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Dynamical property of charmonia and charm quark diffusion coefficient at
finite temperature in quenched lattice

by Atsuro Ikeda

We study in-medium properties of charmonia at the finite temperature and charm quark
diffusion coefficient on quenched lattices.

We reconstruct the spectral functions with nonzero momenta from the lattice Eu-
clidean correlators with the maximum entropy method. The properties of charmonia,
especially their dispersion relation and weight of the peak, are analyzed with the maxi-
mum entropy method together with the errors estimated probabilistically in this method.
We find significant increase of the masses of charmonia in medium. It is also found that
the functional form of the charmonium dispersion relations is not changed from that in
the vacuum within the error even at T ' 1.6Tc for all the channels we analyzed.

We also study the transport property of charm quarks by analyzing the momentum
dependence of the current-current Euclidean correlator in temporal channel. The dif-
fusion coefficient and relaxation time are analyzed by imposing moderate assumptions
on the form of the spectral function. We obtain inequalities which constrain these
transport coefficients using the momentum derivatives of the Euclidean correlator in
temporal channel. Numerical simulation is performed in SU(3) gauge theory for 1.7 <
T/Tc < 4.7. It is demonstrated that the transport coefficients are nicely constrained by
the inequalities and the numerical results.
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Chapter 1

Introduction

The nuclei are formed by protons and neutrons. Since the protons have positive electric
charge, to form the nuclei there must exist a “strong” force between nucleons enough to
resist the electric repulsive force. The force is called the strong force and the interaction
between quarks, gluons and their composites, the so-called hadrons, is called the strong
interaction. The strong interaction is described by Quantum Chromodynamics (QCD),
which is clarified as SU(3) gauge theory. QCD is on the basis of Yang-Mills theory
[1]. In 1954, C. N. Yang and R. L. Mills extended the gauge theory to non-Abelian
group. Renormalizability of Yang-Mills theory was proved by G. ’tHooft in 1971 [2,
3]. Furthermore asymptotic freedom in Yang-Mills theory was proved by F. Wilczek
and D. Gross [4], and independently H. D. Politzer [5]. Since quarks and gluons are
confined in hadrons in the low temperature and low baryon density, we cannot extract
“one” quark from a hadron. Asymptotic freedom can explain this phenomena. Coupling
constant in a quantum field theory is “running”, which means that an effective coupling
constant varies depending on the energy scale. In the asymptotic free theory, the running
coupling constant goes small at short-distance. This property can explain that quarks
are confined in hadrons. On the other hand, in 1964, the quark model was proposed by
M. Gell-Mann [6] and G. Zweig [7] independently. In 1965, M. Y. Han and Y. Nambu
introduced the new degree of freedom “color” to explain the three s-quark state Ω [8],
whose existence is prohibited by Pauli exclusion principle without the new degree of
freedom. After these discoveries, QCD have been known as the fundamental theory of
the strong interaction. Since QCD is a strongly coupled theory, a standard technique
for a quantum field theory, the perturbation, can be applied only to the asymptotic
free region, such as a calculation of a parton distribution function. When we study the
strongly coupled region of QCD, we have to employ a non-perturbative method.

The hadrons consist of two type colorless composites; the baryons, as which the
proton and neutron are classified, are the composite of the three quarks and the mesons
are the composites of the quark and anti-quark. Especially the mesons consist of the
quark and its anti-particle are called the quarkonia. Today the number of the flavors
of the quarks is known as six, the up, down, strange, charm, bottom, and top quarks.
The masses and charges of quarks are shown in Table. 1.1. The quarks have fractional

charges and the hadrons have integer charges. From the table, we can see that the
scales of the quark masses are different. The up and down quarks are called the light

Table 1.1: Quark masses and charges in MS scheme [9].

Flavor mass charge
up 2.2+0.6

−0.4 MeV 2/3

down 4.7+0.5
−0.4 MeV −1/3

charm 1.27± 0.03 GeV 2/3

strange 96+8
−4 MeV −1/3

top 160+5
−4 GeV 2/3

bottom 4.18+0.04
−0.03 GeV −1/3
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quarks. The strange quark mass is larger than the light quark mass. However, since the
strange quark mass is smaller than ΛQCD, one sometimes can treat the up, down, and
strange quark masses are degenerating. The charm and bottom are called the heavy
quarks. The existence of the charm quark is predicted by S. Glashow, J. Iliopoulos,
and L. Maiani in 1970 [10]. In 1974 the first discovered charmed particle, J/ψ meson,
which is the bound state of the charm quark and its anti-particle (cc̄), was discovered at
the Stanford Linear Accelerator Center [11] and at the alternating-gradient synchrotron
at Brookhaven National Laboratory (BNL) [12]. The existence of the bottom and top
quarks are predicted by M. Kobayashi and T. Maskawa [13]. In 1977 Υ, bb̄ meson, was
discovered at Fermilab [14]. The top quark was discovered by CDF [15] and D0 [16]
experiments at Fermilab in 1995.

As we mentioned in the above paragraphs, the quarks and gluons are confined in the
hadrons in our Universe. However, the quarks and gluons can be deconfined in some
extreme conditions because of the asymptotic freedom of QCD. In 1975 J. C. Collins and
M. J. Perry suggested that the quarks can be the fundamental freedom in the superdense
matter [17]. In the same year, N. Cabibbo and G. Parisi predicted the existence of a phase
of the vacuum in which quarks are not confined at the high temperature or at the high
density [18]. The confined and deconfined phases are called the hadronic phase and the
quark-gluon plasma (QGP) phase, respectively. The lattice QCD simulations suggest
that the phase transition between the hadronic and the QGP phases at zero baryon
chemical potential is a cross over phase transition and the pseudo critical temperature
is about 150MeV [19–22]. The QGP phase is believed to exist at early Universe, about
10−5 second after the cosmic Big Bang and the deconfinement-confinement cross over
phase transition is believed to be happened in the evolution of the Universe [23].

1.1 Quantum ChromoDynamics
QCD describes the interaction between quarks and gluons, which is called the strong
interaction, and is the SU(3) component of the SU(3) × SU(2) × U(1) Standard Model
of particle physics. QCD Lagrangian density at zero chemical potential is given by

LQCD = Lgluon + Lquark, (1.1)

where the fermion part is

Lquark = ψ̄(x)(iγµ(∂µ − gAµ(x))−m)ψ(x), (1.2)

and

Aµ(x) =

8∑
a=1

Aaµ
λa

2
, (1.3)

and ψ(x) is the dirac spinor field with color degree of freedom

ψ =

ψ1

ψ2

ψ3

 , (1.4)

Here, λa are the generator of SU(3), a = 1, 2, . . . , 8, and γ-matrix satisfies

{γµ, γν} = 2gµν . (1.5)

The number of the components of ψ in Eq. (1.4) is corresponds to three “colors” of
quarks. Therefore, ψ lies in the fundamental representation of SU(3). Similarly, Aµ,
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which corresponds to gluons, is the adjoint representation of SU(3).
Lquark is invariant under the local SU(3) transformation,

ψ′(x) = G(x)ψ(x), (1.6)
ψ̄′(x) = ψ̄(x)G−1(x), (1.7)

A′
µ(x) = G(x)Aµ(x)G

−1(x)− i

g
G(x)∂µG

−1(x). (1.8)

where

G(x) = exp
(
−iθa(x)λ

a

2

)
, (1.9)

and θa(x) is a coordinate dependent real parameter. The gluonic part is given by

Lgluon =
1

4
F aµνF

aµν , (1.10)

where

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν , (1.11)

and fabc is a structure constant, defined as[
λa, λb

]
= 2ifabcλc. (1.12)

The parameters of QCD are the coupling constant g and quark mass m.
When the quark mass m is zero, Lquark is invariant under the independent phase

rotation of the left-handed and right-handed components of ψ, ψL = (1 − γ5)ψ/2 and
ψR = (1+γ5)ψ/2, respectively. Here γ5 ≡ iγ0γ1γ2γ3. This symmetry is called the chiral
symmetry. In the real world, since the quarks have non-zero quark mass, the chiral
symmetry is broken. However, because u and d quark masses are MeV scale ,when we
are interested in the high energy scale larger than this scale, the chiral symmetry can
be regarded as approximately correct. For example, in the high temperature deconfined
phase, the chiral symmetry for the light quark is approximately restored.

The interaction between the quarks and gluons is represented by the second term in
Eq. (1.2), gψ̄Aµψ. When the interaction term does not exist, Lquark is invariant under
the global SU(3) transformation. The interaction term is naturally introduced supposing
the “local” SU(3) invariance for Lquark.

Owing to the third term in Eq. (1.11), Lgluon has the gluon self-interaction terms.
This is a big difference with Quantum electrodynamics, which is the U(1) Abelian gauge
theory.

1.1.1 Running coupling constant

In perturbative QCD, the renormalized coupling constant g(µR) depends on the renor-
malization scale µR. Though µR itself is unphysical, when we are interested in a process
with the momentum transfer Q, g(µR) with µR ∼ Q represents the effective strength of
the strong interaction in the process.

The running coupling constant for SU(N) gauge theory satisfies the renormalization
group equation

µR
∂ḡ

∂µR
= β(ḡ). (1.13)
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The sign of β(g) determines whether the theory is asymptotic free or not. In the 1-loop
analysis, β(g) is calculated as

β(g) = − g3

(4π2)

(
11

3
N − 2

3
nf

)
, (1.14)

where nf is the number of the flavors. The solution of Eq. (1.13) is obtained as

ᾱ(µR) =
12π

(11N − 2nf ) ln
(
µ2R/Λ

2
) , (1.15)

with ᾱ(µR) = ḡ(µR)
2/4π. We can easily see that if nf < 5.5N , when µR → ∞, ᾱ → 0.

In the case of QCD, since nf = 6 and N = 3, β(g) is negative and QCD is asymptotic
free. The QCD energy scale Λ is the free parameter. The numerical value of Λ depends
on the gauge and the renormalization scheme and is determined by compared with an
experiment.

1.2 Heavy Ion Collisions
The experimental study of QGP have been started after the theoretical predictions. In
the late 20th century, the experiments with a high-energy heavy ion beam and a fixed
target had been carried out at the Alternating Gradient Synchrotron (AGS) at BNL and
the Super Proton Synchrotron (SPS) at CERN. These experiments provided interesting
results. However, since the maximum center-of-mass collisional energies per nucleon pair
for AGS and SPS were √

sNN ' 5 and 17 GeV, respectively, the clear evidence of the
QGP formation could not be found [24]. It is believed that the first generating QGP
in the laboratory was realized by the heavy ion collisions (HIC) at BNL’s Relativistic
Heavy Ion Collider (RHIC), whose operation started in 2000. The highest RHIC energy
(the center-of-mass energy per nucleon pair) is 200 GeV, which is much higher than the
AGS and SPS energies. In RHIC, the gold nuclei are accelerated in the two 3.8 km ring
and collide. In 2010, HIC using Pb nuclei have started at the Large Hadron Collider
(LHC) at CERN. The circumference of the ring is 27 km and the highest LHC energy is
2.76 TeV. In the HIC, the synchronized two heavy nuclei collide and the hot matter is
generated at the collisional point. Even if the generated hot matter is in the deconfined
phase, the temperature cools down quickly in the expansion process and the matter
goes back to the confined phase. The schematic picture of the space-time evolution of

z 

t

incoming nuclei CGCs

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

Figure 1.1: Light-cone diagram for time evolution of HIC as a function
of time t and the collisional axis z. Contours indicate the constant proper

time τ =
√
t2 − z2. The picture is taken from Ref. [25].
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Table 1.2: Mass, binding energy, and radius for charmonia and bot-
tomonia from Non-relativistic potential theory [28]

state J/ψ χc(1P) ψ(2S) Υ(1S) χb(1P) Υ(2S) χb(2P) Υ(3S)
Mass [GeV] 3.10 3.53 3.68 9.46 9.99 10.02 10.26 10.36

Binding [GeV] 0.64 0.20 0.05 1.10 0.67 0.54 0.31 0.20
Radius [fm] 0.50 0.72 0.90 0.28 0.44 0.56 0.68 0.78

HIC is shown in Fig. 1.1. After the collisions of the nuclei, the gluons in the nuclei
are interacting and the matter in the highly non-equilibrium state is generated. Next
the system reaches the equilibrium state and QGP is formed. The experimental results
suggest the time evolution of QGP can be interpreted by the viscous hydrodynamics
with a small shear viscosity. As the system expands, the mean free time of the particle
composing the plasma becomes larger than the time scale of the expansion and the
system can no longer be treated as an equilibrium system. First, the chemical freeze
out, after which the species of the particles does not change, takes place. Next the
kinetic freeze out, after which the particles dose not interact with each other, occurs.
Finally the non-interacting hadrons, photons and charged leptons are detected by the
detectors.

Since the observables in HIC are not those in the deconfined phase, we have to find the
indirect evidence of the QGP formation. The J/ψ suppression, proposed in 1986 [26, 27],
is believed as one of the signals of the formation of QGP. T. Matsui and H. Satz suggested
that if QGP is formed in HIC, cc̄ binding in the deconfined medium is prevented owing
to the color Debye screening, which is the analogy of the Debye screening of the electric
charge in plasmas [27]. If the color Debye radius is smaller than the J/ψ radius, J/ψ
is dissociated in the medium and the yield of J/ψ is suppressed. Table. 1.2 shows the
masses, binding energies, and radiuses of the charmonia and bottomonia, which are
the charmed and bottomed quarkonia, respectively. Since the radiuses of charmonia are
larger than those of bottomonia as shown in the table, it is believed that the dissociation
temperatures of the charmonia are lower than those of bottomonia. Owing to the idea of
the J/ψ suppression, understanding properties of heavy quarkonia in hot medium near
and above the critical temperature Tc of the deconfinement phase transition is one of the
important subjects in the relativistic heavy ion collisions and has been studied actively
over the last 30 years, both experimentally and theoretically [29, 30].

The experimental detection of the J/ψ suppression is more complicated than the
theoretical idea. First we consider the case of HIC at RHIC. Below the top RHIC
energy √

sNN = 200 GeV, the thermal production of cc̄ pair is suppressed because
the J/ψ mass mJ/ψ is much larger than the temperature of the generated medium.
Therefore, cc̄ pairs are mainly produced by the hard process. However, even if the
charmonium produced in the hard process survives in QGP, the charmonium may be
destroyed by the final state interaction with surrounding hadronic matters, the so-called
nuclear absorption. Furthermore, the presence of nuclei in the initial state will affect
the J/ψ production, which is known as the Cold Nuclear Matter (CNM) effects [30]. To
study the medium effects for J/ψ yield, therefore, one has to make use of the results
of the pp and pA collisions [31]. To clarify the medium effects on quarkonia, a nuclear
modification factor is used [23]. The nuclear modification factor is defined by the ratio of
the pT distribution from AA collisions σAA(pT ) and the pT distribution from pp collisions
σNN (pT ) at the same energy, scaled by the number of primary nucleon-nucleon collisions
〈Nbinary〉 (estimated by the Glauber model [32]),

RAA(pT ) =
σAA(pT )

〈Nbinary〉σNN (pT )
. (1.16)
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Figure 1.2: Inclusive J/ψ nuclear modification factor versus the num-
ber of participant nucleons at ALICE [33, 34] and PHENIX [35] , at
forward rapidity (left) and mid rapidity (right). The figures are taken

from Ref. [30].

Reaction 

      plane

x

z

y

Figure 1.3: Geometry of the non-central HIC. The z-axis is the lon-
gitudinal axis. The x-axis and y-axis are the transverse coordinate and
the x-axis is determined as the short axis of the almond shape overlapped

region of nuclei. The picture is taken from Ref. [37].

If there is no medium effect for the AA collisions, RAA(pT ) becomes unity.
At the LHC energy, the highest energy is √sNN = 2.76 TeV, the situation is quite dif-

ferent. Since the temperature of the medium is not much smaller than the charmonium
mass, the thermal production of cc̄ pair is not negligible. Because of the increase of
the charm (and anti-charm) quarks in the medium, the recombination of the thermal
charm quarks at the deconfinement-confinement transition must be considered. The
ALICE and PHENIX RAA of J/ψ at forward and mid rapidities are shown in Fig. 1.2.
We see that the RHIC RAA is significantly suppressed and the suppression is increased
towards more central collisions. On the other hand, the LHC RAA shows a flat behavior
at forward and mid rapidities as a function of the centrality. This flat behavior can be
explained by that the abundance of the charm quarks in the medium compensates the
suppression from the color Debye screening.

One of the big discoveries at RHIC is that the relativistic hydrodynamic equation,
such as the Israel-Stewart equation [36], can describe the time evolution of the hot matter
created in HIC. This is believed to be the one of the evidences of the formation of QGP
in HIC. In HIC the overlapped region of the collided nuclei pair is different for each
event. Figure 1.3 shows the sketch of the geometry of the non-central, not a head-on,
collision. Since the overlapped region of the non-central HIC has a almond shape, the
almond shaped hot matter is created at the collisional point. When the almond shaped
matter reaches equilibrium, the pressure in the surface of the matter should be zero.
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Since the distance of the center from the surface is different for the long-axis and short-
axis directions, the pressure gradient along the short-axis is larger than that along the
long-axis. As a consequence of the large pressure gradient, the number of particles with
a large transverse momentum pT emitted along the short-axis becomes larger than that
along long-axis. This anisotropic distribution of particle emission is called the elliptic
flow. In the experiment, the elliptic flow is analyzed as the second harmonics of the
Fourier expansion of the azimuthal distribution of particle emission given by

E
d2N

2πpTdpTdy
=

(
1 +

∞∑
n=1

2vn cos[n(φ− Φr)]

)
, (1.17)

where φ is the azimuthal angle and Φr is the angle of the reaction plane. The second
Fourier coefficient v2 indicates the strength of the elliptic flow. If the charm quark
behaves as a constituent of the fluid, nonzero v2 for charmed particles will be observed.
The left panel in Fig. 1.4 shows the v2 of heavy-flavor electrons and π0 at the same pT
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Figure 1.4: left: v2 of heavy-flavor electrons and π0 measured at√
sNN = 62.4 and 200 GeV in Au+Au collisions in the 20 − 40% cen-

trality for the interval 1.3 < pT < 2.5 GeV at PHENIX [38]. The figure
is taken from Ref. [30]. right: Average of D0, D+, and D∗+ mesons v2
as a function of pT in the 30 − 50% centrality, compared with the v2 of

charged particles at ALICE [33].

interval at semi-peripheral collisions with √
sNN = 62.4 and 200 GeV measured by the

PHENIX Collaboration. The figure suggests that v2 of the heavy flavor and the neutral
pion, which is one of the main components of the medium, become closer as √

sNN is
increased. The right panel in Fig. 1.4 shows the v2 of D-meson and the charged particles
measure by the ALICE Collaboration. We can see that the v2 of D-meson is comparable
with that of the charged particles in the pT interval 2 < pT < 6 GeV. Therefore, the
properties of the charm in the hydrodynamic medium, such as the transport coefficients
of the charm quarks, are important to understand the experimental results.

