可能である (Scheme 1-7A)¹²⁾。2007 年に Reddy らは、アルギン酸ナトリウム (ALG)上に銅(II) を担持した不均一触媒が 2-ナフトールの水中酸化的カップリングに効果的であると報告している (Scheme 1-7B)¹³⁾。2009 年に Eshghi らは、化学量論量の Fe(HSO₄)₃を使用しても水中で 2-ナフト ールの酸化的カップリングが定量的に進行することを報告している (Scheme 1-7C)¹⁴⁾。これらル テニウム、銅および鉄を利用した水中反応は BINOL を高収率で与えるものの、100 ℃の反応温度 を要し生成物はラセミ体である。

2015 年に Adão と Pessoa らはアミノ酸と銅から成る水に可溶なキラル銅触媒を開発し、エタノ ール/水の混合溶媒中、40 ℃ にて 2-ナフトールの不斉酸化的カップリングが進行することを見出 している (Scheme 1-8)¹⁵⁾。しかしながら、BINOL の化学収率および不斉収率は 33%、39% ee と 満足できる値ではない。

Scheme 1-8.

これまでにルテニウム、銅および鉄を使用して2-ナフトール類の酸化的カップリングの試みが 行われているものの、エナンチオ選択的な反応は一例のみであり、満足な結果は得られていない。 そこで筆者は、当研究室で開発した二核バナジウム錯体のメタノールや水への安定性に着目し、 本反応を水中においても高い立体選択性かつ効率的に促進できるのではないかと考え、研究に着 手した。

第二節 反応条件の検討

当研究室ではこれまでに、5 mol %の二核バナジウム錯体(*Ra,S,S*)-8 の存在下、空気中の分子状酸 素を共酸化剤としジクロロメタン中 30 ℃ にて、2-ナフトールの酸化的カップリング反応が進行し、 BINOL が定量的に 90% ee にて得られることを報告している (Table 1-1. entry 11)¹⁶)。本研究では、 反応溶媒をジクロロメタンから水に変更し、条件の検討を行った。溶媒を水にしたのみでは反応 は全く進行せず、原料が回収された (entry 1)。空気雰囲気下から酸素雰囲気下に変え反応の促進 を期待したものの、生成物は 11%収率で、ラセミ体であった (entry 2)。2-ナフトールやバナジウ ム錯体の水への溶解度の低さや反応温度の低さが反応速度の遅い原因と考え、続いて界面活性剤 の添加と昇温検討を行った。界面活性剤としてアニオン性のドデシル硫酸ナトリウム (SDS)、カ チオン性のテトラブチルアンモニウムブロミド (TBAB) および中性の Triton X-100 をそれぞれ触 媒量添加したものの、化学・不斉収率ともに大きな改善は見られなかった (entries 3-5)。次に反 応温度を 40 ℃ に上昇したところ若干の不斉誘起が確認された。しかしながら、生成物の収率は 11%に留まった (entry 6)。反応温度 50 ℃ で行った時に反応に変化が見られ、BINOL が 91%の単

² HO 1	V cat. ((5 r wate	R _a ,S,S)- 8 nol %) ≽r, 24 h	HO HO HO Za	HO O O t-Bu V cat. (R_a , S , S)-8	t-Bu ↓ =0 ○ ОН
entry	air or O ₂ (1 atm)	temp. (°C)	additive (5 mol %)	yield ^a (%)	ee ^b (%)
1	air	30	—	no reaction	_
2	O ₂	30	—	11	rac
3	O ₂	30	SDS	9	rac
4	O ₂	30	TBAB	5	17
5	O ₂	30	Triton X-100	26	26
6	O ₂	40	_	11	28
7	O ₂	50	_	92 (91) ^c	80
8	O ₂	70	_	>99	74
9	O ₂	90	_	>99	66
10 ^{<i>d</i>}	O ₂	50	_	no reaction	_
11 ^e	air	30	_	quant	90

Table 1-1.

^a 1H NMR yield, 1,3,5-trimethoxybenzene was used as an internal standard.

^b Determined by HPLC.

^c Yield of isolated product.

^d Without V cat. (R_a , S, S)-**8**.

^e Result when the reaction was carried out in CH₂Cl₂.¹⁶⁾

離収率、および 80% ee の選択性と最も良い結果で得られた (entry 7)。反応温度を 70 ℃ あるいは 90 ℃ とさらに高温に上昇させた場合、BINOL は定量的に得られたものの、エナンチオ選択性の 低下が観測された (entries 8 and 9)。これらの原因として、高温下での生成物のラセミ化などの可 能性が挙げられる。対照実験として、バナジウム触媒非存在下では反応は全く進行しなかった (entry 10) ことから、2-ナフトールからバナジウム金属への一電子移動を促進し、二重活性化機 構を実現するためには 50 ℃ 以上の反応温度が必要であることが判明した。よって、Table 1-1. entry 7 の反応条件を本反応の最適条件とした。

第三節 基質一般性の検討

Table 1-2.

最適条件の下、種々の2-ナフトール誘導体を使用し、水中における本反応の基質一般性の検討 を行った(Table 1-2)。2-ナフトールの7位、6位あるいは4位に電子供与性置換基(MOM-O基、 MEM-O基、allyl-O基、MeO基、Me基、Ph基)や電子求引性置換基(Br基)を導入した様々な 2-ナフトール誘導体は良い収率と高いエナンチオ選択性で対応する BINOL へと変換できた。3位 に MeO 基を持つ基質を用いた場合、生成物 2j は 69%収率、中程度の 44% ee で得られた。他の基 質に比べてエナンチオ選択性が低下した理由として、3位の置換基の立体的な障害が影響し、二 重活性化機構(序論第四節)を阻害していると考えられる。

第四節 BINOL のラセミ化

本反応条件下で生成物の BINOL がラセミ化を起こしているかを明らかにするために実験を行った。7,7'位あるいは 6,6'位にメトキシ基が置換された光学活性な BINOL 誘導体 2f (94% ee (*S*)) と 2g(81% ee (*S*))をカップリング反応の条件下(100 mol %の 2-ナフトールと 5 mol %の(R_a,S,S)-8)、70 °C の水中あるいは 1,2-ジクロロエタン中でそれぞれ撹拌した。24 時間後に回収した 2f と 2g の 光学純度を測定し、撹拌前のそれらと比較を行った(Scheme 1-9)。水中の場合、回収した 2f は 93% ee (*S*)、2g は 77% ee (*S*)を示し、若干の ee の減少が確認された。それに対して 1,2-ジクロロエタン中の場合では、回収した 2f は 74% ee (*S*)、2g は 11% ee (*R*)を示した。以上の結果から、水中 では BINOL 誘導体のラセミ化による ee の減少は有機溶媒中に比べて著しく抑えられることが明 らかとなった ¹⁷。これは BINOL 誘導体の水に対する溶解性の低さに起因していると考えられる。

Scheme 1-9.

本手法の有用性を示すために、グラムスケールで本反応を行った(Scheme 1-10)。1.2gの 1a あるいは 1f を 5 mol %の(*R*_a,*S*,*S*)-8 存在下で反応させたところ、(*S*)-2a は 83%収率、77% ee で、(*S*)-2f は 63%収率、94% ee でそれぞれ得られ、小スケールの反応の時と同程度の結果が確認できた。反応終了後にバナジウム触媒の回収を試みたものの、¹H NMR の結果から加水分解により触媒の一部は分解していることが確認された。

第六節 まとめ

水中において、キラル二核バナジウム錯体(*R*_a,*S*,*S*)-8 を触媒とし、2-ナフトール類1の不斉酸化 的カップリングを達成した。完全水中で高エナンチオ選択的(最高 94% ee)に達成した初めての 例である¹⁸⁾。有機溶媒中の反応に比べて 50~70 ℃ の反応温度が必要であるものの、水中では 70 ℃ においても BINOL 誘導体のラセミ化はほとんど起こらないことが明らかとなった。本反応はグラ ムスケールでの実施も可能である。

実験項

¹H and ¹³C NMR spectra were recorded with JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker AVANCE II (¹H NMR 400, 600 or 700 MHz, ¹³C NMR 100, 150 or 175 MHz). ¹H NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of TMS at 0 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra are reported in ppm relative to the central line of triplet for CDCl₃ at 77 ppm. Optical rotations were measured with JASCO P-1030 polarimeter. HPLC analyses were performed on a JASCO HPLC system (JASCO PU 980 pump and UV-975 UV/Vis detector) using a mixture of hexane and 2-propanol as eluents. Column chromatography on SiO₂ was performed with Kishida Silica Gel (63–200 μ m). Commercially available organic and inorganic compounds were used without further purification. (*R*_a,*S*,*S*)-**8**, **1b**, **1d**, **1h**, **1i**, and **1j** were prepared following the reported procedures.^{19,20} Products **2a**, **2b**, **2d**, **2e**, **2f**, **2g**, **2h**, **2i**, and **2j** were identical in all respects with the data reported in the literature.^{16,21}

Preparation of 7-((2-methoxy)methoxy)-2-naphthol (1c)

To a solution of 2,7-dihydroxynaphthalene (**26**, 961 mg, 6.0 mmol) in CH₂Cl₂ (30 mL) were added *i*-Pr₂NEt (1.15 mL, 6.6 mmol) and 2-Methoxyethoxymethyl chloride (MEMCl) (0.75 mL, 6.6 mmol) at 0 °C. The mixture was warmed to rt, and then stirred for 24 h. After the reaction was completed, water was added to the reaction mixture and the solution was extracted with CH₂Cl₂. Organic layer was washed with brine, dried over Na₂SO₄, and evaporated in vacuo. After the purification *via* SiO₂ column chromatography (hexane/acetone = 3/1), the desired product was obtained as yellow oil (675 mg, 45%). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.7, 2H), 7.27 (d, *J* = 2.3 Hz, 1H), 7.05 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.04 (d, *J* = 2.3 Hz, 1H), 6.96 (dd, *J* = 8.7, 2.3 Hz, 1H), 5.37 (s, 2H), 5.01 (s, 1H), 3.88-3.86 (m, 2H), 3.60-3.57 (m, 2H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.2 (C), 154.4 (C), 135.6 (C), 129.1 (CH), 129.1 (CH), 124.4 (C), 116.0 (CH), 115.9 (CH), 108.7 (CH), 108.4 (CH), 93.1 (CH₂), 71.3 (CH₂), 67.3 (CH₂), 58.6 (CH₃); HRMS (ESI) calcd for C₁₄H₁₆NaO₄, *m/z* = 271.0946 [(M + Na)⁺], found *m/z* = 271.0938; IR (KBr): *v* 3360, 3062, 2931, 1635, 1515, 1448, 1200, 1159, 1007, 833 cm⁻¹.

General procedure for coupling reactions of 2-naphthols 1 using (R_a, S, S) -8 in water

A test tube was charged with a water (1 mL) heterogeneous solution of coupling substrate 1 (0.2 mmol) under O₂ (1 atm) atmosphere. Vanadium catalyst (R_a ,S,S)-8 (0.01 mmol, 5 mol %) was added to the solution. The reaction mixture was stirred at 50 °C (for 1a, 1b, 1c, 1d and 1f) or 70 °C (for 1e, 1g, 1h, 1i and 1j)

~ 22 ~

until the reaction had reached completion by monitoring with TLC analysis. Then the reaction mixture was directly purified by silica gel column chromatography eluting with ethyl acetate/hexane to give the coupling product.

(S)-1,1'-bi-2-naphthol (2a)¹⁶

Reaction time: 24 h; Reaction temperature: 50 °C; 91% yield; $[\alpha]_D^{22} = -26.9$ (*c* 1.0, THF, 80% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.7 Hz, 2H), 7.89 (d, J = 7.8 Hz, 2H), 7.43-7.34 (m, 4H), 7.31 (td, J = 7.8 Hz, 1.6 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 5.04 (s, 2H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS-H column (hexane:2-propanol = 7:1, λ = 229 nm, flow rate = 1.0 mL/min); t_R (major enantiomer) = 9.8 min, t_R (minor enantiomer) = 15.1 min, 80% ee.

(S)-7,7'-bis(methoxymethoxy)-1,1'-bi-2-naphthol (2b)¹⁶

Reaction time: 48 h; Reaction temperature: 50 °C; 78% yield; $[\alpha]_D^{13} = +127.6$ (*c* 1.1, CHCl₃, 83% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 7.14 (dd, J = 8.7, 2.3 Hz, 2H), 6.65 (d, J = 2.3 Hz, 2H), 5.08 (s, 2H), 4.99 (s, 4H), 3.31 (s, 6H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS-H column (hexane:2-propanol = 7:1, $\lambda = 235$ nm, flow rate = 1.0 mL/min); t_R (major enantiometr) = 16.5 min, t_R (minor enantiometr) = 27.9 min, 83% ee.

(S)-7,7'-bis((2-methoxyethoxy)methoxy)-1,1'-bi-2-naphthol (2c)

Reaction time: 48 h; Reaction temperature: 50 °C; 65% yield, yellow oil; $[\alpha]_D^{22} = +61.9$ (*c* 0.7, CHCl₃, 63% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 9.2 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 7.26 (s, 2H), 7.23 (d, J = 9.2 Hz, 2H), 7.16 (dd, J = 8.7, 2.3 Hz, 2H), 6.71 (d, J = 2.3 Hz, 2H), 5.15 (s, 2H), 5.10 (s, 4H), 3.70-3.62 (m, 4H), 3.45-3.34 (m, 4H), 3.28 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 156.4 (C), 153.3 (C), 134.6 (C), 131.1 (CH), 130.0 (CH), 125.4 (C), 116.0 (CH), 115.8 (CH), 110.2 (C), 107.9 (CH), 93.4 (CH₂),

71.4 (CH₂), 67.5 (CH₂), 59.0 (CH₃); HRMS (ESI) calcd for C₂₈H₃₀NaO₈, m/z = 517.1838 [(M + Na)⁺], found m/z = 517.1826; IR (KBr): *v* 3390, 3058, 2931, 1621, 1512, 1203, 1159, 1019, 982, 834 cm⁻¹; The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS-H column (hexane:2-propanol = 4:1, $\lambda = 220$ nm, flow rate = 1.0 mL/min); t_R (major enantiomer) = 22.0 min, t_R (minor enantiomer) = 30.1 min, 63% ee.

(S)-7,7'-bis(allyloxy)-1,1'-bi-2-naphthol (2d)¹⁶

Reaction time: 48 h; Reaction temperature: 50 °C; 78% yield; $[\alpha]_D^{22} = +177.6$ (*c* 1.5, CHCl₃, 85% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.04 (dd, J = 8.7, 2.4 Hz, 2H), 6.47 (d, J = 2.4 Hz, 2H), 5.90-5.80 (m, 2H), 5.15-5.09 (m, 4H), 5.06 (s, 2H), 4.32-4.21 (m, 4H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak IA column (hexane:2-propanol = 7:1, λ = 235 nm, flow rate = 1.0 mL/min); t_R (major enantiomer) = 12.2 min, t_R (minor enantiomer) = 22.7 min, 85% ee.

(S)-7,7'-dibromo-1,1'-bi-2-naphthol (2e)^{21a}

Reaction time: 48 h; Reaction temperature: 70 °C; 85% yield; $[\alpha]_D^{21} = +129.1$ (*c* 1.8, CHCl₃, 73% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 9.2 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 7.47 (dd, J = 8.7, 1.8 Hz, 2H), 7.38 (d, J = 9.2 Hz, 2H), 7.23 (d, J = 1.8 Hz, 2H), 5.05 (s, 2H); The enantiometric excess was determined by HPLC with a Daicel Chiralcel OD-H column (hexane:2-propanol = 9:1, λ = 235 nm, flow rate = 1.0 mL/min); *t_R* (major enantiometr) = 15.9 min, *t_R* (minor enantiometr) = 33.4 min, 73% ee.

(S)-7,7'-dimethoxy-1,1'-bi-2-naphthol (2f)¹⁶

Reaction time: 48 h; Reaction temperature: 50 °C; 87% yield; $[\alpha]_D^{22} = +122.3$ (*c* 1.0, CHCl₃, 94% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 7.02 (dd, J = 8.7, 2.7 Hz, 2H), 6.47 (d, J = 2.7 Hz, 2H), 5.04 (s, 2H), 3.56 (s, 6H); The enantiometric excess

was determined by HPLC with a Daicel Chiralpak AS-H column (hexane:2-propanol = 9:1, λ = 235 nm, flow rate = 1.0 mL/min); t_R (major enantiomer) = 18.8 min, t_R (minor enantiomer) = 28.0 min, 94% ee.

(S)-6,6'-dimethoxy-1,1'-bi-2-naphthol (2g)¹⁶

Reaction time: 48 h; Reaction temperature: 70 °C; 95% yield; $[\alpha]_D^{20} = +25.6$ (*c* 1.6, CHCl₃, 63% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 9.2, 1.8 Hz, 2H), 7.33 (dd, J = 9.2, 1.8 Hz, 2H), 7.19 (s, 2H), 7.05 (d, J = 9.2 Hz, 2H), 6.97 (dd, J = 9.2, 1.8 Hz, 2H), 4.94 (s, 2H), 3.89 (s, 6H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS column (hexane:2-propanol = 4:1, λ = 260 nm, flow rate = 1.0 mL/min); t_R (major enantiometr) = 12.1 min, t_R (minor enantiometr) = 21.8 min, 63% ee.

(*S*)-6,6'-dimethyl-1,1'-bi-2-naphthol (**2h**)¹⁶

Reaction time: 48 h; Reaction temperature: 70 °C; 89% yield; $[\alpha]_D^{17} = +51.9$ (*c* 0.7, CHCl₃, 77% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 9.2 Hz, 2H), 7.66 (s, 2H), 7.34 (d, J = 9.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 4.96 (s, 2H), 2.47 (s, 6H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS-H column (hexane:2-propanol = 7:1, $\lambda = 229$ nm, flow rate = 1.0 mL/min); *t_R* (major enantiomer) = 8.2 min, *t_R* (minor enantiomer) = 12.9 min, 77% ee.

