

Title	Universal covering Calabi-Yau manifolds of the Hilbert schemes of n points of Enriques surfaces
Author(s)	林, 太郎
Citation	大阪大学, 2017, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/61490
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Universal covering Calabi-Yau manifolds of the Hilbert schemes of n points of Enriques surfaces

TARO HAYASHI

INTRODUCTION

Throughout this paper, we work over \mathbb{C} , and n is an integer such that $n \geq 2$.

A $K3$ surface K is a compact complex surface with $\omega_K \simeq \mathcal{O}_K$ and $H^1(K, \mathcal{O}_K) = 0$. An Enriques surface E is a compact complex surface with $H^1(E, \mathcal{O}_E) = 0$, $H^2(E, \mathcal{O}_E) = 0$, and $\omega_E^{\otimes 2} \simeq \mathcal{O}_E$. A Calabi-Yau manifold X is an n -dimensional compact kähler manifold such that it is simply connected, there is no holomorphic k -form on X for $0 < k < n$, and there is a nowhere vanishing holomorphic n -form on X . By Oguiso and Schröer [10, Theorem 3.1], the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ has a Calabi-Yau manifold X as the universal covering space of degree 2.

In this paper, we study the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ and its universal covering space X .

Definition 0.1. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y \simeq E'^{[n]}$ and $E'^{[n]} \simeq X/\langle \tau \rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

Date: February 1, 2017.

Recall that when $n = 1$, $E^{[1]}$ is an Enriques surface E and X is a $K3$ surface.

In [11, Theorem 0.1], Ohashi showed the following theorem:

Theorem 0.2. *For any nonnegative integer l , there exists a $K3$ surface with exactly 2^{l+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a $K3$ surface.*

Our main theorem (Theorem 0.3) is the following which is totally different from Theorem 0.2:

Theorem 0.3. *For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.*

Remark 0.4. When $n = 2$, we do not count the number of distinct Enriques quotients of X . We compute the Hodge numbers of the universal covering space X of $E^{[2]}$ (Appendix A).

In addition, we investigate the relationship between the small deformation of $E^{[n]}$ and that of X (Theorem 0.5) and study the natural automorphisms of $E^{[n]}$ (Theorem 0.8).

Section 2 is a preliminary section. We prepare and recall some basic facts on the Hilbert scheme of n points of a surface.

In Section 3, we show the following theorem (Theorem 0.5).

Theorem 0.5. *For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.*

Remark 0.6. By Fantechi [4, Theorems 0.1 and 0.3], every small deformation of $E^{[n]}$ is induced by that of E . Thus for $n \geq 2$, every small deformation of X is induced by that of E .

When $n = 1$, $E^{[1]}$ is an Enriques surface E , and X is a $K3$ surface. An Enriques surface has a 10-dimensional deformation space and a $K3$ surface has a 20-dimensional deformation space. Thus the small deformation of X is much bigger than that of E . Our Theorem 0.5 is different from the case of $n = 1$.

In Section 4, we show the following theorem (Theorem 0.8).

Definition 0.7. For $n \geq 2$ and S a smooth compact surface, any automorphism $f \in \text{Aut}(S)$ induces an automorphism $f^{[n]} \in \text{Aut}(S^{[n]})$. An automorphism $g \in \text{Aut}(S^{[n]})$ is called natural if there is an automorphism $f \in \text{Aut}(S)$ such that $g = f^{[n]}$.

When S is a $K3$ surface, the natural automorphisms of $S^{[n]}$ were studied by Boissière and Sarti [3]. They showed that an automorphism of $S^{[n]}$ is natural if and only if it preserves the exceptional divisor of the Hilbert-Chow morphism [3, Theorem 1]. We obtain Theorem 0.8 which is similar to [3, Theorem 1]:

Theorem 0.8. *For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q : E^{[n]} \rightarrow E^{(n)}$, and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[2]}$. Then*

- i) *An automorphism f of $E^{[n]}$ is natural if and only if $f(D) = D$.*
- ii) *An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g(\pi^{-1}(D)) = \pi^{-1}(D)$.*

In Section 5, we show main theorem (Theorem 0.3).

In addition, let Y be a smooth compact Kähler surface. For a line bundle L on Y , by using the natural map $\text{Pic}(Y) \rightarrow \text{Pic}(Y^{[n]})$, $L \mapsto L_n$, we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega_{Y^{[n]}}^p \otimes L_n),$$

$$h^{p,q}(Y, L) := \dim_{\mathbb{C}} H^q(Y, \Omega_Y^p \otimes L),$$

$$A := \sum_{n,p,q=0}^{\infty} h^{p,q}(Y^{[n]}, L_n) x^p y^q t^n, \text{ and}$$

$$B := \prod_{k=1}^{\infty} \prod_{p,q=0}^2 \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right)^{(-1)^{p+q} h^{p,q}(Y, L)}.$$

In [2, Conjecture 1], S. Boissière conjectured that

$$A = B.$$

In the proof of Theorem 0.5, we obtain the counterexample to this conjecture for Y an Enriques surface and $L = \Omega_Y^2$. See Appendix B for details.

Acknowledgements 0.9. I would like to express my thanks to Professor Keiji Oguiso for his advice and encouragement and the referees for a very careful reading and many helpful suggestions, especially, the counterexample to the conjecture in [2, Conjecture 1].

1. PRELIMINARIES

Let S be a nonsingular projective surface, $S^{[n]}$ the Hilbert scheme of n points of S , $q : S^{[n]} \rightarrow S^{(n)}$ the Hilbert-Chow morphism, and $p : S^n \rightarrow S^{(n)}$ the natural projection. We denote the exceptional divisor of q by D . By Fogarty [5, Theorem 2.4], $S^{[n]}$ is a smooth projective variety of $\dim_{\mathbb{C}} S^{[n]} = 2n$. We put

$$\Delta^n := \{(x_i)_{i=1}^n \in S^n : |\{x_i\}_{i=1}^n| \leq n-1\},$$

$$S_*^n := \{(x_i)_{i=1}^n \in S^n : |\{x_i\}_{i=1}^n| \geq n-1\},$$

$$\Delta_*^n := \Delta^n \cap S_*^n, \text{ and}$$

$$S_*^{[n]} := q^{-1}(p(S_*^n)),$$

When $n = 2$, $\text{Blow}_{\Delta^2} S^2 / \Sigma_2 \simeq S^{[2]}$, for $n \geq 3$, we have $\text{Blow}_{\Delta_*^n} S_*^n / \Sigma_n \simeq S_*^{[n]}$, and $S^{[n]} \setminus S_*^{[n]}$ is an analytic closed subset and its codimension is 2 in $S^{[n]}$ ([1, page 767-768]). Here Σ_n is the symmetric group of degree n which acts naturally on S^n by permuting of the factors.

Let $\mu : K \rightarrow E$ be the universal covering space of E where K is a $K3$ surface, and ι the covering involution of μ . They induces the universal covering space $\mu^n : K^n \rightarrow E^n$. For $1 \leq k \leq n$, $1 \leq i_1 < \dots < i_k \leq n$, we define automorphisms $\iota_{i_1 \dots i_k}$ of K^n in the following way: for $x = (x_i)_{i=1}^n \in K^n$,

$$\text{the } j\text{-th component of } \iota_{i_1 \dots i_k}(x) = \begin{cases} \iota(x_j) & j \in \{i_1, \dots, i_k\} \\ x_j & j \notin \{i_1, \dots, i_k\}. \end{cases}$$

Let G be the subgroup of $\text{Aut}(K^n)$ generated by Σ_n and $\{\iota_i\}_{1 \leq i \leq n}$ and H the subgroup of $\text{Aut}(K^n)$ generated by Σ_n and $\{\iota_{ij}\}_{1 \leq i < j \leq n}$. Since $K^n/G = E^{(n)}$, $H \triangleleft G$, $|G/H| = 2$, and the codimension of $\mu^{-1}(\Delta^n)$ is two, we get the universal covering spaces

$$p_1 : K^n \setminus \mu^{-1}(\Delta^n) \rightarrow K^n \setminus \mu^{-1}(\Delta^n)/G, \text{ and}$$

$$p_2 : K^n \setminus \mu^{-1}(\Delta^n) \rightarrow K^n \setminus \mu^{-1}(\Delta^n)/H,$$

where p_1 and p_2 are the natural projections. For $n \geq 3$, we put

$$K_\circ^n := (\mu^n)^{-1}(E_*^n),$$

$$\Gamma_\circ^{ij} := \{(x_l)_{l=1}^n \in K_\circ^n : \iota(x_i) = x_j\},$$

$$\Delta_\circ^{ij} := \{(x_l)_{l=1}^n \in K_\circ^n : x_i = x_j\},$$

$$\Gamma_{\circ} := \bigcup_{1 \leq i < j \leq n} T_{\circ}^{i,j}, \text{ and}$$

$$\Delta_{\circ} := \bigcup_{1 \leq i < j \leq n} U_{\circ}^{ij}.$$

Then we get $\mu^{n-1}(\Delta_{*}^n) = \Gamma_{\circ} \cup \Delta_{\circ}$. By the definition of K_{\circ}^n , H acts on K_{\circ}^n . For an element $\tilde{x} := (\tilde{x}_i)_{i=1}^n \in \Gamma_{\circ} \cap \Delta_{\circ}$, some i, j, k, l with $k \neq l$ such that $\sigma(\tilde{x}_i) = \tilde{x}_j$ and $\tilde{x}_k = \tilde{x}_l$. Since σ does not have fixed points. Thus $\tilde{x}_i \neq \tilde{x}_l$. Therefore $\mu^n(\tilde{x}) \notin E_{*}^n$. This is a contradiction. We obtain $\Gamma_{\circ} \cap \Delta_{\circ} = \emptyset$.

