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Introduction

Throughout this thesis, we work over the complex number field C. Let f: S — B be a
fibered surface of genus g, that is, a surjective morphism from a non-singular projective
surface S to a non-singular projective curve B whose general fiber is a non-singular

curve of genus g. We assume that the genus g is greater than 1 in the sequel. Let



K; = Kg— f*Kp denote the relative canonical bundle of f and put x s := degf. O(Ky).
We always assume that a fibered surface f: S — B is relatively minimal and not locally
trivial, i.e., K¢ is nef and xy is positive. The ratio Ay := KJ%/Xf of the self-intersection
number KJ% and xy is called the slope of f. It is well known that the slope A satisfies
the inequality

4(g—1)

<\ <12,
g f

which is nowadays called the slope inequality for fibered surfaces. The slope Ay attains
the lower bound only if the fibration f is hyperelliptic, i.e., a general fiber F' is a
hyperelliptic curve ([27] and [36]). As to the upper bound, Kodaira [25] constructed
examples of fibrations with slope 12, which are nowadays called Kodaira fibrations.
Thus the inequality Ay < 12 is sharp among all fibered surfaces. On the other hand,
Matsusaka [32] obtained an upper bound smaller than 12 for hyperelliptic case and Xiao
[38] improved this bound. In [12], upper bounds for genus 3 fibrations are studied from
another point of view.

We studied in [18] primitive cyclic covering fibrations of type (g, h,n). Roughly
speaking, it is a fibered surface of genus g obtained as the relatively minimal model of
an n sheeted cyclic branched covering of another fibered surface of genus h. Note that
hyperelliptic fibrations are nothing more than such fibrations of type (g,0,2) and that
bielliptic fibrations of genus g > 6 are those of type (g,1,2) (cf. [8] and [15]). Here,
a fibration is called bielliptic if a general fiber is a bielliptic curve, i.e., a non-singular
projective curve obtained as a double covering of an elliptic curve. In [18], we established
the lower bound of the slope for such fibrations of type (g, h,n) extending former results
for n = 2 in [7] and [15]. Furthermore, when h = 0, we obtained even the upper bound
(expressed as a function in g and n) which is strictly smaller than 12. Recall that known
examples of Kodaira fibrations, including Kodaira’s original ones [25], are presented as
primitive cyclic covering fibrations with h > 2 and, in fact, there exist such fibrations
for any h > 2 (see, [11] and [23]). Hence, as far as the upper bound of the slope strictly
smaller than 12 concerns, the remaining case to be examined is h = 1.

The first purpose of the present thesis is to give an affirmative answer to the above
mentioned upper bound problem by introducing numerical invariants attached to the
singularities of the branch locus of the cyclic covering, and improving coarser estimates
in [18]. When h = 0, a vertical component of the branch locus on a relatively minimal
model is always a non-singular rational curve and this fact makes it much easier to
handle singularities on the branch locus. On the other hand, when h > 0, we must pay
attention to all subcurves of fibers and their singularities in a fibration of genus A, which

seems quite terrible. Fortunately enough, when h = 1, we have Kodaira’s classification



of singular fibers [26] from which we know that major components are rational curves
and singularities are mild. This gives us a hope to extend results for A = 0 to fibrations
of type (g,1,n). In fact, we can show the following:

Theorem 0.1. Assume that g > (2n—1)(3n—1)/(n+1). Then, there ezists a function
Ind: Aj1,n = Q>0 from the set Ay, of all fiber germs of primitive cyclic covering
fibrations of type (g,1,n) such that Ind(F,) = 0 for a general p € B and

12n—1
K?2=—""_"/ Ind(F,
f m—1 f+zn
peEB

for any primitive cyclic covering fibration f: S — B of type (g,1,n).

Theorem 0.2. Let f: S — B be a primitive cyclic covering fibration of type (g,1,n).
Then

( 6?7,2
T 1) ) ifn>4, orn=3 and g =4
n g—
24
Ap <12 — 10— 17 ifn=3 and g > 4,
g_
2
gt ifn=2and g > 3.
\ § —

In particular, we have the slope equality and the upper bound of the slope for bielliptic
fibrations. We remark that the upper bounds in Theorem 0.2 are “fiberwise” sharp as
we shall see in Example 3.14. We do not know, however, whether there exist primitive
cyclic covering fibrations of type (g, 1,n) whose slopes attain the bounds.

The organization of the first half in the paper is as follows. In §1, we recall basic
results from [18] on primitive cyclic covering fibrations and introduce some notation for
the later use. In §2, we observe the local concentration of relative invariants of primitive
cyclic covering fibrations of type (g,1,n) on a finite number of fiber germs and show
Theorem 0.1. §3 will be devoted to the proof of Theorem 0.2. In the course of the study,
we freely use Kodaira’s table of singular fibers of elliptic surfaces.

Secondly, we consider fibered surfaces whose general fiber is a plane curve of degree
d which are called plane curve fibrations of degree d. A plane curve fibration of degree
1 or 2 is a ruled surface and that of degree 3 is nothing but an elliptic surface. In the
sequel, we always assume that d is greater that 3. Note that a plane curve fibration of
degree 4 is nothing but a non-hyperelliptic fibration of genus 3. Let A4 be the set of
holomorphically equivalence classes of fiber germs whose general fiber is a smooth plane

curve of degree d. Then our main theorem for plane curve fibrations is as follows.

Theorem 0.3. There exists a non-negative function Indg: Ag — Z>0 such that for
any relatively minimal plane curve fibration f: S — B of degree d, the value Indy(F)



equals to 0 for any general fiber F' of f and

K} = %Xf + Y Indg(F) (0.1)

peEB
holds, where F, := f~1(p) denotes the fiber germ over p € B.

The value Ind,(F},) is nowadays called a Horikawa index of F, and the equality (0.1)
a slope equality for plane curve fibrations of degree d (cf. [5]). In the case of d = 4,
that is, non-hyperelliptic fibrations of genus 3, Theorem 0.3 was first obtained by Reid
[33] which was generalized for fibered surfaces of odd genus g whose general fiber has
maximal Clifford index by Konno [28]. The lower bound of the slope of plane curve
fibrations of degree 5 was obtained by Barja-Stoppino [9].

The strategy of the proof of Theorem 0.3 is as follows. Let \g := 6(d — 3)/(d — 2).
Given a plane curve fibration f: S — B of degree d, we will show that there is a
line bundle £ on S such that the restriction L£|p to the general fiber F' defines the
embedding F' C P2 in §4. Using the line bundle £, we will show in §5 that the difference
KJ% — Agxs can be localized on a finite number of fiber germs, that is, we can define
Indg(F)) for any fiber germ Fj, of f. But it seems hard to show the non-negativity
of Indg(F},) directly from the definition. Thus we will show firstly a slope inequality
KJ% — Adxf > 01in §6. The essential idea of the proof is to apply the Hilbert stability
of the Veronese embedding (cf. [24]) to the result of Barja-Stoppino [10]. In order to
deduce the non-negativity of the Horikawa index from the slope inequality, we will use
an algebraization of any fiber germ in A, in §7, the idea of which is due to Terasoma [35].
Roughly speaking, for an arbitrary fiber germ F' in A,, we construct a global plane curve
fibration f: S — P! of degree d whose central fiber F = 7_1(0) is an “approximation”
of F' and any other singular fiber is an irreducible Lefschetz plane curve with one node.
Since we can show that Indg(Fp) = 0 for an irreducible Lefschetz fiber germ Fy with one
node, we in particular have Indg(F) = Indy(F) = K J% —Aaxf- Thus the slope inequality
K? — Aax¢ > 0 implies the non-negativity of Indg(F) for any fiber germ F' in Ajg.

In the last 3 sections, we shall focus our attention on local signatures for fibered
surfaces. Here, for a closed oriented real 4-manifold X, the signature of X is defined
to be the signature of the intersection form H?(X,R) x H*(X,R) — R, which is a
symmetric bilinear form. We consider the situation that X admits a fibration f: X — B

over a closed oriented surface B. Under some conditions, the signature of X happens

to localize around a finite number of fiber germs Fy, F5, ..., F,,:
Sign(X) =) _o(F).
i=1



We call this phenomenon a localization of the signature and the value o(F;) a local
signature of F;. A first example of local signatures is the one for genus 1 fibrations due
to Matsumoto [30]. He also gave a local signature for Lefschetz fibrations of genus 2 in
[31], which was generalized by Endo [17] for hyperelliptic fibrations. Later, Kuno [29]
defined a local signature for plane curve fibrations, which includes non-hyperelliptic
fibrations of genus 3. On the other hand, Horikawa [22] defined a function Ind(F') on
the set of holomorphic fiber germs F' of genus 2, which is nowadays called a Horikawa
index, in order to study algebraic surfaces of general type near the Noether line. Once
a Horikawa index is defined (for a certain type of holomorphic fibrations), we can define
a local signature by using it, as shown in [5]. After Horikawa’s work, Xiao [37] and
Arakawa-Ashikaga [1] defined a Horikawa index and a local signature for hyperelliptic
fibrations. Terasoma [35] showed the coincidence of Endo’s local signature and Arakawa-
Ashikaga’s one. For non-hyperelliptic genus 3 fibrations, Reid [33] defined a Horikawa
index. Similarly to Terasoma’s proof, Kuno’s local signature and Reid’s one for non-
hyperelliptic fibrations of genus 3 also coincide (cf. [4]).

In §8, we will discuss the signature of surfaces with plane curve fibrations. We can
define a local signature for plane curve fibrations by using the Horikawa index in The-
orem 0.3 (cf. [5]). We will show the coincidence of this local signature and Kuno’s one
similarly as in [35].

In §9 and §10, we construct a local signature associated with an effective divisor D
on the moduli space M, of smooth curves of genus g and compute some examples of
local signatures for general fibrations of genus 2 or 3, which are different from Endo-
Arakawa-Asikaga’s one and Kuno-Reid’s one. The idea of constructions is essentially
due to Ashikaga-Yoshikawa [6], who called the divisor 4\ —§ on the moduli space M, of
stable curves of genus g the signature divisor and gave a local signature by pulling back
the signature divisor using a geometric meaningful effective divisor D, e.g., the Brill-
Noether locus, via the moduli map of a fiber germ. Replacing D by another effective
divisor, the associated local signature varies. We compute local signatures in the case
that ¢ = 2 and D is the bielliptic locus and that g = 3 and D is the locus of curves
having a hyperflex.

Acknowledgment. 1 would like to express special thanks to my supervisor Prof. Kazuhiro
Konno for many comments and supports. Thanks are also due to Prof. Tadashi Ashikaga

for useful advises and discussions.



1 Preliminaries

In this section, we recall and state basic results for primitive cyclic covering fibrations
n [18].

Definition 1.1. A relatively minimal fibration f: S — B of genus g > 2 is called a prim-
itive cyclic covering fibration of type (g, h,n), if there exist a (not necessarily relatively

minimal) fibration @: W — B of genus h > 0, and a classical n-cyclic covering
0: 5 = Specyy; @ O — W

branched over a smooth curve R € |nd| for some n > 2 and d € Pic(W) such that f is
the relatively minimal model of f := @ o 6.

Let f: S — B be a primitive cyclic covering fibration of type (g, h,n). We freely use
the notation in Definition 1.1. Let F and ' be general fibers of f and @, respectively.
Then the restriction map 5] RE F — T is a classical n-cyclic covering branched over
RNT. Since the genera of F and T are g and h, respectively, the Hurwitz formula gives

e 2(g—1—n(h—1))‘

= Rl =
" n—1

(1.1)

Note that r is a multiple of n. Let & be a generator of Aut(g//ﬂv/’) ~ Z/nZand p: S — S
the natural birational morphism. By assumption, Fix(c) is a disjoint union of smooth
curves and O(Fix(5)) = R. Let ¢: W — B be a relatively minimal model of & and
{ﬁv : W — W the natural birational morphism. Since QZ is a succession of blow-ups, we
can write 1; =)y 0---0Ypn, where ¥;: W; — W,;_1 denotes the blow-up at xz; € W, 4
(i =1,...,N) with Wy = W and Wy = W. We define reduced curves R; on W;
inductively as R;_1 = (¢;).R; starting from Ry = R down to Ry =: R. We also put
E; = w;l(:ci) and m; = mult,, (R;_1) fori=1,2,... N.

Lemma 1.2. With the above notation, the following hold for any i =1,...,N.

(1) Either m; € nZ or m; € nZ + 1. Moreover, m; € nZ holds if and only if E; is not
contained in R;.

(2) Ri =¢!R;—1 — n[@}Ez, where [t] is the greatest integer not exceeding t.
n
(3) There ezists 0; € Pic(W;) such that 9; = ;0,1 and R; ~ nd;, Oy = 2.

Let E be a (—1)-curve on a fiber of f. If E is not contained in Fix(), then L := 0(E)

is a (—1)-curve and 6*L is the sum of n disjoint (—1)-curves containing E. Contracting
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them and L, we may assume that any (—1)-curve on a fiber of fis contained in Fix(o).
Then ¢ induces an automorphism o of S over B and p is the blow-up of all isolated fixed
points of o (cf. [18]). One sees easily that there is a one-to-one correspondence between
(—k)-curves contained in Fix(5) and (—kn)-curves contained in R via 6. Hence, the
number of blow-ups in p is that of vertical (—n)-curves contained in R.

From Lemma 1.2, we have

N
Kz=9"K,+ Y E (1.2)
=1
N
i=g-Y [%] E;, (1.3)

i=1

where E; denotes the total transform of F;. Since

w
and
1 n—1
X(0g) =nx(O) + 5 D J0(j0 + Kip),
j=1
we get
K2 =n(KZ+2(n — 1)Kz + (n— 1)%?), (1.4)
1 n—1
Xj=nxz+5 ) 0000 + Kp). (1.5)
j=1

Definition 1.3 (Singularity index «). Let k be a positive integer. For p € B, we consider
all the singular points (including infinitely near ones) of R on the fiber I'y, of p: W — B
over p. We let ay(F},) be the number of singular points of multiplicity either kn or
kn 4+ 1 among them, and call it the k-th singularity index of F}, the fiber of f: S — B
over p. Clearly, we have ay(F),) = 0 except for a finite number of p € B. We put
ar =) ,cpa(F}) and call it the k-th singularity index of f.

Let D; be the sum of all g-vertical (—n)-curves contained in R and put Ry = R—D;.
We denote by ao(F}) the ramification index of ¢|z : Ry — B over p, that is, the
ramification index of @ (Bo)n - (Ro)n — B over p minus the sum of the topological Euler
number of irreducible components of (Rg), over p. Then ao(Fp) = 0 except for a finite
number of p € B, and we have

> ao(F,) = (K5 + Ro)Ro

pEB

by definition. We put ag = 3 g a(F}) and call it the 0-th singularity index of f.

7



Let (F,) be the number of (—1)-curves contained in F,, and put ¢ = > pepE(Fp).
This is no more than the number of blowing-ups appearing in p: S S,
From (1.2) and (1.3), we have

(Kﬁﬁ)éz( (K, + R) i(l—n[ ])E)(wR—n[mE)
=+ MR =3 n ] (n [ 7] - 1)

=1

2

= (K, + R)R—n Y _ k(nk — 1)ay (1.6)
k>1

On the other hand, we have

(Kz+ R)R= (K3 + Ro)Ro + D1(Kz + D1) = ag — 2. (1.7)
Hence,
(Ko + R\ R=n)_k(nk — 1)ay + ag — 2. (1.8)
k>1

by (1.6) and (1.7). Since KJ% = K]%—kg, X7=xs» (1.2), (1.3), (1.4) and (1.5), we get

—1)2
K; =nK2+2(n—1)K, R+ %32 =Y ((n—1k-1)%a) +e (1.9)
k>1
and
B m-—1)2n—-1) 5, n-1 n(n—1) 5
X7 =nx, + o R? + Ko R——— ;((277,— 1)E? — 3k)ay,
(1.10)
From (1.8), (1.9), (1.10) and Noether’s formula, we have
ef zne¢+n2ak+(n—1)a0 — (2n —1)e. (1.11)

k>1

We define some notation for the later use. For a vertical divisor T" and p € B, we
denote by T'(p) the greatest subdivisor of T' consisting of components of the fiber over

p- ThenT'=3%" p
R over p satisfying:

T(p). We consider a family {L‘}; of vertical irreducible curves in

(i) L' is the proper transform of an irreducible curve I'! contained in the fiber ', or

a (—1)-curve E! appearing in 0.