(S)-4,4'-diphenyl-1,1'-bi-2-naphthol (2i)^{21b}

Reaction time: 48 h; Reaction temperature: 70 °C; 82% yield; $[\alpha]_D^{22} = -22.1$ (*c* 1.0, CHCl₃, 85% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.94 (m, 2H), 7.64-7.48 (m, 10H), 7.38 (s, 2H), 7.36-7.31 (m, 6H), 5.16 (s, 2H); The enantiometric excess was determined by HPLC with a Daicel Chiralcel OD-H column (hexane:2-propanol = 4:1, λ = 220 nm, flow rate = 1.0 mL/min); *t_R* (minor enantiomer) = 8.4 min, *t_R* (major enantiomer) = 13.3 min, 85% ee.

(S)-3,3'-dimethoxy-1,1'-bi-2-naphthol (2j)¹⁶

Reaction time: 48 h; Reaction temperature: 70 °C; 69% yield; $[\alpha]_D^{23} = -6.2$ (*c* 1.2, CHCl₃, 44% ee); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.2 Hz, 2H), 7.34-7.29 (m, 4H), 7.18-7.12 (m, 4H), 5.88 (s, 2H), 4.09 (s, 6H); The enantiometric excess was determined by HPLC with a Daicel Chiralpak AS column (hexane:2-propanol = 1:1, λ = 236 nm, flow rate = 1.0 mL/min); t_R (major enantiomer) = 19.2 min, t_R (minor enantiomer) = 46.4 min, 44% ee.

- (a) Pu, L. Chem. Rev. 1998, 98, 2405–2495. (b) Brunel, J. M. Chem. Rev. 2007, 107, PR1–PR45. (c) In Privileged Chiral Ligands and Catalysts (Zhou, Q.-L. Ed) Wiley-VCH Verlag GmbH & Co. KGaA (2011). (d) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234–6458.
- 2) (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418–4420. (b) Sakane, S.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1983, 105, 6154–6155. (c) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566–1568. (d) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357.
- 3) Feringa, B.; Wynberg, H. Bioorg. Chem. 1978, 7, 397-408.
- 4) (a) Brussee, J.; Groenendijk, J. L. G.; te Koppele, J. M.; Jansen, A. C. A. *Tetrahedron* 1985, *41*, 3313–3319. (b) Brussee, J.; Jansen, A. C. A. *Tetrahedron Lett.* 1983, *24*, 3261–3262.
- 5) Smarčina, M.; Poláková, J.; Vyskočil, Š.; Kočovský, P. J. Org. Chem. 1993, 58, 4534–4538.
- Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hahimoto, S.; Noji, M.; Koga, K. J. Org. Chem. 1999, 64, 2264–2271.
- 7) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137–1140.
- 8) Irie, R.; Masutani, K.; Katsuki, T. Synlett 2000, 1433–1436.
- (a) Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2009, 131, 6082–6083. (b) Egami, H.; Matsumoto, K.;
 Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633–13635.
- 10) Narute, S.; Parnes, R.; Toste, F. D.; Pappo, D. J. Am. Chem. Soc. 2016, 138, 16553-16560.
- (a) Li, C.-J. Chem. Rev. 2005, 105, 3095–3166. (b) Raj, M.; Singh, V. K. Chem. Commun. 2009, 6687–6703. (c) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302–6337. (d) Bhowmick, S.; Bhowmick, K. C. Tetrahedron: Asymmetry 2011, 22, 1945–1979. (e) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415–1427. (f) In Science of Synthesis Water in Organic Synthesis Workbench Edition (S. Kobayashi, Ed) Thieme (2014).
- 12) Matsushita, M.; Kamata, K.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc. 2005, 127, 6632–6640.
- 13) Reddy, K. R.; Rajgopal, K.; Kantam, M. L. Catal. Lett. 2007, 114, 36-40.
- 14) Eshghi, H.; Bakavoli, M.; Moradi, H. Chin. Chem. Lett. 2009, 20, 663-667.
- 15) Adão, P.; Barroso, S.; Carvalho, M. F. N. N.; Teixeira, C. M.; Kuznetsov, M. L.; Pessoa, J. C. *Dalton Trans.* **2015**, *44*, 1612–1626.
- Takizawa, S.; Katayama, T.; Somei, H.; Asano, Y.; Yoshida, T.; Kameyama, C.; Rajesh, D.; Onitsuka, K.; Suzuki, T.; Mikami, M.; Yamataka, H.; Jayaprakash, D.; Sasai, H. *Tetrahedron* 2008, 64, 3361–3371.
- (a) Kyba, E. B.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Cram, D. J. J. Am. Chem. Soc. 1973, 95, 2692–2693. (b) Kyba, E. P.; Gokel, G. W.; Jong, F. D.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Kaplan, L.; Sogah, G. D. Y.; Cram, D. J. J. Org. Chem. 1977, 42, 4173–4184.

- 18) Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Tetrahedron: Asymmetry 2015, 26, 613-616.
- 19) Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. Synlett 2009, 1667–1669.
- 20) (a) Marsilje, T. H.; Milkiewicz, K. L.; Hangauer, D. G. *Bioorg. Med. Chem. Lett.* 2000, 10, 477–481.
 (b) Sugimura, T.; Matsushita, N.; Minokami, K.; Kurita, S. *Tetrahedron* 2007, *63*, 1762–1769. (c) Verga, D.; Percivalle, C.; Doria, F.; Porta, A.; Freccero, M. *J. Org. Chem.* 2011, *76*, 2319–2323. (d) Zhang, J.; Liu, Q.; Liu, X.; Zhang, S.; Jiang, P.; Wang, Y.; Luo, S.; Li, Y.; Wang, Q. *Chem. Commun.* 2015, *51*, 1297–1300. (e) Sivapackiam, J.; Harpstrite, S. E.; Prior, J. L.; Gu, H.; Rath, N. P.; Sharma, V. *Dalton Trans.* 2010, *39*, 5842–5850.
- 21) (a) Lustenberger, P.; Diederich, F. *Helve. Chim. Acta* 2000, *83*, 2865–2883. (b) Okuma, K.; Itoyama, R.; Sou, A.; Nagahora. N.; Shioj, K. *Chem. Commun.* 2012, *48*, 11145–11147.

オキサ[9]ヘリセンの効率的エナンチオ選択的合成 第二章

緒言 第一節

第一項 ヘリセン

ヘリセンは複数の芳香環がオルト縮合を繰り返して構成されるらせん状化合物の総称である。 ベンゼン環のみから成るヘリセンはカルボヘリセンと呼ばれ、その数が六つの場合、[6]ヘリセン と称させる(Figure 2-1A)。らせん構造の一部に芳香族複素環を有するヘリセンはヘテロヘリセン と呼ばれる (Figure 2-1B)。例えば、一つのフラン環を含む七つの芳香環から成るヘリセンは、オ キサ[7]ヘリセンと称される。ヘリセン化合物はある一定以上の長さになると、平面構造をとるこ とが困難となるため非平面性のねじれ構造をとり、それに由来するキラル軸を持つ。これをヘリ シティーと呼ぶ。このらせん構造は左巻き(M)と右巻き(P)の二種類に分けられ、これら二つ は互いにエナンチオマーの関係にある (Figure 2-1C)。またヘリセンは多環式芳香族化合物である ため、π電子は高度に非局在化しており、その特異な電子状態や物性も注目されている。それ故 に、光学活性なヘリセン化合物は多くの化学者の研究対象となり¹⁾、これまでにキラルな配位子 ^{1a)}、不斉補助基^{1b)}や有機分子触媒^{1c)}、液晶^{1d,e)}および分子モーター^{1b}としての利用が期待されてい \mathcal{Z} (Figure 2-2).

Figure 2-1.

organic electronics

Figure 2-2.

第二項 ヘリセンの合成法

1956年にNewman らはヘリシティーを有するらせん状化合物として[6]ヘリセンの初の合成法と 分割法を報告している(Scheme 2-1)²⁾。出発原料の1-ナフトアルデヒドから7ステップ、全収率 3.1%でラセミ体の[6]ヘリセンの合成に成功しており、この報告以降、より高次なヘリセンの合成 研究が活発に行われるようになった。

Scheme 2-1.

1960年代後半から、光環化反応を応用したヘリセン骨格の構築法が報告されるようになり、より短段階で効率的なカルボヘリセン合成が可能となった。光環化反応を利用する合成法の多くは、オレフィンの両末端にベンゼン環を有するスチルベン型の反応基質を用い、分子内で酸化的に環化反応を起こす。本合成法の先駆的な例として、1967年に Schöltz らは[4]へリセンの合成³、同年に Martin らは[7]へリセンの合成⁴を報告している(Scheme 2-2)。より長い高次へリセンの合成 も試みられており、1975年に Martin らは分子内にオレフィン部位を二つ持つ環化前駆体を設計し、分子内ダブル光環化反応により[14]へリセンの合成を報告している⁵。最近では、2015年に Fujitaと Murase らが前駆体設計を巧みに行い、[16]へリセン誘導体の合成を達成しており⁶、現在はこれが最長へリセンの記録である。しかしながら、ヘリセン骨格の構築が比較的簡便になったものの、オレフィンの異性化による構造異生体の副生や分子間の副反応を抑えるための高希釈条件を必要とし、光環化反応による効率的不済合成は困難となっている。

光環化反応以外にヘリセン骨格構築に用いられる反応に、Diels-Alder 環化付加反応 ^{7a,b}、ビス (ハロメチル)ビアリール類の分子内ベンジリックカップリング反応 ^{7c})、McMurry カップリング 反応 ^{7d}、ピナコールカップリング反応 ^{7e})、遷移金属を用いる Heck 反応や s 反応などのカップリ ング反応 ⁸⁾や[2+2+2]環化付加反応 ⁹、閉環オレフィンメタセシス ¹⁰⁾などが用いられている。中で も、三つの炭素-炭素結合形成を経て一挙に芳香環を構築可能な[2+2+2]環化付加反応は、様々な遷 移金属触媒で進行することが知られており、ヘリセンあるいはヘリセン様分子の触媒的不斉合成 にも応用されている。

1999 年に Stará と Starý らは Ni(0)とキラルモノホスフィン配位子である(S)-MOP を用いたアル キン 27 の分子内[2+2+2]環化付加反応による[6]ヘリセン様分子 28 の合成を達成している (Scheme 2-3. eq 1)^{11a)}。本例が、触媒的不斉反応によるヘリセン並びにヘリセン様分子の初めての合成例で ある。2013 年には基質に 29 を用いてニッケル触媒と(*R*)-QUINAP 配位子の存在下、芳香環のみか ら成る[6]ヘリセン誘導体 30 を高収率かつ高いエナンチオ選択性で得ることに成功している (Scheme 2-3. eq 2)^{9f)}。

Scheme 2-3.
Tanaka らもロジウム触媒を用いる[2+2+2]環化付加反応を基盤とするヘリセン様分子のエナン チオ選択的合成を精力的に行っている⁹⁰。例えば、2012 年に Rh(I)と(S)-xyl-Segphos から成るキラ ルロジウム錯体を触媒とし、テトライン 31 とジイン 32 の分子間ダブル[2+2+2]環化付加反応を用 いて高エナンチオ選択的にヘリセン様分子 33 の合成を報告している(Scheme 2-4)⁹⁰。一般的に、 アルキンを用いる三量化反応は望まない分子間反応を避けるために高希釈条件を必要とし、さら に 20 mol %の触媒を使用するなど、大量合成には適していない。

Scheme 2-4.

報告されている他の不斉合成法として、2008年に Collins らはスチレン類 34 の分子内不斉オレフィンメタセシス反応により[7]ヘリセン(35)を 38%収率、80% ee で得ている。しかしながら、本反応の基質はラセミ体を使用し、閉環反応に速度論的光学分割を利用しているため、目的物の収率は最大で 50%となる (Scheme 2-5)¹²。

らせん骨格にフラン環を含むオキサヘリセンの合成に、フェノール類の酸化的カップリング反応を用いる手法がいくつか報告されている。2005年にNozakiらは銅触媒を用いて3-フェナントロール(12)の酸化的カップリング反応により4,4'-ビ(3-フェナントロール)を合成し、誘導化の後にカップリング体36を得た。それに続くPd触媒を用いた分子内O-アリール化反応を経て、オキサ[7]へリセン(37)の立体特異的合成に成功している(Scheme 2-6)¹³⁾。しかしながら、光学活性体を得るためには、カップリング体の光学分割を必要とし、分子内O-アリール化反応も49%収率と改善の余地があり、光学純度も94% ee と若干のラセミ化を伴う。

2011 年に Karikomi らは、化学量論量のアキラルな銅錯体を用いて 2-ヒドロキシベンゾ[c]フェ ナントレン (38a) の酸化的カップリングを行い、カップリング体であるキノン 39a を経由し、そ の後、ローソン試薬を用いる分子内閉環反応によりオキサ[9]ヘリセン (40a) を高収率で得ること に成功している (Scheme 2-7. eq 1)^{14a-c)}。2014 年には、本カップリング反応がエナンチオ選択的 に進行することも見出しており、銅-キラルジアミン錯体存在下、目的のキノン誘導体 39 を高収 率、最高 97% ee で得られると報告している (Scheme 2-7. eq 2)^{14d)}。しかしながら、本反応におい て高収率でキノン誘導体を得るためには化学量論量あるいは過剰量の銅錯体と長い反応時間が必 要である。

Scheme 2-7.

2015 年に Bedekar らは、BINOL から誘導が可能な多環式フェノール誘導体 41 を基質に、銅錯 体を用いる酸化的カップリングと酸による分子内脱水環化反応の段階的な手法により、オキサ[11] ヘリセン誘導体 43 の合成を報告している(Scheme 2-8)¹⁵⁾。以上の様に、多環式フェノール誘導 体の酸化的カップリング反応を鍵段階とするオキサヘリセン合成が盛んに行われているものの、 多段階を要し、効率的な触媒的不斉合成の例は皆無である。

序論で述べたように、当研究室で開発した二核バナジウム錯体(*R*a,*S*,*S*)-8 が、2-ナフトール誘導体の不斉酸化的カップリング反応において優れたレドックス触媒作用を示し、また、インドールまたは 2-ナフトールとイミンとの不斉フリーデル-クラフツ反応においては酸触媒として機能することを見出している。そこで筆者は、反応基質に多環式フェノールである 2-ヒドロキシベンゾ[*c*]フェナントレン類 38 を用いれば、バナジウム錯体のレドックス/酸触媒作用により不斉酸化的カップリングと分子内脱水環化の連続反応が進行して、オキサ[9]へリセン誘導体 40 を高収率かつ高エナンチオ選択的に合成できるのではないかと考え検討を行った(Scheme 2-9)。

Scheme 2-9.

第二節 2-ヒドロキシベンゾ[c]フェナントレンの合成

2-ヒドロキシベンゾ[c]フェナントレン(38a)の合成法の報告はあるものの¹⁶、工程数の長さや 他の置換基を有する誘導体の合成が行い難いことから、新たな合成法の開発を検討した(Scheme 2-10)。市販の7-メトキシテトラロン(44)に対して、塩化ホスホリル(POCl₃)とDMFを作用さ せハロホルミル化反応を行い、得られた45とフェニルボロン酸とのSuzuki-Miyauraカップリング 反応によりカップリング体46を得た。DDQを用いて46を酸化してナフタレン誘導体47へと導 き、リチウムジイソプロピルアミド(LDA)とトリメチルシリルジアゾメタン(TMSCHN₂)を作 用させアルキン体48とした。アルキン体48を塩化白金(II)触媒存在下で環化させた後、脱メチル 化することにより、目的の38aを全6工程、全収率51%で合成した。本合成法において、45のSuzuki-Miyauraカップリング反応で異なるアリールボロン酸を使用することで、また49の位置選択的な 芳香族求電子置換反応によるハロゲン化により、様々な置換基を有する2-ヒドロキシベンゾ[c]フ ェナントレン誘導体も可能である。

第三節 反応条件の検討

合成した反応基質 **38a** に対して触媒量のキラル二核バナジウム錯体(*R*_a,*S*,*S*)-**8** を用いて反応条件 の検討を行った(Table 2-1)。クロロホルム中、5 mol %の(*R*_a,*S*,*S*)-**8** 存在下、空気中の酸素を共酸 化剤とし、**38a** を 72 時間反応させたところ、未反応の **38a** の回収とともに、酸化的カップリング と分子内環化反応の連続反応が進行し生成したオキサ[9]へリセン(**40a**)が 22%収率、34% ee で 得られた(entry 1)。この際、反応中間体として考えられるジオール体 **50a**、及び、キノン体 **39a** の生成は確認されなかった。次に反応温度を 60 ℃ まで上昇させ反応を行ったところ、生成物の 収率と ee の向上が確認された (entry 2)。反応温度 60 ℃ にて反応溶媒の検討を行った。トルエン、 クロロベンゼン、o-ジクロロベンゼン、1,1,2,2-テトラクロロエタンおよび四塩化炭素を試した結 果 (entries 3-7)、四塩化炭素を用いた場合に検討した中では最も高い不斉収率(58% ee)が観測 された (entry 7)。生成物の収率を向上させるために、空気雰囲気下から酸素雰囲気下へ変更する ことでバナジウム触媒の再酸化を促進し、反応時間を 72 時間まで延長させたところ、ヘリセン 40a が 81%収率、58% ee で得られた (entry 9)。次に、更なる化学収率とエナンチオ選択性の向上 を目指して、様々な二核バナジウム錯体を調製した。

Table 2-1.