Lemma 1.1. *For $t \in H$ and $1 \leq i < j \leq n$, if $t \in H$ has a fixed point on Δ_{\circ}^{ij} , then*

$$t = (i, j) \text{ or } t = \text{id}_{K^n}.$$

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x} = (\tilde{x}_i)_{i=1}^n \in \Delta_{\circ}^{ij}$ such that $t(\tilde{x}) = \tilde{x}$. For $t \in H$, there are ι_{ab} where $1 \leq a < b \leq n$ and $(j_1, \dots, j_l) \in \Sigma_n$ such that

$$t = (j_1, \dots, j_l) \circ \iota_{ab}.$$

From the definition of Δ_{\circ}^{ij} , for $(x_l)_{l=1}^n \in \Delta_{\circ}^{ij}$,

$$\{x_1, \dots, x_n\} \cap \{\iota(x_1), \dots, \iota(x_n)\} = \emptyset.$$

Suppose $\iota_{ab} \neq \text{id}_{K^n}$. Since $t(\tilde{x}) = \tilde{x}$, we have

$$\{\tilde{x}_1, \dots, \tilde{x}_n\} \cap \{\iota(\tilde{x}_1), \dots, \iota(\tilde{x}_n)\} \neq \emptyset.$$

This is a contradiction. Thus we have $t = (j_1, \dots, j_l)$. Similarly from the definition of Δ_{\circ}^{ij} , for $(x_l)_{l=1}^n \in \Delta_{\circ}^{ij}$, if $x_s = x_t$ ($1 \leq s < t \leq n$), then $s = i$ and $t = j$. Thus we have $t = (i, j)$ or $t = \text{id}_{K^n}$. \square

Lemma 1.2. *For $t \in H$ and $1 \leq i < j \leq n$, if $t \in H$ has a fixed point on Γ_{\circ}^{ij} , then*

$$t = \iota_{i,j} \circ (i, j) \text{ or } t = \text{id}_{K^n}.$$

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x} = (\tilde{x}_i)_{i=1}^n \in \Gamma_{\circ}^{ij}$ such that $t(\tilde{x}) = \tilde{x}$. For $t \in H$, there are ι_a where $1 \leq a \leq n$ and $(j_1, \dots, j_l) \in \mathcal{S}_n$ such that

$$t = (j_1 \dots j_l) \circ \iota_a.$$

Since $(j, j+1) \circ \iota_{i,j} \circ (j, j+1) : U_{ij} \rightarrow T_{ij}$ is an isomorphism, and by Lemma 1.1, we have

$$(j, j+1) \circ \iota_{i,j} \circ (j, j+1) \circ t \circ (j, j+1) \circ \iota_{i,j} \circ (j, j+1) = (i, j) \text{ or } \text{id}_{K^n}.$$

If $(j, j+1) \circ \iota_{i,j} \circ (j, j+1) \circ t \circ (j, j+1) \circ \iota_{i,j} \circ (j, j+1) = \text{id}_{K^n}$, then $t = \text{id}_{K^n}$. If $(j, j+1) \circ \iota_{i,j} \circ (j, j+1) \circ t \circ (j, j+1) \circ \iota_{i,j} \circ (j, j+1) = (i, j)$, then

$$\begin{aligned} t &= (j, j+1) \circ \iota_{i,j} \circ (j, j+1) \circ (i, j) \circ (j, j+1) \circ \iota_{i,j} \circ (j, j+1) \\ &= (j, j+1) \circ \iota_{i,j} \circ (i, j+1) \circ \iota_{i,j} \circ (j, j+1) \\ &= (j, j+1) \circ \iota_{i,j+1} \circ (i, j+1) \circ (j, j+1) \\ &= \iota_{i,j} \circ (i, j). \end{aligned}$$

Thus we have $t = \iota_{i,j} \circ (i, j)$. □

For the natural projection we get a unramified covering space: $K^n/H \rightarrow K^n/G = E^{(n)} = E^n/\Sigma_n$. From Lemma 1.1 and Lemma 1.2, we get a local isomorphism:

$$\theta : \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_{\circ}^n / H \rightarrow E_*^{[n]}.$$

Lemma 1.3. *For every $x \in E_*^{[n]}$, $|\theta^{-1}(x)| = 2$.*

Proof. For $(x_i)_{i=1}^n \in \Delta_*^n \subset E^n$ with $x_1 = x_2$, there are n elements y_1, \dots, y_n of K such that $y_1 = y_2$ and $\mu(y_i) = x_i$ for $1 \leq i \leq n$. Then

$$(\mu^n)^{-1}((x_i)_{i=1}^n) = \{y_1, \iota(y_1)\} \times \dots \times \{y_n, \iota(y_n)\}.$$

Since H is generated by Σ_n and $\{\iota_{ij}\}_{1 \leq i < j \leq n}$, for $(z_i)_{i=1}^n \in (\mu^n)^{-1}((x_i)_{i=1}^n)$ if the number of i with $z_i = y_i$ is even, then

$$(z_i)_{i=1}^n = \{\iota(y_1), \iota(y_2), y_3, \dots, y_n\} \text{ on } K_\circ^n/H, \text{ and}$$

if the number of i with $z_i = y_i$ is odd, then

$$(z_i)_{i=1}^n = \{\iota(y_1), y_2, y_3, \dots, y_n\} \text{ on } K_\circ^n/H.$$

Furthermore since $\iota_i \notin H$ for $1 \leq i \leq n$,

$$\{\iota(y_1), \iota(y_2), y_3, \dots, y_n\} \neq \{\iota(y_1), y_2, y_3, \dots, y_n\}, \text{ on } K_\circ^n/H.$$

Thus for every $x \in E_*^{[n]}$, we get $|\theta^{-1}(x)| = 2$. \square

Proposition 1.4. $\theta : \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_\circ^n/H \rightarrow \text{Blow}_{\Delta_*^n} E_*^n/\Sigma_n$ is the universal covering space, i.e. $\pi^{-1}(E_*^{[n]}) \simeq \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_\circ^n/H$. When $n = 2$, we have $X \simeq \text{Blow}_{\mu^{2-1}(\Delta^2)} K^2/H$.

Proof. Since θ is a local isomorphism, from Lemma 1.3 we get that θ is a covering map. Furthermore $\pi : \pi^{-1}(E_*^{[n]}) \rightarrow E_*^{[n]}$ is the universal covering space of degree 2, $\theta : \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_\circ^n/H \rightarrow \text{Blow}_{\Delta_*^n} E_*^n/\Sigma_n$ is the universal covering space. By the uniqueness of the universal covering space, we have $\pi^{-1}(E_*^{[n]}) \simeq \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_\circ^n/H$. When $n = 2$, since $E_*^2 = E^2$, $K_\circ^2 = K^2$ and $\text{Blow}_{\Delta^2} E^2/\Sigma_2 \simeq E^{[2]}$, we have $X \simeq \text{Blow}_{\mu^{2-1}(\Delta^2)} K^2/H$. \square

Theorem 1.5. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$. Then there is a birational morphism $\varphi : X \rightarrow K^n/H$ such that $\varphi^{-1}(\mu^{n-1}(\Delta^n)/H) = \pi^{-1}(D)$.

