Title	Universal covering Calabi－Yau manifolds of the Hilbert schemes of n points of Enriques surfaces
Author（s）	林，太郎
Citation	大阪大学，2017，博士論文
Version Type	VoR
URL	https：／／doi．org／10．18910／61490
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．Library．osaka－u．ac．jp／

Universal covering Calabi-

Yau manifolds of the Hilbert schemes of n points of Enriques surfaces

TARO HAYASHI

InTRODUCTION

Throughout this paper, we work over \mathbb{C}, and n is an integer such that $n \geq 2$. A $K 3$ surface K is a compact complex surface with $\omega_{K} \simeq \mathcal{O}_{K}$ and $\mathrm{H}^{1}\left(K, \mathcal{O}_{K}\right)=$ 0. An Enriques surface E is a compact complex surface with $\mathrm{H}^{1}\left(E, \mathcal{O}_{E}\right)=0$, $\mathrm{H}^{2}\left(E, \mathcal{O}_{E}\right)=0$, and $\omega_{E}^{\otimes 2} \simeq \mathcal{O}_{E}$. A Calabi-Yau manifold X is an n-dimensional compact kähler manifold such that it is simply connected, there is no holomorphic k-form on X for $0<k<n$, and there is a nowhere vanishing holomorphic n-form on X. By Oguiso and Schröer [10, Theorem 3.1], the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ has a Calabi-Yau manifold X as the universal covering space of degree 2 .

In this paper, we study the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ and its universal covering space X.

Definition 0.1. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E^{\prime} and a free involution τ of X such that $Y \simeq E^{\prime[n]}$ and $E^{\prime[n]} \simeq X /\langle\tau\rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

[^0]Recall that when $n=1, E^{[1]}$ is an Enriques surface E and X is a $K 3$ surface. In [11, Theorem 0.1], Ohashi showed the following theorem:

Theorem 0.2. For any nonnegative integer l, there exists a $K 3$ surface with exactly 2^{l+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a K3 surface.

Our main theorem (Theorem 0.3) is the following which is totally different from Theorem 0.2:

Theorem 0.3. For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.

Remark 0.4. When $n=2$, we do not count the number of distinct Enriques quotients of X. We compute the Hodge numbers of the universal covering space X of $E^{[2]}$ (Appendix A).

In addition, we investigate the relationship between the small deformation of $E^{[n]}$ and that of X (Theorem 0.5) and study the natural automorphisms of $E^{[n]}$ (Theorem 0.8).

Section 2 is a preliminary section. We prepare and recall some basic facts on the Hilbert scheme of n points of a surface.

In Section 3, we show the following theorem (Theorem 0.5).

Theorem 0.5. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.

Remark 0.6. By Fantechi [4, Theorems 0.1 and 0.3], every small deformation of $E^{[n]}$ is induced by that of E. Thus for $n \geq 2$, every small deformation of X is induced by that of E.

When $n=1, E^{[1]}$ is an Enriques surface E, and X is a $K 3$ surface. An Enriques surface has a 10 -dimensional deformation space and a $K 3$ surface has a 20dimensional deformation space. Thus the small deformation of X is much bigger than that of E. Our Theorem 0.5 is different from the case of $n=1$.

In Section 4, we show the following theorem (Theorem 0.8).

Definition 0.7. For $n \geq 2$ and S a smooth compact surface, any automorphism $f \in \operatorname{Aut}(S)$ induces an automorphism $f^{[n]} \in \operatorname{Aut}\left(S^{[n]}\right)$. An automorphism $g \in$ $\operatorname{Aut}\left(S^{[n]}\right)$ is called natural if there is an automorphism $f \in \operatorname{Aut}(S)$ such that $g=f^{[n]}$.

When S is a $K 3$ surface, the natural automorphisms of $S^{[n]}$ were studied by Boissière and Sarti [3]. They showed that an automorphism of $S^{[n]}$ is natural if and only if it preserves the exceptional divisor of the Hilbert-Chow morphism [3, Theorem 1]. We obtain Theorem 0.8 which is similar to [3, Theorem 1]:

Theorem 0.8. For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \rightarrow E^{(n)}$, and $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[2]}$. Then
i) An automorphism f of $E^{[n]}$ is natural if and only if $f(D)=D$.
ii) An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g\left(\pi^{-1}(D)\right)=\pi^{-1}(D)$.

In Section 5, we show main theorem (Theorem 0.3).

In addition, let Y be a smooth compact Kähler surface. For a line bundle L on Y, by using the natural map $\left.\operatorname{Pic}(Y) \rightarrow \operatorname{Pic}\left(Y^{[n]}\right)\right), L \mapsto L_{n}$, we put

$$
\begin{gathered}
h^{p, q}\left(Y^{[n]}, L_{n}\right):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{q}\left(Y^{[n]}, \Omega_{Y[n]}^{p} \otimes L_{n}\right), \\
h^{p, q}(Y, L):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{q}\left(Y, \Omega_{Y}^{p} \otimes L\right), \\
A:=\sum_{n, p, q=0}^{\infty} h^{p, q}\left(Y^{[n]}, L_{n}\right) x^{p} y^{q} t^{n}, \text { and } \\
B:=\prod_{k=1}^{\infty} \prod_{p, q=0}^{2}\left(\frac{1}{\left.1-(-1)^{p+q} x^{p+k-1} y^{q+k-1} t^{k}\right)}\right)^{(-1)^{p+q} h^{p, q}(Y, L)} .
\end{gathered}
$$

In [2, Conjecture 1], S. Boissière conjectured that

$$
A=B
$$

In the proof of Theorem 0.5 , we obtain the counterexample to this conjecture for Y an Enriques surface and $L=\Omega_{Y}^{2}$. See Appendix B for details.

Acknowledgements 0.9. I would like to express my thanks to Professor Keiji Oguiso for his advice and encouragement and the referees for a very careful reading and many helpful suggestions, especially, the counterexample to the conjecture in [2, Conjecture 1].

1. Preliminaries

Let S be a nonsingular projective surface, $S^{[n]}$ the Hilbert scheme of n points of $S, q: S^{[n]} \rightarrow S^{(n)}$ the Hilbert-Chow morphism, and $p: S^{n} \rightarrow S^{(n)}$ the natural projection. We denote the exceptional divisor of q by D. By Fogarty [5, Theorem 2.4], $S^{[n]}$ is a smooth projective variety of $\operatorname{dim}_{\mathbb{C}} S^{[n]}=2 n$. We put

$$
\Delta^{n}:=\left\{\left(x_{i}\right)_{i=1}^{n} \in S^{n}:\left|\left\{x_{i}\right\}_{i=1}^{n}\right| \leq n-1\right\},
$$

$$
\begin{gathered}
S_{*}^{n}:=\left\{\left(x_{i}\right)_{i=1}^{n} \in S^{n}:\left|\left\{x_{i}\right\}_{i=1}^{n}\right| \geq n-1\right\}, \\
\Delta_{*}^{n}:=\Delta^{n} \cap S_{*}^{n}, \text { and } \\
S_{*}^{[n]}:=q^{-1}\left(p\left(S_{*}^{n}\right)\right)
\end{gathered}
$$

When $n=2$, $_{\text {Blow }}^{\Delta^{2}}$ $S^{2} / \Sigma_{2} \simeq S^{[2]}$, for $n \geq 3$, we have Blow $_{\Delta_{*}^{n}} S_{*}^{n} / \Sigma_{n} \simeq S_{*}^{[n]}$, and $S^{[n]} \backslash S_{*}^{[n]}$ is an analytic closed subset and its codimension is 2 in $S^{[n]}$ ([1, page 767768]). Here Σ_{n} is the symmetric group of degree n which acts naturally on S^{n} by permuting of the factors.

Let $\mu: K \rightarrow E$ be the universal covering space of E where K is a $K 3$ surface, and ι the covering involution of μ. They induces the universal covering space $\mu^{n}: K^{n} \rightarrow E^{n}$. For $1 \leq k \leq n, 1 \leq i_{1}<\cdots<i_{k} \leq n$, we define automorphisms $\iota_{i_{1} \ldots i_{k}}$ of K^{n} in the following way: for $x=\left(x_{i}\right)_{i=1}^{n} \in K^{n}$,

$$
\text { the j-th component of } \iota_{i_{1} \ldots i_{k}}(x)= \begin{cases}\iota\left(x_{j}\right) & j \in\left\{i_{1}, \ldots, i_{k}\right\} \\ x_{j} & j \notin\left\{i_{1}, \ldots, i_{k}\right\}\end{cases}
$$

Let G be the subgroup of $\operatorname{Aut}\left(K^{n}\right)$ generated by Σ_{n} and $\left\{\iota_{i}\right\}_{1 \leq i \leq n}$ and H the subgroup of $\operatorname{Aut}\left(K^{n}\right)$ generated by Σ_{n} and $\left\{\iota_{i j}\right\}_{1 \leq i<j \leq n}$. Since $K^{n} / G=E^{(n)}$, $H \triangleleft G,|G / H|=2$, and the codimension of $\mu^{-1}\left(\Delta^{n}\right)$ is two, we get the universal covering spaces

$$
\begin{gathered}
p_{1}: K^{n} \backslash \mu^{-1}\left(\Delta^{n}\right) \rightarrow K^{n} \backslash \mu^{-1}\left(\Delta^{n}\right) / G, \text { and } \\
p_{2}: K^{n} \backslash \mu^{-1}\left(\Delta^{n}\right) \rightarrow K^{n} \backslash \mu^{-1}\left(\Delta^{n}\right) / H,
\end{gathered}
$$

where p_{1} and p_{2} are the natural projections. For $n \geq 3$, we put

$$
\begin{gathered}
K_{\circ}^{n}:=\left(\mu^{n}\right)^{-1}\left(E_{*}^{n}\right) \\
\Gamma_{\circ}^{i j}:=\left\{\left(x_{l}\right)_{l=1}^{n} \in K_{\circ}^{n}: \iota\left(x_{i}\right)=x_{j}\right\} \\
\Delta_{\circ}^{i j}:=\left\{\left(x_{l}\right)_{l=1}^{n} \in K_{\circ}^{n}: x_{i}=x_{j}\right\}
\end{gathered}
$$

$$
\begin{gathered}
\Gamma_{\circ}:=\bigcup_{1 \leq i<j \leq n} T_{\circ}^{i, j}, \text { and } \\
\Delta_{\circ}:=\bigcup_{1 \leq i<j \leq n} U_{\circ}^{i j}
\end{gathered}
$$