1.3 Lattice study of the deconfined medium
The lattice QCD numerical simulation is a powerful tool to study the physics where
the non-perturbative effect of QCD plays a crucial role. The study of the properties of
charmonia at the finite temperature is one of the longstanding subjects on the lattice
[39–47]. In lattice QCD numerical simulations, which rely on the imaginary time for-
malism, however, one cannot analyze dynamical properties encoded in spectral functions
directly. Instead, only Euclidean correlation functions are calculable on the lattice. To
obtain the spectral functions from the Euclidean correlators, one has to take an analytic
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continuation from imaginary time to real time. This procedure, however, is an ill-posed
problem, because the information obtained numerically on the correlator for discrete
points is insufficient to reconstruct a continuous spectral function. The maximum en-
tropy method (MEM) is a useful method to perform this analytic continuation on the
basis of probabilistic theory [48, 49]. The studies of charmonium spectral functions
with MEM qualitatively agree with each other in that the charmonia in the vector and
pseudoscalar channels survive up to around T ' 1.5Tc [39, 40, 42, 47].

In the previous studies on heavy quarkonia on the lattice, the analyses have been
performed only for zero momentum with a few exceptions [50–54]. The spectral func-
tion with zero momentum represents the spectral properties of a charmonium at rest in
medium. On the other hand, charmonia in the hot medium created by heavy ion colli-
sions typically have nonnegligible velocity against the rest frame of the medium because
charmonia generated by hard processes in the early stage can have large momentum.
The finiteness of the velocity of charmonia may modify their properties, such as the
stability [55] and the dispersion relation, i.e. the momentum dependence of excitation
energy. Here it is worthwhile to note that such modifications of the dispersion relations
in medium are suggested in various systems [56–58], and such a modification can give
rise to novel phenomena such as van Hove singularity [59–62]. It thus is interesting to ex-
plore the momentum dependence of spectral functions of charmonia and their dispersion
relations near and above Tc with the first principle simulation on the lattice.

An another interesting topic of the lattice simulation at the finite temperature is
the determination of transport coefficients in the hot medium described by QCD near
and above the (pseudo) critical temperature Tc of deconfinement transition. In fact,
this subject has acquired attentions over the last few decades [63–70]. This subject is
to a large extent motivated by experimental results in relativistic heavy-ion collisions
[71, 72]. The elliptic flow observed at RHIC (Relativistic Heavy Ion Collider) and the
LHC (Large Hadron Collider) suggests the shear viscosity to entropy density ratio close
to a conjectured lower bound η/s = 1/(4π) [66] near but above Tc. Understanding the
origin of the small shear viscosity based on QCD is an important subject for theoretical
researches in this field. As we saw in Sec. 1.2, diffusion coefficient of heavy quarks
also attracts much interests inspired by the elliptic flow of heavy flavor in heavy-ion
collisions [30, 73, 74], which suggests a relatively small value for charm quarks [75–77].
Once quantitative constraints on these transport coefficients are obtained, they also serve
as valuable inputs for phenomenological studies on these experiments.

The measurement of transport coefficients on the lattice has been attempted by many
studies, such as on shear and bulk viscosities [63, 64, 66–69, 78], electrical conductivity
[79–84] and heavy-quark diffusion coefficients [85–89]. The transport coefficients can
be read from the low energy region of the relevant spectral functions. Therefore, the
main difficulty of the measurement of transport coefficients on the lattice arises from
the extraction of the information of the spectral function in the low energy region from
the Euclidean correlator. In almost all previous studies, the transport coefficients are
analyzed with the use of the Kubo formulas in forms which relate a coefficient with a
spectral function in the low-energy limit at zero momentum [90, 91]. In this approach, the
entire form of the spectral function has to be reconstructed by the analytic continuation
from the numerical results on the Euclidean correlators. The reconstruction of the
spectral function from the lattice Euclidean correlator is a difficult problem owing to the
ill-posed problem. Even worse, the Euclidean correlators are insensitive to the change
of the low-energy structure of spectral functions [92], although this structure is crucial
for the analysis of transport coefficients. Figure 1.5 shows the heavy quark diffusion
coefficients in the gluon plasma obtained by the lattice QCD with MEM [87], the Heavy
Quark Effective Theory (HQEFT) on the lattice [88, 93], the AdS/CFT correspondence
[94], and pQCD calculations [95]. The orders of these results are consistent. However,
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Figure 1.5: Temperature in units of Tc v.s. Heavy quark diffusion co-
efficients multiplied by 2π in quenched lattice. The charm quark diffusion
coefficient is obtained by reconstructing the spectral function with MEM
[87]. The results for static quark diffusion coefficient are calculated by
HQEFT on the lattice [88, 93], whose diffusion coefficients are obtained
by fitting the correlators with theoretical motivated anzats. The boxes
and the error bars show the statistical error and the systematic error,
respectively. The horizontal dotted line shows the 2πDT in the heavy
quark limit calculated by the AdS/CFT correspondence [94]. The hori-
zontal short line shows the result obtained by the nest-to-leading order
pQCD calculations at αs ' 0.2 [95]. The figure is taken from Ref. [96].

the their errors are still large. Moreover, the error estimation for the charm quark dif-
fusion coefficient, obtained by using MEM, is not on the basis of MEM, which we will
discuss in Chap. 4. Since the resolution of MEM is too coarse to read the slope of
the spectral function at the origin, MEM is not a suitable method. If one estimates
the error on the basis of MEM, the error will be much larger than that shown in the
figure. The heavy quark diffusion coefficients with HQEFT are calculated in the heavy
quark limit. HQEFT is a good effective theory for studying the physics of the bottom
quarks. However, when these results are applied to charm quark diffusion coefficient,
the systematic uncertainties become large since the charm quark mass is not much
larger than the temperature of the medium [89]. The method to measure the transport
coefficients on the lattice with good accuracy is still not well established.

1.4 Purpose of this thesis
In this thesis, we study two topics related with the charmonium spectral function at
nonzero momentum using the numerical simulation of the quenched lattice QCD.

First, we explore the properties of charmonia in the vector and pseudoscalar channels,
corresponding to J/ψ and ηc, respectively, at nonzero momenta on anisotropic quenched
lattices [97]. In addition to the standard analysis of the spectral functions in MEM, we
study the dispersion relations and the momentum dependence of the spectral weights of
the peaks on the basis of MEM. To perform the measurement of the dispersion relation
with a quantitative error analysis in MEM, we analyze the center of weight of the peak in
the spectral function. As we will see later, this quantity is identical to the peak position
for sufficiently narrow peaks, but error analysis can be carried out in MEM. Similarly,
we analyze the weight of the peak, which corresponds to the residue of the peak, with
the error analysis. For the vector channel, the transverse and longitudinal components
are investigated separately in the analysis.

We find that the masses of J/ψ and ηc defined by the dispersion relation at zero
momentum show significant increase as T is raised. It is also found that the dispersion
relation of charmonia continues to take the Lorentz covariant form, i.e. the same form
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as in the vacuum, even well above Tc within the error. Our numerical analysis also
suggests that the weight of the peak at the finite temperature does not have momentum
dependence within the error.

Second, we analyze the charm quark diffusion coefficients by lattice simulations with
a novel approach. The characteristics of this study is the use of the current-current cor-
relator in temporal channel at nonzero momentum. This is contrasted to the previous
studies with the Kubo formulas which analyze the spatial correlators at zero momentum.
At zero momentum, owing to the charge conservation the temporal Euclidean correlator
temporal is given by a constant proportional to susceptibility. The correlator at nonzero
momentum, on the other hand, is dependent on imaginary time and contain the infor-
mation on dynamics. As we will see later, the temporal channel at nonzero momentum is
more sensitive to the low-energy part of dynamical properties than the spatial one. The
purpose of the present study is to exploit this sensitivity in the analysis of the transport
coefficients.

In order to see the effectiveness of the use of the nonzero momentum correlator
in temporal channel, instead of the standard approach with the Kubo formula and
spectral function, we attempt to constrain the transport coefficient by imposing moderate
assumptions on the spectral function. We obtain two inequalities constraining the dif-
fusion coefficient and the corresponding relaxation time from the momentum derivatives
of Euclidean correlators in temporal channel. Numerical analysis of the correlator are
performed for the charm quark current on the quenched lattice for 1.7 < T/Tc < 4.7.
We demonstrate that the transport coefficients are nicely constrained numerically in this
method.

The results obtained in the present analysis suggest that the nonzero momentum
correlators are indeed quite useful for the analysis of transport coefficients on the lat-
tice. Based on this result, we discuss further improvement of the analysis of transport
coefficients using nonzero momentum correlators. Although we restrict our attention
to the diffusion of charm quarks throughout this thesis, our analysis can be applied to
another transport coefficients, such as shear and bulk viscosities, in a straightforward
manner.

This thesis is organized in two parts comprising Chaps. 1 through 5 and 6 through 9.
Roughly speaking the first gives the reviews of background and the theoretical ground-
work of our work while the second gives our original work.

In Chap. 2, we review the lattice field theory, which is one of the main tools of our
work. We show the definition of QCD on the lattice especially focusing on the Wilson
gauge and Wilson fermion actions. We also show how the lattice action is modified on
the anisotropic lattice.

In Chap. 3, we summarize the relations between real time correlators and a Euclidean
correlator. The basic properties of the spectral function is also discussed.

Chapter 4 is the review of Maximum Entropy Method. We show the basics of MEM
and the definition of the MEM error. The numerical procedure of the MEM analysis is
also shown.

In Chap. 5, we present the relation between the hydrodynamics and the spectral
function. We start from the diffusion equation with the relaxation time and derive the
low energy structure of the spectral function using the linear response theory. We also
show the derivation of the Kubo formula.

In Chap. 6, we discuss the main target observables in this thesis and how they are
measured on the lattice. We show definitions of the dispersion relation and the strength
of the peak of the spectral function of quarkonium with MEM. We derive an inequality
for the diffusion coefficient differentiating the Euclidean correlator in temporal channel
with respect to momentum. We discuss the measurement of this inequality on the lattice
and an advantage. The common lattice set up of these studies are shown.
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The numerical results of the dispersion relations and the momentum dependence of
the strength of the peak of the spectral function of charmonium in the pseudoscalar
and vector channels with MEM are shown in Chap. 7. We analyze the peaks of the
spectral functions with zero and nonzero momenta corresponding to J/ψ and ηc at the
zero temperature and finite temperature.

The numerical results of the inequality for the charm quark diffusion coefficient is
shown in Chap. 8. We analyze the temporal Euclidean correlators. The derivatives of
the correlators with respect to momentum at origin are analyzed by taking the zero
momentum extraction of the numerical difference of the correlators.

Finally Chap. 9 gives the summary of shown results and an outlook.
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Chapter 2

Lattice Field Theory

Yang-Mills theory, which was proposed in 1950s [1], is one of the bases of modern physics.
Quantum ChromoDynamics (QCD), which describes the strong interaction, is SU(3)
Yang-Mills theory. Since QCD is a strongly coupled theory as shown in Sec. 1.1, the
perturbative analysis cannot be applicable to the studies of QCD matter around the
critical temperature (Tc). Lattice field theory is one of the regularization methods for a
quantum field theory. Lattice regularization was first proposed by K. G. Wilson in 1974
[98]. Wilson discussed about the quark confinement in a gauge theory using the lattice
regularization and the strong-coupling expansion in Ref. [98]. Because space-time is
discretized in the lattice field theory, this formalism is suitable to a numerical simulation
on a computer. First lattice numerical simulation of non-Arberian gauge theory was
performed by M. Creutz [99, 100]. Today the lattice simulation have become an active
of elementary particle physics and nuclear physics.

In this chapter we review the lattice field theory on the basis of the textbooks [101–
103]. We first define the quantum field theory on the lattice in Sec. 2.1. Next we show
you the QCD action on the lattice in Sec. 2.2. Next, we discuss the meson correlators,
which are the main target of the present thesis. In Sec. 2.4, we review the anisotropic
lattice simulations, which is useful method for studies of momentum dependence of
lattice observables. Finally we review some numerical techniques of the lattice QCD in
Sec. 2.5.

2.1 Quantum field theory on the lattice
Lattice field theory is one of the methods to define a quantum field theory (QFT). In the
lattice field theory, one define the theory on the lattice with a finite lattice spacing and
volume. After calculating observables on the lattice, one takes the continuum and infinite
volume limits. Because of a finite lattice spacing and a finite volume, the ultraviolet and
the infrared divergences are removed naturally.

2.1.1 Scalar field on the lattice

Let us see how a scaler field is defined on the lattice. The action of a scalar field φ(x)
in the continuum theory is

S = −1

2

∫
d4xφ(x)(�+M2)φ(x), (2.1)

where � is the d’Alembert operator. The classical equation of motion is the Klein-
Gordon equation,

(�+M2)φ(x) = 0. (2.2)
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In the quantum field theory, φ(x) is replaced by an operator Φ(x). The correlation
function in the path integral representation is obtained as

〈Ω|T (Φ(x)Φ(y) · · · |Ω〉 =
∫
Dφφ(x)φ(y) · · · eiS∫

DφeiS
, (2.3)

where |Ω〉 denotes a vacuum state and T (· · · ) means the time-ordered product. Dis-
cussing in the Euclidean space is convenient because we can treat time and space with
same ways. Let us consider an analytic continuation from a real time to an imaginary
time, x0 → −ix4. The Euclidean action, which corresponds to Eq. (2.1), is given by

SE =
1

2

∫
d4xφ(x)(−�+M2)φ(x), (2.4)

where x = (x, x4) is the 4-vector in the Euclidean space, and � denotes 4-dimensional
Laplacian

� =

4∑
µ=1

∂µ∂µ. (2.5)

The Euclidean correlation function, which corresponds to Eq. (2.3), is

〈φ(x)φ(y) · · · 〉 =
∫
Dφφ(x)φ(y) · · · e−SE∫

Dφe−SE
, (2.6)

The path integral formulation in Eq. (2.6) is just a schematic formulation. The most
famous method to calculate the path integral is a perturbative expansion. However,
the perturbation theory cannot be applied to a strongly coupled theory. To calculate
the right hand side of Eq. (2.6) without the use of perturbation, we introduce a space-
time lattice with a lattice spacing a. The space-time is denoted by four integers n =
(n1, n2, n3, n4). On the lattice, the quantities in the continuum space are discretized as

xµ → nµa,

φ(x) → φ(na),∫
d4x→ a4

∑
n

,

�φ(x) → 1

a2
�̂φ(na),

Dφ→
∏
n

dφ(na), (2.7)

where the dimensionless lattice Laplacian �̂ is defined as

�̂φ(na) =
∑
µ

(φ(na+ µ̂a) + φ(na− µ̂a)− 2φ(na)), (2.8)

where µ̂ is a unit vector pointing the direction µ.
For the convenience of notation, we introduce

φ̂n = aφ(na), (2.9)
M̂ = aM. (2.10)
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Substituting Eqs. (2.7) and (2.10) into Eq. (2.6), we find

〈φ̂nφ̂m · · · 〉 =
∏
l dφ̂lφ̂nφ̂m · · · e−SE [φ̂]∏

l dφ̂le
−SE [φ̂]

, (2.11)

where l runs over all lattice points and

SE [φ̂] = −1

2

∑
n,µ̂

φ̂nφ̂n+µ̂ +
1

2
(8 + M̂2)

∑
n

φ̂nφ̂n, (2.12)

and where µ̂ is summed over all positive and negative directions. In Eq. (2.11) the
lattice spacing a does not appear. Thus, after we calculate the Euclidean correlator on
the lattice with dimensionless quantities, we have to restore the physical dimension using
Eq. (2.7).

Let us see the characteristics of the lattice correlation function in Eq. (2.11). The
lattice Euclidean action Eq. (2.12) can be rewritten as

SE =
1

2

∑
n,m

φ̂nKnmφ̂m, (2.13)

Knm = −
∑
µ̂>0

[δn+µ̂,m + δn−µ̂,m − 2δnm] + M̂2δnm, (2.14)

where the summation in Eq. (2.14) is understood as the summation over all positive
directions of µ̂.

The generating functional

Z0[J ] =

∫ ∏
l

dφ̂le
−SE [φ̂]+

∑
n Jnφ̂n , (2.15)

where Jn is a source field, is a convenient tool to study the correlation function. We can
perform the path integral in Eq. (2.15) using the Gauss integral.

Z0[J ] =

∫ ∏
l

dφ̂l exp

(
−1

2

∑
nm

(φ̂n −
∑
a

JaK
−1
an )Knm(φ̂m −

∑
b

JbK
−1
mb) +

1

2
JnK

−1Jm

)

=
1√

detK
e

1
2
JnK−1Jm , (2.16)

where K−1 is the inverse of K in Eq. (2.14). We can easily obtain the two-point function
by taking the functional differentiation of Eq. (2.16) as,

〈φ̂nφ̂m〉 =
δ2

δJnδJm
Z0[J ] = K−1

nm. (2.17)

The Fourier transformation of the Kronecker delta δnm is given by

δnm =

∫ π

−π

d4k̂

(2π)4
eik̂·(n−m), (2.18)

where k̂ = (k̂1, k̂2, k̂3, k̂4) is the dimensionless 4-vector, which are restricted in Brillouin
zone (BZ) −π < k̂µ < π. Using Eq. (2.18), we obtain the Fourier transformation of K
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in Eq. (2.14),

Knm =

∫ π

−π

d4k̂

(2π)4

−
∑
µ̂>0

[
(eik̂µ + e−ik̂µ)− 2

]
eik̂(n−m) + M̂2eik̂(n−m)


=

∫ π

−π

d4k̂

(2π)4


4∑

µ=1

[
(2− cos

(
k̂µ

)]
eik̂(n−m) + M̂2eik̂(n−m)


=

∫ π

−π

d4k̂

(2π)4
K̃(k̂)eik̂(n−m), (2.19)

where

K̃(k̂) = 4
4∑

µ=1

sin2

(
k̂µ
2

)
+ M̂2. (2.20)

Since

KnlK
−1
lm = δnm, (2.21)

the two-point function Eq. (2.17) is given by

〈φ̂nφ̂m〉 =
∫ π

−π

d4k̂

(2π)4
eik̂(n−m)

4
∑4

µ=1 sin2
(
k̂µ
2

)
+ M̂2

. (2.22)

We note that only dimensionless quantities are appeared on the right-hand side of
Eq. (2.22).

Next, we consider taking the continuum limit a → 0 of the correlator. When we
define

G(n,m; M̂) ≡ 〈φ̂nφ̂m〉, (2.23)

the corresponding two-point function in the continuum limit is given by

〈φ(x)φ(y)〉 = lim
a→0

1

a2
G
(x
a
,
y

a
;Ma

)
. (2.24)

Changing the integration variable Eq. (2.22) we obtain

G
(x
a
,
y

a
;Ma

)
= a2

∫ π/a

−π/a

d4k

(2π)4
eik(n−m)

4
∑4

µ=1 k̃
2
µ +M2

, (2.25)

where

k̃µ =
2

a
sin kµa

2
. (2.26)

From Fig. 2.1, we see that k̃µ → kµ in the continuum limit a→ 0 since the integration
in Eq. (2.25) is restricted in BZ −π < k̂µ < π. As we will show in the next subsection,
this limit for Fermion is more complicated.
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−π/a π/a

kµ

k̃µ
k̃µ = 2/a

Figure 2.1: 2/a sin(kµa/2) versus kµ

2.1.2 Fermion field on the lattice

The action of the free Dirac field in the Minkowski space is given by

SF
[
ψ, ψ̄

]
=

∫
d4xψ̄(x)(iγµ∂µ −M)ψ(x). (2.27)

In quantum field theory, ψ and ψ′ are replaced with operators Ψ and Ψ′, respectively.
The correlation function in the path integral representation is obtained as

〈Ω|T (Ψα(x) · · · Ψ̄β(y) · · · )|Ω〉 =
∫
Dψ̄Dψψα(x) · · · ψ̄β · · · eiSF∫

Dψ̄DψeiSF
. (2.28)

As before, let us consider an analytic continuation from a real time to an imaginary
time. Then, iSF [ψ, ψ̄] is replaced with the Euclidean action

S
(eucl.)
F =

∫
d4xψ̄(x)(γEµ ∂µ +M)ψ(x), (2.29)

where the γ matrix in the Euclidean space is given by γEµ with γE4 = γ0 and γEi = −iγi,
which satisfies

{γEµ , γEν } = 2δµν . (2.30)

Note that the Lorentz invariance is replaced with the rotational invariance in the 4-
dimensional space. The Euclidean correlation function is given by

〈ψα(x) · · · ψ̄β(y) · · · 〉 =
∫
Dψ̄Dψψα(x) · · · ψ̄β · · · e−S

(eucl.)
F∫

Dψ̄Dψe−S
(eucl.)
F

, (2.31)

where x and y denote 4-vector in the Euclidean space. In the following, we omit the
upper script of γEµ which denotes Euclidean space.