(ii) For i > 2, L* is the proper transform of an irreducible curve I'* contained in the
fiber T, intersecting I'* for some k < i or an exceptional (—1)-curve E* that contracts
to a point ' on C* (or on its proper transform) for some k < i, where we define C7 to
be E7 or I'V according to whether L7 is the proper transform of which curve.

(iii) {L'}; is the largest among those satisfying (i) and (ii).

The set of all vertical irreducible curves in R over p is decomposed into the disjoint
union of such families uniquely. We denote it as

R,(p) = D'(p) +---+ D™ (p), D'(p) =) L"*
E>1

where 7, denotes the number of the decomposition and {L!*}, satisfies (i), (ii), (iii).
Let C%* be the exceptional curve or the component of the fiber ', the proper transform
of which is L¥*. Let D"*(p) be the sum of all irreducible components of D*(p) which
are the proper transforms of curves contained in I', and D"*(p) = D*(p) — D"*(p). Let
1, be the cardinality of the set {t = 1,...,7,|D"(p) # 0} and 1, = n, — ),

Definition 1.4 (Index j). Let jyo(Fp) (resp. jy ,(Fp), jia(Fp)s Ji%(Fp)) be the number

of irreducible curves of genus b with self-intersection number —an contained in R, (p)
(resp. D'(p), D'*(p), D"*(p)). Put

jf,a(Fp) = Z.jlia(Fp)a jli.(Fp) = Zjlt),a(Fp)? jb,a(Fp) = Zjé,a(Fp)'
b>0 a>0 t>1

Similarly, we define j*(F},) = j¢ o (Fp), Jo'o(Fp), jo'a(Fp), etc. Clearly, we have jy ,(F),) =
0 for any b > 1 by the definition of D"*(p).

-/t
Rearranging the index if necessary, we may assume that D'(p) = Zi:(lF”) Ltk
-t(F ) -/t
D//t(p) _ Zi:jg(Fp)+1 Ltk Put L'tk — Lt,k’ LItk — [t (Fp)+l€’ o'tk — Ct,k,

Otk — Ct,j’f(Fp)+k_

Let af (F,) be the ramification index of & : R, — B over p and put ap (Fp) =
ao(Fp) —agd (F,). It is clear that e(F,) = jo1(Fp) and ag (Fp) =Y 150(20—2)jb,e (Fp) +
2¢(F,). B

Let 77, be the number of t = 1,...,7, such that JUF,) = j(’)’fl(Fp) and 7, = 77;’ — 7
Definition 1.5 (Vertical type singularity). Let z be a singular point of R. For t =
L,...,mp and u > 1, x is a (t,u)-vertical type singularity or simply a wu-vertical type
singularity if the number of C**’s whose proper transforms pass through x is u. If
x is a (t,u)-vertical type singularity and the multiplicity of it belongs to nZ (resp.
nZ+ 1), we call it a (¢, u)-vertical nZ type singularity (resp. (¢, u)-vertical nZ + 1 type
singularity).



Let (W (F,), k(" (F,) respectively be the number of (¢, u)-vertical nZ, nZ + 1 type

singularities over p and put

(Fp) = Z(“ - 1)Lt’(u)(Fp)a K (Fp) = Z(u - 1)“t’(u)<Fp)a

u>1 u>1

U(Fy) = Y02 (Fp) and k(F,) = Y./2, k1(F,). Let LZ’(u)(Fp), RZ’(U)(FP) respectively
be the number of (¢, u)-vertical type singularities with multiplicity kn, kn 4+ 1 and we

define it (F,), kL(F},), tp(Fp) and kg (F,) similarly.

Definition 1.6 (Indices o/, o). We say that a singular point x of R is involved in
Dt(p) if there exists C** such that it or its proper transform passes through z or it
contracts to z. A singular point = of R is involved in R,(p) if it is involved in D*(p) for
some t. Let o) (F},) (resp. af(F}p)) denoﬁe the number of singularities with multiplicity
kn or kn + 1 over p not involved in R,(p) (resp. involved in R,(p)). Clearly, we
have ag(F,) = o} (F,) + af/(F,). Let a}*(F,) denote the number of singularities with
multiplicity kn or kn-+1 over p involved in D?(p). Then, we have of (F,) = > /7, o}t (F})
by the definition of the decomposition R,(p) = D(p) + --- + D" (p). Let aZ(F,),
OAZZ_H(FP) respectively denote the number of singularities with multiplicity kn, kn + 1
over p. Similarly, we define o/"%(F,), a}"**!(F,), etc.

Definition 1.7 (Singularity of type (i — )). Suppose that n = 2. If the exceptional
curve F, of the blow-up at a singularity  of R with multiplicity 2k + 1 contains only
one singularity y, then the multiplicity at y is 2k + 2 and E, contributes to jg 1 (F}).
Conversely, the exceptional curve E contributing to jy(f},) has such a pair (z,y).
Then we call the pair (z,y) a singularity of type (2k +1 — 2k + 1) (cf. [37]). Let
Q(2k+1-2k+1)(Fp) be the number of singularities of type (2k +1 — 2k + 1) over p (i.e.,
Sok+1(Fp) in the notation of [37]). Then we have

30 1(Fp) = aerriozern (F). (1.12)
k>1

We decompose

Q2k+1-2k4+1) (Fp) = aEEHszH)(Fp) + af§k+1—>2k+1)(Fp)

and

co co,0 co,1
a(2k+1—>2k+1)<Fp) = a(2k+1%2k+1)(F ) + a(2k+1a2k+1)(F )

as follows. Let (F}) be the number of singularities of type (2k+1 — 2k+1)

(2k4+1—2k41)
over p at which any local branch of Ry intersects the fiber over p transversely. Let
;0 1 . .
Ogir1oni1)(Fp) (resp. afgi’y Loy vy (Fp)) be the number of singularities (z,y) of type

10



(2k +1 — 2k + 1) over p such that the proper transform of the vertical component
passing through x also passes through y and is not contained in R (resp. is contained
in R).

Notation 1.8. For a condition or a Roman numeral P, we put dp = 1 if the condition

P holds or I'), is a singular fiber of type P, and ép = 0 otherwise.

Let C = C** and assume that it is smooth. If C'is on W;, we drop the index and set
R = R; for simplicity. Let R' = R — C. Let x1,...,2; be all the points of C N R’. We
put z; 1 = x; and m; ;1 = m;. We define ¢; 1: W; 1 — W to be the blow-up at z; ; and
put B, = ’17/}2_11(1‘11) and R;1 = ¥ R—n[m;1/n]E; 1. Inductively, we define x; j, m; ;
to be the intersection point of the proper transform of C' and E; ;_;, the multiplicity
of R; j—1 at x; 4, and if m; ; > 1, we define ¢; j: W; ; — W, ;j_1, E; ; and R; ; to be
the blow-up at z; j, the exceptional curve for ¢; ; and R; ; = ¥} ; R; j_1 —n[m; ;/n|E; j,
respectively. Put i, = max{j | m;; > 1}, that is, the number of blowing-ups occuring
over x;. We may assume that ipy, > (i + 1)pm for ¢ = 1,...,1 — 1 after rearranging
the index if necessary. Put t = R'C and ¢ = 22:1 ibm. If C'is a fiber I of ¢, t is the
number of branch points r. If C is an exceptional curve, t is the multiplicity of R at
the point to which C' is contracted. Clearly, ¢ is the number of blow-ups on C. Set
d; j = [m; j/n]. Then the following lemmas hold (cf. [18]).

Lemma 1.9 ([18]). We have

t;:c =33 diy (1.13)

This is a special case of the following lemma:

Lemma 1.10. Let f: S — B be a primitive cyclic covering fibration of type (g, h,n).
Let C' be a curve contained in R, L the proper transform of C on W and 1, 2,..., Te
all the singularities of R on C (including infinitely near ones ). Put m; = mult,, (R),
k; = mult,, (C) and d; = [m;/n]. Then, we have

L_Lz — ikzdz

n ;
=1

Proof. We may assume that 1; is the blow-up at z; for ¢ = 1,...,c. Then, we can
write L = ¢*C — >0 kE; and R = ¢*R — vazl nd;E;. Thus, we have RL =
RC —Y"¢_, nk;d;. On the other hand, since R—L and L are disjoint, we have L? = RL.

From these equalities, the assertion follows. O

Lemma 1.11 ([18]). The following hold.

11



(1) When n > 3, then m; ; > m; j41. Whenn =2, then m; j +1 > m; j41 with equality
holds only if m; j—1 € 2Z (if j > 1) and m; ; € 2Z + 1.

(2) If m; j—1 € nZ+1 and m; ; € nZ, then m; ; > m; j4+1.
(3) mi,ibm € nt.

Definition 1.12. By using the datum {m; ;}, one can construct a diagram as in Table

1. We call it the singularity diagram of C.

Tablel singularity diagram

i

(T1, 1> M1, 1)

#

(T, 1> M1 )

(1‘1,1,7”1,1) (xl,l,mu)

On the top of the i-th column (indicated by # in Table 1), we write # = (imax — tbm)

if 1hm < tmax and leave it blank when i, = tmax. We say that the singularity diagram
of C'is of type 0 (resp. of type 1) if C ¢ R (resp. C' C R).

Definition 1.13. Let D** be the singularity diagram of CtF. We call Db, D12, ... Db’ (F5)

a sequence of singularity diagrams associated with D*(p).

Then the following lemma is clear.

Lemma 1.14. Let DY, D42, . .. ,Dt’jt(FP) be a sequence of singularity diagrams associ-

ated with D*(p). Let I* := #(R' N C**) and (mff,mff), i=1,...,0%% j=1,...ibm

denote entries of DV*. Let (xf?, mf?) be a singularity on C*P such that mf? enzZ+1,
and mi’?_l € nZ when j > 1. Let ¢ > p be the integer such that C%? is the ex-
ceptional curve for the blow-up at xﬁj. Then, for every 1 < p’ < p, i/, j' satisfying

t,p’ t,p t t . t,p’ t,p’ .
(P ,mg) = (2%, m;Y), the diagram D44 has (%51, mi% 1) as an entry in the

bottom row.
Ezample 1.15. Suppose that ¢ contributes to 7,,. Then CtF = C"F is a (—1)-curve and
blown up n — 1 times for any k.

(1) If n = 2, then the point to which C*! is contracted is a singularity of type (m — m)
for some odd integer m. Indeed, R'C*! = m and from Lemma 1.9, the singularity

diagram of C*! is the following:
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Dt,l

where we drop the symbol indicating the singular point on C*! for simplicity. Since

m + 1 is even, we have j'(F,) = 1. This observation gives us

— r co,0
Np = Z <a22k+1—>2k+1)(Fp) + a(2k+1_>2k+1)(Fp>> : (1-14)
k>1

(2) Suppose that n = 3. Let m be the multiplicity of the singular point to which C**
is contracted. Then R'C*! = m and from Lemma 1.9, all possible singularity diagram

of C*1 are the following:

(i) (i) |2 (iif) |2

ni mi
Dt,l

D1 pti1

where the integers n; € 3Z and m; € 3Z + 1 satisfy that m + 2 = ny + ns in the case
(i), m+ 2 = ny + ny and ny < ng in the case (ii), m +3 = m; + ng and n; < my
in the case (iii). If the diagram D%! is (i) or (ii), then j*(F,) = 1 since there are no
3Z + 1 type singularities on C*!. If the diagram D*! is (iii), then j*(F,) > 1 and the
singularity diagram D%2? of C? which is obtained by the blow-up at the singularity
with multiplicity mq is (i) or (ii) from Lemma 1.14. Thus we have j(F),) = 2.

(3) When n > 4, then the number j*(F},) is not bounded. For example, we can consider

the following sequence of singularity diagrams associated with D*(p) when n = 4:

ni ns NoN -1
mi | N2 ma ny my nNaN
Dt,l Dt,2 Dt,N

where ny, € 47, my, € 4Z + 1 and C**, k > 2 is the exceptional curve obtained by the
blow-up at the multiplicity on C**~1 with multiplicity mj_;. From Lemma 1.9, we

have my +4 = mygy1 + nok4+1 + Nogyo for any £ > 1.

13



Recall that the gonality gon(C') of a non-singular projective curve C' is the minimum
of the degree of morphisms onto P!. The gonality gon(f) of a fibered surface f: S — B
is defined to be that of a general fiber (cf. [28]).

Proposition 1.16. Let 0: ' — ©' be a totally ramified covering of degree n between
smooth projective curves branched over r points. If r > 2ngon(l'), then gon(F) =
ngon(I'). In particular, the gonality of a primitive cyclic covering fibration of type
(g, h,n) is ngon(yp), when r > 2n gon(p).

Proof. Assume contrary that F' has a morphism onto P! of degree k < ngon(I'). This
together with the covering §: F' — T" defines a morphism ® : ' — P! x I'. If ® is of
degree m onto the image ®(F'), then m is a common divisor of n, k and the arithmetic
genus of ®(F) is (n/m —1)k/m+ (h—1)n/m + 1 by the genus formula. Now, let F’ be
the normalization of ®(F"). Since the covering F' — I' factors through F’, we see that
the induced covering F’ — T" of degree n/m is a totally ramified covering branched over
r points. Then, by the Hurwitz formula, we have 2g(F')—2 = (2h—2)n/m+ (n/m—1)r.
Since the genus g(F”) of F’ is not bigger than the arithmetic genus of ®(F'), we get
r < 2(k/m) when n > m, which is impossible, since r > 2n gon(I') and k < ngon(T').
Thus, we get n = m. Then F’ is isomorphic to I" and therefore the morphism F — P!
factors through I'. Hence we have k > ngon(I') by the difinition of the gonality of T,
which contradicts k& < ngon(I'). A more careful study shows that any gonality pencil
of F is the pull-back of a gonality pencil of I' when r > 2n gon(T"). O

2 Primitive cyclic covering fibrations of an elliptic surface

Let f: S — B be a primitive cyclic covering fibration of type (g,1,n). Since
¢: W — B is a relatively minimal elliptic surface, K, is numerically equivalent to
(X¢ + Zpe B (1 — m%p)) I' by the canonical bundle formula, where m, denotes the
multiplicity of the fiber I', of ¢ over p. In particular, we have K 3) = 0. For p € B,
we put v(F,) = 1—1/my and v = 3z v(F,). Then, we have K,R = (x, + v)r.
Combining these equalities with (1.8), (1.9), (1.10) and (1.11), we get the following

lemma:

Lemma 2.1. The following equalities hold.

KJ%: Z((n+1)(n—1)k—n)ak+(T

k>1

14



n (n+1)(n—1)r

(Xp +v)+e.
1 (n—1)(2n—1)
Xp=15(n=D(n+1)) kax+ o (a0~ 2)
k>1
n+1)(n—1)r
ef =(n—1)ag —i—nZak — (2n —1)e + 12nx.,.

k>1

For p € B, we put x,(Fp) = e,(I'p)/12 and

K}(F,) =Y ((n+1)(n—1)k—n)a(F,) + (n—1)

k>1
n (n+1)(n—1r

(o (Fp) — 2e(Fy))

(X%(Fp) +v(Fy)) +e(Fp),
(n—1)(2n—-1)
12n

Xr(Fy) = (0= Dn+ 1) S kon(Fy) +
E>1

e D0 =T () v(E) + e (B

ef(Fp) = (n—Dao(F) + ”Zak‘(Fp) — (2n = 1)e(F}) + 12nx,(Fp).

k>1

(o (Fp) — 2e(Fy))

Then, the following slope equality holds:

Theorem 2.2. Let f: S — B be a primitive cyclic covering fibration of type (g,1,n).
Then

K} =Xanxs + Y Ind(F),
peEB

where A\g 1.5 :=12(n —1)/(2n — 1) and Ind(F}) is defined by

Ind(F,) =n 'y ((” *’2;)(_”1_ Dy - 1) ar(Fy) + 2’;__11 ((n+ 1)r — 12n) x,(F)
E>1
(n+1)(n—1)r

+ 2n —1

V(Fp) +5(Fp)-

12
Moreover, if r > Tnl’ then Ind(F}) is non-negative for any p € B.
n

15



Proof. Since K7 = ZpGB K]%(Fp)a Xf = ZpGB X¢(Fp) and K?(Fp) — Ag 10Xy (Fp)
Ind(F}), the claim follows.