Proof. When $n = 2$, this is proved by Proposition 1.4. From here we assume that

$n \geq 3$. From Proposition 1.4, we have $\pi^{-1}(E_*^{[n]}) \simeq \text{Blow}_{\mu^{n-1}(\Delta_*^n)} K_{\circ}^n / H$. Since the codimension of $X \setminus \pi^{-1}(E_*^{[n]})$ is 2, there is a meromorphim f of X to K^n / H which satisfies the following commutative diagram:

$$\begin{array}{ccc} E_*^{[n]} & \xrightarrow{q} & E^{(n)} \\ \pi \uparrow & & \uparrow p \\ \pi^{-1}(E_*^{[n]}) & \xrightarrow{f} & K^n / H \end{array}$$

where $q : E^{[n]} \rightarrow E^{(n)}$ is the Hilbert-Chow morphism, and $p : K^n / H \rightarrow E^{(n)}$ is the natural projection. For an ample line bundle \mathcal{L} on $E^{(n)}$, since the natural projection $p : K^n / H \rightarrow E^{(n)}$ is finite, $p^* \mathcal{L}$ is ample. From the above diagram, we have $\pi^*(q^* \mathcal{L})|_{\pi^{-1}(E_*^{[n]})} = f^*(p^* \mathcal{L})$. Since $X \setminus \pi^{-1}(E_*^{[n]})$ is an analytic closed subset of codimension 2 in X and $p_H^* \mathcal{L}$ is ample, there is a holomorphism φ from X to K^n / H such that $\varphi|_{X \setminus \pi^{-1}(F)} = f|_{X \setminus \pi^{-1}(F)}$. Since $f : X \setminus \pi^{-1}(D) \cong (K^n \setminus \mu^{n-1}(\Delta^n)) / H$, this is a birational morphism. \square

2. PROOF OF THEOREM 0.5

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$. In this section, we show Theorem 0.5 (Theorem 2.2).

Proposition 2.1. *For $n \geq 2$, we have $\dim_{\mathbb{C}} H^1(E^{[n]}, \Omega_{E^{[n]}}^{2n-1}) = 0$.*

Proof. For a smooth projective manifold S , we put

$$h^{p,q}(S) := \dim_{\mathbb{C}} H^q(S, \Omega_S^p) \text{ and}$$

$$h(S, x, y) := \sum_{p,q} h^{p,q}(S) x^p y^q.$$

By [7, Theorem 2] and [6, page 204], we have the equation (1):

$$\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E^{[n]}) x^p y^q t^n = \prod_{k=1}^{\infty} \prod_{p,q=0}^2 \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right)^{(-1)^{p+q} h^{p,q}(E)}.$$

Since an Enriques surface E has Hodge numbers $h^{0,0}(E) = h^{2,2}(E) = 1$, $h^{1,0}(E) = h^{0,1}(E) = 0$, $h^{2,0}(E) = h^{0,2}(E) = 0$, and $h^{1,1}(E) = 10$, the equation (1) is

$$\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E^{[n]}) x^p y^q t^n = \prod_{k=1}^{\infty} \left(\frac{1}{1 - x^{k-1} y^{k-1} t^k} \right) \left(\frac{1}{1 - x^k y^k t^k} \right)^{10} \left(\frac{1}{1 - x^{k+1} y^{k+1} t^k} \right).$$

It follows that

$$h^{p,q}(E^{[n]}) = 0 \text{ for all } p, q \text{ with } p \neq q.$$

Thus we have $\dim_{\mathbb{C}} H^1(E^{[n]}, \Omega_{E^{[n]}}^{2n-1}) = 0$ for $n \geq 2$. \square

Theorem 2.2. *For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.*

Proof. In [4, Proposition 4.2 and Theorems 0.3], Fantechi showed that for a smooth projective surface with $H^0(S, T_S) = 0$ or $H^1(S, \mathcal{O}_S) = 0$, and $H^1(S, \mathcal{O}_S(-K_S)) = 0$ where K_S is the canonical divisor of S ,

$$\dim_{\mathbb{C}} H^1(S, T_S) = \dim_{\mathbb{C}} H^1(S^{[n]}, T_{S^{[n]}}).$$

Since an Enriques surface E satisfies $H^0(E, T_E) = 0$ or $H^1(E, \mathcal{O}_E) = 0$, and

$H^1(E, \mathcal{O}_E(-K_E)) = 0$, we have $\dim_{\mathbb{C}} H^1(E^{[n]}, T_{E^{[n]}}) = 10$. Since $K_{E^{[n]}}$ is not trivial and $2K_{E^{[n]}}$ is trivial, we have

$$T_{E^{[n]}} \simeq \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}.$$

Therefore we have $\dim_{\mathbb{C}} H^1(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}) = 10$. Since K_X is trivial, then we have $T_X \simeq \Omega_X^{2n-1}$. Since $\pi : X \rightarrow E^{[n]}$ is the covering map, we have

$$H^k(X, \Omega_X^{2n-1}) \simeq H^k(E^{[n]}, \pi_* \Omega_X^{2n-1}).$$

Since $X \simeq \text{Spec } \mathcal{O}_{E^{[n]}} \oplus \mathcal{O}_{E^{[n]}}(K_{E^{[n]}})$ ([10, Theorem 3.1]), we have

$$H^k(E^{[n]}, \pi_* \Omega_X^{2n-1}) \simeq H^k(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \oplus (\Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}})).$$

Thus

$$\begin{aligned} H^k(X, \Omega_X^{2n-1}) &\simeq H^k(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \oplus (\Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}})) \\ &\simeq H^k(E^{[n]}, \Omega_{E^{[n]}}^{2n-1}) \oplus H^k(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}). \end{aligned}$$

Combining this with Proposition 2.1, we obtain

$$\begin{aligned} \dim_{\mathbb{C}} H^1(X, \Omega_X^{2n-1}) &= \dim_{\mathbb{C}} H^1(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}) \\ &= 10. \end{aligned}$$

Let $p : \mathcal{Y} \rightarrow U$ be the Kuranishi family of $E^{[n]}$. Since each canonical bundle of $E^{[n]}$ and E is torsion, they have unobstructed deformations ([12]). Thus U is smooth.

Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be the universal covering space. Then $q : \mathcal{X} \rightarrow U$ is a flat family of X where $q := p \circ f$. By [4, Theorems 0.1 and 0.3], all small deformation of $E^{[n]}$ is induced by that of E . Thus for $u \in U$, $q^{-1}(u)$ is the universal covering space of the Hilbert scheme of n points of an Enriques surface. Then we have a commutative diagram:

$$\begin{array}{ccccc} T_{U,0} & \xrightarrow{\rho_p} & H^1(\mathcal{Y}_0, T_{\mathcal{Y}_0}) & \xlongequal{\quad} & H^1(E^{[n]}, T_{E^{[n]}}) \\ & \searrow \rho_q & \downarrow \tau & & \downarrow \pi^* \\ & & H^1(\mathcal{X}_0, T_{\mathcal{X}_0}) & \xlongequal{\quad} & H^1(X, T_X). \end{array}$$

Since $H^1(E^{[n]}, T_{E^{[n]}}) \simeq H^1(X, T_X)$ by π^* , the vertical arrow τ is an isomorphism and

$$\dim_{\mathbb{C}} H^1(\mathcal{X}_u, T_{\mathcal{X}_u}) = \dim_{\mathbb{C}} H^1(\mathcal{X}_u, \Omega_{\mathcal{X}_u}^{2n-1})$$

is a constant for some neighborhood of $0 \in U$, it follows that $q : \mathcal{X} \rightarrow U$ is the complete family of $\mathcal{X}_0 = X$, therefore $q : \mathcal{X} \rightarrow U$ is the versal family of $\mathcal{X}_0 = X$. Thus every small deformation of X is induced by that of $E^{[n]}$. \square

3. PROOF OF THEOREM 0.8

For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$, and D the exceptional divisor of the Hilbert-Chow morphism $q : E^{[n]} \rightarrow E^{(n)}$. Recall that ι is the covering involution of $\mu : K \rightarrow E$, $p_1 : K^n \setminus \mu^{n-1}(\Delta^n) \rightarrow E^{[n]} \setminus D = E^n \setminus \Delta^n / \Sigma_n = K^n \setminus \mu^{n-1}(\Delta^n) / G$ and $p_2 : K^n \setminus \mu^{n-1}(\Delta^n) \rightarrow X \setminus \pi^{-1}(D) = K^n \setminus \mu^{n-1}(\Delta^n) / H$ are the universal covering spaces where p_1 and p_2 are the natural projections. In this section, we show Theorem 0.8 (Theorem 3.2).

Lemma 3.1. *i) Let f be an automorphism of $E^{[n]} \setminus D$, and g_1, \dots, g_n automorphisms of K such that $p_1 \circ (g_1 \times \dots \times g_n) = f \circ p_1$, where $(g_1 \times \dots \times g_n)$ is the automorphism of K^n . Then we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_1 \circ \iota = \iota \circ g_1$.*

ii) Let f be an automorphism of $X \setminus \pi^{-1}(D)$, and g_1, \dots, g_n automorphisms of K such that $p_2 \circ (g_1 \times \dots \times g_n) = f \circ p_2$, where $(g_1 \times \dots \times g_n)$ is the automorphism of K^n . Then we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_1 \circ \iota = \iota \circ g_1$.