Next, we define the Euclidean correlation function Eq. (2.31) on the lattice. When
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the fermion fields ψ and ψ̄ are on na, where a is a lattice spacing and n denotes the
coordinate on the 4-dimension lattice, the integral measure is obtained as

Dψ̄Dψ =
∏
α,n

dψ̄α(na)
∏
β,m

dψβ(ma). (2.32)

Dimensionless variables corresponding to ψ, ψ̄, and M are also defined as

M → 1

a
M̂, (2.33)

ψα(x) →
1

a3/2
ψ̂α(n),

ψ̄α(x) →
1

a3/2
¯̂
ψα(n),

∂µψα(x) →
1

a5/2
∂̂µψ̂α(n), (2.34)

where the derivative ∂̂µψ̂α(n) is defined as

∂̂µψ̂α(n) =
1

2
[ψ̂α(n+ µ̂)− ψ̂α(n− µ̂)]. (2.35)

With this discretization, the Fermion action Eq. (2.29) is written as

SF =
∑

n,m,α,β

¯̂
ψα(n)Kαβ(n,m)ψ̂β(m) (2.36)

Kαβ(n,m) =
∑
µ

1

2
(γµ)αβ[δm,n+µ̂ − δm,n−µ̂] + M̂δmnδαβ, (2.37)

and the correlation function on the lattice is written as

〈ψ̂α(n) · · · ¯̂ψβ(m) · · · 〉 =
∫
D ¯̂
ψDψ̂ψ̂α(x) · · · ¯̂ψβ · · · e−S

(eucl.)
F∫

D ¯̂
ψDψ̂e−S

(eucl.)
F

, (2.38)

D ¯̂
ψDψ̂ =

∏
n,α

d
¯̂
ψα(n)

∏
m,β

d
¯̂
ψβ(m). (2.39)

We note that the correlation function Eq. (2.38) can be obtained by taking an appropriate
functional derivatives of the generating functional,

Z[η, η̄] =

∫
D ¯̂
ψDψ̂e−SF+

∑
n,α η̄α(n)ψ̂α(n)+

¯̂
ψα(n)ηα(n), (2.40)

with respect to ηα and η̄α, where ηα and η̄α are Grassmann variable external fields.
Taking the Grassmann integral in Eq. (2.40), one obtains

Z[η, η̄] = detKe
∑

n,m,α,β η̄α(n)K
−1
αβ (n,m)ηβ(m). (2.41)

The Doubling Problem

From Eq. (2.41) the two point correlation function on the lattice is given by

〈ψ̂α(n) ¯̂ψβ(m)〉 = δ2

δηδη̄
Z[η, η̄] = K−1

αβ . (2.42)
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It seems that the continuum correlation function 〈ψα(x)ψ̄β(y)〉 can be obtained by taking
a naive continuum limit of the lattice correlator

〈ψα(x)ψ̄β(y)〉 = lim
a→0

1

a3
Gαβ

(x
a
,
y

a
;ma

)
, (2.43)

where the factor 1/a3 come from the scale factor of the fermion field and Gαβ(n,m; m̂) ≡
K−1
αβ (n,m). However, a problem occurs in this step. The Fourier transformation of the

left-hand side of Eq. (2.43),

〈ψα(x)ψ̄β(y)〉 = lim
a→0

∫ π/a

−π/a

d4p

(2π)4
[−i
∑
γµp̃µ +M ]αβ∑
µ p̃

2
µ +M2

e−ip(x−y), (2.44)

with

p̃µ =
1

a
sin(pµa). (2.45)

Taking the continuum limit a → 0, the momentum in continuum space pµ will be ob-
tained. The problem comes from this continuum limit owing to the interval of integration
of Eq. (2.44), I = [−π/a, π/a]. p̃µ as a function of pµ in the Brillouin zone (BZ) is shown

−π/a π/a

pµ

p̃µ

p̃µ = 1/a

Figure 2.2: sin(pµa)/a versus pµ

in Fig. 2.2. The linear solid line expresses p̃µ = pµ. We can see that p ' p̃ around origin
of pµ. and p̃µ = pµ in the limit a → 0. However, this continuum limit fails around the
edge of BZ. Because sin(pµa) → 0 around the edge of BZ, this zero mode survives in the
continuum limit. Since Eq. (2.44) has the 4-dimensional integral, p̃ has zero modes at 24
corners of BZ. Fifteen of them are lattice artifacts, the so-called doublers, which do not
have physical correspondences. This problem is called the fermion doubling problem.

It is known as the Nielsen-Ninomiya theorem that one has to break the chiral sym-
metry to solve the fermion doubling problem respecting the Hermitian symmetry, the
locality of interaction, and the translational symmetry [104, 105].

To eliminate the fermion doublers, one has to modify the definition of the discrete
action. The lattice actions must converge on the continuum action Eq. (2.29) in the
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continuum limit and many varieties of the lattice action are proposed.

2.1.3 Wilson Fermion

In this subsection we introduce the Wilson fermion, one of the definitions of the lattice
action where the fermion doubling problem is eliminated in the continuum limit.

Wilson fermion is composed of SF in Eq. (2.36) and an additional Wilson term,

S
(W )
F = SF − r

2

∑
n

¯̂
ψ(n)�̂ψ̂(n), (2.46)

where �̂ is a dimensionless Laplacian defined as

�̂ψ̂(n) =
∑
µ

(ψ̂(n+ µ) + ψ̂(n− µ)− 2ψ̂(n)), (2.47)

and the parameter r is called Wilson parameter. Since ψ̂ = a3/2ψ and �̂ = a2�, the
second term in Eq. (2.46) is linear with respect to a and vanishes in the continuum limit.
Substituting Eq. (2.47) into Eq. (2.46), we obtain

S
(W )
F =

∑
n,m

¯̂
ψα(n)K

(W )
αβ (n,m)ψ̂(m), (2.48)

K
(W )
αβ (n,m) = (M̂ + 4r)δn,mδαβ

− 1

2

∑
µ

[(r − γµ)αβδm,n+µ̂ + (r + γµ)αβδm,n−µ̂] . (2.49)

The two point correlation function obtained from S
(W )
F in Eq. (2.48) is

〈ψ̂α(x) ¯̂ψβ(y)〉 = lim
a→0

∫ π/a

−π/a

d4p

(2π)4
[−iγµp̃µ +M(p)]αβ∑

µ

p̃2µ +M(p)2, (2.50)

M(p) =M +
2r

a

∑
µ

sin2(pµa/2). (2.51)

2.1.4 Gauge field on the lattice

In this subsection we introduce the SU(3) gauge field on the lattice. The Lagrangian
for the gauge field is determined naturally when we require the local gauge invariance.
Therefore, to obtain the formulation of the gauge field on the lattice, we first consider
the non-interacting Lagrangian of a fermion field.

Using Wilson fermion action Eq. (2.48) the fermion part of QCD Lagrangian Eq. (1.2)
without the gauge field term can be written as

S
(W )
F =(M̂ + 4r)

∑
n

3∑
a=1

ψ̄a(n)ψa(n)

− 1

2

∑
n,µ

3∑
α=1

[ψ̄α(n)(r − γµ)ψ
α(n+ µ̂) + ψ̄α(n+ µ̂)(r + γµ)ψ

α(n)]. (2.52)

This action is invariant under the global SU(3) gauge transformation,

ψα′(n) = Gαβψ
β(n), (2.53)

ψ̄α′(n) = ψ̄β(n)G−1
βα, (2.54)
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with the element of SU(3),

Gαβ = exp
(
−iθa

λaαβ
2

)
. (2.55)

To obtain the theory with the local SU(3) invariance, we make the gauge transformation
operator coordinate dependent,

Gαβ(n) = exp
(
−iθa(n)

λaαβ
2

)
. (2.56)

The first term on the right-hand side of Eq. (2.52) is invariant under the local gauge
transformation since the term is local. On the other hand, the second term is gauge
dependent because of non-locality of the term. Thus we have to modify the second term
gauge to be gauge invariant. To make the second term gauge invariant, we introduce
the link variable Uµ(n). If the gauge transformation of Uµ(n) is given by

Uµ(n) → G(n)Uµ(n)G
−1(n+ aµ̂), (2.57)

ψ̄(n)Uµ(n)ψ(n + aµ̂) is gauge invariant. The object corresponding to Uµ(n) in the
continuum theory is the Wilson line connecting the x = na and x+ aµ̂,

U(x, x+ aµ̂) = P exp
(
ig0

∫ x+aµ̂

x
dxµAµ(x)

)
, (2.58)

where P means the path-ordered integral. Because of the gauge transformation of Aµ(x)
shown in Eq. (1.8), the Wilson line satisfies the desired gauge transformation. When the
gauge field Aµ(x) varies slowly in a small interval a, one can expand U(x, x+ aµ̂) as

U(x, x+ aµ̂) ' 1 + ig0aAµ(x). (2.59)

Thus, when we define

Uµ(n) ≡ eig0aAµ(n), (2.60)

Uµ(n) satisfies the gauge transformation Eq. (2.57). It is easily seen that the simplest
gauge invariant composite of the link variables is the plaquette,

Uµν(n) = tr(Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n)). (2.61)

One also find the simplest gauge action, which is called Wilson gauge action, is given by

SG = β
∑
n,µ>ν

[
1− 1

6
tr
(
Uµν(n) + U †

µν(n)
)]
, (2.62)

where

β =
6

g20
. (2.63)

2.2 Quantum Chromodynamics on the lattice
As we have shown in above section, we can modify the non-local term in the Wilson
action Eq. (2.52) to be gauge invariant using Uµ(n) in Eq. (2.60). Then, the gauge
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invariant Wilson fermion action is given by

S
(W )
F =(M̂ + 4r)

∑
n

3∑
a=1

ψ̄a(n)ψa(n)

− 1

2

∑
n,µ

3∑
a=1

[ψ̄a(n)(r − γµ)Uµ(n)ψ
a(n+ µ̂) + ψ̄a(n+ µ̂)(r + γµ)U

†
µ(n)ψ

a(n)].

(2.64)

When we introduce the hopping parameter

κ =
1

8r + 2M̂
, (2.65)

and redefine ψ → 1√
2κ
ψ, Eq. (2.64) is written as

S
(W )
F =

∑
n

3∑
a=1

ψ̄a(n)Knm(U)ψa(m), (2.66)

Knm(U) = δnm − κ
∑
µ

[
(r − γµ)Uµ(n)δn+µ̂,m + (r + γµ)U

†
µ(n− µ̂)δn−µ̂,m

]
. (2.67)

Finally, from Eqs. (2.52) and (2.66), the QCD action with the Wilson gauge action
and the Wilson fermion action is given by

SQCD = SG + S
(W )
F . (2.68)

2.3 Meson correlation function on the lattice
Two-point function measured on the lattice 〈OX(x)O†

X(0)〉 can be used as a tool to access
the stable hadronic states, with the operator OX(x) whose quantum numbers are same
with those of the target hadronic states. In the case for the mesons, the operator is set as
OX(x) = J l(τ,x) = ψ̄(τ,x)iΓHψ(τ,x), where the Dirac structure ΓH = 1, γi, γ5, and
γiγ5 for the scalar, vector, pseudoscalar, and axial vector channels, respectively. In usual
case, it is convenient to consider the Fourier transformation in the spatial coordinate of
a Euclidean correlator

GXX(τ,p) =
∑
x

〈OX(τ,x)O†
X(0, 0)〉e

−ip·x. (2.69)

This correlator contains the information on hadronic states which couples to the mea-
sured operator. Inserting a complete set of states,

∑
i

∫ d3p′

(2π)3
1

2Ei(p′) |Ei(p
′)〉〈Ei(p′)| = 1,

into Eq. (2.69), one obtains

GXX(τ,p) =

∞∑
i=0

1

2Ei(p)
〈0|OX(0)|Ei(p)〉〈Ei(p)|O†

X(0)|0〉e
−Ei(p)τ , (2.70)

where Ei is the i-th eigenvalue of H and we set H|0〉 = 0. When τ is long enough,
the high energy states are suppressed exponentially and GXX(τ,p) is dominated by the
ground state |E0(p)〉,

GXX(τ,p)
τ→∞−−−→ 1

2E0(p)
〈0|OX(0)|E0(p)〉〈E0(p)|O†

X(0)|0〉e
−E0(p)τ . (2.71)
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In the right-hand side of Eq. (2.71), only e−E0(p)τ depends on τ . Thus one can extract
information on the energy of the hadron state, which corresponds to the hadron mass
when p = 0, by fitting GXX(τ, 0) by the exponentially damping function at the large τ .
The effective mass is a useful indicator for a hadron mass [103]. The effective mass is
defined as

meff(τ)a = − log GXX(τ + a)

GXX(τ)
. (2.72)

meff(τ) converge the grand state mass at τ → ∞.
Above discussion assumes that the length of τ can be taken infinitely large. In the

finite temperature lattice simulation, the time extent is finite, 0 < τ < aNτ , and the
periodic boundary condition (PBC) is imposed (in standard simulations). Since the
correlator in PBC has a forward term e−τm and a backward term e−m(1/T−τ), these
contributions are mixed around τ ∼ 1/T . When meff(τ)a has a plateau as a function of
τ , meff(τ)a in the region indicates the ground state mass which couples to the operator
X.

2.4 Anisotropic lattice
The lattice gauge theory with a finite lattice spacing and finite volume has already been
regularized. The ultraviolet and infrared cut off are the inverse of the lattice size and
the inverse of the lattice spacing, respectively. To obtain a reasonable result concerning
with heavy quarks the inverse of temporal lattice spacing 1/aτ must be sufficiently
smaller than the quark mass. On the other hand, the resolution of momentum depends
on the spatial length of the lattice. Therefore, an anisotropic lattice with a temporal
lattice spacing smaller than the spatial one is a useful tool to study heavy quarks with
finite momentum on the lattice [106]. Furthermore, the anisotropic lattice is suitable to
increase the number of the temporal data points for an analysis [107]. It is a convenient
feature for MEM analysis, which will be discussed in Chap. 4.

On the anisotropic lattice, the gauge couplings and hopping parameters for temporal
and spatial components in the lattice action take different values. The Wilson gauge
and Wilson fermion actions Eq. (2.68) is modified as [106–109]

SG =β
∑
n

 3∑
i<j=1

1

ξ0

(
1− 1

6
tr
(
Uij(n) + U †

ij(n)
))

+
3∑
i=1

ξ0

(
1− 1

6
tr
(
Ui4(n) + U †

i4(n)
)) ,

(2.73)

S
(W )
F =

∑
n

3∑
a=1

{ψ̄a(n)ψa(n)

− κt[ψ̄
a(n)(rt − γ4)U4(n)ψ

a(n+ 4̂) + ψ̄a(n)(rt + γ4)U
†
4(n− 4̂)ψa(n− 4̂)]

− κs
∑
i

[ψ̄a(n)(rs − γi)Ui(n)ψ
a(n+ î) + ψ̄a(n)(rs + γi)U

†
i (n− î)ψa(n− î)]},

(2.74)

where ξ0 is bare anisotropy and, κt and κs are the temporal and spatial hopping param-
eters, respectively. The fermion anisotropy γF is defined as γF = κτ/κσ. γF should be
tuned to match the effective mass along spatial and temporal directions.

We note that ξ0 is equivalent to the renormalized anisotropy ξ = as/at only for the
tree level analysis. In the lattice numerical simulations, the renormalized anisotropy must
be determined non-perturbatively. The non-perturbative relation ξ = ξ(ξ0, β) for fixed β
can be determined by Wilson loop matching [106, 110]. An analytic parametrization of
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the renormalized anisotropy for the Wilson gauge action Eq. (2.73) is given in Ref. [106],

ξ(ξ0, β)

ξ0
= 1 +

(
1− 1

ξ0

)
η̂1(ξ0)

6

1 + a1g
2

1 + a0g2
g2, (2.75)

with

η̂1(ξ0) =
1.002503ξ30 + 0.39100ξ20 + 1.47130ξ0 − 0.19231

ξ30 + 0.26287ξ20 + 1.59008ξ0 − 0.18224
, (2.76)

a0 = −0.77810, and a1 = −0.55055.
The fermion anisotropy γF should also be determined non-perturbatively. In Ref. [39],

γF = 3.476 for β = 7.0 and ξ = 4 is determined by comparing the temporal and spatial
effective masses of the pseudoscalar and vector mesons.

2.5 Numerical simulation in lattice QCD
One of the advantages of the lattice QCD is that one can study the non-perturbative
region of QCD using a numerical simulation on a computer.

Euclidean correlator of an operator O(ψ̄, ψ, U) in the lattice QCD can be obtained
by

〈O(ψ̄, ψ, U)〉 =
∫
dUdψ̄dψO(ψ̄, ψ, U)e−S∫

dUdψ̄dψe−S
, (2.77)

where S is the QCD action discussed in Sec. 2.1.4. Since the quark fields ψ̄ and ψ are
Grassmann variables, the integrals of ψ̄ and ψ cannot be calculated on the computer
straightforwardly. Because the fermion action is given by a bilinear form such as the
Wilson fermion action in Eq. (2.48), the fermion degrees of freedom can be integrated
out by performing the Grassmann integration. After the integrating out, the correlator
Eq. (2.77) is given by

〈O(U)〉 =
∫
dUO(U)e−Seff(U)∫
dUe−Seff(U)

, (2.78)

Seff(U) = SG(U)− ln detK(U). (2.79)

We note that a physical quantity in Eq. (2.78) is expressed by only the integral of the
link variable U .

Let us consider the case for the two-point function of the interpolating operator
OH(τ,x) = ψ̄(x)ΓHψ(x). The two-point function is given by

〈OH(τ,x)O†
H(0, 0)〉 =〈ψ̄(x)ΓHψ(x)ψ̄(0)ΓHψ(0)〉 (2.80)

=
1

Z

∫
dU detK(U)e−SG(U)tr

[
K−1(x, 0)ΓHK

−1(0, x)Γ†
H

]
− 1

Z

∫
dU detK(U)e−SG(U)tr

[
K−1(0, 0)ΓH

]
tr
[
K−1(x, x)Γ†

H

]
,

(2.81)

where the traces run over color and spinor indices, and K−1(x, 0) is the quark propa-
gator. If one performs the integral of U numerically, we can obtain 〈OH(τ,x)O†

H(0, 0)〉.
However, the dimension of the integrals is too large to perform on the computer in a
naive algorithm. The integrals cannot be finished in realistic time with enough numerical
precision.
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Fortunately, since the paths mainly contributing for the path integral concentrate on
a part of the phase space, one can use the importance sampling method to evaluate a
correlation function.