For an oriented compact real 4-dimensional manifold X, the signature Sign(X)

of

X is defined to be the number of positive eigenvalues minus the number of negative

eigenvalues of the intersection form on H?(X). From Lemma 2.1, we observe the local

concentration of Sign(.S) to a finite number of fiber germs.

Corollary 2.3 (cf. [5]). Let f: S — B be a primitive cyclic covering fibration of type

(g,1,n). Then
Sign(S) = Y _ o(F,),

peEB

where o(F)y,) is defined by

o) =n 3 (k- 1) au) + (D ) ()

n
k>1
(n+1)(2n—1) (n+1)(n—1)r (n+1)(n—1)
+ 3n e(Fp) + 3n v(Fp) — 3n oo (Fp).
Proof. By the index theorem (cf. [20, p. 126]), we have
Sign($) = Y hPUS) = K7 — 8x;.

p+9¢=0(mod2)

On the other hand, we can see that
o(Fp) = KJ%(FP) — 8x(Fp)

by a computation.

3 Upper bound of the slope

In this section, we prove the following theorem:

Theorem 3.1. Let f: S — B be a primitive cyclic covering fibration of type (g,1,n).

(1) If n >4 orn =3 and g = 4, then we have

12n2
K2< (12— )
f—< r(n—l)(n+1)>xf

16



(2) If n =3 and g > 7, then we have

24
K2< (12— )
P< (g ) v

(3) If n =2 and g > 3, then we have

2
K2< (12— )y
f‘( 9—2)Xf

Corollary 3.2. Let f: S — B be a relatively minimal bielliptic fibered surface of genus
g > 3. Then, we have

2
K2< (12— ——— .
f_( 9—2)Xf

Proof. Let f: S — B be a relatively minimal fibered surface of genus g whose general
fiber F'is a double cover of a smooth curve I' of genus h. If g > 4h+ 1, an involution of
the general fiber F' of f over I is unique. Then, the fibration f has a global involution
since it is relatively minimal (cf. [15]). Hence f is a primitive cyclic covering fibration
of type (g, h,2). In particular, a relatively minimal bielliptic fibered surface of genus
g > 6 is a primitive cyclic covering fibration of type (g,1,2). In the case of g < 5,
we use the semi-stable reduction. We may assume that the slope Ay is greater than 8.
Taking a suitable base change B’ — B, we get the base change fibration f': S’ — B’
which is semi-stable and the bielliptic involution on F' extends to a global involution,
that is, primitive cyclic covering fibration of type (g,1,2). From Theorem 3.1 (3), we
have Ay <12 —2/(g —2). On the other hand, we have Ay < Ay from [34]. Thus the
claim holds. O

In particular, any bielliptic fibration is not a Kodaira fibration. Namely, the following
holds.

Corollary 3.3. Let B, C M, be the bielliptic locus on the moduli space M, of smooth

curves of genus g. Then B, contains no complete subvarieties of positive dimension.

Let f: S — B be a primitive cyclic covering fibration of type (g,1,n). We fix p € B.
Let m = m, be the multiplicity of the fiber I', of ¢ over p. Since h = 1, we have
Jb,e(Fp) = 0 for any b > 2. From the classification of singular fibers of relatively minimal

elliptic surfaces (][26]), we have the following lemma for u-vertical type singularities:

Lemma 3.4. There exist no u-vertical type singularities of R for uw > 4. All possible

3-vertical type singularities are as follows.

Type () : T, is a singular fiber of type (I) in the Kodaira’s table ([26])(i.e., it is a
singular rational curve with one cusp) and it is contained in R. The cusp on Iy is a

17



singularity of type nZ + 1 and the singularity at which the proper transform of I'y, and
the exceptional curve Ey for the blow-up at the cusp intersect is also of type nZ + 1.

Then, the proper transforms of I'), and Ey and the exceptional curve Ey for the blow-up

at this singularity form a 3-vertical type singularity.

Er
r, blow-up r blow-up
-+ k < E2

Type (I) : T'), is a singular fiber of type (III) in the Kodaira’s table (i.e., it consists of
two nonsingular rational curves intersecting each other at one point of order two) and
it is contained in R. The singularity on I', is a singularity of type nZ + 1. Then, the
proper transforms of I'), and the exceptional curve Ey for the blow-up at this singularity

form a 3-vertical type singularity.

En

I, blow-up

Type (IV) : Ty is a singular fiber of type (IV) in the Kodaira’s table (i.e. it consists
of three nonsingular rational curves intersecting one another at one point transversely)

and it is contained in R. The singularity on I', is a 3-vertical type singularity.

Ly

In particular, we have ") (F,) = k" (F,) =0 foru >4 and 0 < 13 (F,)+x®)(F,) < 1.

Next, we give a lower bound of o (F},) by using ¢(F,) and x(F}).
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Lemma 3.5. We have

0§ (F) = (1= )1t (0= DE) + 26(5,) + By

where By 1= Gz (n = 7)on — (n 4 1)dm — 201 ) ¢ (Fp) 4002 D451 2k(Gy 11 0k11) (Fp)-

Proof. Let fp = mlN)p and IN)p = > . m;G; the irreducible decomposition. Then we have

ag (F,) =1 — #(Supp(Ry) N Supp(T,))
27‘ — Zéth

_ (1 _ %) r 4+ ;(mi —1)R,G;.

For a (t,2) or (t,3)-vertical nZ type singularity x, we denote by E’ the exceptional
curve for the blow-up at z. Let m! be the multiplicity of D, along E!, the proper

transform of E! on W. Then, we have

Z(mi—néhc;iznzp > (mh—1)R,EL.

7 t=1 z:(t,u) nZ, u > 2

If there exists a singular point of type nZ on EY, we replace E! with the exceptional

s
curve E obtained by blowing up at this point. Repeating this procedure, we may assume
that there exist no singular points of type nZ on E!. If there exists a singular point of
type nZ + 1 on EY, the proper transform of the exceptional curve obtained by blowing
up at this point belongs to other D"(p). Since the multiplicity of fp along it is not less
than m! > 1, we do not have to consider this situation. Thus, we may assume that
there exist no singular points on E! and we have R, EL > n — 2 if z is a 2-vertical type
singularity, and Ehﬁi > n — 3 if x is a 3-vertical type singularity. We can see that
Dot 2) nZ mb > 21(F,) + 2x*(F,) for any t with /*®)(F,) = 0. Thus, if :®)(F,) = 0,
we have

1
0§ (F) = (1= ) 7+ (0 = DUE) + 26(F,).
If :(®(F,) = 1, then m = 1 and T, is of type (Il), (IM) or (IV) from Lemma 3.4. We

may assume that D'l(p) # 0. Let xo be the 3-vertical nZ type singularity over p.
Suppose that '), is of type (II). Then, we can see that m}CO = 6 and Zz:(1,2) g ME >

19



2043 (F,) + 2(k'(F,) — 1). Then we have

(5 = (1= 20 ) 50 3) 4 (0= DHO(E) + 2061 ()~ 1)

+(n—2) Y (1(F,) + 25 (Fy))
_ (1 _ %) r4n—T7+ (n—2)((F) + 26(Fp)).

Suppose that ', is of type (I). Then, we can see that m, = 4 and D e(1.2) n ml >
2082 (F,) + 2(k'(F,) — 1). Then we have

! ) P 30— 3) + (n— 2)( ") (Fy) + 26X (Fy) — 1))

m

ag (Fp) = (1 -

(-2 S (0 (Fy) + 26 (Fy))
. (1 - %) o= 1+ (0= 2)(UF,) + 26(F)).

Suppose that 'y, is of type (IV). Then, we can see that m} =3 and D r:(1,2) nZ ml >
200 (F,) + 2k (F,). Then we have

0§ (F) 2 (1= ) rot 20 =) + (0= (D5 + 261(F,)

Tlp

+(n—=2)) ((F) + 2k (F))
= (1 — %) r—24 (n—2)((Fp) + 2k(Fp)).

Suppose that n = 2. For a (2k +1 — 2k + 1) singularity (z,y), let E, denote the
exceptional curve for the blow-up at y and m, the multiplicity of fp along F:y, the

proper transform of E,. Then we have

S DEG=Y Y (my- DB,
i k>1 (z,y):(2k+1 — 2k + 1)
By an argument similar to the above, we may assume that there are no singular points
on E,. Then we have Ehﬁy = 2k for any (2k + 1 — 2k + 1) singularity (z,y). On
the other hand, we have m, > 2 for any (2k + 1 — 2k + 1) singularity (x,y) in-
volved in a‘(:gkﬂ_ﬂkﬂ)(Fp). Thus, we obtain >, . op 11 o5 1+ 1)(My — RRE, >
2kafs (Fp).

(2k+1—2k+1)
O
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We can translate the index o' into other indices as follows.

Lemma 3.6. The following equalities hold.

Z o =1, + Z angy o (Fp) + Z(cm —2—0,1,1)J0.a(Fp) (3.1)

k>1 a>1 a>1
+ Z (an — JO o(Fp) — o(Fp) — K(Fp).
a>1

> kal(Fy) =+ > ajea(Fp) + Yk (afPTHE) — w(Fy) — rie(Fp) . (3.2)

k>1 a>1 k>1

where v, = >_1", vy, and v}, is defined to be the following (1), (2), (3):
(1) v = dbl if D'*(p) = 0, where m*' is the multiplicity of the singularity to which

CH1 contracts and db' = [mb!/n).
(2) ZJ (Fp) RC'SF In if D" (p) # 0 and any C'* is smooth.
(3) 7L = r/mn—d"" if C"' = (Tp)rea is singular, where m'! is the multiplicity of the

singular point of R which is singular for C'%' and d'' = [m'" 1/77,]
Proof. Let a’*, a”** be the integers such that (L'**)2 = —a/t*n, (L'4*)2 = —a/tFn.
If C'"F is smooth, then C’** is blown up a’**n + (C"*)? times. If C'** is a singular

rational curve, then C’** is blown up a/**n — 3 times. Since C""** is a (—1)-curve,

C"tF is blown up a”“¥n — 1 times. Hence, if D''(p) # 0 and every C'“* is smooth
(resp. C'%! is singular rational), the number of singular points associated with D?(p)
is >0 (a/*n+ (C"F)2) + (resp. Y (a/Fn—3)+) >, (a""*n— 1) —'(F,) — k' (F}).
Namely, we have

Za”t Zan] —|—Z an—2—46 mln,I ]Oa ‘|‘Z an—1 ](,)/ta ) (Fp)_ﬁt(Fp)'

k>1 a>1 a>1 a>1

If D'*(p) = 0, we have

Za”t _1+Z (an —1 J(/)lta ) — (Fp)_”t(Fp)'

k>1 a>1

Summing up for t = 1,...,7,, we have (3.1).

Let rt* = RC'"* mb* the multiplicity of R at the point to which C""** is contracted

and d"* = [m “‘“/n] Let /0% ... &/hF (vesp. /™", alt")

. be all the singular points

on C'"* (resp. on C”*)  including infinitely near ones. Put mi = mult_.x (R),
dbF = [m’-t’k/n], m;’t’k = mult_,..x(R) and d;’t’k = [m;'t’k/n]. Applying Lemma 1.10 to

2 ?
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C'"F and C"F, we get that 0% /n + a'"F = Y. dVF if C"F is smooth, b1 /n 4 a’b! =
dit 3 dbt 1f C'1 is singular rational, and db* 4 a”% = 2. d/"*. 1t D" (p) # 0 and
every C't* is smooth, then

Z ZCL]. a ) + Z ka};’nZH(Fp) — Z (# + a/t,k) + g (dt,k + a//t,k)

a>1 k>1 k
= szgt,k _f_zzd;/t,k
— Zk: " +Lk(F)+n’,;(Fp)).

k>1

Similarly, if D’*(p) # 0 and C’*! is singular rational, we have

— —dP Zay, J(Fp) + Z kb TY(F, Z k (a( u(Fp) + ki (Fp))

nm
a>1 E>1 E>1

If D'*(p) = 0, then

Z ajﬁ,a _|_ Z ko t nZ+1 Z (dt N //t,k)

a>1 k>1
Sy
Z k (aft( U (Fp) + KL (Fp)) — d"t.
k>1
Summing up for t = 1,...,7,, we get (3.2). a

Lemma 3.7. The following hold.

r . r
T < (E - ](/),1(Fp)5n=2 - 5m11,11) 577;,750 + (E - 1) 77]/9/-
L( ):j(Fp)_np‘l‘(Scyc,

where dcye is defined to be 1 if the following (1), (2), (3) and (4) hold and dcyc = 0
otherwise.

(1) Ty is a singular fiber of type (mlk)k>1, (II), (I) or (IV).

o

(2) Any irreducible component of I'), is contained in R.
(3) L(S)(Fp) = “(3)(Fp) = 0.

(4) The multiplicity of the singular point of R which is singular for (I'y)rea belongs to
nZ+1 if T'y is a singular fiber of type (11) or (I).

22



Proof. By the definition of ~,, the first inequality is clear. We consider the following
graph G!: The vertex set V(G?) is defined by the symbol set {v** f::(f”). The edge
set F(G') is defined by the symbol set {e;}. U {ey}, U {e}},, where x, y respectively
move among (t,2), (t,3)-vertical nZ type singularities. If the proper transform of C'**
meets that of CtF at a (t,2)-vertical nZ type singularity =, the edge e, connects v%*
and v"¥ . If the proper transforms of C** Ct¥ and C**" (k < k' < k") intersects in a
(t,3)-vertical nZ type singularity y, the edge e, connects vb* and vt’k/, and e,fy connects
vt and vt*". By the definition of the decomposition R,(p) = D(p) + - -+ + D" (p),
the graph G' is connected for any ¢t = 1,...,n,. Clearly, ¢(F},) is the cardinality of
E(G?"). Thus, the number of cycles in G is (!(F),) — j*(F)) + 1. One sees that G has at
most one cycle, and it has one cycle only if {C**}; contains all irreducible components
of T',. Hence at most one G* has one cycle. We can see that G' has one cycle for some

t if and only if dgyc = 1. Thus, we get ¢(F},) = j(Fp) — 1p + deye- O

For any singular point = of R, the multiplicity mult, (R) at x does not exceed r/m+ 1
since R(I'p)reqa = r/m. Thus we have oy, = 0 for £ > r/nm + 1. Moreover, the following

lemma holds.

Lemma 3.8. Ifn > 3, then we have o2 (F,) = 0. If n = 2, then we have k = (F,) =

nm 2m
0.

Proof. If o2 (F,) # 0, then there exists an irreducible component C' of T',, contained
in R and anéningular point z of R on C with multiplicity r/m + 1 such that any local
horizontal branch of R around x is not tangential to C' since RD,, = r/m. Then, the
exceptional curve E for the blow-up at x and the proper transform of C' form a singular
point of multiplicity 2. Hence we have n = 2 from Lemma 1.2. It is clear that all
singular points with multiplicity r/m -+ 1 are infinitely near to x and the exceptional
curves for blow-ups of these singularities form a chain. In particular, any singular point

with multiplicity »/m + 1 is a 1-vertical type singularity. O
To prove Theorem 3.1, we need some inequalities among several indices.

