

Title	Universal covering Calabi-Yau manifolds of the Hilbert schemes of n points of Enriques surfaces
Author(s)	林,太郎
Citation	大阪大学, 2017, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/61490
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Universal covering Calabi-

Yau manifolds of the Hilbert schemes of n points of Enriques surfaces

TARO HAYASHI

Introduction

Throughout this paper, we work over \mathbb{C} , and n is an integer such that $n \geq 2$. A K3 surface K is a compact complex surface with $\omega_K \simeq \mathcal{O}_K$ and $\mathrm{H}^1(K,\mathcal{O}_K) = 0$. An Enriques surface E is a compact complex surface with $\mathrm{H}^1(E,\mathcal{O}_E) = 0$, $\mathrm{H}^2(E,\mathcal{O}_E) = 0$, and $\omega_E^{\otimes 2} \simeq \mathcal{O}_E$. A Calabi-Yau manifold X is an n-dimensional compact kähler manifold such that it is simply connected, there is no holomorphic k-form on X for 0 < k < n, and there is a nowhere vanishing holomorphic n-form on X. By Oguiso and Schröer [10, Theorem 3.1], the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ has a Calabi-Yau manifold X as the universal covering space of degree 2.

In this paper, we study the Hilbert scheme of n points of an Enriques surface $E^{[n]}$ and its universal covering space X.

Definition 0.1. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y \simeq E'^{[n]}$ and $E'^{[n]} \simeq X/\langle \tau \rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

Date: February 1, 2017.

Recall that when n = 1, $E^{[1]}$ is an Enriques surface E and X is a K3 surface. In [11, Theorem 0.1], Ohashi showed the following theorem:

Theorem 0.2. For any nonnegative integer l, there exists a K3 surface with exactly 2^{l+10} distinct Enriques quotients. In particular, there does not exist a universal bound for the number of distinct Enriques quotients of a K3 surface.

Our main theorem (Theorem 0.3) is the following which is totally different from Theorem 0.2:

Theorem 0.3. For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.

Remark 0.4. When n=2, we do not count the number of distinct Enriques quotients of X. We compute the Hodge numbers of the universal covering space X of $E^{[2]}$ (Appendix A).

In addition, we investigate the relationship between the small deformation of $E^{[n]}$ and that of X (Theorem 0.5) and study the natural automorphisms of $E^{[n]}$ (Theorem 0.8).

Section 2 is a preliminary section. We prepare and recall some basic facts on the Hilbert scheme of n points of a surface.

In Section 3, we show the following theorem (Theorem 0.5).

Theorem 0.5. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.

Remark 0.6. By Fantechi [4, Theorems 0.1 and 0.3], every small deformation of $E^{[n]}$ is induced by that of E. Thus for $n \geq 2$, every small deformation of X is induced by that of E.

When n=1, $E^{[1]}$ is an Enriques surface E, and X is a K3 surface. An Enriques surface has a 10-dimensional deformation space and a K3 surface has a 20-dimensional deformation space. Thus the small deformation of X is much bigger than that of E. Our Theorem 0.5 is different from the case of n=1.

In Section 4, we show the following theorem (Theorem 0.8).

Definition 0.7. For $n \geq 2$ and S a smooth compact surface, any automorphism $f \in \operatorname{Aut}(S)$ induces an automorphism $f^{[n]} \in \operatorname{Aut}(S^{[n]})$. An automorphism $g \in \operatorname{Aut}(S^{[n]})$ is called natural if there is an automorphism $f \in \operatorname{Aut}(S)$ such that $g = f^{[n]}$.

When S is a K3 surface, the natural automorphisms of $S^{[n]}$ were studied by Boissière and Sarti [3]. They showed that an automorphism of $S^{[n]}$ is natural if and only if it preserves the exceptional divisor of the Hilbert-Chow morphism [3, Theorem 1]. We obtain Theorem 0.8 which is similar to [3, Theorem 1]:

Theorem 0.8. For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \to E^{(n)}$, and $\pi: X \to E^{[n]}$ the universal covering space of $E^{[2]}$. Then

- i) An automorphism f of $E^{[n]}$ is natural if and only if f(D) = D.
- ii) An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g(\pi^{-1}(D)) = \pi^{-1}(D)$.

In Section 5, we show main theorem (Theorem 0.3).

In addition, let Y be a smooth compact Kähler surface. For a line bundle L on Y, by using the natural map $\operatorname{Pic}(Y) \to \operatorname{Pic}(Y^{[n]})$, $L \mapsto L_n$, we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega^p_{Y^{[n]}} \otimes L_n),$$

$$h^{p,q}(Y, L) := \dim_{\mathbb{C}} H^q(Y, \Omega^p_Y \otimes L),$$

$$A := \sum_{n,p,q=0}^{\infty} h^{p,q}(Y^{[n]}, L_n) x^p y^q t^n, \text{ and}$$

$$B := \prod_{k=1}^{\infty} \prod_{n=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k)} \right)^{(-1)^{p+q} h^{p,q}(Y, L)}.$$

In [2, Conjecture 1], S. Boissière conjectured that

$$A = B$$
.

In the proof of Theorem 0.5, we obtain the counterexample to this conjecture for Y an Enriques surface and $L = \Omega_Y^2$. See Appendix B for details.

Acknowledgements 0.9. I would like to express my thanks to Professor Keiji Oguiso for his advice and encouragement and the referees for a very careful reading and many helpful suggestions, especially, the counterexample to the conjecture in [2, Conjecture 1].

1. Preliminaries

Let S be a nonsingular projective surface, $S^{[n]}$ the Hilbert scheme of n points of $S, q: S^{[n]} \to S^{(n)}$ the Hilbert-Chow morphism, and $p: S^n \to S^{(n)}$ the natural projection. We denote the exceptional divisor of q by D. By Fogarty [5, Theorem 2.4], $S^{[n]}$ is a smooth projective variety of $\dim_{\mathbb{C}} S^{[n]} = 2n$. We put

$$\Delta^n := \{(x_i)_{i=1}^n \in S^n : |\{x_i\}_{i=1}^n| < n-1 \},$$

$$S_*^n := \{(x_i)_{i=1}^n \in S^n : |\{x_i\}_{i=1}^n| \ge n - 1 \},$$

$$\Delta_*^n := \Delta^n \cap S_*^n, \text{ and}$$

$$S_*^{[n]} := q^{-1}(p(S_*^n)),$$

When n = 2, $\text{Blow}_{\Delta^2} S^2/\Sigma_2 \simeq S^{[2]}$, for $n \geq 3$, we have $\text{Blow}_{\Delta_*^n} S_*^n/\Sigma_n \simeq S_*^{[n]}$, and $S^{[n]} \setminus S_*^{[n]}$ is an analytic closed subset and its codimension is 2 in $S^{[n]}$ ([1, page 767-768]). Here Σ_n is the symmetric group of degree n which acts naturally on S^n by permuting of the factors.

Let $\mu: K \to E$ be the universal covering space of E where K is a K3 surface, and ι the covering involution of μ . They induces the universal covering space $\mu^n: K^n \to E^n$. For $1 \le k \le n$, $1 \le i_1 < \dots < i_k \le n$, we define automorphisms $\iota_{i_1...i_k}$ of K^n in the following way: for $x = (x_i)_{i=1}^n \in K^n$,

the j-th component of
$$\iota_{i_1...i_k}(x) = \begin{cases} \iota(x_j) & j \in \{i_1, ..., i_k\} \\ x_j & j \notin \{i_1, ..., i_k\}. \end{cases}$$

Let G be the subgroup of $\operatorname{Aut}(K^n)$ generated by Σ_n and $\{\iota_i\}_{1\leq i\leq n}$ and H the subgroup of $\operatorname{Aut}(K^n)$ generated by Σ_n and $\{\iota_{ij}\}_{1\leq i< j\leq n}$. Since $K^n/G=E^{(n)}$, $H \triangleleft G$, |G/H|=2, and the codimension of $\mu^{-1}(\Delta^n)$ is two, we get the universal covering spaces

$$p_1: K^n \backslash \mu^{-1}(\Delta^n) \to K^n \backslash \mu^{-1}(\Delta^n)/G$$
, and
$$p_2: K^n \backslash \mu^{-1}(\Delta^n) \to K^n \backslash \mu^{-1}(\Delta^n)/H,$$

where p_1 and p_2 are the natural projections. For $n \geq 3$, we put

$$K_{\circ}^{n} := (\mu^{n})^{-1}(E_{*}^{n}),$$

$$\Gamma_{\circ}^{ij} := \{(x_{l})_{l=1}^{n} \in K_{\circ}^{n} : \iota(x_{i}) = x_{j}\},$$

$$\Delta_{\circ}^{ij} := \{(x_{l})_{l=1}^{n} \in K_{\circ}^{n} : x_{i} = x_{i}\},$$

$$\Gamma_{\circ} := \bigcup_{1 \leq i < j \leq n} T_{\circ}^{i,j}, \text{ and }$$

$$\Delta_{\circ} := \bigcup_{1 \le i < j \le n} U_{\circ}^{ij}.$$

Then we get $\mu^{n-1}(\Delta_*^n) = \Gamma_\circ \cup \Delta_\circ$. By the definition of K_\circ^n , H acts on K_\circ^n . For an element $\tilde{x} := (\tilde{x}_i)_{i=1}^n \in \Gamma_\circ \cap \Delta_\circ$, some i, j, k, l with $k \neq l$ such that $\sigma(\tilde{x}_i) = \tilde{x}_j$ and $\tilde{x}_k = \tilde{x}_l$. Since σ does not have fixed points. Thus $\tilde{x}_i \neq \tilde{x}_l$. Therefore $\mu^n(\tilde{x}) \notin E_*^n$. This is a contradiction. We obtain $\Gamma_\circ \cap \Delta_\circ = \emptyset$.