The Euclidean correlation function with zero chemical potential can be interpreted
as a statistical average of an observable with probability e−Seff(U), since Seff(U) is a real
functional. When we generate gauge configurations following the probability distribu-
tion, we thus obtain

〈O(U)〉 = 1

Z

∫
dUO(U)e−Seff(U) (2.82)

' 1

N

N∑
i=1

Oi, (2.83)

where N is the number of the generated configurations and Oi is the value ofO(U) mea-
sured on the i-th gauge configuration. In the lattice numerical simulation, one generate
gauge configurations with Monte Carlo methods and measure a physical quantity using
Eq. (2.83).

Because the numerical cost calculating detK(U) is large, one sometimes employs the
approximation detK(U) → 1, which is called the quench approximation. The quench
approximation corresponds to the one which neglects the corrections arising from the pair
creation and annihilation of quarks and anti-quarks in vacuum. Adopting the quench
approximation causes uncontrollable systematic errors. One of the significant difference
between the quenched QCD and the full QCD is the critical temperature (Tc): Tc ∼
150MeV for the full QCD [19–22], while Tc ∼ 270MeV for the quenched QCD [111].
However, there is many interesting observables for which the systematic errors are small.
For example, difference between the light meson mass spectrum on the quenched lattice
and the experimental data is about 10% [112].
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Chapter 3

Correlators and Spectral
Functions

In this chapter, we review the relation between the Minkowski-space correlators and the
Euclidean-space correlators, which are relevant to our study. After the definition of the
correlators, we discuss the properties of the spectral functions, such as a peak corre-
sponding to a bound state and the relation between the temporal and spatial spectral
functions in the vector channel.

3.1 Definition of Correlators
These relations are shown in many textbooks and reviews in the finite temperature
quantum field theory [49, 91, 113, 114].

In the following discussions, 〈Â〉 is understood as the thermal expectation value,

〈Â〉 = 〈Tr{ρ̂Â}〉 (3.1)

=
∑
n

〈n|ρ̂Â|n〉, (3.2)

with a density matrix

ρ̂ ≡ 1

Z
e−βĤ , (3.3)

where the partition function Z is a normalization constant such that 〈ρ̂〉 = 1, β is the
inverse temperature β = 1/T , and the trace is taken over all eigenstates of Ĥ. For
convenience, we drop the hat from operators in the following without the confusing
situations.

First, we introduce the following correlation functions:

G>XY (t) ≡ Tr {ρ̂X(t)Y (0)} , (3.4)
G<XY (t) ≡ Tr {ρ̂Y (0)X(t)} , (3.5)
GRXY (t) ≡ iTr{ρ̂[X(t), Y (0)]}θ(t), (3.6)

where GRXY (t) is the retarded correlator. Let us see the properties of G>XY (t), G
<
XY (t),

and GRXY (t). Because of time-translation invariance of the density matrix Eq. (3.3), we
find

G<XY (t) = G>YX(−t). (3.7)
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The reality property is given as

G>
X†Y †(t) = Tr{ρ̂X†(t)Y †(0)}

= (Tr{ρ̂∗Y (0)X(t∗)})∗

= G>YX(−t
∗)∗ (3.8)

Furthermore, when we expressX(t) with the Heisenberg representationX(t) = eiHtX(0)e−iHt,
we find

G>XY (t) = G>YX(−t− iβ), (3.9)

where we have used the cyclic property of the trace.
Next, we introduce the expectation value of a commutator,

GXY (t) = iTr{ρ̂[X(t), Y (0)]} = i(G>XY (t)−G<XY (t)), (3.10)

From Eqs. (3.7) and (3.8), we obtain

GXY (−t) = −GY X(t), (3.11)
GX†Y †(t) = GXY (t

∗)∗. (3.12)

The spectral function is defined as the Fourier transform of Eq. (3.10),

ρXY (ω) =
1

2πi

∫ ∞

−∞
dteiωtGXY (t). (3.13)

Taking the Fourier-Laplace transform of GXY (t) over the positive half-axis, we obtain

GRXY (ω) =

∫ ∞

0
dteiωtGXY (t), (3.14)

which is analytic in the half upper plane Imω > 0.
From Eqs. (3.11) and (3.12), one finds

ρXY (ω) =
1

2πi

(
GRXY (ω)−GRY †X†(ω)

∗) . (3.15)

In the case for Y = X†, the spectral function is given by the imaginary part of the
retarded correlator divided by π,

ρXX†(ω) =
1

π
ImGRXX†(ω), (3.16)

which means that ρXX†(ω) is a real function.
The Euclidean correlator GEXY (t) is defined as the forward correlator G>XY (t) in

imaginary time space,

GEXY (t) = G>XY (−it). (3.17)

In the following, we denote imaginary time by τ . We obtain

GEXY (β − τ) = GEY X(τ), (3.18)

as a special case of Eq. (3.9).
Let us consider the spectral representation of these correlators to find the relation

between them. First, inserting the complete set of energy eigenstates 1 =
∑

m |m〉〈m|
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into G>XY (t) and G<XY (t), we obtain

G>XY (t) =
∑
n

〈n|ρ̂X(t)Y (0)|n〉

=
1

Z

∑
n,m

〈n|e−βHeitHX(0)e−itH |m〉〈m|Y (0)|n〉

=
1

Z

∑
n,m

e−βEneit(En−Em)XnmYmn, (3.19)

G<XY (t) =
1

Z

∑
n,m

e−βEneit(Em−En)YnmXmn, (3.20)

with the matrix element Xnm ≡ 〈n|X(0)|m〉. The spectral representation for GRXY (t)
and GEXY (τ) is given by

GRXY (t) = i(G>XY (t)−G<XY (t))

=
2i

Z

∑
n,m

XmnYnme
−β(En+Em)/2 sinh

(
βEnm

2

)
e−iEnmt, (3.21)

GEXY (τ) =
1

Z

∑
n,m

e−βEme−τ(Enm)XmnYnm, (3.22)

where Enm = En − Em. The spectral representation for the retarded correlator is
obtained by integrating Eq. (3.21) over the real t,

GRXY (ω) =
2

Z

∑
n,m

−XmnYnm
ω − Enm

e−β(En+Em)/2 sinh
(
βEnm

2

)
. (3.23)

Substituting Eq. (3.23) into Eq. (3.15), we obtain

ρXY (ω)

2 sinh βω
2

=
1

Z

∑
m,n

XmnYnme
−β(En+Em)/2δ(ω − Emn). (3.24)

Finally, from Eqs. (3.22) and (3.24) we find the relation between the Euclidean correlator
and the spectral function,

GEXY (τ) +GEXY (β − τ) =

∫ ∞

−∞
dωρXY (ω)

cosh
((
τ − β

2

)
ω
)

sinhβω/2
, (3.25)

In a special case Y = X†, from Eq. (3.24) we find ρXX†(ω) is an odd function in this
case and we have

GEXX†(τ) =

∫ ∞

0
dωρXX†(ω)

cosh
((
τ − β

2

)
ω
)

sinhβω/2
, (3.26)

We also find ρXX†(ω ≥ 0) ≥ 0 in this case.
The difference between the finite-temperature and zero-temperature is interpreted as

the change of the spectral function. To study the change of the spectral function from
GE
XX†(τ), the reconstructed correlator defined as

GE,rec
XX† (τ, T ;T

′) ≡
∫ ∞

0
dωρXX†(ω, T ′)

cosh
((
τ − β

2

)
ω
)

sinhβω/2
, (3.27)
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is a convenient tool [91]. The difference between GE
XX†(τ, T

′) and GE,rec
XX† (τ, T ;T

′) repre-
sents the thermal modification for the spectral function. Using the identity

cosh
((
τ − β

2

)
ω
)

sinhβω/2
=
∑
m∈Z

e−ω|τ+mβ|, (3.28)

we obtain the exact relation

GE,rec
XX†

(
τ, T ;

1

2
T

)
= GE

(
τ,

1

2
T

)
+GE

(
β − τ,

1

2
T

)
. (3.29)

3.2 Spectral function and Euclidean correlator
Dynamical properties of quarkonia in the vector and pseudoscalar channels are encoded
in the Euclidean correlators

Glm(τ,p) =

∫
d3xeip·x

〈
J l(τ,x)Jm†(0, 0)

〉
, (3.30)

where the imaginary time τ is restricted to the interval 0 ≤ τ < 1/T and J l(τ,x) =
ψ̄(τ,x)iγlψ(τ,x) is the local interpolating operator in the Heisenberg representation
with the quark field ψ(τ,x) with l = 0, 1, 2, and 3 for the vector channel and l = 5 for
the pseudoscalar channel.

From Eq. (3.25) the spectral function ρlm(ω,p) corresponding to Glm(τ,p) is given
by

Glm(τ,p) +Glm(β − τ,p) =

∫ ∞

−∞
dωρlm(ω,p)

cosh
((
τ − β

2

)
ω
)

sinhβω/2
. (3.31)

In the special case of the diagonal components of the spectral functions ρll(ω,p), the
relation Eq. (3.31) is rewritten by the Laplace-like transformation shown in Eq. (3.26)
as

Gll(τ,p) =

∫ ∞

0
K(τ, ω)ρll(ω,p)dω, (3.32)

with

K(τ, ω) =
e−τω + e−(1/T−τ)ω

1− e−ω/T
. (3.33)

In the following, we represent the diagonal components of the spectral functions as

ρl(ω,p) = ρll(ω,p). (3.34)

In the vacuum, as a consequence of Lorentz invariance and charge conservation, the
vector spectral function can be represented as

ρµν(ω,p) =

(
pµpν

P 2
− gµν

)
ρV(P

2), (3.35)

with µ, ν = 0, 1, 2, and 3 and P 2 = ω2−|p|2. When there is a bound state which couples
to J l, the corresponding spectral function ρV(ω, p) = ρV(P

2) or ρPS(ω, p) = ρ5(ω,p) has
a peak structure around ω ' ±E(p), where E(p) is the dispersion relation of the bound
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state with p = |p|. The peak structure is approximately given by a delta function,

Zδ(ω2 − E(p)2) =
Z

2E(p)
δ (ω − E(p)) , (3.36)

where the right-hand side represents the peak at ω > 0, and Z > 0 is the residue.
Because of Lorentz invariance, E(p) in the vacuum is given by

E(p) =
√
m2 + p2, (3.37)

where m is the mass of the bound state. It is also shown from Lorentz invariance that
Z in Eq. (3.36) does not have momentum dependence.

The property of the bound state peak in Eqs. (3.36) and (3.37) is modified at finite
temperature. First, the width of the peak becomes larger and the delta function in
Eq. (3.36) is replaced by a smooth function with a peak. Second, because Lorentz
invariance is lost in medium, Z can depend on momentum. The dispersion relation E(p)
can also be modified from the Lorentz covariant form Eq. (3.37).

At finite temperature, ρµν(ω,p) in Eq. (3.35) is decomposed into the transverse and
longitudinal components as [114]

ρµν(ω,p) = PµνT ρT(ω, p) + PµνL ρL(ω, p), (3.38)

where the projection operators onto the transverse and longitudinal components, PT and
PL, respectively, are defined as

P 00
T = P 0i

T = P i0T = 0, (3.39)
P ijT = δij − pipj/p2, (3.40)
PµνL = pµpν/P 2 − gµν − PµνT , (3.41)

with i, j = 1, 2, and 3. The transverse and longitudinal spectral functions ρT(ω, p) and
ρL(ω, p) are identical in the vacuum, ρT(ω, p) = ρL(ω, p) = ρV(ω, p), from Eq. (3.35).
When the momentum is taken as p = (p, 0, 0), ρT(ω, p) and ρL(ω, p) are related to
ρi(ω,p) as

ρT(ω, p) =
1

2

(
ρ2(ω,p) + ρ3(ω,p)

)
, (3.42)

ρL(ω, p) =
ω2 − p2

ω2
ρ1(ω,p). (3.43)

From the general property of the spectral function, ρl(ω,p) are semi-positive for
ω > 0 [114]. The semi-positivity of ρT(ω, p) is then guaranteed from Eq. (3.42). On
the other hand, Eq. (3.43) shows that ρL(ω, p) is semi-negative in the space-like region
0 < ω < p.

As we will see in Chap. 5, the slope of ρL(ω, 0) at the origin of ω is related with the
transport coefficient by the Kubo formula.
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Chapter 4

Maximum entropy method

In this chapter, I give a review of the maximum entropy method (MEM) on the basis of
Ref. [48, 49, 115].

To obtain the spectral function from the lattice Euclidean correlator, we have to take
the inverse transformation of Eq. (3.26). The simplest approach to take the transfor-
mation is to employ the ansatz for the structure of the spectral function. In this case,
however, one have to take a continuum limit to remove an unphysical object deriving
from doubler and the result depend on ansatz. MEM [48, 49] is a method to infer the
most probable image of the spectral function from a limited number of data points for
a Euclidean correlator on the basis of Bayes’ theorem. An advantage of MEM is that a
tool to study the plausibility of a reconstructed image is provided in MEM itself. MEM
analysis requests to introduce the default model, which expresses the prior knowledge
on the spectral function, such as the semi-positivity, the high energy behavior of the
spectral function and etc. One can examine the validity of a default model by the er-
ror analysis of MEM. If an employed default model is not good, the plausibility of the
reconstructed image become small and one cannot find a significant conclusion.

This chapter is organized as follows. We first show you the basic of MEM in Sec. 4.1.
Next, we review the method of the numerical MEM analysis in Sec. 4.2.

4.1 Reconstruction of the spectral function
In the analysis of a spectral function A(ω) corresponding to a Euclidean correlator G(τ)
obtained in a Monte Carlo simulation with Eq. (3.32), the most important quantity is
the χ-square,

χ2 =
∑
i,j

(G(τi)−Gρ(τi))C
−1
ij (G(τj)−Gρ(τj)) , (4.1)

where the correlation between different temporal points τi is encoded in the covariance
matrix

Cij ≡
1

N(N − 1)

N∑
n=1

(Gn(τi)−G(τi)) (Gn(τj)−G(τj)) , (4.2)

i and j run over discrete temporal points, N is the number of the gauge configuration
and Gρ(τi) is the correlator defined by Eq. (3.32) from the spectral function ρ(ω).

In the standard least-square method, ρ(ω) is determined so as to minimize Eq. (4.1).
Because the number of the degrees of the freedom of the continuous function ρ(ω) is
larger than the one of the discrete data for G(τ), however, the minimum of χ2 is heavily
degenerating. To choose one, some ansatz to constrain the functional form of ρ(ω) is
required.
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In order to remove this degeneracy, MEM introduces a prior probability represented
by the Shannon-Jaynes entropy [115],

S =

∫ ∞

0

[
ρ(ω)−m(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

)]
dω, (4.3)

where the default model m(ω) expresses prior knowledge. From Bayes’ theorem, it
is obtained that the conditional probability of having ρ(ω) from G(τ) and the prior
knowledge is proportional to P (ρ, α) = exp[Q(ρ, α)] [49], where

Q(ρ, α) = αS(ρ)− 1

2
χ2(ρ). (4.4)

The parameter α controls the relative weight between χ2 and S. It is known that the
spectral image that maximizes P (ρ, α) for a given α is unique if it exists [49]. The final
output image ρout(ω) is obtained by integrating ρ(ω) with a weight P (ρ, α) over α and
ρ space as

ρout(ω) = 〈〈ρ(ω)〉〉, (4.5)

where

〈〈O〉〉 = 1

ZP

∫
dα

∫
[dρ]P (ρ, α)O, (4.6)

is the average over the plausibility P (ρ, α) with ZP ≡
∫
dα
∫
[dρ]P (ρ, α). Here, the

measure [dρ] is defined as

[dρ] ≡ lim
Nω→∞

Nω∏
l=1

dρl√
ρl
, (4.7)

with the discretized spectral function ρl = ρ(ωl) with discrete ω values ωl [49]. When
P (ρ, α) is sharply peaked around ρα(ω), Eq. (4.5) is well approximated as

ρout(ω) '
1

ZP

∫
dαρα(ω)P (α), (4.8)

where

P (α) ≡
∫
[dρ]P (ρ, α). (4.9)

4.1.1 Error analysis

A characteristic of MEM is that this method enables us to estimate the error of quantities
given by the integral of a function of ρout(ω) quantitatively.

Let us consider a quantity given by the weighted integral of ρ(ω) with a weight
function f(ω) and an interval I = [ωmin, ωmax],

W =

∫
I
f(ω)ρ(ω)dω. (4.10)

In MEM, the average of W is estimated as

〈W 〉 =
〈〈∫

I
dωf(ω)ρ(ω)

〉〉
, (4.11)
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and the error of 〈W 〉 is given by the variance of W in P (ρ, α) space as

∆W =
√
〈〈(δW )2〉〉, (4.12)

where δW =W − 〈〈W 〉〉.
Typically, the magnitude of the error estimated in this way becomes larger as the

interval I becomes narrower. In particular, when one makes the error estimate of ρout(ω)
at a given ω with f(ω′) = δ(ω′ −ω), one obtains a huge error ∆ρout(ω) � ρout(ω). This
means that the functional form of ρout(ω) itself does not have quantitative meaning. For
example, it does not make sense to distinguish whether the functional form of a peak
structure in ρout(ω) is Gaussian or Lorentzian in MEM. The values of the position and
width of the peak do not have statistically relevant meanings, either. In order to obtain
a moderate value of the error, the interval I has to be chosen sufficiently large. This
limitation of the analysis is associated with reconstructing apparently more information
than the original one. Even if the correlators G(τi) for discrete τi’s are determined with
an infinitesimal statistical error, the reconstructed image ρout(ω) still have error. This is
because the error in MEM includes intrinsic one associated with the introduction of the
entropy, in addition to statistical one. Thus, for instance, it is not sufficient to estimate
the error in the result with the Jackknife methods, which takes account of only the
statistical error. The error analysis with Eq. (4.12) is essential and absolutely necessary
[49].

4.2 Numerical analysis
In practical numerical analysis of MEM one reconstructs the spectral function on the
basis of Eq. (4.8). The outline of our procedure is following:

1. Search α = α̂ maximizing P (α̂) in Eq. (4.9).

2. Search the range of α, [αmin, αmax], where P (α) ≥ P (α̂)/10.

3. Approximate Eq. (4.8) as

ρout(ω) '
1

ZP

Nα∑
i=0

ραiP (αi)∆α, (4.13)

where ∆α = (αmax − αmin)/(Nα + 1) and αi = αmin + i∆α.

4. Search ραi and calculate Eq. (4.13).

5. Estimate the error Eq. (4.12) using ραi and P (αi).

In these steps one (usually) uses a few techniques. First one uses the method of
steepest descent to calculate the integration in Eq. (4.9) [48, 49]. To use the method of
steepest descent one has to find the saddle point solving the optimization problem where
the degree of freedom is Nω. Since the integration in Eq. (4.9) has to be performed many
times in MEM analysis, The numerical cost is large.

Second one have to solve the optimization problem where the degree of freedom is
Nω to use the method of steepest descent. The degree of freedom can be reduced into
Nτ by using Bryan’s method [115]. The singular value decomposition and the saddle
point method play important roles in this method.