Then we get $\mu^{n-1}\left(\Delta_{*}^{n}\right)=\Gamma_{\circ} \cup \Delta_{\circ}$. By the definition of K_{\circ}^{n}, H acts on K_{\circ}^{n}. For an element $\tilde{x}:=\left(\tilde{x}_{i}\right)_{i=1}^{n} \in \Gamma_{\circ} \cap \Delta_{\circ}$, some i, j, k, l with $k \neq l$ such that $\sigma\left(\tilde{x}_{i}\right)=\tilde{x}_{j}$ and $\tilde{x}_{k}=\tilde{x}_{l}$. Since σ does not have fixed points. Thus $\tilde{x}_{i} \neq \tilde{x}_{l}$. Therefore $\mu^{n}(\tilde{x}) \notin E_{*}^{n}$. This is a contradiction. We obtain $\Gamma_{\circ} \cap \Delta_{\circ}=\emptyset$.

Lemma 1.1. For $t \in H$ and $1 \leq i<j \leq n$, if $t \in H$ has a fixed point on $\Delta_{\circ}^{i j}$, then $t=(i, j)$ or $t=\operatorname{id}_{K^{n}}$.

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x}=\left(\tilde{x}_{i}\right)_{i=1}^{n} \in \Delta_{\circ}^{i j}$ such that $t(\tilde{x})=\tilde{x}$. For $t \in H$, there are $\iota_{a b}$ where $1 \leq a<b \leq n$ and $\left(j_{1}, \ldots, j_{l}\right) \in$ Σ_{n} such that

$$
t=\left(j_{1}, \ldots, j_{l}\right) \circ \iota_{a b}
$$

From the definition of $\Delta_{\circ}^{i j}$, for $\left(x_{l}\right)_{l=1}^{n} \in \Delta_{\circ}^{i j}$,

$$
\left\{x_{1}, \ldots, x_{n}\right\} \cap\left\{\iota\left(x_{1}\right), \ldots, \iota\left(x_{n}\right)\right\}=\emptyset .
$$

Suppose $\iota_{a b} \neq \operatorname{id}_{K^{n}}$. Since $t(\tilde{x})=\tilde{x}$, we have

$$
\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right\} \cap\left\{\iota\left(\tilde{x}_{1}\right), \ldots, \iota\left(\tilde{x}_{n}\right)\right\} \neq \emptyset .
$$

This is a contradiction. Thus we have $t=\left(j_{1}, \ldots, j_{l}\right)$. Similarly from the definition of $\Delta_{\circ}^{i j}$, for $\left(x_{l}\right)_{l=1}^{n} \in \Delta_{\circ}^{i j}$, if $x_{s}=x_{t}(1 \leq s<t \leq n)$, then $s=i$ and $t=j$. Thus we have $t=(i, j)$ or $t=\mathrm{id}_{K^{n}}$.

Lemma 1.2. For $t \in H$ and $1 \leq i<j \leq n$, if $t \in H$ has a fixed point on $\Gamma_{\circ}^{i j}$, then $t=\iota_{i, j} \circ(i, j)$ or $t=\mathrm{id}_{K^{n}}$.

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x}=\left(\tilde{x}_{i}\right)_{i=1}^{n} \in \Gamma_{\circ}^{i j}$ such that $t(\tilde{x})=\tilde{x}$. For $t \in H$, there are ι_{a} where $1 \leq a \leq n$ and $\left(j_{1}, \ldots, j_{l}\right) \in \mathcal{S}_{n}$ such that

$$
t=\left(j_{1} \ldots j_{l}\right) \circ \iota_{a}
$$

Since $(j, j+1) \circ \iota_{i, j} \circ(j, j+1): U_{i j} \rightarrow T_{i j}$ is an isomorphism, and by Lemma 1.1, we have

$$
(j, j+1) \circ \iota_{i, j} \circ(j, j+1) \circ t \circ(j, j+1) \circ \iota_{i, j} \circ(j, j+1)=(i, j){\text { or } \operatorname{id}_{K^{n}} .}
$$

If $(j, j+1) \circ \iota_{i, j} \circ(j, j+1) \circ t \circ(j, j+1) \circ \iota_{i, j} \circ(j, j+1)=\operatorname{id}_{K^{n}}$, then $t=\operatorname{id}_{K^{n}}$. If $(j, j+1) \circ \iota_{i, j} \circ(j, j+1) \circ t \circ(j, j+1) \circ \iota_{i, j} \circ(j, j+1)=(i, j)$, then $t=(j, j+1) \circ \iota_{i, j} \circ(j, j+1) \circ(i, j) \circ(j, j+1) \circ \iota_{i, j} \circ(j, j+1)$ $=(j, j+1) \circ \iota_{i, j} \circ(i, j+1) \circ \iota_{i, j} \circ(j, j+1)$ $=(j, j+1) \circ \iota_{i, j+1} \circ(i, j+1) \circ(j, j+1)$ $=\iota_{i, j} \circ(i, j)$.

Thus we have $t=\iota_{i, j} \circ(i, j)$.

For the natural projection we get a unramified covering space: $K^{n} / H \rightarrow K^{n} / G=$ $E^{(n)}=E^{n} / \Sigma_{n}$. From Lemma 1.1 and Lemma 1.2, we get a local isomorphism:

$$
\theta: \mathrm{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H \rightarrow E_{*}^{[n]}
$$

Lemma 1.3. For every $x \in E_{*}^{[n]},\left|\theta^{-1}(x)\right|=2$.

Proof. For $\left(x_{i}\right)_{i=1}^{n} \in \Delta_{*}^{n} \subset E^{n}$ with $x_{1}=x_{2}$, there are n elements y_{1}, \ldots, y_{n} of K such that $y_{1}=y_{2}$ and $\mu\left(y_{i}\right)=x_{i}$ for $1 \leq i \leq n$. Then

$$
\left(\mu^{n}\right)^{-1}\left(\left(x_{i}\right)_{i=1}^{n}\right)=\left\{y_{1}, \iota\left(y_{1}\right)\right\} \times \cdots \times\left\{y_{n}, \iota\left(y_{n}\right)\right\}
$$

Since H is generated by Σ_{n} and $\left\{\iota_{i j}\right\}_{1 \leq i<j \leq n}$, for $\left(z_{i}\right)_{i=1}^{n} \in\left(\mu^{n}\right)^{-1}\left(\left(x_{i}\right)_{i=1}^{n}\right)$ if the number of i with $z_{i}=y_{i}$ is even, then

$$
\left(z_{i}\right)_{i=1}^{n}=\left\{\iota\left(y_{1}\right), \iota\left(y_{2}\right), y_{3}, \ldots, y_{n}\right\} \text { on } K_{\circ}^{n} / H, \text { and }
$$

if the number of i with $z_{i}=y_{i}$ is odd, then

$$
\left(z_{i}\right)_{i=1}^{n}=\left\{\iota\left(y_{1}\right), y_{2}, y_{3}, \ldots, y_{n}\right\} \text { on } K_{\circ}^{n} / H
$$

Furthermore since $\iota_{i} \notin H$ for $1 \leq i \leq n$,

$$
\left\{\iota\left(y_{1}\right), \iota\left(y_{2}\right), y_{3}, \ldots, y_{n}\right\} \neq\left\{\iota\left(y_{1}\right), y_{2}, y_{3}, \ldots, y_{n}\right\}, \text { on } K_{\circ}^{n} / H
$$

Thus for every $x \in E_{*}^{[n]}$, we get $\left|\theta^{-1}(x)\right|=2$.

Proposition 1.4. $\theta: \operatorname{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H \rightarrow \operatorname{Blow}_{\Delta_{*}^{n}} E_{*}^{n} / \Sigma_{n}$ is the universal covering space, i.e. $\pi^{-1}\left(E_{*}^{[n]}\right) \simeq \operatorname{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H$. When $n=2$, we have $X \simeq \operatorname{Blow}_{\mu^{2-1}\left(\Delta^{2}\right)} K^{2} / H$.

Proof. Since θ is a local isomorphism, from Lemma 1.3 we get that θ is a covering map. Furthermore $\pi: \pi^{-1}\left(E_{*}^{[n]}\right) \rightarrow E_{*}^{[n]}$ is the universal covering space of degree 2, $\theta: \operatorname{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H \rightarrow \operatorname{Blow}_{\Delta_{*}^{n}} E_{*}^{n} / \Sigma_{n}$ is the universal covering space. By the uniqueness of the universal covering space, we have $\pi^{-1}\left(E_{*}^{[n]}\right) \simeq$ $\operatorname{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H$. When $n=2$, since $E_{*}^{2}=E^{2}, K_{\circ}^{2}=K^{2}$ and Blow $\Delta^{2} E^{2} / \Sigma_{2} \simeq$ $E^{[2]}$, we have $X \simeq \operatorname{Blow}_{\mu^{2-1}\left(\Delta^{2}\right)} K^{2} / H$.

