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Universal covering Calabi-

Yau manifolds of the Hilbert schemes of n points of Enriques surfaces

TARO HAYASHI

INTRODUCTION

Throughout this paper, we work over C, and n is an integer such that n > 2.
A K3 surface K is a compact complex surface with wx ~ O and H'(K, Of) =
0. An Enriques surface E is a compact complex surface with H'(E,Og) = 0,
H?(E,0p) = 0, and w$? ~ Og. A Calabi-Yau manifold X is an n-dimensional
compact kdhler manifold such that it is simply connected, there is no holomorphic
k-form on X for 0 < k < n, and there is a nowhere vanishing holomorphic n-form
on X. By Oguiso and Schréer [10, Theorem 3.1], the Hilbert scheme of n points
of an Enriques surface EI™ has a Calabi-Yau manifold X as the universal covering
space of degree 2.

In this paper, we study the Hilbert scheme of n points of an Enriques surface

E[ and its universal covering space X.

Definition 0.1. For n > 1, let E be an Enriques surface, E[™ the Hilbert scheme
of n points of E, and X the universal covering space of El". A variety Y is called
an Enriques quotient of X if there is an Enriques surface E’ and a free involution 7
of X such that Y ~ E'["l and E'™ ~ X /(7). Here we call two Enriques quotients

of X distinct if they are not isomorphic to each other.
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2 TARO HAYASHI
Recall that when n = 1, F! is an Enriques surface E and X is a K3 surface.

In [11, Theorem 0.1], Ohashi showed the following theorem:

Theorem 0.2. For any nonnegative integerl, there exists a K3 surface with exactly
210 distinct Enriques quotients. In particular, there does not exist a universal

bound for the number of distinct Enriques quotients of a K3 surface.

Our main theorem (Theorem 0.3) is the following which is totally different from

Theorem 0.2:

Theorem 0.3. Forn > 3, let E be an Enriques surface, E'" the Hilbert scheme
of n points of E, and X the universal covering space of E™. Then the number of

distinct Enriques quotients of X is one.

Remark 0.4. When n = 2, we do not count the number of distinct Enriques
quotients of X. We compute the Hodge numbers of the universal covering space X

of EPI (Appendix A).

In addition, we investigate the relationship between the small deformation of
E" and that of X (Theorem 0.5) and study the natural automorphisms of E!"
(Theorem 0.8).

Section 2 is a preliminary section. We prepare and recall some basic facts on the
Hilbert scheme of n points of a surface.

In Section 3, we show the following theorem (Theorem 0.5).

Theorem 0.5. Forn > 2, let E be an Enriques surface, E'" the Hilbert scheme
of n points of E, and X the universal covering space of E". Then every small

deformation of X is induced by that of E".
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Remark 0.6. By Fantechi [4, Theorems 0.1 and 0.3], every small deformation of
E is induced by that of . Thus for n > 2, every small deformation of X is

induced by that of E.

When n = 1, EM is an Enriques surface E, and X is a K3 surface. An En-
riques surface has a 10-dimensional deformation space and a K3 surface has a 20-
dimensional deformation space. Thus the small deformation of X is much bigger
than that of . Our Theorem 0.5 is different from the case of n = 1.

In Section 4, we show the following theorem (Theorem 0.8).

Definition 0.7. For n > 2 and S a smooth compact surface, any automorphism
f € Aut(S) induces an automorphism fI" € Aut(S[™). An automorphism g €
Aut(SM) is called natural if there is an automorphism f € Aut(S) such that

When S is a K3 surface, the natural automorphisms of SI" were studied by
Boissiere and Sarti [3]. They showed that an automorphism of S is natural
if and only if it preserves the exceptional divisor of the Hilbert-Chow morphism

[3, Theorem 1]. We obtain Theorem 0.8 which is similar to [3, Theorem 1]:

Theorem 0.8. Forn > 2, let E be an Enriques surface, D the exceptional divisor
of the Hilbert-Chow morphism q : E™ — E™  and n : X — E" the universal
covering space of ER. Then

i) An automorphism f of E" is natural if and only if f(D) = D.

i) An automorphism g of X is a lift of a natural automorphism of E™ if and only

if (= 1(D)) = =~ (D).

In Section 5, we show main theorem (Theorem 0.3).
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In addition, let Y be a smooth compact Kéhler surface. For a line bundle L on

Y, by using the natural map Pic(Y) —=Pic(Y™)), L — L, we put
pPa (Y L) = dimeH(YIM, QP

Y] )’

hPA(Y, L) := dimcHY (Y, Q8 @ L),

o
Z hPa (Yl L )Py, and

n,p,q=0

) (,1)p+th,q(y_’L)

00 2 1
1;[ 11 (1— (—1)ptagptk—lygth—1gk)

In [2, Conjecture 1], S. Boissiére conjectured that
A=B.

In the proof of Theorem 0.5, we obtain the counterexample to this conjecture for

Y an Enriques surface and L = Q2. See Appendix B for details.

Acknowledgements 0.9. I would like to express my thanks to Professor Keiji
Oguiso for his advice and encouragement and the referees for a very careful reading
and many helpful suggestions, especially, the counterexample to the conjecture in

[2, Conjecture 1].