For the numerical analysis we introduce a discretized quantity in ω-space

ωl = l ·∆ω, ρl = ρ(ωl) ·∆ω, (l = 1, 2, · · · , Nω). (4.14)
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4.2.1 Method of steepest descent

In numerical analysis the multiple-integration about ρl in Eq. (4.9) cannot be performed
exactly. First, thus, we suppose that P (ρ, α) has a sharp peak around ρ = ρα, where ρα
is ρ which maximizes Q(ρ, α) with the fixed α,

δQ

δρ

∣∣∣∣
ρ=ρα

= 0. (4.15)

When we change variable εl =
√
ρl and use the Gaussian approximation, we obtain

P (ρ, α) = exp
(
αS(ρ)− 1

2
χ2(ρ)

)

≈ exp

Q(ρα, α) +
1

2

∑
ijkl

δεiδεj
∂ρk
∂εi

∂ρl
∂εj

∂2Q(ρ, α)

∂ρk∂ρl

∣∣∣∣
ρ=ρα

 , (4.16)

where δεi = εi − εαi. Because

∂2Q

∂ρk∂ρl
= − αδkl√

ρkρj
− ∂2L

∂ρk∂ρl
, (4.17)

∂2L

∂ρk∂ρl
=
∑
ij

KkiC
−1
ij Klj , (4.18)

∂ρk
∂εl

=
√
ρkδkl. (4.19)

Eq. (4.16) can be rewritten as

P (ρ, α) ≈ exp

(
Q(ρα, α) +

1

2

∑
kl

δεk(αδkl + Λkl)δεl

)
, (4.20)

where

Λkl =
√
ρk

∂2L

∂ρk∂ρl

√
ρl

∣∣∣∣
ρ=ρα

. (4.21)

Substituting Eq. (4.20) into Eq. (4.9), we find

P (α) = (2π)Nω/2 exp

(
1

2

∑
k

log α

α+ λk
+Q(ρα, α)

)
, (4.22)

where λk is the eigen value of Λkl. When we find ρα numerically, we can calculate
Eq. (4.11).

To calculate the error of MEM in Eq. (4.12) we need one more step. Now we want
to calculate〈〈

(δW )2
〉〉

=
1

ZP

∫
dα

∫
[dρ]

∫
I×I

dωdω′f(ω)δρ(ω)f(ω′)δρ(ω′)P (ρ, α) (4.23)

'
∫
dα

∫
I×I

dωdω′f(ω)f(ω′)

(
δ2Q

δρ(ω)δρ(ω′)

)−1

ρ=ρα

, (4.24)
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where in the second line we used the saddle point method and the Gaussian integration.
For the discretized quantities,

δ2Q

δρlδρm
= −αδlm

ρl
−KT

liC
−1
ij Kjm. (4.25)

Taking the inverse of Eq. (4.25), Eq. (4.24) can be calculated numerically.

4.2.2 Singular value decomposition

To find ρα we have to solve the optimization problem with the degree of freedom is Nω.
R. K. Bryan proposed the method reducing the degree of freedom using the singular
value decomposition[115].

Now we are interested in solving Eq. (4.15). Substituting Eq. (4.4) into Eq. (4.15)
we find

−α log ρl
ml

=
∑
i

Kil
∂L

∂Gρi
, (4.26)

where Kil = K(τi, ωl).
Let us introduce the singular value decomposition of the kernel,

K = V ΣUT , (4.27)

where V is a Nτ × Nτ orthogonal matrix, U is a Nω × Nτ orthogonal matrix and Σ is
a Nτ ×Nτ matrix. Σ is a diagonal matrix, Σii = σi, i = 1, . . . , Nτ , where σi is called a
singular value of K and Nτ = rank(K). The column space of U is called the singular
value space.

Because we can see that the right-hand side of Eq. (4.26) is in the singular space, the
left-hand side of Eq. (4.26) also should be in the singular space. We, thus, parametrize
ρl as

ρl = ml exp al, (1 ≤ l ≤ Nω), (4.28)

al =

Nτ∑
t=1

Ultbt (4.29)

where a = (a1, a2, . . . , aNω) is a real vector. Because of the semi-positivity of the spectral
function, this parametrization is valid. Substituting Eq. (4.28) into Eq. (4.26), we find

−αUb = UΣV T ∂L

∂Gρ
. (4.30)

Using orthogonality of U , UUT = I,

−αb = ΣV T ∂L

∂Gρ
≡ g. (4.31)
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Eq. (4.31) can be solved using Newton’s method. The Jacobian of the system is given
by

J = αI +
∂g

∂b
, (4.32)

∂g

∂b
= ΣV T ∂2L

∂Gρ∂b
(4.33)

= ΣV T ∂
2L

∂G2
ρ

∂Gρ

∂ρ

∂ρ

∂b
, (4.34)

∂ρ

∂b
= diag{ρ}U. (4.35)

thus

∂g

∂b
= ΣV T ∂

2L

∂G2
ρ

V ΣUTdiag{ρ}U (4.36)

=MT, (4.37)

where M ≡ ΣV T ∂2L
∂G2

ρ
V Σ and T ≡ UTdiag{ρ}U . When we solve

(αI +MT )δb = −αb− g (4.38)

by the iteration, we can solve Eq. (4.15). We note that the degrees of freedom of
Eq. (4.38) is Nτ and the numerical cost to solve is much reduced.

The uniqueness of the solution of Eq. (4.38) is proved in Ref. [49]. The uniqueness
is guaranteed when the Hessian H = αI +MT is nonzero and satisfies

Nω∑
l,l′=1

zlHll′zl′ =

Nω∑
l,l′=1

zl
∂2(αS − L)

∂ρl∂ρl′
zl′ < 0, (4.39)

with a real vector z = (z1, · · · , zNω). By differentiating S with respect to ρl and ρl′ , and
taking the inner products, we find

Nω∑
l,l′=1

zl
∂2(αS)

∂ρl∂ρl′
zl′ = −α

z2l
ρl
< 0. (4.40)

Next, we introduce the unitary matrixR diagonalizing the covariance matrix C, T−1CR =
diag[σ̄2i ]. Taking the transformations,

K → K̄ = R−1K,D → D̄ = R−1D, (4.41)

we have

L =
1

2

N∑
i=1

(
D̄i −

Nω∑
l=1

K̄ilρl

)2

/σ̄2i . (4.42)
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By differentiating Eq. (4.42) with respect to ρl and taking the inner products, we find

Nω∑
l,l′=1

zl
∂2(−L)
∂ρl∂ρl′

zl′ = −
N∑
i=1

z̄2i
σ̄2i

≤ 0, (4.43)

z̄i =

Nω∑
l=1

K̄ilzl. (4.44)

From Eqs. (4.39), (4.40) and (4.43), we find the uniqueness of the solution of Eq. (4.38)
is guaranteed.
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Chapter 5

Hydrodynamics and Spectral
functions

The transport properties of quark gluon plasma (QGP) attract much attention for a
few decades. The results of relativistic heavy ion collisions, such as the elliptic flow of
the particles emitted from hot matter [71, 72], suggest that the time revolution of the
hot QCD matter near and above the critical temperature (Tc) can be well described
by hydrodynamics. Transport coefficients of the conserved charges are the important
parameters for hydrodynamics.

Recently the D meson elliptic flow at heavy ion collisions attracts the interest. The
strength of the D meson elliptic flow observed at LHC energy is comparable to the
strength of the charged-particle anisotropic flow [73, 74]. This suggests that the time
evolution of charm quarks created in the early stage of heavy ion collision reach local
equilibrium rapidly and thermal charm quarks in QGP are described by hydrodynamics.
The transport coefficients of heavy quark, the parameter of the hydrodynamics, is an
important information to understand the relatively strong anisotropic flow of heavy
quarks.

The non-perturbative effect of QCD plays an important role in this region. The
lattice numerical simulation is a powerful method to access such a non-perturbative
region of QCD. First measurement of the shear viscosity, the transport coefficient of
the energy-momentum tensor, on the lattice have been attempted by F. Karsch and
H. W. Wyld in Ref. [63]. They have discussed the framework for a calculation of transport
coefficient on the lattice. There is a big difficulty to measure the transport coefficients on
the lattice. It is called ill-posed problem. Only Euclidean correlators are the measurable
quantities in the lattice simulation. However, we need an information in Minkowski
space to access the transport properties. Because of the limitation of the computational
power and the fact that the fluctuation of the correlator of the energy-momentum tensor
is large, the measurement of the shear viscosity on the lattice is still a ongoing subject
in this field.

In the 2000s, the measurement of the transport coefficients, such as the shear viscosity
[67, 68, 78], the electrical conductivity [79–84] and the heavy quark diffusion coefficients
[85–89] , have been studied actively. In these works, they have tried to extract the
transport coefficient from the lattice correlator using Kubo formula.

In this chapter, we give a review of the measurement of the transport coefficients
on the lattice. First we show you the derivation of Kubo formula for a quark diffusion
coefficient. After that we review the recent works which measure the quark diffusion
coefficients.

5.1 Hydro structure of the spectral function

5.1.1 Diffusion equation

Let us first discuss the diffusion equation and its generalized version called the Maxwell-
Cattaneo equation. We consider a conserved current Jµ(t,x) defined by a macroscopic
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average in a slowly varying system near equilibrium. Because of the current conservation,
Jµ(t,x) satisfies the continuity equation,

∂

∂t
J0(t,x) +∇ · J(t,x) = 0. (5.1)

For slowly varying system, a constitutive equation called the Fick’s law,

J(t,x) = −D∇J0(t,x), (5.2)

is a good phenomenological approximation, where D is the diffusion coefficient. Substi-
tuting Eq. (5.2) into Eq. (5.1), we obtain the diffusion equation

∂

∂t
J0(t,x) = D∇2J0(t,x). (5.3)

While Eq. (5.2) represents an instantaneous response of the current J(t,x) against
the change of J0(t,x), in real systems the response generally takes place with a finite
time delay. When this delay is not negligible, Eq. (5.2) has to be modified. The simplest
extension is

τR
∂

∂t
J(t,x) = −D∇J0(t,x)− J(t,x), (5.4)

which means that J(t,x) relaxes toward the solution of Eq. (5.2) with a time scale τR
called the relaxation time. Substituting Eq. (5.4) into Eq. (5.1), we obtain(

τR
∂2

∂t2
+
∂

∂t

)
J0(t,x) = D∇2J0(t,x). (5.5)

Equation (5.5) is called Maxwell-Cattaneo equation. By taking the small τR limit of
Eq. (5.5), Eq. (5.3) is recovered. It is known that the introduction of τR can eliminate
the acausal behavior of Eq. (5.3), and thus plays a crucial role in relativistic systems
[36]. The relaxation time is also known to be important in the diffusion of heavy quarks,
because τR of heavy quarks is proportional to the quark mass in the heavy quark limit
[76, 86].

Equation (5.3) has a single solution for a given momentum p. By writing the t
dependence of a mode with momentum p as exp(−iωt+ ik · p), the solution of Eq. (5.3)
has ω = −iDp2 with p = |p|. On the other hand, Eq. (5.5) has two solutions with

ω = λ± ≡ −i1±
√

1− 4τRDp2

2τR
. (5.6)

In the p→ 0 limit, λ± behave as

λ+ → −i(τ−1
R −Dp2), λ− → −iDp2. (5.7)

The mode with ω = λ− corresponds to the solution of Eq. (5.3), which becomes arbitrary
slow in this limit.

With the initial condition

J0(t = 0,x) = Aeip·x, (5.8)

the solution of Eq. (5.3) is given by

J0(t,x) = Aeip·xe−Dp
2t. (5.9)
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By further assuming ∂J0(t,x)/∂t = 0 at t = 0, the solution of Eq. (5.5) reads

J0(t,x) = Aeip·x
[
B−e

−iλ−t +B+e
−iλ+t], (5.10)

with B± = ∓λ∓/(λ+ − λ−). In the p→ 0 limit we have

B− → 1 + τRDp
2, B+ → −τRDp

2. (5.11)

For later convenience, we introduce the Fourier-Laplace transform of Eq. (5.10)

J̃0(z,p) =

∫
dxe−ip·x

∫ ∞

0
dteizt

[
J0(t,x)− J̄0

]
, (5.12)

where we subtract the average J̄0 = (1/V )
∫
dxJ0(t,x). Here, the imaginary part of

z should be positive for the convergence of the t-integral. Substituting Eq. (5.10) into
Eq. (5.12), one obtains

J̃0(z,p) = −H
(

B−
iz − iλ−

+
B+

iz − iλ+

)
= H

1− iτRz

−τRz2 − iz +Dp2
. (5.13)

5.1.2 Linear response

We next see what we can know about the structure of the spectral function when we
assume the diffusion equation can describe the relaxation process of the quark number
density. For this purpose, now we consider quantum statistical mechanics and discuss
the time evolution of a conserved current in the linear response theory.

Let us consider a response of a system with respect to infinitesimal external pertur-
bation described by Hamiltonian

δH(t) = −
∫
dxh(t,x)j0(t,x), (5.14)

with a conserved current operator jν(t,x) and a classical field h(t,x). The deviation of
the expectation value of jµ(t,x) from the equilibrium value is then given by [114]

δ〈jµ(t,x)〉 = 〈jµ(t,x)〉 − 〈jµ(t,x)〉eq

= −i
∫ t

−∞
dt′〈[jµ(t,x), δH(t′)]〉eq,

=

∫ ∞

−∞
dt′
∫
dx′h(t′,x′)GR

µ0(t− t′,x− x′), (5.15)

with the retarded propagator defined by

GR
µν(t− t′,x− x′) = iθ(t− t′)〈[jµ(t,x), jν(t′,x′)]〉eq

=

∫
dω

2π

∫
dp

(2π)3
GR
µν(ω,p)e

i(p·(x−x′)−ω(t−t′)), (5.16)

where the expectation value 〈·〉eq is taken for thermal ensemble. The spectral function
of the current is given by

ρµν(ω,p) =
1

π
ImGR

µν(ω + iε,p). (5.17)
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We now suppose that the external field h(t,x) in Eq. (5.14) is adiabatically applied
at t = −∞ and suddenly turned off at t = 0 as

h(t,x) = heip·xeεtθ(−t), (5.18)

with an infinitesimal positive number ε and small momentum p.
We now suppose that the external perturbation is applied to the system with an

infinitesimal number ε > 0, i.e. the external field with momentum p is turned on
adiabatically from t = −∞ and turned off suddenly at t = 0.

Just before t = 0, the system should be in a local equilibrium state with an expecta-
tion value

lim
t→0−

δ〈j0(t,x)〉 = hχ(p)eip·x, (5.19)

where χ(p) is the momentum-dependent susceptibility: With p = 0, χ(p) is the suscepti-
bility of the conserved charge defined by χ(0) = χ = ∂〈j0(t,x)〉/∂µ [116] with chemical
potential µ.

After the external force is turned off at t = 0, the system start to relax toward the
equilibrium value. When p is sufficiently small, this process should be well described
by the diffusion equation Eq. (5.3) or (5.5) with an initial condition Eq. (5.19). Since
the system is static at t = 0, it would be reasonable to further assume that 〈ji(t,x)〉
is zero at t = 0 and becomes nonzero continuously. From Eq. (5.1), we then have
∂〈j0(0,x)〉/∂t = 0 for the initial condition. Therefore, 〈j0(t,x)〉 for t > 0 should be
given by Eq. (5.10) with [90]

H = hχ(p). (5.20)

On the other hand, the current 〈j0(t,x)〉 with the perturbation Eqs. (5.14) and (5.18)
is given by Eq. (5.15). The Fourier-Laplace transform of δ〈j0(t,x)〉 in Eq. (5.15) for t > 0
is given by

j̃0(z,p) = e−ip·x
∫ ∞

0
dteiztδ〈j0(t,x)〉

= e−ip·x
∫ ∞

0
dteizt

∫
dt′
∫
dx′ h(t′,x′)GR

00(t− t′,x− x′)

= h

∫ ∞

0
dteizt

∫ 0

−∞
dt′
∫
dω

2π
GR

00(ω,p)e
εt′−iω(t−t′)

= −
∫
dω

2π

h

(ω − z)(ω − iε)
GR

00(ω,p), (5.21)

where in the third equality we used Eq. (5.18). Using the analyticity of GR
00(ω,p) in the

upper-half complex-energy plane, the ω integral in Eq. (5.21) is closed in the upper-half
plane and is replaced by the contributions of two poles at ω = z and iε as

j̃(z,p) = −ihG
R
00(z,p)−GR

00(0,p)

z
. (5.22)

Putting z = ω + iε, and taking the real part of both sides, we find,

Rej̃0(ω + iε,p)

h
=

ImGR
00(ω,p)− ImGR

00(0,p)

ω

= π
ρ00(ω,p)

ω
, (5.23)
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where we used Eq. (5.17) and ρ00(0,p) = 0 in the last equality. Comparing Eqs. (5.13),
(5.20) and (5.23), we obtain [90]

ρhydro
00 (ω,p)

ω
=

1

π

χ(p)Dp2

ω2 + (Dp2 − τRω2)2
. (5.24)

Here, we represent the spectral function as ρhydro
00 (ω,p) because this result is valid only for

low energy and low momentum at which the time evolution of 〈j0(t,x)〉 is well described
by Eq. (5.5). For large ω and/or p, ρ00(ω,p) can deviate from this hydrodynamic
behavior. Thus, ρ00(ω,p) is generally represented as

ρ00(ω,p) = ρhydro
00 (ω,p) + ρhigh

00 (ω,p), (5.25)

where ρhigh
00 (ω,p) represents the contribution which is not included in ρhydro

00 (ω,p). For
example, the spectral function of quark current has a continuum contribution for ω &√

(2mq)2 + p2 with the quark mass mq. If bound states of quarkonia exist in vector chan-
nel, the corresponding peaks also appear. These structures are encoded in ρhigh

00 (ω,p).
From the conservation law, the total charge Q(t) =

∫
V dxj0(t,x) is conserved and

satisfies (d/dt)Q(t) = 0. Moreover the linear response relation connects the susceptibility
χ with the fluctuation of Q(t) as χ = 〈δQ(t)2〉/(TV ) [116]. From these conditions at
zero momentum one obtains

ρ00(ω, 0)

ω
= χδ(ω). (5.26)

By taking the p→ 0 limit of Eq. (5.24), we see that ρhydro
00 (ω, 0) satisfies Eq. (5.26).

5.2 Kubo formula
From the continuity equation Eq. (5.1), we obtain

ωρ00(ω,p) = −piρ0i(ω,p), (5.27)
ωρi0(ω,p) = −pjρij(ω,p), (5.28)
ω2ρ00(ω,p) = pipjρij(ω,p), (5.29)

where i, j = 1, 2, 3 and the sums over recursive i and j are taken. Eq. (5.29) is rewritten
as

ω2ρ00(ω,p) = p2ρL(ω, p), (5.30)

with the longitudinal part

ρL(ω, p) =
pipj
p2

ρij(ω,p). (5.31)

Similarly to Eq. (5.25), ρµν(ω,p) and ρL(ω,p) are decomposed into hydrodynamic and
high-energy parts, which are connected with each other through Eqs. (5.27) – (5.29) and
(5.30). From rotational symmetry, ρ00(ω,p) and ρL(ω,p) depend on p only through p2.

From Eqs. (5.30) and (5.24), we obtain

ρhydro
L (ω, p)

ω
=
χ(p)

π

Dω2

ω2 + (Dp2 − τRω2)2
. (5.32)
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This form leads to the Kubo formula for the diffusion coefficient

D =
π

χ
lim
ω→0

lim
p→0

ρL(ω, p)

ω
=

1

3

π

χ
lim
ω→0

ρii(ω, 0)

ω
, (5.33)

where the small ω limit has to be taken after small p limit. This type Kubo formula is
used in the many works studying transport coefficients on the lattice, such as the shear
viscosity and the electrical conductivity. Eq. (5.33) is the Kubo formula for a quark
diffusion coefficient. Kubo formula for other conserved quantities can be obtain by the
same derivations, see e.g. [90, 114].
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Chapter 6

Observables and Methodology

In this chapter we show the observables studied in this thesis and the methodologies of
the measurements. The observables which we have studied are classified into the two
topics:

1. Study the dispersion relation and momentum dependence of the strength of the
peak of the spectral function of charmonium at the finite temperature from the
spectral functions reconstructed by MEM discussed in Chap. 4.