Lemma 3.9. (1) The following holds.

>k (@ (E) = rnlFy) < (- = 1) (7(F) = ~(F))

n
k>1

r (3) nZ+1
+ (= —2) kO + ol (B).

(2) If n = 2, then the following holds more strongly.
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Zk 241(F,) — k(F,)) < Z kovokt1—2k+1) (Fp) + <— — 1) Z] Fy)

E>1 k>1 a>2

r
+ (5 - 2) 5(3)(Fp) + aiim—i_l(Fp)-

Proof. From Lemma 3.8, we have

1

nZz nZ r nZ
>k (o (B - Z B (0™ (Fy) = hx(Fy)) + —aEH 1 (F)
E>1
1 1
n 2 3 " o on
= Y k(P (E) - kP (F) - (B - Z ke (Fy) + 24 (F)
k=1

Since a1 (F,) — HECQ)(F ) — /f,gg)(Fp) > 0 and Z,:}; kk (3)( F,) = kok®(F,) for some
1 <ko<r/n—1from Lemma 3.4, we have

r__1 7—1
n r n
> k(= (B = P (F) - wP(F)) - Z B (F) + ——a"EH(F)
k=1
<(--1) Z af T (Fy) — 1P (Fy) = sO(F,) | = kos®(Fy) + —aE71(F,)
1

_(r_ NI L (3) T onzZ41

<n 1> Z ap — k(Fp) +<n 1 ko)/-i (Fp)—i-na# (Fp).

Combining the above inequality with j”(F,) = Zk LY (E) and r/n — 1 — ko <
r/n — 2, the assertion (1) follows.

Assume n = 2. Note that any (2k + 1 — 2k + 1) singularity is not involved in x(F}).
Then we have

£ 1
Z k (a"TH(F,) — ki(F, Z k(07 (Fp) — agrrisonsn) (Fp) — ke(Fy))
k>1
r
+ Z ka(2k+1—>2k+1)(F’p) + %aiﬁm“(Fp),
k>1
Similarly as in (1), the assertion (2) follows. O
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Lemma 3.10. Ifn = 2, then we have

K(Fp) < ; Z(a = Djea(Fp) — ;O‘z%—Fl(Fp)-

2m
a>2

Proof. 1t is sufficient to show that

W(F) < 2 30— 1)jba(F) — a7 (F) (33)

2m
a>2

for any ¢. If *(F,) = 0, then it is clear. Thus, we may assume x'(F),) > 0. Then clearly
we have
JE) 2 KD(F) + 1 O(F,) + a2 (E,) + 2. (3.4)

Since any blow-up at a (t,u)-vertical type singularity contributes —u to the number
S = - Y2t
k>1 a>1

and I',, contains no u-vertical type singularity for v > 2 if ', is of type (,,1o), we get

> 2a5t ,(Fp) 2t o(Fp) + (24 0,1, 15« (Fp) + 30 (Fp)

a>1

+a 2R+ Y u (H(F) + HO(F,)).

2m
u=2,3

Combining this inequality with /(F},) > j*(F},) — 1 and (3.4), we have

Y2048 o(Fy) 235 (Fp) + (14 8,1, 1) (Fp) + a2 (F)
a>1

+ 261 (Fy) = 2 = (1R, + k4O)(F,))
>2j"(Fp) + (1+8,,1,0)5a (Fp) + 205254 (F)
+ 3K1(F,) — PO (F,) — 26BN (F).
On the other hand, it is easily seen that
(1+0,1,,1)i0e(Fp) — () — 26BN (F,) > 0.
Hence we get (3.3), as desired. O

Lemma 3.11. (1) If n = 3, then the following hold.
(1,1) If ji'y (Fp) < 2 for any t, then

1.
536,1(Fp> < 77;; — Ocye-

25



(1,ii) Ifj 1(Fp) = 3 for some t, thenT',, is a singular fiber of type (IV), (Iy), (I*), (II*)
or (IV*) and

1.
_J(l),l(Fp) S 77],95 5Cyc =0.

3
(1,iii) If j(’fl(Fp) = 4 for some t, then I'y is a singular fiber of type (I}) and any
component of I', is contained in R. Moreover, we have n, = 1, jy,(Fp) = 4 and
deye = 0.

(2) If n = 2, then the following hold.
(2,1) If j§' 9. 000 (Fp) < 2 for any t, then

1

§j6,2,odd(Fp> < 771/; - 5CyC7

where j(/),2,odd(Fp) denotes the number of irreducible components C' of ', involved in

j6,1<Fp) +

Jo.2(Fp) which has a singular point of R of odd multiplicity.
(2,11) If j§'9.0qq(Fp) = 3 for some t, then Ty, is a singular fiber of type (IV), (I}), (II"),

(IT*) or (IV*) and X

gj(l),Q,odd(Fp) < 7];)7 5cyc =0.

Joa(Fp) +
(2,1il) If j§' 9 oqa (Fp) = 4 for some t, then T, is a singular fiber of type (Ij.) and any com-
ponent of I'y is contained in R. Moreover, we have ny, =1, jo 1 (Fp) = 0, jj 9 oqa (Fp) = 4

and Ocyc = 0.

Proof. 1f n = 3, then any curve C in I', contributing to jj ; (F},) intersects at most one
component of I',, contained in R, since C' is blown up just once. Thus, considering the
classification of singular fibers of elliptic surfaces, we can show easily the assertion (1).

Suppose that n = 2. Any curve in I, contributing to jj ;(F}) is not blown up and
any curve in I, contributing to jg , ,qq(Fp) intersects at most one component of I,

contained in R. Hence we can show the assertion (2) similarly. a

Lemma 3.12. (1) If n = 3, then we have

301 (Fp) <20+ 2041 (F) + ) (20— 2)j6 4 (Fp) + Y (2a — 1)j0 ,(F).

a>1 a>2 a>2

(2) If n = 2, then we have

co,1 .
Z a(2k+1_>2k+1)(F ) < ]0 2 odd + Z a— 1 JO a p) + Z(a - 1>Ji,a(Fp)

k>1 a>3 a>2

+Z jOa )"’77])

a>3
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Proof. Suppose that n = 3. Let Cq,.. -,Cj()’fl(Fp) be all (—1)-curves in {C"**} con-
tributing to ji'; (F},) and z; the point to which C; contracts for i = 1,...,j5% (F},). If
C; # C™', then z; is contained in some C**. If C** contributes to ji (F},) and k = 1,
then j”t(F ) = jii(Fp) = 2 from Example 1.15 (2). If C** contributes to j¢ (F},) and
k # 1, then the point z** to which C** contracts is contained in another C*¥" which
does not contribute to jg% (F,) from the argument of Example 1.15 (2). Moreover, x;
is also contained in C**" since the singularity diagram of C%* is type (iii) in Exam-
ple 1.15 (2) and Lemma 1.9. For a curve C*** which does not contribute to jg (F}), we
consider how many points among z1, ... s T gt (Fy) it contains.

(i) Assume that C** contributes to jg*, (F,) for some a > 2. Then C** is blown up
3a — 1 times. Let (z;;,m;;), 4 =1,...,0, 5 = 1,...,ipm be entries of the singularity
diagram of C**. We consider a subset of entries of the i-th column of its diagram
{(@ij,mij)}i=jo+1,....jo+ N satisfying that

(¥) my; j, € 3Z if jo > 0, m; ; € 3Z + 1 for jo < j < jo+ N and m; j,+n~ € 3Z.

Note that the set of all entries of the singularity diagram is the union of these subsets.
Then we can see that the exceptional curve Ct*" obtained by the blow-up at z%7,
jo+1<j < jo+N does not contribute to jg ; (F,) from Lemma 1.14. Hence it contains

at most 2a — 1 points among x4, ... s Tt (Fy)-

(ii) Assume that C** contributes to j¢,(Fp). Then C** is blown up 3a — 2 times when
it is a (—2)-curve or 3a — 3 times when it is a singular rational curve. Hence it contains

at most 2a — 2 points among 1. .., Ty (,) by the same argument as in (i).

(iii) Assume that C** contributes to jit,(F},). Then C** is blown up 3a times. Hence
it contains at most 2a points among x4, ... s Tt (F) by the same argument as in (i).
We estimate jg* (Fp) from (i), (i), (iii) as follows.

(a) If D"*(p) = 0 and jg*, (F},) = 0 for any a > 2, then we have shown that jg* (F},) < 2
in Example 1.15 (2).
(b) If D"*(p) = 0 and j§",(F},) > 0 for some a > 2, then x; is the point to which C*!

contracts or contained in some C*** which contributes to ji*, (F}) for some a > 2. Hence

we have

Joh(Fp) <14 (2a = 1)yl (Fy).
a>2

(c) If D"(p) # 0, then x; is contained in some C*** which does not contribute to jg* (F}).

Hence we have

b)) <> (20— 2)50(Fp) + ) 2a5t (F,) + > (20— 1)50",(F).

a>2 a>1 a>2
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From (a), (b) and (c), we have

do1(Fp) <7, 40 + > (20— 2)j5 o (Fp) + > 2041 o (Fp) + > (2a — 1)j§ ,(F)
a>2 a>1 a>2
by summing up for ¢t = 1,...,7n,. Combining this with 77, <n,/, the claim (1) follows.
Suppose n = 2. Let z%* be the point to which C"** is contracted and m** the
multiplicity of R at ztF. If D'*(p) = 0, then z**, k > 2 is contained in C**" for

some k' < k. Otherwise, zt!

is also contained in C** for some k’. If C** is smooth,
a singularity with odd multiplicity which is not contained in C**" for any k¥ > k
corresponds to an entry (z;;,m; ;) of the singularity diagram DtE of CtF satisfying
that m; ;1 is even if j > 1, and m; ; is odd and then corresponds to a subset of entries
of the diagram satisfying (*). For a curve C**, we consider how many such subsets of

entries of its singularity diagram there are.

(iv) If C** contributes to ji% (F},), then C** is blown up 2a — 1 times. Then the
singularity diagram of C** has at most a — 1 subsets satisfying ().

(v) If C** contributes to ji,(Fp) and it is a (—=2)-curve, then C** is blown up 2a — 2
times. Then the singularity diagram of C*** has at most a — 1 subsets satisfying ().
(vi) If C** contributes to j(,(F},) and it is a singular rational curve, then C** is blown
up 2a — 3 times. Considering the singularity diagram of the proper transform of C**
by the blow-up at its singular point, C** has at most a — 1 singularities with odd
multiplicity which is not contained in CtF for any k' > k.

(vii) If C** contributes to ji',(F}), then C** is blown up 2a times. Then the singularity
diagram of C** has at most a subsets satisfying (x).

We estimate j"(F),) using (iv), (v), (vi) and (vii) as follows.

(d) If D*(p) = 0, then the number of singularities with odd multiplicity appearing in
{CtF}y is 5" (F,) — 1. Hence we have

(e) If D"*(p) # 0, then the number of singularities with odd multiplicity appearing in
{Ct*}y is §"*(F},). Hence we have

§"MFp) < 6 0aaFp) + > (a=1)i o (Fp) + > aji o (Fp) + > (a—1)jg% (F).

a>3 a>1 a>2
From (d) and (e), we have
j//<Fp) S 77;/ + j(l),l,odd(Fp) + Z(a - 1)j(l),a(Fp) + Z aji,a Z .]O a )
a>2 a>1 a>2
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(mIk)

or

or

by summing up for t = 1,...,7,. Combining this with (1.12) and (1.14), the claim (2)
follows.
O

Lemma 3.13. (1) If n =3 and jj ,(Fp) # 0, then we have

1

Xo(Fp) 2 19

(do,1 (Fp) +1).

(2) If n = 2, then the following hold.
(2,1) If '), is a singular fiber not of type (m1x), (I;), (IIY), (I*), (IV*), then we have

1 .. . :
Xo(Fp) 2 75 (20,1 (Fp) + Jo,2(Fp) + o 5 (Fp) +1)-

Moreover, all the cases where I'y, is a singular fiber of type (,1x), (IIY), (IT*), (IV") and

1 . .
Xe (Fp) < 5 Joa(Fp) + Jo.2(Fp) + jo3(Fp) +1)

are as follows.

T e <>

O

(] (0] (]
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[ ] O (0] (]

where, in the dual graphs of I'y, the symbol o, e, x respectively denotes a (—2)-curve not
contained in R, contributing to j ,(Fy), contributing to jj o(Fp) or jg 3(Fp). In these

cases, we have

1, . . .
ti(Fp> = 3(236,1(1?19) "‘J(l),Q(Fp) +J(l),3(Fp) -1)

when Ty, is of type (II*) and jg o(Fy) = jo 3(Fp) = 0 and
1, . . .
X@(Fp) = E( J(/),l(Fp) + ]6,2(Fp) + ](/),3(Fp))
otherwise.
(2,ii) If Ty is a singular fiber of type (I}), then
1

X<P<Fp) > B

(240,1 (Fp) + Jo,o(Fp) + Jo,3(Fp) — 2)

with equality holding if and only if I'y, and R satisfies the condition indicated in the
following figure.

g

Proof. (1) Suppose that n = 3 and jj ;(F,) # 0. If 'y is not of type (;,1x), the claim
is clear. Thus we may assume that T, is of type (mIx). If xo(F}p) = 701 (Fp)/12, then

any component of I', contributes to jg ;(F},) and contains at least 2 singular points of
R, which is a contradiction.

(2) Suppose that n = 2. Any irreducible component C' of T', contributing to jg 4 (F})
has no singular points of R. Thus any component of I, intersecting with the curve C
is not contained in R. From this observation and the classification of singular fibers of

elliptic surfaces, the claims (2,i) and (2,ii) follow by an easy combinatorial argument. O

Now, we are ready to prove Theorem 3.1.