1. PRELIMINARIES
Let S be a nonsingular projective surface, S" the Hilbert scheme of n points of
S, ¢ : SM — S the Hilbert-Chow morphism, and p : S™ — S the natural pro-
jection. We denote the exceptional divisor of ¢ by D. By Fogarty [5, Theorem 2.4],

S is a smooth projective variety of dimeSM™ = 2n. We put

A" = {(wi)i € 5" [} <n—11,
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ST i={(mi)ic, € 5" Haitis| =n—-114,

A" := A" N S", and

S = g (p(S2)),

When n = 2, Blowa252%/%5 ~ S for n > 3, we have Blowan S} /%, ~ Sin], and
S ["]\SL"] is an analytic closed subset and its codimension is 2 in S ([1, page 767-
768]). Here X,, is the symmetric group of degree n which acts naturally on S™ by
permuting of the factors.

Let 4 : K — E be the universal covering space of E where K is a K3 surface,
and ¢ the covering involution of p. They induces the universal covering space
u K" — E". For1<k<n, 1<i <-- <i, <n, we define automorphisms

tiy .4, of K™ in the following way: for x = (z;)1, € K™,

L(.Ij) j S {il,...,ik}

the j-th component of ¢;, ;, (x) = 1 i ]
v 3¢ ik

Let G be the subgroup of Aut(K™) generated by ¥, and {¢;}1<i<, and H the
subgroup of Aut(K™) generated by ¥, and {i;;}i<icj<n. Since K"/G = E™)
H <G, |G/H| = 2, and the codimension of p~1(A") is two, we get the universal
covering spaces

pr s K™\pu Y (A™) — K™\ ' (A™)/G, and

p2t K™\p™H(A") = K™\u~H(A")/H,
where p; and ps are the natural projections. For n > 3, we put
K= (u") "N (ED),
Ty = {(x)iy € K&« u(x:) = x5},

AY = ()i € KL 2wy = a1},
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Io:= |J T, and

1<i<j<n

A = U Uéj.

1<i<j<n
Then we get u" 1(A”) =T, UA,. By the definition of K, H acts on K?. For an

element Z := (2;)/, € I's N Ao, some i, j, k,l with k # [ such that o(Z;) = Z; and

Zx = ;. Since o does not have fixed points. Thus #; # Z;. Therefore p" (%) ¢ E.

This is a contradiction. We obtain I'yc N Ag = 0.

Lemma 1.1. Forte€ H and1 <i < j <mn, ift € H has a fized point on AY | then

t=(i,j) ort=idgn.

Proof. Let t € H be an element of H where there is an element & = (;)7, € AY
such that ¢(Z) = Z. For ¢t € H, there are o, where 1 < a < b <nand (j1,...,Ji) €

Y., such that
t = (J1,---,J1) © Lab-
From the definition of AY, for (x;)1, € AY,
{z1, .oz N {e(x1), .y e(zn)} = 0.

Suppose tqp # idgn. Since t(Z) = &, we have

{Z1, ., T} N {(Z1), .., e(Bn)} # 0.
This is a contradiction. Thus we have t = (j1,...,7;). Similarly from the definition
of AY, for (z))-, € AY if xy =2, (1 <5<t <n),then s =1iandt=j. Thus we

have t = (i,7) or t = idgn. O

Lemma 1.2. Fort€ H and 1 <i < j<mn,ift € H has a fixed point on LY then

t=1;0(i,7) ort=idgn.
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Proof. Let t € H be an element of H where there is an element Z = (#;), € T'¥
such that t(Z) = &. For t € H, there are i, where 1 < a <n and (j1,...,1) € Sp

such that
t=(j1---J1)© ta-
Since (j,j+ 1) o 0(j,j+ 1) : U;j — T;; is an isomorphism, and by Lemma 1.1,
we have
(G j+1ovjo(j+1)oto(jj+1)oe;0(jj+1)=(ij) oridgn.

If (j,j+1)o 0(4,j+1)oto(j,j+1)oe;j0(j,j+1)=1idgn, then t =idgn. If

(g +1)owjo(fj+1)ete(jj+1)o;o(j,j+1)=(ij), then
t=0,j+Dovjo(j+1)o(g)eUi+1)ow;o(j+1)

=0 j+ov o, j+1) o 0(jj+1)
=i+ oo (i,j+1)e(,j+1)
= ;50 (4, ])-
Thus we have ¢t = ¢; ; o (¢, 7). O

For the natural projection we get a unramified covering space: K"/H — K" /G =

EM = E™/%,,. From Lemma 1.1 and Lemma 1.2, we get a local isomorphism:

6 : Blow,n 1 (am) K2 /H — EM.

Lemma 1.3. For every x € B, 0=1(z)| = 2.

Proof. For (x;)l, € A? C E™ with 21 = x4, there are n elements y1,...,y, of K

such that y; = yo and p(y;) = x; for 1 < i < n. Then

(") " (@a)izy) = {yn, ey} > - % {yn, e(yn) }-
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Since H is generated by ¥, and {t;;}1<icj<n, for (2;)"; € (™)~ ((x;)™ ;) if the

number of ¢ with z; = y; is even, then

(Zi)?zl = {L(yl)? L(y2)7y3a s 7y7l} on Kg/H7 and

if the number of 7 with z; = y; is odd, then

(zi)iz1 = {¢(¥1), Y2, Y3, yn} on KJ/H.

Furthermore since ¢; ¢ H for 1 <i <mn,

{L(yl)a L(y2)7y37 s 7yn} 7& {L(yl)vaa Y3s- - 7yn}7 on K?/H

Thus for every x € ELH], we get |07 (z)| = 2. O

Proposition 1.4. ¢ : Blow,n-1(an)KJ/H — Blowar E}'/Y, is the universal

covering space, i.e. W‘l(EL"}) ~ Blow,n-1(an)KJ/H. When n = 2, we have

X ~ B]OW#Q—I(Az)KQ/H.

