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Introduction

Throughout this thesis, we work over the complex number field C. Let f : S → B be a

fibered surface of genus g, that is, a surjective morphism from a non-singular projective

surface S to a non-singular projective curve B whose general fiber is a non-singular

curve of genus g. We assume that the genus g is greater than 1 in the sequel. Let
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Kf = KS−f∗KB denote the relative canonical bundle of f and put χf := degf∗O(Kf ).

We always assume that a fibered surface f : S → B is relatively minimal and not locally

trivial, i.e., Kf is nef and χf is positive. The ratio λf := K2
f/χf of the self-intersection

number K2
f and χf is called the slope of f . It is well known that the slope λf satisfies

the inequality
4(g − 1)

g
≤ λf ≤ 12,

which is nowadays called the slope inequality for fibered surfaces. The slope λf attains

the lower bound only if the fibration f is hyperelliptic, i.e., a general fiber F is a

hyperelliptic curve ([27] and [36]). As to the upper bound, Kodaira [25] constructed

examples of fibrations with slope 12, which are nowadays called Kodaira fibrations.

Thus the inequality λf ≤ 12 is sharp among all fibered surfaces. On the other hand,

Matsusaka [32] obtained an upper bound smaller than 12 for hyperelliptic case and Xiao

[38] improved this bound. In [12], upper bounds for genus 3 fibrations are studied from

another point of view.

We studied in [18] primitive cyclic covering fibrations of type (g, h, n). Roughly

speaking, it is a fibered surface of genus g obtained as the relatively minimal model of

an n sheeted cyclic branched covering of another fibered surface of genus h. Note that

hyperelliptic fibrations are nothing more than such fibrations of type (g, 0, 2) and that

bielliptic fibrations of genus g ≥ 6 are those of type (g, 1, 2) (cf. [8] and [15]). Here,

a fibration is called bielliptic if a general fiber is a bielliptic curve, i.e., a non-singular

projective curve obtained as a double covering of an elliptic curve. In [18], we established

the lower bound of the slope for such fibrations of type (g, h, n) extending former results

for n = 2 in [7] and [15]. Furthermore, when h = 0, we obtained even the upper bound

(expressed as a function in g and n) which is strictly smaller than 12. Recall that known

examples of Kodaira fibrations, including Kodaira’s original ones [25], are presented as

primitive cyclic covering fibrations with h ≥ 2 and, in fact, there exist such fibrations

for any h ≥ 2 (see, [11] and [23]). Hence, as far as the upper bound of the slope strictly

smaller than 12 concerns, the remaining case to be examined is h = 1.

The first purpose of the present thesis is to give an affirmative answer to the above

mentioned upper bound problem by introducing numerical invariants attached to the

singularities of the branch locus of the cyclic covering, and improving coarser estimates

in [18]. When h = 0, a vertical component of the branch locus on a relatively minimal

model is always a non-singular rational curve and this fact makes it much easier to

handle singularities on the branch locus. On the other hand, when h > 0, we must pay

attention to all subcurves of fibers and their singularities in a fibration of genus h, which

seems quite terrible. Fortunately enough, when h = 1, we have Kodaira’s classification
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of singular fibers [26] from which we know that major components are rational curves

and singularities are mild. This gives us a hope to extend results for h = 0 to fibrations

of type (g, 1, n). In fact, we can show the following:

Theorem 0.1. Assume that g ≥ (2n−1)(3n−1)/(n+1). Then, there exists a function

Ind: Ag,1,n → Q≥0 from the set Ag,1,n of all fiber germs of primitive cyclic covering

fibrations of type (g, 1, n) such that Ind(Fp) = 0 for a general p ∈ B and

K2
f =

12(n− 1)

2n− 1
χf +

∑
p∈B

Ind(Fp)

for any primitive cyclic covering fibration f : S → B of type (g, 1, n).

Theorem 0.2. Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n).

Then

λf ≤ 12−



6n2

(n+ 1)(g − 1)
, if n ≥ 4, or n = 3 and g = 4

24

4g − 17
, if n = 3 and g > 4,

2

g − 2
, if n = 2 and g ≥ 3.

In particular, we have the slope equality and the upper bound of the slope for bielliptic

fibrations. We remark that the upper bounds in Theorem 0.2 are “fiberwise” sharp as

we shall see in Example 3.14. We do not know, however, whether there exist primitive

cyclic covering fibrations of type (g, 1, n) whose slopes attain the bounds.

The organization of the first half in the paper is as follows. In §1, we recall basic

results from [18] on primitive cyclic covering fibrations and introduce some notation for

the later use. In §2, we observe the local concentration of relative invariants of primitive

cyclic covering fibrations of type (g, 1, n) on a finite number of fiber germs and show

Theorem 0.1. §3 will be devoted to the proof of Theorem 0.2. In the course of the study,

we freely use Kodaira’s table of singular fibers of elliptic surfaces.

Secondly, we consider fibered surfaces whose general fiber is a plane curve of degree

d which are called plane curve fibrations of degree d. A plane curve fibration of degree

1 or 2 is a ruled surface and that of degree 3 is nothing but an elliptic surface. In the

sequel, we always assume that d is greater that 3. Note that a plane curve fibration of

degree 4 is nothing but a non-hyperelliptic fibration of genus 3. Let Ad be the set of

holomorphically equivalence classes of fiber germs whose general fiber is a smooth plane

curve of degree d. Then our main theorem for plane curve fibrations is as follows.

Theorem 0.3. There exists a non-negative function Indd : Ad → 1
d−2Z≥0 such that for

any relatively minimal plane curve fibration f : S → B of degree d, the value Indd(F )
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equals to 0 for any general fiber F of f and

K2
f =

6(d− 3)

d− 2
χf +

∑
p∈B

Indd(Fp) (0.1)

holds, where Fp := f−1(p) denotes the fiber germ over p ∈ B.

The value Indd(Fp) is nowadays called a Horikawa index of Fp and the equality (0.1)

a slope equality for plane curve fibrations of degree d (cf. [5]). In the case of d = 4,

that is, non-hyperelliptic fibrations of genus 3, Theorem 0.3 was first obtained by Reid

[33] which was generalized for fibered surfaces of odd genus g whose general fiber has

maximal Clifford index by Konno [28]. The lower bound of the slope of plane curve

fibrations of degree 5 was obtained by Barja-Stoppino [9].

The strategy of the proof of Theorem 0.3 is as follows. Let λd := 6(d − 3)/(d − 2).

Given a plane curve fibration f : S → B of degree d, we will show that there is a

line bundle L on S such that the restriction L|F to the general fiber F defines the

embedding F ⊂ P2 in §4. Using the line bundle L, we will show in §5 that the difference

K2
f − λdχf can be localized on a finite number of fiber germs, that is, we can define

Indd(Fp) for any fiber germ Fp of f . But it seems hard to show the non-negativity

of Indd(Fp) directly from the definition. Thus we will show firstly a slope inequality

K2
f − λdχf ≥ 0 in §6. The essential idea of the proof is to apply the Hilbert stability

of the Veronese embedding (cf. [24]) to the result of Barja-Stoppino [10]. In order to

deduce the non-negativity of the Horikawa index from the slope inequality, we will use

an algebraization of any fiber germ in Ad in §7, the idea of which is due to Terasoma [35].

Roughly speaking, for an arbitrary fiber germ F in Ad, we construct a global plane curve

fibration f : S → P1 of degree d whose central fiber F = f
−1

(0) is an “approximation”

of F and any other singular fiber is an irreducible Lefschetz plane curve with one node.

Since we can show that Indd(F0) = 0 for an irreducible Lefschetz fiber germ F0 with one

node, we in particular have Indd(F ) = Indd(F ) = K2
f −λdχf . Thus the slope inequality

K2
f − λdχf ≥ 0 implies the non-negativity of Indd(F ) for any fiber germ F in Ad.

In the last 3 sections, we shall focus our attention on local signatures for fibered

surfaces. Here, for a closed oriented real 4-manifold X, the signature of X is defined

to be the signature of the intersection form H2(X,R) × H2(X,R) → R, which is a

symmetric bilinear form. We consider the situation thatX admits a fibration f : X → B

over a closed oriented surface B. Under some conditions, the signature of X happens

to localize around a finite number of fiber germs F1, F2, . . . , Fm:

Sign(X) =

m∑
i=1

σ(Fi).
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We call this phenomenon a localization of the signature and the value σ(Fi) a local

signature of Fi. A first example of local signatures is the one for genus 1 fibrations due

to Matsumoto [30]. He also gave a local signature for Lefschetz fibrations of genus 2 in

[31], which was generalized by Endo [17] for hyperelliptic fibrations. Later, Kuno [29]

defined a local signature for plane curve fibrations, which includes non-hyperelliptic

fibrations of genus 3. On the other hand, Horikawa [22] defined a function Ind(F ) on

the set of holomorphic fiber germs F of genus 2, which is nowadays called a Horikawa

index, in order to study algebraic surfaces of general type near the Noether line. Once

a Horikawa index is defined (for a certain type of holomorphic fibrations), we can define

a local signature by using it, as shown in [5]. After Horikawa’s work, Xiao [37] and

Arakawa-Ashikaga [1] defined a Horikawa index and a local signature for hyperelliptic

fibrations. Terasoma [35] showed the coincidence of Endo’s local signature and Arakawa-

Ashikaga’s one. For non-hyperelliptic genus 3 fibrations, Reid [33] defined a Horikawa

index. Similarly to Terasoma’s proof, Kuno’s local signature and Reid’s one for non-

hyperelliptic fibrations of genus 3 also coincide (cf. [4]).

In §8, we will discuss the signature of surfaces with plane curve fibrations. We can

define a local signature for plane curve fibrations by using the Horikawa index in The-

orem 0.3 (cf. [5]). We will show the coincidence of this local signature and Kuno’s one

similarly as in [35].

In §9 and §10, we construct a local signature associated with an effective divisor D

on the moduli space Mg of smooth curves of genus g and compute some examples of

local signatures for general fibrations of genus 2 or 3, which are different from Endo-

Arakawa-Asikaga’s one and Kuno-Reid’s one. The idea of constructions is essentially

due to Ashikaga-Yoshikawa [6], who called the divisor 4λ−δ on the moduli spaceMg of

stable curves of genus g the signature divisor and gave a local signature by pulling back

the signature divisor using a geometric meaningful effective divisor D, e.g., the Brill-

Noether locus, via the moduli map of a fiber germ. Replacing D by another effective

divisor, the associated local signature varies. We compute local signatures in the case

that g = 2 and D is the bielliptic locus and that g = 3 and D is the locus of curves

having a hyperflex.

Acknowledgment. I would like to express special thanks to my supervisor Prof. Kazuhiro

Konno for many comments and supports. Thanks are also due to Prof. Tadashi Ashikaga

for useful advises and discussions.
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1 Preliminaries

In this section, we recall and state basic results for primitive cyclic covering fibrations

in [18].

Definition 1.1. A relatively minimal fibration f : S → B of genus g ≥ 2 is called a prim-

itive cyclic covering fibration of type (g, h, n), if there exist a (not necessarily relatively

minimal) fibration φ̃ : W̃ → B of genus h ≥ 0, and a classical n-cyclic covering

θ̃ : S̃ = Spec
W̃

n−1⊕
j=0

O
W̃
(−jd̃)

→ W̃

branched over a smooth curve R̃ ∈ |nd̃| for some n ≥ 2 and d̃ ∈ Pic(W̃ ) such that f is

the relatively minimal model of f̃ := φ̃ ◦ θ̃.

Let f : S → B be a primitive cyclic covering fibration of type (g, h, n). We freely use

the notation in Definition 1.1. Let F̃ and Γ̃ be general fibers of f̃ and φ̃, respectively.

Then the restriction map θ̃|F̃ : F̃ → Γ̃ is a classical n-cyclic covering branched over

R̃∩ Γ̃. Since the genera of F̃ and Γ̃ are g and h, respectively, the Hurwitz formula gives

us

r := R̃Γ̃ =
2(g − 1− n(h− 1))

n− 1
. (1.1)

Note that r is a multiple of n. Let σ̃ be a generator of Aut(S̃/W̃ ) ≃ Z/nZ and ρ : S̃ → S

the natural birational morphism. By assumption, Fix(σ̃) is a disjoint union of smooth

curves and θ̃(Fix(σ̃)) = R̃. Let φ : W → B be a relatively minimal model of φ̃ and

ψ̃ : W̃ → W the natural birational morphism. Since ψ̃ is a succession of blow-ups, we

can write ψ̃ = ψ1 ◦ · · · ◦ ψN , where ψi : Wi → Wi−1 denotes the blow-up at xi ∈ Wi−1

(i = 1, . . . , N) with W0 = W and WN = W̃ . We define reduced curves Ri on Wi

inductively as Ri−1 = (ψi)∗Ri starting from RN = R̃ down to R0 =: R. We also put

Ei = ψ−1
i (xi) and mi = multxi

(Ri−1) for i = 1, 2, . . . , N .

Lemma 1.2. With the above notation, the following hold for any i = 1, . . . , N .

(1) Either mi ∈ nZ or mi ∈ nZ+ 1. Moreover, mi ∈ nZ holds if and only if Ei is not

contained in Ri.

(2) Ri = ψ∗
iRi−1 − n

[mi

n

]
Ei, where [t] is the greatest integer not exceeding t.

(3) There exists di ∈ Pic(Wi) such that di = ψ∗
i di−1 and Ri ∼ ndi, dN = d̃.

Let E be a (−1)-curve on a fiber of f̃ . If E is not contained in Fix(σ̃), then L := θ̃(E)

is a (−1)-curve and θ̃∗L is the sum of n disjoint (−1)-curves containing E. Contracting
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them and L, we may assume that any (−1)-curve on a fiber of f̃ is contained in Fix(σ̃).

Then σ̃ induces an automorphism σ of S over B and ρ is the blow-up of all isolated fixed

points of σ (cf. [18]). One sees easily that there is a one-to-one correspondence between

(−k)-curves contained in Fix(σ̃) and (−kn)-curves contained in R̃ via θ̃. Hence, the

number of blow-ups in ρ is that of vertical (−n)-curves contained in R̃.

From Lemma 1.2, we have

Kφ̃ = ψ̃∗Kφ +
N∑
i=1

Ei, (1.2)

d̃ = ψ̃∗d−
N∑
i=1

[mi

n

]
Ei, (1.3)

where Ei denotes the total transform of Ei. Since

KS̃ = θ̃∗
(
K

W̃
+ (n− 1)d̃

)
and

χ(OS̃) = nχ(O
W̃
) +

1

2

n−1∑
j=1

jd̃(jd̃+K
W̃
),

we get

K2
f̃
= n(K2

φ̃ + 2(n− 1)Kφ̃d̃+ (n− 1)2d̃2), (1.4)

χf̃ = nχφ̃ +
1

2

n−1∑
j=1

jd̃(jd̃+Kφ̃). (1.5)

Definition 1.3 (Singularity index α). Let k be a positive integer. For p ∈ B, we consider

all the singular points (including infinitely near ones) of R on the fiber Γp of φ : W → B

over p. We let αk(Fp) be the number of singular points of multiplicity either kn or

kn+ 1 among them, and call it the k-th singularity index of Fp, the fiber of f : S → B

over p. Clearly, we have αk(Fp) = 0 except for a finite number of p ∈ B. We put

αk =
∑

p∈B α(Fp) and call it the k-th singularity index of f .