Lemma 1.1. For $t \in H$ and $1 \le i < j \le n$, if $t \in H$ has a fixed point on Δ_{\circ}^{ij} , then t = (i, j) or $t = \mathrm{id}_{K^n}$.

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x} = (\tilde{x}_i)_{i=1}^n \in \Delta_{\circ}^{ij}$ such that $t(\tilde{x}) = \tilde{x}$. For $t \in H$, there are ι_{ab} where $1 \leq a < b \leq n$ and $(j_1, \ldots, j_l) \in \Sigma_n$ such that

$$t = (j_1, \ldots, j_l) \circ \iota_{ab}.$$

From the definition of Δ^{ij}_{\circ} , for $(x_l)_{l=1}^n \in \Delta^{ij}_{\circ}$,

$$\{x_1,\ldots,x_n\}\cap\{\iota(x_1),\ldots,\iota(x_n)\}=\emptyset.$$

Suppose $\iota_{ab} \neq \mathrm{id}_{K^n}$. Since $t(\tilde{x}) = \tilde{x}$, we have

$$\{\tilde{x}_1,\ldots,\tilde{x}_n\}\cap\{\iota(\tilde{x}_1),\ldots,\iota(\tilde{x}_n)\}\neq\emptyset.$$

This is a contradiction. Thus we have $t = (j_1, \ldots, j_l)$. Similarly from the definition of Δ_{\circ}^{ij} , for $(x_l)_{l=1}^n \in \Delta_{\circ}^{ij}$, if $x_s = x_t$ $(1 \le s < t \le n)$, then s = i and t = j. Thus we have t = (i, j) or $t = \mathrm{id}_{K^n}$.

Lemma 1.2. For $t \in H$ and $1 \le i < j \le n$, if $t \in H$ has a fixed point on Γ^{ij}_{\circ} , then $t = \iota_{i,j} \circ (i,j)$ or $t = \mathrm{id}_{K^n}$.

Proof. Let $t \in H$ be an element of H where there is an element $\tilde{x} = (\tilde{x}_i)_{i=1}^n \in \Gamma_0^{ij}$ such that $t(\tilde{x}) = \tilde{x}$. For $t \in H$, there are ι_a where $1 \leq a \leq n$ and $(j_1, \ldots, j_l) \in \mathcal{S}_n$ such that

$$t = (j_1 \dots j_l) \circ \iota_a$$
.

Since $(j, j+1) \circ \iota_{i,j} \circ (j, j+1) : U_{ij} \to T_{ij}$ is an isomorphism, and by Lemma 1.1, we have

$$(j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) = (i, j) \text{ or } id_{K^n}.$$
If $(j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) = id_{K^n}$, then $t = id_{K^n}$. If $(j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) \circ t \circ (j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) = (i, j)$, then
$$t = (j, j + 1) \circ \iota_{i,j} \circ (j, j + 1) \circ (i, j) \circ (j, j + 1) \circ \iota_{i,j} \circ (j, j + 1)$$

$$= (j, j + 1) \circ \iota_{i,j} \circ (i, j + 1) \circ \iota_{i,j} \circ (j, j + 1)$$

$$= (j, j + 1) \circ \iota_{i,j+1} \circ (i, j + 1) \circ (j, j + 1)$$

$$= \iota_{i,j} \circ (i, j).$$

Thus we have $t = \iota_{i,j} \circ (i,j)$.

For the natural projection we get a unramified covering space: $K^n/H \to K^n/G =$ $E^{(n)} = E^n/\Sigma_n$. From Lemma 1.1 and Lemma 1.2, we get a local isomorphism:

$$\theta: \operatorname{Blow}_{\mu^{n-1}(\Delta_{r}^{n})} K_{\circ}^{n}/H \to E_{*}^{[n]}.$$

Lemma 1.3. For every $x \in E_*^{[n]}$, $|\theta^{-1}(x)| = 2$.

Proof. For $(x_i)_{i=1}^n \in \Delta_*^n \subset E^n$ with $x_1 = x_2$, there are n elements y_1, \ldots, y_n of K such that $y_1 = y_2$ and $\mu(y_i) = x_i$ for $1 \le i \le n$. Then

$$(\mu^n)^{-1}((x_i)_{i=1}^n) = \{y_1, \iota(y_1)\} \times \dots \times \{y_n, \iota(y_n)\}.$$

Since H is generated by Σ_n and $\{\iota_{ij}\}_{1 \leq i < j \leq n}$, for $(z_i)_{i=1}^n \in (\mu^n)^{-1}((x_i)_{i=1}^n)$ if the number of i with $z_i = y_i$ is even, then

$$(z_i)_{i=1}^n = \{\iota(y_1), \iota(y_2), y_3, \dots, y_n\}$$
 on K_0^n/H , and

if the number of i with $z_i = y_i$ is odd, then

$$(z_i)_{i=1}^n = \{\iota(y_1), y_2, y_3, \dots, y_n\}$$
 on K_0^n/H .

Furthermore since $\iota_i \notin H$ for $1 \leq i \leq n$,

$$\{\iota(y_1), \iota(y_2), y_3, \dots, y_n\} \neq \{\iota(y_1), y_2, y_3, \dots, y_n\}, \text{ on } K_{\circ}^n/H.$$

Thus for every $x \in E_*^{[n]}$, we get $|\theta^{-1}(x)| = 2$.

Proposition 1.4. θ : $\operatorname{Blow}_{\mu^{n-1}(\Delta_*^n)}K_{\circ}^n/H \to \operatorname{Blow}_{\Delta_*^n}E_*^n/\Sigma_n$ is the universal covering space, i.e. $\pi^{-1}(E_*^{[n]}) \simeq \operatorname{Blow}_{\mu^{n-1}(\Delta_*^n)}K_{\circ}^n/H$. When n=2, we have $X \simeq \operatorname{Blow}_{\mu^{2-1}(\Delta^2)}K^2/H$.

Proof. Since θ is a local isomorphism, from Lemma 1.3 we get that θ is a covering map. Furthermore $\pi:\pi^{-1}(E_*^{[n]})\to E_*^{[n]}$ is the universal covering space of degree 2, θ : Blow $_{\mu^{n-1}(\Delta_*^n)}K_\circ^n/H\to \operatorname{Blow}_{\Delta_*^n}E_*^n/\Sigma_n$ is the universal covering space. By the uniqueness of the universal covering space, we have $\pi^{-1}(E_*^{[n]})\simeq \operatorname{Blow}_{\mu^{n-1}(\Delta_*^n)}K_\circ^n/H$. When n=2, since $E_*^2=E^2$, $K_\circ^2=K^2$ and $\operatorname{Blow}_{\Delta^2}E^2/\Sigma_2\simeq E^{[2]}$, we have $X\simeq \operatorname{Blow}_{\mu^{2-1}(\Delta^2)}K^2/H$.

Theorem 1.5. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$. Then there is a birational morphism $\varphi: X \to K^n/H$ such that $\varphi^{-1}(\mu^{n-1}(\Delta^n)/H) = \pi^{-1}(D)$.

Proof. When n=2, this is proved by Proposition 1.4. From here we assume that $n \geq 3$. From Proposition 1.4, we have $\pi^{-1}(E_*^{[n]}) \simeq \operatorname{Blow}_{\mu^{n-1}(\Delta_*^n)} K_{\circ}^n/H$. Since the codimension of $X \setminus \pi^{-1}(E_*^{[n]})$ is 2, there is a meromorphim f of X to K^n/H which satisfies the following commutative diagram:

$$E_*^{[n]} \xrightarrow{q} E^{(n)}$$

$$\uparrow \qquad \qquad \downarrow p \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where $q: E^{[n]} \to E^{(n)}$ is the Hilbert-Chow morphism, and $p: K^n/H \to E^{(n)}$ is the natural projection. For an ample line bundle \mathcal{L} on $E^{(n)}$, since the natural projection $p: K^n/H \to E^{(n)}$ is finite, $p^*\mathcal{L}$ is ample. From the above diagram, we have $\pi^*(q^*\mathcal{L})|_{\pi^{-1}(E_*^{[n]})} = f^*(p^*\mathcal{L})$. Since $X \setminus \pi^{-1}(E_*^{[n]})$ is an analytic closed subset of codimension 2 in X and $p_H^*\mathcal{L}$ is ample, there is a holomorphism φ from X to K^n/H such that $\varphi \mid_{X \setminus \pi^{-1}(F)} = f \mid_{X \setminus \pi^{-1}(F)}$. Since $f: X \setminus \pi^{-1}(D) \cong (K^n \setminus \mu^{n-1}(\Delta^n))/H$, this is a birational morphism.

2. Proof of Theorem 0.5

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$. In this section, we show Theorem 0.5 (Theorem 2.2).