72

81

58

Not isolated

60

02

9

 CCI_4

二核バナジウム錯体(*R*_a,*S*,*S*)-8 はビナフチル骨格由来の軸性キラリティーとアミノ酸由来の中心 性キラリティーを併せ持っている。そこで、いずれの不斉源が生成物のキラリティーを決定して いるか確かめるために、(*S*)-BINOL 誘導体から調製したジアステレオメリックなバナジウム錯体 (*S*_a,*S*,*S*)-8 を用いて同様の反応を行った (Table 2-2)。その結果、40a は 36%収率、31% ee で得られ、 (*R*_a,*S*,*S*)-8 を使用した場合と同一のエナンチオマーが優先して得られた。従って、生成物のキラリ ティーを決定しているのはアミノ酸部位の中心性キラリティーであると言える。ビナフチル骨格 の 6,6'位にブロモ基を有する触媒(*R*_a,*S*,*S*)-51 は、収率を 92%にまで向上できたものの、エナンチ オ選択性に改善は見られなった。ブロモ基のような電子求引性置換基を持つ場合、バナジウム金 属の電子密度は低下し酸性度が増すことで触媒活性が向上したと考えられる。次に、錯体調製の 際に用いるアミノ酸を変更し、不斉炭素上の置換基の立体的な嵩高さがエナンチオ選択性に影響 するか調査した。L-バリン、L-フェニルアラニン、L-イソロイシンおよび *O-tert*-ブチル-L-トレオ ニンの四種類を使用し検討を行ったものの、いずれの場合も劇的なエナンチオ選択性の改善は見 られなかった。

バナジウム錯体の検討を行っている過程で、本反応において単核のバナジウム触媒が二核バナ ジウム錯体と同程度の反応促進効果を有していることが分かった(Table 2-3)。(*Ra,S,S*)-8の部分構 造を持つ単核バナジウム錯体(*S*)-56を10 mol%用いて38aの酸化的カップリング反応を行ったと ころ、ヘリセン40aが61%収率、14% eeで得られた。さらに、(*R*)-BINOLから誘導したビナフチ ル骨格を持つ単核バナジウム錯体(*Ra,S*)-57は40aを87%収率、58% eeで与え、化学収率・エナン チオ選択性に関しても二核バナジウム錯体(*Ra,S,S*)-8と同じ触媒活性を示した。序論で述べたよう に、2-ナフトール類の酸化的カップリングにおいて二核バナジウム錯体は二重活性化機構による 顕著な反応促進効果と配向制御を生み出し、一方で単核バナジウム錯体は二重活性化機構が無い ため、両者の触媒活性には大きな差がある。本系では二重活性化機構にて進行していないことが 示唆された以上の結果から、更なるエナンチオ選択性の向上を目指し、BINOLを母格に有する単 核バナジウム錯体を新たに開発することとした。

第四節 単核バナジウム錯体の検討

Figure 2-3 に示すビナフチル骨格を有する単核バナジウム錯体の構造の中で、化学修飾が容易かつ立体的に影響を及ぼすと期待できる、アミノ酸上の R¹、ビナフチル骨格 2'位の R²および 3'位の R³ 置換基に着目した。

まずは、これらの置換基を検討する前に、ジアステレオメリックな 単核バナジウム錯体を調製し、ビナフチル骨格の軸性キラリティーと アミノ酸由来の中心性キラリティーのマッチ・ミスマッチの関係を確

Figure 2-3.

認した(Table 2-4)。(*R*_a,*S*)-57 および(*S*_a,*S*)-57 を用いても、反応は効率よく進行し、同一のエナン チオマーを主生成物として与えたため、生成物のキラリティーはアミノ酸由来の中心性キラリテ ィーによって決められていることを確認した。良いエナンチオ選択性を示した(*R*_a,*S*)体を母格に 様々な錯体検討を行った。R¹ が *tert*-ブチル基以外に、イソプロピル基の錯体(*R*_a,*S*)-58 とベンジル 基の錯体(*R*_a,*S*)-59 を試みたものの、いずれもエナンチオ選択性の向上は観測されなかった。

次に R¹を tert-ブチル基、R³を水素基に固定し、R²の置換基を検討した。フェノール性水酸基

が及ぼす効果や立体的な嵩高さの影響を調べるために、メトキシ基、イ ソプロポキシ基およびフェニル基に置換した錯体を調製し、それらを反 応条件に付した(Table 2-5)。フェニル基置換体(*R*a,*S*)-62を用いた際、エ ナンチオ選択性が若干低下したのみで大きな変化は見られなかったもの の、収率に関してはヒドロキシ体(*R*a,*S*)-57 が最も良い結果を与えた。同 一分子内のフェノール性水酸基はバナジウムと協調的に基質 38a を活性 化しており(Figure 2-4)、本連続反応を促進していると考えられる¹⁷⁾。

Figure 2-4.

R¹をtert-ブチル基、R²をヒドロキシ基に固定し、R³の置換基についての検討を行った(Table 2-6)。 ビナフチル骨格の 3'位にメチル基、ヨード基およびフェニル基を導入した錯体($R_{a,S}$)-63-65 をそれ ぞれ触媒反応に用いたところ、いずれの場合においても生成物のエナンチオ選択性が向上し (64% ee - 69% ce)、3'位への嵩高い置換基の導入がエナンチオ選択性の改善に効果的であることが分か った。そこで、電子状態や立体的な嵩高さが異なるアリール基を持つ様々なバナジウム錯体を調 製した (($R_{a,S}$)-66-74)。全体的な傾向として、アリール基を導入した錯体を使用した場合、生成物 の収率とエナンチオ選択性の両方が向上した。中でもm-y-7ェニル基を置換した($R_{a,S}$)-74 が最 も良い結果を示し、40a が 60 °C にて 99%、75% ee で得られ、50 °C では 95%、78% ee で得られ た。反応温度が 40 °C 以下では反応速度の低下とともにエナンチオ選択性の低下も観測された。 特徴的な結果として、導入したベンゼン環のオルト位に置換基を有する($R_{a,S}$)-68 (R^3 = 2,6-Me₂C₆H₃-) や($R_{a,S}$)-69 (R^3 = 9-anthryl)を試した場合、生成物の収率が著しく低下した。これ はバナジウム金属の近傍までこれらの置換基の立体的な嵩高さが影響し、反応を阻害したと考え られる。以上の結果から、本反応における最適な単核バナジウム錯体は($R_{a,S}$)-74 とし、四塩化炭 素中、50 °C、酸素雰囲気下、48 時間にて反応を行うことで、95%収率、78% ee と比較的高いエナ ンチオ選択性でヘリセン 40a を得ることに成功した。

第五節 オキサ[9]ヘリセンの絶対配置の決定

本触媒反応で得られる光学活性なオキサ[9]ヘリセン (40a) は一度の再結晶操作により容易に光 学的に純粋なヘリセン 40a へと導くことができた。すなわち、加熱した 40a のヘキサン/ジクロロ メタン混合溶液をゆっくりと冷却すると、ラセミ結晶が優先して析出し、光学的に純粋な 40a を 母液中から回収できた。この 40a の比旋光度を測定した結果、 $[\alpha]_D^{19} = -2647$ (*c* 0.32, CHCl₃) とへ リセン特有の大きな値を示した。得られた 40a の絶対配置を明らかにするため、メタノール/ジク ロロメタン混合溶液中にて単結晶を成長させ、X 線構造解析を行った結果、結晶中では独立二分 子として存在し、本反応で得られる光学活性なヘリセン 40a は左巻き(*M*)のらせん構造を有してい ることがわかった (Figure 2-5)。

Figure 2-5.

最適反応条件下、基質一般性の検討を行った(Table 2-7)。基質の6位にアリール基を有する基 質 38b-38d は収率 61~72%で対応するヘリセン 40b-40d を与えたものの、若干の不斉収率の低下 (44-50% ee)が観測された。アルキル基を持つ基質 38e-38f を用いた場合、反応は良好に進行し、 それぞれ 40e が 88% ee、40f が 69% ee で得られた。電子求引性のブロモ基を持つ 38g を用いた場 合、反応の進行が遅いため 60 ℃、72 時間にて反応を行った。結果、ヘリセン 40g を 56%と収率 は中程度ながら 94% ee と高いエナンチオ選択性で得ることができた。基質の 10 位にメチル基を

Table 2-7.

持つ基質 38h からは、ヘリセン 40h が 68%収率、80% ee で得られた一方で、9 位と 11 位に二つの メチル基を持つ基質 38i の反応活性は低かった(40i: 22%収率、37% ee)。Uang らはトリメチルシ リルクロリド(TMSCI)を添加することでバナジウム錯体の触媒活性が向上することを報告して いる¹⁸⁾。そこで、本系においても触媒量(10 mol %)の TMSCI を添加し、60 ℃ にて 38i を 48 時 間反応させたところ、収率とエナンチオ選択性が向上し、ヘリセン 40i が 84%収率、60% ee で得 られた。12 位にメチル基を持つ基質 38j を用いた場合、全く反応は進行せず、TMSCI の添加も反 応促進効果を示さなかった。この原因は 12 位のメチル基が反応点の1 位に近いために、反応が阻 害されたためだと考えられる。

比較的高いエナンチオ選択性で得られた 40e (88% ee) と 40g (94% ee) に関して、反応中に速 度論的光学分割が起こり、生成物の ee が上昇しているのかどうかを確認するために以下の二つの 実験を行った。一つは、40e の生成過程における ee の経時変化を追った(Table 2-8)。内部標準物 質として 1,3,5-トリメトキシベンゼンの存在下、最適条件下で 38e を反応させ、6 時間後、24 時間 後、48 時間後の基質の転換率、生成物の NMR 収率と ee を測定した。その結果、38e の転換率と 40e の収率はほぼ一致し、40e の ee も各時間で大きな違いはなかった。二つ目にブロモ基を持つ 生成物 40g を反応条件に付し、その安定性を確認したところ、40g の分解は起きていなかった

(Scheme 2-11)。ブロモ体の収率の低下の原因は基質の分解やオリゴマーの形成などが可能性と して考えられる。以上の結果から、本反応では生成物の速度論的分割を伴う分解過程などは存在 していないことが明らかとなった。

Tabl	e 2	-8.
Iau		-0.

Scheme 2-11.

~ 44 ~

第七節 オキサ[9]ヘリセンの誘導体合成

合成したオキサ[9]ヘリセン類の応用研究において、その誘導体合成は重要である。そこでヘリ センへの置換基導入を検討した(Scheme 2-12)。まずは、得られた 40a の誘導体合成として、位 置選択的なブロモ化反応を行った。ヘリセン 40a にブロモ化剤として 1.05 当量のピリジニウムト リブロミド(PyHBr₃)をクロロホルム中 25 ℃ で作用させるとモノブロモ体 40k が、2.1 当量の PyHBr₃をクロロホルム中 40 ℃ で作用させるとジブロモ体 40l がそれぞれ選択的に良好な収率で 得られた(Scheme 2-12A)。次に、ブロモ基を持つ 40g に対して Suzuki–Miyaura クロスカップリン グを行い、アリール基の導入を行った。すなわち、10 mol %の Pd(PPh₃)₄と塩基として炭酸カリウ ム(K₂CO₃)存在下で 40g (92% ee)と3当量のフェニルボロン酸(PhB(OH)₂)を反応させたとこ ろ、光学純度を損なうことなくカップリング生成物 40b が 81%収率で得られた(Scheme 2-12B)。

Scheme 2-12.

第八節 反応機構の考察

第一項 濃度効果の検討

反応機構について知見を得るために速度論解析を行った。バナジウムの触媒量を 5、10、15 mol% とした際の各反応の初速度を算出後、横軸をバナジウム触媒の濃度の対数 (ln [V cat.])、縦軸に反 応初速度の対数 (ln [v₀]) にし、得られた結果をプロットした (Figure 2-6)。その結果、プロット した三点は直線上に乗り、近似曲線から求めたその傾きは 1.012 であった。すなわち、本触媒反 応はバナジウム触媒に対して一次依存であることが明らかとなった。本結果から、二分子のバナ ジウム錯体がそれぞれ基質を活性化し、基質のラジカルカチオン種同士のラジカル-ラジカルカッ プリングが進行している機構は難しいと考えられる¹⁹)。以上より、バナジウム触媒によって発生 した基質のラジカルカチオン種に、もう一分子の基質が求核攻撃し炭素-炭素結合が形成している と推測した²⁰。

第二項 本反応の推定機構

以上の結果から本反応の推定機構を Scheme 2-13 に示す。まず、バナジウム(V)錯体(R_a,S)-74 が 38a と反応し、中間体 A を与える。次にバナジウム(V)への一電子移動によりラジカルカチオン種 B が生成する。続く 38a の求核攻撃と分子状酸素によるバナジウム(IV)の再酸化により中間体 C が得られる。最後に脱水を伴う分子内環化反応が起こり、目的生成物を与えるとともに中間体 A が再生する。本章第四節で述べたように、中間体 A、B および C においてバナジウム錯体のビナ フチル骨格上のフェノール性水酸基は分子内水素結合を介して、バナジウム金属の Lewis 酸性を 向上させるため活性が高いと考えられる。本反応において、炭素-炭素結合形成後の分子内環化反 応の際にキラルバナジウム錯体存在下で速度論的光学分割が起こっているかを確かめるために、 次の実験を行った。別途調製したラセミ体のキノン体 39a¹⁴⁾を(R_a,S)-74 の存在下で反応させ原料の 転換率が 71%の時点で反応を停止したところ、残った 39a と生成した 40a はいずれもラセミ体だ った。よって、本触媒反応のエナンチオ決定段階は中間体 B から中間体 C への炭素-炭素結合形 成段階であると結論付けた。また、反応系中でキノン体 39a が形成しても、触媒サイクル中には 含まれず、中間体 C との平衡に存在していると予想される。

Scheme 2-13.

第三項 エナンチオ選択性の発現機構の考察

本章第五節と前項で述べたように、本反応で得られるオキサ[9]ヘリセンの絶対配置は*M*体であること、エナンチオ決定段階は炭素-炭素結合形成段階であることから、本反応における立体選択性の発現機構を推定した(Figure 2-7)。Scheme 2-13の中間体 B の立体配置を考えたとき、アミノ酸部位の*tert*-ブチル基が張り出している方向(Figure 2-7の奥面)とは逆の方向(Figure 2-7の手前)から基質が近づき、バナジウムと結合を形成する。もう一分子の基質 38a の求核攻撃は、立体的に空いているビナフチル骨格上のターフェニル基が無い方向から起こると考えられる(Figure 2-7A)。

Figure 2-7.

本触媒反応がラジカル-アニオンカップリングで進行しているならば、電子状態の異なる二つの 基質を用いれば、ヘテロカップリング体が優先して得られると考えた¹⁹⁾。電子豊富な基質 38a と 電子不足な基質としてブロモ基を有する 38g を 1:1 の割合で混合し、バナジウム錯体(*R_a*,*S*)-74 の存 在下で反応させた結果、ヘテロカップリング体 40ag(30%収率、84% ee)とホモカップリング体 40a(28%収率、69% ee)および 40g(13%収率、94% ee)の混合物が得られた(Scheme 2-14)。ヘ テロカップリング体が優先して得られたこと、および反応が触媒に対して一次依存で進行してい ることにより、本反応がラジカル-アニオンカップリングを経て進行していることが示唆された 19-21)。

Scheme 2-14.

第十節 他のヘテロヘリセン誘導体の合成検討

第一項 ヘテロヘリセン

酸素以外のヘテロ原子(窒素、硫黄やリン)やケイ素を縮環骨格内に含むヘテロヘリセンの合成研究も盛んに行われている(Figure 2-8)^{9e,13,22)}。ベンゼン環のみから成るカルボヘリセンに比べて、ヘテロ原子を導入しヘリセンの電子構造の精密制御ができれば、ヘリセンのらせん状π共役系に由来する特徴的な物性を併せ持つ新たな有機分子触媒や配位子、発光特性や電荷輸送特性などを有する機能性材料の開発が期待される。

Figure 2-8.

そこで、アザヘリセン合成を目的にピロール環を有するカルバゾールに注目した。植物由来の アルカロイドにはカルバゾール骨格を含む化合物群が多数存在し²³⁾、また有機 EL などの機能性 材料としての利用も期待されていることから²⁴⁾、生物学的、化学的にも注目を集めている(Figure 2-9)。そこで、筆者はカルバゾールの3位にヒドロキシ基を導入したヒドロキシカルバゾール誘 導体を反応基質とする不斉酸化的カップリングの検討を行った。

Figure 2-9.

第二項 3-ヒドロキシカルバゾール誘導体のエナンチオ選択的な酸化的ホモカップ リング反応

窒素原子上にフェニル基を有する 3-ヒドロキシカルバゾール 75 を基質として用い、ホモカップ リングに有効な二核バナジウム錯体(*R_a,S,S*)-8 (5 mol %)の存在下、四塩化炭素中空気雰囲気下、 30 ℃にて反応を行ったところ、ホモカップリング体 76 が 50%収率、84% ee で得られた (Scheme 2-15. eq 1)。本反応において、酸化的カップリング反応により炭素-炭素結合は形成したものの、 その後の脱水環化反応は進行しなかった。そのため、酸性条件下で高温に付すことで 76 の脱水環 化反応を試みた。その結果、一つのフラン環および二つのピロール環を含むヘテロ[7]ヘリセン 77 を低収率ながら合成することに成功した (Scheme 2-15. eq 2)。光学活性体の 76 を反応に使用した ものの、得られた 77 は旋光性を示さなかった。これは、高温条件下でラセミ化が進行したことや、 3 つの五員環骨格により末端のベンゼン環同士の重なりが解消した動的ヘリシティーが原因と考 えられる。

本反応はヒドロキシカルバゾール誘導体の不斉酸化的カップリングと して初めての例であり、ヘテロヘリセン合成以外の観点からも興味深い。 実際、Figure 2-10 に示すようにビス(ヒドロキシカルバゾール)骨格をも つカルバゾールアルカロイドも天然に存在し^{23d)}、本カップリング反応は これら天然物の不斉合成への応用にも期待される。

sorazolon E2 (natural product)

Figure 2-10.