Theorem 1.5. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$. Then there is a birational morphism $\varphi: X \rightarrow K^{n} / H$ such that $\varphi^{-1}\left(\mu^{n-1}\left(\Delta^{n}\right) / H\right)=\pi^{-1}(D)$.

Proof. When $n=2$, this is proved by Proposition 1.4. From here we assume that $n \geq 3$. From Proposition 1.4, we have $\pi^{-1}\left(E_{*}^{[n]}\right) \simeq \operatorname{Blow}_{\mu^{n-1}\left(\Delta_{*}^{n}\right)} K_{\circ}^{n} / H$. Since the codimension of $X \backslash \pi^{-1}\left(E_{*}^{[n]}\right)$ is 2, there is a meromorphim f of X to K^{n} / H which satisfies the following commutative diagram:

where $q: E^{[n]} \rightarrow E^{(n)}$ is the Hilbert-Chow morphism, and $p: K^{n} / H \rightarrow E^{(n)}$ is the natural projection. For an ample line bundle \mathcal{L} on $E^{(n)}$, since the natural projection $p: K^{n} / H \rightarrow E^{(n)}$ is finite, $p^{*} \mathcal{L}$ is ample. From the above diagram, we have $\left.\pi^{*}\left(q^{*} \mathcal{L}\right)\right|_{\pi^{-1}\left(E_{*}^{[n]}\right)}=f^{*}\left(p^{*} \mathcal{L}\right)$. Since $X \backslash \pi^{-1}\left(E_{*}^{[n]}\right)$ is an analytic closed subset of codimension 2 in X and $p_{H}^{*} \mathcal{L}$ is ample, there is a holomorphism φ from X to K^{n} / H such that $\left.\varphi\right|_{X \backslash \pi^{-1}(F)}=\left.f\right|_{X \backslash \pi^{-1}(F)}$. Since $f: X \backslash \pi^{-1}(D) \cong\left(K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right)\right) / H$, this is a birational morphism.

2. Proof of Theorem 0.5

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$. In this section, we show Theorem 0.5 (Theorem 2.2).

Proposition 2.1. For $n \geq 2$, we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1}\right)=0$.

Proof. For a smooth projective manifold S, we put

$$
h^{p, q}(S):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{q}\left(S, \Omega_{S}^{p}\right) \text { and }
$$

$$
h(S, x, y):=\sum_{p, q} h^{p, q}(S) x^{p} y^{q}
$$

By [7, Theorem 2] and [6, page 204], we have the equation (1):

$$
\sum_{n=0}^{\infty} \sum_{p, q} h^{p, q}\left(E^{[n]}\right) x^{p} y^{q} t^{n}=\prod_{k=1}^{\infty} \prod_{p, q=0}^{2}\left(\frac{1}{\left.1-(-1)^{p+q} x^{p+k-1} y^{q+k-1} t^{k}\right)}\right)^{(-1)^{p+q} h^{p, q}(E)}
$$

Since an Enriques surface E has Hodge numbers $h^{0,0}(E)=h^{2,2}(E)=1, h^{1,0}(E)=$ $h^{0,1}(E)=0, h^{2,0}(E)=h^{0,2}(E)=0$, and $h^{1,1}(E)=10$, the equation (1) is $\sum_{n=0}^{\infty} \sum_{p, q} h^{p, q}\left(E^{[n]}\right) x^{p} y^{q} t^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-x^{k-1} y^{k-1} t^{k}}\right)\left(\frac{1}{1-x^{k} y^{k} t^{k}}\right)^{10}\left(\frac{1}{1-x^{k+1} y^{k+1} t^{k}}\right)$.

It follows that

$$
h^{p, q}\left(E^{[n]}\right)=0 \text { for all } p, q \text { with } p \neq q .
$$

Thus we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(E^{[n]}, \Omega_{E[n]}^{2 n-1}\right)=0$ for $n \geq 2$.

Theorem 2.2. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.

Proof. In [4, Proposition 4.2 and Theorems 0.3], Fantechi showed that for a smooth projective surface with $\mathrm{H}^{0}\left(S, T_{S}\right)=0$ or $\mathrm{H}^{1}\left(S, \mathcal{O}_{S}\right)=0$, and $\mathrm{H}^{1}\left(S, \mathcal{O}_{S}\left(-K_{S}\right)\right)=0$ where K_{S} is the canonical divisor of S,

$$
\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(S, T_{S}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(S^{[n]}, T_{S^{[n]}}\right)
$$

Since an Enriques surface E satisfies $\mathrm{H}^{0}\left(E, T_{E}\right)=0$ or $\mathrm{H}^{1}\left(E, \mathcal{O}_{E}\right)=0$, and $\mathrm{H}^{1}\left(E, \mathcal{O}_{E}\left(-K_{E}\right)\right)=0$, we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(E^{[n]}, T_{E^{[n]}}\right)=10$. Since $K_{E^{[n]}}$ is not trivial and $2 K_{E^{[n]}}$ is trivial, we have

$$
T_{E^{[n]}} \simeq \Omega_{E^{[n]}}^{2 n-1} \otimes K_{E^{[n]}}
$$

Therefore we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(E^{n}, \Omega_{E^{[n]}}^{2 n-1} \otimes K_{E^{[n]}}\right)=10$. Since K_{X} is trivial, then we have $T_{X} \simeq \Omega_{X}^{2 n-1}$. Since $\pi: X \rightarrow E^{[n]}$ is the covering map, we have

$$
\mathrm{H}^{k}\left(X, \Omega_{X}^{2 n-1}\right) \simeq \mathrm{H}^{k}\left(E^{[n]}, \pi_{*} \Omega_{X}^{2 n-1}\right)
$$

Since $X \simeq \operatorname{Spec} \mathcal{O}_{E^{[n]}} \oplus \mathcal{O}_{E^{[n]}}\left(K_{E^{[n]}}\right)([10$, Theorem 3.1] $)$, we have

$$
\mathrm{H}^{k}\left(E^{[n]}, \pi_{*} \Omega_{X}^{2 n-1}\right) \simeq \mathrm{H}^{k}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1} \oplus\left(\Omega_{E^{[n]}}^{2 n-1} \otimes K_{\left.E^{[n]}\right)}\right)\right.
$$

Thus

$$
\begin{aligned}
\mathrm{H}^{k}\left(X, \Omega_{X}^{2 n-1}\right) & \simeq \mathrm{H}^{k}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1} \oplus\left(\Omega_{E^{[n]}}^{2 n-1} \otimes K_{E^{[n]}}\right)\right) \\
& \simeq \mathrm{H}^{k}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1}\right) \oplus \mathrm{H}^{k}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1} \otimes K_{E^{[n]}}\right)
\end{aligned}
$$

Combining this with Proposition 2.1, we obtain

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(X, \Omega_{X}^{2 n-1}\right) & =\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(E^{[n]}, \Omega_{E^{[n]}}^{2 n-1} \otimes K_{E[n]}\right) \\
& =10
\end{aligned}
$$

Let $p: \mathcal{Y} \rightarrow U$ be the Kuranishi family of $E^{[n]}$. Since each canonical bundle of $E^{[n]}$ and E is torsion, they have unobstructed deformations ([12]). Thus U is smooth. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be the universal covering space. Then $q: \mathcal{X} \rightarrow U$ is a flat family of X where $q:=p \circ f$. By [4, Theorems 0.1 and 0.3], all small deformation of $E^{[n]}$ is induced by that of E. Thus for $u \in U, q^{-1}(u)$ is the universal covering space of the Hilbert scheme of n points of an Enriques surface. Then we have a commutative diagram:

Since $\mathrm{H}^{1}\left(E^{[n]}, T_{E^{[n]}}\right) \simeq \mathrm{H}^{1}\left(X, T_{X}\right)$ by π^{*}, the vertical arrow τ is an isomorphism and

$$
\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(\mathcal{X}_{u}, T_{\mathcal{X}_{u}}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(\mathcal{X}_{u}, \Omega_{\mathcal{X}_{u}}^{2 n-1}\right)
$$

is a constant for some neighborhood of $0 \in U$, it follows that $q: \mathcal{X} \rightarrow U$ is the complete family of $\mathcal{X}_{0}=X$, therefore $q: \mathcal{X} \rightarrow U$ is the versal family of $\mathcal{X}_{0}=X$. Thus every small deformation of X is induced by that of $E^{[n]}$.

3. Proof of Theorem 0.8

For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$, and D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \rightarrow E^{(n)}$. Recall that ι is the covering involution of $\mu: K \rightarrow E, p_{1}: K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) \rightarrow E^{[n]} \backslash D=E^{n} \backslash \Delta^{n} / \Sigma_{n}=K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / G$ and $p_{2}: K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) \rightarrow X \backslash \pi^{-1}(D)=K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / H$ are the universal covering spaces where p_{1} and p_{2} are the natural projections. In this section, we show Theorem 0.8 (Theorem 3.2).