Proposition 2.1. For $n \geq 2$, we have $\dim_{\mathbb{C}} H^1(E^{[n]}, \Omega^{2n-1}_{E^{[n]}}) = 0$.

Proof. For a smooth projective manifold S, we put

$$h^{p,q}(S) := \dim_{\mathbb{C}} H^q(S, \Omega_S^p)$$
 and

$$h(S, x, y) := \sum_{p,q} h^{p,q}(S) x^p y^q.$$

By [7, Theorem 2] and [6, page 204], we have the equation (1):

$$\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E^{[n]}) x^p y^q t^n = \prod_{k=1}^{\infty} \prod_{p,q=0}^2 \Bigl(\frac{1}{1-(-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k)} \Bigr)^{(-1)^{p+q} h^{p,q}(E)}.$$

Since an Enriques surface E has Hodge numbers $h^{0,0}(E) = h^{2,2}(E) = 1$, $h^{1,0}(E) = h^{0,1}(E) = 0$, $h^{2,0}(E) = h^{0,2}(E) = 0$, and $h^{1,1}(E) = 10$, the equation (1) is

$$\sum_{n=0}^{\infty} \sum_{p,q} h^{p,q}(E^{[n]}) x^p y^q t^n = \prod_{k=1}^{\infty} \Bigl(\frac{1}{1-x^{k-1}y^{k-1}t^k}\Bigr) \Bigl(\frac{1}{1-x^ky^kt^k}\Bigr)^{10} \Bigl(\frac{1}{1-x^{k+1}y^{k+1}t^k}\Bigr).$$

It follows that

$$h^{p,q}(E^{[n]}) = 0$$
 for all p, q with $p \neq q$.

Thus we have $\dim_{\mathbb{C}} H^1(E^{[n]}, \Omega^{2n-1}_{E^{[n]}}) = 0$ for $n \geq 2$.

Theorem 2.2. For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then every small deformation of X is induced by that of $E^{[n]}$.

Proof. In [4, Proposition 4.2 and Theorems 0.3], Fantechi showed that for a smooth projective surface with $H^0(S, T_S) = 0$ or $H^1(S, \mathcal{O}_S) = 0$, and $H^1(S, \mathcal{O}_S(-K_S)) = 0$ where K_S is the canonical divisor of S,

$$\dim_{\mathbb{C}} \mathrm{H}^{1}(S, T_{S}) = \dim_{\mathbb{C}} \mathrm{H}^{1}(S^{[n]}, T_{S^{[n]}}).$$

Since an Enriques surface E satisfies $\mathrm{H}^0(E,T_E)=0$ or $\mathrm{H}^1(E,\mathcal{O}_E)=0$, and $\mathrm{H}^1(E,\mathcal{O}_E(-K_E))=0$, we have $\dim_{\mathbb{C}}\mathrm{H}^1(E^{[n]},T_{E^{[n]}})=10$. Since $K_{E^{[n]}}$ is not trivial and $2K_{E^{[n]}}$ is trivial, we have

$$T_{E^{[n]}} \simeq \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}.$$

Therefore we have $\dim_{\mathbb{C}} H^1(E^n, \Omega^{2n-1}_{E^{[n]}} \otimes K_{E^{[n]}}) = 10$. Since K_X is trivial, then we have $T_X \simeq \Omega^{2n-1}_X$. Since $\pi: X \to E^{[n]}$ is the covering map, we have

$$H^k(X, \Omega_X^{2n-1}) \simeq H^k(E^{[n]}, \pi_*\Omega_X^{2n-1}).$$

Since $X\simeq \mathcal{S}pec\,\mathcal{O}_{E^{[n]}}\oplus \mathcal{O}_{E^{[n]}}(K_{E^{[n]}})$ ([10, Theorem 3.1]), we have

$$\mathrm{H}^k(E^{[n]}, \pi_*\Omega_X^{2n-1}) \simeq \mathrm{H}^k(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \oplus (\Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}})).$$

Thus

$$\begin{split} \mathrm{H}^k(X,\Omega_X^{2n-1}) &\simeq \mathrm{H}^k(E^{[n]},\Omega_{E^{[n]}}^{2n-1} \oplus (\Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}})) \\ &\simeq \mathrm{H}^k(E^{[n]},\Omega_{E^{[n]}}^{2n-1}) \oplus \mathrm{H}^k(E^{[n]},\Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}}). \end{split}$$

Combining this with Proposition 2.1, we obtain

$$\dim_{\mathbb{C}} H^{1}(X, \Omega_{X}^{2n-1}) = \dim_{\mathbb{C}} H^{1}(E^{[n]}, \Omega_{E^{[n]}}^{2n-1} \otimes K_{E^{[n]}})$$

$$= 10.$$

Let $p: \mathcal{Y} \to U$ be the Kuranishi family of $E^{[n]}$. Since each canonical bundle of $E^{[n]}$ and E is torsion, they have unobstructed deformations ([12]). Thus U is smooth. Let $f: \mathcal{X} \to \mathcal{Y}$ be the universal covering space. Then $q: \mathcal{X} \to U$ is a flat family of X where $q:=p\circ f$. By [4, Theorems 0.1 and 0.3], all small deformation of $E^{[n]}$ is induced by that of E. Thus for $u\in U$, $q^{-1}(u)$ is the universal covering space of the Hilbert scheme of n points of an Enriques surface. Then we have a commutative diagram:

$$T_{U,0} \xrightarrow{\rho_p} \mathrm{H}^1(\mathcal{Y}_0, T_{\mathcal{Y}_0}) = == \mathrm{H}^1(E^{[n]}, T_{E^{[n]}})$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\pi^*}$$

$$\mathrm{H}^1(\mathcal{X}_0, T_{\mathcal{X}_0}) = == \mathrm{H}^1(X, T_X).$$

Since $H^1(E^{[n]}, T_{E^{[n]}}) \simeq H^1(X, T_X)$ by π^* , the vertical arrow τ is an isomorphism and

$$\dim_{\mathbb{C}} H^{1}(\mathcal{X}_{u}, T_{\mathcal{X}_{u}}) = \dim_{\mathbb{C}} H^{1}(\mathcal{X}_{u}, \Omega_{\mathcal{X}_{u}}^{2n-1})$$

is a constant for some neighborhood of $0 \in U$, it follows that $q : \mathcal{X} \to U$ is the complete family of $\mathcal{X}_0 = X$, therefore $q : \mathcal{X} \to U$ is the versal family of $\mathcal{X}_0 = X$.

Thus every small deformation of X is induced by that of $E^{[n]}$.

3. Proof of Theorem 0.8

For $n \geq 2$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$, and D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \to E^{(n)}$. Recall that ι is the covering involution of $\mu: K \to E$, $p_1: K^n \setminus \mu^{n-1}(\Delta^n) \to E^{[n]} \setminus D = E^n \setminus \Delta^n / \Sigma_n = K^n \setminus \mu^{n-1}(\Delta^n) / G$ and $p_2: K^n \setminus \mu^{n-1}(\Delta^n) \to X \setminus \pi^{-1}(D) = K^n \setminus \mu^{n-1}(\Delta^n) / H$ are the universal covering spaces where p_1 and p_2 are the natural projections. In this section, we show Theorem 0.8 (Theorem 3.2).

Lemma 3.1. i) Let f be an automorphism of $E^{[n]} \setminus D$, and g_1, \ldots, g_n automorphisms of K such that $p_1 \circ (g_1 \times \cdots \times g_n) = f \circ p_1$, where $(g_1 \times \cdots \times g_n)$ is the automorphism of K^n . Then we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_1 \circ \iota = \iota \circ g_1$.

ii) Let f be an automorphism of $X \setminus \pi^{-1}(D)$, and g_1, \ldots, g_n automorphisms of K such that $p_2 \circ (g_1 \times \cdots \times g_n) = f \circ p_2$, where $(g_1 \times \cdots \times g_n)$ is the automorphism of K^n . Then we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for each $1 \leq i \leq n$. Moreover $g_1 \circ \iota = \iota \circ g_1$.

Proof. We show i) by contradiction. Without loss of generality, we may assume that $g_2 \neq g_1$ and $g_2 \neq g_1 \circ \iota$. Let h_1 and h_2 be two morphisms of K where $g_i \circ h_i = \mathrm{id}_K$

and $h_i \circ g_i = \mathrm{id}_K$ for i = 1, 2. We define two morphisms $A_{1,2}$ and $A_{1,2,\iota}$ from K to K^2 by

$$A_{1,2}: K \ni x \mapsto (h_1(x), h_2(x)) \in K^2$$

$$A_{1,2,\iota}: K \ni x \mapsto (h_1(x), \iota \circ h_2(x)) \in K^2.$$

Let $\Gamma_{\iota} := \{(x,y) : y = \iota(x)\}$ be the subset of K^2 . Since $h_1 \neq h_2$ and $h_1 \neq \iota \circ h_2$, $A_{1,2}^{-1}(\Delta^2) \cup A_{1,2,\iota}^{-1}(\Gamma_{\iota})$ do not coincide with K. Thus there is $x' \in K$ such that $A_{1,2}(x') \notin \Delta^2$ and $A_{1,2,\iota}(x') \notin \Gamma_{\iota}$. For $x' \in K$, we put $x_i := h_i(x') \in K$ for i = 1, 2. Then there are some elements $x_3, \ldots, x_n \in K$ such that $(x_1, \ldots, x_n) \in K^n \setminus \mu^{n-1}(\Delta^n)$. We have $g((x_1, \ldots, x_n)) \notin K^n \setminus \mu^{n-1}(\Delta^n)$ by the assumption of x_1 and x_2 . It is contradiction, because g is an automorphism of $K^n \setminus \mu^{n-1}(\Delta^n)$. Thus we have $g_i = g_1$ or $g_i = g_1 \circ \iota$ for $1 \leq i \leq n$.