Proof. We show i) by contradiction. Without loss of generality, we may assume that $g_2 \neq g_1$ and $g_2 \neq g_1 \circ \iota$. Let h_1 and h_2 be two morphisms of K where $g_i \circ h_i = \text{id}_K$

and $h_i \circ g_i = \text{id}_K$ for $i = 1, 2$. We define two morphisms $A_{1,2}$ and $A_{1,2,\iota}$ from K to K^2 by

$$A_{1,2} : K \ni x \mapsto (h_1(x), h_2(x)) \in K^2$$

$$A_{1,2,\iota} : K \ni x \mapsto (h_1(x), \iota \circ h_2(x)) \in K^2.$$

Let $\Gamma_\iota := \{(x, y) : y = \iota(x)\}$ be the subset of K^2 . Since $h_1 \neq h_2$ and $h_1 \neq \iota \circ h_2$, $A_{1,2}^{-1}(\Delta^2) \cup A_{1,2,\iota}^{-1}(\Gamma_\iota)$ do not coincide with K . Thus there is $x' \in K$ such that $A_{1,2}(x') \notin \Delta^2$ and $A_{1,2,\iota}(x') \notin \Gamma_\iota$. For $x' \in K$, we put $x_i := h_i(x') \in K$ for $i = 1, 2$. Then there are some elements $x_3, \dots, x_n \in K$ such that $(x_1, \dots, x_n) \in K^n \setminus \mu^{n-1}(\Delta^n)$. We have $g((x_1, \dots, x_n)) \notin K^n \setminus \mu^{n-1}(\Delta^n)$ by the assumption of x_1 and x_2 . It is contradiction, because g is an automorphism of $K^n \setminus \mu^{n-1}(\Delta^n)$. Thus we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for $1 \leq i \leq n$.

Let $g := g_1 \times \dots \times g_n$. Since the covering transformation group of p is G , the liftings of f are given by $\{g \circ u : u \in G\} = \{u \circ g : u \in G\}$. Thus for $\iota_1 \circ g$, there is an element $\iota_a \circ s$ of G where $s \in \Gamma_n$ and $1 \leq a \leq n$ such that $\iota_1 \circ g = g \circ \iota_a \circ s$. If we think about the first component of $\iota_1 \circ g$, we have $s = \text{id}$ and $a = 1$. Therefore $g \circ \iota \circ g^{-1} = \iota$, we have $\iota \circ g_1 = g_1 \circ \iota$. In the same way, we have ii). \square

Theorem 3.2. *For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q : E^{[n]} \rightarrow E^{(n)}$, and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[2]}$. Then*

- i) *An automorphism f of $E^{[n]}$ is natural if and only if $f(D) = D$.*
- ii) *An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g(\pi^{-1}(D)) = \pi^{-1}(D)$.*

Proof. We show (1). Let $\mu : K \rightarrow E$ be the universal covering space of E . By Theorem 1.5, there is a commutative diagram

$$\begin{array}{ccc} E^{[n]} & \xrightarrow{q} & E^{(n)} \\ \pi \uparrow & & \uparrow p \\ X & \xrightarrow{\varphi} & K^n/H, \end{array}$$

where p is the natural projection and φ is a birational morphism. Since $E^{[n]} \setminus D \xrightarrow{\sim} E^n \setminus \Delta^n / \Sigma_n$, we have the universal covering spaces

$$p_1 : K^n \setminus \mu^{n-1}(\Delta^n) \rightarrow E^n \setminus \Delta^n / \Sigma_n,$$

$$p_2 : K^n \setminus \mu^{n-1}(\Delta^n) \rightarrow K^n \setminus \mu^{n-1}(\Delta^n) / H, \text{ and}$$

and the following commutative diagram:

$$\begin{array}{ccc} K^n \setminus \mu^{n-1}(\Delta^n) / H & \xrightarrow{p_3} & E^n \setminus \Delta^n / \Sigma_n \\ p_2 \uparrow & \nearrow p_1 & \\ K^n \setminus \mu^{n-1}(\Delta^n), & & \end{array}$$

where p_1 , p_2 , and p_3 are the natural projections. For $f \in \text{Aut}(E^{[n]})$ with $f(D) = D$, from the uniqueness of the universal covering space, f induces an automorphisms \bar{f} of $K^n \setminus \mu^{n-1}(\Delta^n)$. Since K is projective and $\text{codim } \mu^{-1}(\Delta^n)$ is over 2, \bar{f} is a birational map of K^n . By [9], \bar{f} is an automorphism of K^n and there are g_1, \dots, g_n automorphisms of K such that $\bar{f} = (g_1 \times \dots \times g_n) \circ s$ where $s \in \Sigma_n$. Since $\Sigma \subset G$, we get $f \circ p_1 = p_1 \circ (g_1 \times \dots \times g_n)$. From Lemma 3.1, we get *i*). By Theorem 1.5 and the above diagram, in the same way, we get *ii*). \square

4. PROOF OF THEOREM 0.3

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and $\pi : X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$.

In Proposition 4.2, we shall show that for $n \geq 3$, the covering involution of $\pi : X \rightarrow E^{[n]}$ acts on $H^2(X, \mathbb{C})$ as the identity. In Proposition 4.5, by using Theorem 3.2 and checking the action to $H^1(X, \Omega_X^{2n-1}) \cong H^{2n-1,1}(X)$, we classify involutions of X which act on $H^2(X, \mathbb{C})$ as the identity. We prove Theorem 0.3 (Theorem 4.7) using those results.

Lemma 4.1. *Let X be a smooth complex manifold, $Z \subset X$ a closed submanifold whose codimension is 2, $\tau : X_Z \rightarrow X$ the blow up of X along Z , $E = \tau^{-1}(Z)$ the exceptional divisor, and h the first Chern class of the line bundle $\mathcal{O}_{X_Z}(E)$. Then $\tau^* : H^2(X, \mathbb{C}) \rightarrow H^2(X_Z, \mathbb{C})$ is injective, and*

$$H^2(X_Z, \mathbb{C}) \simeq H^2(X, \mathbb{C}) \oplus \mathbb{C}h.$$

Proof. Let $U := X \setminus Z$ be an open set of X . Then U is isomorphic to an open set $U' = X_Z \setminus E$ of X_Z . As τ gives a morphism between the pair (X_Z, U') and the pair (X, U) , we have a morphism τ^* between the long exact sequence of cohomology relative to these pairs:

$$\begin{array}{ccccccc} H^k(X, U, \mathbb{C}) & \longrightarrow & H^k(X, \mathbb{C}) & \longrightarrow & H^k(U, \mathbb{C}) & \longrightarrow & H^{k+1}(X, U, \mathbb{C}) \\ \downarrow \tau_{X,U}^* & & \downarrow \tau_X^* & & \downarrow \tau_U^* & & \downarrow \tau_{X,U}^* \\ H^k(X_Z, U', \mathbb{C}) & \longrightarrow & H^k(X_Z, \mathbb{C}) & \longrightarrow & H^k(U', \mathbb{C}) & \longrightarrow & H^{k+1}(X_Z, U', \mathbb{C}). \end{array}$$

By Thom isomorphism, the tubular neighborhood Theorem, and Excision theorem, we have

$$H^q(Z, \mathbb{C}) \simeq H^{q+4}(X, U, \mathbb{C}), \text{ and}$$

$$H^q(E, \mathbb{C}) \simeq H^{q+2}(X_Z, U', \mathbb{C}).$$

In particular, we have

$$H^l(X, U, \mathbb{C}) = 0 \text{ for } l = 0, 1, 2, 3, \text{ and}$$

$$H^j(X_Z, U', \mathbb{C}) = 0 \text{ for } l = 0, 1.$$

Thus we have

$$\begin{array}{ccccccc} 0 & \longrightarrow & H^1(X, \mathbb{C}) & \longrightarrow & H^1(U, \mathbb{C}) & \longrightarrow & 0 \\ \downarrow \tau_{X,U}^* & & \downarrow \tau_X^* & & \downarrow \tau_U^* & & \downarrow \tau_{X,U}^* \\ 0 & \longrightarrow & H^1(X_Z, \mathbb{C}) & \longrightarrow & H^1(U', \mathbb{C}) & \longrightarrow & H^0(E, \mathbb{C}), \end{array}$$

and

$$\begin{array}{ccccccc} 0 & \longrightarrow & H^2(X, \mathbb{C}) & \longrightarrow & H^2(U, \mathbb{C}) & \longrightarrow & 0 \\ \downarrow \tau_{X,U}^* & & \downarrow \tau_X^* & & \downarrow \tau_U^* & & \downarrow \tau_{X,U}^* \\ H^0(E, \mathbb{C}) & \longrightarrow & H^2(X_Z, \mathbb{C}) & \longrightarrow & H^2(U', \mathbb{C}) & \longrightarrow & H^3(X_Z, U', \mathbb{C}). \end{array}$$