30



Proof of Theorem 3.1. Let f: S — B be a primitive cyclic covering fibration of type

(g,1,n). From Lemma 3.6, we have

er(Fp) = nxs(Fy) = Anag (Fy) + ) (n = p'k) al(Fy) +n ) ajl(Fy)

k>1 k>1
. i
1Y haf(Fy) = D22 An + ba=)joa(Fy) + Caxo(Fy) = “Eu(F)
k>1 a>1
= Ano‘ar (Fp) + Z (n — pW'k) aj,(Fp) + Crxp(Fp)
k>1
ru 1
— (1= =) =ty +nn +> (an® —ap') ji .(F)
n m a>1
+ Z (n(an —2—4,1,1) —ap’ — 24, — 5a=1)j(l),a(Fp)
a>1
+Y (n(an — 1) — ap’ — 24, — Sa=1) §l o(F})
a>1
S kT (E) = S (= W) w(Fy) = S (0 — k) (),
k>1 k>1 k>1
where
(n—1)2n—1) r
—n—1— =120 — (——(n—1
A, i=n—1 on u, C 12n <12n(n )(n—l—l)—i—n),u

and ¢/ := (n =1)(n+ 1)u/12. Combining Lemma 3.7 with the above equality, we have

er(Fp) — puxy(Fp)

>Anag (Fy) + Z (n — W'k)ay,(Fp) + Crxo(Ep) — %M/ <1 — i)

m
k>1
ro. r
— (‘ - ;7(/),1(Fp)(S — 0,11 > ‘577;,¢0 + (n — l/) (77;; - 5cy€> + (2” - i) 77;;/
n n
+> (nlan =3 —=6,1,1) — (a — D)y = 245 — 6az1) g o (Fp) (3.5)
a>1
+ Z (n(an —2) = (a = 1)p' =24, — da=1) 40 o (Fp)
a>1
+ ) (nlan—1) = (a— D) ji J(Fp) = ' Y kel H(F,) = (n— k) wi(F).
a>1 k>1 k>1

Assume that A,, > 0 and C,, > 0. We obtain by using Lemmas 3.5 and 3.9 (1) that
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er(Fp) — puxr(Fp)

ZE:W—M%M4GH+TW“4N”—U@—M)

,
+ X (Fp) = 1 (= = 8,10) dyg 0

4m
k>1
/ / T/J// 2
+ AnBp +(n—p' —(n—2)An) (0, = Ocye) + | 2n — i (n—2)A, | n,
+) ((n=4A, +nlan—3—-05,1,1) — (a — D' — (1 = peapt)8a=1) j o (F)
a>1

(3.6)

+ Z <(n —4) A, +nlan —2) —p/ <a + % — 2) - 5a:1> j(l)/,a(Fp)

a>1

+> (0 =2)A, +nlan — 1) = (a = D)p') ji o(F)

a>1
+ (2(n — ) A, —n+ (1 - 1) u’) K(E,) — 1 (f - 2) KO(E,) — @/ a"ETH(F).
n n nm
We put
( 2
L2n ,ifn >4,
r(n—1)(n+1)
B= 9 24 if n=3
r—13 TP
4 .
, if n = 2.
\ 7 — 2

(i) We assume n > 4. We write 7 = kn. The coefficient of 7, is

1 n? — 6n + 2
(- Dp—(n—2)A, = —(n? —dn+2)+ =212
n 12(n Din+pu—(n—2) (n n+2)+ K+ 1) <0
The coefficient of 7, is
(= 1)(n+ g : (n—2)2n—1)
2 — —(n—2)A, = —(n% —4n+2
n o (n—2) (n n+2)+ 1)

It is negative if n > 5 or k > 2. Note that ) = 0 if k < n — 1 since the multiplicity m’
of a singular point of type nZ + 1 satisfies (n — 1)2 < m/ < r —n + 1. Thus, we may
not consider the case where n = 4 and k = 1. Using 7, < j'(F},) and 5, < j"(F}), (3.6)
is greater than or equal to
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S (n— k) aly(Fy) + "M VO ZDEZW 6B kAL,

= 4dm
—H (‘ —0,,1,,1 > 577;,7f0 +((n=2)Ay —n+p') deye + Z (Cm2 - aﬂl> ji,a(Fp)
a>1
+ Z (n(an — 2 — 0,,1,,1) — ap’ — 24, — a=1) j(/),a(Fp) (3.7)
a>1
—I—Z an® — i/ a+2—r—2 —2A, — da=1 ) 30 o (Fp)
a>1 " o) ey

+ <2(n — A, —n+ (; - 1) u) K(E,) — 1 (i - 2) KO(E,).

n

Since 2(n — 2)A,, — n+ p’ > 0, we have

=00 (5 1)) - (5-2) 005
> (2(n = 2)An —n+ ') K(Fp)
0.

v

The coefficient of jj ; (F}) in (3.7) is

nn—2-90_1,u)—p —24, —ds—1
(n—1)(n—2)
k(n+1)

If 6,1, 1 =0, (3.8) is negative if and only if n =4 and k =1. If 1, r = 1 and n > 5,
(3.8) is non-negative. If § 1,1 = 1 and n = 4, (3.8) is —3 — 6/5k < 0. Note that
J'(Fp) = 0if kK =1 since r = n and any singularity of R has the multiplicity n. Thus,
we may not consider the case where 6, 1, 1 = 0, n =4 and £ = 1. We can check that
the coefficient of jj ,(F},) in (3.7) is positive for a > 2. Moreover, we also can check
that the coefficient of jj ,(F}) in (3.7) is positive for a > 1.

= TL2 — (4 + 5m11,11)n +1-—- (38)

(i,1) We assume that 7, = 0. Then, clearly (3.7) is non-negative.

(i,2) We assume that 7, # 0, x,(F,) > 1/6 (i.e. I is a singular fiber not of type (in11))
and ¢ (F,) = 0. Then we have

1 n 12n
> -C, == - .
CrxelFp) 2 50n =g (“ k(n —1)(n + 1))

The coefficient of (5%750 is




Ifn#4ord, 1, mn=0orjj,(F,) =0, then (3.7) is positive since

g (11 - k(n—llz)?n-l—l)) = % (5_ k(n—112)7zn+ 1)) > 0.

If n=4and d,1, 1 =1 and jj,(F},) # 0 (we denote this condition by (#)), then we
have jg 1 (F,) = 1 and then (3.7) is positive since

E(H_k(n—112)7(ln+1)) i T3t

(1,3) We assume that 1, # 0 and x,(F,) = 1/12 (i.e. T, is a singular fiber of type
(ml1)). Let my be the multiplicity of the singular point x; of R which is singular for
I'y. If my € nZ, then z; contributes m; —2 to ozg'(F ) (Note that x; is a 1-vertical type
singularity). In particular, x1 contributes at least n — 2 to ag (F},). If the condition (#)

does not hold, (3.7) is positive since

n 12n 37 n?+(n—2)(n—1)2n—1)
— (11— — —NA, =n’——n+2—
12( k(n—l)(n+1)) nt(n=2)4dn =n"—gnt k(n— 1)(n+ 1)
increases monotonically with respect to n and

17 58

—— —>0

3 15k ”

when n = 4. If the condition (#) holds, (3.7) is also positive since
17 o8 4 3 6 8 16

3 15k  k 5k 3 15k

i,4) We assume that 7/, # 0 and x,(F,) =0 (i.e. ', is a smooth elliptic curve). Then
p Y \-Pp p

(3.7) is positive since jj ,(F}) = 1.

(i,5) We assume that ¢©)(F,) = 1. From Lemma 3.4, we may consider the following 3

cases.

(1,5,I) If I',, is a singular fiber of type (II), then B, =n — 7, x,(Fp) = 1/6 and x(F},) =
k) (F,) > 1. From the argument in (i,2), it is sufficient to show that

Anfly+ (200 =2 An =+ (——1)ﬂ) K(E,) > 0.
This inequality is true, since

(n—T)A, +2(n—2)A, —n+<5—1>u'

:(3n—11)(n—1—%>—%

> 0.
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Note that & > n — 1 since j”(F},) # 0.

(i,5,I) If ', is a singular fiber of type (IM), then B, = —n — 1, x,(F,) = 1/4 and
Kk(F,) = k®(F,) > 1. Since j"(F,) > 1 and the coefficient of Jo o(Fp) is greater than 1
for any a > 1, it is sufficient to show that

1+ A8, + %cn + (20024, —n+ (% —1) 1) 5(Fy) > 0.

The left hand side of it is greater than or equal to

1 r ,
1—(n+1)An+ECn+2(n—2)An—n+(ﬁ—1>,u

» 61 _3n3—12n2+15n—5
12 k(n—1)(n+1)

(3.9)

and (3.9) increases monotonically with respect to n. If n =4, (3.9) is 5/3 — 11/3k > 0.
Note that & > n — 1 since j”(F},) # 0.

(1,5,IV) If 'y, is a singular fiber of type (IV), then 3, = =2, x,(F}) = 1/3 and jj ,(F},) >
3. Thus, it is sufficient to show that A,,5,+C),/6+3-(3.8) is positive. By a computation,

this is equal to
a2 73 45 3n3 — 14n? + 21n — 8
n‘——n —
6 k(n—1)(n+1)

and we can check that it is positive.

From (i,1) through (i,5), we have ef(F},) — puxf(Fp) > 0 for n > 4. On the other hand,
if n = 3 and g = 4, one can easily classify all singular fibers of primitive cyclic covering
fibrations of type (4,1,3) because R has no singularities of multiplicity greater than 3,
and check ef(F},) > (9/2)xs(Fp) for any fiber germ F,,. Thus, Theorem 3.1 (1) follows.

(ii) We assume n = 3 and g > 4. The coefficient of ji,(F}) in (3.6) is

2 1T\,
9 T 1s)HT

Applying Lemma 3.12 (1) to the term of jg ; (F}), (3.6) is greater than or equal to

S (3 gk ) ekt + NS (36 (Bt s) ) v

2m
k>1
5 2 /r 7 ,
+ (2 - EM) Bp — 3H <§ - 5m11,11> Oy, 0 + (1 - EM) (M) — deye)
4 11 17
9a — 11 — 39 - =(a—1)r—— — o (F, 3.10
#3 (o0 = (gl vr-Far )i Gw0)
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5 . 4 11 2 )
+ (—3 + E“) Joa(Fp) + ) (9“ —8- <§‘” B 5) “) Jo.a(Fy)

a>2

4 11 7 .
+) (9a —1- <§a7" 90~ E) M) J1,a(Fp)

a>1

+ (1 + (gr - %) u) K(F,) — ;u <§ - 2) k3)(F).

We remark that the term of 77]’)’ vanishes by the definition of u and

(1 + (gr - %) M) K(EF,) — %u (g - 2) KO(F,)
> (1 + %u) K(Fp)
> 0.

We can check that the coefficient of jj ,(Fy) (resp. jg .(Fp), j1..(Fp)) in (3.10) are
positive for a > 2 (resp. a > 2, a > 1).

(ii,1) Assume that 7, = 0. Then (3.10) is non-negative.

(ii,2) Assume that 7/, # 0 and jg'(F,) = 4 for some t. From Lemma 3.11 (1,ii), it
follows that I', is a singular fiber of type (I}) for some k, x,(Fp) = (K +6)/12, r > 9,
I'y C R, my, =1, jo,(Fp) =4 and deye = 0. Considering the terms of Xy (Fp), 20, 1,
and jj 1 (Fp), (3.10) is greater than or equal to

2 k+6 2 7 bt
S *re_z 1 = 4 — il
(36 (9r+3) u) T 9ru+( 18”) + ( 3+ 18”)

This is positive since r > 9.

(ii,3) Assume that 7, # 0, 1B (F,) =0, 7 >9 and jo¢1(Fp) > 3 for any t. Then

1

5]6,1(Fp) < 771/9 — deye

from Lemma 3.11 (1,i), (1,ii). From this and Lemma 3.13 (1), (3.10) is greater than or

equal to

2 Joa(Fp) +1 2 1 7 y 9 y
N AL hl _ F _ el ).
(36 <9r+3) ,u) 1o 9m+ 3 1 18’“ 30,1( ») + 3+ 18” Jo,l( »)

One can check by a computation that this is positive since r > 9.
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(ii,4) Assume that 1), # 0, t®)(F,) = 0, 7 = 6 and x,(F},) > (j 1 (Fp) + 2)/12. By the

same argument as in (ii,3), (3.10) is greater than or equal to

2 Joa(Fp)+2 2 1 7N 5\
_ (2 201vVp/ 22 —(1-— F — F,
<36 (9r+3) u) > Gt 5 gk ) Joa(Fp) + ( =3+ gm ) Joa(Fy)
13 , 50

=2t () + =
99]0,1( P) + 33
On the other hand, one sees that jg 1 (F},) < 6 since r = 6. Then

13 , 50
25 (F) + = > 0.

99]0,1( p) + 33 >
(ii,5) Assume that 7, # 0, 1) (F,) = 0, r = 6 and x,(F,) < (j;,(Fp) + 2)/12. If
Jo.1(Fp) = 0, then (3.10) is positive since j'(F},) # 0. Then there are the following two
cases only.
(ii,5,I2) I', is a singular fiber of type (,,,12) and only one component of I',, is contained
in R and brown up just once.
(ii,5,I3) I', is a singular fiber of type (,,13) and only two component of I',, are contained
in R and brown up just once at the intersection point of these.

In both cases, we can see that

r
s ()i (-0
from the proof of Lemma 3.7, since the component of I', not contained in R intersects
with Rp. Thus, it is sufficient to show that

2 j(/Jl(Fp)+1 2 r 7 3 ./
—(z o) T 2 (T ) (1 L) e (3 2 F
(36 <9T+3>“> 12 3“(3 >+ i) T3 k) JoalE)

is positive. This is equal to (—2jg 1 (F}) + 10)/11 > 0 by a computation.

(ii,6) Assume that (¥ (F,) = 1. From Lemma 3.4, we may consider the following 3
cases.

(ii,6,II) If ', is a singular fiber of type (II), then we have x,(F,) = 1/6, 5, = —4,
Seye = 0, jo1(Fp) =0, jb o(Fp) =1, ji o(Fp) > 2 and k(F,) = 2 (F,) > 1. One can
see easily that (3.10) is positive by a computation.

(i,6,II) If I', is a singular fiber of type (II), then we have x,(F,) = 1/4, B = —4,
Seye = 0, jo1(Fp) =0, jb o(Fp) = 2, ji o(Fp) > 1 and k(F,) = k@ (F,) > 1. One can
see easily that (3.10) is positive by a computation.

(i,6,IV) If I') is a singular fiber of type (IV), then we have x,(F,) = 1/3, 8, = -2,
deye = 0, Jo.o(Fp) = 3 and kBN (F,) = 0. If Jo.1(Fp) < 2, then we can check that (3.10)
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is positive. Suppose that jj ;(F,) = 3. Then any component of I', is brown up only
once. Thus, the multiplicity of the singularity of R on I, is /3 4+ 3 > 6. In particular,

r > 9. Since this singularity is a 3-vertical 3Z type singularity, we have

a(—)F(Fp) > 1(Fp) + 26(F,) + Bp + 3

from the proof of Lemma 3.5. Then it suffices to show that

5 2 1 2 7 5
2 — — — | = - — = 11— — — —
( 18”) + (36 (97’+3> u) 3 97“,u—|—< 18“) —|—3< 3+ 18”)

is positive. This is equal to
4(16r + 45)

9(4r — 13)

From (ii,1) through (ii,6), we have ef(F},) — puxs(Fp) > 0. Thus, Theorem 3.1 (2)
follows.

(iii) We assume n = 2 and g > 3. From Lemmas 3.5 and 3.9 (2), (3.5) is greater than
or equal to

3 (2 - iuk) o (Fy) + D) (24 (% +2) ) xe(F)

= 4m 8
1 /r . 1 1 ~
— S H <_ - ](l),l(Fp) - 57n117]1> 577’ #0 +(2- —H (771/) - 5cyc) +(4- STH | Tip
4" \2 P 4 8
1 .
+ 4a —8—20 1, 1 — 0g=1 — Z(a - 2)#) J(/),a(Fp)
a>1
1 r . 1 .
+ Z 4a — 6 — 1 <a+ 5 3) ,u> 30.a(Fp) + Z <4a -2 1 (a— 1)H> J1.a(Fp)
a>2 a>1

(3.11)

1 1 . 1
+ (1 - g(r —2)p - Zlﬁk> O‘E2k+1a2k+1)(Fp) - Zﬂai%fl(Fp)

#30 (1= g2 (2 ) ) s () = (2 50— 20 (B

1 1 o 1
+ Z <_3 T s T (2 - 5”) k) a(2;cl—|—1—>2k+1)(Fp) - g(r - 4)MH(3)(Fp)'

k>1
. T co,0 .
The coefficients of oy 1 op41)(Fp) and ooy opyq)(Fp) in (3.11) are non-
negative and that of aEi_l _yr_1)(Fp) is 0 by the definition of u. The coefficient of
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afgl’cﬂrlé%ﬂ)(ﬂ,) in (3.11) is positive except for k& = 1 and that of a?glg)(F) is

—1 — pu/4 < 0. The coefficient of x(F},) in (3.11) is —3/2. Applying Lemmas 3.10 and

312 (2) to (3/2)k(F,) and (1 + p/4) Yy a1 opr) (Fp), we see that (3.11) is
greater than or equal to

S (2 gk ) aktm) + MO (2 (o 2) ) vty

4dm
E>1

a>4

3 1 ,
- (2onat Zu) () + 3 (20620000 - G20 =30 ) ()
1
4

(
+) (1 - %(7’ —2)u+ <2 - %u) k:) i1 a1 (Fp)
+3 (2 50 (k= Ve (B) = (= 0w (5,

where j6,2,even(FP) = jé,Z(Fp) - j6,2,odd(Fp)‘
(iii,1) Assume that 7, = 0. Then (3.12) is clearly non-negative.