2. Study the charm quark diffusion coefficient from the lattice Euclidean correlators
on the basis of the linear response theory discussed in Chap. 5.

The information of these quantities can be extracted from the charmonium correla-
tion functions

Glm(τ,p) =

∫
d3xeip·x

〈
J l(τ,x)Jm†(0, 0)

〉
, (6.1)

where the imaginary time τ is restricted to the interval 0 ≤ τ < 1/T and J l(τ,x) =
c̄(τ,x)iγlc(τ,x) is the local interpolating operator in the Heisenberg representation with
the charm quark field c(τ,x) with l = 0, 1, 2, and 3 for the vector channel and l = 5 for
the pseudoscalar channel.

This chapter is organized as follows. In Sec. 6.1 we introduce the definitions for the
dispersion relation and momentum dependence of the strength of the peak of the spectral
function using MEM. In Sec. 6.2 we derive an inequality for the quark diffusion coefficient
by differentiating the temporal Euclidean correlator with respect to momentum. The
common lattice set up for these studies is shown in Sec. 6.3.

6.1 Dynamical property of charmonia at the finite temper-
ature

In this section we show how we analyze the momentum dependence of the spectral
weight of the J/ψ and ηc as an application of MEM discussed in Chap. 4. To study
these quantities with error estimates in MEM, we represent E(p) and Z in Eq. (3.36) in
the form in Eq. (4.10).

For such a quantity corresponding to the residue Z, we consider

Z̄(p) =

∫
I
dω2ωρ(ω, p), (6.2)

for a peak in a spectral function ρ(ω, p), where I is the interval of ω which covers the
peak structure. By substituting Eq. (3.36) into Eq. (6.2) one easily finds that for the
delta function Eq. (3.36) we have Z̄(p) = Z. When the interval I does not include other
structures in ρ(ω), therefore, Z̄(p) corresponds to Z. Note that Z̄(p) defined by Eq. (6.2)
is meaningful only for well isolated peaks for which such a choice of I is possible. Since
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Eq. (6.2) has the form given in Eq. (4.10), Z̄(p) is a quantity which can be estimated in
MEM with error.

Next, to analyze the dispersion relation in MEM, we consider the center of the weight
of a peak of the dimensionless spectrum ρ(ω)/ω2, which is given by

Ē(p) =

∫
I dωω(ρ(ω, p)/ω

2)∫
I dω(ρ(ω, p)/ω

2)
. (6.3)

By substituting Eq. (3.36) into Eq. (6.3), it is again checked that Ē(p) = E(p) for this
case. In practical analyses, we calculate Eq. (6.3) as

Ē(p) =
〈〈
∫
I dωω(ρ(ω, p)/ω

2)〉〉
〈〈
∫
I dω(ρ(ω, p)/ω

2)〉〉
, (6.4)

in order to perform the analysis with the saddle point approximation for P (A,α) [49]. In
the error analysis for Eq. (6.4), we take account of the correlation between the numerator
and denominator using the general formula of error propagation. Because the numerator
and denominator are positively correlated, the inclusion of this correlation leads to the
suppression of the error of Eq. (6.4).

In the above discussions, the definitions of Z̄(p) and Ē(p) depend on the energy
interval I. Because the choice of the interval has an arbitrariness, in the analyses of
these quantities one has to check the dependence of Z̄(p) and Ē(p) on the interval I by
varying it in a moderate range. This analysis will be performed in Sec. 7.4. As we will
see there, the peaks corresponding to the J/ψ and ηc analyzed in this study are well
isolated and our results on Z̄(p), Ē(p), and their errors are insensitive to the choice of
I. We will show the numerical results in Chap. 7.

6.2 Diffusion coefficient of the charm quark
In this section, we discuss the relation between the temporal Euclidean correlator and
the transport coefficients, D and τR, on the basis of the discussion in Chap. 5. We
will obtain two inequalities which constrain the coefficients in the D–τR plane with the
momentum dependence of the temporal Euclidean correlator.

As we mentioned in Sec. 5.2, extracting the transport coefficient from Gii(τ, 0) using
Kubo formula is a hard work because of the insensitivity of Gii(τ, 0) to the low energy
structure of the spectral function. Therefore, we have focused on the temporal Euclidean
correlator with finite momentum G00(τ,p) to extract the information on the transport
coefficient. From Eq. (5.29) we can see that the high energy part of ρ00(ω,p) is suppressed
by the factor p2/ω2 comparing with ρii(ω,p). This suggests that G00(τ,p) may be more
advantageous to extract the information on the low energy structure of the spectral
function than Gii(τ,p).

For simplicity of notation we introduce the following: p̃ ≡ p/T is dimensionless
momentum in the unit of the temperature. ∂p̃2 ≡ ∂

∂p̃2
is a differential operator with

respect to p̃2. The quantity which depends on momentum O(p2) without the argument
p2 is understood as an abbreviation of the limit of the function O ≡ limp2→0O(p).

6.2.1 Euclidean correlator and mid-point expansion

The current-current Euclidean correlator Eq. (6.1) with l,m = 0, 1, 2, and 3 is relevant
to the charm quark diffusion coefficient. Since ρµν(ω,p) with µ = ν are odd functions
of ω, Gµµ(τ,x) and the spectral function ρµµ(ω,p) are connected by Eq. (3.32) and this
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relation can be rewritten as

Gµµ(τ,p) =

∫ ∞

0

cosh ((τ − τmid)ω)

sinh
(
ω
2T

) ρµµ(ω,p)dω, (6.5)

where no sum over µ is taken and τmid = 1/(2T ).
In almost all previous studies on transport coefficients on the lattice, the analysis is

performed by the following two steps: (1) The spatial channel ρii(ω, 0) is analyzed from
Gii(τ, 0) with Eq. (6.5), and (2) the transport coefficient is obtained by the Kubo formula
Eq. (5.33) from ρii(ω, 0). In this approach, however, the first step has a fundamental
difficulty because one has to determine the continuous function ρii(ω, 0) from discrete
data on Gii(τ, 0) obtained numerically. One thus has to introduce an ansatz or resort
to Bayesian analysis in this step. The estimate of the systematic error associated with
these treatments, however, is difficult. In particular, the Euclidean correlator Gii(τ, 0) is
insensitive to low energy structure of ρii(ω, 0), and this makes the analysis of D difficult.

In this study, we focus on the momentum dependence of the correlator in temporal
channel G00(τ,p). From Eqs. (5.26) and (6.5) one finds that G00(τ,p) at zero momentum
is a constant, G00(τ, 0) = χT , and does not contain information on transport coefficients.
For nonzero p, on the other hand, G00(τ,p) has τ dependence reflecting dynamics of
the system. From Eq. (5.30), one sees that ρ00(ω,p) is proportional to ω−2ρL(ω, p).
Therefore, the low-energy part of the spectral property is more strongly reflected in
G00(τ,p) than spatial channels Gii(τ,p) . The purpose of the present study is to take this
advantage of G00(τ,p). Another motivation of this strategy is the use of ρhydro

µν (ω,p) with
nonzero ω and p. Compared with the standard method with Eq. (5.33) which focuses
only on the spectral function with p = 0, our method can make use of the property of
ρhydro
µν (ω,p) with nonzero p.

From Eq. (6.5) one finds that G00(τ,p) at the midpoint τ = τmid is the most sensitive
to low energy structure of ρ00(ω,p). In the following, we thus focus on the behavior of
G00(τ,p) around τ = τmid, and consider the Taylor expansion of G00(τ,p) at τ = τmid
given by

G00(τ,p) =
∑
n

1

n!
Mn(p)(τT − τmidT )

n. (6.6)

Using Eq. (6.5) the coefficients Mn(p) are related to the spectral function as

Mn(p) =
dnG00(τ,p)

d(τT )n

∣∣∣∣
τ=τmid

(6.7)

=
1

2

∫ ∞

−∞
dω
(ω
T

)n ρ00(ω,p)

sinh(ω/2T )
, (6.8)

which shows that the coefficients of the Taylor expansion Mn(p) are the moments of
ρ00(ω,p)/ sinh(ω/2T ). Because ρ00(ω,p) is an odd function of ω, Mn(p) vanishes for
odd n. It is noteworthy that the moments Mn(p) are observables which can be measured
directly in Euclidean space. Because Mn(p) are linear in ρ00(ω,p), they are decomposed
into hydrodynamic and high-energy parts as

Mn(p) =M
hydro
n (p) +Mhigh

n (p), (6.9)

in accordance with the decomposition Eq. (5.25).
From Eq. (5.26), at p = 0 one obtains

M0(0) = χT, (6.10)
Mn(0) = 0 for n ≥ 1. (6.11)
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Equations (6.10) and (6.11) shows that the moment at zero momentum, Mn(0), do
not have information on transport coefficients. In the following, we thus focus on the
momentum derivatives of Mn(p), especially those of two lowest order ones with n = 0
and 2. Because Mn(p) are even functions of p, their second derivatives are lowest nonzero
ones.

6.2.2 Inequalities

We now introduce crucial assumptions on the structure of the spectral function. First,
we assume that the high energy part ρhigh

L (ω, 0) is solely positive semi-definite, i.e.

ρhigh
L (ω, 0) ≥ 0 for ω > 0. (6.12)

Although ρL(ω,p) ≥ 0 is generally satisfied as discussed in the previous section, the
condition Eq. (6.12) is not satisfied. This condition, however, should be satisfied when
the ranges of ω at which hydrodynamic and high-energy parts take large values are well
separated. This is the case, for example, for heavy quark current with quark mass mq,
because in this case ρhigh

L (ω, 0) becomes nonzero for ω & 2mq, while the strength of
ρhydro

L (ω, 0) is concentrated around ω . τ−1
R . Since τ−1

R ∼ m−1
q becomes smaller as mq

increases, the separation between ρhydro
L (ω, 0) and ρhigh

L (ω, 0) becomes more prominent
as mq becomes larger. In this case, one thus can safely assume Eq. (6.12). Second, we
assume that ρhigh

00 (ω,p) is analytic. Although ρ00(ω,p) is not analytic at the origin, it
is assumed that this singularity is attributed to ρhydro

00 (ω,p). Finally, it is assumed that
χ(p) is analytic at p = 0 and thus can be expanded by p2.

Once we accept these conditions, by taking p2 derivative of Mhigh
n (p) and the small

momentum limit we obtain

∂p̃2M
high
n =

∫
dω
(ω
T

)n−2 ρhigh
L (ω, 0)

sinh(ω/2T )
≥ 0, (6.13)

where Eqs. (6.8) and (5.30) are used. Substituting this inequality into Eq. (6.9), we
obtain

∂p̃2M
hydro
n ≤ ∂p̃2Mn, (6.14)

for even n. Eq. (6.14) is the key inequality in the following argument.
Next, we turn our attention to the hydrodynamic part Mhydro

n (p). From Eqs. (5.24)
and (6.8), the p̃2 derivative of Mhydro

0 (p) at p = 0 is calculated to be

∂p̃2M
hydro
0 = lim

p2→0

∂

∂p̃2

∫
dω
ρhydro
00 (ω,p)

sinh(ω/2T )
= h0(τ̃R)M0DT + ∂p̃2χT, (6.15)

where τ̃R = τRT and

h0(τ̃R) = − ln 2

π
+ τ̃R

{
1− F

(
1

τ̃R

)}
−−−→
τ̃R→0

− ln 2

π
, (6.16)

F (b) ≡ b

π

∫ ∞

0
dx

x

x2 + 1

1

sinh(bx/2)

= −1− b ln 2

π
− b

π

[
Ψ

(
b

4π

)
−Ψ

(
b

2π

)]
, (6.17)
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Figure 6.1: Behaviors of h0(τ̃R) and h2(τ̃R) in Eqs. (6.15) and (6.20)
as functions of b.

and Ψ(z) ≡ d
dz lnΓ(z) is the digamma function. The behavior of h0(τ̃R) is shown in

Fig. 6.1. As shown in the figure, h0(τ̃R) < 0 for b ≥ 0, and |h0(τ̃R)| is a monotonically
decreasing function of b with |h0(0)| = ln 2/π.

Substituting Eq. (6.15) into Eq. (6.14), we find that the diffusion coefficient is con-
strained from below as

DT ≥ DL(τ̃R)T, (6.18)

with

DL(τ̃R)T =
1

h0(τ̃R)

(
∂p̃2M0

M0
−
∂p̃2χ

χ

)
. (6.19)

We note that M0(0) = χ(0)T is satisfied, but for nonzero momentum M0(p) and χ(p)
are different quantities.

The same manipulation for Mhydro
2 (p) leads to

∂p̃2M
hydro
2 = h2(τ̃R)M0DT, (6.20)

with

h2(τ̃R) =
1

τ̃R
F

(
1

τ̃R

)
−−−→
τ̃R→0

π. (6.21)

We note that a term proportional to ∂p̃2χ does not appear in Eq. (6.20) unlike Eq. (6.15),
because M2(0) = 0. As shown in Fig. 6.1, h2(τ̃R) is a positive and a monotonically
decreasing function with h2(0) = π. From Eqs. (6.13) and (6.20), we obtain an upper
limit of the diffusion coefficient,

DT ≤ DU(τ̃R)T, (6.22)

with

DU(τ̃R)T =
1

h2(τ̃R)

∂p̃2M2

M0
(6.23)
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We note that the directions of inequalities, Eqs. (6.18) and (6.22), are opposite. This is
caused by the opposite sign of h0(τ̃R) and h2(τ̃R).

By combining Eqs. (6.18) and (6.22), we obtain

DL(τ̃R) ≤ DT ≤ DU(τ̃R). (6.24)

In particular, since DL(0) ≤ DL(τ̃R) we have a lower bound of DT as

DT ≥ DL(0) = − π

ln 2

(
∂p̃2M0

M0
+
∂p̃2χ

χ

)
, (6.25)

irrespective of the value of τR.
We note that though ∂p̃2Mn/M0 can be measured in the lattice simulation, we do not

have a method measuring ∂p̃2χ/χ on the lattice. Therefore, we have measured Eq. (6.24)
on the lattice in the case of ∂p̃2χ� χ.

6.2.3 Discussions

Remarks on Eq. (6.24) are in order.
First, although we obtained the second inequality Eq. (6.22) from G00(τ,p), one can

obtain the same quantity from the spatial channel as

∂p̃2M2 = GL(τmid, 0) =
1

3
Gii(τmid, 0). (6.26)

Similarly, Mn for n ≥ 4 can be also constructed from the spatial channel. Only the first
inequality Eq. (6.18) is the unique result which can be obtained from G00(τ,p).

Second, it is notable that DL and DU are given by the combination of the ratio
∂p̃2Mn/M0 or ∂p̃2χ/χ. In the measurement of Mn(p) (and χ(p)) in lattice simulations,
one has to take account of the discretization effect on the wave function renormalization
of the operator jµ(τ,x). This renormalization coefficient, however, is automatically
canceled out in the ratios ∂p̃2Mn/M0 (and ∂p̃2χ/χ). The analysis of DL and DU thus
can be carried out without the renormalization coefficient. As we will discuss later, this
cancellation is one of the advantages to focus on G00(τ,p) in the analysis of DU in place
of Eq. (6.26).

Third, the inequality Eq. (6.24) is the strongest one which can be obtained without
introducing assumptions on ρhigh

L (ω, 0) except for its semi-positivity. For example, one
can obtain the similar inequalities by considering Taylor expansion of G00(τ,p) at τ 6=
τmid. It, however, is easily shown that the inequalities obtained in this way is weaker
than Eq. (6.24) with the use of Eq. (6.5). One can also obtain inequalities from ∂p̃2Mn

for n ≥ 4. However, these inequalities, which give an upper limit, again are weaker than
Eq. (6.22).

Fourth, we comment on the relation between Eq. (6.22) and other studies on trans-
port coefficients. In the recent analyses of transport coefficients with Kubo formula
Eq. (5.33), the ansatz for the spectral function in spatial channel,

ρii(ω, 0) =
αω

ω2 + γ2
+ ρcont(ω), (6.27)

is sometimes employed with α and γ being fitting parameters [83]. Here, ρcont(ω) rep-
resents the continuum part. Various forms for ρcont(ω) are assumed in the literature,
but in almost all studies ρcont(ω) > 0 is satisfied. In this case, the ansatz Eq. (6.27) is
completely agrees with our assumption to obtain Eq. (6.22). In other words, the diffu-
sion coefficient obtained with the ansatz Eq. (6.27) satisfies Eq. (6.22). On the other
hand, Eq. (6.18) is the relation obtained for the first time by considering the correlator
in temporal channel.
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Finally, let us give some comments on the origin of terms in Eq. (6.24). In the
small p limit, the integral Eq. (6.8) for n = 0 is dominated by the contribution of the
sharp peak in ρhydro

00 (ω,p), while the contribution of ρhigh
00 (ω,p) vanishes. From this fact,

one may naïvely expect that the contribution of ρhigh
00 (ω,p) in Eq. (6.18) should vanish.

The integral for M0(p), however, simply gives χ with p = 0, and information on the
transport coefficients appears only at the order of p2 of M0(p). At this order, however,
the high energy part also has nonzero contribution. When one considers ∂p̃2M0, both
contributions have nonzero value. Next, the existence of the τR dependence in Eq. (6.24)
is understood from the solution of Maxwell-Cattaneo equation Eq. (5.10). While the
integral Eq. (6.8) is dominated by the lower energy mode with ω = λ− in the small p
limit, overall coefficient of this mode has τR dependence at the order p2 as in Eq. (5.11).
This τR dependence is responsible for those in Eq. (6.24).

6.3 Lattice set up
In this section we introduce the brief lattice set up for studies in this thesis. Both of the
studies require the non-zero momentum correlators. We have adopted the anisotropic
lattice for these studies owing to almost same but slightly different reasons. In the first
study, the resolution of the MEM analysis is partially depend on the number of the
input data points. In our analysis, the input data points corresponds to the number of
the imaginary time slices. Since the temporal extent of the lattice is restricted by the
temperature, the naive solution is using the lattice with a small lattice spacing. On the
other hand, however, since the momenta of bosons on the lattice is discretized as

pi =
2

aσ
sin
(
πp̂i
Nσ

)
, (6.28)

the analysis of momentum dependence of lattice observables with a good resolution re-
quires a large spatial extent. When we adopt a isotropic lattice with a small lattice
spacing, the required spatial discretization number Nσ becomes large and the numerical
cost become large as N3

σ naively. Furthermore, we have to have the correlator with the
temperature under Tc as the reference of the vacuum contribution. When we perform
the simulations with the fixed lattice spacing, the simulation under Tc requires larger
temporal extent, which corresponds to the inverse of the temperature, than the simula-
tions at high temperature. Therefore, adopting the anisotropic lattice with a temporal
lattice spacing smaller than the spatial one is a good solution for these requirements. In
the second study, since the inequality for the diffusion coefficient Eq. (6.24) is defined
by the derivatives of the observables with respect to momentum, a good momentum
resolution is required to define these quantities by the numerical difference of the lattice
observables. Since the hydrodynamic picture is valid for the low energy region, the mo-
menta of correlators for the analysis of the transport coefficient should be much smaller
than temperature, p/T << 1. Therefore, this requirement of a large spatial extent is
more crucial than that of the first study. On the other hand, since we are interested in
the diffusion coefficient of the charm quark in deconfined phase, the required temporal
discretization number Nτ is smaller than that for the first study.