Since $\tau|_{U'}: U' \xrightarrow{\sim} U$, we have isomorphisms $\tau_U^*: H^k(U, \mathbb{C}) \simeq H^k(U', \mathbb{C})$. Thus

we have

$$\dim_{\mathbb{C}} H^2(X_Z, \mathbb{C}) = \dim_{\mathbb{C}} H^2(X, \mathbb{C}) + 1, \text{ and}$$

$$\tau^*: H^2(X, \mathbb{C}) \rightarrow H^2(X_Z, \mathbb{C}) \text{ is injective,}$$

and therefore we obtain

$$H^2(X_Z, \mathbb{C}) \simeq H^2(X, \mathbb{C}) \oplus \mathbb{C}h.$$

□

Proposition 4.2. *Suppose $n \geq 3$. For the covering involution ρ of the universal covering space $\pi: X \rightarrow E^{[n]}$, the induced map $\rho^*: H^2(X, \mathbb{C}) \rightarrow H^2(X, \mathbb{C})$ is the identity.*

Proof. Since the codimension of $X \setminus \pi^{-1}(E_*^{[n]})$ is 2, we get

$$H^2(X, \mathbb{C}) \cong H^2(X \setminus \pi^{-1}(F), \mathbb{C}).$$

By Proposition 2.6, $X \setminus \pi^{-1}(E_*^{[n]}) \simeq \text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n / H$.

Let $\tau : \text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n \rightarrow K_{\circ}^n$ be the blow up of K_{\circ}^n along $\mu^{n-1}(\Delta^n)$,

h_{ij} the first Chern class of the line bundle $\mathcal{O}_{\text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n}(\tau^{-1}(\Delta_{\circ}^{ij}))$,

and

k_{ij} the first Chern class of the line bundle $\mathcal{O}_{\text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n}(\tau^{-1}(\Gamma_{\circ}^{ij}))$.

By Lemma 4.1, we have

$$H^2(\text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n, \mathbb{C}) \cong H^2(K^n, \mathbb{C}) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C} h_{ij} \right) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C} k_{ij} \right).$$

Since $n \geq 3$, there is an isomorphism

$$(j, j+1) \circ \sigma_{ij} \circ (j, j+1) : \Delta_{\circ}^{ij} \xrightarrow{\sim} \Gamma_{\circ}^{ij}.$$

Thus we have $\dim_{\mathbb{C}} H^2(\text{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n / H, \mathbb{C}) = 11$, i.e. $\dim_{\mathbb{C}} H^2(X, \mathbb{C}) = 11$. Since

$H^2(E^{[n]}, \mathbb{C}) = H^2(X, \mathbb{C})^{\rho^*}$, ρ^* is the identity. \square

Since K^n / H is normal, $\pi^{-1}(E)$ is the exceptional divisor (Theorem 2.5) and X is a Calabi-Yau, we have that for an automorphism f of X , $f(\pi^{-1}(D)) = \pi^{-1}(D)$ if and only if $f^* \mathcal{O}_X(\pi^{-1}(D)) = \mathcal{O}_X(\pi^{-1}(D))$ in $\text{Pic}(X)$.

Definition 4.3. Let S be a smooth surface. An automorphism φ of S is numerically trivial if the induced automorphism φ^* of the cohomology ring over \mathbb{Q} , $H^*(S, \mathbb{Q})$ is the identity.

We suppose that an Enriques surface E has numerically trivial involutions. By [8, Proposition 1.1], there is just one numerically trivial involution of E , denoted v . For v , there are just two involutions of K which are liftings of v , one acts on

$H^0(K, \Omega_K^2)$ as the identity, and another acts on $H^0(K, \Omega_K^2)$ as $-\text{id}_{H^0(K, \Omega_K^2)}$, we denote by v_+ and v_- , respectively. Then they satisfies $v_+ = v_- \circ \sigma$.

Let $v^{[n]}$ be the automorphism of $E^{[n]}$ which is induced by v . For $v^{[n]}$, there are just two automorphisms of X which are liftings of $v^{[n]}$, denoted ς and ς' , respectively:

$$\begin{array}{ccc} E^{[n]} & \xrightarrow{v^{[n]}} & E^{[n]} \\ \pi \uparrow & & \uparrow \pi \\ X & \xrightarrow{\varsigma(\varsigma')} & X. \end{array}$$

Then they satisfies $\varsigma = \varsigma' \circ \rho$ where ρ is the covering involution of $\pi : X \rightarrow E^{[n]}$ and the each order of ς and ς' is 2. From here, we classify involutions acting on $H^2(X, \mathbb{C})$ as the identity by checking the action to $H^{2n-1,1}(X, \mathbb{C})$.

Lemma 4.4. $\dim_{\mathbb{C}} H^{2n-1,1}(K^n/H, \mathbb{C}) = 10$.

Proof. Let ι be the covering involution of $\mu : K \rightarrow E$. Put

$$H_{\pm}^{p,q}(K, \mathbb{C}) := \{\alpha \in H^{p,q}(K, \mathbb{C}) : \iota^*(\alpha) = \pm\alpha\} \text{ and}$$

$$h_{\pm}^{p,q}(K) := \dim_{\mathbb{C}} H_{\pm}^{p,q}(K, \mathbb{C}).$$

Since K is a $K3$ surface, we have

$$h^{0,0}(K) = 1, \quad h^{1,0}(K) = 0, \quad h^{2,0}(K) = 1, \quad h^{1,1}(K) = 20,$$

$$h_+^{0,0}(K) = 1, \quad h_+^{1,0}(K) = 0, \quad h_+^{2,0}(K) = 0, \quad h_+^{1,1}(K) = 10,$$

$$h_-^{0,0}(K) = 0, \quad h_-^{1,0}(K) = 0, \quad h_-^{2,0}(K) = 1, \quad \text{and} \quad h_-^{2,0}(K) = 10.$$

Let

$$\Lambda := \{(s_1, \dots, s_n, t_1, \dots, t_n) \in \mathbb{Z}_{\geq 0}^{2n} : \sum_{i=1}^n s_i = 2n-1, \sum_{j=1}^n t_j = 1\}.$$

From the Künneth Theorem, we have

$$H^{2n-1,1}(K^n, \mathbb{C}) \simeq \bigoplus_{(s_1, \dots, s_n, t_1, \dots, t_n) \in \Lambda} \left(\bigotimes_{i=1}^n H^{s_i, t_i}(K, \mathbb{C}) \right).$$

We take a base α of $H^{2,0}(K, \mathbb{C})$ and a base $\{\beta_i\}_{i=1}^{20}$ of $H^{1,1}(K, \mathbb{C})$ such that $\{\beta_i\}_{i=1}^{10}$ is a base of $H_{-}^{1,1}(K, \mathbb{C})$ and $\{\beta_i\}_{i=11}^{20}$ is a base of $H_{+}^{1,1}(K, \mathbb{C})$. Let

$$\tilde{\beta}_i := \bigotimes_{j=1}^n \epsilon_j$$

where $\epsilon_j = \alpha$ for $j \neq i$ and $\epsilon_j = \beta_i$ for $j = i$, and

$$\gamma_i := \bigoplus_{j=1}^n \tilde{\beta}_j.$$

Then $\{\gamma_i\}_{i=1}^{20}$ is a base of $H^{2n-1,1}(K^n, \mathbb{C})^{\mathcal{S}_n}$. Since $\iota^* \alpha = -\alpha$, $\iota^* \beta_i = -\beta_i$ for $1 \leq i \leq 10$, and $\iota^* \beta_i = \beta_i$ for $11 \leq i \leq 20$, we obtain

$$\iota_{ij}^* \gamma_i = \gamma_i \text{ for } 1 \leq i \leq 10, \text{ and}$$

$$\iota_{ij}^* \gamma_i = -\gamma_i \text{ for } 11 \leq i \leq 20.$$

Since $H^{2n-1,1}(K^n/H, \mathbb{C}) \simeq H^{2n-1,1}(K^n, \mathbb{C})^H$ and $H = \langle \mathcal{S}_n, \{\sigma_{ij}\}_{1 \leq i < j \leq n} \rangle$, we obtain

$$H^{2n-1,1}(K^n/H, \mathbb{C}) = \bigoplus_{i=1}^{10} \mathbb{C} \gamma_i.$$

Thus we get $\dim_{\mathbb{C}} H^{2n-1,1}(K^n/H, \mathbb{C}) = 10$. \square

Recall that $p : K^n \setminus \mu^{n-1}(\Delta^n) \rightarrow E^{[n]} \setminus D = E^n \setminus \Delta^n / \Sigma_n$ is the universal covering space.