Let $g:=g_1\times\cdots\times g_n$. Since the covering transformation group of p is G, the liftings of f are given by $\{g\circ u:u\in G\}=\{u\circ g:u\in G\}$. Thus for $\iota_1\circ g$, there is an element $\iota_a\circ s$ of G where $s\in \Gamma_n$ and $1\leq a\leq n$ such that $\iota_1\circ g=g\circ\iota_a\circ s$. If we think about the first component of $\iota_1\circ g$, we have $s=\operatorname{id}$ and a=1. Therefore $g\circ\iota\circ g^{-1}=\iota$, we have $\iota\circ g_1=g_1\circ\iota$. In the same way, we have ii).

Theorem 3.2. For $n \geq 2$, let E be an Enriques surface, D the exceptional divisor of the Hilbert-Chow morphism $q: E^{[n]} \to E^{(n)}$, and $\pi: X \to E^{[n]}$ the universal covering space of $E^{[2]}$. Then

- i) An automorphism f of $E^{[n]}$ is natural if and only if f(D) = D.
- ii) An automorphism g of X is a lift of a natural automorphism of $E^{[n]}$ if and only if $g(\pi^{-1}(D)) = \pi^{-1}(D)$.

Proof. We show (1). Let $\mu: K \to E$ be the universal covering space of E. By Theorem 1.5, there is a commutative diagram

$$E^{[n]} \xrightarrow{q} E^{(n)}$$

$$\uparrow \qquad \qquad \downarrow p \qquad \uparrow \qquad \qquad \downarrow M^{n}/H,$$

$$X \xrightarrow{\varphi} K^{n}/H,$$

where p is the natural projection and φ is a birational morphism. Since $E^{[n]} \setminus D \xrightarrow{\sim} E^n \setminus \Delta^n / \Sigma_n$, we have the universal covering spaces

$$p_1: K^n \backslash \mu^{n-1}(\Delta^n) \to E^n \backslash \Delta^n / \Sigma_n,$$

$$p_2: K^n \setminus \mu^{n-1}(\Delta^n) \to K^n \setminus \mu^{n-1}(\Delta^n)/H$$
, and

and the following commutative diagram:

$$K^{n}\backslash \mu^{n-1}(\Delta^{n})/H \xrightarrow{p_{3}} E^{n}\backslash \Delta^{n}/\Sigma_{n}$$

$$\downarrow^{p_{2}} \qquad \downarrow^{p_{1}}$$

$$K^{n}\backslash \mu^{n-1}(\Delta^{n}),$$

where p_1, p_2 , and p_3 are the natural projections. For $f \in \operatorname{Aut}(E^{[n]})$ with f(D) = D, from the uniqueness of the universal covering space, f induces an automorphisms \bar{f} of $K^n \setminus \mu^{n-1}(\Delta^n)$. Since K is projective and codim $\mu^{-1}(\Delta^n)$ is over $2, \bar{f}$ is a biratioal map of K^n . By [9], \bar{f} is au automorphism of K^n and there are g_1, \ldots, g_n automorphisms of K such that $\bar{f} = (g_1 \times \cdots \times g_n) \circ s$ where $s \in \Sigma_n$. Since $\Sigma \subset G$, we get $f \circ p_1 = p_1 \circ (g_1 \times \cdots \times g_n)$. From Lemma 3.1, we get i). By Theorem 1.5 and the above diagram, in the same way, we get ii).

4. Proof of Theorem 0.3

Let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and $\pi: X \to E^{[n]}$ the universal covering space of $E^{[n]}$.

In Proposition 4.2, we shall show that for $n \geq 3$, the covering involution of $\pi: X \to E^{[n]}$ acts on $\mathrm{H}^2(X,\mathbb{C})$ as the identity. In Proposition 4.5, by using Theorem 3.2 and checking the action to $\mathrm{H}^1(X,\Omega_X^{2n-1}) \cong \mathrm{H}^{2n-1,1}(X)$, we classify involutions of X which act on $\mathrm{H}^2(X,\mathbb{C})$ as the identity. We prove Theorem 0.3 (Theorem 4.7) using those results.

Lemma 4.1. Let X be a smooth complex manifold, $Z \subset X$ a closed submanifold whose codimension is 2, $\tau: X_Z \to X$ the blow up of X along Z, $E = \tau^{-1}(Z)$ the exceptional divisor, and h the first Chern class of the line bundle $\mathcal{O}_{X_Z}(E)$.

Then $\tau^*: \mathrm{H}^2(X,\mathbb{C}) \to \mathrm{H}^2(X_Z,\mathbb{C})$ is injective, and

$$\mathrm{H}^2(X_Z,\mathbb{C}) \simeq \mathrm{H}^2(X,\mathbb{C}) \oplus \mathbb{C}h.$$

Proof. Let $U := X \setminus Z$ be an open set of X. Then U is isomorphic to an open set $U' = X_Z \setminus E$ of X_Z . As τ gives a morphism between the pair (X_Z, U') and the pair (X, U), we have a morphism τ^* between the long exact sequence of cohomology relative to these pairs:

$$H^{k}(X, U, \mathbb{C}) \longrightarrow H^{k}(X, \mathbb{C}) \longrightarrow H^{k}(U, \mathbb{C}) \longrightarrow H^{k+1}(X, U, \mathbb{C})$$

$$\downarrow \tau_{X, U}^{*} \qquad \qquad \downarrow \tau_{X}^{*} \qquad \qquad \downarrow \tau_{X}^{*} \qquad \qquad \downarrow \tau_{X, U}^{*}$$

$$H^{k}(X_{Z}, U', \mathbb{C}) \longrightarrow H^{k}(X_{Z}, \mathbb{C}) \longrightarrow H^{k}(U', \mathbb{C}) \longrightarrow H^{k+1}(X_{Z}, U', \mathbb{C}).$$

By Thom isomorphism, the tubular neighborhood Theorem, and Excision theorem, we have

$$\mathrm{H}^q(Z,\mathbb{C})\simeq\mathrm{H}^{q+4}(X,U,\mathbb{C}),$$
 and

$$\mathrm{H}^q(E,\mathbb{C}) \simeq \mathrm{H}^{q+2}(X_Z,U',\mathbb{C}).$$

In particular, we have

$$H^{l}(X, U, \mathbb{C}) = 0$$
 for $l = 0, 1, 2, 3$, and

$$H^{j}(X_{Z}, U', \mathbb{C}) = 0 \text{ for } l = 0, 1.$$

Thus we have

$$0 \longrightarrow H^{1}(X, \mathbb{C}) \longrightarrow H^{1}(U, \mathbb{C}) \longrightarrow 0$$

$$\downarrow \tau_{X,U}^{*} \qquad \qquad \downarrow \tau_{X}^{*} \qquad \qquad \downarrow \tau_{X}^{*} \qquad \qquad \downarrow \tau_{X,U}^{*}$$

$$0 \longrightarrow H^{1}(X_{Z}, \mathbb{C}) \longrightarrow H^{1}(U', \mathbb{C}) \longrightarrow H^{0}(E, \mathbb{C}),$$

and

$$0 \longrightarrow H^{2}(X, \mathbb{C}) \longrightarrow H^{2}(U, \mathbb{C}) \longrightarrow 0$$

$$\downarrow^{\tau_{X,U}^{*}} \qquad \qquad \downarrow^{\tau_{X}^{*}} \qquad \qquad \downarrow^{\tau_{U}^{*}} \qquad \qquad \downarrow^{\tau_{X,U}^{*}}$$

$$H^{0}(E, \mathbb{C}) \longrightarrow H^{2}(X_{Z}, \mathbb{C}) \longrightarrow H^{2}(U', \mathbb{C}) \longrightarrow H^{3}(X_{Z}, U', \mathbb{C}).$$

Since $\tau \mid_{U'}: U' \xrightarrow{\sim} U$, we have isomorphisms $\tau_U^*: H^k(U, \mathbb{C}) \simeq H^k(U', \mathbb{C})$. Thus we have

$$\mathrm{dim}_{\mathbb{C}}\mathrm{H}^2(X_Z,\mathbb{C})=\mathrm{dim}_{\mathbb{C}}\mathrm{H}^2(X,\mathbb{C})+1, \text{ and }$$

$$\tau^*: \mathrm{H}^2(X,\mathbb{C}) \to \mathrm{H}^2(X_Z,\mathbb{C})$$
 is injective,

and therefore we obtain

$$\mathrm{H}^2(X_Z,\mathbb{C}) \simeq \mathrm{H}^2(X,\mathbb{C}) \oplus \mathbb{C}h.$$

Proposition 4.2. Suppose $n \geq 3$. For the covering involution ρ of the universal covering space $\pi: X \to E^{[n]}$, the induced map $\rho^*: H^2(X, \mathbb{C}) \to H^2(X, \mathbb{C})$ is the identity.