Lemma 3.1. i) Let f be an automorphism of $E^{[n]} \backslash D$, and g_{1}, \ldots, g_{n} automorphisms of K such that $p_{1} \circ\left(g_{1} \times \cdots \times g_{n}\right)=f \circ p_{1}$, where $\left(g_{1} \times \cdots \times g_{n}\right)$ is the automorphism of K^{n}. Then we have $g_{i}=g_{1}$ or $g_{i}=g_{1} \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_{1} \circ \iota=\iota \circ g_{1}$.
ii) Let f be an automorphism of $X \backslash \pi^{-1}(D)$, and g_{1}, \ldots, g_{n} automorphisms of K such that $p_{2} \circ\left(g_{1} \times \cdots \times g_{n}\right)=f \circ p_{2}$, where $\left(g_{1} \times \cdots \times g_{n}\right)$ is the automorphism of K^{n}. Then we have $g_{i}=g_{1}$ or $g_{i}=g_{1} \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_{1} \circ \iota=\iota \circ g_{1}$.

Proof. We show i) by contradiction. Without loss of generality, we may assume that $g_{2} \neq g_{1}$ and $g_{2} \neq g_{1} \circ \iota$. Let h_{1} and h_{2} be two morphisms of K where $g_{i} \circ h_{i}=\operatorname{id}_{K}$
and $h_{i} \circ g_{i}=\operatorname{id}_{K}$ for $i=1,2$. We define two morphisms $A_{1,2}$ and $A_{1,2, \iota}$ from K to K^{2} by

$$
\begin{gathered}
A_{1,2}: K \ni x \mapsto\left(h_{1}(x), h_{2}(x)\right) \in K^{2} \\
A_{1,2, \iota}: K \ni x \mapsto\left(h_{1}(x), \iota \circ h_{2}(x)\right) \in K^{2} .
\end{gathered}
$$

Let $\Gamma_{\iota}:=\{(x, y): y=\iota(x)\}$ be the subset of K^{2}. Since $h_{1} \neq h_{2}$ and $h_{1} \neq \iota \circ h_{2}$, $A_{1,2}^{-1}\left(\Delta^{2}\right) \cup A_{1,2, \iota}^{-1}\left(\Gamma_{\iota}\right)$ do not coincide with K. Thus there is $x^{\prime} \in K$ such that $A_{1,2}\left(x^{\prime}\right) \notin \Delta^{2}$ and $A_{1,2, \iota}\left(x^{\prime}\right) \notin \Gamma_{\iota}$. For $x^{\prime} \in K$, we put $x_{i}:=h_{i}\left(x^{\prime}\right) \in K$ for $i=1,2$. Then there are some elements $x_{3}, \ldots, x_{n} \in K$ such that $\left(x_{1}, \ldots, x_{n}\right) \in$ $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right)$. We have $g\left(\left(x_{1}, \ldots, x_{n}\right)\right) \notin K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right)$ by the assumption of x_{1} and x_{2}. It is contradiction, because g is an automorphism of $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right)$. Thus we have $g_{i}=g_{1}$ or $g_{i}=g_{1} \circ \iota$ for $1 \leq i \leq n$.

Let $g:=g_{1} \times \cdots \times g_{n}$. Since the covering transformation group of p is G, the liftings of f are given by $\{g \circ u: u \in G\}=\{u \circ g: u \in G\}$. Thus for $\iota_{1} \circ g$, there is an element $\iota_{a} \circ s$ of G where $s \in \Gamma_{n}$ and $1 \leq a \leq n$ such that $\iota_{1} \circ g=g \circ \iota_{a} \circ s$. If we think about the first component of $\iota_{1} \circ g$, we have $s=\mathrm{id}$ and $a=1$. Therefore $g \circ \iota \circ g^{-1}=\iota$, we have $\iota \circ g_{1}=g_{1} \circ \iota$. In the same way, we have ii).

Theorem 3.2. For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \rightarrow E^{(n)}$, and $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[2]}$. Then
i) An automorphism f of $E^{[n]}$ is natural if and only if $f(D)=D$.
ii) An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g\left(\pi^{-1}(D)\right)=\pi^{-1}(D)$.

Proof. We show (1). Let $\mu: K \rightarrow E$ be the universal covering space of E. By Theorem 1.5, there is a commutative diagram

where p is the natural projection and φ is a birational morphism. Since $E^{[n]} \backslash D \xrightarrow{\sim}$ $E^{n} \backslash \Delta^{n} / \Sigma_{n}$, we have the universal covering spaces

$$
\begin{gathered}
p_{1}: K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) \rightarrow E^{n} \backslash \Delta^{n} / \Sigma_{n}, \\
p_{2}: K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) \rightarrow K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / H, \text { and }
\end{gathered}
$$

and the following commutative diagram:

where p_{1}, p_{2}, and p_{3} are the natural projections. For $f \in \operatorname{Aut}\left(E^{[n]}\right)$ with $f(D)=D$, from the uniqueness of the universal covering space, f induces an automorphisms \bar{f} of $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right)$. Since K is projective and $\operatorname{codim} \mu^{-1}\left(\Delta^{n}\right)$ is over $2, \bar{f}$ is a biratioal map of K^{n}. By [9], \bar{f} is au automorphism of K^{n} and there are g_{1}, \ldots, g_{n} automorphisms of K such that $\bar{f}=\left(g_{1} \times \cdots \times g_{n}\right) \circ s$ where $s \in \Sigma_{n}$. Since $\Sigma \subset G$, we get $f \circ p_{1}=p_{1} \circ\left(g_{1} \times \cdots \times g_{n}\right)$. From Lemma 3.1, we get $\left.i\right)$. By Theorem 1.5 and the above diagram, in the same way, we get $i i$).

4. Proof of Theorem 0.3

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \rightarrow E^{[n]}$ the universal covering space of $E^{[n]}$.

In Proposition 4.2, we shall show that for $n \geq 3$, the covering involution of $\pi: X \rightarrow E^{[n]}$ acts on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity. In Proposition 4.5, by using Theorem 3.2 and checking the action to $\mathrm{H}^{1}\left(X, \Omega_{X}^{2 n-1}\right) \cong \mathrm{H}^{2 n-1,1}(X)$, we classify involutions of X which act on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity. We prove Theorem 0.3 (Theorem 4.7) using those results.

Lemma 4.1. Let X be a smooth complex manifold, $Z \subset X$ a closed submanifold whose codimension is $2, \tau: X_{Z} \rightarrow X$ the blow up of X along $Z, E=\tau^{-1}(Z)$ the exceptional divisor, and h the first Chern class of the line bundle $\mathcal{O}_{X_{Z}}(E)$.

Then $\tau^{*}: \mathrm{H}^{2}(X, \mathbb{C}) \rightarrow \mathrm{H}^{2}\left(X_{Z}, \mathbb{C}\right)$ is injective, and

$$
\mathrm{H}^{2}\left(X_{Z}, \mathbb{C}\right) \simeq \mathrm{H}^{2}(X, \mathbb{C}) \oplus \mathbb{C} h
$$

Proof. Let $U:=X \backslash Z$ be an open set of X. Then U is isomorphic to an open set $U^{\prime}=X_{Z} \backslash E$ of X_{Z}. As τ gives a morphism between the pair $\left(X_{Z}, U^{\prime}\right)$ and the pair (X, U), we have a morphism τ^{*} between the long exact sequence of cohomology relative to these pairs:

By Thom isomorphism, the tubular neighborhood Theorem, and Excision theorem, we have

$$
\begin{aligned}
\mathrm{H}^{q}(Z, \mathbb{C}) & \simeq \mathrm{H}^{q+4}(X, U, \mathbb{C}), \text { and } \\
\mathrm{H}^{q}(E, \mathbb{C}) & \simeq \mathrm{H}^{q+2}\left(X_{Z}, U^{\prime}, \mathbb{C}\right)
\end{aligned}
$$

In particular, we have

$$
\mathrm{H}^{l}(X, U, \mathbb{C})=0 \text { for } l=0,1,2,3, \text { and }
$$

$$
\mathrm{H}^{j}\left(X_{Z}, U^{\prime}, \mathbb{C}\right)=0 \text { for } l=0,1
$$

Thus we have

and

Since $\left.\tau\right|_{U^{\prime}}: U^{\prime} \xrightarrow{\sim} U$, we have isomorphisms $\tau_{U}^{*}: \mathrm{H}^{k}(U, \mathbb{C}) \simeq \mathrm{H}^{k}\left(U^{\prime}, \mathbb{C}\right)$. Thus we have

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(X_{Z}, \mathbb{C}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}(X, \mathbb{C})+1, \text { and } \\
\tau^{*}: \mathrm{H}^{2}(X, \mathbb{C}) \rightarrow \mathrm{H}^{2}\left(X_{Z}, \mathbb{C}\right) \text { is injective }
\end{gathered}
$$

and therefore we obtain

$$
\mathrm{H}^{2}\left(X_{Z}, \mathbb{C}\right) \simeq \mathrm{H}^{2}(X, \mathbb{C}) \oplus \mathbb{C} h
$$

Proposition 4.2. Suppose $n \geq 3$. For the covering involution ρ of the universal covering space $\pi: X \rightarrow E^{[n]}$, the induced map $\rho^{*}: \mathrm{H}^{2}(X, \mathbb{C}) \rightarrow \mathrm{H}^{2}(X, \mathbb{C})$ is the identity.