Proposition 4.5. *We suppose that E has a numerically trivial involution, denoted v . Let $v^{[n]}$ be the natural automorphism of $E^{[n]}$ which is induced by v . Since the*

degree of $\pi : X \rightarrow E^{[n]}$ is 2, there are just two involutions ζ and ζ' of X which are lifts of $v^{[n]}$. Then ζ and ζ' do not act on $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}$.

Proof. Since $v^{[n]}(D) = D$, $v^{[n]}|_{E^{[n]} \setminus D}$ is an automorphism of $E^{[n]} \setminus D$. By the uniqueness of the universal covering space, there is an automorphism g of $K^n \setminus \mu^{n-1}(\Delta^n)$ such that $v^{[n]} \circ p = p \circ g$:

$$\begin{array}{ccc} E^{[n]} \setminus D & \xrightarrow{v^{[n]}} & E^{[n]} \setminus D \\ p \uparrow & & p \uparrow \\ K^n \setminus \mu^{n-1}(\Delta^n) & \xrightarrow{g} & K^n \setminus \mu^{n-1}(\Delta^n). \end{array}$$

By Proposition 3.1, there are some automorphisms g_i of K such that $g = g_1 \times \cdots \times g_n$ for each $1 \leq i \leq n$, $g_i = g_1$ or $g_i = g_1 \circ \iota$, and $g_1 \circ \iota = \iota \circ g_1$. By Theorem 1.5, we get $K^n \setminus \mu^{n-1}(\Delta^n)/H \simeq X \setminus \pi^{-1}(D)$. Put

$$v_{+,even} := u_1 \times \cdots \times u_n$$

where

$u_i = v_+$ or $u_i = v_-$ and the number of i with $u_i = v_+$ is even.

$v_{+,even}$ is an automorphism of K^n and induces an automorphism $\widetilde{v_{+,even}}$ of $K^n \setminus \mu^{n-1}(\Delta^n)/H$. We define automorphisms $\widetilde{v_{+,odd}}$, $\widetilde{v_{-,even}}$, and $\widetilde{v_{-,odd}}$ of $K^n \setminus \mu^{n-1}(\Delta^n)/H$ in the same way. Since $\sigma_{ij} \in H$ for $1 \leq i < j \leq n$, and $v_+ = v_- \circ \iota$, if n is odd,

$$\widetilde{v_{+,odd}} = \widetilde{v_{-,even}}, \quad \widetilde{v_{+,even}} = \widetilde{v_{-,odd}}, \quad \text{and} \quad \widetilde{v_{+,odd}} \neq \widetilde{v_{+,even}},$$

and if n is even,

$$\widetilde{v_{+,odd}} = \widetilde{v_{-,odd}}, \quad \widetilde{v_{+,even}} = \widetilde{v_{-,even}}, \quad \text{and} \quad \widetilde{v_{+,odd}} \neq \widetilde{v_{+,even}}.$$

Since $v^{(n)} \circ \pi_E = \pi_E \circ v^{[n]}$ and $K^n \setminus \mu^{n-1}(\Delta^n)/H \simeq X \setminus \pi^{-1}(D)$, we have $v^{[n]} \circ \pi = \pi \circ \widetilde{v_{+,odd}}$ and $v^{[n]} \circ \pi = \pi \circ \widetilde{v_{+,even}}$ where $\pi_E : E^{[n]} \rightarrow E^{(n)}$ is the Hilbert-Chow morphism, and $v^{(n)}$ is the automorphism of $E^{(n)}$ induced by v . Since the degree of π is 2, we have $\{\zeta, \zeta'\} = \{\widetilde{v_{+,odd}}, \widetilde{v_{+,even}}\}$. By [8, page 386-389], there is an element $\alpha_{\pm} \in H_{-}^{1,1}(K, \mathbb{C})$ such that $v_{+}^*(\alpha_{\pm}) = \pm \alpha_{\pm}$. We fix a basis α of $H^{2,0}(K, \mathbb{C})$, and let

$$\widetilde{\alpha_{\pm}}_i := \bigotimes_{j=1}^n \epsilon_j$$

where $\epsilon_j = \alpha$ for $j \neq i$ and $\epsilon_j = \alpha_{\pm}$ for $j = i$, and

$$\widetilde{\alpha_{\pm}} := \bigoplus_{j=1}^n \widetilde{\alpha_{\pm}}_i.$$

Since there is a birational map $\varphi : K^n \rightarrow X$ by Theorem 1.5, and by the definition of $\widetilde{v_{+,odd}}$ and $\widetilde{v_{+,even}}$, we have

$$\widetilde{v_{+,odd}}^*(\varphi^*(\widetilde{\alpha_{+}})) = \varphi^*(\widetilde{\alpha_{+}}) \text{ and } \widetilde{v_{+,even}}^*(\varphi^*(\widetilde{\alpha_{-}})) = \varphi^*(\widetilde{\alpha_{-}}).$$

Thus ζ and ζ' do not act on $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}$. \square

Definition 4.6. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y \simeq E'^{[n]}$ and $E'^{[n]} \simeq X/\langle \tau \rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

Theorem 4.7. For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E , and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.

Proof. Let ρ be the covering involution of $\pi : X \rightarrow E^{[n]}$ for $n \geq 3$. Since for $n \geq 3$ $\dim_{\mathbb{C}} H^2(E^{[n]}, \mathbb{C}) = \dim_{\mathbb{C}} H^2(X, \mathbb{C}) = 11$, $\dim_{\mathbb{C}} H^{2n-1,1}(E'^{[n]}, \mathbb{C}) = 0$, and $\dim_{\mathbb{C}} H^{2n-1,1}(X, \mathbb{C}) = 10$, we obtain that ρ^* acts on $H^2(X, \mathbb{C})$ as the identity, and $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}$.

Let φ be an involution of X , which acts on $H^2(X, \mathbb{C})$ as the identity and on $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}$. By Theorem 3.2, for φ , there is an automorphism ϕ of E such that φ is a lift of $\phi^{[n]}$ where $\phi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by ϕ . Furthermore since the order of ϕ is at most 2, the order of φ is 2. Since $\phi^{[n]} \circ \pi = \pi \circ \varphi$, $\phi^{[n]*}$ acts on $H^2(E^{[n]}, \mathbb{C})$ as the identity. Thus ϕ^* acts on $H^2(E, \mathbb{C})$ as the identity. If E does not have numerically trivial automorphisms, then $\phi = \text{id}_E$. Thus $\varphi = \rho$.

We assume that ϕ does not the identity map. Then ϕ is numerically trivial. Then $\phi = v$ and $\varphi \in \{\zeta, \zeta'\}$. By Proposition 4.5, we obtain that φ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as $-\text{id}_{H^{2n-1,1}(X, \mathbb{C})}$. This is a contradiction. Thus $\phi = \text{id}_E$, and we get $\varphi = \rho$. This proves the theorem. \square

Theorem 4.8. *For $n \geq 2$, let $\pi : X \rightarrow E^{[n]}$ be the universal covering space. For any automorphism φ of X , if φ^* is acts on $H^*(X, \mathbb{C}) := \bigoplus_{i=0}^{2n} H^i(X, \mathbb{C})$ as the identity, then $\varphi = \text{id}_X$.*

Proof. By Theorem 3.2, for φ , there is an automorphism ϕ of E such that φ is a lift of $\phi^{[n]}$ where $\phi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by ϕ . Since φ^* acts on $H^2(X, \mathbb{C})$ as the identity, ϕ^* acts on $H^2(E, \mathbb{C})$ as the identity. From [8, page 386-389] the order of ϕ is at most 4.

If the order of ϕ is 2, by Proposition 4.5 φ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction.