Let D1 be the sum of all φ̃-vertical (−n)-curves contained in R̃ and put R̃0 = R̃−D1.

We denote by α0(Fp) the ramification index of φ̃|R̃0
: R̃0 → B over p, that is, the

ramification index of φ̃|(R̃0)h
: (R̃0)h → B over p minus the sum of the topological Euler

number of irreducible components of (R̃0)v over p. Then α0(Fp) = 0 except for a finite

number of p ∈ B, and we have∑
p∈B

α0(Fp) = (Kφ̃ + R̃0)R̃0

by definition. We put α0 =
∑

p∈B α(Fp) and call it the 0-th singularity index of f .
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Let ε(Fp) be the number of (−1)-curves contained in F̃p, and put ε =
∑

p∈B ε(Fp).

This is no more than the number of blowing-ups appearing in ρ : S̃ → S.

From (1.2) and (1.3), we have

(Kφ̃ + R̃)R̃ =

(
ψ̃∗(Kφ +R) +

N∑
i=1

(
1− n

[mi

n

])
Ei

)(
ψ̃∗R− n

[mi

n

]
Ei

)
= (Kφ +R)R−

N∑
i=1

n
[mi

n

] (
n
[mi

n

]
− 1
)

= (Kφ +R)R− n
∑
k≥1

k(nk − 1)αk. (1.6)

On the other hand, we have

(Kφ̃ + R̃)R̃ = (Kφ̃ + R̃0)R̃0 +D1(Kφ̃ +D1) = α0 − 2ε. (1.7)

Hence,

(Kφ +R)R = n
∑
k≥1

k(nk − 1)αk + α0 − 2ε. (1.8)

by (1.6) and (1.7). Since K2
f = K2

f̃
+ ε, χf̃ = χf , (1.2), (1.3), (1.4) and (1.5), we get

K2
f = nK2

φ + 2(n− 1)KφR+
(n− 1)2

n
R2 −

∑
k≥1

((n− 1)k − 1)2αk + ε (1.9)

and

χf = nχφ +
(n− 1)(2n− 1)

12n
R2 +

n− 1

4
KφR−

n(n− 1)

12

∑
k≥1

((2n− 1)k2 − 3k)αk.

(1.10)

From (1.8), (1.9), (1.10) and Noether’s formula, we have

ef = neφ + n
∑
k≥1

αk + (n− 1)α0 − (2n− 1)ε. (1.11)

We define some notation for the later use. For a vertical divisor T and p ∈ B, we

denote by T (p) the greatest subdivisor of T consisting of components of the fiber over

p. Then T =
∑

p∈B T (p). We consider a family {Li}i of vertical irreducible curves in

R̃ over p satisfying:

(i) L1 is the proper transform of an irreducible curve Γ1 contained in the fiber Γp or

a (−1)-curve E1 appearing in ψ̃.
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(ii) For i ≥ 2, Li is the proper transform of an irreducible curve Γi contained in the

fiber Γp intersecting Γk for some k < i or an exceptional (−1)-curve Ei that contracts

to a point xi on Ck (or on its proper transform) for some k < i, where we define Cj to

be Ej or Γj according to whether Lj is the proper transform of which curve.

(iii) {Li}i is the largest among those satisfying (i) and (ii).

The set of all vertical irreducible curves in R̃ over p is decomposed into the disjoint

union of such families uniquely. We denote it as

R̃v(p) = D1(p) + · · ·+Dηp(p), Dt(p) =
∑
k≥1

Lt,k

where ηp denotes the number of the decomposition and {Lt,k}k satisfies (i), (ii), (iii).

Let Ct,k be the exceptional curve or the component of the fiber Γp the proper transform

of which is Lt,k. Let D′t(p) be the sum of all irreducible components of Dt(p) which

are the proper transforms of curves contained in Γp and D′′t(p) = Dt(p)−D′t(p). Let

η′p be the cardinality of the set {t = 1, . . . , ηp|D′t(p) ̸= 0} and η′′p = ηp − η′p.

Definition 1.4 (Index j). Let jb,a(Fp) (resp. j
t
b,a(Fp), j

′t
b,a(Fp), j

′′t
b,a(Fp)) be the number

of irreducible curves of genus b with self-intersection number −an contained in R̃v(p)

(resp. Dt(p), D′t(p), D′′t(p)). Put

jt•,a(Fp) =
∑
b≥0

jtb,a(Fp), jtb,•(Fp) =
∑
a≥0

jtb,a(Fp), jb,a(Fp) =
∑
t≥1

jtb,a(Fp).

Similarly, we define jt(Fp) = jt•,•(Fp), j
′t
•,a(Fp), j

′′t
•,a(Fp), etc. Clearly, we have j

′′
b,•(Fp) =

0 for any b ≥ 1 by the definition of D′′t(p).

Rearranging the index if necessary, we may assume that D′t(p) =
∑j′t(Fp)

k=1 Lt,k,

D′′t(p) =
∑jt(Fp)

k=j′t(Fp)+1 L
t,k. Put L′t,k = Lt,k, L′′t,k = Lt,j′t(Fp)+k, C ′t,k = Ct,k,

C ′′t,k = Ct,j′t(Fp)+k.

Let α+
0 (Fp) be the ramification index of φ̃ : R̃h → B over p and put α−

0 (Fp) =

α0(Fp)−α+
0 (Fp). It is clear that ε(Fp) = j0,1(Fp) and α

−
0 (Fp) =

∑
b≥0(2b−2)jb,•(Fp)+

2ε(Fp).

Let ηp be the number of t = 1, . . . , ηp such that jt(Fp) = j′′t0,1(Fp) and η̂p = η′′p − ηp.

Definition 1.5 (Vertical type singularity). Let x be a singular point of R. For t =

1, . . . , ηp and u ≥ 1, x is a (t, u)-vertical type singularity or simply a u-vertical type

singularity if the number of Ct,k’s whose proper transforms pass through x is u. If

x is a (t, u)-vertical type singularity and the multiplicity of it belongs to nZ (resp.

nZ+ 1), we call it a (t, u)-vertical nZ type singularity (resp. (t, u)-vertical nZ+ 1 type

singularity).
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Let ιt,(u)(Fp), κ
t,(u)(Fp) respectively be the number of (t, u)-vertical nZ, nZ+1 type

singularities over p and put

ιt(Fp) =
∑
u≥1

(u− 1)ιt,(u)(Fp), κt(Fp) =
∑
u≥1

(u− 1)κt,(u)(Fp),

ι(Fp) =
∑ηp

t=1 ι
t(Fp) and κ(Fp) =

∑ηp

t=1 κ
t(Fp). Let ι

t,(u)
k (Fp), κ

t,(u)
k (Fp) respectively

be the number of (t, u)-vertical type singularities with multiplicity kn, kn + 1 and we

define ιtk(Fp), κ
t
k(Fp), ιk(Fp) and κk(Fp) similarly.

Definition 1.6 (Indices α′, α′′). We say that a singular point x of R is involved in

Dt(p) if there exists Ct,k such that it or its proper transform passes through x or it

contracts to x. A singular point x of R is involved in R̃v(p) if it is involved in Dt(p) for

some t. Let α′
k(Fp) (resp. α

′′
k(Fp)) denote the number of singularities with multiplicity

kn or kn + 1 over p not involved in R̃v(p) (resp. involved in R̃v(p)). Clearly, we

have αk(Fp) = α′
k(Fp) + α′′

k(Fp). Let α′′t
k (Fp) denote the number of singularities with

multiplicity kn or kn+1 over p involved inDt(p). Then, we have α′′
k(Fp) =

∑ηp

t=1 α
′′t
k (Fp)

by the definition of the decomposition R̃v(p) = D1(p) + · · · + Dηp(p). Let αnZ
k (Fp),

αnZ+1
k (Fp) respectively denote the number of singularities with multiplicity kn, kn+ 1

over p. Similarly, we define α′′nZ
k (Fp), α

′′nZ+1
k (Fp), etc.

Definition 1.7 (Singularity of type (i → i)). Suppose that n = 2. If the exceptional

curve Ex of the blow-up at a singularity x of R with multiplicity 2k + 1 contains only

one singularity y, then the multiplicity at y is 2k + 2 and Ex contributes to j′′0,1(Fp).

Conversely, the exceptional curve E contributing to j′′0,1(Fp) has such a pair (x, y).

Then we call the pair (x, y) a singularity of type (2k + 1 → 2k + 1) (cf. [37]). Let

α(2k+1→2k+1)(Fp) be the number of singularities of type (2k + 1→ 2k + 1) over p (i.e.,

s2k+1(Fp) in the notation of [37]). Then we have

j′′0,1(Fp) =
∑
k≥1

α(2k+1→2k+1)(Fp). (1.12)

We decompose

α(2k+1→2k+1)(Fp) = αtr
(2k+1→2k+1)(Fp) + αco

(2k+1→2k+1)(Fp)

and

αco
(2k+1→2k+1)(Fp) = αco,0

(2k+1→2k+1)(Fp) + αco,1
(2k+1→2k+1)(Fp)

as follows. Let αtr
(2k+1→2k+1)(Fp) be the number of singularities of type (2k+1→ 2k+1)

over p at which any local branch of Rh intersects the fiber over p transversely. Let

αco,0
(2k+1→2k+1)(Fp) (resp. α

co,1
(2k+1→2k+1)(Fp)) be the number of singularities (x, y) of type
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(2k + 1 → 2k + 1) over p such that the proper transform of the vertical component

passing through x also passes through y and is not contained in R (resp. is contained

in R).

Notation 1.8. For a condition or a Roman numeral P, we put δP = 1 if the condition

P holds or Γp is a singular fiber of type P, and δP = 0 otherwise.

Let C = Ct,k and assume that it is smooth. If C is on Wi, we drop the index and set

R = Ri for simplicity. Let R′ = R − C. Let x1, . . . , xl be all the points of C ∩ R′. We

put xi,1 = xi and mi,1 = mi. We define ψi,1 : Wi,1 → W to be the blow-up at xi,1 and

put Ei,1 = ψ−1
i,1 (xi,1) and Ri,1 = ψ∗

i,1R− n[mi,1/n]Ei,1. Inductively, we define xi,j , mi,j

to be the intersection point of the proper transform of C and Ei,j−1, the multiplicity

of Ri,j−1 at xi,j , and if mi,j > 1, we define ψi,j : Wi,j → Wi,j−1, Ei,j and Ri,j to be

the blow-up at xi,j , the exceptional curve for ψi,j and Ri,j = ψ∗
i,jRi,j−1−n[mi,j/n]Ei,j ,

respectively. Put ibm = max{j | mi,j > 1}, that is, the number of blowing-ups occuring

over xi. We may assume that ibm ≥ (i + 1)bm for i = 1, . . . , l − 1 after rearranging

the index if necessary. Put t = R′C and c =
∑l

i=1 ibm. If C is a fiber Γ of φ, t is the

number of branch points r. If C is an exceptional curve, t is the multiplicity of R at

the point to which C is contracted. Clearly, c is the number of blow-ups on C. Set

di,j = [mi,j/n]. Then the following lemmas hold (cf. [18]).

Lemma 1.9 ([18]). We have

t+ c

n
=

l∑
i=1

ibm∑
j=1

di,j . (1.13)

This is a special case of the following lemma:

Lemma 1.10. Let f : S → B be a primitive cyclic covering fibration of type (g, h, n).

Let C be a curve contained in R, L the proper transform of C on W̃ and x1, x2,. . . , xc

all the singularities of R on C (including infinitely near ones ). Put mi = multxi
(R),

ki = multxi
(C) and di = [mi/n]. Then, we have

RC − L2

n
=

c∑
i=1

kidi.

Proof. We may assume that ψi is the blow-up at xi for i = 1, . . . , c. Then, we can

write L = ψ̃∗C −
∑c

i=1 kiEi and R̃ = ψ̃∗R −
∑N

i=1 ndiEi. Thus, we have R̃L =

RC−
∑c

i=1 nkidi. On the other hand, since R̃−L and L are disjoint, we have L2 = R̃L.

From these equalities, the assertion follows. 2

Lemma 1.11 ([18]). The following hold.

11



(1) When n ≥ 3, then mi,j ≥ mi,j+1. When n = 2, then mi,j +1 ≥ mi,j+1 with equality

holds only if mi,j−1 ∈ 2Z (if j > 1) and mi,j ∈ 2Z+ 1.

(2) If mi,j−1 ∈ nZ+ 1 and mi,j ∈ nZ, then mi,j > mi,j+1.

(3) mi,ibm ∈ nZ.

Definition 1.12. By using the datum {mi,j}, one can construct a diagram as in Table

1. We call it the singularity diagram of C.

Table1 singularity diagram

#

(x1,1bm
,m1,1bm

)

#

· · · (xl,lbm
,ml,lbm)

· · · · · ·
(x1,1,m1,1) · · · (xl,1,ml,1)

On the top of the i-th column (indicated by # in Table 1), we write # = (imax − ibm)
if ibm < imax and leave it blank when ibm = imax. We say that the singularity diagram

of C is of type 0 (resp. of type 1) if C ̸⊂ R (resp. C ⊂ R).

Definition 1.13. LetDt,k be the singularity diagram of Ct,k. We callDt,1,Dt,2, . . . ,Dt,jt(Fp)

a sequence of singularity diagrams associated with Dt(p).

Then the following lemma is clear.

Lemma 1.14. Let Dt,1,Dt,2, . . . ,Dt,jt(Fp) be a sequence of singularity diagrams associ-

ated with Dt(p). Let lt,k := #(R′ ∩ Ct,k) and (xt,ki,j ,m
t,k
i,j ), i = 1, . . . , lt,k, j = 1, . . . , ibm

denote entries of Dt,k. Let (xt,pi,j ,m
t,p
i,j ) be a singularity on Ct,p such that mt,p

i,j ∈ nZ+1,

and mt,p
i,j−1 ∈ nZ when j > 1. Let q > p be the integer such that Ct,q is the ex-

ceptional curve for the blow-up at xpi,j. Then, for every 1 ≤ p′ ≤ p, i′, j′ satisfying

(xt,p
′

i′,j′ ,m
t,p′

i′,j′) = (xt,pi,j ,m
t,p
i,j ), the diagram Dt,q has (xt,p

′

i′,j′+1,m
t,p′

i′,j′+1) as an entry in the

bottom row.

Example 1.15. Suppose that t contributes to ηp. Then C
t,k = C ′′t,k is a (−1)-curve and

blown up n− 1 times for any k.