(iii,2) Assume that 1, # 0 and ji'5 ,qq(Fp) = 4 for some ¢. From Lemma 3.11 (2,iii), T',
is a singular fiber of type (I%), T', C R, k®)(F,) =0, M =1, 6cye = 0, Jo.1(Fp) =0 and
J0.2.0da(Fp) = 4. Clearly we have x,(Fp) = (jo(Fp) + Jjo 3(Fp) +1)/12. Considering
the terms of X (F}p), G20, My J0,2,even (Fp)s J0.2,0aa(Fp) and jg 3(F}), (3.12) is greater
than or equal to

(24 - <8 + 2) u) %(Jo,g,even(F )+ Jo,3(Fp) +5) — émﬂr (2 - iu)
( ) /Uo 5(Fp)
L

r 11 17 25
2 (—+ = L (FE) 44— —r+ =
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(iii,3) Assume that n, # 0, kG (F,) =0,6,1,1=0, 70 2,004 (Fp) < 3 for any ¢ and

1

Xo(Fp) = E@Jo 1(Fp) + Jo.2(Fp) +j(l),3(Fp) +1).

From Lemma 3.11 (2,i), (2,ii), we have jg 1 (Fp) + 0 2.0da(Fp)/3 < 1), — dcye. Then (3.12)

is greater than or equal to

r 1 . ) 1
(24— (5 +2) 1) 752001 () + 6 2(Fy) + G a(Fy) +1) = Sra

1 , 1. 1 . .
+ (2 - ZM) <J6,1(Fp) + §j6,2,odd(Fp)) - (5 - 5#) ](/),1(Fp) - 36,2,even(Fp)

3 .
(2 + - ) 70.2,0dd (Fp) — ZW(/),?,(Fp)

(1 ( ) u) joa(Fp) + <§ — (9% + %) u) 70,2,0da (Fp)
+ (1 ( ) M) 70,2,even (Fp) + (2 - <% + %) M) Jo,3(Fp)

+2 - (%r + é) e
The coefficients of jj 1 (Fp), 70.2.even(Fp)s Jo.3(Fp) and the constant term are positive
since r > 4, and jo 2 .0dd(Fp) is also positive for » > 6. Thus the above equation is
positive when r > 6. If » = 4, then one can check by an easy computation that (3.12)
is also positive, since j6,2,odd(Fp) < 2.
(iii,4) Assume that ), # 0, & (F,) =0, 6,,1,,1 = 0, j{5 oqq(Fp) < 3 for any ¢ and

1 ) .
X (Fp) < 12(2]0 1(Fp) + Jo.0(Fp) + o.3(Fp) +1).

From Lemma 3.13 (2), I, is of type (1x), (If), (IT*), (IT*) or (IV*). Considering the
numbers jg ; (F}), X¢(Fp) and Lemma 3.13 (2), we can see that (3.12) is positive by the
same argument as in (iii,3) except I'j is of type (I5) and jg 1 (F},) = 4.

Suppose that I', is of type (I§) and jg ; (F},) = 4. Then the component not contributing

to jo.1(F}p) is a double component in I', and intersects with Rj. Thus we have
r
ag (Fp) > 5t Z 2k oo 11 —2m41) (Fp)
k>1

from the proof of Lemma 3.5. Then one can see that ey(F,) — px,(Fp) is positive by a
computation.

(iii,5) Assume that 1}, # 0, K®(F,) = 0 and §,,1, 1 = 1. Then j},(F,) =0, j/(F,) = 1,
m, = 1 and x,(Fp) = 1/12 or 1/6. If j{ 5 even(Fp) = 1, then (I'p)req is blown up just
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once. Thus, the multiplicity of the singularity of R which is singular for (I'p)yeq is
even. Hence dqyc = 0. Then we can check by a computation that (3.12) is positive. If
70.2,even (Fp) = 0, then we can also check by a computation that (3.12) is positive.
(iii,6) Assume that x()(F,) = 1. From Lemma 3.4, we may consider the following 3
cases.

(iii,6,I) If T', is a singular fiber of type (I), then n, = 1, j'(F},) = 1, jj ,(Fp) = 0 for
a <3, j"(Fp) — jo.(Fp) = 3 and x,(F,) = 1/6. Considering the terms of b, -0, 1,
3 (F,), 36.a(Fp), 46 o(Fy) and x4 (F,) in (3.12), we can check that (3.12) is positive.
(iii,6,IT) If T', is a singular fiber of type (Il), then n, = 1, j'(F},) = 2, jg ,(Fp) = 0 for
a <2, 5" (Fp) —Jjo1(Fp) > 2 and x,(F,) = 1/4. Then we can also check that (3.12) is
positive.

(iii,6,IV) If T', is a singular fiber of type (IV), then n, = 1, j/(F},) = 3, jo1(Fp) =
J0.2.even(Fp) = 0, 3" (Fp) — 35 1(Fp) > 1 and x,(F}) = 1/3. Similarly, we can check that
(3.12) is positive.

From (iii,1) through (iii,6), we have e;(F,) — ux¢(F,) > 0. Thus, Theorem 3.1 (3)
follows. =
Ezxample 3.14. There exist singular fiber germs F}, such that KJ% (Fp) = (12 — p)x s (Fp)
and we can classify them.

(i) Assume that n > 4, or n = 3 and g = 4. Consider the situation that I, is smooth
and F), is obtained the following sequence of singularity diagrams associated with I,

(ct. [18)):

(z1,7) (z2,7) (k1) (1,1,...,1)
Iy E} E) EY
Er Ey
blow-up >1?2< blow-up

____________ - - - - ————

[ — 1 times
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n-cyclic cover

Fy
) Ai_1a e % }
/\ Ao

Al—l n

)

Then we can write Fj, = Ao+ > . (A1 + -+ Ai—14) + A, pa(Ao) =0, g(Ak;) =0
fork=1,...,01—1and g(4;) = (r/2—1)(n— 1) (note that Ay may not be irreducible).
This singular fiber satisfies K7(F,) = (12 — p)xf(F},). Indeed, ag(F,) = 0 for k =
0,1,....7/n =1, ap/n(Fp) = 1, e(F,) = 0 and x,(F,) = 0. Thus xs(F,) = r(n —
1)(n+ 1)l/12n, e;(F,) = nl and then e;(F,)/xf(F,) = 12n?/r(n —1)(n + 1) = p. We
can see from the proof of Theorem 3.1 that any singular fiber F), satisfying K?(Fp) =
(12 — p)xf(Fp) is obtained in this way.

(ii) Assume that n = 3 and g > 4. Consider the situation that I', is smooth and F}, is
obtained the following sequence of singularity diagrams associated with I',:

3
=2 ] 11 (y“?‘f’_)z) Gor=3) [ @3] (L1....1) (1,11)
Ey
}% EU
Y w Sz
‘ ‘ blOW—up k }» }» blow—up }» }»
E.,
= |
w L s --}- .-
blow-up } ' } blow-up }
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—1 -1 Aq E,
triple cover contraction *
i L J L J i L J L J AO

Then we can write F,, = Ay + 241 + A3, pa(Ao) = 4, g(A1) =1 and g(Az) = r — 5.
This singular fiber satisfies K7(F,) = (12 — p)x(Fp). Indeed, ag(F,) = 1, a1 (Fp) =1,
ay3-1(Fp) = 3, a(Fy) = 0 for k # 1,7/3 — 1, e(F,) = 2 and x,(F,) = 0. Thus
Xf(Fp) = (4r —13)/6, ef(F),) = 4 and then ef(F},)/xs(Fp) = 24/(4r — 13) = p. We
can see from the proof of Theorem 3.1 that any singular fiber F), satisfying K]%(Fp) =
(12 — p)xf(Fp) is obtained in this way.

(iii) Assume that n = 2 and g > 3. Consider the situation that I', is smooth and F}, is

obtained the following sequence of singularity diagrams associated with I',:

(x1,r=1) | (1) ] (z2,7) (xoi—1,7—1) | (1) (wayr,r) (1,1,...,1)
I B} By s By 2
E
A 2 S B Ey
: X9 T3
blow-up { blow-up ‘
Ey
blow-up /
20 — 2 times - /_/'-
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Ay
Fy
double cover contraction
% Ay /e{f\\ 2

Then we can write F), = Ao+ A1 + -+ A4, pa(Ao) =2, g(Ax) =0for k=1,...,1—-1
and g(A;) = r/2 — 1. This singular fiber satisfies K?(Fp) = (12 — p)x¢(Fp). Indeed,
apa—1(Fp) = ayj2(Fp) =1, ax(Fp) =0 for k #r/2 —1,7r/2, (F,) =l and x,(F)) = 0.
Thus x¢(Fp) = (r —2)l/4, es(Fp) = | and then ef(F},)/xs(Fp) = 4/(r —2) = p. We
can see from the proof of Theorem 3.1 that any singular fiber F), satisfying K)%(Fp) =
(12 — p)xf(Fp) is obtained in this way.

From Theorem 3.1 and Example 3.14, we can characterize primitive cyclic covering
fibrations of type (g,1,7n) whose slope attains the upper bound in Theorem 3.1.

Corollary 3.15. Let f: S — B be a primitive cyclic covering fibration of type (g,1,n).
Then the slope Ay attains the upper bound in Theorem 3.1 if and only if any singular
fiber of f is as in Example 3.14.

4 Glueing linear series

For a smooth projective curve C' (resp. a family of smooth projective curves f: X — B),
let G5 (C) (resp. G5 (f)) be the (resp. relative) Brill-Noether variety parametrizing g;’s
on C (resp. on fibers of f), where we denote by g, a linear system of degree d and of
dimension 7 (cf. [2] Chapter XXI).

In this section, we prove the following theorem for the later use, which is a slight

improvement of Theorem 3.1 in [8].

Theorem 4.1. Let X, B be normal algebraic varieties (resp. normal analytic varieties)
and f: X — B a proper flat morphism whose general fiber is a non-singular projective
curve. Let By C B be the Zariski open subset consisting of smooth points p of B such that
F, = f~Y(p) is non-singular and fo: Xo = f~1(By) — By the restriction of f to By. Let
r,d be positive integers. Assume that there exists a rational section n: By --- — GJ( fo).
Then there exist a divisorial sheaf L on X and a subsheaf G C f.L such that the linear
subspace G @ C(p) C H(F,, L|p,) defines n(p) for any general p € By.

Proof. We may assume that 7(p) is base point free for any general p € By by removing
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the locus of all base points of n(p), p € By. Shrinking By if necessary, we may assume
that n is a section. For p € By, we can write n(p) = {D(p)a}rcpr, where D(p), is an
effective divisor of degree d on F),. Let & be a locally free sheaf on By such that X
is embedded in Ppg (&) over By (such & exists, e.g., take the direct image sheaf of a
sufficiently fo-ample invertible sheaf on Xj). We regard each fiber F}, as a subvariety
of P(E @ C(p)) = Prank(€)=1 via the inclusion Xy C Pg,(&). Let D(p), denote the
plane in P(£y ® C(p)) spanned by D(p)y. Then the dimension k := dimD(p), does not
depend on the choices of p and A from the Riemann-Roch theorem. Now, we consider the
subvariety P of the relative Grassmannian Grpg, (k,P(&)) = Upep,Gr(k,P(E ® C(p)))
defined by

P:={[D(p),] € Gr(k,P(& @ C(p)))|X € P",p € Bo}.

It is a holomorphic P"-bundle over By via the natural projection. We can define a
morphism @ from Xy to P* := Grp,(r — 1, P) by mapping z to {{D(p),]|z € D(p)r},
the restriction of which to the fiber Fj, is nothing but the morphism associated with
n(p). Let Gy, Lo respectively be the direct image sheaf of the tautological line bundle
Op+(1) via the natural projection P* — By, the pull-back of Op«(1) via ®. It follows
that P* = Pp,(Go) and Gy C fo«Lo. Let ip,: By — B and ix,: Xo — X be the natural
inclusions. We put G := ip,.Go and L := (ix,+«L)**, which are the desired sheaves.

Indeed, we have G C ip s« foxLo = fsixy,«Lo C f«L. O

Remark 4.2. If f: S — B has a section, Theorem 4.1 follows directly from the existence

of the relative Poincare line bundle (cf. [2]).

Corollary 4.3. Let X and B be normal algebraic varieties and f: X — B and d,r as
in Theorem 4.1. Assume that the fiber F, has a base point free gl; for general p € B.
Then, after a suitable finite base change B’ — B, there exist a P"-bundle P’ over B’
and a rational map p: X' --- — P’ over B’ of degree d, where f': X' — B’ is a base
change fibration of f.

Proof. By assumption, the general fiber of G;(fy) — Bo is non-empty. Since G}(fo) is
algebraic, we can take a subvariety B{, of G}(fy) such that the natural map By — By
is finite (after shrinking By if necessary). We take a compactification B’ — B of it and
perform base change via this map. Let f': S’ — B’ be the base change fibration of f
and f: X{ — B} the restriction of f’ to X = f'~*(BY). Since G5(f}) = G3(fo) X B, B},
we can take a section By — G (f() by p— (p,p). From Theorem 4.1, there exist a line
bundle £ on B’ and a subbundle G C f.L such that the rational map X'--- — Pp/(G)
associated to f*G — L is of degree d.

O
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5 Localizations

Let f: S — B be a fibered surface of genus g = (d — 1)(d — 2)/2 > 1 whose general
fiber has a g2, that is, it is a smooth plane curve of degree d. Since the g2 is unique,

there exists a line bundle £ on S (unique up to a multiple of a divisor consisting of

components of fibers) such that £|r is the g2 on any general fiber F' by Theorem 4.1.

Then £%973 is isomorphic to wy(T") for some divisor I' consisting of components of fibers

(it depends on a choice of £) since £¥¢~3|x is the canonical bundle Kr for a general
fiber F'. On the other hand, for kK =1,...,d — 1, there exists a natural exact sequence

0 — Sym”f.L — f.LZ* =T =0

induced from the multiplicative map Sym”HO(L|p) — H°(L®*|r) on fibers, where the

cokernel T} is a torsion sheaf. Thus, we get

deg(f.L®%) = deg(Sym" f,. L) + length(Tz).
By the Grothendieck Riemann-Roch theorem, we have

k2 k
deg(foL7¥) — deg(R' f.L5¥) = 1> = SLK; + x5,

where L = ¢1(£). From (5.1) and (5.2), we obtain

k2 k

o L? = SLE; +x; + deg(R' f.LZ¥) — length(T;)
k+2\ /1 1

:< ; >(§L2—§LKf+Xf+d%U#ﬂ£0'

In particular, for k =d — 2,d — 1, we have

(d —2)? d—2

5 L* = =5 LK+ Xy + length(R' £.£977%) — length(Ty2)
d\ (1 1

_ ~L? — LK+ xy +deg(R' f.L) )
3/ \2 2

d—1)2 d—1

( 5 ) L? — TLKf + X5+ length(le*£®d_1) — length(7g-1)
d+1\ /1 1

:( ; )<§L2—§LKf+xf+d%U#ﬂ£0;
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where two sheaves R'f,£%?72 and R'f,£®?1 are torsion sheaves. Since (d;rl) times

the left hand side of (5.3) is equal to (g) times the left hand side of (5.4), we obtain by
a calculation that

6(d — 3)

K3 = g Xrt > Indy(F,), (5.5)
pEB

where we put

d+1
Inda(F,) =T} +2(d = 3) (ﬁlengthpmlf*c@d—?) - lengthz,(le*.c@d—l))

d+1
d—2

+2(d—-3) (lengthp(ﬁ_l) — lengthp(ﬁ_2)> :

From (5.5), the value Indg(F}) is independent of a choice of the line bundle £ since
L is unique up to a multiple of an f-vertical divisor. But it seems hard to show that

Ind4(F},) is non-negative directly from the definition.