If the order of ϕ is 4, then φ^2 is a lift of $\phi^{[n]^2} = \phi^{2[n]}$. Thus by the above, φ^2 does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction. Thus we have $\phi = \text{id}_E$ and $\varphi \in \{\text{id}_X, \rho\}$. Since ρ does not act on $H^{2n-1,1}(X, \mathbb{C})$ as the identity, we have $\varphi = \text{id}_X$. \square

Corollary 4.9. *For $n \geq 2$, let $\pi : X \rightarrow E^{[n]}$ be the universal covering space. For any two automorphisms f and g of X , if $f^* = g^*$ on $H^*(X, \mathbb{C})$, then $f = g$.*

Theorem 4.10. *For $n \geq 3$, let E be an Enriques surfaces, $E^{[n]}$ the Hilbert scheme of n points of E , $\pi : X \rightarrow E^{[n]}$ the universal covering space. Then there is an exact sequence:*

$$0 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow \text{Aut}(X) \rightarrow \text{Aut}(E^{[n]}) \rightarrow 0.$$

Proof. Let f be an automorphism f of X . We put $g = f^{-1} \circ \rho \circ f$. Since for $n \geq 3$ ρ^* acts on $H^2(X, \mathbb{C})$ as the identity and on $H^{2n-1,1}(X)$ as $-\text{id}_{H^{2n-1,1}(X)}$, we get that $g^* = \rho^*$ as automorphisms of $H^2(X, \mathbb{C}) \oplus H^{2n-1,1}(X)$. Like the proof of Theorem 4.8, we have $g = \rho$, i.e. $f \circ \rho = \rho \circ f$. Thus f induces a automorphism of $E^{[n]}$, and we have an exact sequence:

$$0 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow \text{Aut}(X) \rightarrow \text{Aut}(E^{[n]}) \rightarrow 0.$$

\square

5. APPENDIX A

We compute the Hodge number of the universal covering space X of $E^{[2]}$. Let ι be the covering involution of $\mu : K \rightarrow E$, and $\tau : \text{Blow}_{\Delta \cup \Gamma} K^2 \rightarrow K^2$ the natural map, where $\Gamma = \{(x, y) \in K^2 : y = \iota(x)\}$ and $\Delta = \{(x, x) \in K^2\}$. By Proposition

1.4, we have

$$X \simeq \text{Blow}_{\Delta \cup \Gamma} K^2 / H.$$

We put

$$D_\Delta := \tau^{-1}(\Delta) \text{ and}$$

$$D_\Gamma := \tau^{-1}(\Gamma).$$

For two inclusions

$$j_{D_\Delta} : D_\Delta \hookrightarrow \text{Blow}_{\Delta \cup \Gamma} K^2, \text{ and}$$

$$j_{D_\Gamma} : D_\Gamma \hookrightarrow \text{Blow}_{\Delta \cup \Gamma} K^2,$$

let j_{*D_Δ} be the Gysin morphism

$$j_{*D_\Delta} : H^p(D_\Delta, \mathbb{C}) \rightarrow H^{p+2}(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}),$$

j_{*D_Γ} the Gysin morphism

$$j_{*D_\Gamma} : H^p(D_\Gamma, \mathbb{C}) \rightarrow H^{p+2}(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}), \text{ and}$$

$$\psi := \tau^* + j_{*D_\Delta} \circ \tau|_{D_\Delta}^* + j_{*D_\Gamma} \circ \tau|_{D_\Gamma}^*$$

the morphism from $H^p(K^2, \mathbb{C}) \oplus H^{p-2}(\Delta, \mathbb{C}) \oplus H^{p-2}(\Gamma, \mathbb{C})$ to $H^p(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C})$.

From [13, Theorem 7.31], we have isomorphisms of Hodge structures by ψ :

$$H^k(K^2, \mathbb{C}) \oplus H^{k-2}(\Delta, \mathbb{C}) \oplus H^{k-2}(\Gamma, \mathbb{C}) \simeq H^k(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}).$$

Furthermore, for automorphism f of K , let \bar{f} (resp. \bar{f}_ι) be the automorphism of $\text{Blow}_{\Delta \cup \Gamma} K^2$ which is induced by $f \times f$ (resp. $f \times (f \circ \iota)$, f_Δ the automorphism of Δ which is induced by $f \times f$, f_Γ the automorphism of Γ which is induced by $f \times f$, and \tilde{f} the isomorphism from Γ to Δ which is induced by $f \times (f \circ \iota)$. For $\alpha \in H^*(K^2, \mathbb{C})$, $\beta \in H^*(\Delta, \mathbb{C})$, and $\gamma \in H^*(\Gamma, \mathbb{C})$, we obtain

$$\bar{f}^*(\tau^* \alpha) = \tau^*((f \times f)^* \alpha),$$

$$\bar{f}^*(j_{*D_\Delta} \circ \tau|_{D_\Delta}^* \beta) = j_{*D_\Delta} \circ \tau|_{D_\Delta}^*(f_\Delta^* \beta),$$

$$\bar{f}^*(j_{*D_\Gamma} \circ \tau|_{D_\Gamma}^* \gamma) = j_{*D_\Gamma} \circ \tau|_{D_\Gamma}^*(f_\Gamma^* \gamma),$$

$$\bar{f}_\sigma^*(\tau^* \alpha) = \tau^*((f \times (f \circ \iota)^*)^* \alpha),$$

$$\bar{f}_\iota^*(j_{*D_\Delta} \circ \tau|_{D_\Delta}^* \beta) = j_{*D_\Gamma} \circ \tau|_{D_\Delta}^*(\tilde{f}^* \beta),$$

in $H^*(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C})$.

Theorem 5.1. *For the universal covering space $\pi : X \rightarrow E^{[2]}$, we have $h^{0,0}(X) = 1$, $h^{1,0}(X) = 0$, $h^{2,0}(X) = 0$, $h^{1,1}(X) = 12$, $h^{3,0}(X) = 0$, $h^{2,1}(X) = 0$, $h^{4,0}(X) = 1$, $h^{3,1}(X) = 10$, and $h^{2,2}(X) = 131$.*

Proof. Since $X \simeq \text{Blow}_{\Delta \cup \Gamma} K^2 / H$, we have

$$h^{p,q}(X) = \dim_{\mathbb{C}} \{ \alpha \in H^{p,q}(\text{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}) : h^* \alpha = \alpha \text{ for } h \in H \}.$$

Let ι be the covering involution of $\mu : K \rightarrow E$. We put

$$H_{\pm}^{p,q}(K, \mathbb{C}) := \{ \alpha \in H^{p,q}(K, \mathbb{C}) : \iota^*(\alpha) = \pm \alpha \} \text{ and}$$

$$h_{\pm}^{p,q}(K) := \dim_{\mathbb{C}} H_{\pm}^{p,q}(K, \mathbb{C}).$$

From $E = K/\langle \iota \rangle$, we have

$$H^{p,q}(E, \mathbb{C}) \simeq H_+^{p,q}(K, \mathbb{C}).$$

Since K is a $K3$ surface, we have

$$h^{0,0}(K) = 1, h^{1,0}(K) = 0, h^{2,0}(K) = 1, \text{ and } h^{1,1}(K) = 20, \text{ and}$$

$$h_+^{0,0}(K) = 1, h_+^{1,0}(K) = 0, h_+^{2,0}(K) = 0, \text{ and } h_+^{1,1}(K) = 10, \text{ and}$$

$$h_-^{0,0}(K) = 0, h_-^{1,0}(K) = 0, h_-^{2,0}(K) = 1, \text{ and } h_-^{2,0}(K) = 10.$$

Recall that H is generated by \mathcal{S}_2 and $\iota_{1,2}$. Since $\iota \times \iota(\Delta) = \Delta$ and $\iota \times \iota(\Gamma) = \Gamma$, from $E = K/\langle \iota \rangle$ we have $\Delta/H \simeq E$ and $\Gamma/H \simeq E$. Thus we have

$$h^{0,0}(\Delta/H) = 1, h^{1,0}(\Delta/H) = 0, h^{2,0}(\Delta/H) = 0, h^{1,1}(\Delta/H) = 10,$$

$$h^{0,0}(\Gamma/H) = 1, h^{1,0}(\Gamma/H) = 0, h^{2,0}(\Gamma/H) = 0, \text{ and } h^{1,1}(\Gamma/H) = 10.$$

From the Künneth Theorem, we have

$$H^{p,q}(K^2, \mathbb{C}) \simeq \bigoplus_{s+u=p, t+v=q} H^{s,t}(K, \mathbb{C}) \otimes H^{u,v}(K, \mathbb{C}), \text{ and}$$

$$H^{p,q}(K^2/H, \mathbb{C}) \simeq \{\alpha \in H^{p,q}(K^2, \mathbb{C}) : s^*(\alpha) = \alpha \text{ for } s \in \Sigma_2 \text{ and } \iota_{1,2}^*(\alpha) = \alpha\}.$$

Thus we obtain

$$h^{0,0}(K^2/H) = 1, h^{1,0}(K^2/H) = 0, h^{2,0}(K^2/H) = 0, h^{1,1}(K^2/H) = 10,$$

$$h^{3,0}(K^2/H) = 0, h^{2,1}(K^2/H) = 0, h^{4,0}(K^2/H) = 1,$$

$$h^{3,1}(K^2/H) = 10, \text{ and } h^{2,2}(K^2/H) = 111.$$

We fix a basis β of $H^{2,0}(K, \mathbb{C})$ and a basis $\{\gamma_i\}_{i=1}^{10}$ of $H_{-}^{1,1}(K, \mathbb{C})$, then we have

$$H^{3,1}(K^2/H, \mathbb{C}) \simeq \bigoplus_{i=1}^{10} \mathbb{C}(\beta \otimes \gamma_i + \gamma_i \otimes \beta).$$

By the above equation, we have

$$h^{0,0}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 1, h^{1,0}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 0,$$

$$h^{2,0}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 0, h^{1,1}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 12,$$

$$h^{3,0}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 0, h^{2,1}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 0,$$

$$h^{4,0}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 1, h^{3,1}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 10, \text{ and}$$

$$h^{2,2}(\text{Blow}_{\Delta \cup \Gamma} K^2/H) = 131.$$

Thus we obtain $h^{0,0}(X) = 1, h^{1,0}(X) = 0, h^{2,0}(X) = 0, h^{1,1}(X) = 12, h^{3,0}(X) = 0,$

$h^{2,1}(X) = 0, h^{4,0}(X) = 1, h^{3,1}(X) = 10, \text{ and } h^{2,2}(X) = 131.$ \square

6. APPENDIX B

Now we show that the conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L = \Omega_Y^2$.