第二項 3-ヒドロキシカルバゾール誘導体のエナンチオ選択的な酸化的ヘテロカッ プリング反応

3-ヒドロキシカルバゾール誘導体 78 に対して、オキサ[9]ヘリセン合成に有効であった多環式フ ェノール 38a と単核バナジウム錯体(Ra,S)-57 (10 mol %) を四塩化炭素中空気雰囲気下、50 °C に て作用させたところ、ヘテロカップリング体は全く生成せず、ホモカップリング体 79 のみが観測 された (Scheme 2-16. eq 1)。それに対して、カップリング反応剤として 2-ナフトール (1a) を使 用したところ、ヘテロカップリングが優先して進行した。具体的には、78 と 1.0 当量の 1a を混合 し、(Ra,S)-57 (10 mol %) の存在下、四塩化炭素中空気雰囲気下、50 °C にて反応させると、ヘテ ロカップリング体 80 が 80%収率、40% ce で得られた。ヘテロヘリセン誘導体は得られなかった ものの、C1対称ビフェノール誘導体のエナンチオ選択的な合成法として非常に興味深い。本反応 はラジカル-アニオンカップリングを経て進行していると考えており、バナジウム錯体とカルバゾ ール誘導体から発生したラジカルカチオン種に対して 2-ナフトールが求核攻撃していると推測し ている。今後は、反応条件を精査しエナンチオ選択性を向上させ、ヘテロヘリセン誘導体の合成 への展開が期待される。

新規に開発したキラル単核バナジウム錯体(*R_a*,*S*)-74 を触媒とし、多環式フェノール誘導体の酸 化的カップリングと分子内環化の連続反応により、オキサ[9]ヘリセンの効率的不斉合成法を確立 した²⁵⁾。本触媒反応において、バナジウム錯体は酸化還元触媒および Lewis 酸触媒として働き、 また錯体中のフェノール性水酸基は協調的にバナジウムの触媒活性を向上させていることが推測 された。得られた光学活性なオキサ[9]ヘリセンは、一度の再結晶操作で光学的に純粋な生成物へ と簡単に導くことができた。

実験項

¹H-, ¹³C-, and ¹⁹F-NMR spectra were recorded with JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR or Bruker AVANCE II (¹H-NMR 400, 600 or 700 MHz, ¹³C-NMR 100, 150 or 175 MHz, ¹⁹F-NMR 565 MHz). ¹H-NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of tetramethylsilane (TMS) at 0 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz). ¹³C-NMR spectra are reported in ppm relative to the central line of triplet for CDCl₃ at 77 ppm and of multiplet for CD₃OD at 49 ppm. CF₃CO₂H used as external standards for ¹⁹F-NMR. FT-MS spectra were obtained with LTQ Orbitrap XL (Thermo Fisher Scientific). ESI-MS and APCI-MS spectra were obtained with JMS-T100LC (JEOL). Optical rotations were measured with JASCO P-1030 polarimeter. HPLC analyses were performed on a JASCO HPLC system (JASCO PU 980 pump and UV-975 UV/Vis detector) using a mixture of hexane and 2-propanol or hexane and dichloromethane as eluents. FT-IR spectra were recorded on a JASCO FT-IR system (FT/IR4100). Column chromatography on SiO₂ was performed with Kanto Silica Gel 60 (40-100 µm). Commercially available organic and inorganic compounds were used without further purification.

Synthesis of substrates

1-chloro-7-methoxy-3,4-dihydronaphthalene-2-carbaldehyde (45)

The compound **45** was prepared according to the literature procedure.²⁶⁾ POCl₃ (4.52 mL, 48 mmol) was added dropwise to DMF (4.65 mL, 60 mmol) at 0 °C. The mixture was warmed to room temperature and stirred for 15 min, then cooled to 0 °C before the dropwise addition of 7-methoxy-1-tetrarone (**44**) (5.45g, 30 mmol) in DMF (15 mL). The mixture was again warmed to room temperature and stirred for 6 h. The reaction mixture was poured into ice and quenched with sat. NaHSO₃ aq. (40 mL). The mixture was extracted with Et₂O (200 mL) and washed with H₂O and brine. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography to afford 1-chloro-3,4-dihydro-7-methoxy-naphthalene-2-carbaldehyde (**45**) in 90% yield as yellow solid.

¹**H** NMR (400 MHz, CDCl₃): δ 10.38 (s, 1H), 7.41 (d, J = 2.8 Hz, 1H), 7.13 (d, J = 8.3 Hz, 1H), 6.92 (dd, J = 2.8, 8.3 Hz, 1H), 3.86 (s, 3H), 2.79-2.76 (m, 2H), 2.63-2.60 (m, 2H).

7-methoxy-1-phenyl-3,4-dihydronaphthalene-2-carbaldehyde (46)

The compound **46** was prepared according to the literature procedure.²⁷⁾ A suspension of **45** (1.11 g, 5 mmol), phenyl boronic acid (671 mg, 5.5 mmol), tetrabutylammonium bromide (3.22 g, 10 mmol), Pd(OAc)₂ (22.5 mg, 0.10 mmol) and potassium carbonate (1.73 g, 12.5 mmol) in degassed water (10 mL) and 1,4-dioxane (3.3 mL) was stirred for 1 h at 45 °C. After cooling, the mixture was diluted with water, the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography to afford 1-phenyl-3,4-dihydro-7-methoxy-naphthalene-2-carbaldehyde (**46**) in 93% yield as yellow solid.

¹**H** NMR (400 MHz, CDCl₃): δ 9.56 (s, 1H), 7.43-7.47 (m, 3H), 7.29-7.27 (m, 2H), 7.18 (d, J = 8.2 Hz, 1H), 6.84 (dd, J = 2.8, 8.2 Hz, 1H), 6.42 (d, J = 2.8, 1H), 3.65 (s, 3H), 2.87-2.82 (m, 2H), 2.69-2.65 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 193.5, 158.2, 154.4, 136.1, 135.1, 134.8, 130.7, 130.4, 128.51, 128.49, 128.3, 114.8, 114.7, 55.3, 26.7, 20.7.

HRMS (APCI): calcd for C₁₈H₁₆NaO₂: *m/z* 287.1048 [M + Na]⁺, found 287.1042.

IR (KBr): 3051, 2960, 2839, 1659, 1563, 1365, 1046, 823, 706 cm⁻¹.

mp: 71-73 °C.

7-methoxy-1-phenyl-2-naphthaldehyde (47)

The compound 47 was prepared according to the literature procedure.²⁸⁾ A suspension of 46 (2.64 g, 10 mmol) and DDQ (3.04 g, 13.0 mmol) in benzene (50 mL) was stirred for 5 h at 80 °C. After cooling to room temperature, the mixture was filterd through a pad of celite and the solvent was evaporated. The residue was washed with 1 M NaOH aq. and the aqueous layer was extracted with toluene. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography to afford 1-phenyl-7-methoxy-naphthalene-2-carbaldehyde (47) in quantitative yield as yellow solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.87 (d, J = 0.9 Hz, 1H), 7.93 (d, J = 8.6 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 9.0 Hz, 1H), 7.56-7.50 (m, 3H), 7.42-7.40 (m, 2H), 7.28 (dd, J = 9.0, 2.5 Hz, 1H), 6.93 (d, J = 2.5, 1H), 3.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 193.0, 158.2, 145.2, 135.4, 133.7, 131.59, 131.57, 130.9, 129.7, 128.34, 128.30, 128.0, 121.0, 120.0, 106.1, 55.2.
HRMS (APCI): calcd for C₁₈H₁₄NaO₂: *m/z* 285.0891 [M + Na]⁺, found 285.0887.
IR (KBr): 3061, 3002, 2862, 1680, 1423, 1273, 1231, 1032, 726 cm⁻¹.
mp: 70-72 °C.

2-ethynyl-7-methoxy-1-phenylnaphthalene (48)

The compound 48 was prepared according to the literature procedure.²⁸⁾ n-BuLi (1.64 M in hexane, 6.27 mL, 10.3 mmol) was added to a solution of diisopropylamine (1.5 mL, 10.7 mmol) in THF (53.4 mL) at 0 °C. After 10 min, the mixture was cooled to -78 °C before TMSCHN₂ (0.6 M in hexane, 17.1 mL, 10.3 mmol) was added dropwise and stirring was continued for 30 min. A solution of 47 (2.07g, 7.9 mmol) in THF (26.4 mL) was then added dropwise and the mixture was stirred for 3 h at room temperature. The reaction was quenched with water and the aqueous layer was extracted with MTBE. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product purified silica chromatography afford was by gel column to 2-ethynyl-7-methoxy-1-phenylnaphthalene (48) in 84% yield as colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 9.0 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.52-7.49 (m, 3H), 7.46-7.41 (m, 3H), 7.14 (dd, J = 9.0, 2.5 Hz, 1H), 6.86 (d, J = 2.5, 1H), 3.67 (s, 3H), 2.97 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): *δ* 158.0, 142.3, 138.7, 133.3, 130.2, 129.4, 128.8, 128.1, 127.6, 127.2, 126.9, 119.2, 119.0, 105.2, 83.6, 80.6, 55.1.

HRMS (APCI): calcd for $C_{19}H_{15}O$: m/z 259.1123 [M + H]⁺, found 259.1111.

IR (KBr): 3288, 3063, 2833, 1622, 1508, 1231, 1036, 840, 629 cm⁻¹.

2-methoxybenzo[*c*]phenanthrene (49)

The compound **49** was prepared according to the literature procedure.²⁸⁾ A solution of **48** (1.18g, 4.55 mmol) and PtCl₂ (121 mg, 0.46 mmol) in toluene (45 mL) was stirred for 30 h at 80 °C under N₂. The reaction mixture was filtered through a short plug of a silica gel (hexane/CH₂Cl₂ = 2/1). The filtrate was concentrated under reduced pressure and the residue was purified by silica column chromatography to afford 2-methoxy-benzo[*c*]phenanthrene (**49**) in 75% yield as white solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.20 (d, *J* = 8.2 Hz, 1H), 8.60 (d, *J* = 2.3 Hz, 1H), 8.02 (dd, *J* = 8.7, 1.4 Hz, 1H), 7.94 (d, *J* = 8.7 Hz, 1H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.71-7.61 (m, 3H), 7.29 (dd, *J* = 8.8, 2.5 Hz, 1H), 4.01 (s, 3H).

Benzo[*c*]phenanthren-2-ol (**40a**)

BBr₃ (1.0 M in CH₂Cl₂, 1.77 mL, 1.77 mmol) was added to a solution of **49** (304.2 mg, 1.18 mmol) in CH₂Cl₂ (11.8 mL) at 0 °C. The mixture was stirred for 1 h at room temperature. After cooling to 0 °C, the reaction was quenched with sat. NaHCO₃ aq. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel column chromatography to afford benzo[*c*]phenanthren-2-ol (**40a**) in 97% yield as white solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.13 (d, J = 8.7 Hz, 1H), 8.56 (d, J = 2.3 Hz, 1H), 8.01 (dd, J = 7.8, 1.4 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.67 (td, J = 7.5, 1.6 Hz, 1H), 7.61 (td, J = 7.5, 1.6 Hz, 1H), 7.22 (dd, J = 8.5, 2.5 Hz, 1H), 5.04 (d, J = 2.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): *δ* 154.1, 133.3, 131.7, 131.6, 130.5, 130.4, 128.6, 127.6, 127.2, 126.9, 126.3, 126.1, 125.7, 124.7, 116.3, 111.2.

HRMS (APCI): calcd for C₁₈H₁₃O: *m/z* 245.0966 [M + H]⁺, found 245.0955.

IR (KBr): 3230, 3045, 1604, 1525, 1497, 1415, 1309, 1218, 745 cm⁻¹.

mp: 112-115 °C.

6-bromo-2-methoxybenzo[c]phenanthrene (81)

To a solution of **49** (857 mg, 3.3 mmol) and pyridinium tribromide (1.06 g, 3.3 mmol) in CHCl₃ was stirred for 24 h at room temperature. The reaction was quenched with 10w% Na₂S₂O₃ aq. and extracted with CHCl₃. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was recrystallized from cyclohexane to afford 6-bromo2-methoxybenzo[*c*]phenanthrene (**81**) in 92% yield as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 9.12 (d, J = 8.7 Hz, 1H), 8.48 (d, J = 2.3 Hz, 1H), 8.31 (d, J = 8.7 Hz, 1H), 8.16 (s, 1H), 8.04-8.02 (m, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.69-7.62 (m, 2H), 7.28 (dd, J = 8.7, 2.3 Hz, 1H), 4.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 158.3, 133.3, 130.8, 130.4, 130.0, 129.5, 129.0, 128.5, 128.3, 127.5, 126.4, 126.3, 125.5, 118.8, 117.2, 109.4, 55.6. (Two carbon overlapped.)

HRMS (APCI): calcd for C₁₉H₁₃O: *m/z* 257.0961 [M – Br]⁺, found 257.0960.

IR (KBr): 3170, 2952, 2830, 1609, 1500, 1219, 1050, 877, 742, 539 cm⁻¹.

mp: 121-123 °C.

6-bromobenzo[c]phenanthren-2-ol (40g)

The procedure followed that for preparation of compound **40a**. **40g** was obtained in quantitative yield as white solid.

¹**H-NMR** (400 MHz, CDCl₃): δ 5.21 (br, 1H), 7.22 (dd, J = 8.7, 2.3 Hz, 1H), 7.66 (m, 2H), 7.83 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 8.03 (dd, J = 8.2, 1.8 Hz, 1H), 8.16 (s, 1H), 8.32 (d, J = 8.7 Hz, 1H), 8.46

(d, *J* = 2.3 Hz, 1H), 9.06 (d, *J* = 8.2 Hz, 1H).

¹³**C-NMR** (400 MHz, CDCl₃): *δ* 112.0, 117.1, 118.9, 125.5, 126.4, 126.4, 127.7, 128.2, 128.4, 128.5, 128.6, 129.5, 129.6, 129.9, 130.5, 130.9, 133.3, 154.3.

HRMS (APCI): calcd for C₁₈H₁₁BrO: *m/z* 321.9993 [M]⁺, found 321.9984.

IR (KBr): 3341, 3052, 1609, 1502, 1356, 1194, 873, 815, 798, 741 cm⁻¹.

mp: 191-194 °C.

2-methoxy-6-phenylbenzo[c]phenanthrene (82)

A suspension of **81** (101 mg, 0.30 mmol), phenyl boronic acid (44 mg, 0.36 mmol), $Pd(PPh_3)_4$ (3.5 mg, 0.003 mmol) and potassium carbonate (91 mg, 0.66 mmol) in toluene (1.0 mL) and ethanol (0.9 mL) was stirred for 18 h under reflux condition. After cooling, the reaction mixture was quenched with 0.5 M NaOH aq., and extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel column chromatography to 2-methoxy-6-phenylbenzo[c]phenanthrene (**82**) in 80% yield as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 9.20 (d, *J* = 8.2 Hz, 1H), 8.57 (d, *J* = 2.3 Hz, 1H), 8.00 (dd, *J* = 7.6 Hz, 1.4 Hz, 1H), 7.94 (d, *J* = 8.7 Hz, 1H), 7.85-7.77 (m, 3H), 7.67 (td, *J* = 7.6 Hz, 1.4 Hz, 1H), 7.62 (td, *J* = 7.6 Hz, 1.4 Hz, 1H), 7.56-7.43 (m, 5H), 7.31 (dd, *J* = 8.7 Hz, 2.3 Hz, 1H), 4.03 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 158.2, 141.0, 136.4, 133.0, 130.9, 130.5, 130.4, 130.0, 129.9, 128.33, 128.29, 127.84, 127.80, 127.6, 127.4, 127.2, 127.0, 125.89, 125.87, 124.8, 116.9, 109.1, 55.6.

HRMS (APCI): calcd for $C_{25}H_{19}O$: m/z 335.1436 [M + H]⁺, found 335.1426.

IR (KBr): 3047, 2961, 1597, 1502, 1252, 1215, 1034, 829, 758, 541 cm⁻¹.

mp: 127-129 °C.

2-methoxy-6-(*p*-tolyl)benzo[*c*]phenanthrene (83)

The procedure followed that for preparation of compound **82**. **83** was obtained in 76% yield as white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 9.19 (d, J = 8.2 Hz, 1H), 8.55 (d, J = 2.3 Hz, 1H), 7.98 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.76 (s, 1H), 7.65 (td, J = 7.6 Hz, 1.4 Hz, 1H), 7.60 (td, J = 7.6 Hz, 1.4 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.32-7.28 (m, 3H), 4.01 (s, 3H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): *δ* 158.0, 138.0, 136.9, 136.3, 133.0, 130.8, 130.4, 130.3, 130.1, 129.9, 129.0, 128.3, 127.9, 127.3, 127.6, 127.3, 126.9, 125.84, 125.82, 124.8, 116.8, 109.0, 55.6, 21.3.

HRMS (APCI): calcd for C₂₆H₂₁O: *m/z* 349.1592 [M + H]⁺, found 349.1582.

IR (KBr): 3044, 2959, 1607, 1503, 1424, 1214, 888, 827, 761 cm⁻¹.

mp: 117-119 °C.

6-(4-fluorophenyl)-2-methoxybenzo[c]phenanthrene (84)

The procedure followed that for preparation of compound **82**. **84** was obtained in quantitative yield as white solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.20 (d, *J* = 7.8 Hz, 1H), 8.56 (d, *J* = 2.3 Hz, 1H), 8.00 (dd, *J* = 7.8 Hz, 1.4 Hz, 1H), 7.93 (d, *J* = 9.2 Hz, 1H), 7.81-7.75 (m, 3H), 7.68 (td, *J* = 7.6 Hz, 1.4 Hz, 1H), 7.63 (td, *J* = 7.6 Hz, 1.4 Hz, 1H), 7.51-7.46 (m, 2H), 7.31 (dd, *J* = 8.7 Hz, 2.3 Hz, 1H), 7.23-7.18 (m, 2H), 4.03 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 162.2 (d, ¹*J*_{C-F} = 246.3 Hz), 158.2, 136.9, (d, ⁴*J*_{C-F} = 3.8 Hz), 135.2, 133.0, 131.9 (d, ³*J*_{C-F} = 7.7 Hz), 131.0, 130.4, 129.94, 129.88, 128.3, 127.9, 127.7, 127.6, 127.4, 127.1, 125.99, 125.95, 124.5, 117.0, 115.2 (d, ²*J*_{C-F} = 22.0 Hz), 109.0, 55.6. (One carbon overlapped.)