Our simulation is performed on quenched anisotropic lattices with the ratio of spatial
and temporal lattice spacings ξ = aσ/aτ = 4. We use the standard Wilson gauge
action Eq. (2.73) and Wilson fermion Eq. (2.74) with β = 7.0, the spatial hopping
parameter κσ = 0.08285 and the fermion anisotropy γF = 3.476 [39]. The temporal
lattice spacing in physical unit is aτ = 0.00975 fm, and the critical temperature on this
lattice is Tc = 272(2) MeV [39]. Each configuration is separated by 500 sweeps, where
one sweep consists of one pseudo heat bath and five over-relaxation updates. We study
the temperature dependence by changing the temporal lattice size Nτ with fixed aτ .
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This analysis is called the fixed scale method. The spatial lattice size Nσ is different for
two studies. Nσ = 128 for the first study and Nσ = 64 for the second study because
though both the studies prefer the large spatial extent as we discussed above paragraph,
the second study requires the large temporal extent. Moreover, the statistics of the input
data is an important factor for the MEM analysis.

To improve statistics, we have measured the correlation functions eight times on each
gauge configuration with different positions of the point source. The eight sources are
located on two timeslices separated by Nτ/2 with four sources in each timeslice with
maximal separation. The correlation function on a configuration is then defined by the
average of these eight measurements. We have checked that the statistics improves about√
8 times with this treatment, suggesting that the correlation between eight measure-

ments is well suppressed.



55

Chapter 7

Dynamical property of charmonia
at the finite temperature

We show the dispersion relations and the momentum dependence of the strength of the
peaks of the spectral function for charmonia in the pseudoscalar and vector channel,
which correspond to ηc and J/ψ, respectively, on the basis of the method shown in
Sec. 6.1.

This chapter is organized as follows. In Sec. 7.1, we show the detailed lattice set up.
Next we show the numerical results. First, we show the temporal Euclidean correlators
with nonzero momentum in Sec. 7.2. Sec. 7.3 shows the spectral functions reconstructed
by MEM. We see the temperature dependence and the momentum dependence of the
spectral function. Finally, the dispersion relation and the momentum dependence of the
peak of the spectral functions analyzed by MEM are shown in Sec. 8.4.

7.1 Simulation set up

Table 7.1: Lattice simulation parameters.

T/Tc Nτ Nσ Nconf
1.70 44 64 700
1.62 46 64 500
1.56 48 64 500
1.49 50 64 500
1.38 54 64 500
0.78 96 64 500

In this study, we measure the momentum dependence of charmonium correlation
functions Eq. (3.30) in the vector and pseudoscalar channels on the quenched anisotropic
lattice. The lattice action and its parameters are shown in Chap. 6. In Table. 7.1, we
summarize the lattice volumes N3

σ×Nτ , the temperature T in the unit of Tc [39], and the
number of configurations Nconf. We fix the lattice size for spatial direction to Nσ = 64.
With the aid of the large anisotropy, our lattice has a large spatial volume; in physical
unit the spatial length is Lσ ' 2.5 fm. The aspect ratio ξNσ/Nτ is 5.1 for Nτ = 50.
The large spatial extent enables a detailed study of the momentum dependence of the
quantities on the lattice. With a periodic boundary condition along spatial direction,
the momentum of bosons on the lattice is discretized as Eq.(6.28). In the analysis of
Euclidean correlators we take the momentum along 1 direction, i.e. p = (p, 0, 0). The
largest lattice with Nτ = 96 and T/Tc = 0.78 is regarded as the vacuum one, in which
the medium effects are well suppressed.

In the MEM analysis of spectral functions, we use a default model m(ω) = m0ω
2 +

m1Tω [80], where m0 = 1.15 for the pseudoscalar channel and m0 = 0.40 for the vector
channel [39]. We analyzed the default model dependence of the reconstructed spectral
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function by changing m0 and m1: m0 is varied in the 50% range from the above values,
while the dependence on m1 is also checked in the range 0 ≤ m1 ≤ 2.0. We found that
the dependence on m0 and m1 is well suppressed in this range near the peak of the J/ψ
and ηc; the change of the spectral image caused by the variation of m0 and m1 in these
ranges around the charmonium peak is less than a few percent. In the following analyses
we thus set m1 = 0. For nonzero p and large ω, it may be better to replace the default
model by m(ω) = m0(ω

2−p2) as suggested from Lorentz invariance. We have performed
MEM analysis with a default model

m(ω) =

{
m0(ω

2 − p2) ω2 ≥ p2 + ε

m0ε ω2 < p2 + ε
, (7.1)

with several choices of small parameter ε. We, however, found that the default model
dependence of our results is well suppressed again around the peak of the J/ψ and ηc,
and the following numerical results hardly change.

For the analysis of AT(ω, p) and APS(ω, p), we reconstruct them from the corre-
sponding correlators GT(τ, p) = (G2(τ,p) + G3(τ,p))/2 and GPS(τ, p) = G5(τ,p). On
the other hand, AL(ω, p) can become negative and one cannot apply MEM to this chan-
nel directly. We thus analyze A1(ω,p) from G1(τ,p) with MEM and obtain AL(ω, p)
using Eq. (3.43).

For sets of gauge configurations with Nτ = 48 and 54, we observed that the recon-
structed spectral images obtained in MEM analysis behave in an unreasonable way in
some channels. We found that the error of the spectral functions tends to become large
when such behaviors are observed. For example, although the spectral functions Ai(ω,p)
with p = 0 should be degenerated for i = 1, 2, and 3 because of rotational invariance,
for Nτ = 48 and 54, we observed that the reconstructed images of Ai(ω,p) behave in
qualitatively different ways. It is also found that P (α) as a function of α has rapid
changes for some values of α when such a pathological behavior is observed in MEM
analysis. We have checked that these results do not come from the numerical resolution
in our MEM algorithm by changing the numerical precision of our code. We have also
checked that they do not depend on the choice of the default model. This problem is
discussed in detail in Appendix A. In this study, we simply exclude Nτ = 48 and 54 in
the following discussion and concentrate on Nτ = 44, 46, 50, and 96, which do not show
such behaviors.

In the analysis of the dispersion relation Eq. (6.4) and the weight of the peak Eq. (6.2),
the interval I = [ωmin, ωmax] has to be chosen appropriately. In this study, we set
ωmin = 3 GeV, while for the upper bound ωmax we use the value of ω at which the
spectral function takes the first local minimum on the right of the peak corresponding
to the J/ψ or ηc. We found that our numerical results for Z̄(p) and Ē(p), as well as
their errors, are insensitive to the choice of the lower bound ωmin; for example, these
quantities do not change within the numerical precision even if ωmin is set to 2 GeV.
Our numerical analysis suggests that the results of Z̄(p) and Ē(p) hardly change for
a variation of the lower and/or upper limits of I in the range where the reconstructed
image takes a small value. The dependence of our results on the choice of ωmax will be
discussed in Sec. 7.4.

7.2 Correlation function
In this section, we show the numerical results. We first see the momentum dependence
of the correlation functions. Figure 7.1 shows the correlation functions G1(τ,p) and
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Figure 7.1: Momentum dependence of correlation functions for the vec-
tor channel, G1(τ,p) and GT(τ, p), normalized by the correlation function
with zero momentum GV(τ, 0) for T = 0.78Tc (upper) and T = 1.62Tc
(lower). The dashed and solid lines represent G1(τ,p) and GT(τ, p), re-

spectively.

GT(τ, p) in the vector channel normalized by those with zero momentum,

GV(τ, 0) =
1

3

∑
i=1,2,3

Gi(τ, 0), (7.2)

for various values of p̂ below and above Tc. In the figure, the ratios G1(τ,p)/GV(τ, 0)
and GT(τ, p)/GV(τ, 0) are plotted by the dashed and solid lines, respectively. The errors
in the figure are estimated for the ratios G1(τ,p)/GV(τ, 0) and GT(τ, p)/GV(τ, 0) by the
jackknife method; because of the strong correlation between correlation functions with
different p, these errors are suppressed compared with those of the correlation functions
themselves. The figure shows that the ratios G1(τ,p)/GV(τ, 0) and GT(τ, p)/GV(τ, 0)
become smaller as p is increased. This behavior is consistent with Eqs. (3.32) and (3.36)
because as E(p) becomes larger, the contribution of the bound state to the correlation
function is more suppressed. The figure also shows that G1(τ,p) and GT(τ, p) behave
differently even at T = 0.78Tc. As momentum become larger, the separation becomes
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Figure 7.2: Spectral functions at T/Tc = 0.78, 1.49, 1.62, and 1.7 at
zero momentum. The left and right panels show the vector and pseu-
doscalar channels, respectively. The horizontal lines show the averages of
the spectral functions for some ranges of ω and their errors at T/Tc = 1.62

and 1.70.

more prominent with GT(τ, p) < G1(τ,p). As we discussed in Sec. 3.2, AT(ω,p) =
AL(ω,p) = AV(P

2) in the vacuum. From Eq. (3.43) we thus have

AT(ω, p) =
ω2 − p2

ω2
A1(ω,p). (7.3)

Because the factor (ω2 − p2)/ω2 is always smaller than unity, we have AT(ω, p) ≤
A1(ω,p), which leads to GT(τ, p) ≤ G1(τ,p). Similar behavior is observed for T =
1.62Tc.

7.3 Spectral function
Next, we analyze the T dependence of the spectral functions with MEM and study the
existence of the peaks corresponding to the J/ψ and ηc at finite temperature. The left
and right panels of Fig. 7.2 show the spectral functions with zero momentum in the
vector and pseudoscalar channels, respectively. The error bars for the average of the
spectral function for some intervals of ω estimated by Eq. (4.12) are shown by three
horizontal lines for T/Tc = 1.62 and 1.70. The central lines show the averages of the
spectral functions in the interval covered by the line, and the top and bottom ones
indicate its 1σ error band. The result of the error analysis in the vector channel suggests
that the peak corresponding to the J/ψ exists at T = 1.62Tc with probabilistic signif-
icance. On the other hand, for the pseudoscalar channel at T = 1.62Tc, the error for the
peak structure corresponding to the ηc has a small overlap with the error which is put
for the right side valley of the structure. This shows that the plausibility of the existence
of the peak is smaller than that for the vector channel. In other words, absence of the
peak of ηc at T = 1.62Tc cannot be excluded by 1σ.

In order to discuss the existence of the peak in the pseudoscalar channel at T = 1.62Tc
and the momentum dependence of the peaks, we next show the momentum dependence
of the spectral functions in the vector and pseudoscalar channels at T = 1.62Tc in
the upper and lower panels in Fig. 7.3, respectively. In the upper panel, AT(ω, p) and
AL(ω, p) are shown by the solid and dashed lines, respectively. In the lower panel, the
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Figure 7.3: Momentum dependence of the spectral functions at T =
1.62Tc. The upper and lower panels show the vector and pseudoscalar
channels, respectively. The error bars are shown for averages of the spec-
tral functions for the vector channel at p̂ = 6 and for the pseudoscalar

channel at p̂ = 3 and 6.

errors for the peaks of the spectral functions in the pseudoscalar channel are shown for
p̂ = 3 and 6. The lower panel suggests that the peak corresponding to the ηc exists at
p̂ = 3 and 6. The existence of the J/ψ peak in the vector channel at nonzero momenta
is also indicated from the upper panel. We thus suppose that the J/ψ and ηc survive up
to T = 1.62Tc, which is a consistent result as in previous works [39, 40], The possibility
that the existence of the peak depends on p for T = 1.62Tc, however, is not excluded in
these analyses.

Figure 7.3 also shows that the peaks corresponding to the J/ψ and ηc are well isolated
from the second structure in the spectral functions. This suggests that the dependence
of Z̄(p) and Ē(p) on ωmax is suppressed so that these quantities can be analyzed with
small ambiguity.

In Fig. 7.4, we show the momentum dependence of the spectral functions in the
vector channel, AT(ω, p) and AL(ω, p), for T = 0.78Tc. To see the separation of the
transverse and longitudinal channels, we show the errors for the averages of AT(ω, p)
and AL(ω, p) with the same energy interval for p̂ = 4 and 6. From the figure, one
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Figure 7.4: Momentum dependence of the spectral functions AT(ω, p)
and AL(ω, p) in the vector channel at T = 0.78Tc. Errors for the average

of the spectral functions are shown for p̂ = 4 and 6.

observes that the spectral functions in the transverse and longitudinal channels agree
with each other within the error. This result is consistent with the vacuum property of
the spectral functions discussed in Sec. 3.2. It, however, is worth emphasizing that this
agreement is obtained although AT(ω, p) and AL(ω, p) are constructed from completely
different correlation functions as shown in Fig. 7.1. From the upper panel in Fig. 7.3, one
also finds that the degeneracy of AT(ω, p) and AL(ω, p) is observed even for T = 1.62Tc.
This is a nontrivial result because these functions can behave differently because of the
lack of Lorentz invariance.

7.4 Residue and dispersion relation

0 1 2 3 4 5 6
p̂

0.0

0.5

1.0

1.5

2.0

2.5

Z̄
(p̂

)/
Z̄

(p̂
=

0)

T

T

T

L: 0.78Tc
L: 1.49Tc
L: 1.62Tc

0 1 2 3 4 5 6
p̂

0.0

0.5

1.0

1.5

2.0

2.5

Z̄
(p̂

)/
Z̄

(p̂
=

0)

PS: 0.78Tc
PS: 1.49Tc
PS: 1.62Tc

Figure 7.5: Ratio of the residues of the peaks, Z̄(p)/Z̄(0), correspond-
ing to the J/ψ (upper) and ηc (lower). The transverse (T) and longitu-

dinal (L) components are shown in the upper panel.

Next, we turn to Z̄(p) and Ē(p). In Fig. 7.5, we show the momentum dependence
of Z̄(p) obtained with Eq. (6.2) for the vector and pseudoscalar channels for T/Tc =
0.78, 1.49, and 1.62. In the figure, the normalized results, Z̄(p)/Z̄(0), are plotted in
order to see the momentum dependence of Z̄(p). The errors in the figure include only
the one of the numerator of the ratio estimated by MEM. The figure shows that Z̄(p) does
not have momentum dependence within the error for all the temperatures and all the
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Figure 7.6: Dispersion relations Ē(p) of the J/ψ (upper) and ηc (lower)
for T/Tc = 0.78, 1.49, and 1.62. The dashed lines indicate the vacuum

dispersion relation Eq. (3.37) with m = Ē(0).

T/Tc 0.78 1.49 1.62

J/ψ 3.24(6) 4.30(16) 4.47(16)
ηc 3.19(5) 4.24(31) 4.49(48)

Table 7.2: Masses of the ground states of the charmonia in the vector
and pseudoscalar channels defined by m̄ = Ē(0).

channels for which we carried out the analysis. This result is reasonable for T/Tc = 0.78,
at which the medium effects should be well suppressed. Our analysis, however, shows
that Z̄(p) is insensitive to p even at T/Tc = 1.49 and 1.62, which is a nontrivial result.

We note that the errors of Z̄(p)/Z̄(0) in Fig. 7.5 would be reduced if we take into
account the correlation between Z̄(p) and Z̄(0). In order to estimate the correlation,
however, one has to perform the MEM analysis for two different correlation functions in
a single analysis. Because we perform the MEM analysis for individual momenta, this
correlation cannot be estimated in our analysis.

To see the medium effects on the dispersion relation, we show the results on Ē(p)
in Fig. 7.6. In the figure, we plot the square of this quantity (Ē(p))2 as a function of
p2, since this plot is convenient to see the deviation of Ē(p) from the vacuum dispersion
relation Eq. (3.37). From the figure, one first observes that the masses of the charmonia,
defined by m̄ = Ē(0), become larger as T is increased. The values of m̄ in the vector
and pseudoscalar channels at T/Tc = 0.78, 1.49, and 1.62 are listed in Table 7.2.

Since the number of data points Nτ is different for each temperature, this difference
may be the origin of the mass shift. Then, the mass shift summarized in Table. 7.2
can be an artifact of the MEM analysis and not be physical. To clarify this possibility
we analyze the spectral function from the reconstructed correlator Grec(τ, 0, 2T ;T ) with
T = 0.78Tc given by Eq. (3.29). Nτ for Grec(τ, 0, 2T ;T ) is half of that for the original one
G(τ, 0, T ), sinceGrec(τ, 0, 2T ;T ) andG(τ, 0, T ) are given by integrating the same spectral
function ρ(ω, 0, T ) with the different kernels, K(τ, ω, 2T ) and K(τ, ω, T ) in Eq. (3.33),
respectively. The spectral function analyzed from Grec(τ, 0, 2T ;T ) is shown in Fig. 7.7
together with the original one. The peak positions of the first peak obtained from the
original correlator and the reconstructed one is also compared in Table. 7.3. From the

correlator G(τ, 0, T ) Grec(τ, 0, 2T ;T )

m̄ 3.24(6) 3.40(90)

Table 7.3: Masses of the ground state of the charmonia in the
vector channel defined by m̄ = Ē(0) analyzed from G(τ, 0, T ) and

Grec(τ, 0, 2T ;T ) with T = 0.78Tc.
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Figure 7.7: Spectral functions reconstructed from G(τ, 0, T ) (solid line)
and Grec(τ, 0, 2T ;T ) (dashed line) with T = 0.78Tc.

these results we see that the shift of the first peak location is not observed, though the
resolution of MEM becomes worse as Nτ is decreased. When we focus on the second
and higher peaks, the numbers of the peak-like structures are different. Although these
peaks are interpreted as the contribution of the doublers [41], the result suggests that
the small number of the data points affect the resolution of MEM [117] and we have to
take care the resolution of MEM in the analysis. Since the mass shift is obtained by
analyzing the correlators with Nτ = 46, 50, and 96, the possibility that this mass shift
is the artifact of the MEM analysis is small. We thus conclude that the mass shift is
physical.

Although such a mass shift in MEM analyses were suggested in previous study [51],
our analysis confirms the medium effects on the mass of the charmonia with a quantita-
tive error analysis for the first time.

In Fig. 7.6, the vacuum dispersion relation Eq. (3.37) with m = m̄ is shown by
the dashed lines. The figure shows that the functional form of Ē(p) is consistent with
Eq. (3.37) within statistics even at T/Tc = 1.49 and 1.62.

In order to see the dependence of these results on the choice of the interval I =
[ωmin, ωmax], in Fig. 7.8 we show the ωmax dependence of Ē(p = 0) for Nτ = 46 in
the vector channel with ωmin = 3 GeV. The value of ωmax used in Fig. 7.6, i.e. the
minimum of the spectral function between the first and second peaks, is shown by the
vertical dashed line. The figure shows that the value and error of Ē(p) are insensitive
to the choice of ωmax. In fact, the variation of the result with the change of ωmax in
±500 MeV is about four times smaller than the error. The same conclusions holds also
for the other cases and for Z̄(p). As discussed already in Sec. 6.1, the numerical results
hardly change with the variation of ωmin. For example, when we choose the lower bound
as ωmin = 2 GeV, the numerical result overlaps with that in Fig. 7.8 within numerical
precision. These results suggest that our analysis of Ē(p) is insensitive to the choice of
the interval I and thus is well justified.