Proof. Since the codimension of $X \backslash \pi^{-1}\left(E_{*}^{[n]}\right)$ is 2 , we get

$$
\mathrm{H}^{2}(X, \mathbb{C}) \cong \mathrm{H}^{2}\left(X \backslash \pi^{-1}(F), \mathbb{C}\right)
$$

By Proposition 2.6, $X \backslash \pi^{-1}\left(E_{*}^{[n]}\right) \simeq \operatorname{Blow}_{\mu^{n-1}\left(\Delta^{n}\right)} K_{\circ}^{n} / H$.
Let $\tau: \operatorname{Blow}_{\mu^{n-1}\left(\Delta^{n}\right)} K_{\circ}^{n} \rightarrow K_{\circ}^{n}$ be the blow up of K_{\circ}^{n} along $\mu^{n-1}\left(\Delta^{n}\right)$,

and
$k_{i j}$ the first Chern class of the line bundle $\mathcal{O}_{\text {Blow }_{\mu^{n-1}\left(\Delta^{n}\right)} K_{o}^{n}\left(\tau^{-1}\left(\Gamma_{\circ}^{i j}\right)\right) ~}^{\text {. }}$

By Lemma 4.1, we have

$$
\mathrm{H}^{2}\left(\text { Blow }_{\mu^{n-1}\left(\Delta^{n}\right)} K_{\circ}^{n}, \mathbb{C}\right) \cong \mathrm{H}^{2}\left(K^{n}, \mathbb{C}\right) \oplus\left(\bigoplus_{1 \leq i<j \leq n} \mathbb{C} h_{i j}\right) \oplus\left(\bigoplus_{1 \leq i<j \leq n} \mathbb{C} k_{i j}\right)
$$

Since $n \geq 3$, there is an isomorphism

$$
(j, j+1) \circ \sigma_{i j} \circ(j, j+1): \Delta_{\circ}^{i j} \xrightarrow{\sim} \Gamma_{\circ}^{i j} .
$$

Thus we have $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(\operatorname{Blow}_{\mu^{n-1}\left(\Delta^{n}\right)} K_{\circ}^{n} / H, \mathbb{C}\right)=11$, i.e. $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}(X, \mathbb{C})=11$. Since $\mathrm{H}^{2}\left(E^{[n]}, \mathbb{C}\right)=\mathrm{H}^{2}(X, \mathbb{C})^{\rho^{*}}, \rho^{*}$ is the identity.

Since K^{n} / H is normal, $\pi^{-1}(E)$ is the exceptional divisor (Theorem 2.5) and X is a Calabi-Yau, we have that for an automorphism f of $X, f\left(\pi^{-1}(D)\right)=\pi^{-1}(D)$ if and only if $f^{*} \mathcal{O}_{X}\left(\pi^{-1}(D)\right)=\mathcal{O}_{X}\left(\pi^{-1}(D)\right)$ in $\operatorname{Pic}(X)$.

Definition 4.3. Let S be a smooth surface. An automorphism φ of S is numerically trivial if the induced automorphism φ^{*} of the cohomology ring over $\mathbb{Q}, \mathrm{H}^{*}(S, \mathbb{Q})$ is the identity.

We suppose that an Enriques surface E has numerically trivial involutions. By [8, Proposition 1.1], there is just one numerically trivial involution of E, denoted v. For v, there are just two involutions of K which are liftings of v, one acts on
$\mathrm{H}^{0}\left(K, \Omega_{K}^{2}\right)$ as the identity, and another acts on $\mathrm{H}^{0}\left(K, \Omega_{K}^{2}\right)$ as $-\mathrm{id}_{\mathrm{H}^{0}\left(K, \Omega_{K}^{2}\right)}$, we denote by v_{+}and v_{-}, respectively. Then they satisfies $v_{+}=v_{-} \circ \sigma$.

Let $v^{[n]}$ be the automorphism of $E^{[n]}$ which is induced by v. For $v^{[n]}$, there are just two automorphisms of X which are liftings of $v^{[n]}$, denoted ς and ς^{\prime}, respectively:

Then they satisfies $\varsigma=\varsigma^{\prime} \circ \rho$ where ρ is the covering involution of $\pi: X \longrightarrow E^{[n]}$ and the each order of ς and ς^{\prime} is 2 . From here, we classify involutions acting on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity by checking the action to $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$.

Lemma 4.4. $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2 n-1,1}\left(K^{n} / H, \mathbb{C}\right)=10$.

Proof. Let ι be the covering involution of $\mu: K \rightarrow E$. Put

$$
\begin{gathered}
\mathrm{H}_{ \pm}^{p, q}(K, \mathbb{C}):=\left\{\alpha \in \mathrm{H}^{p, q}(K, \mathbb{C}): \iota^{*}(\alpha)= \pm \alpha\right\} \text { and } \\
h_{ \pm}^{p, q}(K):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}_{ \pm}^{p, q}(K, \mathbb{C})
\end{gathered}
$$

Since K is a $K 3$ surface, we have

$$
\begin{gathered}
h^{0,0}(K)=1, h^{1,0}(K)=0, h^{2,0}(K)=1, h^{1,1}(K)=20 \\
h_{+}^{0,0}(K)=1, h_{+}^{1,0}(K)=0, h_{+}^{2,0}(K)=0 h_{+}^{1,1}(K)=10 \\
h_{-}^{0,0}(K)=0, h_{-}^{1,0}(K)=0, h_{-}^{2,0}(K)=1, \text { and } h_{-}^{2,0}(K)=10 .
\end{gathered}
$$

Let

$$
\Lambda:=\left\{\left(s_{1}, \cdots, s_{n}, t_{1}, \cdots, t_{n}\right) \in \mathbb{Z}_{\geq 0}^{2 n}: \Sigma_{i=1}^{n} s_{i}=2 n-1, \Sigma_{j=1}^{n} t_{j}=1\right\}
$$

From the Künneth Theorem, we have

$$
\mathrm{H}^{2 n-1,1}\left(K^{n}, \mathbb{C}\right) \simeq \bigoplus_{\left(s_{1}, \cdots, s_{n}, t_{1}, \cdots, t_{n}\right) \in \Lambda}\left(\bigotimes_{i=1}^{n} \mathrm{H}^{s_{i}, t_{i}}(K, \mathbb{C})\right)
$$

We take a base α of $\mathrm{H}^{2,0}(K, \mathbb{C})$ and a base $\left\{\beta_{i}\right\}_{i=1}^{20}$ of $\mathrm{H}^{1,1}(K, \mathbb{C})$ such that $\left\{\beta_{i}\right\}_{i=1}^{10}$ is a base of $\mathrm{H}_{-}^{1,1}(K, \mathbb{C})$ and $\left\{\beta_{i}\right\}_{i=11}^{20}$ is a base of $\mathrm{H}_{+}^{1,1}(K, \mathbb{C})$. Let

$$
\tilde{\beta}_{i}:=\bigotimes_{j=1}^{n} \epsilon_{j}
$$

where $\epsilon_{j}=\alpha$ for $j \neq i$ and $\epsilon_{j}=\beta_{i}$ for $j=i$, and

$$
\gamma_{i}:=\bigoplus_{j=1}^{n} \tilde{\beta}_{j} .
$$

Then $\left\{\gamma_{i}\right\}_{i=1}^{20}$ is a base of $\mathrm{H}^{2 n-1,1}\left(K^{n}, \mathbb{C}\right)^{\mathcal{S}_{n}}$. Since $\iota^{*} \alpha=-\alpha, \iota^{*} \beta_{i}=-\beta_{i}$ for $1 \leq i \leq 10$, and $\iota^{*} \beta_{i}=\beta_{i}$ for $11 \leq i \leq 20$, we obtain

$$
\begin{gathered}
\iota_{i j}^{*} \gamma_{i}=\gamma_{i} \text { for } 1 \leq i \leq 10, \text { and } \\
\iota_{i j}^{*} \gamma_{i}=-\gamma_{i} \text { for } 11 \leq i \leq 20
\end{gathered}
$$

Since $\mathrm{H}^{2 n-1,1}\left(K^{n} / H, \mathbb{C}\right) \simeq \mathrm{H}^{2 n-1,1}\left(K^{n}, \mathbb{C}\right)^{H}$ and $H=\left\langle\mathcal{S}_{n},\left\{\sigma_{i j}\right\}_{1 \leq i<j \leq n}\right\rangle$, we obtain

$$
\mathrm{H}^{2 n-1,1}\left(K^{n} / H, \mathbb{C}\right)=\bigoplus_{i=1}^{10} \mathbb{C} \gamma_{i}
$$

Thus we get $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2 n-1,1}\left(K^{n} / H, \mathbb{C}\right)=10$.

Recall that $p: K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) \rightarrow E^{[n]} \backslash D=E^{n} \backslash \Delta^{n} / \Sigma_{n}$ is the universal covering space.

Proposition 4.5. We suppose that E has a numerically trivial involution, denoted v. Let $v^{[n]}$ be the natural automorphism of $E^{[n]}$ which is induced by v. Since the
degree of $\pi: X \rightarrow E^{[n]}$ is 2, there are just two involutions ζ and ζ^{\prime} of X which are lifts of $v^{[n]}$. Then ς and ς^{\prime} do not act on $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as $-\operatorname{id}_{\mathrm{H}^{2 n-1,1}(X, \mathbb{C})}$.