Proof. Since 0 is a local isomorphism, from Lemma 1.3 we get that 6 is a cov-
ering map. Furthermore 7 : 7~ Y(EM) — E!™ is the universal covering space
of degree 2, 6 : Blow,n-1an)K'/H — Blowan E} /%, is the universal covering
space. By the uniqueness of the universal covering space, we have W‘l(EL"]) ~
Blow ;n—1(an) K2 /H. When n = 2, since E? = E?, K2 = K? and Blowa:E? /%y ~

EPl we have X ~ Blow 2-1(x2)K?/H. O

Theorem 1.5. Forn > 2, let E be an Enriques surface, E™ the Hilbert scheme of
n points of E, and © : X — E") the universal covering space of EM™. Then there

is a birational morphism ¢ : X — K" /H such that o~ *(u" ' (A™)/H) = 7~ Y(D).
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Proof. When n = 2, this is proved by Proposition 1.4. From here we assume that
n > 3. From Proposition 1.4, we have ﬂ_l(ELn}) ~ Blow,n-1(an) K3 /H. Since the
codimension of X\ﬂfl(EL"]) is 2, there is a meromorphim f of X to K™ /H which

satisfies the following commutative diagram:

E}Ln] q E(n)

T

UEMY) L kg

where ¢ : E"l — E(™ is the Hilbert-Chow morphism, and p : K"/H — E™)
is the natural projection. For an ample line bundle £ on E(™, since the natural
projection p : K"/H — E™ is finite, p*£ is ample. From the above diagram, we

have 7*(¢* L) = f*(p*L). Since X\m~! (ELn]) is an analytic closed subset of

|7r*1(E£"
codimension 2 in X and pj; £ is ample, there is a holomorphism ¢ from X to K" /H
such that ¢ |X\7r*1(F): f ‘X\W—I(F). Since f: X\ 7T71(D) >~ (K" \,u"il(A"))/H,

this is a birational morphism. O

2. PROOF OF THEOREM 0.5

Let E be an Enriques surface, E[™ the Hilbert scheme of n points of E, and
7 : X — E[ the universal covering space of E[™. In this section, we show Theorem

0.5 (Theorem 2.2).
Proposition 2.1. For n > 2, we have dimcH! (EM, QQE’H}l) =0.

Proof. For a smooth projective manifold .S, we put

hP4(S) := dimcH?(S, Q%) and
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h(S,z,y) = Z hP9(S)zPyd.

p.q

By [7, Theorem 2] and [6, page 204], we have the equation (1):

&0 1 (—1)PHapP 9 (E)
P.q [n Py a4

S Sy = 11 1T (1= e Ty -

n=0 p,q k=1 p,q=0

Since an Enriques surface E has Hodge numbers h%°(E) = h?2(E) =1, h10(E) =

YN (E) =0, h?(E) = h%2(E) = 0, and h>!(E) = 10, the equation (1) is

s o= 1 1 10 1
Z Z hPa (B gPyan = H (1 — xquk—ltk) (1 — xkyktk) (1 — xk“yk“tk).
g Sy k=1

It follows that
hP4(EMY) = 0 for all p, ¢ with p # ¢.

Thus we have dimcH! (B, Q3771) = 0 for n > 2. O

Theorem 2.2. Forn > 2, let E be an Enriques surface, E' the Hilbert scheme
of n points of E, and X the universal covering space of E™. Then every small

deformation of X is induced by that of E™

Proof. In [4, Proposition 4.2 and Theorems 0.3], Fantechi showed that for a smooth
projective surface with H(S,Ts) = 0 or H!(S,Og) = 0, and H!(S, Os(—Kg)) =0
where K is the canonical divisor of .5,

dimcH' (S, T) = dimcH' (S, Tgny).
Since an Enriques surface E satisfies H*(E, Tg) = 0 or H(E, Og) = 0, and
HY(E,Op(—Kg)) = 0, we have dimcH' (B, T ) = 10. Since K g is not trivial

and 2K gn) is trivial, we have

2n—1
Ty ~ QET[L,L] & KE['n,].
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Therefore we have dimcH! (E™, Qiffn '® Kpw) = 10. Since Kx is trivial, then we

have T'x ~ Q?Xfl_l. Since 7 : X — E[ is the covering map, we have
HE(X, 03 ) = B (B, 70307,
Since X ~ Spec Ogim @ O (K gw) ([10, Theorem 3.1]), we have

Hk(E[n},ﬂ'*Q?_l) Hk(E[n] Q?ﬁn]l (QQn ® K gim)).

Thus
HA (X, Q1) ~ HYEM, 02 e (020! @ Kg)

= H ( QzEr[Lnll) @ Hk(E[n Q2E’rfn]1 ® KE["])'

Combining this with Proposition 2.1, we obtain
dimcH' (X, Q% 1) = dimcH (EM, 215" @ Kpim)

=10.