The results in Figs. 7.5 and 7.6 suggest that the momentum dependence of the
charmonia hardly changes from the Lorentz covariant one in Eqs. (3.36) and (3.37) even
well above Tc, although the rest mass m is significantly increased as T is raised. In
vector channels, we do not observe difference between the transverse and longitudinal
components within the error in MEM analysis even at finite temperature. These results
are nontrivial because Lorentz symmetry is lost in medium, and quite interesting from



7.4. Residue and dispersion relation 63

5.0 5.5 6.0 6.5 7.0 7.5

ωmax[GeV]

4.0

4.2

4.4

4.6

4.8

5.0

Ē
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the phenomenological points of view.
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Chapter 8

Charm quark diffusion coefficient
and relaxation time

We have analyzed the charm quark diffusion coefficient on the lattice using the inequality
Eq. (6.24) discussed in Chap. 6. The characteristics of this study is the use of the
current-current correlator in temporal channel at nonzero momentum. This is contrasted
to the previous studies with the Kubo formulas which analyze the spatial channel at
zero momentum. At zero momentum, owing to the charge conservation the Euclidean
correlator in temporal channel is given by a constant proportional to susceptibility. The
correlator at nonzero momentum, on the other hand, is dependent on imaginary time
and contain the information on dynamics. As we will see later, the temporal channel
at nonzero momentum is more sensitive to the low-energy part of dynamical properties
than the spatial one. The purpose of the present study is to exploit this sensitivity in
the analysis of the transport coefficients.

This chapter is organized as follows. In Sec. 8.1 we show you the detailed simu-
lation parameters. Next we show the numerical results. First, we show the temporal
Euclidean correlators with nonzero momentum in Sec. 8.2. Sec. 8.3 shows the difference
of the correlators with respect to momentum and linear extrapolation of p̃2. Finally, the
constraint for the diffusion coefficient and the relaxation time is shown in Sec. 8.4.

8.1 Simulation set up
As we discussed in Chap. 6, the large spatial extent of the lattice is important for this
analysis and we have adopted the anisotropic lattice simulation owing to necessity of
the correlators with a small nonzero momentum. The lattice action and its parameters
are shown in Chap. 6. In the case of a naïve boson and the spatial lattice size Nσ, the
discretized momentum is given by Eq.(6.28). Therefore, the lowest nonzero momentum
is thus given by

pmin
T

' 2π
Nτ

ξNσ
. (8.1)

In order to study the momentum dependence of G00(τ,p) in the range |p|/T . 1 at
which hydrodynamic description of the system would be justified, we have to perform
the simulation with small Nτ/(ξNσ). The anisotropic lattice is suitable to fulfill this
requirement. We also perform the simulation with relatively large lattice size Nσ = 128
for each temperature. The value of pmin/T for each T is shown in Table 8.1. They are
considerably smaller than unity. Our analysis thus can study p dependence for p/T < 1.
In addition to this analysis, the simulation with Nσ = 64 is also carried out for Nτ = 32
to study the finite volume effect.

For the charm quark current on the lattice, we use the local current operator jµ(x) =
c̄(x)γµc(x) with c(x) and c̄(x) are located on a same lattice site. As we will discuss later,
the use of the conserved current operator would improve the analysis with a fixed lattice



66 Chapter 8. Charm quark diffusion coefficient and relaxation time

Table 8.1: Lattice simulation parameters.

Nτ T/Tc Nσ pmin/T Nconf
16 4.67 128 0.196 361
20 3.73 128 0.245 229
24 3.11 128 0.294 240
28 2.67 128 0.344 91
32 2.33 128 0.397 100
32 2.33 64 0.794 304
36 2.07 128 0.442 100
40 1.87 128 0.491 100
44 1.70 128 0.540 89

spacing. The current-current correlators Gµν(τ,p) are measured with various choices of
p = (px, py, pz) to perform the analysis for possible integer values of p̃2.

8.2 Correlation function
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Figure 8.1: Momentum dependence of G00(τ,p) normalized by
G00(τ, 0) for Nτ = 24 and Nσ = 128.

In Fig. 8.1 we show the ratio G00(τ,p)/G00(τ, 0) for the same correlator. The error
is estimated by the jackknife analysis, which takes the correlation between G00(τ,p) and
G00(τ, 0) into account. One finds that the ratio is determined with small statistical error
of order 0.001%. The strong correlation between the correlators with different momenta
measured on a same configuration suppresses the error of the ratio.

Focusing on the midpoint τmid = 1/(2T ), we see that M0(p) = G00(τmid,p) is de-
creased as p is increased. This behavior means that ∂p̃2M0 is negative. Because ∂p̃2M

high
0

is positive, the negative ∂p̃2M0 shows that |∂p̃2M
hydro
0 (p)| > ∂p̃2M

high
0 . From the figure,

one also finds that the second derivative of G00(τ,p) at the midpoint is positive for p > 0
and increases as p becomes larger. This behavior indicates a positive ∂p̃2M2.
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momentum.

8.3 Momentum derivatives
We next analyze ∂p̃2M0 and ∂p̃2M2. In our analysis, M0(p) for individual p is defined
directly from the midpoint correlator as M0(p) = G00(τmid,p). The value of M2(p) is
estimated using G00(τ,p) at five τ values around the midpoint by fitting the data with
the correlated chi-square fit with the fitting function

G00(τ,p) = m0 +m2(τ − τmid)
2 +m4(τ − τmid)

4. (8.2)

We then define the p̃2 derivatives of M0(p) and M2(p) from the difference of Mn(p) at the
neighboring values of p̃2. The p̃2 dependences of ∂p̃2M0(p) and ∂p̃2M2(p) obtained in this
way is shown in the upper and lower panels of Fig. 8.2, respectively, for several values
of Nτ . The figure shows that these quantities behave almost linearly as functions of p̃2.
We thus take the zero momentum extrapolations of Mn(p) by the linear extrapolation
of p̃2. The correlated chi-square fit is performed using six data points from small p̃2.
The result of ∂p̃2M0 and ∂p̃2M2 after the zero momentum extrapolation are summarized
in Table 8.2. The same extrapolation is performed with five and seven data points, and
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Table 8.2: Results of ∂p̃2M0/M0 and ∂p̃2M2/M0 after p → 0 extrapo-
lation. The first error shows the statistical one, while the second error is
the systematic one estimated from the number of data points used for the

linear extrapolations.

Nτ Nσ −∂p̃2M0/M0 ∂p̃2M2/M0

16 128 0.03181(4)(1) 0.914(2)(1)
20 128 0.03045(7)(11) 0.965(3)(1)
24 128 0.02903(19)(9) 1.002(4)(2)
28 128 0.02745(24)(4) 1.043(7)(0)
32 128 0.02614(10)(13) 1.097(5)(1)
32 64 0.02621(6)(0) 1.094(4)(0)
36 128 0.02442(11)(7) 1.139(9)(5)
40 128 0.02300(15)(6) 1.192(11)(0)
44 128 0.02178(36)(19) 1.235(12)(0)
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Figure 8.3: ∂p̃2M2/GL(1/2T, 0).

the largest difference is taken into account as a systematic error, which are shown by the
second error in Table 8.2. The result of the fit is shown in Fig. 8.2 by solid lines. The
nonzero slope of these lines suggest nonzero value of ∂2p̃2Mn(p). The values of χ2/dof
of the linear extrapolation is in the range 0.1 ∼ 7.8 which is slightly large. This would
imply that the effect of ∂3p̃2Mn(p), which is not considered in the linear extrapolation,
is not negligible, and thus the statistics of our data is high enough to analyze not only
∂2p̃2Mn(p) but also ∂3p̃2Mn(p).

In order to see the spatial volume dependence of these results, in Fig. 8.2 we show the
results on the Nτ = 32 and Nσ = 64 lattice. As the figure and the extrapolated values in
Table 8.2 show, no difference is observed between Nσ = 128 and 64 for Nτ = 32 within
statistics. We thus conclude that the spatial volume dependence is well suppressed with
Nσ = 128.

As in Eq. (6.26), ∂p̃2M2 is also estimated from the correlator in spatial channel
Gii(τ, 0). We have performed this analysis, and found that the value of ∂p̃2M2(p) ob-
tained from Gii(τmid,p) overestimates the value compared with those in Table 8.2 ob-
tained from G00(τ, 0). ∂p̃2M2/GL(1/2T, 0) is shown in Fig. 8.3. We can see that the val-
ues from G00(τ, 0) is about 30% smaller than that from Gii(τ,p), and ∂p̃2M2/GL(1/2T, 0)
are not constant for different Nτ . This inconsistency would be attributed to the lattice
artifact. First, because we employ the anisotropic lattice, the renormalization factor for
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jµ(τ,x) arising from the discretization effect can be different for spatial and temporal
channels. Second, the discretization effect violates the exact conservation law of jµ(τ,x)
on the lattice. In particular, the use of the local current operator jµ(τ,x) in our analysis
would make this effect large. Because Eq. (6.26) is obtained from the continuity equa-
tion Eq. (5.1), the violation of the conservation law can be the origin of the discrepancy.
In this study, we employ the value obtained from G00(τ,p). This choice is expected to
suppress both of the above discretization effects, since (1) the renormalization factor is
canceled out with this choice, and (2) the definition with G00(τ, 0) is the one obtained
directly from Eq. (5.5) without using the conservation law.

8.4 Diffusion coefficient and relaxation time
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Figure 8.4: τ̃R = τRT dependences of DL(τ̃R) and DU(τ̃R) for Nτ = 24
(T/Tc = 3.12). The region of D and τR allowed by Eq. (6.24) is shown

by the shaded color.

In Fig. 8.4, we show τ̃R dependences of DL(τ̃R) and DU(τ̃R) for Nτ = 24 with ∂p̃2Mn

obtained in the previous section. The errors are smaller than the thickness of the lines.
The shaded area in the figure shows the values of D and τR allowed by the inequality
Eq. (6.24). The figure shows that the area is strongly constrained by Eq. (6.24) and the
numerical results in the D–τR plane.

In the upper panel of Fig. 8.5, we show the T dependences of DL(τ̃R) and DU(τ̃R)
with τ̃R = 0, 0.5, 1.0 and 1.5. One finds that the difference between DL(τ̃R) and DU(τ̃R)

becomes small with increasing T . This suggests that the contribution of ρhigh
00 (ω,p) on

∂p̃2M0(p) and ∂p̃2M2(p) is relatively suppressed as T becomes larger. The value of DL(0)
provides the lower bound of D irrespective of the value of τR. As shown in the panel, the
value is 0.15 < DL(0)T < 0.25 for 1.7 < T/Tc < 4.7. Comparing the result in the panel
with the previous studies [87, 88, 93] shown in Fig. 1.5, this lower bound is consistent
with the value of D obtained in these study. The comparison of the panel with these
previous studies also suggests that our result on D is consistent with the previous ones
with 0.5 . τ̃R . 1.5.

The inequality Eq. (6.24), however, is not responsible for the determination of the
values of D and τR themselves as Fig. 8.4 shows. Additional constraints thus are required
to obtain their values. In the heavy quark limit, it is known that D and τR are related
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Figure 8.5: The T dependences of DL(τ̃R) and DU(τ̃R) with τ̃R =
0.0, 0.5, 1.0, and 1.5 (upper). τ̃R dependences of τRT/DL and τRT/DU

for Nτ = 24 (lower). See Eq. (8.3) for discussion.

to the quark mass mq as [86]

τRT

D
= mq. (8.3)

In the lower panel of Fig. 8.5 we shows τ̃R dependence of τRT/DL(τ̃R) and τRT/DU(τ̃R)
as functions of τ̃R for T = 3.12Tc. Assuming the validity of Eq. (8.3) for charm quarks
and mq ' 1 GeV, The panel suggests τRT & 1.
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Chapter 9

Summary

In this thesis we measured charmonia correlators at the finite temperature with nonzero
momenta in anisotropic quenched lattices. We adopted the anisotropic Wilson gauge
action with β = 7.0 and the renormalized anisotropy ξ = 4.0, and the Wilson fermion
action with the spatial hopping parameter κσ = 0.08285 and the fermion anisotropy
γF = 3.476 for the calculations. The temporal lattice spacing in physical unit is aτ =
0.00975fm. The simulations on the anisotropic lattices with the spatial lattice spacing
four times larger than the temporal one and the spatial lattice sizes Nσ = 64 and 128
enable the detailed analysis of the momentum dependence of the correlators at the finite
temperature. We studied the temperature dependence of the correlators by changing
the temporal lattice size with the fixed lattice spacing. The temporal lattice sizes are
Nτ = 32, 44, 46, 48, 50, 54, and 96 for Nσ = 64 and Nτ = 16, 20, 24, 28, 32, 36, 40,
and 44 for Nσ = 128.

We have applied MEM to the correlators with Nσ = 64 at T/Tc = 0.78 ∼ 1.70.
We have analyzed the momentum dependence of the peaks of the spectral functions
corresponding to ηc and J/ψ in the vacuum and in medium. In addition to the stan-
dard analysis of spectral functions, we focus on the residue and dispersion relations for
charmonia. To analyze these quantities with error in MEM, we have introduced the
definitions in Eqs. (6.2) and (6.3). We have numerically checked that the peaks corre-
sponding to the J/ψ and ηc can be studied by this analysis, as they are well isolated
and the results are insensitive to the choice of the interval I.

In the vacuum, the dispersion relations for charmonia in all channels, pseudoscalar
and vector, are consistent with the Lorentz covariant form and the residues for the bound
states do not show the momentum dependence. In the vector channel, the peaks for the
transverse and longitudinal components agree with each other within probabilistic signif-
icance. At finite temperature, we find the significant mass enhancement of charmonia
as medium effects. On the other hand, the dispersion relations are consistent with
that in the vacuum even at T ' 1.6Tc within probabilistic significance in MEM. Dif-
ference of the spectral functions between the transverse and longitudinal components
in the vector channel is not observed. These results suggest an interesting observation
that the medium effect on momentum dependence is well suppressed, although further
improvement in statistics is required to obtain more accurate conclusion. We finally
remark that these results cannot be explained by the naïve potential model. It is not
explained by the threshold enhancement [118], either. These results suggest that the
mass shift at finite temperature is caused by the nonperturbative interaction between
charmonia and gluons in the medium.

We derived inequality Eq. (6.24) constraining the values of D and τR using the
momentum derivatives of Euclidean correlator. The analysis of the lattice correlators
for 1.7 < T/Tc < 4.7 shows that these transport coefficients are nicely constrained in
the D–τR plane. This result suggests that the correlator G00(τ,p) is useful for the study
of the transport coefficients. Although in the present study we used G00(τ,p) only to
derive the inequality Eq. (6.24), it is interesting to pursue a better usage of this correlator
in the analysis of the transport coefficients. One of such a possibility is to introduce a
constraint on the form of ρhigh

L (ω,p) using, for example, the knowledge on the high energy
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behavior obtained from perturbative QCD [119]. As we obtained inequalities Eq. (6.24)
without assumptions on ρhigh

L (ω, 0) except for its semi-positivity, further constraint on
this function strengthen the restriction of the transport coefficients.

Another interesting possibility is the simultaneous use of the correlators G00(τ,p)
and Gii(τ,p) in the analysis of the spectral function. Because of Eq. (5.29), these corre-
lators are sensitive to different regions of ω. Therefore, the mixed use of two information
will lead us to more robust analysis of the spectral function. A first step along this direc-
tion may be the use of ρhigh

00 (ω,p) estimated from Gii(τ,p) in the analysis of G00(τ,p).
Ultimately, the Bayesian analysis of the spectral function with the simultaneous use of
G00(τ,p) and Gii(τ,p) would also be possible. As discussed in Sec. 8.3, however, in
the present numerical analysis we observed a mismatch between the value of ∂p̃2M2 ob-
tained from G00(τ,p) and Gii(τ,p), presumably due to the violation of the conservation
law owing to lattice artifact. The suppression of this effect is a crucial step to perform
the above analyses with the use of Eq. (5.29). The use of the continuum extrapolated
correlators [83] would be able to avoid the problem.

Although in this study we restricted ourselves to the analysis of the current-current
correlator, the formalism in Chap. 5 can be extended to the correlator of energy-
momentum tensor in a straightforward manner [90]. In this case, one obtains an equality
for sound velocity and inequalities to constrain shear and bulk viscosities. The analysis
of these transport coefficients with the momentum dependences of the correlator is an
important future study. Of coarse, the analyses of diffusion coefficients of quarks with
different masses, such as bottom, strange and light quarks, are another direct applica-
tions of the present study.
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Appendix A

Failure of MEM analysis

As discussed in Sec. 7.1, in our MEM analysis we observed that the output spectral
images behave in an unreasonable way in some channels and momenta on several sets of
configurations. In this appendix, we discuss this problem in detail and show a criterion
to remove them from the analysis.

Let us first specify the problem. In Fig. A.1, we show the spectral functions in the
vector channel at zero momentum ρi(ω,p = 0) obtained by MEM for i = 1, 2, and
3 with Nτ = 54 (T = 1.38Tc). Because of rotational symmetry, these three spectral
functions have to degenerate. Moreover, since our analysis discussed in Sec. 7.3 shows
the existence of a peak corresponding to the J/ψ at T/Tc = 1.49 and 1.62, the spectral
function for T = 1.38Tc should also have the pea In Fig. A.1, we indeed observe the
peak in ρ2(ω, 0) and ρ3(ω, 0). The peak, however, is not observed in ρ1(ω, 0). This
result shows that the reconstruction of the spectral image in MEM does not work well
for ρ1(ω, 0). In the figure, the errors for the averages of ρi(ω, 0) around the J/ψ peak are
also shown. The result shows that the averages for all channels agree with one another
within the error, although the error for ρ1(ω, 0) is large. In this sense, the MEM analysis
gives the consistent results for these three channels. It, however, seems obvious from the
figure that the MEM analysis for ρ1(ω, 0) is not working well compared with the other
two channels.

We observed this kind of unstable results in some channels and momenta for Nτ = 48
and 54. We have checked that the increase of statistics does not always resolve this prob-
lem; this problem sometimes manifests itself when the number of gauge configurations
is increased. We have also checked that this problem does not come from the finite
numerical precision in our MEM code by confirming that the same problem shows up
even if we change the numerical precision in our code from double to quadruple. It has
been also checked that the change of the default model does not cure this problem.

We found that when the output spectral image shows an unstable behavior, the
probability P (α) in Eq. (4.9) behaves pathologically as a function of α. In Fig. A.2,
we show the probabilities P i(α) for the three channels corresponding to the results in
Fig. A.1. In the figure, P i(α) is shown for 25 jackknife samples, i.e. the results for
25 sets of configurations in which 1/25 succeeding configurations are removed from the
total configurations. From the figure, one finds that P 1(α) has an almost discontinuous
kink structure while P 2(α) and P 3(α) behave smoothly as a function of α. The figure
also shows that the existence of the kink is robust against the small variation of the set
of gauge configurations. We found that when P (α) has such kink structures, the output
spectral image behaves in an unstable way as in ρ1(ω,p) in Fig. A.1.

At present, we have not clarified the origin of this pathological behaviors. One pos-
sibility for the origin of this behavior is the numerical precision of the lattice simulation
and correlation functions. The numerical simulations, however, have been performed in
double precision and it is difficult to alter the precision.

The pathological behavior of P (α) is observed on the analysis for Nτ = 54 and 48,
while we do not observe it for Nτ = 96, 50, 46, and 44. In our study, we simply exclude
the results of Nτ = 54 and 48 from our analysis and concentrate on the other four Nτ

values, which do not have the problem.
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Figure A.1: Reconstructed spectral images ρi(ω, 0) with i = 1, 2, and
3 and for Nτ = 54. The errors for the first peak in the spectral functions

are measured at the same ω interval.
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