Let Y be a smooth compact Kähler surface. Recall that $Y^{[n]}$ is the Hilbert scheme of n points of Y , $\pi_Y : Y^{[n]} \rightarrow Y^{(n)}$ the Hilbert-Chow morphism, and $p_Y : Y^n \rightarrow Y^{(n)}$ the natural projection. For a line bundle L on Y , there is a unique line bundle \mathcal{L} on $Y^{(n)}$ such that $p_Y^* \mathcal{L} = \bigotimes_{i=1}^n p_i^* L$. By using pull back we have the natural map

$$\text{Pic}(Y) \rightarrow \text{Pic}(Y^{[n]}), \quad L \mapsto L_n := \pi_Y^* \mathcal{L}.$$

we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega_{Y^{[n]}}^p \otimes L_n),$$

$$h^{p,q}(Y, L) := \dim_{\mathbb{C}} H^q(Y, \Omega_Y^p \otimes L),$$

$$A := \sum_{n,p,q=0}^{\infty} h^{p,q}(Y^{[n]}, L_n) x^p y^q t^n, \text{ and}$$

$$B := \prod_{k=1}^{\infty} \prod_{p,q=0}^2 \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right)^{(-1)^{p+q} h^{p,q}(Y, L)}.$$

Then in [2, Conjecture 1] S. Boissière conjectured that

$$A = B.$$

For Y an Enriques surface and $L = \Omega_Y^2$, as in the proof on Theorem 2.2 and the Serre duality, we have

$$\begin{aligned} h^{2n-1,1}(Y^{[n]}, (\Omega_Y^2)_n) &= \dim_{\mathbb{C}} H^1(Y^{[n]}, \Omega_{Y^{[n]}}^{2n-1} \otimes \Omega_{Y^{[n]}}^{2n}) \\ &= \dim_{\mathbb{C}} H^1(Y^{[n]}, T_{Y^{[n]}}) \\ &= 10. \end{aligned}$$

for $n \geq 2$. It follows that the coefficient of x^3yt^2 of A is 10.

We show that the coefficient of x^3yt^2 of B is not 10.

$$h^{0,0}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \Omega_Y^2) = 0.$$

$$h^{0,1}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \Omega_Y^2) = 0.$$

$$h^{0,2}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \Omega_Y^2) = 1.$$

By Serre duality, we get

$$\Omega_Y \otimes \Omega_Y^2 \simeq T_Y.$$

Since Y is an Enriques surface, we have

$$h^{1,0}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \Omega_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, T_Y) = 0.$$

$$h^{1,1}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \Omega_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, T_Y) = 10.$$

$$h^{1,2}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \Omega_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, T_Y) = 0.$$

Since Y is an Enriques surface, we obtain

$$\Omega_Y^2 \otimes \Omega_Y^2 \simeq \mathcal{O}_Y.$$

$$h^{2,0}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \mathcal{O}_Y) = 1.$$

$$h^{2,1}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \mathcal{O}_Y) = 0.$$

$$h^{2,2}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \mathcal{O}_Y) = 0.$$

Thus we obtain

$$\begin{aligned} B &= \prod_{k=1}^{\infty} \prod_{p,q=0}^2 \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k} \right)^{(-1)^{p+q} h^{p,q}(E, \Omega_E^2)} \\ &= \prod_{k=1}^{\infty} \left(\frac{1}{1 - x^{k-1} y^{k+1} t^k} \right) \left(\frac{1}{1 - x^k y^k t^k} \right)^{10} \left(\frac{1}{1 - x^{k+1} y^{k-1} t^k} \right) \\ &= \prod_{k=1}^{\infty} \left(\sum_{a=0}^{\infty} (x^{k-1} y^{k+1} t^k)^a \right) \left(\sum_{b=0}^{\infty} (x^k y^k t^k)^b \right)^{10} \left(\sum_{c=0}^{\infty} (x^{k+1} y^{k-1} t^k)^c \right). \end{aligned}$$

Thus we have

$$\begin{aligned}
B &\equiv \prod_{k=1}^2 (1 + x^{k-1}y^{k+1}t^k + x^{2k-2}y^{2k+2}t^{2k}) \times (1 + x^k y^k t^k + x^{2k} y^{2k} t^{2k})^{10} \times \\
&\quad (1 + x^{k+1}y^{k-1}t^k + x^{2k+2}y^{2k-2}t^{2k}) \pmod{t^3} \\
&\equiv \left((1 + y^2t + y^4t^2) \times (1 + xy^3t^2) \right) \times \\
&\quad \left((1 + 10(yt + x^2y^2t^2) + 45(yt + x^2y^2t^2)^2) \times (1 + x^2y^2t^2) \right) \times \\
&\quad \left((1 + x^2t + x^4t^2) \times (1 + x^3yt^2) \right) \pmod{t^3} \\
&\equiv \left(1 + y^2t + (xy^3 + y^4)t^2 \right) \times \left(1 + 10xyt + 56x^2y^2t^2 \right) \times \\
&\quad \left(1 + x^2t + (x^3y + x^4)t^2 \right) \pmod{t^3} \\
&\equiv \left(1 + (10xy + y^2)t + (56x^2y^2 + 11xy^3 + y^4)t^2 \right) \times \\
&\quad \left(1 + x^2t + (x^3y + x^4)t^2 \right) \pmod{t^3} \\
&\equiv 1 + (x^2 + 10xy + y^2)t + (x^4 + 11x^3y + 56x^2y^2 + 11xy^3 + y^4)t^2 \pmod{t^3}
\end{aligned}$$

Therefore the coefficient of x^3yt^2 of B is 11. The conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L = \Omega_Y^2$.

REFERENCES

- [1] A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Differential Geom.* 18 (1983), no. 4, 755-782.
- [2] S. Boissière: Automorphismes naturels de l'espace de Douady de points sur une surface. *Canad. J. Math.* 64 (2012), no. 1, 3-23.
- [3] S. Boissière, A. Sarti: A note on automorphisms and birational transformations of holomorphic symplectic manifolds. *Proc. Amer. Math. Soc.* 140 (2012), no. 12, 4053-4062.

- [4] B. Fantechi: Deformation of Hilbert schemes of points on a surface. *Compositio Math.* 98 (1995), 205-217.
- [5] J. Fogarty: Families on an Algebraic Surface. *American Journal of Mathematics* Vol. 90, No. 2 (Apr., 1968), pp. 511-521.
- [6] L. Göttsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. *Math. Ann.* 286, 193-207 (1990).
- [7] L. Göttsche, W. Soergel: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. *Math. Ann.* 296 (1993), 235-245.
- [8] S. Mukai, Y. Namikawa: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. *Invent. Math.* 77 (1984), no. 3, 383-397.
- [9] K. Oguiso: On automorphisms of the punctual Hilbert schemes of K3 surfaces. *Eur. J. Math.* 2 (2016), no. 1, 246261.
- [10] K. Oguiso, S. Schröer: Enriques Manifolds. *J. Reine Angew. Math.* 661 (2011), 215-235.
- [11] H. Ohashi: On the number of Enriques quotients of a K3 surface. *Publ. Res. Inst. Math. Sci.* 43 (2007), no. 1, 181-200. 14J28.
- [12] Z. Ran: Deformations of Manifolds with Torsion or Negative Canonical Bundle. *J. Algebraic Geometry*. p.279-291.
- [13] C. Voisin: Hodge Theory and Complex Algebraic Geometry, I. Cambridge Studies in Advanced Mathematics 76, Cambridge University Press, 2003. MR1997577 (2005c:32024b)

(TARO HAYASHI) DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, MACHIKANEYAMACHO 1-1, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: tarou-hayashi@cr.math.sci.osaka-u.ac.jp