Let p: Y — U be the Kuranishi family of E[. Since each canonical bundle of E"]
and F is torsion, they have unobstructed deformations ([12]). Thus U is smooth.
Let f: X — Y be the universal covering space. Then ¢ : X — U is a flat family of
X where ¢ := po f. By [4, Theorems 0.1and 0.3], all small deformation of EI" is
induced by that of E. Thus for u € U, ¢~*(u) is the universal covering space of the
Hilbert scheme of n points of an Enriques surface. Then we have a commutative

diagram:

Tuo — H' (Yo, Ty, ) == HY(EM, Ty1m)

S b F

HY(Xy, Tx,) =——= H'(X, Tx).
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Since HY(EM, Tp) ~ HY (X, Tx) by 7*, the vertical arrow 7 is an isomorphism
and

dimcH' (X, Ty, ) = dimcH (X, Q3 )
is a constant for some neighborhood of 0 € U, it follows that ¢ : X — U is the
complete family of Ay = X, therefore ¢ : X — U is the versal family of Ay = X.

Thus every small deformation of X is induced by that of El". O

3. PROOF OF THEOREM 0.8

For n > 2, let E be an Enriques surface, E" the Hilbert scheme of n points of E,
7 : X — E" the universal covering space of E[™, and D the exceptional divisor of
the Hilbert-Chow morphism ¢ : El"l — E()_ Recall that ¢ is the covering involution
of u: K — E,py: K"\ p" *(A") — EM\ D = EM\A"/%,, = K™\p" 1(A™) /G
and py : K™\ p" HA") — X \ 7 YD) = K™\u" *(A")/H are the universal
covering spaces where p; and p, are the natural projections. In this section, we

show Theorem 0.8 (Theorem 3.2).

Lemma 3.1. i) Let f be an automorphism of Eln] \ D, and g1,...,g, automor-
phisms of K such that p1 o (g1 X -+ X gn) = f op1, where (g1 X -+ X gp) is the
automorphism of K™. Then we have g; = g1 or g; = g1 ot for each 1 < i < n.
Moreover gy ot =10g;.

ii) Let f be an automorphism of X \ n=Y(D), and g1, ..., gn automorphisms of K
such that ppo (g1 X +++ X gn) = f opa, where (g1 X -+ X gy,) is the automorphism of

K™. Then we have g; = g1 or g; = g10t for each 1 < i <mn. Moreover gioL = 10g;.

Proof. We show 1) by contradiction. Without loss of generality, we may assume that

go # g1 and go # g1 ot. Let hy and hy be two morphisms of K where g; o h; = idg
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and h; o g; = idg for i =1, 2. We define two morphisms A4; o and A; 2, from K to

K? by

ALQ K>+ (hl(l'),hg(l')) S K2

Aro,: K 320 (hy(x),00ho(n)) € K2

Let T, := {(z,y) : y = t(x)} be the subset of K2. Since hy # ho and hy # o ha,
Al_é(AQ) U Ai%,b(n) do not coincide with K. Thus there is 2’ € K such that
Ai2(2') ¢ A% and Aj,(2') € T,. For 2’ € K, we put z; := h;(z') € K for
i = 1, 2. Then there are some elements z3,...,x, € K such that (z1,...,2,) €
K™\ " H(A™). We have g((z1,...,2,)) & K™\u" ' (A™) by the assumption of z;
and x5. It is contradiction, because g is an automorphism of K™\pu”~'(A™). Thus
we have g; =g or g; =g1 ot for 1 <i<n.

Let g :== g1 X -+ X gn. Since the covering transformation group of p is G, the
liftings of f are given by {gowu:u € G} ={uog:u € G}. Thus for ¢ o g, there is
an element ¢, 0 s of G where s € I';, and 1 < a < n such that 1y og=got,0s. If
we think about the first component of +; o g, we have s = id and a = 1. Therefore

1 =, we have 10 gy = g; o ¢. In the same way, we have ii). [

gotLog
Theorem 3.2. Forn > 2, let E be an Enriques surface, D the exceptional divisor
of the Hilbert-Chow morphism q : EM — E™  and 7 : X — E" the universal
covering space of E?. Then

i) An automorphism f of E™ is natural if and only if f(D) = D.

i) An automorphism g of X is a lift of a natural automorphism of E™ if and only

if g(x= (D)) ==~ (D).
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Proof. We show (1). Let p : K — E be the universal covering space of E. By

Theorem 1.5, there is a commutative diagram

Einl 9, p(n)

1,

X —2yK"/H,

where p is the natural projection and ¢ is a birational morphism. Since E"\ D 5

E™ A™/%,,, we have the universal covering spaces
pr s KM\ AT) 5 EMATS,,
po: KM\p" 1AM — K™\p" Y (A™)/H, and

and the following commutative diagram:

K™\pn (A" /H 22— E"\A"/%,

-

K\ (A,

where p1, pa, and p3 are the natural projections. For f € Aut(EM) with f(D) = D,
from the uniqueness of the universal covering space, f induces an automorphisms
f of K™\u""*(A™). Since K is projective and codim p~'(A") is over 2, f is a
biratioal map of K™. By [9], f is au automorphism of K™ and there are g1,...,gn
automorphisms of K such that f = (g; X --- x g,) o s where s € ¥,,. Since ¥ C G,
we get fopr =p1o(g1 X+ X gp). From Lemma 3.1, we get ¢). By Theorem 1.5

and the above diagram, in the same way, we get ii). (I

4. PROOF OF THEOREM 0.3

Let E be an Enriques surface, EI" the Hilbert scheme of n points of E, and

7 : X — E!" the universal covering space of El".
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In Proposition 4.2, we shall show that for n > 3, the covering involution of

7 : X — EM acts on H*(X,C) as the identity. In Proposition 4.5, by using
Theorem 3.2 and checking the action to H'(X, Q3% !) = H2*~L1(X), we classify
involutions of X which act on H?(X,C) as the identity. We prove Theorem 0.3

(Theorem 4.7) using those results.