Proof. Since the codimension of $X \setminus \pi^{-1}(E_*^{[n]})$ is 2, we get

$$H^2(X, \mathbb{C}) \cong H^2(X \setminus \pi^{-1}(F), \mathbb{C}).$$

By Proposition 2.6, $X \setminus \pi^{-1}(E_*^{[n]}) \simeq \operatorname{Blow}_{\mu^{n-1}(\Delta^n)} K_{\circ}^n / H$.

Let $\tau: \operatorname{Blow}_{\mu^{n-1}(\Delta^n)} K^n_{\circ} \to K^n_{\circ}$ be the blow up of K^n_{\circ} along $\mu^{n-1}(\Delta^n)$,

 h_{ij} the first Chern class of the line bundle $\mathcal{O}_{\mathrm{Blow}_{\mu^{n-1}(\Delta^n)}K^n_{\circ}}(\tau^{-1}(\Delta^{ij}_{\circ})),$

 k_{ij} the first Chern class of the line bundle $\mathcal{O}_{\mathrm{Blow}_{\mu^{n-1}(\Delta^n)}K^n_{\circ}}(\tau^{-1}(\Gamma^{ij}_{\circ}))$.

By Lemma 4.1, we have

and

$$\mathrm{H}^{2}(\mathrm{Blow}_{\mu^{n-1}(\Delta^{n})}K^{n}_{\circ},\mathbb{C}) \cong \mathrm{H}^{2}(K^{n},\mathbb{C}) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C}h_{ij}\right) \oplus \left(\bigoplus_{1 \leq i < j \leq n} \mathbb{C}k_{ij}\right).$$

Since $n \geq 3$, there is an isomorphism

$$(j, j+1) \circ \sigma_{ij} \circ (j, j+1) : \Delta_{\circ}^{ij} \xrightarrow{\sim} \Gamma_{\circ}^{ij}.$$

Thus we have $\dim_{\mathbb{C}} H^2(\operatorname{Blow}_{\mu^{n-1}(\Delta^n)}K^n_{\circ}/H,\mathbb{C}) = 11$, i.e. $\dim_{\mathbb{C}} H^2(X,\mathbb{C}) = 11$. Since $H^2(E^{[n]},\mathbb{C}) = H^2(X,\mathbb{C})^{\rho^*}$, ρ^* is the identity.

Since K^n/H is normal, $\pi^{-1}(E)$ is the exceptional divisor (Theorem 2.5) and X is a Calabi-Yau, we have that for an automorphism f of X, $f(\pi^{-1}(D)) = \pi^{-1}(D)$ if and only if $f^*\mathcal{O}_X(\pi^{-1}(D)) = \mathcal{O}_X(\pi^{-1}(D))$ in $\mathrm{Pic}(X)$.

Definition 4.3. Let S be a smooth surface. An automorphism φ of S is numerically trivial if the induced automorphism φ^* of the cohomology ring over \mathbb{Q} , $H^*(S,\mathbb{Q})$ is the identity.

We suppose that an Enriques surface E has numerically trivial involutions. By [8, Proposition 1.1], there is just one numerically trivial involution of E, denoted v. For v, there are just two involutions of K which are liftings of v, one acts on

 $\mathrm{H}^0(K,\Omega_K^2)$ as the identity, and another acts on $\mathrm{H}^0(K,\Omega_K^2)$ as $-\mathrm{id}_{\mathrm{H}^0(K,\Omega_K^2)}$, we denote by v_+ and v_- , respectively. Then they satisfies $v_+ = v_- \circ \sigma$.

Let $v^{[n]}$ be the automorphism of $E^{[n]}$ which is induced by v. For $v^{[n]}$, there are just two automorphisms of X which are liftings of $v^{[n]}$, denoted ς and ς' , respectively:

$$E^{[n]} \xrightarrow{v^{[n]}} E^{[n]}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Then they satisfies $\varsigma = \varsigma' \circ \rho$ where ρ is the covering involution of $\pi : X \longrightarrow E^{[n]}$ and the each order of ς and ς' is 2. From here, we classify involutions acting on $H^2(X,\mathbb{C})$ as the identity by checking the action to $H^{2n-1,1}(X,\mathbb{C})$.

Lemma 4.4. $\dim_{\mathbb{C}} H^{2n-1,1}(K^n/H,\mathbb{C}) = 10.$

Proof. Let ι be the covering involution of $\mu: K \to E$. Put

$$\mathrm{H}^{p,q}_\pm(K,\mathbb{C}):=\{\alpha\in\mathrm{H}^{p,q}(K,\mathbb{C}):\iota^*(\alpha)=\pm\alpha\}$$
 and
$$h^{p,q}_\pm(K):=\dim_{\mathbb{C}}\mathrm{H}^{p,q}_\pm(K,\mathbb{C}).$$

Since K is a K3 surface, we have

$$h^{0,0}_-(K)=1,\ h^{1,0}_-(K)=0,\ h^{2,0}_-(K)=1,\ h^{1,1}_-(K)=20,$$

$$h^{0,0}_+(K)=1,\ h^{1,0}_+(K)=0,\ h^{2,0}_+(K)=0\ h^{1,1}_+(K)=10,$$

$$h^{0,0}_-(K)=0,\ h^{1,0}_-(K)=0,\ h^{2,0}_-(K)=1,\ \mathrm{and}\ h^{2,0}_-(K)=10.$$

Let

$$\Lambda := \{ (s_1, \dots, s_n, t_1, \dots, t_n) \in \mathbb{Z}_{\geq 0}^{2n} : \Sigma_{i=1}^n s_i = 2n - 1, \ \Sigma_{j=1}^n t_j = 1 \}.$$

From the Künneth Theorem, we have

$$\mathrm{H}^{2n-1,1}(K^n,\mathbb{C}) \simeq \bigoplus_{(s_1,\cdots,s_n,t_1,\cdots,t_n) \in \Lambda} \Biggl(\bigotimes_{i=1}^n \mathrm{H}^{s_i,t_i}(K,\mathbb{C}) \Biggr).$$

We take a base α of $\mathrm{H}^{2,0}(K,\mathbb{C})$ and a base $\{\beta_i\}_{i=1}^{20}$ of $\mathrm{H}^{1,1}(K,\mathbb{C})$ such that $\{\beta_i\}_{i=1}^{10}$ is a base of $\mathrm{H}^{1,1}_-(K,\mathbb{C})$ and $\{\beta_i\}_{i=11}^{20}$ is a base of $\mathrm{H}^{1,1}_+(K,\mathbb{C})$. Let

$$\tilde{\beta}_i := \bigotimes_{j=1}^n \epsilon_j$$

where $\epsilon_j = \alpha$ for $j \neq i$ and $\epsilon_j = \beta_i$ for j = i, and

$$\gamma_i := \bigoplus_{j=1}^n \tilde{\beta}_j.$$

Then $\{\gamma_i\}_{i=1}^{20}$ is a base of $\mathrm{H}^{2n-1,1}(K^n,\mathbb{C})^{\mathcal{S}_n}$. Since $\iota^*\alpha = -\alpha$, $\iota^*\beta_i = -\beta_i$ for $1 \leq i \leq 10$, and $\iota^*\beta_i = \beta_i$ for $11 \leq i \leq 20$, we obtain

$$\iota_{ij}^* \gamma_i = \gamma_i$$
 for $1 \le i \le 10$, and

$$\iota_{ij}^* \gamma_i = -\gamma_i \text{ for } 11 \leq i \leq 20.$$

Since $H^{2n-1,1}(K^n/H,\mathbb{C}) \simeq H^{2n-1,1}(K^n,\mathbb{C})^H$ and $H = \langle \mathcal{S}_n, \{\sigma_{ij}\}_{1 \leq i < j \leq n} \rangle$, we obtain

$$\mathrm{H}^{2n-1,1}(K^n/H,\mathbb{C}) = \bigoplus_{i=1}^{10} \mathbb{C}\gamma_i.$$

Thus we get $\dim_{\mathbb{C}} H^{2n-1,1}(K^n/H,\mathbb{C}) = 10$.

Recall that $p: K^n \setminus \mu^{n-1}(\Delta^n) \to E^{[n]} \setminus D = E^n \setminus \Delta^n / \Sigma_n$ is the universal covering space.

Proposition 4.5. We suppose that E has a numerically trivial involution, denoted v. Let $v^{[n]}$ be the natural automorphism of $E^{[n]}$ which is induced by v. Since the

degree of $\pi: X \to E^{[n]}$ is 2, there are just two involutions ζ and ζ' of X which are lifts of $v^{[n]}$. Then ζ and ζ' do not act on $H^{2n-1,1}(X,\mathbb{C})$ as $-\mathrm{id}_{H^{2n-1,1}(X,\mathbb{C})}$.