6 Lower bound of the slope
In this section, we prove the following inequality for plane curve fibrations.

Theorem 6.1. Let f: S — B be a relatively minimal plane curve fibration of degree
d > 4. Then we have

Let f: S — B be a relatively minimal plane curve fibration of degree d. Since a
g2 on the general fiber F is unique, there exists a line bundle £ on S such that the
restriction £|r is the g2 and it is unique up to a multiple of divisors consisting of
components of fibers. Since £|297% = wp, we can write £L243(J) = wy for some
divisor J consisting of components of fibers. Tensoring components of fibers to £, we
may assume that J is effective. Then we have an injection f.L£®4™3 — f.w;. The
composite of it and the natural homomorphism Sym?3f.£ — £.£%93 induces an
injection Sym® 3 f, £ — f+w¢ whose cokernel is a torsion sheaf. Let ¢ be the maximal
effective divisor on B such that the image of the homomorphism Sym? 3 f,£ — f.w £ is

contained in fywys(—c). Then there is an exact sequence
0— Sym* 3 f.L — fiws(—c) = T — 0,

which induces an elementary transformation

P = Pp(fiws) = Pp(fawp(—c)) < P 75 P’ := Pp(Sym?3(f.L))
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such that
T Ok (fows(—0) (1) = Er = 7" O (syma-3(1. £)) (1)

holds, where Op,, (¢£)(1) is the tautological line bundle associated with £ and E; is an
effective exceptional divisor of 7. On the other hand, we have

Op s (fowp (=) (1) = Obg(fowp) (1) — 7,

and then we get

T*Opy(fowp)(1) = Tc — Er = 7 O0p, (gyma-3 (7. £y (1),

where 7: P — B, 7: P — B are the natural projections. Now we consider the relative
Veronese embedding W’ := Pg(f.L) — P’ of degree d—3 corresponding to the surjective
homomorphism ¢*Sym?3(f, L) — Opy(f.r)(d — 3), where ¢': W' — B is the natural
projection. There is a rational map S--- — W’ corresponding to the homomorphism
f*f«L — L. Let X’ C W’ be (the closure of) its image. Let W, X be the proper
transforms of W', X’ with respect to 7/ and W, X the image of W, X via, respectively.
Note that X coincides with the image of the relative canonical map S--- — P and two
birational maps S--- — X--- — X and §--- = X’--- — X coincide. Let p: S — S
be the resolution of indeterminacy of S--- — X and ®: S — X the induced birational
morphism. We put T := Op(1,u,)(1), T" := Op, (symé—3(f.2))(1) and denote also 7T,
7*T" by T, T for simplicity. Let I', IT” respectively be the numerical equivalence classes
of fibers of m: P — B, n’: P’ — B. Note that 7*I" = 7*I" and we also denote it by I"

or I'V. From the above arguments, we have
T—-T =c + E,,

where c is the degree of ¢. Put N := Ty, N' == T'|5, M = &*T and M' := &*T".
The numerical equivalence classes of W/, X’ in P’ as cycles can be written by

W' =(d—3)’T9 %+ /T, X'=d(d—-3)T"9 7+ 8T °T
for some o', 5’. Then we have
N3 =T3W' =(d—-3)*(x; —1)+a/, M?=T7°X"=d(d-3)(x;—1)+75,

where | := length(f.w;/Sym®™?f,L£) > 0. Note that T"|y = Op,(4.2)(d —3) and then
we have

N3 = (d — 3)3degf.L.
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Then the numerical class of the canonical divisor Ky of W’ is

KW/ = —3(/)[@3(]0*5)(1) + (degf*ﬁ + 2b — 2)F/‘W’
N3 ,

= — 1 —— + 202 | I |

30p,(1.0)(1) + ((d—3)3 + ) lw,

where b := ¢(B), the genus of B. The numerical class [X']y of X’ in W’ can be
denoted by
[X/]W’ = dOPB(f*L',)(l) + B//F/’W’

for some ". Since Op (s, r)(d —3) = T'|w, we have
d T/ +6//1—\ X/

d—3

and thus we get
d
/! — d _ 2 ol /.
Fr=d=3)0°8 +-—3a
By the definition of M, we can write p* K¢ = M + Z for some effective vertical divisor

Z with respect to f: S — B. Then we have

Kj=(p"Ky)? = (M +2)* = M + (p" Ky + M)Z > M?, (6.1)
where the last inequality follows from the nefness of K.

Lemma 6.2.

Proof. Take a sufficiently ample divisor a such that |M’ + f*u| is free from base points.
Then we can take a smooth general member C' € |M’ + f*a| by Bertini’s theorem. Let
C' := (' 0 ®)(C). Now we compare the genus g(C) of C' and the arithmetic genus
pa(C") of C".

First, we compute g(C'). The adjunction formula says that

29(C) —2=(Kz+C)C
= (p*'K;+E+(20—2)F +C)C
= (M +Z+E+ (2b—2)F +M' +aF)(M' + oF)
M+ Z+E+(2b—2+a—c¢)F —®*E.)(M + (a — ¢)F — O*E,)

= 2M? 4+ (Z + E)(M — ®*E,) + (2b — 2 + 3a — 3¢)(29 — 2) + (®*E,)?,
(6.2)
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where b := g(B), F is the numerical class of a fiber of f, FE is the exceptional divisor of
p such that Kz = p*Kg + E and a := dega.
Next, we compute p,(C”). The adjunction formula also says that

2pq(C") —

= (Kx +C")C'
(Kw: +[X ]W’)|X’ +CNC

( ( E +2b—2+ 6”) F’) |xr + (1" + aF')|X/) (T" + al)|x/

N/3
2T"% + ( = +20—2+4 8"+ 3a) T ) (d(d—3)T"92 + p'T"931)

13

(
( ((d 33+2b—2+5”+a>rf>(T/+GF/)X,
&
= 2d

(d—3)(xs—1)+d(d—3) (JX—3P+2b—2+B”+3a)+25’
Cd(d—=1) s 3d—6

- 3)2N3+d 5 M+ (20— 2+ 3a)(29 — 2)

d(d —1) 3d — 6 d(d —1) 3d—6 ~,
_<d_3)2N3+r3M2+ (d_3)2(ET\W)3+ T (OB’
+ (20 —2+3a —3¢)(2g — 2), (6.3)

where the last equality follows from N?—(E;|)? = N"?43¢(d—3)* and M2+ (D*E,)? =

M"? + 2cd(d —

2pq(C") = 29(C) = —

3). From (6.2) and (6.3), we get

d(d—1) d
(d—3)2N3 d—3
d(d—1) 2d— 3 ~
(d_g)g(Ele)?’vL -

M? — (Z + E)(M — ®*E,)

(3*E,)? (6.4)

and it is non-negative since C' — C’ is birational. On the other hand, we have

and

(Erly)® = (N = N' = l|)*Er |y = N2 E- |
= T?EW =T?E,W' = (d—3)*T"9 'E, (6.5)

(*E;)? = (M — M' — cF)®*E, = —M'®*E,
= T'E.X=-TEX' =—d(d—-3)T9'E,. (6.6)
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Note that T"9"1E, = lengthT > 0 by a simple computation. From (6.4), (6.5), (6.6)
and (Z + E)(M — ®*E;) = (Z+ E)C > 0, we have

——— 2N’ + ——M* > (Z+ FE)C +d(d— 2)lengthT >0
(d —3)2 +d—3 > (Z+ E)C +d( )length7" > 0,
which is the desired inequality. O
Lemma 6.3. )

= d—1)d-2)

Proof. Since the linear system ¢, N @ C(p) = H(¢~(p), N|¢~),1(p)) on a general fiber
¢~ 1(p) ~ P2 induces a Veronese embedding of degree d—3, the pair (¢~ (p), ¢ N@C(p))
is Hilbert stable by Corollary 5.3 in [24]. Thus we can apply Theorem 2.2 in [10] to the

pair (N, 5*]\7 ) and hence we get

rank(¢, N)N* — dim(W)deg (6. N)(N|5_.,)? > 0,

t(p)
which is the desired inequality since g*N ~ fiwy. O

Proof of Theorem 6.1. From (6.1), Lemma 6.2 and Lemma 6.3, we have

|

Proposition 6.4 (cf. [27]). Let f: S — B be a relatively minimal plane curve fibration
of degree d. Then the following are equivalent.

d—1
i) M? = ——N3.
(i) T3
. 6(d —3)
(ii) K]% T g9 X

(iii) There exists a P2-bundle ¢p: W = P(E) — B and a member X € |dOw (1) + ¢*¢|
with at most rational double points as singularities such that S is the minimal resolution
of X.

Proof. ((i)=-(iii)) From the proof of Lemma 6.2, (i) implies that p,(C’) = ¢(C) for
general C' € [M’ + f*a|, T"9"'E, = 0 and (Z + E)M’ = 0. The former implies that X’
has at most isolated singularities. T7"9~1E_. = 0 implies that P = P’ and E,. = 0. Hence
we have M — M’ = f*c and then (Z + E)M = 0. It follows from the nefness of M that
ZM =0 and EM = 0. Therefore, we have Z? = MZ + Z* = p*K;Z > 0. Thus, by the
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Hodge index theorem, we get Z = 0. On the other hand, we have degf,.L+ 3" = 0 from
the proof of Lemma 6.2 and the assumption (i). Thus X = X’ in W = W’ is linearly
equivalent to dOyw (1) — ¢*0 for some divisor 0 of degree degf.L. Tt follows that

X(Ox) = x(Ow) — x(Ow (-X))
=1-b+ x(Ow(Kw + X))
=1—b+x(Sym? P f.L @ (detf. L ® wp ® Op(—0)))
=1-b+g(1—-0b)+xs—c+g(2b—2)
=x(0s) —¢
< x(Os).
On the other hand, since &: S — X is a resolution of singularities of X, we have
x(Ox) > x(Og) = x(Os). Hence ¢ = 0 and X has at most rational singularities. Since

X is a hypersurface of W, any singularity of X is a rational double point. We can see
that S =S and 0 = detf, L.

((iii)=-(ii)) By a simple computation, we have
K7 =d(d—1)(d — 3)deg€ + 3(d — 1)(d — 3)k,

where k := degt. Moreover, by the similar computation as above, we have

x(Ox) = x(Ow) — x(Ow (—X))

dd—1)(d—2 d—1)(d—2
=(g—-10b-1)+ ( 23( )deg5+( )2( )k
Since X has at most rational double points, we get
xf =x(0s) = (g—1)(b—1)
=x(0Ox)—(g—1)(b—1)
_ d(d—1)(d — 2)deg8+ (d—1)(d— 2)]{:.
6 2

Hence (ii) holds.
((ii)=(1)) It is clear. O
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7 Algebraization of fibers

We consider a proper surjective holomorphic map f: S — A from a non-singular com-
plex surface S to a small disk A = {t € C||t| < €} such that the general fiber f=1(t)
over t # 0 is a non-singular curve of genus g and put F := f~1(0). The pair (f, F) is
called a fiber germ of genus g. A fiber germ (f, F) is relatively minimal if F' contains no
(—1)-curves. In the sequel, we always assume that any fiber germ is relatively minimal.
Two relatively minimal fiber germs (f: S — A, F) and (f': S’ — A, F) are holomor-
phically equivalent if there exist biholomorphic maps ¢: S — S” and ¥: A — A such
that f" o ¢ = ¢ o f after shrinking A if necessary. Let A be a set of holomorphically
equivalence classes of fiber germs of genus g and y: A — ¥ a map from A to a set
Y. The map x is an algebraic invariant (cf. [35]) if for any fiber germ (f: S — A, F)
in A, there exists a natural number n such that for any fiber germ (f': S’ — A, F)
in A which satisfies S,, ~ S/, over SpecC|t]/(t"), we have x(f, F) = x(f’, F’), where
Sp = S xa SpecC[t]/(t"). For example, the map p: A — fg which sends a fiber
germ (f, F) to its topological monodromy p¢ is an algebraic invariant, where I is the
mapping class group of genus g and fg is the set of its conjugacy classes.

Let A, denote the set of holomorphically equivalence classes of fiber germs whose

general fiber is a smooth plane curve of degree d. The following is our main theorem:

1
d—2ZZO

such that for any relatively minimal plane curve fibration f: S — B of degree d, the

Theorem 7.1. There exists a non-negative algebraic invariant Indg: Ag —

value Indy(F) equals to O for any general fiber F' of f and

6(d — 3)
K} = T Xt > Indy(F,)

peEB
holds.

Now, we define the function Indy. Let (f: S — A, F) be a fiber germ in A;. Then,
by Theorem 4.1, there exists a line bundle £ on S such that the restriction £|p, is a g2
on Fy = f~1(¢) for any ¢ # 0 and it is unique up to a multiple of a divisor consisting of
components of F' = f~1(0). It follows that £&4=3 ~ w(T) for some divisor I" consisting
of components of F. Using the line bundle £, we define Indy(f, F') by

d+1
d—2

Indg(f, F) :=I" + 2(d — 3) ( length(R' f,L%972) — length(le*£®d_1))

+2(d — 3) <length(7zi_1) — Zj ;length(’]:i_g)) ,
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where T}, is the torsion sheaf defined by the natural exact sequence

0 — Sym*f. L — £.L% = T, = 0.

We have seen that the value Indg(f, F') is independent of a choice of the line bundle £
when the fiber germ (f, F') is realized in a global fibration S — B. From (5.5), in order
to prove Theorem 7.1, we must show that for any fiber germ (f, F') in Ay, Indy(f, F) is
well-defined, that is, not depend on a choice of £ and non-negative algebraic invariant.

The following is a key lemma.

Lemma 7.2. For any fiber germ (f: S — A, F) in Ay and any natural number n,
there exists a plane curve fibration f: S — P of degree d such that S, is isomorphic
to Sy, = 8 xp1 SpecOp1 o/m™ over SpecC[t]/(t") ~ SpecOp: o/m"™ and all the other
singular fibers of f are irreducible Lefschetz plane curves of degree d with one node,

where m denotes the maximal ideal of Op1 g.

Proof. We can take a line bundle £ on S such that £|f, is the g2 on F; for any ¢ # 0 from
Theorem 4.1. Thus, we can take a rational map S--- — A x P? over A that embeds F}
to P? = {t} x P? for any t # 0. Let ¢(¢t; X,Y, Z) be a defining equation of F; C IP’%X:Y:Z)
for t £ 0, which is a homogeneous polynomial of degree d with respect to X,Y, Z and
determined uniquely up to a multiple of a constant. We may assume that ¢(t; X,Y, Z)
is holomorphic in t # 0 after shrinking A if necessary. By Riemann’s extension theorem,
©(t; X, Y, Z) is holomorphic at ¢t = 0. Thus the image of a rational map S--- — A x P2
can be written as X := {(¢t,(X : Y : Z)) € A x P?|p(t; X,Y, Z) = 0}. Let
dp t"d™p

t: X, Y. Z)=0(0:X.Y.Z t—(0: X.Y,Z oo+ ——(0: XY, Z
ot; X,Y,Z) = p(0; X,Y, Z) + dt(, Y, Z) + +m!dtm(, Y, Z) +

be the Taylor expansion near 0 € A and define

n Jn

d ¢
(XY, Z) = o(0: X, Y, Z) +td—f(o;X, Y, Z) 4+ ﬁwf’(o;x, Y, 7).

Take a sufficiently large m > n and general homogeneous polynomials ¥, 11(X,Y, Z),
ooy Ui (X, Y, Z) of degree d. Let ®(tg,t1; X,Y, Z) be the homogenization of the poly-
nomial
M XY, Z) -t W (6 XY, Z) 4 - At (8 XY, 2)

with respect to t € C and put X := {((tg : t1),(X : Y : Z)) € P' xP?|®(tg,t1; X, Y, Z) =
0}. Taking a resolution of singularities of X and its relatively minimal model over P,
we get a plane curve fibration f: S — P! of degree d such that S,, is isomorphic to S,,.
Since Y41, ..., ¥m are general, any singular fiber of f over P!\ {0} is an irreducible

Lefschetz plane curve of degree d with one node by Kuno’s result [29]. a
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Lemma 7.3. Indg: Ay — Q is a well-defined algebraic invariant.