Lemma 4.1. Let X be a smooth complex manifold, Z C X a closed submanifold
whose codimension is 2, 7 : Xz — X the blow up of X along Z, E = 771(Z) the
exceptional divisor, and h the first Chern class of the line bundle Ox, (F).

Then 7 : H?(X,C) — H?(Xz, C) is injective, and

H?*(Xz,C) ~ H*(X,C) @ Ch.

Proof. Let U := X \ Z be an open set of X. Then U is isomorphic to an open set
U =Xz \E of Xz. As 7 gives a morphism between the pair (Xz,U’) and the pair
(X,U), we have a morphism 7* between the long exact sequence of cohomology

relative to these pairs:

H*(X,U,C) —— H*(X,C) — H*(U,C) —— H+1(X, U, C)

* * * *
TX,U Tx T TxX,U

H*(X7,U',C) —— H*(Xz,C) —— H*(U',C) —— HF (X4, U’, C).

By Thom isomorphism, the tubular neighborhood Theorem, and Excision theorem,
we have
H?(Z,C) ~ H""(X,U,C), and
HY(E,C) ~ HI"?(X 4, U’,C).

In particular, we have

HY(X,U,C) =0 for I =0,1,2,3, and
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H/(Xz,U’,C) =0 for 1 =0,1.
Thus we have

0 — H'(X,C) — H'(U,C) —— 0

* * * *
X, U Tx T X, U

0 —— HY(Xz,C) —— HY(U',C) —— H°(E, C),
and

0— 3 H*X,C) —— H2(U,C) —————0

. . . *
lTX,U lTX JTU JTX,U

HO(E,C) — H2(Xz,C) —— H3(U’,C) —— H3(X 2, U", C).

Since 7 |p: U' = U, we have isomorphisms 77, : H*(U,C) ~ H*(U’,C). Thus

we have
dimcH?*(X 2, C) = dimcH?*(X,C) + 1, and
7 : H?(X,C) — H?*(X 4, C) is injective,
and therefore we obtain

H%*(Xz,C) ~ H*(X,C) ® Ch.

Proposition 4.2. Suppose n > 3. For the covering involution p of the universal
covering space ™ : X — EU | the induced map p* : H*(X,C) — H?(X,C) is the
identity.

Proof. Since the codimension of X\7~1(E!™) is 2, we get

H?(X,C) 2 H*(X \ 7~ }(F),C).
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By Proposition 2.6, X\m ! (E™) ~ Blow 1 (an) K2/ H.

Let 7 : Blown—1an)Kg — K be the blow up of K along prm(A),

hij the first Chern class of the line bundle Opiow,,,_; 5., Kz (t71(AY)),

and
k;; the first Chern class of the line bundle OBloan_l(M>Kg (r~H(T49)).

By Lemma 4.1, we have

H2(Blow,,«-1(an) K7, C) = H}(K™,C) & ( o, (Chij>EB( D (Ck:i]).
1<i<j<n 1<i<j<n
Since n > 3, there is an isomorphism
G+ Dooio(j+1): A =T,
Thus we have dimcH?(Blow,n-1(an) K7 /H, C) = 11, i.e. dim¢H?*(X, C) = 11. Since

H2(El" C) = H?(X,C)*", p* is the identity. O

Since K™/H is normal, 7~ 1(E) is the exceptional divisor (Theorem 2.5) and X
is a Calabi-Yau, we have that for an automorphism f of X, f(7=1(D)) = =~ (D)

if and only if f*Ox(7~1(D)) = Ox(7~1(D)) in Pic(X).

Definition 4.3. Let S be a smooth surface. An automorphism ¢ of S is numerically
trivial if the induced automorphism ¢* of the cohomology ring over Q, H*(S, Q) is

the identity.

We suppose that an Enriques surface F has numerically trivial involutions. By
[8, Proposition 1.1], there is just one numerically trivial involution of E, denoted

v. For v, there are just two involutions of K which are liftings of v, one acts on
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HO(K, Q%) as the identity, and another acts on H(K,Q%) as —idpo(x 2 ), we
denote by vy and v_, respectively. Then they satisfies v = v_ oo.

Let vl be the automorphism of E[ which is induced by v. For v[™, there are
just two automorphisms of X which are liftings of v[™, denoted ¢ and ¢’, respec-
tively:

ol

ER Y plnl

T s (") T

X——X

Then they satisfies ¢ = ¢’ o p where p is the covering involution of 7 : X — E"
and the each order of ¢ and ¢’ is 2. From here, we classify involutions acting on

H2(X,C) as the identity by checking the action to H**~11(X, C).
Lemma 4.4. dimcH**~11(K"/H,C) = 10.

Proof. Let ¢ be the covering involution of p : K — E. Put
HEY(K,C) := {a € H*Y(K,C) : t*(a) = £} and
EY(K) := dimcHY (K, C).

Since K is a K3 surface, we have

ROYK) =1, h*°(K) =0, h*°(K) =1, h"*(K) = 20,

hY(K) =1, LK) = 0, h32°(K) = 0 k' (K) = 10,
RPYUK) =0, h%(K) =0, h?°(K) =1, and h*°(K) = 10.

Let

A = {(81, cee ,Sn,tl,' . ,tn) S ZQZ% . E?:lsi = 27’L — 1, E;—L:ltj = 1}
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From the Kiinneth Theorem, we have

n

H"" LK™ C) ~ $H (@ H b (K, (C)).