Proof. Since $v^{[n]}(D)=D,\left.v^{[n]}\right|_{E^{[n]} \backslash D}$ is an automorphism of $E^{[n]} \backslash D$. By the uniqueness of the universal covering space, there is an automorphism g of $K^{n} \backslash$ $\mu^{n-1}\left(\Delta^{n}\right)$ such that $v^{[n]} \circ p=p \circ g$:

By Proposition 3.1, there are some automorphisms g_{i} of K such that $g=g_{1} \times \cdots \times g_{n}$ for each $1 \leq i \leq n, g_{i}=g_{1}$ or $g_{i}=g_{1} \circ \iota$, and $g_{1} \circ \iota=\iota \circ g_{1}$. By Theorem 1.5, we get $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / H \simeq X \backslash \pi^{-1}(D)$. Put

$$
v_{+, \text {even }}:=u_{1} \times \cdots \times u_{n}
$$

where

$$
u_{i}=v_{+} \text {or } u_{i}=v_{-} \text {and the number of } i \text { with } u_{i}=v_{+} \text {is even. }
$$

$v_{+, \text {even }}$ is an automorphism of K^{n} and induces an automorphism $\widetilde{v_{+, \text {even }}}$ of $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / H$. We define automorphisms $\widetilde{v_{+, \text {odd }}}, \widetilde{v_{-, \text {even }}}$, and $\widetilde{v_{-, \text {odd }}}$ of $K^{n} \backslash$ $\mu^{n-1}\left(\Delta^{n}\right) / H$ in the same way. Since $\sigma_{i j} \in H$ for $1 \leq i<j \leq n$, and $v_{+}=v_{-} \circ \iota$, if n is odd,

$$
\widetilde{v_{+, \text {odd }}}=\widetilde{v_{-, \text {even }}}, \widetilde{v_{+, \text {even }}}=\widetilde{v_{-, \text {odd }}}, \text { and } \widetilde{v_{+, \text {odd }}} \neq \widetilde{v_{+, \text {even }}}
$$

and if n is even,

$$
\widehat{v_{+, \text {odd }}}=\widehat{v_{-, \text {odd }}}, \widetilde{v_{+, \text {even }}}=\widehat{v_{-, \text {even }}}, \text { and } \widehat{v_{+, \text {odd }}} \neq \widehat{v_{+, \text {even }}}
$$

Since $v^{(n)} \circ \pi_{E}=\pi_{E} \circ v^{[n]}$ and $K^{n} \backslash \mu^{n-1}\left(\Delta^{n}\right) / H \simeq X \backslash \pi^{-1}(D)$, we have $v^{[n]} \circ \pi=$ $\pi \circ \widetilde{v_{+, \text {odd }}}$ and $v^{[n]} \circ \pi=\pi \circ \widetilde{v_{+, \text {even }}}$ where $\pi_{E}: E^{[n]} \rightarrow E^{(n)}$ is the Hilbert-Chow morphism, and $v^{(n)}$ is the automorphism of $E^{(n)}$ induced by v. Since the degree of π is 2 , we have $\left\{\varsigma, \varsigma^{\prime}\right\}=\left\{\widetilde{v_{+, \text {odd }}}, \widetilde{v_{+, \text {even }}}\right\}$. By [8, page 386-389], there is an element $\alpha_{ \pm} \in \mathrm{H}_{-}^{1,1}(K, \mathbb{C})$ such that $v_{+}^{*}\left(\alpha_{ \pm}\right)= \pm \alpha_{ \pm}$. We fix a basis α of $\mathrm{H}^{2,0}(K, \mathbb{C})$, and let

$$
\widetilde{\alpha_{ \pm_{i}}}:=\bigotimes_{j=1}^{n} \epsilon_{j}
$$

where $\epsilon_{j}=\alpha$ for $j \neq i$ and $\epsilon_{j}=\alpha_{ \pm}$for $j=i$, and

$$
\widetilde{\alpha_{ \pm}}:=\bigoplus_{j=1}^{n} \widetilde{\alpha_{ \pm i}}
$$

Since there is a birational map $\varphi: K^{n} \rightarrow X$ by Theorem 1.5 , and by the definition of $\widetilde{v_{+, \text {odd }}}$ and $\widetilde{v_{+, \text {even }}}$, we have

$$
{\widetilde{v_{+, \text {odd }}}}^{*}\left(\varphi^{*}\left(\widetilde{\alpha_{+}}\right)\right)=\varphi^{*}\left(\widetilde{\alpha_{+}}\right) \text {and } \widetilde{v_{+, \text {even }}} *\left(\varphi^{*}\left(\widetilde{\alpha_{-}}\right)\right)=\varphi^{*}\left(\widetilde{\alpha_{-}}\right) .
$$

Thus ς and ς^{\prime} do not act on $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as $-\mathrm{id}_{\mathrm{H}^{2 n-1,1}(X, \mathbb{C})}$.

Definition 4.6. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E^{\prime} and a free involution τ of X such that $Y \simeq E^{\prime[n]}$ and $E^{\prime[n]} \simeq X /\langle\tau\rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

Theorem 4.7. For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.

Proof. Let ρ be the covering involution of $\pi: X \rightarrow E^{[n]}$ for $n \geq 3$. Since for $n \geq 3 \operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(E^{[n]}, \mathbb{C}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}(X, \mathbb{C})=11, \operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2 n-1,1}\left(E^{\prime[n]}, \mathbb{C}\right)=0$, and $\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2 n-1,1}(X, \mathbb{C})=10$, we obtain that ρ^{*} acts on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity, and $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as $-\operatorname{id}_{\mathrm{H}^{2 n-1,1}(X, \mathbb{C})}$.

Let φ be an involution of X, which acts on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity and on $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as $-\operatorname{id}_{\mathrm{H}^{2 n-1,1}(X, \mathbb{C})}$. By Theorem 3.2, for φ, there is an automorphism ϕ of E such that φ is a lift of $\phi^{[n]}$ where $\phi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by ϕ. Furthermore since the order of ϕ is at most 2 , the order of φ is 2 . Since $\phi^{[n]} \circ \pi=\pi \circ \varphi, \phi^{[n] *}$ acts on $\mathrm{H}^{2}\left(E^{[n]}, \mathbb{C}\right)$ as the identity. Thus ϕ^{*} acts on $\mathrm{H}^{2}(E, \mathbb{C})$ as the identity. If E does not have numerically trivial automorphisms, then $\phi=\operatorname{id}_{E}$. Thus $\varphi=\rho$.

We assume that ϕ does not the identity map. Then ϕ is numerically trivial. Then $\phi=v$ and $\varphi \in\left\{\zeta, \zeta^{\prime}\right\}$. By Proposition 4.5, we obtain that φ does not act on $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as $-\operatorname{id}_{\mathrm{H}^{2 n-1,1}(X, \mathbb{C})}$. This is a contradiction. Thus $\phi=\mathrm{id}_{E}$, and we get $\varphi=\rho$. This proves the theorem.

Theorem 4.8. For $n \geq 2$, let $\pi: X \rightarrow E^{[n]}$ be the universal covering space. For any automorphism φ of X, if φ^{*} is acts on $\mathrm{H}^{*}(X, \mathbb{C}):=\bigoplus_{i=0}^{2 n} \mathrm{H}^{i}(X, \mathbb{C})$ as the identity, then $\varphi=\mathrm{id}_{X}$.

Proof. By Theorem 3.2, for φ, there is an automorphism ϕ of E such that φ is a lift of $\phi^{[n]}$ where $\phi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by ϕ. Since φ^{*} acts on $\mathrm{H}^{2}(X, \mathbb{C})$ as the identity, ϕ^{*} acts on $\mathrm{H}^{2}(E, \mathbb{C})$ as the identity. From [8, page 386-389] the order of ϕ is at most 4.

If the order of ϕ is 2 , by Proposition 4.5φ does not act on $H^{2 n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction.

If the order of ϕ is 4 , then φ^{2} is a lift of $\phi^{[n]}{ }^{2}=\phi^{2[n]}$. Thus by the above, φ^{2} does not act on $\mathrm{H}^{2 n-1,1}(X, \mathbb{C})$ as the identity. This is a contradiction. Thus we have $\phi=\operatorname{id}_{E}$ and $\varphi \in\left\{\operatorname{id}_{X}, \rho\right\}$. Since ρ does not act on $H^{2 n-1,1}(X, \mathbb{C})$ as the identity, we have $\varphi=\mathrm{id}_{X}$.

Corollary 4.9. For $n \geq 2$, let $\pi: X \rightarrow E^{[n]}$ be the universal covering space. For any two automorphisms f and g of X, if $f^{*}=g^{*}$ on $\mathrm{H}^{*}(X, \mathbb{C})$, then $f=g$.

Theorem 4.10. For $n \geq 3$, let E be an Enriques surfaces, $E^{[n]}$ the Hilbert scheme of n points of $E, \pi: X \rightarrow E^{[n]}$ the universal covering space. Then there is an exact sequence:

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}(X) \rightarrow \operatorname{Aut}\left(E^{[n]}\right) \rightarrow 0
$$

Proof. Let f be an automorphism f of X. We put $g=f^{-1} \circ \rho \circ f$. Since for $n \geq 3 \rho^{*}$ acts on $H^{2}(X, \mathbb{C})$ as the identity and on $H^{2 n-1,1}(X)$ as $-\mathrm{id}_{H^{2 n-1,1}(X)}$, we get that $g^{*}=\rho^{*}$ as automorphisms of $H^{2}(X, \mathbb{C}) \oplus H^{2 n-1,1}(X)$. Like the proof of Theorem 4.8, we have $g=\rho$, i.e. $f \circ \rho=\rho \circ f$. Thus f induces a automorphism of $E^{[n]}$, and we have an exact sequence:

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}(X) \rightarrow \operatorname{Aut}\left(E^{[n]}\right) \rightarrow 0
$$

5. Appendix A

We compute the Hodge number of the universal covering space X of $E^{[2]}$. Let ι be the covering involution of $\mu: K \rightarrow E$, and $\tau:$ Blow $_{\Delta \cup \Gamma} K^{2} \rightarrow K^{2}$ the natural map, where $\Gamma=\left\{(x, y) \in K^{2}: y=\iota(x)\right\}$ and $\Delta=\left\{(x, x) \in K^{2}\right\}$. By Proposition
1.4, we have

$$
X \simeq \operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H
$$

We put

$$
\begin{gathered}
D_{\Delta}:=\tau^{-1}(\Delta) \text { and } \\
\\
D_{\Gamma}:=\tau^{-1}(\Gamma) .
\end{gathered}
$$