Proof. Since $v^{[n]}(D) = D$, $v^{[n]}|_{E^{[n]}\setminus D}$ is an automorphism of $E^{[n]}\setminus D$. By the uniqueness of the universal covering space, there is an automorphism g of $K^n\setminus \mu^{n-1}(\Delta^n)$ such that $v^{[n]}\circ p=p\circ g$:

$$E^{[n]} \setminus D \xrightarrow{v^{[n]}} E^{[n]} \setminus D$$

$$\downarrow p \qquad \qquad p \qquad p \qquad \qquad p \qquad$$

By Proposition 3.1, there are some automorphisms g_i of K such that $g = g_1 \times \cdots \times g_n$ for each $1 \le i \le n$, $g_i = g_1$ or $g_i = g_1 \circ \iota$, and $g_1 \circ \iota = \iota \circ g_1$. By Theorem 1.5, we get $K^n \setminus \mu^{n-1}(\Delta^n)/H \simeq X \setminus \pi^{-1}(D)$. Put

$$v_{+,even} := u_1 \times \cdots \times u_n$$

where

 $u_i = v_+$ or $u_i = v_-$ and the number of i with $u_i = v_+$ is even.

 $v_{+,even}$ is an automorphism of K^n and induces an automorphism $\widetilde{v_{+,even}}$ of $K^n \setminus \mu^{n-1}(\Delta^n)/H$. We define automorphisms $\widetilde{v_{+,odd}}$, $\widetilde{v_{-,even}}$, and $\widetilde{v_{-,odd}}$ of $K^n \setminus \mu^{n-1}(\Delta^n)/H$ in the same way. Since $\sigma_{ij} \in H$ for $1 \le i < j \le n$, and $v_+ = v_- \circ \iota$, if n is odd,

$$\widetilde{v_{+,odd}} = \widetilde{v_{-,even}}, \ \widetilde{v_{+,even}} = \widetilde{v_{-,odd}}, \ \text{and} \ \widetilde{v_{+,odd}} \neq \widetilde{v_{+,even}},$$

and if n is even,

$$\widetilde{v_{+,odd}} = \widetilde{v_{-,odd}}, \ \widetilde{v_{+,even}} = \widetilde{v_{-,even}}, \ \text{and} \ \widetilde{v_{+,odd}} \neq \widetilde{v_{+,even}}.$$

Since $v^{(n)} \circ \pi_E = \pi_E \circ v^{[n]}$ and $K^n \setminus \mu^{n-1}(\Delta^n)/H \simeq X \setminus \pi^{-1}(D)$, we have $v^{[n]} \circ \pi = \pi \circ \widetilde{v_{+,odd}}$ and $v^{[n]} \circ \pi = \pi \circ \widetilde{v_{+,even}}$ where $\pi_E : E^{[n]} \to E^{(n)}$ is the Hilbert-Chow morphism, and $v^{(n)}$ is the automorphism of $E^{(n)}$ induced by v. Since the degree of π is 2, we have $\{\varsigma,\varsigma'\} = \{\widetilde{v_{+,odd}},\widetilde{v_{+,even}}\}$. By [8, page 386-389], there is an element $\alpha_{\pm} \in H^{1,1}_{-}(K,\mathbb{C})$ such that $v_{+}^{*}(\alpha_{\pm}) = \pm \alpha_{\pm}$. We fix a basis α of $H^{2,0}(K,\mathbb{C})$, and let

$$\widetilde{\alpha_{\pm}}_i := \bigotimes_{j=1}^n \epsilon_j$$

where $\epsilon_j = \alpha$ for $j \neq i$ and $\epsilon_j = \alpha_{\pm}$ for j = i, and

$$\widetilde{\alpha_{\pm}} := \bigoplus_{j=1}^{n} \widetilde{\alpha_{\pm}}_{i}.$$

Since there is a birational map $\varphi: K^n \to X$ by Theorem 1.5, and by the definition of $\widetilde{v_{+,odd}}$ and $\widetilde{v_{+,even}}$, we have

$$\widetilde{v_{+,odd}}^*(\varphi^*(\widetilde{\alpha_+})) = \varphi^*(\widetilde{\alpha_+}) \text{ and } \widetilde{v_{+,even}}^*(\varphi^*(\widetilde{\alpha_-})) = \varphi^*(\widetilde{\alpha_-}).$$

Thus ς and ς' do not act on $H^{2n-1,1}(X,\mathbb{C})$ as $-\mathrm{id}_{H^{2n-1,1}(X,\mathbb{C})}$.

Definition 4.6. For $n \geq 1$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. A variety Y is called an Enriques quotient of X if there is an Enriques surface E' and a free involution τ of X such that $Y \simeq E'^{[n]}$ and $E'^{[n]} \simeq X/\langle \tau \rangle$. Here we call two Enriques quotients of X distinct if they are not isomorphic to each other.

Theorem 4.7. For $n \geq 3$, let E be an Enriques surface, $E^{[n]}$ the Hilbert scheme of n points of E, and X the universal covering space of $E^{[n]}$. Then the number of distinct Enriques quotients of X is one.

Proof. Let ρ be the covering involution of $\pi: X \to E^{[n]}$ for $n \geq 3$. Since for $n \geq 3$ dim $\mathbb{C}H^2(E^{[n]}, \mathbb{C}) = \dim_{\mathbb{C}}H^2(X, \mathbb{C}) = 11$, dim $\mathbb{C}H^{2n-1,1}(E'^{[n]}, \mathbb{C}) = 0$, and dim $\mathbb{C}H^{2n-1,1}(X, \mathbb{C}) = 10$, we obtain that ρ^* acts on $H^2(X, \mathbb{C})$ as the identity, and $H^{2n-1,1}(X, \mathbb{C})$ as $-\mathrm{id}_{H^{2n-1,1}(X, \mathbb{C})}$.

Let φ be an involution of X, which acts on $\mathrm{H}^2(X,\mathbb{C})$ as the identity and on $\mathrm{H}^{2n-1,1}(X,\mathbb{C})$ as $-\mathrm{id}_{\mathrm{H}^{2n-1,1}(X,\mathbb{C})}$. By Theorem 3.2, for φ , there is an automorphism φ of E such that φ is a lift of $\varphi^{[n]}$ where $\varphi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by φ . Furthermore since the order of φ is at most 2, the order of φ is 2. Since $\varphi^{[n]} \circ \pi = \pi \circ \varphi$, $\varphi^{[n]*}$ acts on $\mathrm{H}^2(E^{[n]},\mathbb{C})$ as the identity. Thus φ^* acts on $\mathrm{H}^2(E,\mathbb{C})$ as the identity. If E does not have numerically trivial automorphisms, then $\varphi = \mathrm{id}_E$. Thus $\varphi = \rho$.

We assume that ϕ does not the identity map. Then ϕ is numerically trivial. Then $\phi = v$ and $\varphi \in \{\zeta, \zeta'\}$. By Proposition 4.5, we obtain that φ does not act on $H^{2n-1,1}(X,\mathbb{C})$ as $-\mathrm{id}_{H^{2n-1,1}(X,\mathbb{C})}$. This is a contradiction. Thus $\phi = \mathrm{id}_E$, and we get $\varphi = \rho$. This proves the theorem.

Theorem 4.8. For $n \geq 2$, let $\pi: X \to E^{[n]}$ be the universal covering space. For any automorphism φ of X, if φ^* is acts on $H^*(X,\mathbb{C}) := \bigoplus_{i=0}^{2n} H^i(X,\mathbb{C})$ as the identity, then $\varphi = \mathrm{id}_X$.

Proof. By Theorem 3.2, for φ , there is an automorphism ϕ of E such that φ is a lift of $\phi^{[n]}$ where $\phi^{[n]}$ is the natural automorphism of $E^{[n]}$ induced by ϕ . Since φ^* acts on $H^2(X,\mathbb{C})$ as the identity, ϕ^* acts on $H^2(E,\mathbb{C})$ as the identity. From [8, page 386-389] the order of ϕ is at most 4.

If the order of ϕ is 2, by Proposition 4.5 φ does not act on $\mathrm{H}^{2n-1,1}(X,\mathbb{C})$ as the identity. This is a contradiction.

If the order of ϕ is 4, then φ^2 is a lift of $\phi^{[n]^2} = \phi^{2^{[n]}}$. Thus by the above, φ^2 does not act on $\mathrm{H}^{2n-1,1}(X,\mathbb{C})$ as the identity. This is a contradiction. Thus we have $\phi = \mathrm{id}_E$ and $\varphi \in \{\mathrm{id}_X, \rho\}$. Since ρ does not act on $\mathrm{H}^{2n-1,1}(X,\mathbb{C})$ as the identity, we have $\varphi = \mathrm{id}_X$.

Corollary 4.9. For $n \geq 2$, let $\pi: X \to E^{[n]}$ be the universal covering space. For any two automorphisms f and g of X, if $f^* = g^*$ on $H^*(X, \mathbb{C})$, then f = g.