(81, 8nst1, e tn ) EA

We take a base a of H*%(K, C) and a base {3;}?°, of H}(K, C) such that {3;}12,

is a base of H"' (K, C) and {8;}22,, is a base of H}'(K,C). Let

n
-®-
j=1
where €; = o for j # 7 and €¢; = §; for j =4, and
n ~
=D
j=1
Then {7;}?Y, is a base of H2"~L1(K" C)S». Since t*a = —a, 1*3; = —f; for
1 <i<10, and ¢*B; = B; for 11 < ¢ < 20, we obtain
tivi =i for 1 <4 <10, and

L = —i for 11 <4 < 20.

Since H2"~L1(K"/H,C) ~ H*"~ L1 (K™ C)! and H = (S, {04j}1<i<j<n), We ob-

tain
H2n-L1 K"/H(C @(C%
Thus we get dimcH?*"~11(K"/H, C) = 10. O

Recall that p : K™\ u"~'(A™) — EM\ D = E"\A" /%, is the universal covering

space.

Proposition 4.5. We suppose that E has a numerically trivial involution, denoted

v. Let v be the natural automorphism of E™ which is induced by v. Since the
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degree of m: X — EU is 2, there are just two involutions ¢ and ¢’ of X which are

lifts of v!™. Then ¢ and ¢’ do not act on H>*~11(X,C) as —idpen-11(x,c)-

Proof. Since vI"(D) = D, U["]\E[n]\D is an automorphism of E™ \ D. By the
uniqueness of the universal covering space, there is an automorphism g of K™ \

p"~H(A™) such that v op=pog:

B \DLEW \ D

Ko\ = (Ar) —s Ko\ (AT,
By Proposition 3.1, there are some automorphisms g; of K such that g = g1 x---Xgn
foreach 1<i<mn,g;=g¢g10rg;=g10¢t,and gy ot =10 g;. By Theorem 1.5, we
get K™\ p» " (A™)/H ~ X \ 7~ (D). Put
VU4 even = UL X -+ X Up
where

u; = v4 or u; = v_ and the number of i with u; = vy is even.

Ut even 1S an automorphism of K™ and induces an automorphism 11:;;71 of
K™\ "~ Y(A")/H. We define automorphisms 0 ogd, U cpen, and 0_ oqq of K™\
p" ' (A™)/H in the same way. Since o;; € H for 1 <i < j <mn, and vy =v_ oy,

if n is odd,

U+ 0dd = U— eveny U+,even = U— odd and U+ odd 7é U+ evens

and if n is even,

—~—

—_ —_
VU4, 0dd = V—,odd; V+,even = U— even, and V4 odd # V4 even-
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Since v o = rpov™ and K™\ " 1 (A™)/H ~ X \ 7~ 1(D), we have v o =
To m and v o = 7o v:;;n where 7z : E" — E(™ is the Hilbert-Chow
morphism, and v(™ is the automorphism of E(™ induced by v. Since the degree of
7 is 2, we have {¢,¢'} = {04 odd, Uy coen }- By [8, page 386-389], there is an element

ax € HY' (K, C) such that v} (ay) = tay. We fix a basis o of H*(K, C), and let
oy, = ®€j
j=1
where €; = o for j # ¢ and €; = ot for j =14, and
- P,
j=1

Since there is a birational map ¢ : K™ — X by Theorem 1.5, and by the definition

of U4 ogd and Uy eyen, We have

* * —~

U+ ,0dd (‘P*(&:—)) =¢*(ag) and U+ ,even (go*(a_)) = <p*(0z_).

Thus ¢ and ¢’ do not act on H**~ (X, C) as —idyzn-1.1(x ¢)- O

Definition 4.6. For n > 1, let E be an Enriques surface, E[™ the Hilbert scheme
of n points of E, and X the universal covering space of E™. A variety Y is called
an Enriques quotient of X if there is an Enriques surface E’ and a free involution 7
of X such that Y ~ E'[" and E'™ ~ X /(7). Here we call two Enriques quotients

of X distinct if they are not isomorphic to each other.

Theorem 4.7. Forn > 3, let E be an Enriques surface, E'" the Hilbert scheme
of n points of E, and X the universal covering space of EM. Then the number of

distinct Enriques quotients of X is one.
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Proof. Let p be the covering involution of = : X — E[ for n > 3. Since for
n > 3 dimcH?(EM,C) =dimcH?(X,C) = 11, dimcH?" " MY(E'" C) = 0, and
dimcH?" =11 (X, C) = 10, we obtain that p* acts on H?(X,C) as the identity, and
H?"~L1(X,C) as —idpze-1.1(x,0)-

Let ¢ be an involution of X, which acts on H?(X,C) as the identity and on
H?"~L1(X, C) as —idg2n-1.1(x,c). By Theorem 3.2, for ¢, there is an automorphism
¢ of E such that ¢ is a lift of ¢ where ¢! is the natural automorphism of E™
induced by ¢. Furthermore since the order of ¢ is at most 2, the order of ¢ is 2.
Since ¢[™ o m = 70, ¢IM* acts on H*(E™,C) as the identity. Thus ¢* acts on
H2(E,C) as the identity. If E does not have numerically trivial automorphisms,
then ¢ =idg. Thus ¢ = p.

We assume that ¢ does not the identity map. Then ¢ is numerically trivial.
Then ¢ = v and ¢ € {(,(’'}. By Proposition 4.5, we obtain that ¢ does not act on
H?"~L1(X,C) as —idgzn-1.1(x,c). This is a contradiction. Thus ¢ = idg, and we

get ¢ = p. This proves the theorem. (I

Theorem 4.8. Forn > 2, let 7 : X — E™ be the universal covering space. For
any automorphism ¢ of X, if ¢* is acts on H*(X,C) := @?20 HY(X,C) as the

identity, then ¢ = idx.