¹⁹**F NMR** (565 MHz, CDCl₃): *δ* –114.9.

HRMS (APCI): calcd for $C_{25}H_{18}FO$: m/z 353.1342 [M + H]⁺, found 353.1331.

IR (KBr): 3050, 2959, 1610, 1505, 1251, 1218, 829, 760, 543 cm⁻¹.

mp: 131-133 °C.

6-phenylbenzo[*c*]phenanthren-2-ol (**40b**)

The procedure followed that for preparation of compound **40a**. **40b** was obtained in 96% yield as light red solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.14 (d, *J* = 8.2 Hz, 1H), 8.54 (d, *J* = 2.3 Hz, 1H), 7.99 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.93 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 9.2 Hz, 1H), 7.80-7.76 (m, 2H), 7.69-7.65 (m, 1H), 7.64-7.60 (m, 1H), 7.56-7.45 (m, 5H), 7.25 (dd, *J* = 8.5, 2.1 Hz, 2H), 5.24 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 154.0, 141.0, 136.4, 132.9, 131.1, 130.4, 130.4, 130.1, 128.3, 128.3. 127.9, 127.8, 127.8, 127.2, 127.1, 127.0, 126.0, 125.9, 124.7, 116.7, 111.7.

HRMS (APCI): calcd for $C_{24}H_{17}O$: *m/z* 321.1279 [M + H]⁺, found 321.1266.

IR (KBr): 3504, 3438, 3062, 1600, 1500, 1442, 1208, 1191, 886, 819, 703 cm⁻¹.

mp: 167-170 °C.

6-(*p*-tolyl)benzo[*c*]phenanthren-2-ol (**40c**)

The procedure followed that for preparation of compound **40a**. **40c** was obtained in 94% yield as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 9.11 (d, J = 8.2 Hz, 1H), 8.51 (s, 1H), 7.96 (dd, J = 7.7, 1.5 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.66-7.54 (m, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.22 (dd, J = 9.2, 1.8 Hz, 1H), 5.46 (s, 1H), 2.47 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): *δ* 154.0, 138.0, 136.9, 136.3, 132.9, 131.0, 130.4, 130.3, 130.3, 130.2, 129.0, 128.2, 127.9, 127.8, 127.0, 125.9, 125.8, 124.8, 116.7, 111.6, 21.3.

HRMS (APCI): calcd for $C_{25}H_{19}O$: *m/z* 335.1436 [M + H]⁺, found 335.1425.

IR (KBr): 3343, 3049, 2925, 1610, 1498, 1209, 889, 826, 755, 543 cm⁻¹.

mp: 169-172 °C.

6-(4-fluorophenyl)benzo[c]phenanthren-2-ol (40d)

The procedure followed that for preparation of compound **40a**. **40d** was obtained in 93% yield as yellow solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.12 (d, *J* = 8.2 Hz, 1H), 8.52 (d, *J* = 2.3 Hz, 1H), 7.98 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.91 (d, *J* = 8.7 Hz, 1H), 7.80-7.34 (m, 3H), 7.66 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.61 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.50-7.45 (m, 2H), 7.24 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.20 (t, *J* = 8.7, 2H), 5.38 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 162.2 (d, ¹*J*_{C-F} = 246.3 Hz), 154.2, 136.9 (d, ⁴*J*_{C-F} = 2.9 Hz), 135.3, 132.9, 131.9 (d, ³*J*_{C-F} = 7.7 Hz), 131.1, 130.3, 130.3, 130.0, 128.3, 127.9, 127.8, 127.2, 127.1, 26.1, 126.0, 124.4, 116.8, , 115.2 (d, ²*J*_{C-F} = 21.1 Hz), 111.6. (One carbon overlapped.)

¹⁹**F NMR** (565 MHz, CDCl₃): δ –114.8.

HRMS (APCI): calcd for $C_{24}H_{16}FO$: m/z 339.1185 [M + H]⁺, found 339.1175.

IR (KBr): 3593, 3460, 3043, 1604, 1507, 1250, 1227, 1208, 1154, 829 cm⁻¹.

mp: 174-176 °C.

2-methoxy-6-methylbenzo[c]phenanthrene (85)

To a solution of **81** (168.6 mg, 0.50 mmol) in THF (5 mL) was added "BuLi (2.5 M in hexane, 0.30 mL, 0.75 mmol) at -78 °C. After 30 minutes, MeI (0.050 mL, 0.75 mmol) was added and the solution was stirred at room temperature for 12 h. The reaction mixture was quenched with saturated aqueous NH₄Cl. The aqueous layer was extracted with ethyl acetate, the combined organic layer was washed with brine,

dried over Na_2SO_4 , filtered, and evaporated under vacuum. The crude product was purified by GPC using chloroform as the eluent to give 2-methoxy-6-methylbenzo[*c*]phenanthrene (**85**) in 53% yield as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 9.17 (d, J = 8.2 Hz, 1H), 8.51 (d, J = 2.3 Hz, 1H), 8.02 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.68-7.59 (m, 3H), 7.26 (dd, J = 8.7 Hz, 2.3 Hz, 1H), 4.00 (s, 3H), 2.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 157.5, 132.9, 131.1, 130.6, 130.5, 129.8, 129.1, 128.4, 128.2, 127.5, 127.22, 127.19, 127.1, 125.8, 125.6, 122.7, 116.4, 109.3, 55.5, 20.2.

HRMS (APCI): calcd for $C_{19}H_{13}O$: m/z 257.0961 $[M - Me]^+$, found 257.0959.

IR (KBr): 3049, 2997, 2928, 1609, 1501, 1235, 1034, 809, 600 cm⁻¹.

mp: 97-99 °C.

6-methylbenzo[*c*]phenanthren-2-ol (**40e**)

The procedure followed that for preparation of compound **40a**. **40e** was obtained in quantitative yield as white solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.10 (d, *J* = 7.8 Hz, 1H), 8.47 (d, *J* = 2.3 Hz, 1H), 8.03-8.01 (m, 2 H), 7.93 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 8.7 Hz, 1H), 7.68-7.59 (m, 3H), 7.19 (dd, *J* = 8.7 Hz, 2.7 Hz, 1H), 5.09 (bs, 1H), 2.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.4, 132.9, 131.3, 130.6, 130.5, 129.9, 129.5, 128.3, 127.7, 127.4, 127.2, 126.8, 126.0, 125.7, 122.7, 116.3, 111.8, 20.2. (One carbon overlapped.)

HRMS (APCI): calcd for C₁₉H₁₅O: *m/z* 259.1123 [M + H]⁺, found 259.1109.

IR (KBr): 3333, 3057, 2937, 1608, 1504, 1196, 873, 795, 741 cm⁻¹.

mp: 124-126 °C.

Scheme 2-20.

6-(hex-1-yn-1-yl)-2-methoxybenzo[c]phenanthrene (86)

A mixture of 1-hexyne (0.038 mL, 0.33 mmol), triphenylphosphine (63 mg, 0.24 mmol), CuI (11 mg, 0.06 mmol), Pd(OAc)₂ (14 mg, 0.06 mmol), and the mixture of **81** (101 mg, 0.30 mmol) in the mixture of 1:1 THF/diisopropylamine (4.4 mL) degassed by bubbling of N₂ for 30 minutes was stirred under reflux for 14 h. After the reaction, the reaction mixture was cooled to room temperature and diluted with chloroform. This mixture was extracted with 10% HCl aq. The organic layer was washed two more times with water, dried with MgSO₄, and the solvent was evaporated under vacuum. The crude product was purified by silica gel column chromatography to 6-(hex-1-yn-1-yl)-2-methoxybenzo[*c*]phenanthrene (**86**) in 89% yield as yellow solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.15 (d, J = 8.7 Hz, 1H), 8.51 (d, J = 2.3 Hz, 1H), 8.44 (d, J = 8.7 Hz, 1H), 8.04-8.02 (m, 2H), 7.94 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.68-7.60 (m, 2H), 7.28-7.26 (m, 1H), 4.01 (s, 3H), 2.61 (t, J = 7.3 Hz, 1H), 1.77-1.70 (m, 2H), 1.65-1.55 (m, 2H), 1.02 (t, J = 7.3 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 158.5, 133.3, 131.3, 131.2, 131.1, 130.4, 129.7, 128.5, 127.8, 127.7, 127.3, 126.9, 125.94, 125.87, 124.9, 118.0, 116.8, 109.2, 94.5, 79.0, 55.6, 31.1, 22.2, 19.5, 13.7. **HRMS** (APCI): calcd for C₂₅H₂₃O: m/z 339.1749 [M + H]⁺, found 339.1741. **IR** (KBr): 3050, 2959, 1607, 1501, 1210, 889, 749, 543 cm⁻¹. **mp**: 70-72 °C. 1-(2-hydroxybenzo[*c*]phenanthren-6-yl)hexan-1-one (**40f**)

A mixture of 86 (107 mg, 0.32 mmol) with 10% Pd/C (11 mg) in MeOH (3.2 mL) was stirred at rt under H₂ (balloon) for 24 h. After the reaction, the mix was filtrated through Celite and then evaporated under vacuum. The crude product was purified by silica gel column chromatography to 6-hexyl-2-methoxybenzo[c]phenanthrene (87). A subsequent deprotection of methyl group was performed procedure of following the for preparation compound 40a to give 1-(2-hydroxybenzo[c]phenanthren-6-yl)hexan-1-one (40f) in 23% overall yield in 2 steps as yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ 9.07 (d, J = 7.8 Hz, 1H), 8.44 (d, J = 2.3 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.99 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.66 (s, 1H), 7.65-7.57 (m, 2H), 7.18 (dd, J = 8.7 Hz, 2.3 Hz, 1H), 5.03 (bs, 1H), 3.12 (t, J = 7.8 Hz, 1H), 1.84-1.76 (m. 2H), 1.50-1.45 (m, 2H), 1.40-1.30 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.6, 134.4, 132.8, 130.7, 130.5, 129.6, 128.23, 128.18, 127.8, 127.2, 127.1, 126.5, 125.8, 125.6, 122.5, 116.4, 111.8, 33.7, 31.8, 30.8, 29.5, 22.7, 14.1. (One carbon overlapped.)
HRMS (APCI): calcd for C₂₄H₂₄O: *m/z* 328.1827 [M]⁺, found 328.1818.

IR (KBr): 3350, 3049, 2953, 2855, 1605, 1499, 1210, 803, 749, 539 cm⁻¹.

7-methoxy-1-(*p*-tolyl)-3,4-dihydronaphthalene-2-carbaldehyde (88)

The procedure followed that for preparation of compound 46. 88 was obtained in 90% yield as yellow solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.25-7.23 (m, 2H), 7.17-7.14 (m, 3H), 6.82 (dd, *J* = 8.2 Hz, 2.8 Hz, 1H), 6.46 (*d*, J = 2.8 Hz, 1H), 3.64 (s, 3H), 2.84-2.80 (m, 2H), 2.67-2.63 (m, 2H), 2.42 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 193.4, 158.1, 154.4, 138.3, 136.2, 134.6, 131.9, 130.7, 130.3, 128.9, 128.3, 114.7, 114.6, 55.1, 26.6, 21.2, 20.7.

HRMS (ESI): calcd for $C_{19}H_{18}NaO_2 : m/z \ 301.1204 \ [M + Na]^+$, found 301.1198.

IR (KBr): 3000, 2943, 2852, 1654, 1596, 1362, 1038, 828, 711 cm⁻¹.

mp: 65-67 °C.

1-(3,5-dimethylphenyl)-7-methoxy-3,4-dihydronaphthalene-2-carbaldehyde (89)

The procedure followed that for preparation of compound **46**. **89** was obtained in 90% yield as white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 9.59 (s, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.05 (s, 1H), 6.89 (s, 2H), 6.82 (dd, *J* = 8.2 Hz, 2.8 Hz, 1H), 6.49 (d, *J* = 2.8 Hz, 1H), 3.66 (s, 3H), 2.84-2.80 (m, 2H), 2.67-2.63 (m, 2H), 2.34 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ*193.5, 158.0, 154.6, 137.6, 136.1, 134.8, 134.4, 130.6, 130.0, 128.3, 128.1, 114.9, 114.4, 55.1, 26.6, 21.1, 20.6.

HRMS (EIS): calcd for $C_{20}H_{20}NaO_2$: *m/z* 315.1361 [M + Na]⁺, found 315.1354.

IR (KBr): 3003, 2959, 1659, 1565, 1362, 1280, 1038, 861, 712 cm⁻¹.

mp: 114-116 °C.

7-methoxy-1-(*p*-tolyl)-2-naphthaldehyde (90)

The procedure followed that for preparation of compound 47. 90 was obtained in quantitative yield as yellow solid.

¹**H NMR** (400 MHz, CDCl₃): δ 9.88 (s, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.86-7.82 (m, 2H), 7.35-7.26 (m, 5H), 6.98 (d, *J* = 2.3 Hz), 3.72 (s, 3H), 2.49 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 192.9, 158.1, 145.1, 137.9, 133.7, 132.1, 131.6, 131.4, 130.7, 129.5, 128.9, 127.7, 120.8, 119.9, 106.4, 55.0, 21.2.

HRMS (ESI): calcd for C₁₉H₁₆NaO₂: *m/z* 299.1048 [M + Na]⁺, found 299.1042.

IR (KBr): 3050, 2939, 1678, 1509, 1391, 1237, 1178, 1037, 739 cm⁻¹.

mp: 66-68 °C.
1-(3,5-dimethylphenyl)-7-methoxy-2-naphthaldehyde (91)

The procedure followed that for preparation of compound 47. 91 was obtained in quantitative yield as yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.24 (dd, J = 8.7 Hz, 2.8 Hz, 1H), 7.12 (s, 1H), 7.01-7.00 (m, 3H), 3.71 (s, 3H), 2.39 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 193.1, 158.0, 145.6, 137.7, 135.1, 133.7, 131.5, 129.8, 129.5, 128.7, 127.6, 120.6, 119.8, 106.4, 55.1, 21.2.

HRMS (ESI): calcd for $C_{20}H_{18}NaO_2$: *m/z* 313.1204 [M + Na]⁺, found 313.1198.

IR (KBr): 3013, 2858, 1683, 1599, 1457, 1292, 846, 730 cm⁻¹.

2-ethynyl-7-methoxy-1-(*p*-tolyl)naphthalene (92)

The procedure followed that for preparation of compound 48. 92 was obtained in 79% yield as pink oil.

¹**H NMR** (400 MHz, CDCl₃): *δ* 7.74 (d, *J* = 9.0 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.34-7.29 (m, 4H), 7.14 (dd, *J* = 9.0 Hz, 2.3 Hz, 1H), 6.91 (d, *J* = 2.3 Hz, 1H), 3.69 (s, 3H), 2.98 (s, 1H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): *δ* 158.0, 142.3, 137.1, 135.7, 133.4, 130.1, 129.4, 128.8, 127.0, 126.9, 119.3, 118.8, 105.3, 83.8, 80.5, 55.0, 21.3.

HRMS (APCI): calcd for $C_{20}H_{17}O$: m/z 273.1279 [M + H]⁺, found 273.1265.

IR (KBr): 3287, 3053, 2934, 1621, 1507, 1273, 1035, 839, 600 cm⁻¹.

1-(3,5-dimethylphenyl)-2-ethynyl-7-methoxynaphthalene (93)

The procedure followed that for preparation of compound **48**. **93** was obtained in 71% yield as white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.74 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.15 (dd, J = 8.7 Hz, 2.3 Hz, 1H), 7.07 (s, 1H), 7.04 (s, 2H), 6.92 (d, J = 2.3 Hz, 1H), 3.71 (s, 3H), 2.99 (s, 1H), 2.39 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 157.9, 142.7, 138.5, 137.4, 133.4, 129.4, 129.2, 128.8, 128.0, 127.0, 126.9, 119.1, 118.7, 105.7, 83.9, 80.4, 55.2, 21.4.

HRMS (ESI): calcd for $C_{21}H_{18}NaO$: m/z 309.1255 $[M + Na]^+$, found 309.1252.

IR (KBr): 3308, 3004, 2938, 1618, 1506, 1424, 1226, 845, 622 cm⁻¹.

mp: 127-129 °C.

2-methoxy-10-methylbenzo[*c*]phenanthrene (94)

The procedure followed that for preparation of compound **49**. **94** was obtained in 72% yield as white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 9.07 (d, J = 8.7 Hz, 1H), 8.56 (d, J = 2.5 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.80-7.73 (m, 4H), 7.66 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.7 Hz, 1H), 7.26 (dd, J = 8.7 Hz, 2.5 Hz, 1H), 3.99 (s, 3H), 2.58 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 158.1, 135.3, 133.6, 131.5, 131.1, 129.9, 128.53, 128.50, 128.0, 127.9, 127.1, 127.0, 126.9, 126.7, 126.6, 124.7, 116.3, 109.0, 55.5, 21.3.

HRMS (APCI): calcd for $C_{20}H_{17}O$: m/z 273.1279 [M + H]⁺, found 273.1268.

IR (KBr): 3009, 2912, 1624, 1513, 1424, 1218, 836, 552 cm⁻¹.

mp: 116-118 °C.

11-methoxy-2,4-dimethylbenzo[*c*]phenanthrene (95)

The procedure followed that for preparation of compound **49**. **95** was obtained in 52% yield as white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.89 (s, 1H), 8.58 (d, J = 2.3 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.32 (s, 1H), 7.27 (dd, J = 8.7, 2.3 Hz, 3H), 4.02 (s, 3H), 2.80 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.9, 135.0, 134.5, 131.6, 131.2, 130.8, 130.2, 129.8, 128.7, 128.4, 126.9, 126.7, 125.8, 125.2, 124.5, 123.1, 116.4, 109.1, 55.4, 22.1, 20.1. HRMS (APCI): calcd for C₂₁H₁₉O: *m/z* 287.1436 [M + H]⁺, found 287.1425. IR (KBr): 3057, 2913, 1608, 1494, 1448, 1216, 1023, 834 cm⁻¹. mp: 129-131 °C.