Theorem 4.10. For $n \geq 3$, let E be an Enriques surfaces, $E^{[n]}$ the Hilbert scheme of n points of E, $\pi: X \to E^{[n]}$ the universal covering space. Then there is an exact sequence:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(X) \to \operatorname{Aut}(E^{[n]}) \to 0.$$

Proof. Let f be an automorphism f of X. We put $g = f^{-1} \circ \rho \circ f$. Since for $n \geq 3$ ρ^* acts on $H^2(X,\mathbb{C})$ as the identity and on $H^{2n-1,1}(X)$ as $-\mathrm{id}_{H^{2n-1,1}(X)}$, we get that $g^* = \rho^*$ as automorphisms of $H^2(X,\mathbb{C}) \oplus H^{2n-1,1}(X)$. Like the proof of Theorem 4.8, we have $g = \rho$, i.e. $f \circ \rho = \rho \circ f$. Thus f induces a automorphism of $E^{[n]}$, and we have an exact sequence:

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(X) \to \operatorname{Aut}(E^{[n]}) \to 0.$$

5. Appendix A

We compute the Hodge number of the universal covering space X of $E^{[2]}$. Let ι be the covering involution of $\mu: K \to E$, and $\tau: \operatorname{Blow}_{\Delta \cup \Gamma} K^2 \to K^2$ the natural map, where $\Gamma = \{(x,y) \in K^2 : y = \iota(x)\}$ and $\Delta = \{(x,x) \in K^2\}$. By Proposition

1.4, we have

$$X \simeq \operatorname{Blow}_{\Delta \cup \Gamma} K^2 / H.$$

We put

$$D_{\Delta} := \tau^{-1}(\Delta)$$
 and

$$D_{\Gamma} := \tau^{-1}(\Gamma).$$

For two inclusions

$$j_{D_{\Delta}}: D_{\Delta} \hookrightarrow \operatorname{Blow}_{\Delta \cup \Gamma} K^2$$
, and

$$j_{D_{\Gamma}}: D_{\Gamma} \hookrightarrow \mathrm{Blow}_{\Delta \cup \Gamma} K^2,$$

let $j_{*D_{\Delta}}$ be the Gysin morphism

$$j_{*D_{\Delta}}: \mathrm{H}^p(D_{\Delta}, \mathbb{C}) \to \mathrm{H}^{p+2}(\mathrm{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}),$$

 $j_{*D_{\Gamma}}$ the Gysin morphism

$$j_{*D_{\Gamma}}: \mathrm{H}^p(D_{\Gamma}, \mathbb{C}) \to \mathrm{H}^{p+2}(\mathrm{Blow}_{\Delta \cup \Gamma} K^2, \mathbb{C}),$$
 and

$$\psi := \tau^* + j_{*D_{\Delta}} \circ \tau|_{D_{\Delta}}^* + j_{*D_{\Gamma}} \circ \tau|_{D_{\Gamma}}^*$$

the morphism from $\mathrm{H}^p(K^2,\mathbb{C}) \oplus \mathrm{H}^{p-2}(\Delta,\mathbb{C}) \oplus \mathrm{H}^{p-2}(\Gamma,\mathbb{C})$ to $\mathrm{H}^p(\mathrm{Blow}_{\Delta \cup \Gamma}K^2,\mathbb{C})$.

From [13, Theorem 7.31], we have isomorphisms of Hodge structures by ψ :

$$\mathrm{H}^k(K^2,\mathbb{C})\oplus\mathrm{H}^{k-2}(\Delta,\mathbb{C})\oplus\mathrm{H}^{k-2}(\Gamma,\mathbb{C})\simeq\mathrm{H}^k(\mathrm{Blow}_{\Delta\cup\Gamma}K^2,\mathbb{C}).$$

Furthermore, for automorphism f of K, let \bar{f} (resp. \bar{f}_{ι}) be the automorphism of $\mathrm{Blow}_{\Delta \cup \Gamma} K^2$ which is induced by $f \times f$ (resp. $f \times (f \circ \iota)$, f_{Δ} the automorphism of Δ which is induced by $f \times f$, f_{Γ} the automorphism of Γ which is induced by $f \times f$, and \tilde{f} the isomorphism from Γ to Δ which is induced by $f \times (f \circ \iota)$. For $\alpha \in \mathrm{H}^*(K^2, \mathbb{C})$, $\beta \in \mathrm{H}^*(\Delta, \mathbb{C})$, and $\gamma \in \mathrm{H}^*(\Gamma, \mathbb{C})$, we obtain

$$\bar{f}^*(\tau^*\alpha) = \tau^*((f \times f)^*\alpha),$$

$$\begin{split} \bar{f}^*(j_{*D_{\Delta}} \circ \tau|_{D_{\Delta}}^*\beta) &= j_{*D_{\Delta}} \circ \tau|_{D_{\Delta}}^*(f_{\Delta}^*\beta), \\ \bar{f}^*(j_{*D_{\Gamma}} \circ \tau|_{D_{\Gamma}}^*\gamma) &= j_{*D_{\Gamma}} \circ \tau|_{D_{\Gamma}}^*(f_{\Gamma}^*\gamma), \\ \bar{f}^*_{\sigma}(\tau^*\alpha) &= \tau^*((f \times (f \circ \iota)^*\alpha), \\ \bar{f}^*_{\iota}(j_{*D_{\Delta}} \circ \tau|_{D_{\Delta}}^*\beta) &= j_{*D_{\Gamma}} \circ \tau|_{D_{\Delta}}^*(\tilde{f}^*\beta), \end{split}$$

in $H^*(Blow_{\Delta \cup \Gamma}K^2, \mathbb{C})$.

Theorem 5.1. For the universal covering space $\pi: X \to E^{[2]}$, we have $h^{0,0}(X) = 1$, $h^{1,0}(X) = 0$, $h^{2,0}(X) = 0$, $h^{1,1}(X) = 12$, $h^{3,0}(X) = 0$, $h^{2,1}(X) = 0$, $h^{4,0}(X) = 1$, $h^{3,1}(X) = 10$, and $h^{2,2}(X) = 131$.

Proof. Since $X \simeq \operatorname{Blow}_{\Delta \cup \Gamma} K^2/H$, we have

$$h^{p,q}(X)=\dim_{\mathbb{C}}\{\alpha\in \mathrm{H}^{p,q}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2,\mathbb{C}):\ h^*\alpha=\alpha\ \text{for}\ h\in H\}.$$

Let ι be the covering involution of $\mu: K \to E$. We put

$$\begin{split} \mathrm{H}^{p,q}_\pm(K,\mathbb{C}) &:= \{\alpha \in \mathrm{H}^{p,q}(K,\mathbb{C}) : \iota^*(\alpha) = \pm \alpha\} \text{ and} \\ h^{p,q}_\pm(K) &:= \dim_{\mathbb{C}} \mathrm{H}^{p,q}_\pm(K,\mathbb{C}). \end{split}$$

From $E = K/\langle \iota \rangle$, we have

$$\mathrm{H}^{p,q}(E,\mathbb{C}) \simeq \mathrm{H}^{p,q}_+(K,\mathbb{C}).$$

Since K is a K3 surface, we have

$$h^{0,0}(K) = 1$$
, $h^{1,0}(K) = 0$, $h^{2,0}(K) = 1$, and $h^{1,1}(K) = 20$, and $h^{0,0}_+(K) = 1$, $h^{1,0}_+(K) = 0$, $h^{2,0}_+(K) = 0$, and $h^{1,1}_+(K) = 10$, and $h^{0,0}_+(K) = 0$, $h^{1,0}_+(K) = 0$, $h^{2,0}_+(K) = 1$, and $h^{2,0}_+(K) = 10$.

Recall that H is generated by S_2 and $\iota_{1,2}$. Since $\iota \times \iota(\Delta) = \Delta$ and $\iota \times \iota(\Gamma) = \Gamma$,

from $E = K/\langle \iota \rangle$ we have $\Delta/H \simeq E$ and $\Gamma/H \simeq E$. Thus we have

$$h^{0,0}(\Delta/H) = 1, h^{1,0}(\Delta/H) = 0, h^{2,0}(\Delta/H) = 0, h^{1,1}(\Delta/H) = 10,$$

$$h^{0,0}(\Gamma/H) = 1$$
, $h^{1,0}(\Gamma/H) = 0$, $h^{2,0}(\Gamma/H) = 0$, and $h^{1,1}(\Gamma/H) = 10$.

From the Künneth Theorem, we have

$$\mathrm{H}^{p,q}(K^2,\mathbb{C}) \simeq \bigoplus_{s+u=p,t+v=q} \mathrm{H}^{s,t}(K,\mathbb{C}) \otimes \mathrm{H}^{u,v}(K,\mathbb{C}),$$
 and

$$\mathrm{H}^{p,q}(K^2/H,\mathbb{C}) \simeq \{\alpha \in \mathrm{H}^{p,q}(K^2,\mathbb{C}) : s^*(\alpha) = \alpha \text{ for } s \in \Sigma_2 \text{ and } \iota_{1,2}^*(\alpha) = \alpha\}.$$

Thus we obtain

$$h^{0,0}(K^2/H)=1,\ h^{1,0}(K^2/H)=0,\ h^{2,0}(K^2/H)=0,\ h^{1,1}(K^2/H)=10,$$

$$h^{3,0}(K^2/H)=0,\ h^{2,1}(K^2/H)=0,\ h^{4,0}(K^2/H)=1,$$

$$h^{3,1}(K^2/H)=10,\ \mathrm{and}\ h^{2,2}(K^2/H)=111.$$

We fix a basis β of $H^{2,0}(K,\mathbb{C})$ and a basis $\{\gamma_i\}_{i=1}^{10}$ of $H^{1,1}_-(K,\mathbb{C})$, then we have

$$\mathrm{H}^{3,1}(K^2/H,\mathbb{C}) \simeq \bigoplus_{i=1}^{10} \mathbb{C}(\beta \otimes \gamma_i + \gamma_i \otimes \beta).$$

By the above equation, we have

$$\begin{split} h^{0,0}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) &= 1, \ h^{1,0}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) = 0, \\ h^{2,0}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) &= 0, \ h^{1,1}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) = 12, \\ h^{3,0}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) &= 0, \ h^{2,1}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) = 0, \\ h^{4,0}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) &= 1, \ h^{3,1}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) = 10, \ \mathrm{and} \\ h^{2,2}(\mathrm{Blow}_{\Delta\cup\Gamma}K^2/H) &= 131. \end{split}$$

Thus we obtain
$$h^{0,0}(X) = 1$$
, $h^{1,0}(X) = 0$, $h^{2,0}(X) = 0$, $h^{1,1}(X) = 12$, $h^{3,0}(X) = 0$, $h^{2,1}(X) = 0$, $h^{4,0}(X) = 1$, $h^{3,1}(X) = 10$, and $h^{2,2}(X) = 131$.