Proof. By Theorem 3.2, for ¢, there is an automorphism ¢ of E such that ¢ is
a lift of ¢[™ where ¢! is the natural automorphism of E[M induced by ¢. Since
©* acts on H2(X,C) as the identity, ¢* acts on H?(E,C) as the identity. From
[8, page 386-389] the order of ¢ is at most 4.

If the order of ¢ is 2, by Proposition 4.5 ¢ does not act on H2*~1:1(X,C) as the

identity. This is a contradiction.
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If the order of ¢ is 4, then ¢? is a lift of ¢[”]2 = ¢ " Thus by the above, ¢? does
not act on H2?~11(X,C) as the identity. This is a contradiction. Thus we have
¢ =idg and ¢ € {idx, p}. Since p does not act on H2"~11(X,C) as the identity,

we have ¢ = idx. (]

Corollary 4.9. Forn > 2, let 7 : X — EU" be the universal covering space. For

any two automorphisms f and g of X, if f* = g* on H*(X,C), then f = g.

Theorem 4.10. Forn > 3, let E be an Enriques surfaces, E" the Hilbert scheme
of n points of E, m: X — E™ the universal covering space. Then there is an ezact

sequence:

0 — Z/27 — Aut(X) — Aut(EM) = 0.

Proof. Let f be an automorphism f of X. We put ¢ = f~'opo f. Since for
n >3 p* acts on H?(X,C) as the identity and on H*"~51(X) as —idyzn—1.1(x), we
get that g* = p* as automorphisms of H?(X,C) ® H?*"~1(X). Like the proof of
Theorem 4.8, we have g = p, i.e. fop =po f. Thus f induces a automorphism of

E™ and we have an exact sequence:

0 — Z/27Z — Aut(X) — Aut(EM) — 0.

5. APPENDIX A

We compute the Hodge number of the universal covering space X of E2l. Let
¢ be the covering involution of y : K — E, and 7 : BlowaurK? — K? the natural

map, where I' = {(z,y) € K2 : y = 1(x)} and A = {(z,7) € K?}. By Proposition



24 TARO HAYASHI
1.4, we have

X ~ BlowayrK?/H.

We put

For two inclusions
Jpa : Da < BlowaurK?, and
ipr : Dr = BlowaurK?,
let j.p, be the Gysin morphism
jxpa : H?(Da,C) — HPT2(Blowaur K2, C),
J«pp the Gysin morphism

jupr : H?(Dr,C) — HP2(Blowaur K2, C),and

1/1 =T +j*DA © T|BA +j*DF © T|B]"
the morphism from HP(K?,C) @ HP=2(A,C) @ HP~2(T",C) to H?(Blowaur K2, C).

From [13, Theorem 7.31], we have isomorphisms of Hodge structures by :
HF(K? C) o H*2(A,C) @ H*%(I',C) ~ H*(Blowaur K2, C).

Furthermore, for automorphism f of K, let f (resp. f,) be the automorphism of
BlowaurK? which is induced by f x f (resp. f x (f o), fa the automorphism
of A which is induced by f x f, fr the automorphism of I" which is induced by
f x f, and f the isomorphism from I' to A which is induced by f x (f o). For
a € H*(K?,C), p € H*(A,C), and v € H*(T',C), we obtain

() =77((f x f)a),
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f"Gepa 07Dy B) = Juna 0TI, (fAB),

f*(Genr © 7[prY) = Jupr © TIpr (f17),

fo(rma) = 7°((f x (f o)),
JiGeps 0 T[DB) = Jenr 0 7D (F*B),
in H*(Blowaur K2, C).
Theorem 5.1. For the universal covering space 7w : X — EP we have h®°(X) =
1, hYO(X) =0, h2%(X) =0, hM1(X) =12, B39(X) = 0, B21(X) =0, h*0(X) =1,
h31(X) =10, and h??(X) = 131.
Proof. Since X ~ Blowa rK?/H, we have
hP(X) = dimc{a € H?Y(BlowarK%,C) : h*a =« for h € H}.
Let ¢ be the covering involution of y: K — E. We put
HEY(K,C) :={a € H*Y(K,C) : *(a) = a}and

EY(K) := dimcHY (K, C).

From E = K/(1), we have
HPY(E,C) ~ HYY(K,C).

Since K is a K3 surface, we have

RO (K) =1, h*°(K) =0, h*°(K) = 1, and h""*(K) = 20, and
hY(K) =1, LK) = 0, h3°(K) = 0, and hy'(K) = 10, and

hO(K) = 0, B2O(K) = 0, h*°(K) = 1, and h*°(K) = 10.
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Recall that H is generated by Sy and ¢12. Since ¢ X t(A) = A and ¢ x (") =T,
from E = K/{1) we have A/H ~ E and I'/H ~ E. Thus we have
RO%(A/H) =1, h'°(A/H) =0, h*°(A/H) = 0, A" (A/H) = 10,
ROO(T/H) =1, W'"°(T/H) = 0, h*°(T'/H) = 0, and h"*(T/H) = 10.
From the Kiinneth Theorem, we have