10-methylbenzo[c]phenanthren-2-ol (40h)

The procedure followed that for preparation of compound **40a**. **40h** was obtained in 87% yield as white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.00 (d, J = 8.7 Hz, 1H), 8.54 (d, J = 2.3 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.81-7.74 (m, 4H), 7.47 (dd, J = 8.7, 1.8 Hz, 1H), 7.20 (dd, J = 8.7, 2.3 Hz, 1H), 5.18 (s, 1H), 2.58 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 154.0, 135.4, 133.5, 131.6, 131.1, 130.3, 128.6, 128.5, 128.0, 127.3, 127.1, 127.0, 126.8, 126.3, 124.7, 116.2, 111.6, 21.3. (One carbon overlapped.)
HRMS (APCI): calcd for C₁₉H₁₅O: *m/z* 259.1123 [M + H]⁺, found 259.1115.
IR (KBr): 3207, 2921, 1519, 1420, 1307, 1203, 832, 789, 548 cm⁻¹.
mp: 147-149 °C.

9,11-dimethylbenzo[c]phenanthren-2-ol (40i)

The procedure followed that for preparation of compound 40a. 40i was obtained in quantitative yield as white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.51 (s, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.23 (s, 1H), 7.16 (dd, J = 8.7, 2.3 Hz, 1H), 5.79 (s, 1H), 2.73 (s, 3H), 2.50 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 153.9, 135.1, 134.3, 131.8, 131.2, 130.8, 130.2, 128.7, 128.5, 127.0, 126.3, 125.7, 125.1, 124.5, 123.1, 116.1, 112.0, 22.1, 20.0.

HRMS (APCI): calcd for $C_{20}H_{17}O$: m/z 273.1279 [M + H]⁺, found 273.1269.

IR (KBr): 3349, 3044, 2917, 1609, 1498, 1423, 1353, 1207, 835, 533 cm⁻¹.

mp: 70-73 °C.

Preparation of dinuclear vanadium complexes

Dinuclear vanadium complexes was prepared according to the literature procedure.²⁹⁾

Preparation of mononuclear vanadium complexes

Scheme 2-22.

(R)-3'-iodo-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3-carbaldehyde (97)

To a solution of **96** (1.25 g, 2.0 mmol) in Et₂O (20 mL) was added "BuLi (2.0 M in hexane, 0.90 mL, 1.8 mmol) at -78 °C. After 20 minutes, DMF (0.78 mL, 10 mmol) was added and the solution was stirred at room temperature for 1 h. The reaction mixture was quenched with 1.0 M HCl aq. The aqueous layer was extracted with ethyl acetate, the combined organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel column chromatography to give (*R*)-3'-iodo-2,2'-bis(methoxymethoxy)-[1,1'-binaphthalene]-3-carbaldehyde (**97**) in 47% yield (450 mg) as yellow solid.

¹**H** NMR (400 MHz, CDCl₃): δ 10.55 (s, 1H), 8.59 (s, 1H), 8.58 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.54-7.47 (m, 1H), 7.47-7.43 (m, 1H), 7.43-7.38 (m, 1H), 7.34-7.28 (m, 1H), 7.25 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 1H), 4.82 (d, J = 6.0 Hz, 1H), 4.74 (d, J = 6.0 Hz, 1H), 4.71 (d, J = 6.0 Hz, 1H), 4.66 (d, J = 6.0 Hz, 1H), 2.92 (s, 3H), 2.52 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 190.8, 154.0, 152.3, 140.3, 136.9, 133.6, 132.3, 131.7, 130.1, 129.9, 129.4, 128.8, 127.3, 127.0, 126.6, 126.5, 126.2, 126.0, 125.5, 100.4, 99.7, 92.4, 57.0, 56.5. (One carbon overlapped.)

HRMS (ESI): calcd for $C_{25}H_{21}NaO_5$: m/z 551.0331 [M + Na]⁺, found 551.0319.

 $[\alpha]_{\rm D}^{24}$ +47.3 (*c* 0.56, CHCl₃)

(R)-3'-([1,1':3',1"-terphenyl]-5'-yl)-2,2'-dihydroxy-[1,1'-binaphthalene]-3-carbaldehyde (98)

A suspension of **97** (52.8 mg, 0.10 mmol), (3,5-Diphenylphenyl)boronic acid (32.9 mg, 0.12 mmol), $Pd(PPh_3)_4$ (11.6 mg, 0.010 mmol) and $Ba(OH)_2$ (42.8 mg, 0.25 mmol) in degassed water/1,4-dioxane (1/3, 1 mL) was stirred for 2 h at 80 °C. After cooling, the reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified by silica-gel column chromatography to give coupling product. A subsequent deprotection of methoxymethyl group was performed. Trifluoroacetic acid (excess) was added to a solution of coupling product in CH_2Cl_2 (1.0 mL) at

room temperature. The mixture was stirred for 1 h. After concentrated, the reaction mixture was purified by silica gel column chromatography to afford (R)-3'-([1,1':3',1"-terphenyl]-5'-yl)-2,2'-dihydroxy-[1,1'-binaphthalene]-3-carbaldehyde (**98**) in 86% overall yield in 2 steps as yellow solid.

¹**H** NMR (400 MHz, CDCl₃): *δ* 10.66 (s, 1H), 10.18 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 8.04-7.96 (m, 1H), 7.97-7.89 (m, 3H), 7.84 (t, J = 1.6 Hz, 1H), 7.74-7.68 (m, 4H), 7.50-7.31 (m, 10H), 7.31-7.25 (m, 1H), 7.11 (d, J = 8.2 Hz, 1H), 5.30 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 196.7, 154.5, 149.1, 142.3, 141.1, 139.1, 138.7, 137.8, 133.2, 131.3, 130.8, 130.4, 130.2, 129.4, 128.9, 128.6, 127.9, 127.6, 127.5, 127.0, 125.6, 125.2, 125.0, 124.5, 124.1, 122.3, 115.9, 114.4.

HRMS (APCI): calcd for C₃₉H₂₆NaO₃: m/z 565.1780 [M + Na]⁺, found 565.1772. [α]_D²² +19.68 (*c* 1.06, CHCl₃)

mononuclear vanadium complex (R_a,S) -74

A round-bottomed flask was charged with **98** (46.6 mg, 0.086 mmol), L-*tert*-leucine (12.4 mg, 0.094 mmol), VOSO₄•xH₂O (34.2 mg, 0.19 mmol), MS 3A (86 mg), MeOH (4.3 mL) and CHCl₃ (2 mL) under O₂ (balloon). The reaction mixture was refluxed, and the consumption of **97** was monitored by TLC. The resulting solution was gradually cooled down to r.t. and filtered through celite to remove MS 3A. The filtrate was evaporated, and the resulting black solid was dissolved in CH₂Cl₂ and washed with H₂O. The organic phase was dried over anhydrous Na₂SO₄ and concentrated in vacuum to give desired vanadium complex (R_a ,S)-**74** in 66% yield as dark green solid.

¹H NMR (400 MHz, CDCl₃): δ 8.93 (s, 1H), 8.47 (s, 1H), 8.06 (s, 1H), 8.04-8.01 (m, 1H), 7.97-7.92 (m, 3H), 7.81 (s, 1H), 7.73 (d, *J* = 7.3 Hz, 4H), 7.46-7.23 (m, 13H), 4.25 (s, 1H), 2.13 (s, 1H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 168.5, 150.9, 143.1, 142.5, 139.2, 138.6, 134.9, 133.0, 131.2, 130.9, 130.8, 130.7, 130.6, 129.9, 129.4, 129.0, 128.6, 128.3, 127.4, 127.1, 126.7, 126.3, 125.8, 125.6, 125.3, 124.7, 124.4, 123.8, 119.3, 118.5, 84.3, 38.5, 28.2.

HRMS (ESI): calcd for $C_{46}H_{38}NNaO_6V$: m/z 774.2036 [M + OMe - OH + Na]⁺, found 774.2027.

Vanadium-catalyzed enantioselective synthesis of oxa[9]helicenes

A test tube was charged with benzo[c]2-phenanthrol **38** (1.0 eq), mononuclear vanadium catalyst (10 mol %) and CCl₄ (0.2 M) under O₂ at 50 °C or 60 °C. The mixture was stirred for 48-72 h. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified by silica gel column chromatography to afford oxa[9]helicene **40**.

benzo[5,6]phenanthro[3,4-*b*]benzo[5,6]phenanthro[4,3-*d*]furan (40a)

86% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 8.5 Hz, 2H), 8.26 (J = 8.5 Hz, 2H), 8.00 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 6.75 (td, J = 7.5 Hz, 1.4 H, 2H), 6.19 (d, J = 8.7 Hz, 2H), 5.72 (td, J = 7.5 Hz, 1.4 H, 2H).

¹³C NMR (100 MHz, CDCl₃): *δ* 154.2, 129.9, 129.5, 129.5, 127.6, 127.3, 126.9, 126.5, 126.3, 126.2, 125.3, 125.2, 124.6, 124.3, 124.0, 122.2, 121.0, 110.9.

HRMS (APCI): calcd for $C_{36}H_{21}O$: m/z 469.1592 [M + H]⁺, found 469.1573.

IR (KBr): 3044, 1581, 1489, 1342, 1245, 1221, 1063, 834, 756 cm⁻¹.

mp: 280-283 °C. Yellow solid.

Enantiomeric excess: 78%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 6.2$ min, second peak: $t_R = 8.6$ min.

 $[\alpha]_{\rm D}^{19}$ -2647.2 (*c* 0.32, CHCl₃) for 99% ee (*M* isomer).

3,11-diphenylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40b)

72% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.29 (s, 4H), 7.96 (s, 2H), 7.69-7.45 (m, 14H), 7.35 (d, J = 7.6 Hz, 2H), 6.89 (t, J = 7.6 Hz, 2H), 6.42 (d, J = 8.2 Hz, 2H), 5.87 (t, J = 8.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 154.3, 141.0, 137.0, 130.3, 129.3, 128.8, 128.2, 127.8, 127.4, 127.3, 127.2,

126.9, 126.6, 126.5, 126.0, 124.4, 123.7, 122.4, 122.2, 121.1, 111.4.

HRMS (APCI): calcd for $C_{48}H_{29}O$: m/z 621.2218 [M + H]⁺, found 621.2200.

IR (KBr): 3051, 1577, 1475, 1240, 1062, 822, 751, 702 cm⁻¹

mp: >300 °C. Yellow solid.

Enantiomeric excess: 45%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 12.8$ min, second peak: $t_R = 33.1$ min. [α]_D²² -685.2 (*c* 0.46, CHCl₃) for 45% ee.

3,11-di-p-tolylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40c)

61% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.25 (s, 4H), 7.95 (s, 2H), 7.51 (m, 8H), 7.39 (d, J = 7.8 Hz, 4H), 7.34 (d, J = 6.9 Hz, 2H), 6.87 (td, J = 7.4, 1.1 Hz, 2H), 6.40 (d, J = 8.2 Hz, 2H), 5.90-5.81 (m, 2H), 2.53 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃): δ 154.3, 138.0, 137.0, 136.8, 130.1, 129.3, 128.9, 128.8, 128.4, 127.7, 127.4, 127.2, 126.8, 126.6 (C), 126.4, 126.0, 124.3, 123.6, 122.4, 122.3, 121.2, 111.3, 21.3. **HRMS** (APCI): calcd for C₅₀H₃₃O: m/z 649.2531 [M + H]⁺, found 649.2518.

IR (KBr): 3036, 2916, 1693, 1508, 1239, 822, 747, 563 cm⁻¹.

mp: >300 °C. Yellow solid.

Enantiomeric excess: 44%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 8.9$ min, second peak: $t_R = 18.0$ min. $[\alpha]_D^{20} -720.0 (c \ 0.41, CHCl_3)$ for 44% ee.

3,11-bis(4-fluorophenyl)benzo[5,6]phenanthro[3,4-*b*]benzo[5,6]phenanthro[4,3-*d*]furan (**40d**)

68% yield. The reaction was performed for 72 h.

¹**H NMR** (400 MHz, CDCl₃): δ 8.30 (s, 4H), 7.94 (s, 2H), 7.57-7.52 (m, 4H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.44

(d, *J* = 8.7 Hz, 2H), 7.35 (d, *J* = 7.3 Hz, 2H), 7.29-7.26 (4H), 6.87 (td, *J* = 7.4 Hz, 1.2 Hz, 2H), 6.40 (d, *J* = 8.7 Hz, 2H), 5.87 (td, *J* = 7.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 162.3 (d, ${}^{1}J_{C-F} = 246.3$ Hz), 154.4, 136.8 (d, ${}^{4}J_{C-F} = 3.8$ Hz, C), 135.9, 131.7 (d, ${}^{3}J_{C-F} = 7.7$ Hz), 129.3, 128.7, 128.3, 127.8 (CH), 127.4 (CH), 127.0, 126.7, 126.5, 126.0, 124.3, 123.7, 122.5, 122.0, 121.1, 115.2 (d, ${}^{2}J_{C-F} = 22.0$ Hz), 111.5. (One carbon overlapped.) ¹⁹F NMR (565 MHz, CDCl₃): δ –116.1.

HRMS (APCI): calcd for $C_{48}H_{27}F_2O$: m/z 657.2030 [M + H]⁺, found 657.2014.

IR (KBr): 3047, 1604, 1510, 1221, 1157, 824, 799, 752 cm⁻¹.

mp: >300 °C. Yellow solid.

Enantiomeric excess: 50%, determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25°C; 280 nm) first peak: $t_R = 10.1$ min, second peak: $t_R = 29.6$ min. $[\alpha]_D^{23}$ -758.6 (*c* 0.44, CHCl₃) for 50% ee.

3,11-dimethylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40e)

70% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.23-8.18 (m, 4H), 7.84 (d, J = 0.9 Hz, 2H), 7.62-7.67 (m, 4H), 7.31 (dd, J = 8.2 Hz, 0.9 Hz, 2H), 6.71 (td, J = 7.6 Hz, 1.4 Hz, 2H), 6.21 (d, J = 8.7 Hz, 2H), 5.69 (td, J = 7.6 Hz, 1.4 Hz, 2H), 2.72 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 153.8, 130.7, 129.4, 129.1, 129.0, 127.2. 126.7, 126.6, 126.5, 126.4, 126.3, 125.8, 123.4, 123.2, 122.1, 121.1, 120.4, 110.8, 19.8.

HRMS (APCI): calcd for C₃₈H₂₅O: *m/z* 497.1905 [M + H]⁺, found 497.1887.

IR (KBr): 3064, 2932, 2857, 1580, 1482, 1260, 1119, 865, 747, 597 cm⁻¹.

mp: >300 °C. Yellow solid.

Enantiomeric excess: 88%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 5.7$ min, second peak: $t_R = 10.0$ min.

 $[\alpha]_{D}^{19}$ -2252.5 (*c* 0.35, CHCl₃) for 88% ee.

3,11-dihexylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40f)

72% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.21 (s, 4H), 7.82 (s, 2H), 7.65-7.59 (m, 4H), 7.30 (d, J = 6.9 Hz, 2H), 6.68 (td, J = 7.5, 1.1 Hz, 2H), 6.26 (d, J = 8.2 Hz, 2H), 5.71 (td, J = 7.5, 1.1 Hz, 2H), 3.16-2.98 (m, 4H), 1.95-1.77 (m, 4H), 1.62-1.12 (m, 12H), 0.99 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 153.8, 135.2, 129.1, 129.0, 128.8, 127.5, 127.0, 126.8, 126.6, 126.0, 125.9, 125.7, 124.0, 123.2, 122.1, 121.1, 120.2, 110.9, 33.4, 31.9, 30.8, 29.7, 22.8, 14.2.

HRMS (APCI): calcd for C₄₈H₄₅O: *m/z* 637.3470 [M + H]⁺, found 367.3443.

IR (KBr): 3049, 2928, 1578, 1480, 1349, 1234, 821, 797, 748, 602 cm⁻¹.

mp: 65-67 °C. Yellow solid.

Enantiomeric excess: 76%, determined by HPLC (Chiralpak IB, hexane/dichloromethane = 9/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 12.4$ min, second peak: $t_R = 22.1$ min.

 $[\alpha]_{\rm D}^{23}$ -1490.0 (*c* 0.54, CHCl₃) for 76% ee.

3,11-dibromobenzo[5,6]phenanthro[3,4-*b*]benzo[5,6]phenanthro[4,3-*d*]furan (40g)

56% yield. The reaction was performed at 60°C for 72 h.

¹**H** NMR (400 MHz, CDCl₃): δ 8.34 (s, 2H), 8.28 (d, J = 8.7 Hz, 2H), 8.22 (d, J = 8.7 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 7.68 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 6.87 (td, J = 8.7 Hz, 1.1 Hz, 2H), 6.15 (d, J = 7.8 Hz, 2H), 5.78 (td, J = 8.7 Hz, 1.1 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): *δ* 154.4, 129.6, 129.4, 129.4, 127.9, 127.8, 127.3, 126.9, 126.7, 126.4, 125.5, 124.8, 123.4, 123.3, 122.7, 120.9, 119.7, 111.9.

HRMS (APCI): calcd for C₃₆H₁₈Br₂O: m/z 623.9724 [M]⁺, found 623.9710.

IR (KBr): 3063, 1577, 1474, 1248, 1226, 1065, 817, 744 cm⁻¹.

mp: >300 °C. Yellow solid.

Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 0.3 ml/min; 25 °C; 350 nm) first peak: $t_R = 22.7$ min, second peak: $t_R = 32.5$ min.

 $[\alpha]_{D}^{18}$ -1667.7 (*c* 0.35, CHCl₃) for 94% ee.