(1) If n = 2, then the point to which Ct,1 is contracted is a singularity of type (m→ m)

for some odd integer m. Indeed, R′Ct,1 = m and from Lemma 1.9, the singularity

diagram of Ct,1 is the following:

12



m+ 1

Dt,1

where we drop the symbol indicating the singular point on Ct,1 for simplicity. Since

m+ 1 is even, we have jt(Fp) = 1. This observation gives us

ηp =
∑
k≥1

(
αtr
(2k+1→2k+1)(Fp) + αco,0

(2k+1→2k+1)(Fp)
)
. (1.14)

(2) Suppose that n = 3. Let m be the multiplicity of the singular point to which Ct,1

is contracted. Then R′Ct,1 = m and from Lemma 1.9, all possible singularity diagram

of Ct,1 are the following:

(i) n1 n2

Dt,1

(ii)
n2

n1

Dt,1

(iii)
n1

m1

Dt,1

where the integers ni ∈ 3Z and mi ∈ 3Z + 1 satisfy that m + 2 = n1 + n2 in the case

(i), m + 2 = n1 + n2 and n2 ≤ n1 in the case (ii), m + 3 = m1 + n1 and n1 < m1

in the case (iii). If the diagram Dt,1 is (i) or (ii), then jt(Fp) = 1 since there are no

3Z + 1 type singularities on Ct,1. If the diagram Dt,1 is (iii), then jt(Fp) > 1 and the

singularity diagram Dt,2 of Ct,2 which is obtained by the blow-up at the singularity

with multiplicity m1 is (i) or (ii) from Lemma 1.14. Thus we have jt(Fp) = 2.

(3) When n ≥ 4, then the number jt(Fp) is not bounded. For example, we can consider

the following sequence of singularity diagrams associated with Dt(p) when n = 4:

n1

m1 n2

Dt,1

n3

m2 n4

Dt,2

· · ·
n2N−1

mN n2N

Dt,N

where nk ∈ 4Z, mk ∈ 4Z + 1 and Ct,k, k ≥ 2 is the exceptional curve obtained by the

blow-up at the multiplicity on Ct,k−1 with multiplicity mk−1. From Lemma 1.9, we

have mk + 4 = mk+1 + n2k+1 + n2k+2 for any k ≥ 1.
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Recall that the gonality gon(C) of a non-singular projective curve C is the minimum

of the degree of morphisms onto P1. The gonality gon(f) of a fibered surface f : S → B

is defined to be that of a general fiber (cf. [28]).

Proposition 1.16. Let θ : F → Γ be a totally ramified covering of degree n between

smooth projective curves branched over r points. If r ≥ 2n gon(Γ), then gon(F ) =

n gon(Γ). In particular, the gonality of a primitive cyclic covering fibration of type

(g, h, n) is n gon(φ), when r ≥ 2n gon(φ).

Proof. Assume contrary that F has a morphism onto P1 of degree k < n gon(Γ). This

together with the covering θ : F → Γ defines a morphism Φ : F → P1 × Γ. If Φ is of

degree m onto the image Φ(F ), then m is a common divisor of n, k and the arithmetic

genus of Φ(F ) is (n/m− 1)k/m+(h− 1)n/m+1 by the genus formula. Now, let F ′ be

the normalization of Φ(F ). Since the covering F → Γ factors through F ′, we see that

the induced covering F ′ → Γ of degree n/m is a totally ramified covering branched over

r points. Then, by the Hurwitz formula, we have 2g(F ′)−2 = (2h−2)n/m+(n/m−1)r.
Since the genus g(F ′) of F ′ is not bigger than the arithmetic genus of Φ(F ), we get

r ≤ 2(k/m) when n > m, which is impossible, since r ≥ 2n gon(Γ) and k < n gon(Γ).

Thus, we get n = m. Then F ′ is isomorphic to Γ and therefore the morphism F → P1

factors through Γ. Hence we have k ≥ n gon(Γ) by the difinition of the gonality of Γ,

which contradicts k < n gon(Γ). A more careful study shows that any gonality pencil

of F is the pull-back of a gonality pencil of Γ when r > 2n gon(Γ). 2

2 Primitive cyclic covering fibrations of an elliptic surface

Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n). Since

φ : W → B is a relatively minimal elliptic surface, Kφ is numerically equivalent to(
χφ +

∑
p∈B

(
1− 1

mp

))
Γ by the canonical bundle formula, where mp denotes the

multiplicity of the fiber Γp of φ over p. In particular, we have K2
φ = 0. For p ∈ B,

we put ν(Fp) = 1 − 1/mp and ν =
∑

p∈B ν(Fp). Then, we have KφR = (χφ + ν)r.

Combining these equalities with (1.8), (1.9), (1.10) and (1.11), we get the following

lemma:

Lemma 2.1. The following equalities hold.

K2
f =

∑
k≥1

((n+ 1)(n− 1)k − n)αk +
(n− 1)2

n
(α0 − 2ε)
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+
(n+ 1)(n− 1)r

n
(χφ + ν) + ε.

χf =
1

12
(n− 1)(n+ 1)

∑
k≥1

kαk +
(n− 1)(2n− 1)

12n
(α0 − 2ε)

+
(n+ 1)(n− 1)r

12n
(χφ + ν) + nχφ.

ef = (n− 1)α0 + n
∑
k≥1

αk − (2n− 1)ε+ 12nχφ.

For p ∈ B, we put χφ(Fp) = eφ(Γp)/12 and

K2
f (Fp) =

∑
k≥1

((n+ 1)(n− 1)k − n)αk(Fp) +
(n− 1)2

n
(α0(Fp)− 2ε(Fp))

+
(n+ 1)(n− 1)r

n
(χφ(Fp) + ν(Fp)) + ε(Fp),

χf (Fp) =
1

12
(n− 1)(n+ 1)

∑
k≥1

kαk(Fp) +
(n− 1)(2n− 1)

12n
(α0(Fp)− 2ε(Fp))

+
(n+ 1)(n− 1)r

12n
(χφ(Fp) + ν(Fp)) + nχφ(Fp),

ef (Fp) = (n− 1)α0(Fp) + n
∑
k≥1

αk(Fp)− (2n− 1)ε(Fp) + 12nχφ(Fp).

Then, the following slope equality holds:

Theorem 2.2. Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n).

Then

K2
f = λg,1,nχf +

∑
p∈B

Ind(Fp),

where λg,1,n := 12(n− 1)/(2n− 1) and Ind(Fp) is defined by

Ind(Fp) =n
∑
k≥1

(
(n+ 1)(n− 1)

2n− 1
k − 1

)
αk(Fp) +

n− 1

2n− 1
((n+ 1)r − 12n)χφ(Fp)

+
(n+ 1)(n− 1)r

2n− 1
ν(Fp) + ε(Fp).

Moreover, if r ≥ 12n

n+ 1
, then Ind(Fp) is non-negative for any p ∈ B.

15



Proof. Since K2
f =

∑
p∈B K

2
f (Fp), χf =

∑
p∈B χf (Fp) and K2

f (Fp) − λg,1,nχf (Fp) =

Ind(Fp), the claim follows. 2

For an oriented compact real 4-dimensional manifold X, the signature Sign(X) of

X is defined to be the number of positive eigenvalues minus the number of negative

eigenvalues of the intersection form on H2(X). From Lemma 2.1, we observe the local

concentration of Sign(S) to a finite number of fiber germs.

Corollary 2.3 (cf. [5]). Let f : S → B be a primitive cyclic covering fibration of type

(g, 1, n). Then

Sign(S) =
∑
p∈B

σ(Fp),

where σ(Fp) is defined by

σ(Fp) =n
∑
k≥1

(
(n+ 1)(n− 1)

3
k − 1

)
αk(Fp) +

(
(n− 1)(n+ 1)r

3n
− 8n

)
χφ(Fp)

+
(n+ 1)(2n− 1)

3n
ε(Fp) +

(n+ 1)(n− 1)r

3n
ν(Fp)−

(n+ 1)(n− 1)

3n
α0(Fp).

Proof. By the index theorem (cf. [20, p. 126]), we have

Sign(S) =
∑

p+q≡0(mod2)

hp,q(S) = K2
f − 8χf .

On the other hand, we can see that

σ(Fp) = K2
f (Fp)− 8χf (Fp)

by a computation. 2

3 Upper bound of the slope

In this section, we prove the following theorem:

Theorem 3.1. Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n).

(1) If n ≥ 4 or n = 3 and g = 4, then we have

K2
f ≤

(
12− 12n2

r(n− 1)(n+ 1)

)
χf .
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(2) If n = 3 and g ≥ 7, then we have

K2
f ≤

(
12− 24

4g − 17

)
χf .

(3) If n = 2 and g ≥ 3, then we have

K2
f ≤

(
12− 2

g − 2

)
χf .

Corollary 3.2. Let f : S → B be a relatively minimal bielliptic fibered surface of genus

g ≥ 3. Then, we have

K2
f ≤

(
12− 2

g − 2

)
χf .

Proof. Let f : S → B be a relatively minimal fibered surface of genus g whose general

fiber F is a double cover of a smooth curve Γ of genus h. If g > 4h+1, an involution of

the general fiber F of f over Γ is unique. Then, the fibration f has a global involution

since it is relatively minimal (cf. [15]). Hence f is a primitive cyclic covering fibration

of type (g, h, 2). In particular, a relatively minimal bielliptic fibered surface of genus

g ≥ 6 is a primitive cyclic covering fibration of type (g, 1, 2). In the case of g ≤ 5,

we use the semi-stable reduction. We may assume that the slope λf is greater than 8.

Taking a suitable base change B′ → B, we get the base change fibration f ′ : S′ → B′

which is semi-stable and the bielliptic involution on F extends to a global involution,

that is, primitive cyclic covering fibration of type (g, 1, 2). From Theorem 3.1 (3), we

have λf ′ ≤ 12 − 2/(g − 2). On the other hand, we have λf ≤ λf ′ from [34]. Thus the

claim holds. 2

In particular, any bielliptic fibration is not a Kodaira fibration. Namely, the following

holds.

Corollary 3.3. Let Bg ⊂Mg be the bielliptic locus on the moduli space Mg of smooth

curves of genus g. Then Bg contains no complete subvarieties of positive dimension.

Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n). We fix p ∈ B.

Let m = mp be the multiplicity of the fiber Γp of φ over p. Since h = 1, we have

jb,•(Fp) = 0 for any b ≥ 2. From the classification of singular fibers of relatively minimal

elliptic surfaces ([26]), we have the following lemma for u-vertical type singularities:

Lemma 3.4. There exist no u-vertical type singularities of R for u ≥ 4. All possible

3-vertical type singularities are as follows.

Type (II) : Γp is a singular fiber of type (II) in the Kodaira’s table ([26])(i.e., it is a

singular rational curve with one cusp) and it is contained in R. The cusp on Γp is a
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singularity of type nZ + 1 and the singularity at which the proper transform of Γp and

the exceptional curve E1 for the blow-up at the cusp intersect is also of type nZ + 1.

Then, the proper transforms of Γp and E1 and the exceptional curve E2 for the blow-up

at this singularity form a 3-vertical type singularity.

� �
Γp

E1

E2

blow-up blow-up

Type (III) : Γp is a singular fiber of type (III) in the Kodaira’s table (i.e., it consists of

two nonsingular rational curves intersecting each other at one point of order two) and

it is contained in R. The singularity on Γp is a singularity of type nZ + 1. Then, the

proper transforms of Γp and the exceptional curve E1 for the blow-up at this singularity

form a 3-vertical type singularity.

�
Γp

E1

blow-up

Type (IV) : Γp is a singular fiber of type (IV) in the Kodaira’s table (i.e. it consists

of three nonsingular rational curves intersecting one another at one point transversely)

and it is contained in R. The singularity on Γp is a 3-vertical type singularity.

Γp

In particular, we have ι(u)(Fp) = κ(u)(Fp) = 0 for u ≥ 4 and 0 ≤ ι(3)(Fp)+κ
(3)(Fp) ≤ 1.

Next, we give a lower bound of α+
0 (Fp) by using ι(Fp) and κ(Fp).
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Lemma 3.5. We have

α+
0 (Fp) ≥

(
1− 1

m

)
r + (n− 2)(ι(Fp) + 2κ(Fp)) + βp.

where βp := δn̸=2 ((n− 7)δII − (n+ 1)δIII − 2δIV) ι
(3)(Fp)+δn=2

∑
k≥1 2kα

co
(2k+1→2k+1)(Fp).

Proof. Let Γ̃p = mD̃p and D̃p =
∑

imiGi the irreducible decomposition. Then we have

α+
0 (Fp) = r −#(Supp(R̃h) ∩ Supp(Γ̃p))

≥r −
∑
i

R̃hGi

=

(
1− 1

m

)
r +

∑
i

(mi − 1)R̃hGi.

For a (t, 2) or (t, 3)-vertical nZ type singularity x, we denote by Et
x the exceptional

curve for the blow-up at x. Let mt
x be the multiplicity of D̃p along Êt

x, the proper

transform of Et
x on W̃ . Then, we have

∑
i

(mi − 1)R̃hGi ≥
ηp∑
t=1

∑
x:(t, u) nZ, u ≥ 2

(mt
x − 1)R̃hÊ

t
x.

If there exists a singular point of type nZ on Et
x, we replace Et

x with the exceptional

curve E obtained by blowing up at this point. Repeating this procedure, we may assume

that there exist no singular points of type nZ on Et
x. If there exists a singular point of

type nZ+ 1 on Et
x, the proper transform of the exceptional curve obtained by blowing

up at this point belongs to other Du(p). Since the multiplicity of Γ̃p along it is not less

than mt
x > 1, we do not have to consider this situation. Thus, we may assume that

there exist no singular points on Et
x and we have R̃hÊ

t
x ≥ n− 2 if x is a 2-vertical type

singularity, and R̃hÊ
t
x ≥ n − 3 if x is a 3-vertical type singularity. We can see that∑

x:(t, 2) nZm
t
x ≥ 2ιt(Fp) + 2κt(Fp) for any t with ι

t,(3)(Fp) = 0. Thus, if ι(3)(Fp) = 0,

we have

α+
0 (Fp) ≥

(
1− 1

m

)
r + (n− 2)(ι(Fp) + 2κ(Fp)).

If ι(3)(Fp) = 1, then m = 1 and Γp is of type (II), (III) or (IV) from Lemma 3.4. We

may assume that D′1(p) ̸= 0. Let x0 be the 3-vertical nZ type singularity over p.

Suppose that Γp is of type (II). Then, we can see that m1
x0

= 6 and
∑

x:(1, 2) nZm
1
x ≥
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2ι1,(2)(Fp) + 2(κ1(Fp)− 1). Then we have

α+
0 (Fp) ≥

(
1− 1

m

)
r + 5(n− 3) + (n− 2)(ι1,(2)(Fp) + 2(κ1(Fp)− 1))

+ (n− 2)

ηp∑
t=2

(ιt(Fp) + 2κt(Fp))

=

(
1− 1

m

)
r + n− 7 + (n− 2)(ι(Fp) + 2κ(Fp)).

Suppose that Γp is of type (III). Then, we can see that m1
x0

= 4 and
∑

x:(1, 2) nZm
1
x ≥

2ι1,(2)(Fp) + 2(κ1(Fp)− 1). Then we have

α+
0 (Fp) ≥

(
1− 1

m

)
r + 3(n− 3) + (n− 2)(ι1,(2)(Fp) + 2(κ1(Fp)− 1))

+ (n− 2)

ηp∑
t=2

(ιt(Fp) + 2κt(Fp))

=

(
1− 1

m

)
r − n− 1 + (n− 2)(ι(Fp) + 2κ(Fp)).

Suppose that Γp is of type (IV). Then, we can see that m1
x0

= 3 and
∑

x:(1, 2) nZm
1
x ≥

2ι1,(2)(Fp) + 2κ1(Fp). Then we have

α+
0 (Fp) ≥

(
1− 1

m

)
r + 2(n− 3) + (n− 2)(ι1,(2)(Fp) + 2κ1(Fp))

+ (n− 2)

ηp∑
t=2

(ιt(Fp) + 2κt(Fp))

=

(
1− 1

m

)
r − 2 + (n− 2)(ι(Fp) + 2κ(Fp)).