For two inclusions

$$
\begin{gathered}
j_{D_{\Delta}}: D_{\Delta} \hookrightarrow \text { Blow }_{\Delta \cup \Gamma} K^{2}, \text { and } \\
j_{D_{\Gamma}}: D_{\Gamma} \hookrightarrow \text { Blow }_{\Delta \cup \Gamma} K^{2},
\end{gathered}
$$

let $j_{* D_{\Delta}}$ be the Gysin morphism

$$
j_{* D_{\Delta}}: \mathrm{H}^{p}\left(D_{\Delta}, \mathbb{C}\right) \rightarrow \mathrm{H}^{p+2}\left(\text { Blow }_{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right)
$$

$j_{* D_{\Gamma}}$ the Gysin morphism

$$
\begin{gathered}
j_{* D_{\Gamma}}: \mathrm{H}^{p}\left(D_{\Gamma}, \mathbb{C}\right) \rightarrow \mathrm{H}^{p+2}\left(\text { Blow }_{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right), \text { and } \\
\psi:=\tau^{*}+\left.j_{* D_{\Delta}} \circ \tau\right|_{D_{\Delta}} ^{*}+\left.j_{* D_{\Gamma}} \circ \tau\right|_{D_{\Gamma}} ^{*}
\end{gathered}
$$

the morphism from $\mathrm{H}^{p}\left(K^{2}, \mathbb{C}\right) \oplus \mathrm{H}^{p-2}(\Delta, \mathbb{C}) \oplus \mathrm{H}^{p-2}(\Gamma, \mathbb{C})$ to $\mathrm{H}^{p}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right)$. From [13, Theorem 7.31], we have isomorphisms of Hodge structures by ψ :

$$
\mathrm{H}^{k}\left(K^{2}, \mathbb{C}\right) \oplus \mathrm{H}^{k-2}(\Delta, \mathbb{C}) \oplus \mathrm{H}^{k-2}(\Gamma, \mathbb{C}) \simeq \mathrm{H}^{k}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right)
$$

Furthermore, for automorphism f of K, let \bar{f} (resp. \bar{f}_{ι}) be the automorphism of Blow $_{\Delta \cup \Gamma} K^{2}$ which is induced by $f \times f$ (resp. $f \times(f \circ \iota), f_{\Delta}$ the automorphism of Δ which is induced by $f \times f, f_{\Gamma}$ the automorphism of Γ which is induced by $f \times f$, and \tilde{f} the isomorphism from Γ to Δ which is induced by $f \times(f \circ \iota)$. For $\alpha \in \mathrm{H}^{*}\left(K^{2}, \mathbb{C}\right), \beta \in \mathrm{H}^{*}(\Delta, \mathbb{C})$, and $\gamma \in \mathrm{H}^{*}(\Gamma, \mathbb{C})$, we obtain

$$
\bar{f}^{*}\left(\tau^{*} \alpha\right)=\tau^{*}\left((f \times f)^{*} \alpha\right)
$$

$$
\begin{gathered}
\bar{f}^{*}\left(\left.j_{* D_{\Delta}} \circ \tau\right|_{D_{\Delta}} ^{*} \beta\right)=\left.j_{* D_{\Delta}} \circ \tau\right|_{D_{\Delta}} ^{*}\left(f_{\Delta}^{*} \beta\right), \\
\bar{f}^{*}\left(\left.j_{* D_{\Gamma}} \circ \tau\right|_{D_{\Gamma}} ^{*} \gamma\right)=\left.j_{* D_{\Gamma}} \circ \tau\right|_{D_{\Gamma}} ^{*}\left(f_{\Gamma}^{*} \gamma\right), \\
\bar{f}_{\sigma}^{*}\left(\tau^{*} \alpha\right)=\tau^{*}\left(\left(f \times(f \circ \iota)^{*} \alpha\right),\right. \\
\bar{f}_{\iota}^{*}\left(\left.j_{* D_{\Delta}} \circ \tau\right|_{D_{\Delta}} ^{*} \beta\right)=\left.j_{* D_{\Gamma}} \circ \tau\right|_{D_{\Delta}} ^{*}\left(\tilde{f}^{*} \beta\right),
\end{gathered}
$$

in $\mathrm{H}^{*}\left(\right.$ Blow $\left._{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right)$.

Theorem 5.1. For the universal covering space $\pi: X \rightarrow E^{[2]}$, we have $h^{0,0}(X)=$ $1, h^{1,0}(X)=0, h^{2,0}(X)=0, h^{1,1}(X)=12, h^{3,0}(X)=0, h^{2,1}(X)=0, h^{4,0}(X)=1$, $h^{3,1}(X)=10$, and $h^{2,2}(X)=131$.

Proof. Since $X \simeq$ Blow $_{\Delta \cup \Gamma} K^{2} / H$, we have

$$
h^{p, q}(X)=\operatorname{dim}_{\mathbb{C}}\left\{\alpha \in \mathrm{H}^{p, q}\left(\text { Blow }_{\Delta \cup \Gamma} K^{2}, \mathbb{C}\right): h^{*} \alpha=\alpha \text { for } h \in H\right\} .
$$

Let ι be the covering involution of $\mu: K \rightarrow E$. We put

$$
\begin{gathered}
\mathrm{H}_{ \pm}^{p, q}(K, \mathbb{C}):=\left\{\alpha \in \mathrm{H}^{p, q}(K, \mathbb{C}): \iota^{*}(\alpha)= \pm \alpha\right\} \text { and } \\
h_{ \pm}^{p, q}(K):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}_{ \pm}^{p, q}(K, \mathbb{C}) .
\end{gathered}
$$

From $E=K /\langle\iota\rangle$, we have

$$
\mathrm{H}^{p, q}(E, \mathbb{C}) \simeq \mathrm{H}_{+}^{p, q}(K, \mathbb{C})
$$

Since K is a $K 3$ surface, we have

$$
\begin{gathered}
h^{0,0}(K)=1, h^{1,0}(K)=0, h^{2,0}(K)=1, \text { and } h^{1,1}(K)=20, \text { and } \\
h_{+}^{0,0}(K)=1, h_{+}^{1,0}(K)=0, h_{+}^{2,0}(K)=0, \text { and } h_{+}^{1,1}(K)=10, \text { and } \\
h_{-}^{0,0}(K)=0, h_{-}^{1,0}(K)=0, h_{-}^{2,0}(K)=1, \text { and } h_{-}^{2,0}(K)=10 .
\end{gathered}
$$

Recall that H is generated by \mathcal{S}_{2} and $\iota_{1,2}$. Since $\iota \times \iota(\Delta)=\Delta$ and $\iota \times \iota(\Gamma)=\Gamma$, from $E=K /\langle\iota\rangle$ we have $\Delta / H \simeq E$ and $\Gamma / H \simeq E$. Thus we have

$$
\begin{aligned}
& h^{0,0}(\Delta / H)=1, h^{1,0}(\Delta / H)=0, h^{2,0}(\Delta / H)=0, h^{1,1}(\Delta / H)=10 \\
& h^{0,0}(\Gamma / H)=1, h^{1,0}(\Gamma / H)=0, h^{2,0}(\Gamma / H)=0, \text { and } h^{1,1}(\Gamma / H)=10
\end{aligned}
$$

From the Künneth Theorem, we have

$$
\begin{gathered}
\mathrm{H}^{p, q}\left(K^{2}, \mathbb{C}\right) \simeq \bigoplus_{s+u=p, t+v=q} \mathrm{H}^{s, t}(K, \mathbb{C}) \otimes \mathrm{H}^{u, v}(K, \mathbb{C}), \text { and } \\
\mathrm{H}^{p, q}\left(K^{2} / H, \mathbb{C}\right) \simeq\left\{\alpha \in \mathrm{H}^{p, q}\left(K^{2}, \mathbb{C}\right): s^{*}(\alpha)=\alpha \text { for } s \in \Sigma_{2} \text { and } \iota_{1,2}^{*}(\alpha)=\alpha\right\} .
\end{gathered}
$$

Thus we obtain

$$
\begin{gathered}
h^{0,0}\left(K^{2} / H\right)=1, h^{1,0}\left(K^{2} / H\right)=0, h^{2,0}\left(K^{2} / H\right)=0, h^{1,1}\left(K^{2} / H\right)=10 \\
h^{3,0}\left(K^{2} / H\right)=0, h^{2,1}\left(K^{2} / H\right)=0, h^{4,0}\left(K^{2} / H\right)=1 \\
h^{3,1}\left(K^{2} / H\right)=10, \text { and } h^{2,2}\left(K^{2} / H\right)=111
\end{gathered}
$$

We fix a basis β of $\mathrm{H}^{2,0}(K, \mathbb{C})$ and a basis $\left\{\gamma_{i}\right\}_{i=1}^{10}$ of $\mathrm{H}_{-}^{1,1}(K, \mathbb{C})$, then we have

$$
\mathrm{H}^{3,1}\left(K^{2} / H, \mathbb{C}\right) \simeq \bigoplus_{i=1}^{10} \mathbb{C}\left(\beta \otimes \gamma_{i}+\gamma_{i} \otimes \beta\right)
$$

By the above equation, we have

$$
\begin{gathered}
h^{0,0}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=1, h^{1,0}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=0, \\
h^{2,0}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=0, h^{1,1}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=12, \\
h^{3,0}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=0, h^{2,1}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=0, \\
h^{4,0}\left(\text { Blow }_{\Delta \cup \Gamma} K^{2} / H\right)=1, h^{3,1}\left(\text { Blow }_{\Delta \cup \Gamma} K^{2} / H\right)=10, \text { and } \\
h^{2,2}\left(\operatorname{Blow}_{\Delta \cup \Gamma} K^{2} / H\right)=131 .
\end{gathered}
$$

Thus we obtain $h^{0,0}(X)=1, h^{1,0}(X)=0, h^{2,0}(X)=0, h^{1,1}(X)=12, h^{3,0}(X)=0$, $h^{2,1}(X)=0, h^{4,0}(X)=1, h^{3,1}(X)=10$, and $h^{2,2}(X)=131$.