HP9(K? C) ~ QB H**(K,C) ® H*"(K,C), and
s+u=p,t+v=q

HP(K?/H,C) ~ {a € H?Y(K?,C) : s*(c) = o for s € £ and ¢} 5(a) = .
Thus we obtain
r*%(K?/H) =1, h"°(K?/H) =0, h*°(K*/H) =0, k"' (K*/H) = 10,
RO (K?/H) =0, h*Y(K?/H) =0, h*°(K?/H) =1,
R¥Y(K?/H) =10, and h**(K?/H) = 111.
We fix a basis § of H2?(K,C) and a basis {7;}12, of H"'(K, C), then we have
10
HY'(K*/H,C) ~ P CB @i +7 @ B).
i=1
By the above equation, we have
RO (Blowaur K2/H) = 1, h*°(Blowaur K2 /H) = 0,
h*°(Blowaur K2/H) = 0, h*' (Blowaur K2/ H) = 12,
h30(BlowaurK2/H) = 0, h*! (Blowaur K2 /H) = 0,
h4’0(BlowAUpK2/H) =1, h3’1(B10WAUpK2/H) =10, and
h*?(Blowaur K?/H) = 131.
Thus we obtain h%°%(X) =1, h10(X) =0, h*°(X) = 0, hPH(X) = 12, K*0(X) = 0,

h2L(X) =0, h40(X) = 1, h¥1(X) = 10, and h>2(X) = 131. O
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6. APPENDIX B

Now we show that the conjecture in [2, Conjecture 1] is not established for ¥ an
Enriques surface and L = Q%.

Let Y be a smooth compact Kihler surface. Recall that Y™ is the Hilbert
scheme of n points of Y, 7y : Y[ — V() the Hilbert-Chow morphism, and
py : Y™ — Y (" the natural projection. For a line bundle L on Y, there is a unique
line bundle £ on Y™ such that v L=Q p™ L. By using pull back we have the

natural map
Pic(Y) — Pic(Y!"), L — L, :=}L.
we put
hPa(Y L) o= dimeHI(Y ™M, Q0 @ Ly),
RP9(Y, L) := dimcHY(Y, Q2 ® L),

A= > wrUy! L)aPytt”, and

n,p,q=0

) (71)p+th,q(y_’L)

00 2 1
H H (17 ,]_)p+qxp+k lqurk; ltk)

Then in [2, Conjecture 1] S. Boissiere conjectured that
A= B.

For Y an Enriques surface and L = Q3%., as in the proof on Theorem 2.2 and the

Serre duality, we have

pA=bHy I (03),) = dimeHY (Y, Q200 @ Q1)
= dimcH (Y™, Ty 1)

= 10.
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for n > 2. Tt follows that the coefficient of x3yt? of A is 10.

We show that the coefficient of 23yt? of B is not 10.

hO0 (v, Q%) = dimcH(Y, Oy ® Q%) = dimcH (Y, Q%) = 0.
RO1(Y, Q5 ) = dimcH' (Y, Oy ® QF) = dimcH' (Y, Q3) = 0.
hO2(Y, Q%) = dimcH(Y, Oy ® Q3 ) = dimcH?(Y, Q%) = 1.
By Serre duality, we get
Oy ® Q%, ~ Ty .
Since Y is an Enriques surface, we have
(Y, 03) = dimcHO(Y, Qy ® Q%) = dimcH(Y, Ty) = 0.
RYL(Y,Q3) = dimcH' (Y, Qy ® Q3) = dimcH' (Y, Ty) = 10.
hY2(Y,Q3) = dimcH?(Y, Qy ® Q3) = dimcH*(Y, Ty) = 0.
Since Y is an Enriques surface, we obtain
02 0% ~ Oy.
h*0(Y,QF) = dimcHO(Y, 03 © QF) = dimcH(Y, Oy ) = 1.
h*H(Y,03) = dimcH (Y, Q3 ® Q3) = dimcH' (Y, Oy) = 0.
h*2(Y, Q%) = dimeH?(Y, Q3 ® Q%) = dimcH?*(Y, Oy ) = 0.

Thus we obtain

o i

k=1p,q=0

2

1 (1P (B,0%)
( 1— (_1)p+qxp+k—1yq+k—1tk) )

I
3

1 1 10 1
(1 - :E’“*lykﬂtk)) (1 - xkykt’“)) (1 - x’““yk*ltk))

k=1
- ﬁ( 3 (x’f—lyk“tk)“) (i(wkyktk)b) 10 (i(xk—i-lyk—ltk)c).
k=1 a=0 — s
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Thus we have

B=
k

(1 + Ik_lyk+1tk + $2k_2y2k+2t2k> % (1 =+ Z’kyktk + :L‘QkkatQk)lOX
1

2
(1 +$k+1yk_1tk +Ji2k+2y2k_2t2k) (mod tS)
(14 g2+ ') x (1+ ayt2) ) x

(1 +10(zyt + 2?y>t?) + 45(xyt + 22y*t%)?) x (1 + 5623/2152)) X

(1+ 2%t + 2*?) x (1 + :C?’ytz)) (mod t3)

1+ 22t + (23y + x4)t2) (mod t%)

= (1 2t + (2 + y4)t2> x (1 + 10zyt + 56x2y2t2) X
(1 + (10zy + y*)t + (56x2y? + 11zy> + y4)t2> X

1+ 22t + (23y + x4)t2) (mod t*)
=1+ (22 + 102y + y>)t + (2 + 1123y + 5627y + 11xy® + y*)t? (mod t3)

Therefore the coefficient of z3yt? of B is 11. The conjecture in [2, Conjecture 1] is

not established for Y an Enriques surface and L = Q%..
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