Proof. Fix a fiber germ (f, F') of Ay arbitrarily and denote by Inddﬁ( f, F) the value
Indy(f, F) defined by using a line bundle £ as above. Note that the value Ind4 (f, F) is
completely determined by the restriction £,, := L|g, for a sufficiently large n (depending
on (f,F)). From Lemma 7.2, we can take a plane curve fibration f: S — P! of degree
d such that S,, is isomorphic to S,. We will show that the line bundle £,, is the
restriction of some line bundle £ on S to S, via the isomorphism S, ~ S,. Note
that the topological monodromies of (f, F) and (f, F) are the same and F ~ F. Take
a subvariety U of the Kuranishi space of the stable model F’ of (f, F') parametrizing
smooth plane curves of degree d or its limit and consider the universal family C — U.
Then the cyclic group G = Zy acts on C and U equivariantly and the quotient fibration
C/G — U/G contains the two fiber germs (f, F') and (f, F), where the number N is the
minimal pseudo-period of the topological monodromy of f. We may assume that C/G
and U /G are normal by taking normalizations. Applying Theorem 4.1 to C/G — U /G,
we obtain a divisorial sheaf IL. on C/G such that the restriction of L to any general fiber
is a g3. We can write £ ~ L|s ® Og(D) for some divisor D consisting of components
of F' and then £, ~ L|g ® Og(D)|g , where L|g is a line bundle on S obtained by
glueing the restriction of L to a neighborhood of the fiber F with a line bundle on S\ F'
obtained by Theorem 4.1. The line bundle £ := L|g ® Og(D) is the desired one. Since
Ind4(f, F) and Indg(f, F) are determined by L, we have Ind4(f, F) = Indg(f, ).
Since Indg(f, F) is independent of the choice of the line bundle, we see that Indg is
well-defined. In order to prove that Ind, is an algebraic invariant, we apply the similar
arguments as above to any fiber germ (f': S” — A, F’) in Ay with S,, ~ S/ . Thus we
have Indy(f, F') = Ind4(f’, F') for a sufficiently large n. Such a number n depends only
on (f,F) and L. Thus Ind, is an algebraic invariant. O

Definition 7.4. A fiber germ (f: S — A, F) in Ay is called a Lefschetz fiber germ of
type 0if S C A x P2 and F = f~1(0) is an irreducible Lefschetz plane curve of degree

d with one node.

Lemma 7.5. For any Lefschetz fiber germ (f, F) of type 0 in Aq, we have Indy(f, F) =
0.

Proof. We can take a line bundle £ defining Indg(f, F) such that £®973 ~ wy by
restricting O(1) on A xP? to S. Moreover, we can see that R f, L8912 = Rl f, L®1~1 =
Ta—2 = Ta—1 = 0 since F is irreducible and H(F, £L%972|p) = HY(F, L% 1|z) = 0.
Thus we have Indy(f, F') = 0. O

Lemma 7.6. For any fiber germ (f, F') in Ag, the value Indy(f, F') is non-negative.
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Proof. Fix a fiber germ (f: S — A, F) in Ay arbitrarily. Since Indy is an algebraic
invariant, we can take a natural number n such that for any fiber germ (f’: S — A, F”)
of Ay such that S, ~ S/, we have Indy(f, F') = Indg(f’, F’). From Lemma 7.2, we can
take a plane curve fibration f: S — P! of degree d such that S,, ~ S,, and any other fiber
germ of f is Lefschetz of type 0. Thus we get from (5.5), Theorem 6.1 and Lemma 7.5
that

Inda(f, F) = Indg(F. F) = K2 — 0=3)

Combining (5.5) with Lemma 7.3 and Lemma 7.6, we get Theorem 7.1.

Proposition 7.7. For a fiber germ (f: S — A F) € Ay, Indy(f, F) = 0 holds if and
only if S is obtained by resolving singularities of some family X C A x P? of plane

curves of degree d with at most rational double points as singularities.

Proof. From Proposition 6.4 and Theorem 7.2, we get the assertion. O

8 Local signature

For an oriented compact real 4-dimensional manifold X, the signature Sign(X) is defined
to be the number of positive eigenvalues minus the number of negative eigenvalues of
the intersection form on H?(X). In this section, we consider the signature for complex
surfaces with plane curve fibrations. For a given condition P on smooth curves, let
Ap be the set of holomorphically equivalence classes of fiber germs whose general fiber
has the condition P. Then a Q-valued function o: Ap — Q is a local signature if for
any relatively minimal fibered surface f: S — B whose general fiber F' satisfies the
condition P, we have o(F) = 0 and Sign(X) = >_ po(F}). In this section, we treat

relatively minimal plane curve fibrations f: S — B of degree d.

Definition 8.1. We define azlg: Ag — Q by

oMe — 4 n —8_>\de
d T 12N, YT 12-00

where A\ :=6(d — 3)/(d —2) and e: Ag — Q is defined by e(f, F') := etop(F) — 2 + 2g,
which is clearly an algebraic invariant.

lg

The function ¢ ® is in fact a local signature, that is, the following holds:

Proposition 8.2 (cf. [5]). For a relatively minimal plane curve fibration f: S — B of
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degree d, we have
Sign(S) = Y 055(F}).
pEB

Proof. The claim holds from Hirzebruch’s signature theorem Sign(S) = K]% — 8X7,
Theorem 7.1 and Noether’s formula 12y, = KJ% +ey. O

Recall that Kuno [29] defines a local signature y® for (C'°°-)fibrations of plane curves
of degree d over a closed surface by using Meyer’s signature cocycle from the topological

. . . 1 t . .
point of view. In fact, two local signatures o5 *® and o, coincide on Ay:

Theorem 8.3 (cf. [35]). We have 03%(f, F) = o'**(f, F) for any fiber germ (f,F) in
Aqd.

Proof. We see that two functions leg and 0P are algebraic invariants. Moreover, we
have i+l

alg F) = top F)—_—_~ "~
for any Lefschetz fiber germ of type 0. Thus the claim holds from Lemma 7.2. O

9 Local signature associated with an effective divisor on M,

Let M, and ﬂg respectively denote the moduli space of smooth curves of genus g
and the moduli space of stable curves of genus g. The rational Picard group of Mg is
generated freely by the Hodge bundle A and the boundary divisors 4o, d1, ..., 04/ for
g > 3, where we use the notation in [21]. Let D be an effective divisor on M, and D
the compactification of D in Mg. Then we can write D ~Q aA — Zggz/g ] b;0; for some
rational numbers a,b; > 0, where the symbol ~g means the Q-linear equivalence.

Let f: S — A be a relatively minimal degeneration of curves of genus g, that is, f
is a surjective proper flat morphism from a complex smooth surface S to a small open
disk A such that f~1(t) is a smooth curve of genus g for any ¢ # 0 and the central fiber
F := f~1(0) is relatively minimal. We take the stable reduction f:S = Aof fviaA —
A; z+— zV. Resolving singularities of S , we obtain a semi-stable reduction ]?: S A
Note that N can be taken as the pseudo-period of the topological monodromy sy of f
as a pseudo-periodic class (cf. [3]). Put F := f=1(0) and F := f~1(0). Let

1 o~
LSd(F) = U(faF; haS) - Na(f7F; ha§)
be the local signature defect of (f, F') (more precisely, see [3]) and

er = (ewop(F) ~ (2~ 29)) ~ 1 (e1op(F) — (2~ 29)).
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On the other hand, the local invariants ¢3(F), co(F) and xr were defined in [34] for a
fiber germ F' of a global fibration f: S — B. Indeed,

Proposition 9.1. We have ep = co(F') and

1
Lsd(F) = §(cf(F) —2ep) = 4xr — er.

Proof. These invariants satisfy the following properties: Let f: S — B be a fibered
surface of genus g and f: S — B be the semi-stable reduction of f via a cyclic covering
B — B of degree N. Then we have

Sign(S) — %Sign(g) = Z Lsd(F}),

peB
1
K2 SK2= 3 A(F,),
peB

Let F' be an arbitrary fiber germ in a global fibration f: S — B. Taking base change,
we may assume that any fiber of f other than F is semi-stable. Thus we get the

assertion from Hirzebruch’s signature formula Sign(S) = K J% — 8xf, Noether’s formula

~

12x¢ = KJ% + ey and (9.1) since Lsd(F) = A(F) = co(F) = es = Xp = 0 for any
semi-stable fiber germ F. O

Let Py A= Mg be the moduli map of the semi-stable reduction f: S — A. For an

effective divisor F on M, not containing the image p J?(A), we can define the pull-back
p’]%E. Let E(F) := deg(p’}%E). Note that even when E ~ E’ holds for two effective

~ ~

divisors E and E’, it is not always true that E(F) = E’(F') because we treat local
fibrations here. Given an effective divisor D on M, such that D does not contain
pf(ﬁ) with D ~q a\ — ZE‘(’:/OQ] b;id;, we put

. 1 ([ ~ .
p(F) =~ ( (F)+ 3 b >>
In general, for a relatively minimal fiber germ F', we define

Ap(F)

Ap(F) == xr + N
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and

5(F) = er+ X0 = () — (2 29)

which are independent of the choice of N.

Now we consider a global fibration f: S — B, that is, a surjective morphism from
a smooth projective surface S to a smooth projective curve B with connected fibers.
Assume that the moduli point of the general fiber of f is not contained in D. From
(9.1), we have

Xf= Z Ap(Fp), ef= Zé(Fp)-

pEB pEB

From Hirzebruch’s signature formula Sign(S) = 4x — ey, we can write

Sign(S) = ) (4Ap(Fp) — 8(F)).
pEB
We call op(F) := 4Ap(F) — 6(F) the local signature of a fiber germ F associated with
D. Note that the divisor 4\ — ¢ is called the signature divisor in [6].

10 Examples

Now we consider two effective divisors £, _1 and E, ; on M, which parameterize curves
C of genus g having a special Weierstrass point. Let C be a smooth curve of genus g. Let
p be a Weierstrass point of C, i.e., a point on C satisfying h°(gp) > 2. Then p is said to
be exceptional of type g—1 (resp. of type g+1) if h%((g—1)p) > 2 (resp. h°((g+1)p) > 3).
The locus E; _1 (resp. E41) on M, is (roughly) defined by the set of curves of genus
g with an exceptional Weierstrass point of type g — 1 (resp. of type g + 1) with the
natural scheme structure, which is of codimension 1 for g > 3. For more details, see
[16]. For g = 2, the loci Fg,_l and Eg’l are empty. For g = 3, Eg,_l is coincide with the
hyperelliptic locus Hs as a set, but as a divisor, we have E3,_1 = 8H5. Indeed, once a
genus 3 curve has one exceptional Weierstrass point of type 2, it becomes hyperelliptic
and hence has 8 Weierstrass points of type 2 automatically. Since the hyperelliptic
Weierstrass point is exceptional of type g — 1 and g + 1, the hyperelliptic locus ﬂg is
contained in both Eg’_l and Eg,l. In particular, Eg’_l = 8F3 is a subdivisor of Eg’l.
Thus we can define an effective divisor HF := E371 —F3,—1- As a different definition, let
HF be the locus on the moduli space M3\ H3 of smooth plane quartics parameterizing
plane quartic curves with a hyperflex, i.e., 4-fold tangent point. Then the above HF is
just the closure of HF in M3. The locus HF has multiplicity 1 around general points.
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For g > 4, Eg,_l and EQJ also have multiplicity 1 around general points. It is known

that the rational divisor classes of Eg’_l and Eg,l are given by

2 _ _ _ 2 lg/2] . o 2 _
B, =Y (9-1)Bg—-1, -1 g+ 1)50 -y i(g —4)g(g” +g9—4) 5.
: 2 6 . 2
l9/2] .
= _ g+t +2B +39+2), glg+1’(9+2), gz ilg =g+ g +2)° ¢
g,1 9 6 0 i:1 2 7

(cf. [16], [13], [14]). In particular, we have

Es 1 =T2\—88) — 2461, E31 = 380\ — 405y — 1006,
Hs =9\ — 6o — 361, HF = 308\ — 326, — 766;.

Now, we will check using the simplest example of fibered surface of genus 3 that two

local signatures o4, and oy 7 associated with Hsz and HF give different localizations.

Ezample 10.1. Let {C)} C |4Hp2| be a general Lefschetz pencil of quartics. The base
locus of {C\} consists of 16 points and they are on smooth members. Blowing up at
these 16 points, we obtain a non-hyperelliptic fibration f: S — P! of genus 3. By a
simple computation, we get x5 = 3, ey = 27, K]% = 9 and Sign(S) = —15. Note that
all singular fibers of f are irreducible curves with one node and the number of them is
27. Thus we have Hz(f) = 0, A\(f) = 3, do(f) = 27 and &;(f) = 0. Hence we have
HF(f) = 60. This implies that the number of smooth curves in a general Lefschetz
pencil of quartic curves with a hyperflex is 60. Let Fyr and Fj respectively be a smooth
quartic fiber germ of f with one hyperflex and an irreducible fiber germ of f with one

node. Then clearly we have

So(Fug) =0, 61(Fhr) =0, Ha(Fue) =0, HF(Fue) =1

and
do(Fo) =1, 61(Fo) =0, Ha(Fo) =0, HF(Fp)=0.
Thus we get
M (Fut) =0, e (o) = 5, oy (Fi) =0, o, (Fo) =
and

45

8 1
A (Fa) = Aur(Fo) = = onr(Fhe) = e onr(Fo) = —=

308

Thus two local signatures o, and oy are different.
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Next, let us consider the genus 2 case. The rational Picard group of M is generated
by A, dp and §; with one relation 10\ = §p + 20;. For a semi-stable fiber germ F of
genus 2, we put A(F) := (6o(F) + 261(F))/10. For a not necessarily semi-stable fiber
germ F', we define A\(F) by using the semi-stable reduction similarly as in the previous
section. We also define a (pre-)Horikawa index Ind(F) := 10A(F') — §(F) for a relatively
minimal genus 2 fiber germ F'. It coincides with the original Horikawa index defined by
using the double covering data (cf. [35], [22], [37]) and hence it is non-negative. A local
signature can be defined by o(F) := 4\(F') — §(F) for any fiber germ F of genus 2.

Now, we define another local signature for non-bielliptic genus 2 fiber germs. Let Bs
be the bielliptic locus on M5 and B, its closure in M. They are irreducible codimension

1 loci. From [19], the rational linearly equivalence class of By is

— 3 3
By = 550 + 667 = 30\ — 5(50 = 15\ + 36;.

Thus, for non-bielliptic genus 2 fiber germs, two localizations of the Hodge bundle A

can be realized as follows. We put

ABy,0(F) = @BZ(F) + 2—050(F)
and . .
ABy,1 (F) i= 1—51_32(F) — —61(F)

for a semi-stable non-bielliptic fiber germ F of genus 2. By using semi-stable reduction,
we define Ag, o(F), Ap,1(F) for any non-bielliptic fiber germ F of genus 2. Then
0B,,i(F) = 4Xg, i(F) — 0(F), i = 1,2 are local signatures for genus 2 non-bielliptic
fibrations.

Example 10.2. Let Fy, F} and Fp, respectively be non-bielliptic genus 2 fiber germs the
image of whose moduli map meets Ag, A; and By transversally (and does not meet

other loci among them) at the moduli point of the central fiber. Then we have

3 1
U(FO):__, O'(F]_):——, 0'(}7}7):07
i) 5
4 2
06270(F0) - _g’ 0-3270(F1) = _17 UBQ,O(Fb) = g,
9 4
08,1(Fo) = —1, op,1(F1) = 5 0B8,,0(Fp) = 15

For example, take a general member R in the complete linear system |prjOp:(N) ®
priOp (6)], N € 2Z~¢ on P! x P! and construct the double covering S — P! x P!
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branched over R. Then the composite f: S — P! of the double covering and the first

projection pry is a non-bielliptic fibration of genus 2. By a simple computation, we have
xf =N, K?=2N, e;=10N, Sign(S)=—6N.

Since R is general, we may assume that any singular fiber germ of f is of type Fj as
above. Thus the number of fiber germs of type Fy, Fy} and Fp is 10N, 0 and 15N,

respectively.
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