Suppose that n = 2. For a (2k + 1 → 2k + 1) singularity (x, y), let Ey denote the

exceptional curve for the blow-up at y and my the multiplicity of Γ̃p along Êy, the

proper transform of Ey. Then we have∑
i

(mi − 1)R̃hGi ≥
∑
k≥1

∑
(x,y):(2k + 1 → 2k + 1)

(my − 1)R̃hÊy.

By an argument similar to the above, we may assume that there are no singular points

on Ey. Then we have R̃hÊy = 2k for any (2k + 1 → 2k + 1) singularity (x, y). On

the other hand, we have my ≥ 2 for any (2k + 1 → 2k + 1) singularity (x, y) in-

volved in αco
(2k+1→2k+1)(Fp). Thus, we obtain

∑
(x,y):(2k + 1 → 2k + 1)(my − 1)R̃hÊy ≥

2kαco
(2k+1→2k+1)(Fp).

2
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We can translate the index α′′ into other indices as follows.

Lemma 3.6. The following equalities hold.

∑
k≥1

α′′
k(Fp) = η′′p +

∑
a≥1

anj′1,a(Fp) +
∑
a≥1

(an− 2− δ
mI1,II)j

′
0,a(Fp) (3.1)

+
∑
a≥1

(an− 1)j′′0,a(Fp)− ι(Fp)− κ(Fp).

∑
k≥1

kα′′
k(Fp) = γp +

∑
a≥1

aj•,a(Fp) +
∑
k≥1

k
(
αnZ+1
k (Fp)− ιk(Fp)− κk(Fp)

)
. (3.2)

where γp =
∑ηp

t=1 γ
t
p and γtp is defined to be the following (1), (2), (3):

(1) γtp = dt,1 if D′t(p) = 0, where mt,1 is the multiplicity of the singularity to which

Ct,1 contracts and dt,1 = [mt,1/n].

(2) γtp =
∑j′t(Fp)

k=1 RC ′t,k/n if D′t(p) ̸= 0 and any C ′t,k is smooth.

(3) γtp = r/mn− d′t,1 if C ′t,1 = (Γp)red is singular, where m′t,1 is the multiplicity of the

singular point of R which is singular for C ′t,1 and d′t,1 = [m′t,1/n].

Proof. Let a′t,k, a′′t,k be the integers such that (L′t,k)2 = −a′t,kn, (L′′t,k)2 = −a′′t,kn.
If C ′t,k is smooth, then C ′t,k is blown up a′t,kn + (C ′t,k)2 times. If C ′t,k is a singular

rational curve, then C ′t,k is blown up a′t,kn − 3 times. Since C ′′t,k is a (−1)-curve,
C ′′t,k is blown up a′′t,kn − 1 times. Hence, if D′t(p) ̸= 0 and every C ′t,k is smooth

(resp. C ′t,1 is singular rational), the number of singular points associated with Dt(p)

is
∑

k

(
a′t,kn+ (C ′t,k)2

)
+ (resp.

∑
k

(
a′t,kn− 3

)
+)
∑

k

(
a′′t,kn− 1

)
− ιt(Fp)− κt(Fp).

Namely, we have∑
k≥1

α′′t
k (Fp) =

∑
a≥1

anj′t1,a(Fp)+
∑
a≥1

(an−2−δmI1,II)j
′t
0,a(Fp)+

∑
a≥1

(an−1)j′′t0,a(Fp)−ιt(Fp)−κt(Fp).

If D′t(p) = 0, we have∑
k≥1

α′′t
k (Fp) = 1 +

∑
a≥1

(an− 1)j′′t0,a(Fp)− ιt(Fp)− κt(Fp).

Summing up for t = 1, . . . , ηp, we have (3.1).

Let rt,k = RC ′t,k, mt,k the multiplicity of R at the point to which C ′′t,k is contracted

and dt,k = [mt,k/n]. Let x′t,k1 , . . . , x′t,kc′ (resp. x′′t,k1 , . . . , x′′t,kc′′ ) be all the singular points

on C ′t,k (resp. on C ′′t,k), including infinitely near ones. Put m′t,k
i = multx′t,k

i
(R),

d′t,ki = [m′t,k
i /n], m′′t,k

i = multx′′t,k
i

(R) and d′′t,ki = [m′′t,k
i /n]. Applying Lemma 1.10 to
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C ′t,k and C ′′t,k, we get that rt,k/n+ a′t,k =
∑

i d
′t,k
i if C ′t,k is smooth, rt,1/n+ a′t,1 =

d′t,11 +
∑

i d
′t,1
i if C ′t,1 is singular rational, and dt,k +a′′t,k =

∑
i d

′′t,k
i . If D′t(p) ̸= 0 and

every C ′t,k is smooth, then

∑
k

rt,k

n
+
∑
a≥1

ajt•,a(Fp) +
∑
k≥1

kαt,nZ+1
k (Fp) =

∑
k

(
rt,k

n
+ a′t,k

)
+
∑
k

(
dt,k + a′′t,k

)
=
∑
k

∑
i

d′t,ki +
∑
k

∑
i

d′′t,ki

=
∑
k≥1

k
(
α′′t
k (Fp) + ιtk(Fp) + κtk(Fp)

)
.

Similarly, if D′t(p) ̸= 0 and C ′t,1 is singular rational, we have

r

nm
− d′t,11 +

∑
a≥1

ajt•,a(Fp) +
∑
k≥1

kαt,nZ+1
k (Fp) =

∑
k≥1

k
(
α′′t
k (Fp) + ιtk(Fp) + κtk(Fp)

)
.

If D′t(p) = 0, then∑
a≥1

ajt•,a(Fp) +
∑
k≥1

kαt,nZ+1
k (Fp) =

∑
k

(
dt,k + a′′t,k

)
=
∑
k

∑
i

d′′t,ki

=
∑
k≥1

k
(
α′′t
k (Fp) + ιtk(Fp) + κtk(Fp)

)
− dt,1.

Summing up for t = 1, . . . , ηp, we get (3.2). 2

Lemma 3.7. The following hold.

γp ≤
( r
n
− j′0,1(Fp)δn=2 − δmI1,II

)
δη′

p ̸=0 +
( r
n
− 1
)
η′′p .

ι(Fp) = j(Fp)− ηp + δcyc,

where δcyc is defined to be 1 if the following (1), (2), (3) and (4) hold and δcyc = 0

otherwise.

(1) Γp is a singular fiber of type (mIk)k≥1, (II), (III) or (IV).

(2) Any irreducible component of Γp is contained in R.

(3) ι(3)(Fp) = κ(3)(Fp) = 0.

(4) The multiplicity of the singular point of R which is singular for (Γp)red belongs to

nZ+ 1 if Γp is a singular fiber of type (mI1) or (II).
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Proof. By the definition of γp, the first inequality is clear. We consider the following

graph Gt: The vertex set V (Gt) is defined by the symbol set {vt,k}j
t(Fp)

k=1 . The edge

set E(Gt) is defined by the symbol set {ex}x ∪ {ey}y ∪ {e′y}y, where x, y respectively

move among (t, 2), (t, 3)-vertical nZ type singularities. If the proper transform of Ct,k

meets that of Ct,k′
at a (t, 2)-vertical nZ type singularity x, the edge ex connects vt,k

and vt,k
′
. If the proper transforms of Ct,k, Ct,k′

and Ct,k′′
(k < k′ < k′′) intersects in a

(t, 3)-vertical nZ type singularity y, the edge ey connects vt,k and vt,k
′
, and e′y connects

vt,k
′
and vt,k

′′
. By the definition of the decomposition R̃v(p) = D1(p) + · · · +Dηp(p),

the graph Gt is connected for any t = 1, . . . , ηp. Clearly, ι(Fp) is the cardinality of

E(Gt). Thus, the number of cycles in Gt is ιt(Fp)−jt(Fp)+1. One sees that Gt has at

most one cycle, and it has one cycle only if {Ct,k}k contains all irreducible components

of Γp. Hence at most one Gt has one cycle. We can see that Gt has one cycle for some

t if and only if δcyc = 1. Thus, we get ι(Fp) = j(Fp)− ηp + δcyc. 2

For any singular point x of R, the multiplicity multx(R) at x does not exceed r/m+1

since R(Γp)red = r/m. Thus we have αk = 0 for k ≥ r/nm+1. Moreover, the following

lemma holds.

Lemma 3.8. If n ≥ 3, then we have αnZ+1
r

nm
(Fp) = 0. If n = 2, then we have κ r

2m
(Fp) =

0.

Proof. If αnZ+1
r

nm
(Fp) ̸= 0, then there exists an irreducible component C of Γp contained

in R and a singular point x of R on C with multiplicity r/m + 1 such that any local

horizontal branch of R around x is not tangential to C since RDp = r/m. Then, the

exceptional curve E for the blow-up at x and the proper transform of C form a singular

point of multiplicity 2. Hence we have n = 2 from Lemma 1.2. It is clear that all

singular points with multiplicity r/m + 1 are infinitely near to x and the exceptional

curves for blow-ups of these singularities form a chain. In particular, any singular point

with multiplicity r/m+ 1 is a 1-vertical type singularity. 2

To prove Theorem 3.1, we need some inequalities among several indices.

Lemma 3.9. (1) The following holds.

∑
k≥1

k
(
αnZ+1
k (Fp)− κk(Fp)

)
≤
( r
n
− 1
)
(j′′(Fp)− κ(Fp))

+
( r
n
− 2
)
κ(3)(Fp) + αnZ+1

r
nm

(Fp).

(2) If n = 2, then the following holds more strongly.
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∑
k≥1

k
(
α2Z+1
k (Fp)− κk(Fp)

)
≤
∑
k≥1

kα(2k+1→2k+1)(Fp) +
(r
2
− 1
)∑

a≥2

j′′0,a(Fp)− κ(Fp)


+
(r
2
− 2
)
κ(3)(Fp) + α2Z+1

r
2m

(Fp).

Proof. From Lemma 3.8, we have

∑
k≥1

k
(
αnZ+1
k (Fp)− κk(Fp)

)
=

r
nm−1∑
k=1

k
(
αnZ+1
k (Fp)− κk(Fp)

)
+

r

nm
αnZ+1

r
nm

(Fp)

=

r
nm−1∑
k=1

k
(
αnZ+1
k (Fp)− κ(2)k (Fp)− κ(3)k (Fp)

)
−

r
nm−1∑
k=1

kκ
(3)
k (Fp) +

r

nm
αnZ+1

r
nm

(Fp)

Since αnZ+1
k (Fp)−κ(2)k (Fp)−κ(3)k (Fp) ≥ 0 and

∑ r
nm−1

k=1 kκ
(3)
k (Fp) = k0κ

(3)(Fp) for some

1 ≤ k0 ≤ r/n− 1 from Lemma 3.4, we have

r
nm−1∑
k=1

k
(
αnZ+1
k (Fp)− κ(2)k (Fp)− κ(3)k (Fp)

)
−

r
nm−1∑
k=1

kκ
(3)
k (Fp) +

r

nm
αnZ+1

r
nm

(Fp)

≤
( r
n
− 1
) r

nm−1∑
k=1

αnZ+1
k (Fp)− κ(2)(Fp)− κ(3)(Fp)

− k0κ(3)(Fp) +
r

n
αnZ+1

r
nm

(Fp)

=
( r
n
− 1
) r

nm−1∑
k=1

αnZ+1
k (Fp)− κ(Fp)

+
( r
n
− 1− k0

)
κ(3)(Fp) +

r

n
αnZ+1

r
nm

(Fp).

Combining the above inequality with j′′(Fp) =
∑ r

nm

k=1 α
nZ+1
k (Fp) and r/n − 1 − k0 ≤

r/n− 2, the assertion (1) follows.

Assume n = 2. Note that any (2k + 1→ 2k + 1) singularity is not involved in κ(Fp).

Then we have

∑
k≥1

k
(
α2Z+1
k (Fp)− κk(Fp)

)
=

r
2m−1∑
k=1

k
(
α2Z+1
k (Fp)− α(2k+1→2k+1)(Fp)− κk(Fp)

)
+
∑
k≥1

kα(2k+1→2k+1)(Fp) +
r

2m
α2Z+1

r
2m

(Fp).

Similarly as in (1), the assertion (2) follows. 2

24



Lemma 3.10. If n = 2, then we have

κ(Fp) ≤
2

3

∑
a≥2

(a− 1)j•,a(Fp)−
2

3
α2Z+1

r
2m

(Fp).

Proof. It is sufficient to show that

κt(Fp) ≤
2

3

∑
a≥2

(a− 1)jt0,a(Fp)−
2

3
αt,2Z+1

r
2m

(Fp) (3.3)

for any t. If κt(Fp) = 0, then it is clear. Thus, we may assume κt(Fp) > 0. Then clearly

we have

jt(Fp) ≥ κt,(2)(Fp) + κt,(3)(Fp) + αt,2Z+1
r

2m
(Fp) + 2. (3.4)

Since any blow-up at a (t, u)-vertical type singularity contributes −u to the number∑
k≥1

(Lt,k)2 = −
∑
a≥1

2ajt•,a(Fp)

and Γp contains no u-vertical type singularity for u ≥ 2 if Γp is of type (mI0), we get∑
a≥1

2ajt•,a(Fp) ≥jt1,•(Fp) + (2 + δmI1,II)j
′t
0,•(Fp) + j′′t0,•(Fp)

+ αt,2Z+1
r

2m
(Fp) +

∑
u=2,3

u
(
ιt,(u)(Fp) + κt,(u)(Fp)

)
.

Combining this inequality with ιt(Fp) ≥ jt(Fp)− 1 and (3.4), we have∑
a≥1

2ajt•,a(Fp) ≥3jt(Fp) + (1 + δ
mI1,II)j

′t
0,•(Fp) + αt,2Z+1

r
2m

(Fp)

+ 2κt(Fp)− 2−
(
ιt,(3)(Fp) + κt,(3)(Fp)

)
≥2jt(Fp) + (1 + δ

mI1,II)j
′t
0,•(Fp) + 2αt,2Z+1

r
2m

(Fp)

+ 3κt(Fp)− ιt,(3)(Fp)− 2κt,(3)(Fp).

On the other hand, it is easily seen that

(1 + δ
mI1,II)j

′t
0,•(Fp)− ιt,(3)(Fp)− 2κt,(3)(Fp) ≥ 0.

Hence we get (3.3), as desired. 2

Lemma 3.11. (1) If n = 3, then the following hold.

(1, i) If j′t0,1(Fp) ≤ 2 for any t, then

1

2
j′0,1(Fp) ≤ η′p − δcyc.
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(1, ii) If j′t0,1(Fp) = 3 for some t, then Γp is a singular fiber of type (IV), (I∗k), (II
∗), (III∗)

or (IV∗) and
1

3
j′0,1(Fp) ≤ η′p, δcyc = 0.

(1, iii) If j′t0,1(Fp) = 4 for some t, then Γp is a singular fiber of type (I∗k) and any

component of Γp is contained in R. Moreover, we have η′p = 1, j′0,1(Fp) = 4 and

δcyc = 0.

(2) If n = 2, then the following hold.