6. Appendix B

Now we show that the conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L=\Omega_{Y}^{2}$.

Let Y be a smooth compact Kähler surface. Recall that $Y^{[n]}$ is the Hilbert scheme of n points of $Y, \pi_{Y}: Y^{[n]} \rightarrow Y^{(n)}$ the Hilbert-Chow morphism, and $p_{Y}: Y^{n} \rightarrow Y^{(n)}$ the natural projection. For a line bundle L on Y, there is a unique line bundle \mathcal{L} on $Y^{(n)}$ such that $p_{Y}^{*} \mathcal{L}=\bigotimes_{i=1}^{n} p^{i *} L$. By using pull back we have the natural map

$$
\operatorname{Pic}(Y) \rightarrow \operatorname{Pic}\left(Y^{[n]}\right), L \mapsto L_{n}:=\pi_{Y}^{*} \mathcal{L}
$$

we put

$$
\begin{gathered}
h^{p, q}\left(Y^{[n]}, L_{n}\right):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{q}\left(Y^{[n]}, \Omega_{Y[n]}^{p} \otimes L_{n}\right), \\
h^{p, q}(Y, L):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{q}\left(Y, \Omega_{Y}^{p} \otimes L\right), \\
A:=\sum_{n, p, q=0}^{\infty} h^{p, q}\left(Y^{[n]}, L_{n}\right) x^{p} y^{q} t^{n}, \text { and } \\
B:=\prod_{k=1}^{\infty} \prod_{p, q=0}^{2}\left(\frac{1}{\left.1-(-1)^{p+q} x^{p+k-1} y^{q+k-1} t^{k}\right)}\right)^{(-1)^{p+q} h^{p, q}(Y, L)} .
\end{gathered}
$$

Then in [2, Conjecture 1] S. Boissière conjectured that

$$
A=B
$$

For Y an Enriques surface and $L=\Omega_{Y}^{2}$, as in the proof on Theorem 2.2 and the Serre duality, we have

$$
\begin{aligned}
h^{2 n-1,1}\left(Y^{[n]},\left(\Omega_{Y}^{2}\right)_{n}\right) & =\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y^{[n]}, \Omega_{Y^{[n]}}^{2 n-1} \otimes \Omega_{Y^{[n]}}^{2 n}\right) \\
& =\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y^{[n]}, T_{Y^{[n]}}\right) \\
& =10
\end{aligned}
$$

for $n \geq 2$. It follows that the coefficient of $x^{3} y t^{2}$ of A is 10 .
We show that the coefficient of $x^{3} y t^{2}$ of B is not 10 .

$$
\begin{aligned}
& h^{0,0}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, \mathcal{O}_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, \Omega_{Y}^{2}\right)=0 \\
& h^{0,1}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, \mathcal{O}_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, \Omega_{Y}^{2}\right)=0 \\
& h^{0,2}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, \mathcal{O}_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, \Omega_{Y}^{2}\right)=1
\end{aligned}
$$

By Serre duality, we get

$$
\Omega_{Y} \otimes \Omega_{Y}^{2} \simeq T_{Y}
$$

Since Y is an Enriques surface, we have

$$
\begin{aligned}
& h^{1,0}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, \Omega_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, T_{Y}\right)=0 \\
& h^{1,1}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, \Omega_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, T_{Y}\right)=10 \\
& h^{1,2}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, \Omega_{Y} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, T_{Y}\right)=0
\end{aligned}
$$

Since Y is an Enriques surface, we obtain

$$
\begin{gathered}
\Omega_{Y}^{2} \otimes \Omega_{Y}^{2} \simeq \mathcal{O}_{Y} \\
h^{2,0}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, \Omega_{Y}^{2} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\right)=1 \\
h^{2,1}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, \Omega_{Y}^{2} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{1}\left(Y, \mathcal{O}_{Y}\right)=0 \\
h^{2,2}\left(Y, \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, \Omega_{Y}^{2} \otimes \Omega_{Y}^{2}\right)=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{2}\left(Y, \mathcal{O}_{Y}\right)=0
\end{gathered}
$$

Thus we obtain

$$
\begin{aligned}
B & =\prod_{k=1}^{\infty} \prod_{p, q=0}^{2}\left(\frac{1}{\left.1-(-1)^{p+q} x^{p+k-1} y^{q+k-1} t^{k}\right)}\right)^{(-1)^{p+q} h^{p, q}\left(E, \Omega_{E}^{2}\right)} \\
& =\prod_{k=1}^{\infty}\left(\frac{1}{\left.1-x^{k-1} y^{k+1} t^{k}\right)}\right)\left(\frac{1}{\left.1-x^{k} y^{k} t^{k}\right)}\right)^{10}\left(\frac{1}{\left.1-x^{k+1} y^{k-1} t^{k}\right)}\right) \\
& =\prod_{k=1}^{\infty}\left(\sum_{a=0}^{\infty}\left(x^{k-1} y^{k+1} t^{k}\right)^{a}\right)\left(\sum_{b=0}^{\infty}\left(x^{k} y^{k} t^{k}\right)^{b}\right)^{10}\left(\sum_{c=0}^{\infty}\left(x^{k+1} y^{k-1} t^{k}\right)^{c}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
B \equiv & \prod_{k=1}^{2}\left(1+x^{k-1} y^{k+1} t^{k}+x^{2 k-2} y^{2 k+2} t^{2 k}\right) \times\left(1+x^{k} y^{k} t^{k}+x^{2 k} y^{2 k} t^{2 k}\right)^{10} \times \\
& \left(1+x^{k+1} y^{k-1} t^{k}+x^{2 k+2} y^{2 k-2} t^{2 k}\right)\left(\bmod t^{3}\right) \\
\equiv & \left(\left(1+y^{2} t+y^{4} t^{2}\right) \times\left(1+x y^{3} t^{2}\right)\right) \times \\
& \left(\left(1+10\left(x y t+x^{2} y^{2} t^{2}\right)+45\left(x y t+x^{2} y^{2} t^{2}\right)^{2}\right) \times\left(1+x^{2} y^{2} t^{2}\right)\right) \times \\
& \left(\left(1+x^{2} t+x^{4} t^{2}\right) \times\left(1+x^{3} y t^{2}\right)\right)\left(\bmod t^{3}\right) \\
\equiv & \left(1+y^{2} t+\left(x y^{3}+y^{4}\right) t^{2}\right) \times\left(1+10 x y t+56 x^{2} y^{2} t^{2}\right) \times \\
& \left(1+x^{2} t+\left(x^{3} y+x^{4}\right) t^{2}\right)\left(\bmod t^{3}\right) \\
\equiv & \left(1+\left(10 x y+y^{2}\right) t+\left(56 x^{2} y^{2}+11 x y^{3}+y^{4}\right) t^{2}\right) \times \\
& \left(1+x^{2} t+\left(x^{3} y+x^{4}\right) t^{2}\right)\left(\bmod t^{3}\right) \\
& \left(1+\left(x^{2}+10 x y+y^{2}\right) t+\left(x^{4}+11 x^{3} y+56 x^{2} y^{2}+11 x y^{3}+y^{4}\right) t^{2}\left(\bmod t^{3}\right)\right.
\end{aligned}
$$

Therefore the coefficient of $x^{3} y t^{2}$ of B is 11 . The conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L=\Omega_{Y}^{2}$.

References

[1] A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18 (1983), no. 4, 755-782.
[2] S. Boissière: Automorphismes naturels de l'espace de Douady de points sur une surface. Canad. J. Math. 64 (2012), no. 1, 3-23.
[3] S. Boissière, A. Sarti: A note on automorphisms and birational transformations of holomorphic symplectic manifolds. Proc. Amer. Math. Soc. 140 (2012), no. 12, 4053-4062.
[4] B. Fantechi: Deformation of Hilbert schemes of points on a surface. Compositio Math. 98 (1995), 205-217.
[5] J. Fogarty: Families on an Algebraic Surface. American Journal of Mathematics Vol. 90, No. 2 (Apr., 1968), pp. 511-521.
[6] L. Göttsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193-207 (1990).
[7] L. Göttsche, W. Soergel: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296 (1993), 235-245.
[8] S. Mukai, Y, Namikawa: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. Invent. Math. 77 (1984), no. 3, 383-397.
[9] K. Oguiso: On automorphisms of the punctual Hilbert schemes of K3 surfaces. Eur. J. Math. 2 (2016), no. 1, 246261.
[10] K. Oguiso, S. Schröer: Enriques Manifolds. J. Reine Angew. Math. 661 (2011), 215-235.
[11] H. Ohashi: On the number of Enriques quotients of a K3 surface. Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181-200. 14J28.
[12] Z. Ran: Deformations of Manifolds with Torsion or Negative Canonical Bundle. J. Algebraic Geometry. p.279-291.
[13] C. Voisin: Hodge Theory and Complex Algebraic Geometry, I. Cambridge Studies in Advanced Mathematics 76, Cambridge University Press, 2003. MR1997577 (2005c:32024b) (Taro Hayashi) Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan

[^0]: Date: February 1, 2017.