15,20-dimethylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40h)

68% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 8.29 (d, *J* = 8.2 Hz, 2H), 8.24 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.06 (s, 2H), 6.03 (d, *J* = 8.2 Hz, 2H), 5.50 (d, *J* = 8.2 Hz, 2H), 2.15 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 154.2, 133.5, 129.8, 129.6, 129.4, 127.4, 126.6, 126.25, 126.16, 126.0, 125.3, 125.01, 124.98, 124.43, 124.36, 123.8, 121.0, 110.8, 20.8.

HRMS (APCI): calcd for C₃₈H₂₅O: *m/z* 497.1905 [M + H]⁺, found 497.1891.

IR (KBr): 3041, 2917, 1580, 1488, 1253, 1212, 831, 630 cm⁻¹.

mp: 160-163 °C. Yellow solid.

Enantiomeric excess: 80%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 5.6$ min, second peak: $t_R = 8.3$ min.

 $[\alpha]_{D}^{17}$ -2515.5 (*c* 0.36, CHCl₃) for 80% ee.

14,16,19,21-tetramethylbenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40i)

84% yield. The reaction was performed in the presence of TMSCl (10 mol %) at 60 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 8.33 (d, *J* = 8.2 Hz, 2H), 8.27 (d, *J* = 8.2 Hz, 2H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 6.42 (s, 2H), 5.80 (s, 2H), 2.58 (s, 6H), 1.04 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): *δ* 153.9, 131.7, 131.6, 129.9, 129.2, 127.5, 127.4, 127.3, 126.5, 126.0, 125.4, 125.2, 124.6, 124.2, 123.4, 122.0, 121.6, 110.5, 20.3, 20.1.

HRMS (APCI): calcd for $C_{40}H_{28}O$: *m/z* 525.2218 [M + H]⁺, found 525.2198.

IR (KBr): 3049, 2915, 2866, 1579, 1482, 1373, 1255, 1080, 829, 561 cm⁻¹.

mp: >300 °C. Orange solid.

Enantiomeric excess: 60%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 10.4$ min, second peak: $t_R = 13.1$ min.

 $[\alpha]_{\rm D}^{21}$ -1465.4 (*c* 0.43, CHCl₃) for 60% ee.

Vanadium-catalyzed enantioselective oxidative hetero-coupling

Scheme 2-23.

A test tube was charged with **38a** (0.02 mmol), **38g** (0.02 mmol), mononuclear vanadium catalyst (0.004 mmol) and CCl₄ (0.2 mL). The mixture was stirred for 72 h under O₂ at 50 °C. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified using PTLC to afford **40ag** (30% yield, 84% ee) along with homo-coupling products **40a** (28% yield, 69% ee) and **40g** (13% yield, 94% ee).

3-bromobenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (40ag)

¹**H** NMR (400 MHz, CDCl₃): δ 8.34-8.26 (m, 4H), 8.21 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 1H), 7.37 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 7.32 (dd, J = 7.6 Hz, 1.4 Hz, 1H), 6.87 (td, J = 7.6 Hz, 1.4 Hz, 1H), 6.77 (td, J = 7.6 Hz, 1.4 Hz, 1H), 6.19 (d, J = 8.7 Hz, 1H), 6.14 (d, J = 8.7 Hz, 1H), 5.79-5.71 (m, 2H).

¹³C NMR (175 MHz, CDCl₃): δ 154.4, 154.2, 130.1, 129.53, 129.49, 129.4, 129.3, 128.0, 127.64, 127.56, 127.1, 126.9, 126.8, 126.64, 126.57, 126.44, 126.35, 125.9, 125.43, 125.35, 125.2, 124.7, 124.1, 123.5, 123.2, 122.6, 122.2, 121.3, 120.6, 119.6, 111.8, 111.0. (four carbons overlapped.)

HRMS (APCI): calcd for C₃₆H₁₉BrO: *m*/*z* 546.0619 [M]⁺, found 546.0600.

IR (KBr): 3040, 2923, 2851, 1578, 1473, 1250, 1065, 835, 744, 591 cm⁻¹.

mp: 132-135 °C. Yellow solid.

Enantiomeric excess: 84%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 400 nm) first peak: $t_R = 7.3$ min, second peak: $t_R = 10.7$ min.

 $[\alpha]_D^{21}$ –1642.9 (*c* 0.31, CHCl₃) for 84% ee.

Derivatization of 2g

A suspension of 40g (7.2 mg, 0.01150 mmol), phenyl boronic acid (4.2 mg, 0.03449 mmol), Pd(PPh₃)₄ (1.33 mg, 0.00115 mmol) and potassium carbonate (6.98 mg, 0.05058 mmol) in toluene/ethanol (10/9, 0.20 mL) was stirred for 12 h under reflux condition. After cooling, the reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The yield (81% yield) of 40b was determined by ¹H NMR using 1,2-dichloroethane as an internal standard.

Enantiomeric excess: 92%, determined by HPLC (Chiralpak AD-3, hexane/2-propanol = 99/1; flow rate 1.0 ml/min; 25 °C; 280 nm) first peak: $t_R = 10.7$ min, second peak: $t_R = 26.0$ min.

Bromination of oxa[9]helicene (40a)

Table 2-9.				
	PyHBr ₃ CHCl ₃ temp., 24 h	Br O	Bi	Br
rac- 40a		rac-4	10k	rac- 401
entry	PyHBr ₃ (equiv)	Temp. (°C)	40k : 40l ^{<i>a</i>}	yield ^b
1	1.05	25	81 : 19	40k : 77%
2	1.2	25	69:31	ND
3	2.1	25	40 : 60	40k : 38%, 40l : 58%
4	3.0	25	36:65	ND
5	2.1	40	20: 80	401 : 72%

.

^aThe ratio was estimated by ¹H NMR. ^bIsolated yield of product. ND: Not determined.

To a solution of **40a** and pyridinium tribromide (1.05 - 3.0 equiv) in CHCl₃ was stirred for 24 h at 25 °C or 40 °C. The reaction was quenched with 10% Na₂S₂O₃ aq. and extracted with CHCl₃. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The crude product was purified using PTLC and brominated products were obtained.

5-bromobenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (*rac*-40k)

77% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H), 8.43 (d, J = 8.7 Hz, 1H), 8.31 (d, J = 8.7 Hz, 1H), 8.24 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.62-7.55 (m, 3H), 7.43-7.37 (m, 2H), 7.36-7.27 (m, 2H), 6.82-6.77 (m, 1H), 6.77-6.71 (m, 1H), 6.17 (d, J = 8.2 Hz, 1H), 6.11 (d, J = 8.2 Hz, 1H), 5.80-5.74 (m, 1H), 5.74-5.65 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 154.3, 153.2, 130.1, 130.0, 129.63, 129.59, 129.56, 128.2, 127.6, 127.2, 127.1, 126.64, 126.56, 126.3, 125.96, 125.94, 125.49, 129.46, 125.2, 125.0, 124.7, 124.3, 124.23, 124.22, 124.1, 122.5, 122.4, 121.2, 120.9, 120.6, 115.2, 111.0. (four carbons overlapped.)

HRMS (APCI): calcd for $C_{36}H_{20}BrO$: m/z 547.0692 $[M + H]^+$, found 547.0686.

IR (KBr): 3044, 1596, 1565, 1487, 1258, 908, 833, 733 cm⁻¹.

mp: 213-215 °C. Yellow solid.

5,9-dibromobenzo[5,6]phenanthro[3,4-b]benzo[5,6]phenanthro[4,3-d]furan (rac-401)

72% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 8.58 (s, 2H), 8.42 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.81-6.75 (m, 2H), 6.10 (d, J = 8.2 Hz, 2H), 5.80-5.74 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃): *δ* 153.3, 130.1, 129.7, 129.0, 128.6, 127.8, 127.0, 126.7, 125.7, 125.3, 125.1, 125.1, 124.5, 124.44, 124.39, 122.7, 121.8, 120.5, 115.2.

HRMS (APCI): calcd for $C_{36}H_{19}Br_2O$: *m/z* 624.9803 [M + H]⁺, found 624.9791.

IR (KBr): 3046, 1735, 1565, 1485, 1318, 1259, 926, 830, 748 cm⁻¹.

mp: 230-233 °C. Yellow solid.

Mechanistic studies

Kinetic study

According to the general procedure of the vanadium-catalyzed enantioselective synthesis of oxa[9]helicenes, the reaction of **38a** was conducted with varying the catalyst loading (5, 10 and 15 mol %). An aliquot of the reaction solution was sampled periodically (30, 45, 60, 75 min) and analyzed by ¹H NMR.

catalyst	[V cat.]	product	time (min)			initial rate	
loading	(mmol/L)		30	45	60	75	(mmol/min)
(mol %)							
5	10	40a	(0)	0	0.00075	0.0015	0.00005000
10	20	(mmol)	0	0.00175	0.00325	(0.00475)	0.0001083
15	30		0	0.00325	0.0045	(0.0055)	0.0001500

Figure 2-11.

initial rate $ imes 10^4$	[V cat.]
v_0 (mmol/min)	(mmol/L)
0.5	10
1.083	20
1.5	30
$\ln v_0$	ln [V cat.]
-0.6931	2.303
0.07973	2.996
0.4055	3.401

Figure 2-12.

Confirmation of kinetic resolution from 39a to 40a

A test tube was charged with *rac*-**39a** (1 eq), mononuclear vanadium catalyst (10 mol %) and CCl₄ (0.2 M) under O_2 at 50 °C. The mixture was stirred and stopped at the 71% conversion. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The product's ee was analyzed and kinetic resolution was not observed in the reaction from **39a** to **40a**.

Vanadium-catalyzed enantioselective oxidative homo-coupling of 3-hydroxycarbazole

A test tube was charged with 9-phenyl-9*H*-carbazol-3-ol (**75**), dinuclear vanadium catalyst (R_a ,*S*,*S*)-**8** (5 mol %) and CCl₄ (0.2 M) under air at 30 °C. The mixture was stirred for 72 h. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified by silica gel column chromatography to afford 9,9'-diphenyl-9*H*,9'*H*-[4,4'-bicarbazole]-3,3'-diol (**76**) in 50% yield as orange solid.

9,9'-diphenyl-9H,9'H-[4,4'-bicarbazole]-3,3'-diol (76)

¹**H** NMR (400 MHz, CDCl₃): δ 7.67-7.64 (m, 8H), 7.56 (d, J = 8.7 Hz, 2H), 7.53-7.49 (m, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.26 (td, J = 7.8, 0.9 Hz, 2H), 7.04 (d, J = 7.8 Hz, 2H), 6.87 (td, J = 7.8, 0.9 Hz, 2H), 5.02 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 148.5, 141.5, 137.6, 136.2, 129.9, 127.5, 127.3, 126.1, 122.4, 121.8, 121.5, 119.8, 115.0, 111.8, 111.6, 109.6.

HRMS (ESI): calcd for $C_{36}H_{24}N_2O_2Na$: m/z 539.1735 [M + Na]⁺, found 539.1730.

Enantiomeric excess: 84%, determined by HPLC (Chiralcel OD-H, hexane/2-popanol = 4/1; flow rate 1.0 mL/min; 25 °C; 230 nm) first peak: $t_R = 10$ min, second peak: $t_R = 15$ min.

Acid-mediated Intramolecular cyclization of 76

A test tube was charged with **76** (20.66 mg, 0.040 mmol), TsOH•H₂O (1.0 equiv, 7.61 mg) and *o*-xylene (0.20 M, 0.20 mL) under air. The mixture was stirred for 5 d under reflux condition. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified by PTLC to afford 1,7-diphenyl-1,7-dihydrofuro[2,3-c:5,4-c]dicarbazole (**77**, 5.5 mg) in 28% yield as yellow solid.

1,7-diphenyl-1,7-dihydrofuro[2,3-*c*:5,4-*c*]dicarbazole (77)

¹**H** NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 7.8 Hz, 2H), 7.73 (d, J = 8.7 Hz, 2H), 7.70-7.66 (m, 8H), 7.56 (d, J = 8.7 Hz, 2H), 7.58-7.53 (m, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.41 (td, J = 7.8, 1.1 Hz, 2H), 7.04 (td, J = 7.8, 1.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 152.7, 141.5, 138.6, 138.0, 130.0, 127.9, 127.8, 127.6, 125.5, 122.89, 118.2, 117.4, 117.1, 109.3, 109.3, 109.1.

HRMS (APCI): calcd for $C_{36}H_{23}N_2O$: m/z 499.1810 [M + H]⁺, found 499.1792.

Vanadium-catalyzed Enantioselective Oxidative Hetero-coupling of 3-Hydroxycarbazole with 2-naphthol

A test tube was charged with 9-(*p*-tolyl)-9*H*-carbazol-3-ol (**78**), 2-naphthol (**1a**, 1.0 equiv), mononuclear vanadium catalyst (R_a ,S)-**57** (10 mol %) and Cl₂CHCHCl₂ (0.1 M) under air at 50 °C. The mixture was stirred for 24 h. The reaction mixture was then filtered through a short pad of silica gel and the solvent was evaporated. The crude product was purified by silica gel column chromatography to afford 4-(2-hydroxynaphthalen-1-yl)-9-(*p*-tolyl)-9*H*-carbazol-3-ol (**80**) in 80% yield as yellow solid.

4-(2-hydroxynaphthalen-1-yl)-9-(p-tolyl)-9H-carbazol-3-ol (80)

¹**H NMR** (400 MHz, CDCl₃): δ 8.04 (d, *J* = 9.2 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.49-7.30 (m, 10H), 7.25-7.21 (m, 2H), 6.77-6.81 (td, *J* = 7.8, 0.9 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 5.32 (s, 1H), 4.75 (s, 1H), 2.51 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.4, 148.4, 141.6, 137.5, 136.3, 134.80, 132.9, 131.4, 130.5, 129.4, 128.4, 127.5, 127.1, 126.0, 124.2, 124.0, 122.3, 122.1, 121.3, 119.6, 117.8, 114.9, 111.84, 111.80, 110.6, 109.6, 21.2.

HRMS (ESI): calcd for $C_{29}H_{21}NO_2Na$: m/z 438.1470 [M + Na]⁺, found 438.1466.

Enantiomeric excess: 40%, determined by HPLC (Chiralpak IA, hexane/2-propanol = 4/1; flow rate 1.0 ml/min; 25 °C; 365 nm) first peak: $t_R = 12$ min, second peak: $t_R = 17$ min.

X-ray crystallographic data for compound 40a.

The single crystal was obtained by recrystallization from $CH_2Cl_2/MeOH.$

Experimental

Data Collection

A yellow platelet crystal of $C_{73}H_{42}Cl_2O_2$ having approximate dimensions of 0.237 x 0.200 x 0.076 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID 191R diffractometer using filtered Cu-Ka radiation.

The crystal-to-detector distance was 191.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

а	=	15.0088(4) Å			
b	=	10.2881(3) Å	b	=	105.568(8)0
c	=	16.785(2) Å			
V	=	2496.7(3) Å ³			

For Z = 2 and F.W. = 1022.04, the calculated density is 1.359 g/cm³. Based on the reflection conditions of:

0k0:
$$k = 2n$$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P21 (#4)

The data were collected at a temperature of $-150 \pm 1^{\circ}$ C to a maximum 2q value of 136.4°. A total of 72 oscillation images were collected. A sweep of data was done using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 0.0°. The exposure rate was 5.0 [sec./°]. A second sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 60.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 180.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 240.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 240.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 240.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0°

to 260.0° in 20.0° step, at $c=20.0^{\circ}$ and $f = 0.0^{\circ}$. The exposure rate was 5.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at $c=20.0^{\circ}$ and $f = 120.0^{\circ}$. The exposure rate was 5.0 [sec./°]. The crystal-to-detector distance was 191.00 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 48714 reflections that were collected, 9074 were unique ($R_{int} = 0.0462$); equivalent reflections were merged.

The linear absorption coefficient, m, for Cu-Ka radiation is 15.768 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.704 to 0.887. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement² on F^2 was based on 9074 observed reflections and 737 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = S ||Fo| - |Fc|| / S |Fo| = 0.0554$$

wR2 =
$$[S (w (Fo^2 - Fc^2)^2) / S w (Fo^2)^2]^{1/2} = 0.1567$$

The standard deviation of an observation of unit weight³ was 1.01. A Sheldrick weighting scheme was used. Plots of S w (|Fo| - |Fc|)² versus |Fo|, reflection order in data collection, sin q/l and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.63 and -2.45 e⁻/Å³, respectively. The absolute structure was deduced based on Flack parameter, 0.003(16), refined using 4231 Friedel pairs.⁴

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for Df and Df'' were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure^{9,10} crystallographic software package.

References

(1) <u>SIR92</u>: Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G., and Camalli, M. (1994) J. Appl. Cryst., 27, 435.

(2) Least Squares function minimized:

 $Sw(F_0^2-F_c^2)^2$ where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

$$[Sw(F_0^2-F_c^2)^2/(N_0-N_v)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(4) Flack, H. D. (1983), Acta Cryst. A39, 876-881.