(2, i) If j′t0,2,odd(Fp) ≤ 2 for any t, then

j′0,1(Fp) +
1

2
j′0,2,odd(Fp) ≤ η′p − δcyc,

where j′0,2,odd(Fp) denotes the number of irreducible components C of Γp involved in

j′0,2(Fp) which has a singular point of R of odd multiplicity.

(2, ii) If j′t0,2,odd(Fp) = 3 for some t, then Γp is a singular fiber of type (IV), (I∗k), (II
∗),

(III∗) or (IV∗) and

j′0,1(Fp) +
1

3
j′0,2,odd(Fp) ≤ η′p, δcyc = 0.

(2, iii) If j′t0,2,odd(Fp) = 4 for some t, then Γp is a singular fiber of type (I∗k) and any com-

ponent of Γp is contained in R. Moreover, we have η′p = 1, j′0,1(Fp) = 0, j′0,2,odd(Fp) = 4

and δcyc = 0.

Proof. If n = 3, then any curve C in Γp contributing to j′0,1(Fp) intersects at most one

component of Γp contained in R, since C is blown up just once. Thus, considering the

classification of singular fibers of elliptic surfaces, we can show easily the assertion (1).

Suppose that n = 2. Any curve in Γp contributing to j′0,1(Fp) is not blown up and

any curve in Γp contributing to j′0,2,odd(Fp) intersects at most one component of Γp

contained in R. Hence we can show the assertion (2) similarly. 2

Lemma 3.12. (1) If n = 3, then we have

j′′0,1(Fp) ≤ 2η′′p +
∑
a≥1

2aj′1,a(Fp) +
∑
a≥2

(2a− 2)j′0,a(Fp) +
∑
a≥2

(2a− 1)j′′0,a(Fp).

(2) If n = 2, then we have

∑
k≥1

αco,1
(2k+1→2k+1)(Fp) ≤ j′0,2,odd(Fp) +

∑
a≥3

(a− 1)j′0,a(Fp) +
∑
a≥2

(a− 1)j′1,a(Fp)

+
∑
a≥3

(a− 2)j′′0,a(Fp) + η̂p.
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Proof. Suppose that n = 3. Let C1, . . . , Cj′′t0,1(Fp) be all (−1)-curves in {C ′′t,k}k con-

tributing to j′′t0,1(Fp) and xi the point to which Ci contracts for i = 1, . . . , j′′t0,1(Fp). If

Ci ̸= Ct,1, then xi is contained in some Ct,k. If Ct,k contributes to j′′t0,1(Fp) and k = 1,

then j′′t(Fp) = j′′t0,1(Fp) = 2 from Example 1.15 (2). If Ct,k contributes to j′′t0,1(Fp) and

k ̸= 1, then the point xt,k to which Ct,k contracts is contained in another Ct,k′
which

does not contribute to j′′t0,1(Fp) from the argument of Example 1.15 (2). Moreover, xi

is also contained in Ct,k′
since the singularity diagram of Ct,k is type (iii) in Exam-

ple 1.15 (2) and Lemma 1.9. For a curve Ct,k which does not contribute to j′′t0,1(Fp), we

consider how many points among x1, . . . , xj′′t0,1(Fp) it contains.

(i) Assume that Ct,k contributes to j′′t0,a(Fp) for some a ≥ 2. Then Ct,k is blown up

3a − 1 times. Let (xi,j ,mi,j), i = 1, . . . , l, j = 1, . . . , ibm be entries of the singularity

diagram of Ct,k. We consider a subset of entries of the i-th column of its diagram

{(xi,j ,mi,j)}j=j0+1,...,j0+N satisfying that

(∗) mi,j0 ∈ 3Z if j0 > 0, mi,j ∈ 3Z+ 1 for j0 < j < j0 +N and mi,j0+N ∈ 3Z.

Note that the set of all entries of the singularity diagram is the union of these subsets.

Then we can see that the exceptional curve Ct,k′
obtained by the blow-up at xi,j ,

j0+1 < j < j0+N does not contribute to j′′0,1(Fp) from Lemma 1.14. Hence it contains

at most 2a− 1 points among x1, . . . , xj′′t0,1(Fp).

(ii) Assume that Ct,k contributes to j′t0,a(Fp). Then C
t,k is blown up 3a− 2 times when

it is a (−2)-curve or 3a− 3 times when it is a singular rational curve. Hence it contains

at most 2a− 2 points among x1, . . . , xj′′t0,1(Fp) by the same argument as in (i).

(iii) Assume that Ct,k contributes to j′t1,a(Fp). Then Ct,k is blown up 3a times. Hence

it contains at most 2a points among x1, . . . , xj′′t0,1(Fp) by the same argument as in (i).

We estimate j′′t0,1(Fp) from (i), (ii), (iii) as follows.

(a) If D′t(p) = 0 and j′′t0,a(Fp) = 0 for any a ≥ 2, then we have shown that j′′t0,1(Fp) ≤ 2

in Example 1.15 (2).

(b) If D′t(p) = 0 and j′′t0,a(Fp) > 0 for some a ≥ 2, then xi is the point to which Ct,1

contracts or contained in some Ct,k which contributes to j′′t0,a(Fp) for some a ≥ 2. Hence

we have

j′′t0,1(Fp) ≤ 1 +
∑
a≥2

(2a− 1)j′′t0,a(Fp).

(c) If D′t(p) ̸= 0, then xi is contained in some Ct,k which does not contribute to j′′t0,1(Fp).

Hence we have

j′′t0,1(Fp) ≤
∑
a≥2

(2a− 2)j′t0,a(Fp) +
∑
a≥1

2aj′t1,a(Fp) +
∑
a≥2

(2a− 1)j′′t0,a(Fp).
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From (a), (b) and (c), we have

j′′0,1(Fp) ≤ ηp + η′′p +
∑
a≥2

(2a− 2)j′0,a(Fp) +
∑
a≥1

2aj′1,a(Fp) +
∑
a≥2

(2a− 1)j′′0,a(Fp)

by summing up for t = 1, . . . , ηp. Combining this with ηp ≤ η′′p , the claim (1) follows.

Suppose n = 2. Let xt,k be the point to which C ′′t,k is contracted and mt,k the

multiplicity of R at xt,k. If D′t(p) = 0, then xt,k, k ≥ 2 is contained in Ct,k′
for

some k′ < k. Otherwise, xt,1 is also contained in Ct,k′
for some k′. If Ct,k is smooth,

a singularity with odd multiplicity which is not contained in Ct,k′
for any k′ > k

corresponds to an entry (xi,j ,mi,j) of the singularity diagram Dt,k of Ct,k satisfying

that mi,j−1 is even if j > 1, and mi,j is odd and then corresponds to a subset of entries

of the diagram satisfying (∗). For a curve Ct,k, we consider how many such subsets of

entries of its singularity diagram there are.

(iv) If Ct,k contributes to j′′t0,a(Fp), then Ct,k is blown up 2a − 1 times. Then the

singularity diagram of Ct,k has at most a− 1 subsets satisfying (∗).
(v) If Ct,k contributes to j′t0,a(Fp) and it is a (−2)-curve, then Ct,k is blown up 2a − 2

times. Then the singularity diagram of Ct,k has at most a− 1 subsets satisfying (∗).
(vi) If Ct,k contributes to j′t0,a(Fp) and it is a singular rational curve, then Ct,k is blown

up 2a − 3 times. Considering the singularity diagram of the proper transform of Ct,k

by the blow-up at its singular point, Ct,k has at most a − 1 singularities with odd

multiplicity which is not contained in Ct,k′
for any k′ > k.

(vii) If Ct,k contributes to j′t1,a(Fp), then C
t,k is blown up 2a times. Then the singularity

diagram of Ct,k has at most a subsets satisfying (∗).
We estimate j′′t(Fp) using (iv), (v), (vi) and (vii) as follows.

(d) If D′t(p) = 0, then the number of singularities with odd multiplicity appearing in

{Ct,k}k is j′′t(Fp)− 1. Hence we have

j′′t(Fp)− 1 ≤
∑
a≥2

(a− 1)j′′t0,a(Fp).

(e) If D′t(p) ̸= 0, then the number of singularities with odd multiplicity appearing in

{Ct,k}k is j′′t(Fp). Hence we have

j′′t(Fp) ≤ j′t0,1,odd(Fp) +
∑
a≥3

(a− 1)j′t0,a(Fp) +
∑
a≥1

aj′t1,a(Fp) +
∑
a≥2

(a− 1)j′′t0,a(Fp).

From (d) and (e), we have

j′′(Fp) ≤ η′′p + j′0,1,odd(Fp) +
∑
a≥2

(a− 1)j′0,a(Fp) +
∑
a≥1

aj′1,a(Fp) +
∑
a≥2

(a− 1)j′′0,a(Fp)
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by summing up for t = 1, . . . , ηp. Combining this with (1.12) and (1.14), the claim (2)

follows.

2

Lemma 3.13. (1) If n = 3 and j′0,1(Fp) ̸= 0, then we have

χφ(Fp) ≥
1

12
(j′0,1(Fp) + 1).

(2) If n = 2, then the following hold.

(2, i) If Γp is a singular fiber not of type (mIk), (I
∗
k), (II

∗), (III∗), (IV∗), then we have

χφ(Fp) ≥
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp) + 1).

Moreover, all the cases where Γp is a singular fiber of type (mIk), (II
∗), (III∗), (IV∗) and

χφ(Fp) <
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp) + 1)

are as follows.

(mIk) ⋆

⋆ ⋆ ⋆ ⋆

⋆

⋆ ⋆ ⋆ ⋆

or •
◦ • ◦ •

◦
◦ • ◦ •

(II∗) • ◦ • ◦ • ◦ ⋆ ⋆

•

or • ◦ • ◦ • ◦ • ◦

•

(III∗) • ◦ • ◦ ⋆ ⋆ ⋆

•

or • ◦ • ◦ • ◦ ⋆

•

or • ◦ • ◦ ⋆ ◦ •

•

or • ◦ • ◦ • ◦ •

⋆

or • ◦ • ◦ • ◦ •

•
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(IV∗) • ◦ • ◦ •

◦

•

where, in the dual graphs of Γp, the symbol ◦, •, ⋆ respectively denotes a (−2)-curve not

contained in R, contributing to j′0,1(Fp), contributing to j′0,2(Fp) or j′0,3(Fp). In these

cases, we have

χφ(Fp) =
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp)− 1)

when Γp is of type (III∗) and j′0,2(Fp) = j′0,3(Fp) = 0 and

χφ(Fp) =
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp))

otherwise.

(2, ii) If Γp is a singular fiber of type (I∗k), then

χφ(Fp) ≥
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp)− 2)

with equality holding if and only if Γp and R satisfies the condition indicated in the

following figure.

(I∗k)

•

•
◦ • • ◦

•

•

Proof. (1) Suppose that n = 3 and j′0,1(Fp) ̸= 0. If Γp is not of type (mIk), the claim

is clear. Thus we may assume that Γp is of type (mIk). If χφ(Fp) = j′0,1(Fp)/12, then

any component of Γp contributes to j′0,1(Fp) and contains at least 2 singular points of

R, which is a contradiction.

(2) Suppose that n = 2. Any irreducible component C of Γp contributing to j′0,1(Fp)

has no singular points of R. Thus any component of Γp intersecting with the curve C

is not contained in R. From this observation and the classification of singular fibers of

elliptic surfaces, the claims (2,i) and (2,ii) follow by an easy combinatorial argument. 2

Now, we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Let f : S → B be a primitive cyclic covering fibration of type

(g, 1, n). From Lemma 3.6, we have

ef (Fp)− µχf (Fp) = Anα
+
0 (Fp) +

∑
k≥1

(n− µ′k)α′
k(Fp) + n

∑
k≥1

α′′
k(Fp)

− µ′
∑
k≥1

kα′′
k(Fp)−

∑
a≥1

(2An + δa=1)j0,a(Fp) + Cnχφ(Fp)−
rµ′

n
ν(Fp)

= Anα
+
0 (Fp) +

∑
k≥1

(n− µ′k)α′
k(Fp) + Cnχφ(Fp)

− rµ′

n

(
1− 1

m

)
− µ′γp + nη′′p +

∑
a≥1

(
an2 − aµ′) j′1,a(Fp)

+
∑
a≥1

(n(an− 2− δmI1,II)− aµ′ − 2An − δa=1) j
′
0,a(Fp)

+
∑
a≥1

(n(an− 1)− aµ′ − 2An − δa=1) j
′′
0,a(Fp)

− µ′
∑
k≥1

kαnZ+1
k (Fp)−

∑
k≥1

(n− µ′k) ιk(Fp)−
∑
k≥1

(n− µ′k)κk(Fp),

where

An := n− 1− (n− 1)(2n− 1)

12n
µ, Cn := 12n−

( r

12n
(n− 1)(n+ 1) + n

)
µ

and µ′ := (n = 1)(n+ 1)µ/12. Combining Lemma 3.7 with the above equality, we have

ef (Fp)− µχf (Fp)

≥Anα
+
0 (Fp) +

∑
k≥1

(n− µ′k)α′
k(Fp) + Cnχφ(Fp)−

rµ′

n

(
1− 1

m

)

− µ′
( r
n
− j′0,1(Fp)δn=2 − δmI1,II

)
δη′

p ̸=0 + (n− µ′) (η′p − δcyc) +
(
2n− rµ′

n

)
η′′p

+
∑
a≥1

(n(an− 3− δmI1,II)− (a− 1)µ′ − 2An − δa=1) j
′
0,a(Fp) (3.5)

+
∑
a≥1

(n(an− 2)− (a− 1)µ′ − 2An − δa=1) j
′′
0,a(Fp)

+
∑
a≥1

(n(an− 1)− (a− 1)µ′) j′1,a(Fp)− µ′
∑
k≥1

kαnZ+1
k (Fp)−

∑
k≥1

(n− µ′k)κk(Fp).

Assume that An ≥ 0 and Cn ≥ 0. We obtain by using Lemmas 3.5 and 3.9 (1) that
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ef (Fp)− µχf (Fp)

≥
∑
k≥1

(n− µ′k)α′
k(Fp) +

r(m− 1)(n− 1)(4− µ)
4m

+ Cnχφ(Fp)− µ′
( r
n
− δ

mI1,II

)
δη′

p ̸=0

+Anβp + (n− µ′ − (n− 2)An) (η
′
p − δcyc) +

(
2n− rµ′

n
− (n− 2)An

)
η′′p

+
∑
a≥1

((n− 4)An + n(an− 3− δmI1,II)− (a− 1)µ′ − (1− δn=2µ
′)δa=1) j

′
0,a(Fp)

(3.6)

+
∑
a≥1

(
(n− 4)An + n(an− 2)− µ′

(
a+

r

n
− 2
)
− δa=1

)
j′′0,a(Fp)

+
∑
a≥1

((n− 2)An + n(an− 1)− (a− 1)µ′) j′1,a(Fp)

+
(
2(n− 2)An − n+

( r
n
− 1
)
µ′
)
κ(Fp)− µ′

( r
n
− 2
)
κ(3)(Fp)− µ′αnZ+1

r
nm

(Fp).

We put

µ =



12n2

r(n− 1)(n+ 1)
, if n ≥ 4,

24

4r − 13
, if n = 3,

4

r − 2
, if n = 2.