6. Appendix B

Now we show that the conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L=\Omega^2_Y$.

Let Y be a smooth compact Kähler surface. Recall that $Y^{[n]}$ is the Hilbert scheme of n points of Y, $\pi_Y: Y^{[n]} \to Y^{(n)}$ the Hilbert-Chow morphism, and $p_Y: Y^n \to Y^{(n)}$ the natural projection. For a line bundle L on Y, there is a unique line bundle L on L on L on L on L on L and L on L are the natural map

$$\operatorname{Pic}(Y) \to \operatorname{Pic}(Y^{[n]}), \ L \mapsto L_n := \pi_Y^* \mathcal{L}.$$

we put

$$h^{p,q}(Y^{[n]}, L_n) := \dim_{\mathbb{C}} H^q(Y^{[n]}, \Omega^p_{Y^{[n]}} \otimes L_n),$$

$$h^{p,q}(Y, L) := \dim_{\mathbb{C}} H^q(Y, \Omega^p_Y \otimes L),$$

$$A := \sum_{n, p, q = 0}^{\infty} h^{p,q}(Y^{[n]}, L_n) x^p y^q t^n, \text{ and}$$

$$B:=\prod_{k=1}^{\infty}\prod_{p,q=0}^{2}\left(\frac{1}{1-(-1)^{p+q}x^{p+k-1}y^{q+k-1}t^{k}}\right)^{(-1)^{p+q}h^{p,q}(Y,L)}.$$

Then in [2, Conjecture 1] S. Boissière conjectured that

$$A = B$$
.

For Y an Enriques surface and $L=\Omega_Y^2$, as in the proof on Theorem 2.2 and the Serre duality, we have

$$\begin{split} h^{2n-1,1}(Y^{[n]},(\Omega^2_Y)_n) &= \dim_{\mathbb{C}} \mathrm{H}^1(Y^{[n]},\Omega^{2n-1}_{Y^{[n]}} \otimes \Omega^{2n}_{Y^{[n]}}) \\ &= \dim_{\mathbb{C}} \mathrm{H}^1(Y^{[n]},T_{Y^{[n]}}) \\ &= 10. \end{split}$$

for $n \ge 2$. It follows that the coefficient of x^3yt^2 of A is 10.

We show that the coefficient of x^3yt^2 of B is not 10.

$$h^{0,0}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y,\mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y,\Omega_Y^2) = 0.$$

$$h^{0,1}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y,\mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y,\Omega_Y^2) = 0.$$

$$h^{0,2}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y,\mathcal{O}_Y \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y,\Omega_Y^2) = 1.$$

By Serre duality, we get

$$\Omega_V \otimes \Omega_V^2 \simeq T_V$$
.

Since Y is an Enriques surface, we have

$$h^{1,0}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^0(Y,\Omega_Y\otimes\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^0(Y,T_Y) = 0.$$

$$h^{1,1}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^1(Y,\Omega_Y\otimes\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^1(Y,T_Y) = 10.$$

$$h^{1,2}(Y,\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^2(Y,\Omega_Y\otimes\Omega_Y^2) = \dim_{\mathbb{C}} \mathrm{H}^2(Y,T_Y) = 0.$$

Since Y is an Enriques surface, we obtain

$$\Omega_Y^2 \otimes \Omega_Y^2 \simeq \mathcal{O}_Y.$$

$$h^{2,0}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^0(Y, \mathcal{O}_Y) = 1.$$

$$h^{2,1}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^1(Y, \mathcal{O}_Y) = 0.$$

$$h^{2,2}(Y, \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \Omega_Y^2 \otimes \Omega_Y^2) = \dim_{\mathbb{C}} H^2(Y, \mathcal{O}_Y) = 0.$$

Thus we obtain

$$\begin{split} B &= \prod_{k=1}^{\infty} \prod_{p,q=0}^{2} \left(\frac{1}{1 - (-1)^{p+q} x^{p+k-1} y^{q+k-1} t^k)} \right)^{(-1)^{p+q} h^{p,q}(E,\Omega_E^2)} \\ &= \prod_{k=1}^{\infty} \left(\frac{1}{1 - x^{k-1} y^{k+1} t^k)} \right) \left(\frac{1}{1 - x^k y^k t^k)} \right)^{10} \left(\frac{1}{1 - x^{k+1} y^{k-1} t^k)} \right) \\ &= \prod_{k=1}^{\infty} \left(\sum_{q=0}^{\infty} (x^{k-1} y^{k+1} t^k)^a \right) \left(\sum_{k=0}^{\infty} (x^k y^k t^k)^b \right)^{10} \left(\sum_{q=0}^{\infty} (x^{k+1} y^{k-1} t^k)^c \right). \end{split}$$

Thus we have

$$\begin{split} B &\equiv \prod_{k=1}^2 (1 + x^{k-1}y^{k+1}t^k + x^{2k-2}y^{2k+2}t^{2k}) \times (1 + x^ky^kt^k + x^{2k}y^{2k}t^{2k})^{10} \times \\ &(1 + x^{k+1}y^{k-1}t^k + x^{2k+2}y^{2k-2}t^{2k}) \ (mod\ t^3) \\ &\equiv \left((1 + y^2t + y^4t^2) \times (1 + xy^3t^2) \right) \times \\ &\left((1 + 10(xyt + x^2y^2t^2) + 45(xyt + x^2y^2t^2)^2) \times (1 + x^2y^2t^2) \right) \times \\ &\left((1 + x^2t + x^4t^2) \times (1 + x^3yt^2) \right) \ (mod\ t^3) \\ &\equiv \left(1 + y^2t + (xy^3 + y^4)t^2 \right) \times \left(1 + 10xyt + 56x^2y^2t^2 \right) \times \\ &\left(1 + x^2t + (x^3y + x^4)t^2 \right) \ (mod\ t^3) \\ &\equiv \left(1 + (10xy + y^2)t + (56x^2y^2 + 11xy^3 + y^4)t^2 \right) \times \\ &\left(1 + x^2t + (x^3y + x^4)t^2 \right) \ (mod\ t^3) \\ &\equiv 1 + (x^2 + 10xy + y^2)t + (x^4 + 11x^3y + 56x^2y^2 + 11xy^3 + y^4)t^2 \ (mod\ t^3) \end{split}$$

Therefore the coefficient of x^3yt^2 of B is 11. The conjecture in [2, Conjecture 1] is not established for Y an Enriques surface and $L = \Omega_Y^2$.

References

- A. Beauville: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18 (1983), no. 4, 755-782.
- [2] S. Boissière: Automorphismes naturels de l'espace de Douady de points sur une surface. Canad. J. Math. 64 (2012), no. 1, 3-23.
- [3] S. Boissière, A. Sarti: A note on automorphisms and birational transformations of holomorphic symplectic manifolds. Proc. Amer. Math. Soc. 140 (2012), no. 12, 4053-4062.

- [4] B. Fantechi: Deformation of Hilbert schemes of points on a surface. Compositio Math. 98 (1995), 205-217.
- [5] J. Fogarty: Families on an Algebraic Surface. American Journal of Mathematics Vol. 90, No. 2 (Apr., 1968), pp. 511-521.
- [6] L. Göttsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193-207 (1990).
- [7] L. Göttsche, W. Soergel: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296 (1993), 235-245.
- [8] S. Mukai, Y, Namikawa: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. Invent. Math. 77 (1984), no. 3, 383-397.
- [9] K. Oguiso: On automorphisms of the punctual Hilbert schemes of K3 surfaces. Eur. J. Math. 2 (2016), no. 1, 246261.
- [10] K. Oguiso, S. Schröer: Enriques Manifolds. J. Reine Angew. Math. 661 (2011), 215-235.
- [11] H. Ohashi: On the number of Enriques quotients of a K3 surface. Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 181-200. 14J28.
- [12] Z. Ran: Deformations of Manifolds with Torsion or Negative Canonical Bundle. J. Algebraic Geometry. p.279-291.
- [13] C. Voisin: Hodge Theory and Complex Algebraic Geometry, I. Cambridge Studies in Advanced Mathematics 76, Cambridge University Press, 2003. MR1997577 (2005c:32024b)

(Taro Hayashi) Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan

 $E ext{-}mail\ address: tarou-hayashi@cr.math.sci.osaka-u.ac.jp}$