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(10) <u>CRYSTALS Issue 11</u>: Carruthers, J.R., Rollett, J.S., Betteridge, P.W., Kinna, D., Pearce, L., Larsen, A., and Gabe, E. Chemical Crystallography Laboratory, Oxford, UK. (1999)

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₇₃ H ₄₂ Cl ₂ O ₂
Formula Weight	1022.04
Crystal Color, Habit	yellow, platelet
Crystal Dimensions	0.237 X 0.200 X 0.076 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 15.0088(4) Å b = 10.2881(3) Å c = 16.785(2) Å b = 105.568(8) ° $V = 2496.7(3) \text{ Å}^3$
Space Group	P2 ₁ (#4)
Z value	2
D _{calc}	1.359 g/cm ³
F000	1060.00
m(CuKa)	15.768 cm ⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID 191R
Radiation Voltage, Current	CuKa (l = 1.54187 Å) 45kV, 55mA
Temperature	-150.0°C
Detector Aperture	783 x 382 mm
Data Images	72 exposures
w oscillation Range (c=54.0, f=0.0)	80.0 - 260.0 ^o
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=54.0, f=60.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=54.0, f=120.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=54.0, f=180.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=54.0, f=240.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=54.0, f=320.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ⁰

w oscillation Range (c=20.0, f=0.0)	80.0 - 260.0 ^o
Exposure Rate	5.0 sec./ ⁰
w oscillation Range (c=20.0, f=120.0)	80.0 - 260.0 ⁰
Exposure Rate	5.0 sec./ ^o
Detector Position	191.00 mm
Pixel Size	0.100 mm
2q _{max}	136.4 ^o
No. of Reflections Measured	Total: 48714 Unique: 9074 (R _{int} = 0.0462) Friedel pairs: 4231
Corrections	Lorentz-polarization Absorption (trans. factors: 0.704 - 0.887)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$S \le (Fo^2 - Fc^2)^2$
Least Squares Weights	1/[0.0033Fo ² +1.0000s(Fo ²)]/(4Fo ²)
2q _{max} cutoff	136.4 ^o
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	9074
No. Variables	737
Reflection/Parameter Ratio	12.31
Residuals: R1 (I>2.00s(I))	0.0554
Residuals: R (All reflections)	0.0615
Residuals: wR2 (All reflections)	0.1567
Goodness of Fit Indicator	1.008
Flack Parameter (Friedel pairs = 4231)	0.003(16)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	1.63 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-2.45 e ⁻ /Å ³

- Selected reports, see: (a) ligand: Aillard, P.; Voituriez, A.; Dova, D.; Cauteruccio, S.; Licandro, E.; Marinetti, A. *Chem. Eur. J.* 2014, 20, 12373–12376. (b) auxiliary: Hassine, B. B.; Gorsane, M.; Geerts-Evrard, F.; Pecher, J.; Martin, R. H.; Castelet, D. *Bull. Soc. Chim. Belg.* 1986, 95, 557–566. (c) organocatalyst: Hassine, B. B.; Gorsane, M.; Pecher, J.; Martin, R. H. *Bull. Soc. Chim. Belg.* 1986, 95, 547–553. (d) liquid crystal: Saito, N.; Kanie, K.; Matsubara, M.; Muramatsu, A.; Yamaguchi, M. *J. Am. Chem. Soc.* 2015, *137*, 6594–6601. (e) Miah, M. J.; Shahabuddin, M.; Karikomi, M.; Salim, M.; Nasuno, E.; Kato, N.; Iimura, K. *Bull. Chem. Soc. Jpn.* 2016, *89*, 203–211. (f) molecular motor: Chen, W.-C.; Lee, Y.-W.; Chen, C.-T. *Org. Lett.* 2010, *12*, 1472–1475. Recent reviews, see: (g) Shen, Y.; Chen, C.-F. *Chem. Rev.* 2012, *112*, 1463–1535. (h) Gingras, M. *Chem. Soc. Rev.* 2013, *42*, 1051–1095. (i) Aillard, P.; Voituriez, A.; Marinetti, A. *Dalton Trans.* 2014, *43*, 15263–15278. (j) Shigeno, M.; Kushida, Y.; Yamaguchi, M. *Chem. Commun.* 2016, *52*, 4955–4970.
- (a) Newman, M. S.; Lutz, W. B.; Lednicer, D. J. Am. Chem. Soc. 1955, 77, 3420–3421. (b) Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956, 78, 4765–4770.
- 3) Dietz, F.; Schölz, M. Tetrahedron 1968, 24, 6845–6849.
- 4) Flammand-Barbieux, M.; Nasielski, J.; Martin, R. J. Tetrahedron Lett. 1967, 7, 743-744.
- 5) Martin, R. H.; Baes, M. Tetrahedron 1975, 31, 2135–2137.
- 6) Mori, K.; Murase, T.; Fujita, M. Angew. Chem. Int. Ed. 2015, 54, 6847–6851.
- Selected examples (pioneer work), see: (a) Diels-Alder reaction: Weidlich, H. A. Ber. 1938, 71, 1203– 1209. (b) Newman, M. S. J. Am. Chem. Soc. 1940, 62, 1683–1687. (c) "benzylic-type" coupling: Jenard-De Koninck, A.; Defay, N.; De Ridder, R. Bull. Soc. Chim. Belg. 1960, 69, 558–562. (d) McMurry coupling: Dubois, F.; Gingras, M. Tetrahedron Lett. 1998, 39, 5039–5040. (e) pinacol coupling: Modler-Spreitzer, A.; Fritsch, R.; Mannschreck, A. Collect. Czech. Chem. Commun. 2000, 48, 1844–1848.
- 8) (a) Kina, A.; Miki, H.; Cho, Y.-H.; Hayashi, T. *Adv. Synth. Catal.* 2004, 346, 1728–1732. (b) Xue, X.; Scott, L. T. Org. Lett. 2007, 9, 3937–3940. (c) Kamikawa, K.; Takemoto, S.; Matsuzaka, H. J. Org. Chem. 2007, 72, 7406–7408. (d) Côté, J.; Collins, S. K. Synthesis 2009, 1499–1505. (e) Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2008, 47, 8096–8099. (f) Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014–8026.
- Recent reviews, see: (a) Stará, I. G.; Starý, I. Phenanthrenes, Helicenes and Other Angular Acenes. In *Science of Synthesis*; Siegel, J. S., Tobe, Y., Eds.; Thieme: Stuttgart, 2010; Vol. 45b, pp 885. (b) Tanaka, K. Synthesis of Helically Chiral Aromatic Compounds via [2+2+2] Cycloaddition. In *Transition-Metal-Mediated Aromatic Ring Construction*; Tanaka, K., Ed.; Wiley: Hoboken, NJ, 2013; pp 281. (c) Tanaka, K.; Kimura, Y.; Murayama, K. *Bull. Chem. Soc. Jpn.* 2015, *88*, 375–385. Recent reports, see: (d) Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.; Endo, K. *Chem. Commun.* 2012, *48*, 1311–1313. (e) Sawada, Y.; Furumi, S.; Takai, A.; Takeuchi, M.; Noguchi,

K.; Tanaka, K. J. Am. Chem. Soc. 2012, 134, 4080–4083. (f) Jančařík, A.; Rybáček, J.; Cocq, K.;
Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G.;
Starý, I. Angew. Chem. Int. Ed. 2013, 52, 9970–9975. (g) Heller, B.; Hapke, M.; Fischer, C.;
Andronova, A.; Starý, I.; Stará, I. G. J. Organomet. Chem. 2013, 723, 98–102. (h) Šámal, M.;
Chercheja, S.; Rybáček, J.; Vacek Chocholoušová, J.; Vacek, J.; Bednárová, L.; Šaman, D.; Stará, I.
G.; Starý, I. J. Am. Chem. Soc. 2015, 137, 8469–8474. (i) Tsujihara, T.; Inada-Nozaki, N.; Takehara,
T.; Zhou, D.-Y.; Suzuki, T.; Kawano, T. Eur. J. Org. Chem. 2016, 4948–4952. (j) Yamano, R.; Hara. J.;
Murayama, K.; Sugiyama, H.; Teraoka, K.; Uekusa, H.; Kawauchi, S.; Shibata, U.; Tanaka, K. Org.
Lett. 2017, 19, 42–45.

- 10) Collins, S. K.; Granbois, A.; Vachon, M. P.; Côté, J. Angew. Chem. Int. Ed. 2006, 45, 2923-2926.
- 11) Stará, I. G.; Starý, I.; Kollárovič, A.; Teplý, F.; Vyskočil, Š.; Šaman, D. *Tetrahedron Lett.* **1999**, *40*, 1993–1996.
- 12) Grandbois, A.; Collins, S. K. Chem. Eur. J. 2008, 14, 9323-9329.
- 13) Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K. Angew. Chem. Int. Ed. 2005, 44, 7136–7138.
- (a) Karikomi, M.; Yamada, M.; Ogawa, Y.; Houjou, H.; Seki, K.; Hiratani, K.; Haga, K.; Uyehara, T. *Tetrahedron Lett.* 2005, *46*, 5867–5869. (b) Salim, M.; Akutsu, A.; Kimura, T.; Minabe, M.; Karikomi, M. *Tetrahedron Lett.* 2011, *52*, 4518–4520. (c) Salim, M.; Ubukata, H.; Kimura, T.; Karikomi, M. *Tetrahedron Lett.* 2011, *52*, 6591–6593. (d) Karikomi, M.; Toda, M.; Sasaki, Y.; Shibuya, M.; Yamada, K.; Kimura, T.; Minabe, M.; Hiratani, K. *Tetrahedron Lett.* 2014, *55*, 7099–7101.
- 15) Sundar M. S.; Bedekar A. V. Org. Lett. 2015, 17, 5808-5811.
- 16) Wilds, A. L.; Werth, R. G. J. Org. Chem. 1952, 17, 1154–1161.
- Selected reviews and papers, see: (a) Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem. Int. Ed. 1997, 36, 1236–1256. (b) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021–12022. (c) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673. (d) Chu, C.-Y.; Uang, B.-J. Tetrahedron: Asymmetry 2003, 14, 53–55. (e) Ma, J.-A.; Cahard, D. Angew. Chem. Int. Ed. 2004, 43, 4566–4583. (f) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566–1568. (g) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356–5357. (h) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680–3681. (i) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999–1010. (j) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (k) Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth, E.; Lectka, T. Acc. Chem. Res. 2008, 41, 655–663. (l) Sodeoka, M.; Hamashima, Y. Chem. Commun. 2009, 5787–5798. (m) Terada, M. Bull. Chem. Soc. Jpn. 2010, 83, 101–119. (n) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40, 4539–4549. (o) Park, J.; Hong, S. Chem. Soc. Rev. 2012, 41, 6931–6943. (p) Sohtome, Y.; Nagasawa, K. Chem. Commun. 2012, 48, 7777–7789. (q) Brière, J.-F.; Oudeyer, S.; Dalla, V.; Levacher, V. Chem. Soc. Rev. 2012, 41, 1696–1707. (r) Liu, F. Chirality 2013, 25, 675–683. (s) Matsunaga, S.; Shibasaki, M. Chem. Commun. 2014, 50, 1044–1057. (t) Chen, D.-F.; Han, Z.-Y.;

Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365–2377. (u) Kim, H.; Oh, K. Synlett 2015, 26, 2067–2087.

- 18) Chu, C.-Y.; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. Chem. Commun. 2001, 980–981.
- 19) Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 13927–13938.
- 20) (a) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132, 13633–13635. (b) Libman, A.; Shalit, H.; Vainer, Y.; Narute, S.; Kozuch, S.; Pappo, D. J. Am. Chem. Soc. 2015, 137, 11453–11460.
- 21) Notes: Cyclic voltammetry was performed in CH₂Cl₂/MeCN (10 : 1, v/v) in the presence of Bu₄NPF₆. $\nu = 100 \text{ mVs}^{-1}$, versus Fc/Fc⁺. $E_{38a(ox)} = 1.04 \text{ V}$. $E_{38g(ox)} = 0.84 \text{ V}$.
- Selected reports, see: (a) Tanaka, K.; Suzuki, H.; Osuga, H. J. Org. Chem. 1997, 62, 4465–4470. (b) Míšek, J.; Teplý, F.; Stará, I. G.; Tichý, M.; Šaman, D.; Císařová, I.; Vojitíšek, P.; Starý, I. Angew. Chem. Int. Ed. 2008, 47, 3188–3191. (c) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. Angew. Chem. Int. Ed. 2012, 51, 695–699. (d) Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.; Endo, K. Chem. Commun. 2012, 48, 1311–1313. (e) Oyama, H.; Nakano, K.; Harada, T.; Kuroda, R.; Naito, M.; Nobusawa, K.; Nozaki, K. Org. Lett. 2013, 15, 2104–2107. (f) Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc. 2014, 136, 5555– 5558. (g) Murayama, K.; Oike, Y.; Furumi, S.; Takeuchi, M.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 1409–1414. (h) Wang, X.-Y.; Wang, X.-C.; Narita, A.; Wagner, M.; Cao, X.-Y.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 12783–12786.
- (a) Knölker, H.-J.; Reddy, K. R. *Chem. Rev.* 2002, *102*, 4303–4427. (b) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. *Chem. Rev.* 2012, *112*, 3193–3328. (c) Maneerat, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Phakhodee, W.; Laphookhieo, S. *J. Nat. Prod.* 2012, *75*, 741–746. (d) Karwehl, S.; Jansen, R.; Huch, V.; Stadler, M. *J. Nat. Prod.* 2016, *79*, 369–375.
- (a) Zhang, Y.; Wada, T.; Sasabe, H. J. Mater. Chem. 1998, 8, 809–828. (b) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. J. Am. Chem. Soc. 2001, 123, 9404–9411. (c) Díaz, J. L.; Dobarro, A.; Villacampa, B.; Velasco, D. Chem. Mater. 2001, 13, 2528–2536. (d) Beaujuge, P. M.; Reynolds, J. R. Chem. Rev. 2010, 110, 268–320. (e) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208–2267.
- 25) Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2016, 138, 11481–11484.
- 26) Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12, 2884–2887.
- 27) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264–6267.
- 28) Mamane, V.; Dipl.-Chem. P. H.; Fürstner, A. Chem. Eur. J. 2004, 4556–4575.
- 29) Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. Synlett 2009, 1667-1669.

総括

本論文をまとめると次のように要約できる。

第一章 2-ナフトールのエナンチオ選択的な完全水中酸化的カップリング反応

触媒調製時に水中でも安定な二核バナジウム触媒(*R*_a,*S*,*S*)-8 に着目し、反応に有機溶媒を一切用 いない完全水中下での 2-ナフトール類 1 の不斉酸化的カップリング反応の開発を検討した。その 結果、BINOL 誘導体 2 を良好な収率と最高 94% ee という高いエナンチオ選択性で得ることに成 功した。完全水中で高エナンチオ選択的な 2-ナフトールの酸化的カップリングを実現した初めて の例である。有機溶媒中の反応に比べて 50~70 ℃ の反応温度が必要であるものの、水中では 70 ℃ においても BINOL 誘導体のラセミ化はほとんど起こっていないことが明らかとなった。本反応は グラムスケールでの実施も可能である。

本研究の一部は下記の一報により既に公開されている。

"Enantioselective and Aerobic Oxidative Coupling of 2-Naphthols Derivatives Using Chiral Dinuclear Vanadium(V) Complex in Water"

Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Tetrahedron: Asymmetry 2015, 26, 613-616.

第二章 オキサ[9]ヘリセンの効率的エナンチオ選択的合成

これまでに触媒的不斉合成が困難であったオキサヘリセン誘導体のキラルバナジウム錯体を活用する効率的エナンチオ選択的合成法の開発を検討した。新規に開発した単核バナジウム錯体 (*Ra,S*)-74 は酸化還元能と Lewis 酸性の両触媒作用を協調的に働かせ、多環式フェノール誘導体の酸化的カップリング/分子内脱水環化の連続反応を可能とした。その結果、オキサ[9]ヘリセン誘導体を良好な収率と最高 94% ee という高いエナンチオ選択性で得ることに成功した。反応機構研究から、本触媒反応はバナジウム錯体に対して一次依存であることが明らかになり、酸化的カップリングの段階はラジカル-アニオンカップリングを経て進行していると示唆された。本反応で得られる生成物の絶対配置を単結晶 X 線構造解析により *M* 体であると決定し、立体選択性の発現機構を考察した。

本研究の一部は下記の一報により既に公開されている。

"Efficient Enantioselective Synthesis of Oxahelicenes Using Redox/Acid Cooperative Catalysts" Sako, M.; Takeuchi, Y.; Tsujihara, T.; Kodera, J.; Kawano, T.; Takizawa, S.; Sasai, H. *J. Am. Chem. Soc.* **2016**, *138*, 11481–11484. 謝辞

本研究を行うにあたり、終始御懇篤なる御指導と御鞭撻を賜りました大阪大学産業科学研究 所・機能物質化学研究室 笹井宏明教授に心より厚く御礼申し上げます。

本研究を通じて、直接御指導をして頂きました大阪大学産業科学研究所・機能物質化学研究室 滝澤忍准教授に心より感謝いたします。

本研究を進めるにあたり有益な御助言・御指導を頂きました大阪大学産業科学研究所 総合解 析センター 鈴木健之准教授、大阪大学産業科学研究所・機能物質化学研究室 竹中和浩助教に 深く感謝いたします。

実験や普段の生活面でお世話になり、楽しい研究生活を過ごさせて下さった大阪大学産業科学 研究所・機能物質化学研究室の皆様に深く感謝いたします。Gan B. Bajracharya 博士、Sridharan Vellaisamy 博士、Priyabrata Das 博士、Mohanta Suman Chandra 博士、平田修一博士、Dhage Yogesh Daulat 博士、秋田三俊博士、高谷修平博士、Fan Lulu 博士、Nguyen Tue Minh-Nhat 博士、林賢今 博士、Arteaga Arteaga Fernando 博士、Ismiyarto 博士、吉田泰志博士、脇田和彦博士、Abozeid Mohamed Ahmed 博士、Daniel Hack 博士、Steffen Marder 修士、小寺純平修士、鈴木通恭修士、永田佳大修 士、岸鉄馬修士、Bijan Mohon Chaki 修士、Abhijit Sen 修士、武内芳樹修士、坂井智弘修士、澤田 和哉修士、一ノ瀬和弥学士、米山心学士、青木孝憲学士、草場未来学士、杉嵜晃将学士、新居田 恭章学士、野本裕也学士、H. D. P. Wathsala 学士、Lukas Shober 学士、瀧石朋大氏、土井貴裕氏

この3年間、同期として励まし合って研究に取り組み公私にわたり大変お世話になりました重 信匡志修士に心より感謝いたします。

日常の事務や雑務等においてお世話して下さいました、本多綾香さんに御礼申し上げます。

機器分析にあたり、ご協力していただきました、大阪大学産業科学研究所・総合解析センター の皆様に感謝いたします。

最後に、様々なかたちで支えて下さった友人・知人、長い学生生活を優しく支えてくれた家族 に深く感謝いたします。

> 平成 29 年 佐古 真