(i) We assume n ≥ 4. We write r = kn. The coefficient of η′p is

n− 1

12
(n− 1)(n+ 1)µ− (n− 2)An = −(n2 − 4n+ 2) +

n2 − 6n+ 2

k(n+ 1)
< 0.

The coefficient of η′′p is

2n− (n− 1)(n+ 1)rµ

12n
− (n− 2)An = −(n2 − 4n+ 2) +

(n− 2)(2n− 1)

k(n+ 1)
.

It is negative if n ≥ 5 or k ≥ 2. Note that η′′p = 0 if k < n− 1 since the multiplicity m′

of a singular point of type nZ + 1 satisfies (n − 1)2 ≤ m′ ≤ r − n + 1. Thus, we may

not consider the case where n = 4 and k = 1. Using η′p ≤ j′(Fp) and η
′′
p ≤ j′′(Fp), (3.6)

is greater than or equal to
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∑
k≥1

(n− µ′k)α′
k(Fp) +

r(m− 1)(n− 1)(4− µ)
4m

+ Cnχφ(Fp) +Anβp

− µ′
( r
n
− δmI1,II

)
δη′

p ̸=0 + ((n− 2)An − n+ µ′) δcyc +
∑
a≥1

(
an2 − aµ′) j′1,a(Fp)

+
∑
a≥1

(n(an− 2− δmI1,II)− aµ′ − 2An − δa=1) j
′
0,a(Fp) (3.7)

+
∑
a≥1

(
an2 − µ′

(
a+

2r

n
− 2

)
− 2An − δa=1

)
j′′0,a(Fp)

+
(
2(n− 2)An − n+

( r
n
− 1
)
µ′
)
κ(Fp)− µ′

( r
n
− 2
)
κ(3)(Fp).

Since 2(n− 2)An − n+ µ′ > 0, we have(
2(n− 2)An − n+

( r
n
− 1
)
µ′
)
κ(Fp)− µ′

( r
n
− 2
)
κ(3)(Fp)

≥ (2(n− 2)An − n+ µ′)κ(Fp)

≥ 0.

The coefficient of j′0,1(Fp) in (3.7) is

n(n− 2− δ
mI1,II)− µ′ − 2An − δa=1

= n2 − (4 + δ
mI1,II)n+ 1− (n− 1)(n− 2)

k(n+ 1)
. (3.8)

If δ
mI1,II = 0, (3.8) is negative if and only if n = 4 and k = 1. If δ

mI1,II = 1 and n ≥ 5,

(3.8) is non-negative. If δ
mI1,II = 1 and n = 4, (3.8) is −3 − 6/5k < 0. Note that

j′(Fp) = 0 if k = 1 since r = n and any singularity of R has the multiplicity n. Thus,

we may not consider the case where δ
mI1,II = 0, n = 4 and k = 1. We can check that

the coefficient of j′0,a(Fp) in (3.7) is positive for a ≥ 2. Moreover, we also can check

that the coefficient of j′′0,a(Fp) in (3.7) is positive for a ≥ 1.

(i,1) We assume that η′p = 0. Then, clearly (3.7) is non-negative.

(i,2) We assume that η′p ̸= 0, χφ(Fp) ≥ 1/6 (i.e. Γp is a singular fiber not of type (mI1))

and ι(3)(Fp) = 0. Then we have

Cnχφ(Fp) ≥
1

6
Cn =

n

6

(
11− 12n

k(n− 1)(n+ 1)

)
.

The coefficient of δη′
p ̸=0 is

µ′
( r
n
− δmI1,II

)
= −n+

n

k
δmI1,II.
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If n ̸= 4 or δmI1,II = 0 or j′0,1(Fp) = 0, then (3.7) is positive since

n

6

(
11− 12n

k(n− 1)(n+ 1)

)
− n =

n

6

(
5− 12n

k(n− 1)(n+ 1)

)
> 0.

If n = 4 and δ
mI1,II = 1 and j′0,1(Fp) ̸= 0 (we denote this condition by (#)), then we

have j′0,1(Fp) = 1 and then (3.7) is positive since

n

6

(
11− 12n

k(n− 1)(n+ 1)

)
− n+

n

k
− 3− 6

5k
=

1

3
+

26

15k
> 0.

(i,3) We assume that η′p ̸= 0 and χφ(Fp) = 1/12 (i.e. Γp is a singular fiber of type

(mI1)). Let m1 be the multiplicity of the singular point x1 of R which is singular for

Γp. If m1 ∈ nZ, then x1 contributes m1−2 to α+
0 (Fp) (Note that x1 is a 1-vertical type

singularity). In particular, x1 contributes at least n−2 to α+
0 (Fp). If the condition (#)

does not hold, (3.7) is positive since

n

12

(
11− 12n

k(n− 1)(n+ 1)

)
−n+(n−2)An = n2− 37

12
n+2−n

2 + (n− 2)(n− 1)(2n− 1)

k(n− 1)(n+ 1)

increases monotonically with respect to n and

17

3
− 58

15k
> 0

when n = 4. If the condition (#) holds, (3.7) is also positive since

17

3
− 58

15k
+

4

k
− 3− 6

5k
=

8

3
− 16

15k
> 0.

(i,4) We assume that η′p ̸= 0 and χφ(Fp) = 0 (i.e. Γp is a smooth elliptic curve). Then

(3.7) is positive since j′1,•(Fp) = 1.

(i,5) We assume that ι(3)(Fp) = 1. From Lemma 3.4, we may consider the following 3

cases.

(i,5,II) If Γp is a singular fiber of type (II), then βp = n− 7, χφ(Fp) = 1/6 and κ(Fp) =

κ(2)(Fp) ≥ 1. From the argument in (i,2), it is sufficient to show that

Anβp +
(
2(n− 2)An − n+

( r
n
− 1
)
µ′
)
κ(Fp) > 0.

This inequality is true, since

(n− 7)An + 2(n− 2)An − n+
( r
n
− 1
)
µ′

= (3n− 11)

(
n− 1− 2n− 1

k(n+ 1)

)
− n

k

> 0.
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Note that k ≥ n− 1 since j′′(Fp) ̸= 0.

(i,5,III) If Γp is a singular fiber of type (III), then βp = −n − 1, χφ(Fp) = 1/4 and

κ(Fp) = κ(2)(Fp) ≥ 1. Since j′′(Fp) ≥ 1 and the coefficient of j′′0,a(Fp) is greater than 1

for any a ≥ 1, it is sufficient to show that

1 +Anβp +
1

12
Cn +

(
2(n− 2)An − n+

( r
n
− 1
)
µ′
)
κ(Fp) ≥ 0.

The left hand side of it is greater than or equal to

1− (n+ 1)An +
1

12
Cn + 2(n− 2)An − n+

( r
n
− 1
)
µ′

= n2 − 61

12
n+ 6− 3n3 − 12n2 + 15n− 5

k(n− 1)(n+ 1)
(3.9)

and (3.9) increases monotonically with respect to n. If n = 4, (3.9) is 5/3− 11/3k > 0.

Note that k ≥ n− 1 since j′′(Fp) ̸= 0.

(i,5,IV) If Γp is a singular fiber of type (IV), then βp = −2, χφ(Fp) = 1/3 and j′0,•(Fp) ≥
3. Thus, it is sufficient to show that Anβp+Cn/6+3·(3.8) is positive. By a computation,

this is equal to

3n2 − 73

6
n+ 5− 3n3 − 14n2 + 21n− 8

k(n− 1)(n+ 1)

and we can check that it is positive.

From (i,1) through (i,5), we have ef (Fp)−µχf (Fp) ≥ 0 for n ≥ 4. On the other hand,

if n = 3 and g = 4, one can easily classify all singular fibers of primitive cyclic covering

fibrations of type (4, 1, 3) because R has no singularities of multiplicity greater than 3,

and check ef (Fp) ≥ (9/2)χf (Fp) for any fiber germ Fp. Thus, Theorem 3.1 (1) follows.

(ii) We assume n = 3 and g > 4. The coefficient of j′′0,1(Fp) in (3.6) is

−
(
2

9
r − 17

18

)
µ < 0.

Applying Lemma 3.12 (1) to the term of j′′0,1(Fp), (3.6) is greater than or equal to

∑
k≥1

(
3− 2

3
µk

)
α′
k(Fp) +

r(m− 1)(4− µ)
2m

+

(
36−

(
2

9
r + 3

)
µ

)
χφ(Fp)

+

(
2− 5

18
µ

)
βp −

2

3
µ
(r
3
− δ

mI1,II

)
δη′

p ̸=0 +

(
1− 7

18
µ

)
(η′p − δcyc)

+
∑
a≥2

(
9a− 11− 3δ

mI1,II −
(
4

9
(a− 1)r − 11

9
a+

17

18

)
µ

)
j′0,a(Fp) (3.10)
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+

(
−3 + 5

18
µ

)
j′0,1(Fp) +

∑
a≥2

(
9a− 8−

(
4

9
ar − 11

9
a− 2

3

)
µ

)
j′′0,a(Fp)

+
∑
a≥1

(
9a− 1−

(
4

9
ar − 11

9
a− 7

18

)
µ

)
j′1,a(Fp)

+

(
1 +

(
2

9
r − 11

9

)
µ

)
κ(Fp)−

2

3
µ
(r
3
− 2
)
κ(3)(Fp).

We remark that the term of η′′p vanishes by the definition of µ and(
1 +

(
2

9
r − 11

9

)
µ

)
κ(Fp)−

2

3
µ
(r
3
− 2
)
κ(3)(Fp)

≥
(
1 +

1

9
µ

)
κ(Fp)

≥ 0.

We can check that the coefficient of j′0,a(Fp) (resp. j′′0,a(Fp), j
′
1,a(Fp)) in (3.10) are

positive for a ≥ 2 (resp. a ≥ 2, a ≥ 1).

(ii,1) Assume that η′p = 0. Then (3.10) is non-negative.

(ii,2) Assume that η′p ̸= 0 and j′t0,1(Fp) = 4 for some t. From Lemma 3.11 (1,iii), it

follows that Γp is a singular fiber of type (I∗k) for some k, χφ(Fp) = (k + 6)/12, r ≥ 9,

Γp ⊂ R, η′p = 1, j′0,1(Fp) = 4 and δcyc = 0. Considering the terms of χφ(Fp), δη′
p ̸=0, η

′
p

and j′0,1(Fp), (3.10) is greater than or equal to(
36−

(
2

9
r + 3

)
µ

)
k + 6

12
− 2

9
rµ+

(
1− 7

18
µ

)
+ 4

(
−3 + 5

18
µ

)
= 7− 8(3r + 2)

3(4r − 13)
.

This is positive since r ≥ 9.

(ii,3) Assume that η′p ̸= 0, ι(3)(Fp) = 0, r ≥ 9 and j′t0,1(Fp) ≥ 3 for any t. Then

1

3
j′0,1(Fp) ≤ η′p − δcyc

from Lemma 3.11 (1,i), (1,ii). From this and Lemma 3.13 (1), (3.10) is greater than or

equal to(
36−

(
2

9
r + 3

)
µ

)
j′0,1(Fp) + 1

12
− 2

9
rµ+

1

3

(
1− 7

18
µ

)
j′0,1(Fp) +

(
−3 + 5

18
µ

)
j′0,1(Fp).

One can check by a computation that this is positive since r ≥ 9.
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(ii,4) Assume that η′p ̸= 0, ι(3)(Fp) = 0, r = 6 and χφ(Fp) ≥ (j′0,1(Fp) + 2)/12. By the

same argument as in (ii,3), (3.10) is greater than or equal to(
36−

(
2

9
r + 3

)
µ

)
j′0,1(Fp) + 2

12
− 2

9
rµ+

1

3

(
1− 7

18
µ

)
j′0,1(Fp) +

(
−3 + 5

18
µ

)
j′0,1(Fp)

= −13

99
j′0,1(Fp) +

50

33
.

On the other hand, one sees that j′0,1(Fp) ≤ 6 since r = 6. Then

−13

99
j′0,1(Fp) +

50

33
> 0.

(ii,5) Assume that η′p ̸= 0, ι(3)(Fp) = 0, r = 6 and χφ(Fp) < (j′0,1(Fp) + 2)/12. If

j′0,1(Fp) = 0, then (3.10) is positive since j′(Fp) ̸= 0. Then there are the following two

cases only.

(ii,5,I2) Γp is a singular fiber of type (mI2) and only one component of Γp is contained

in R and brown up just once.

(ii,5,I3) Γp is a singular fiber of type (mI3) and only two component of Γp are contained

in R and brown up just once at the intersection point of these.

In both cases, we can see that

γp ≤
( r
n
− 1
)
δη′

p ̸=0 +
( r
n
− 1
)
η′′p

from the proof of Lemma 3.7, since the component of Γp not contained in R intersects

with Rh. Thus, it is sufficient to show that(
36−

(
2

9
r + 3

)
µ

)
j′0,1(Fp) + 1

12
− 2

3
µ
(r
3
− 1
)
+

(
1− 7

18
µ

)
+

(
−3 + 5

18
µ

)
j′0,1(Fp)

is positive. This is equal to (−2j′0,1(Fp) + 10)/11 > 0 by a computation.

(ii,6) Assume that ι(3)(Fp) = 1. From Lemma 3.4, we may consider the following 3

cases.

(ii,6,II) If Γp is a singular fiber of type (II), then we have χφ(Fp) = 1/6, βp = −4,
δcyc = 0, j′0,1(Fp) = 0, j′0,•(Fp) = 1, j′′0,•(Fp) ≥ 2 and κ(Fp) = κ(2)(Fp) ≥ 1. One can

see easily that (3.10) is positive by a computation.

(ii,6,III) If Γp is a singular fiber of type (III), then we have χφ(Fp) = 1/4, βp = −4,
δcyc = 0, j′0,1(Fp) = 0, j′0,•(Fp) = 2, j′′0,•(Fp) ≥ 1 and κ(Fp) = κ(2)(Fp) ≥ 1. One can

see easily that (3.10) is positive by a computation.

(ii,6,IV) If Γp is a singular fiber of type (IV), then we have χφ(Fp) = 1/3, βp = −2,
δcyc = 0, j′0,•(Fp) = 3 and κ(3)(Fp) = 0. If j′0,1(Fp) ≤ 2, then we can check that (3.10)
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is positive. Suppose that j′0,1(Fp) = 3. Then any component of Γp is brown up only

once. Thus, the multiplicity of the singularity of R on Γp is r/3 + 3 ≥ 6. In particular,

r ≥ 9. Since this singularity is a 3-vertical 3Z type singularity, we have

α+
0 (Fp) ≥ ι(Fp) + 2κ(Fp) + βp + 3

from the proof of Lemma 3.5. Then it suffices to show that(
2− 5

18
µ

)
+

(
36−

(
2

9
r + 3

)
µ

)
1

3
− 2

9
rµ+

(
1− 7

18
µ

)
+ 3

(
−3 + 5

18
µ

)
is positive. This is equal to

6− 4(16r + 45)

9(4r − 13)
> 0.

From (ii,1) through (ii,6), we have ef (Fp) − µχf (Fp) ≥ 0. Thus, Theorem 3.1 (2)

follows.

(iii) We assume n = 2 and g ≥ 3. From Lemmas 3.5 and 3.9 (2), (3.5) is greater than

or equal to

∑
k≥1

(
2− 1

4
µk

)
α′
k(Fp) +

r(m− 1)(4− µ)
4m

+
(
24−

(r
8
+ 2
)
µ
)
χφ(Fp)

− 1

4
µ
(r
2
− j′0,1(Fp)− δmI1,II

)
δη′

p ̸=0 +

(
2− 1

4
µ

)
(η′p − δcyc) +

(
4− 1

8
rµ

)
η̂p

+
∑
a≥1

(
4a− 8− 2δ

mI1,II − δa=1 −
1

4
(a− 2)µ

)
j′0,a(Fp)

+
∑
a≥2

(
4a− 6− 1

4

(
a+

r

2
− 3
)
µ

)
j′′0,a(Fp) +

∑
a≥1

(
4a− 2− 1

4
(a− 1)µ

)
j′1,a(Fp)

(3.11)

+
∑
k≥1

(
1− 1

8
(r − 2)µ− 1

4
µk

)
αtr
(2k+1→2k+1)(Fp)−

1

4
µα2Z+1

r
2m

(Fp)

+
∑
k≥1

(
1− 1

8
(r − 2)µ+

(
2− 1

2
µ

)
k

)
αco,0
(2k+1→2k+1)(Fp)−

(
2− 1

8
(r − 2)µ

)
κ(Fp)

+
∑
k≥1

(
−3 + 1

4
µ+

(
2− 1

2
µ

)
k

)
αco,1
(2k+1→2k+1)(Fp)−

1

8
(r − 4)µκ(3)(Fp).

The coefficients of αtr
(2k+1→2k+1)(Fp) and αco,0

(2k+1→2k+1)(Fp) in (3.11) are non-

negative and that of αtr
(r−1→r−1)(Fp) is 0 by the definition of µ. The coefficient of
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αco,1
(2k+1→2k+1)(Fp) in (3.11) is positive except for k = 1 and that of αco,1

(3→3)(Fp) is

−1 − µ/4 < 0. The coefficient of κ(Fp) in (3.11) is −3/2. Applying Lemmas 3.10 and

3.12 (2) to (3/2)κ(Fp) and (1 + µ/4)
∑

k≥1 α
co,1
(2k+1→2k+1)(Fp), we see that (3.11) is

greater than or equal to

∑
k≥1

(
2− 1

4
µk

)
α′
k(Fp) +

r(m− 1)(4− µ)
4m

+
(
24−

(r
8
+ 2
)
µ
)
χφ(Fp)

− 1

4
µ
(r
2
− δ

mI1,II

)
δη′

p ̸=0 +

(
2− 1

4
µ

)
(η′p − δcyc) +

(
3− 1

8
(r + 2)µ

)
η̂p

−
(
5− 1

2
µ

)
j′0,1(Fp)− (1 + 2δmI1,II) j

′
0,2,even(Fp)−

(
2 +

1

4
µ

)
j′0,2,odd(Fp)

−
(
2δ

mI1,II +
3

4
µ

)
j′0,3(Fp) +

∑
a≥4

(
2a− 6− 2δ

mI1,II −
1

4
(2a− 3)µ

)
j′0,a(Fp)

+
∑
a≥2

(
2a− 3− 1

4

(
2a+

r

2
− 5
)
µ

)
j′′0,a(Fp) +

∑
a≥1

(
2a− 1

2
(a− 1)µ

)
j′1,a(Fp) (3.12)

+
∑
k≥1

(
1− 1

8
(r − 2)µ− 1

4
µk

)
αtr
(2k+1→2k+1)(Fp) +

(
1− 1

4
µ

)
α2Z+1

r
2m

(Fp)

+
∑
k≥1

(
1− 1

8
(r − 2)µ+

(
2− 1

2
µ

)
k

)
αco,0
(2k+1→2k+1)(Fp)

+
∑
k≥1

(
2− 1

2
µ

)
(k − 1)αco,1

(2k+1→2k+1)(Fp)−
1

8
(r − 4)µκ(3)(Fp),

where j′0,2,even(Fp) = j′0,2(Fp)− j′0,2,odd(Fp).

(iii,1) Assume that η′p = 0. Then (3.12) is clearly non-negative.

(iii,2) Assume that η′p ̸= 0 and j′t0,2,odd(Fp) = 4 for some t. From Lemma 3.11 (2,iii), Γp

is a singular fiber of type (I∗k), Γp ⊂ R, κ(3)(Fp) = 0, η′p = 1, δcyc = 0, j′0,1(Fp) = 0 and

j′0,2,odd(Fp) = 4. Clearly we have χφ(Fp) = (j′0,2(Fp) + j′0,3(Fp) + 1)/12. Considering

the terms of χφ(Fp), δη′
p ̸=0, η

′
p, j

′
0,2,even(Fp), j

′
0,2,odd(Fp) and j

′
0,3(Fp), (3.12) is greater

than or equal to(
24−

(r
8
+ 2
)
µ
) 1

12
(j′0,2,even(Fp) + j′0,3(Fp) + 5)− 1

8
rµ+

(
2− 1

4
µ

)
− j′0,2,even(Fp)− 4

(
2 +

1

4
µ

)
− 3

4
µj′0,3(Fp)

=

(
1−

(
r

96
+

1

6

)
µ

)
j′0,2,even(Fp) +

(
2−

(
r

96
+

11

12

)
µ

)
j′0,3(Fp) + 4−

(
17

96
r +

25

12

)
µ,

which is positive.
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(iii,3) Assume that η′p ̸= 0, κ(3)(Fp) = 0, δmI1,II = 0, j′t0,2,odd(Fp) ≤ 3 for any t and

χφ(Fp) ≥
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp) + 1).

From Lemma 3.11 (2,i), (2,ii), we have j′0,1(Fp)+j
′
0,2,odd(Fp)/3 ≤ η′p−δcyc. Then (3.12)

is greater than or equal to(
24−

(r
8
+ 2
)
µ
) 1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp) + 1)− 1

8
rµ

+

(
2− 1

4
µ

)(
j′0,1(Fp) +

1

3
j′0,2,odd(Fp)

)
−
(
5− 1

2
µ

)
j′0,1(Fp)− j′0,2,even(Fp)

−
(
2 +

1

4
µ

)
j′0,2,odd(Fp)−

3

4
µj′0,3(Fp)

=

(
1−

(
r

48
+

1

12

)
µ

)
j′0,1(Fp) +

(
2

3
−
(
r

96
+

1

2

)
µ

)
j′0,2,odd(Fp)

+

(
1−

(
r

96
+

1

6

)
µ

)
j′0,2,even(Fp) +

(
2−

(
r

96
+

11

12

)
µ

)
j′0,3(Fp)

+ 2−
(
13

96
r +

1

6

)
µ.

The coefficients of j′0,1(Fp), j
′
0,2,even(Fp), j

′
0,3(Fp) and the constant term are positive

since r ≥ 4, and j0,2,odd(Fp) is also positive for r ≥ 6. Thus the above equation is

positive when r ≥ 6. If r = 4, then one can check by an easy computation that (3.12)

is also positive, since j′0,2,odd(Fp) ≤ 2.

(iii,4) Assume that η′p ̸= 0, κ(3)(Fp) = 0, δ
mI1,II = 0, j′t0,2,odd(Fp) ≤ 3 for any t and

χφ(Fp) <
1

12
(2j′0,1(Fp) + j′0,2(Fp) + j′0,3(Fp) + 1).

From Lemma 3.13 (2), Γp is of type (mIk), (I
∗
k), (II

∗), (III∗) or (IV∗). Considering the

numbers j′0,1(Fp), χϕ(Fp) and Lemma 3.13 (2), we can see that (3.12) is positive by the

same argument as in (iii,3) except Γp is of type (I∗0) and j
′
0,1(Fp) = 4.

Suppose that Γp is of type (I
∗
0) and j

′
0,1(Fp) = 4. Then the component not contributing

to j′0,1(Fp) is a double component in Γp and intersects with Rh. Thus we have

α+
0 (Fp) ≥

r

2
+
∑
k≥1

2kαco
(2k+1→2k+1)(Fp)

from the proof of Lemma 3.5. Then one can see that ef (Fp)− µχφ(Fp) is positive by a

computation.

(iii,5) Assume that η′p ̸= 0, κ(3)(Fp) = 0 and δ
mI1,II = 1. Then j′0,1(Fp) = 0, j′(Fp) = 1,

η′p = 1 and χφ(Fp) = 1/12 or 1/6. If j′0,2,even(Fp) = 1, then (Γp)red is blown up just
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once. Thus, the multiplicity of the singularity of R which is singular for (Γp)red is

even. Hence δcyc = 0. Then we can check by a computation that (3.12) is positive. If

j′0,2,even(Fp) = 0, then we can also check by a computation that (3.12) is positive.

(iii,6) Assume that κ(3)(Fp) = 1. From Lemma 3.4, we may consider the following 3

cases.

(iii,6,II) If Γp is a singular fiber of type (II), then η′p = 1, j′(Fp) = 1, j′0,a(Fp) = 0 for

a ≤ 3, j′′(Fp) − j′′0,1(Fp) ≥ 3 and χφ(Fp) = 1/6. Considering the terms of δη′
p ̸=0, η

′
p,

κ(3)(Fp), j
′
0,a(Fp), j

′′
0,a(Fp) and χφ(Fp) in (3.12), we can check that (3.12) is positive.

(iii,6,III) If Γp is a singular fiber of type (III), then η′p = 1, j′(Fp) = 2, j′0,a(Fp) = 0 for

a ≤ 2, j′′(Fp)− j′′0,1(Fp) ≥ 2 and χφ(Fp) = 1/4. Then we can also check that (3.12) is

positive.

(iii,6,IV) If Γp is a singular fiber of type (IV), then η′p = 1, j′(Fp) = 3, j′0,1(Fp) =

j′0,2,even(Fp) = 0, j′′(Fp)− j′′0,1(Fp) ≥ 1 and χφ(Fp) = 1/3. Similarly, we can check that

(3.12) is positive.

From (iii,1) through (iii,6), we have ef (Fp) − µχf (Fp) ≥ 0. Thus, Theorem 3.1 (3)

follows. 2

Example 3.14. There exist singular fiber germs Fp such that K2
f (Fp) = (12− µ)χf (Fp)

and we can classify them.

(i) Assume that n ≥ 4, or n = 3 and g = 4. Consider the situation that Γp is smooth

and Fp is obtained the following sequence of singularity diagrams associated with Γp

(cf. [18]):

(x1, r)

Γ0
p

(x2, r)

E0
1

· · · (xk, r)

E0
l−1

(1, 1, . . . , 1)

E0
l

x1

· · ·

Γp

�
blow-up x2

E1

· · ·
blow-up

l − 1 times

��

El
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�
n-cyclic cover

Fp
Al

· · · }
A0

Al−1,1
· · ·· · ·
· · ·

Al−1,n

•
••
•

Then we can write Fp = A0 +
∑n

i=1(A1,i + · · ·+ Al−1,i) + Al, pa(A0) = 0, g(Ak,i) = 0

for k = 1, . . . , l− 1 and g(Al) = (r/2− 1)(n− 1) (note that A0 may not be irreducible).

This singular fiber satisfies K2
f (Fp) = (12 − µ)χf (Fp). Indeed, αk(Fp) = 0 for k =

0, 1, . . . , r/n − 1, αr/n(Fp) = l, ε(Fp) = 0 and χφ(Fp) = 0. Thus χf (Fp) = r(n −
1)(n+ 1)l/12n, ef (Fp) = nl and then ef (Fp)/χf (Fp) = 12n2/r(n− 1)(n+ 1) = µ. We

can see from the proof of Theorem 3.1 that any singular fiber Fp satisfying K2
f (Fp) =

(12− µ)χf (Fp) is obtained in this way.

(ii) Assume that n = 3 and g > 4. Consider the situation that Γp is smooth and Fp is

obtained the following sequence of singularity diagrams associated with Γp:

(x, r − 2) (1, 1)

Γ0
p

(w, 3)

(y, r − 2)

E1
x

(z, r − 3) (w, 3)

E1
y

(1, 1, . . . , 1)

E0
z

(1, 1, 1)

E0
w

x

· · ·

Γp

�
blow-up

y

Ex

...

blow-up
�

Ey · · ·
zw

blow-up
�

Ez

w

...
· · ·

blow-up
�

Ew
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• •

•
• •

triple cover
�

−1 −1

• •
•
• •

◦

◦

A0

A1

A2

Fp

contraction
-

Then we can write Fp = A0 + 2A1 + A3, pa(A0) = 4, g(A1) = 1 and g(A2) = r − 5.

This singular fiber satisfies K2
f (Fp) = (12− µ)χf (Fp). Indeed, α0(Fp) = 1, α1(Fp) = l,

αr/3−1(Fp) = 3, αk(Fp) = 0 for k ̸= 1, r/3 − 1, ε(Fp) = 2 and χφ(Fp) = 0. Thus

χf (Fp) = (4r − 13)/6, ef (Fp) = 4 and then ef (Fp)/χf (Fp) = 24/(4r − 13) = µ. We

can see from the proof of Theorem 3.1 that any singular fiber Fp satisfying K2
f (Fp) =

(12− µ)χf (Fp) is obtained in this way.

(iii) Assume that n = 2 and g ≥ 3. Consider the situation that Γp is smooth and Fp is

obtained the following sequence of singularity diagrams associated with Γp:

(x1, r − 1) (1)

Γ0
p

(x2, r)

E1
1

· · · (x2l−1, r − 1) (1)

E0
2l−2

(x2l, r)

E1
2l−1

(1, 1, . . . , 1)

E0
2l

x1

· · ·

Γp

�
blow-up

x2

E1

...

· · ·

blow-up
�

E2
x3

· · ·

...
blow-up

2l − 2 times

��

E2l
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−1 · · · −1

•
••

•
double cover
�

Fp

· · ·

•
••

◦
◦

◦
◦
•

A0
A1Al−1

Al

contraction
-

Then we can write Fp = A0 +A1 + · · ·+Al, pa(A0) = 2, g(Ak) = 0 for k = 1, . . . , l− 1

and g(Al) = r/2 − 1. This singular fiber satisfies K2
f (Fp) = (12 − µ)χf (Fp). Indeed,

αr/2−1(Fp) = αr/2(Fp) = l, αk(Fp) = 0 for k ̸= r/2− 1, r/2, ε(Fp) = l and χφ(Fp) = 0.

Thus χf (Fp) = (r − 2)l/4, ef (Fp) = l and then ef (Fp)/χf (Fp) = 4/(r − 2) = µ. We

can see from the proof of Theorem 3.1 that any singular fiber Fp satisfying K2
f (Fp) =

(12− µ)χf (Fp) is obtained in this way.

From Theorem 3.1 and Example 3.14, we can characterize primitive cyclic covering

fibrations of type (g, 1, n) whose slope attains the upper bound in Theorem 3.1.

Corollary 3.15. Let f : S → B be a primitive cyclic covering fibration of type (g, 1, n).

Then the slope λf attains the upper bound in Theorem 3.1 if and only if any singular

fiber of f is as in Example 3.14.

4 Glueing linear series

For a smooth projective curve C (resp. a family of smooth projective curves f : X → B),

let Grd(C) (resp. Grd(f)) be the (resp. relative) Brill-Noether variety parametrizing grd’s

on C (resp. on fibers of f), where we denote by grd a linear system of degree d and of

dimension r (cf. [2] Chapter XXI).

In this section, we prove the following theorem for the later use, which is a slight

improvement of Theorem 3.1 in [8].

Theorem 4.1. Let X, B be normal algebraic varieties (resp. normal analytic varieties)

and f : X → B a proper flat morphism whose general fiber is a non-singular projective

curve. Let B0 ⊂ B be the Zariski open subset consisting of smooth points p of B such that

Fp = f−1(p) is non-singular and f0 : X0 = f−1(B0)→ B0 the restriction of f to B0. Let

r, d be positive integers. Assume that there exists a rational section η : B0 · · · → Grd(f0).
Then there exist a divisorial sheaf L on X and a subsheaf G ⊂ f∗L such that the linear

subspace G ⊗ C(p) ⊂ H0(Fp,L|Fp
) defines η(p) for any general p ∈ B0.

Proof. We may assume that η(p) is base point free for any general p ∈ B0 by removing

44



the locus of all base points of η(p), p ∈ B0. Shrinking B0 if necessary, we may assume

that η is a section. For p ∈ B0, we can write η(p) = {D(p)λ}λ∈Pr , where D(p)λ is an

effective divisor of degree d on Fp. Let E0 be a locally free sheaf on B0 such that X0

is embedded in PB0
(E0) over B0 (such E0 exists, e.g., take the direct image sheaf of a

sufficiently f0-ample invertible sheaf on X0). We regard each fiber Fp as a subvariety

of P(E0 ⊗ C(p)) ≃ Prank(E0)−1 via the inclusion X0 ⊂ PB0
(E0). Let D(p)λ denote the

plane in P(E0 ⊗C(p)) spanned by D(p)λ. Then the dimension k := dimD(p)λ does not

depend on the choices of p and λ from the Riemann-Roch theorem. Now, we consider the

subvariety P of the relative Grassmannian GrB0
(k,P(E0)) = ∪p∈B0

Gr(k,P(E0 ⊗ C(p)))
defined by

P := {[D(p)λ] ∈ Gr(k,P(E0 ⊗ C(p)))|λ ∈ Pr, p ∈ B0}.

It is a holomorphic Pr-bundle over B0 via the natural projection. We can define a

morphism Φ from X0 to P ∗ := GrB0
(r − 1, P ) by mapping x to {[D(p)λ]|x ∈ D(p)λ},

the restriction of which to the fiber Fp is nothing but the morphism associated with

η(p). Let G0, L0 respectively be the direct image sheaf of the tautological line bundle

OP∗(1) via the natural projection P ∗ → B0, the pull-back of OP∗(1) via Φ. It follows

that P ∗ = PB0(G0) and G0 ⊂ f0∗L0. Let iB0 : B0 → B and iX0 : X0 → X be the natural

inclusions. We put G := iB0∗G0 and L := (iX0∗L)∗∗, which are the desired sheaves.

Indeed, we have G ⊂ iB0∗f0∗L0 = f∗iX0∗L0 ⊂ f∗L. 2

Remark 4.2. If f : S → B has a section, Theorem 4.1 follows directly from the existence

of the relative Poincare line bundle (cf. [2]).

Corollary 4.3. Let X and B be normal algebraic varieties and f : X → B and d, r as

in Theorem 4.1. Assume that the fiber Fp has a base point free grd for general p ∈ B.

Then, after a suitable finite base change B′ → B, there exist a Pr-bundle P ′ over B′

and a rational map φ : X ′ · · · → P ′ over B′ of degree d, where f ′ : X ′ → B′ is a base

change fibration of f .

Proof. By assumption, the general fiber of Grd(f0) → B0 is non-empty. Since Grd(f0) is
algebraic, we can take a subvariety B′

0 of Grd(f0) such that the natural map B′
0 → B0

is finite (after shrinking B0 if necessary). We take a compactification B′ → B of it and

perform base change via this map. Let f ′ : S′ → B′ be the base change fibration of f

and f ′0 : X
′
0 → B′

0 the restriction of f ′ to X ′
0 = f ′−1(B′

0). Since Grd(f ′0) = Grd(f0)×B0B
′
0,

we can take a section B′
0 → Grd(f ′0) by p 7→ (p, p). From Theorem 4.1, there exist a line

bundle L on B′ and a subbundle G ⊂ f ′∗L such that the rational map X ′ · · · → PB′(G)
associated to f ′∗G → L is of degree d.

2
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5 Localizations

Let f : S → B be a fibered surface of genus g = (d − 1)(d − 2)/2 > 1 whose general

fiber has a g2d, that is, it is a smooth plane curve of degree d. Since the g2d is unique,

there exists a line bundle L on S (unique up to a multiple of a divisor consisting of

components of fibers) such that L|F is the g2d on any general fiber F by Theorem 4.1.

Then L⊗d−3 is isomorphic to ωf (Γ) for some divisor Γ consisting of components of fibers

(it depends on a choice of L) since L⊗d−3|F is the canonical bundle KF for a general

fiber F . On the other hand, for k = 1, . . . , d− 1, there exists a natural exact sequence

0→ Symkf∗L → f∗L⊗k → Tk → 0

induced from the multiplicative map SymkH0(L|F )→ H0(L⊗k|F ) on fibers, where the

cokernel Tk is a torsion sheaf. Thus, we get

deg(f∗L⊗k) = deg(Symkf∗L) + length(Tk). (5.1)

By the Grothendieck Riemann-Roch theorem, we have

deg(f∗L⊗k)− deg(R1f∗L⊗k) =
k2

2
L2 − k

2
LKf + χf , (5.2)

where L = c1(L). From (5.1) and (5.2), we obtain

k2

2
L2 − k

2
LKf + χf + deg(R1f∗L⊗k)− length(Tk)

=

(
k + 2

3

)(
1

2
L2 − 1

2
LKf + χf + deg(R1f∗L)

)
.

In particular, for k = d− 2, d− 1, we have

(d− 2)2

2
L2 − d− 2

2
LKf + χf + length(R1f∗L⊗d−2)− length(Td−2) (5.3)

=

(
d

3

)(
1

2
L2 − 1

2
LKf + χf + deg(R1f∗L)

)
,

(d− 1)2

2
L2 − d− 1

2
LKf + χf + length(R1f∗L⊗d−1)− length(Td−1) (5.4)

=

(
d+ 1

3

)(
1

2
L2 − 1

2
LKf + χf + deg(R1f∗L)

)
,
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where two sheaves R1f∗L⊗d−2 and R1f∗L⊗d−1 are torsion sheaves. Since
(
d+1
3

)
times

the left hand side of (5.3) is equal to
(
d
3

)
times the left hand side of (5.4), we obtain by

a calculation that

K2
f =

6(d− 3)

d− 2
χf +

∑
p∈B

Indd(Fp), (5.5)

where we put

Indd(Fp) :=Γ2
p + 2(d− 3)

(
d+ 1

d− 2
lengthp(R

1f∗L⊗d−2)− lengthp(R
1f∗L⊗d−1)

)
+ 2(d− 3)

(
lengthp(Td−1)−

d+ 1

d− 2
lengthp(Td−2)

)
.

From (5.5), the value Indd(Fp) is independent of a choice of the line bundle L since

L is unique up to a multiple of an f -vertical divisor. But it seems hard to show that

Indd(Fp) is non-negative directly from the definition.

6 Lower bound of the slope

In this section, we prove the following inequality for plane curve fibrations.

Theorem 6.1. Let f : S → B be a relatively minimal plane curve fibration of degree

d ≥ 4. Then we have

K2
f ≥

6(d− 3)

d− 2
χf .

Let f : S → B be a relatively minimal plane curve fibration of degree d. Since a

g2d on the general fiber F is unique, there exists a line bundle L on S such that the

restriction L|F is the g2d and it is unique up to a multiple of divisors consisting of

components of fibers. Since L|⊗d−3
F = ωF , we can write L⊗d−3(J) = ωf for some

divisor J consisting of components of fibers. Tensoring components of fibers to L, we
may assume that J is effective. Then we have an injection f∗L⊗d−3 → f∗ωf . The

composite of it and the natural homomorphism Symd−3f∗L → f∗L⊗d−3 induces an

injection Symd−3f∗L → f∗ωf whose cokernel is a torsion sheaf. Let c be the maximal

effective divisor on B such that the image of the homomorphism Symd−3f∗L → f∗ωf is

contained in f∗ωf (−c). Then there is an exact sequence

0→ Symd−3f∗L → f∗ωf (−c)→ T → 0,

which induces an elementary transformation

P := PB(f∗ωf ) = PB(f∗ωf (−c))
τ←− P̃ τ ′

−→ P ′ := PB(Sym
d−3(f∗L))
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such that

τ∗OPB(f∗ωf (−c))(1)− Eτ = τ ′∗OPB(Symd−3(f∗L))(1)

holds, where OPB(E)(1) is the tautological line bundle associated with E and Eτ is an

effective exceptional divisor of τ . On the other hand, we have

OPB(f∗ωf (−c))(1) = OPB(f∗ωf )(1)− π
∗c,

and then we get

τ∗OPB(f∗ωf )(1)− π̃
∗c− Eτ = τ ′∗OPB(Symd−3(f∗L))(1),

where π : P → B, π̃ : P̃ → B are the natural projections. Now we consider the relative

Veronese embeddingW ′ := PB(f∗L)→ P ′ of degree d−3 corresponding to the surjective
homomorphism ϕ′∗Symd−3(f∗L) → OPB(f∗L)(d − 3), where ϕ′ : W ′ → B is the natural

projection. There is a rational map S · · · → W ′ corresponding to the homomorphism

f∗f∗L → L. Let X ′ ⊂ W ′ be (the closure of) its image. Let W̃ , X̃ be the proper

transforms ofW ′, X ′ with respect to τ ′ andW , X the image of W̃ , X̃ via τ , respectively.

Note that X coincides with the image of the relative canonical map S · · · → P and two

birational maps S · · · → X · · · → X̃ and S · · · → X ′ · · · → X̃ coincide. Let ρ : S̃ → S

be the resolution of indeterminacy of S · · · → X̃ and Φ̃ : S̃ → X̃ the induced birational

morphism. We put T := OPB(f∗ωf )(1), T
′ := OPB(Symd−3(f∗L))(1) and denote also τ∗T ,

τ ′∗T ′ by T , T ′ for simplicity. Let Γ, Γ′ respectively be the numerical equivalence classes

of fibers of π : P → B, π′ : P ′ → B. Note that τ∗Γ = τ ′∗Γ′ and we also denote it by Γ

or Γ′. From the above arguments, we have

T − T ′ ≡ cΓ + Eτ ,

where c is the degree of c. Put N := T |
W̃
, N ′ := T ′|

W̃
, M := Φ̃∗T and M ′ := Φ̃∗T ′.

The numerical equivalence classes of W ′, X ′ in P ′ as cycles can be written by

W ′ ≡ (d− 3)2T ′g−3 + α′T ′g−4Γ′, X ′ ≡ d(d− 3)T ′g−2 + β′T ′g−3Γ′

for some α′, β′. Then we have

N ′3 = T ′3W ′ = (d− 3)2(χf − l) + α′, M ′2 = T ′2X ′ = d(d− 3)(χf − l) + β′,

where l := length(f∗ωf/Sym
d−3f∗L) ≥ 0. Note that T ′|W ′ = OPB(f∗L)(d− 3) and then

we have

N ′3 = (d− 3)3degf∗L.
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Then the numerical class of the canonical divisor KW ′ of W ′ is

KW ′ ≡ −3OPB(f∗L)(1) + (degf∗L+ 2b− 2)Γ′|W ′

= −3OPB(f∗L)(1) +

(
N ′3

(d− 3)3
+ 2b− 2

)
Γ′|W ′ ,

where b := g(B), the genus of B. The numerical class [X ′]W ′ of X ′ in W ′ can be

denoted by

[X ′]W ′ ≡ dOPB(f∗L)(1) + β′′Γ′|W ′

for some β′′. Since OPB(f∗L)(d− 3) = T ′|W ′ , we have(
d

d− 3
T ′ + β′′Γ

)
W ′ = X ′

and thus we get

β′ = (d− 3)2β′′ +
d

d− 3
α′.

By the definition ofM , we can write ρ∗Kf =M+Z for some effective vertical divisor

Z with respect to f̃ : S̃ → B. Then we have

K2
f = (ρ∗Kf )

2 = (M + Z)2 =M2 + (ρ∗Kf +M)Z ≥M2, (6.1)

where the last inequality follows from the nefness of Kf .

Lemma 6.2.

M2 ≥ d− 1

d− 3
N3.

Proof. Take a sufficiently ample divisor a such that |M ′ + f̃∗a| is free from base points.

Then we can take a smooth general member C ∈ |M ′ + f̃∗a| by Bertini’s theorem. Let

C ′ := (τ ′ ◦ Φ̃)(C). Now we compare the genus g(C) of C and the arithmetic genus

pa(C
′) of C ′.

First, we compute g(C). The adjunction formula says that

2g(C)− 2 = (KS̃ + C)C

= (ρ∗Kf + E + (2b− 2)F̃ + C)C

= (M + Z + E + (2b− 2)F̃ +M ′ + aF̃ )(M ′ + aF̃ )

= (2M + Z + E + (2b− 2 + a− c)F̃ − Φ̃∗Eτ )(M + (a− c)F̃ − Φ̃∗Eτ )

= 2M2 + (Z + E)(M − Φ̃∗Eτ ) + (2b− 2 + 3a− 3c)(2g − 2) + (Φ̃∗Eτ )
2,

(6.2)
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where b := g(B), F̃ is the numerical class of a fiber of f̃ , E is the exceptional divisor of

ρ such that KS̃ = ρ∗KS + E and a := dega.

Next, we compute pa(C
′). The adjunction formula also says that

2pa(C
′)− 2 = (KX′ + C ′)C ′

= ((KW ′ + [X ′]W ′)|X′ + C ′)C ′

=

((
T ′ +

(
N ′3

(d− 3)3
+ 2b− 2 + β′′

)
Γ′
)
|X′ + (T ′ + aΓ′)|X′

)
(T ′ + aΓ′)|X′

=

(
2T ′ +

(
N ′3

(d− 3)3
+ 2b− 2 + β′′ + a

)
Γ′
)
(T ′ + aΓ′)X ′

=

(
2T ′2 +

(
N ′3

(d− 3)3
+ 2b− 2 + β′′ + 3a

)
T ′Γ′

)
(d(d− 3)T ′g−2 + β′T ′g−3Γ′)

= 2d(d− 3)(χf − l) + d(d− 3)

(
N ′3

(d− 3)3
+ 2b− 2 + β′′ + 3a

)
+ 2β′

= −d(d− 1)

(d− 3)2
N ′3 +

3d− 6

d− 3
M ′2 + (2b− 2 + 3a)(2g − 2)

= −d(d− 1)

(d− 3)2
N3 +

3d− 6

d− 3
M2 +

d(d− 1)

(d− 3)2
(Eτ |W̃ )3 +

3d− 6

d− 3
(Φ̃∗Eτ )

2

+ (2b− 2 + 3a− 3c)(2g − 2), (6.3)

where the last equality follows fromN3−(Eτ |W̃ )3 = N ′3+3c(d−3)2 andM2+(Φ̃∗Eτ )
2 =

M ′2 + 2cd(d− 3). From (6.2) and (6.3), we get

2pa(C
′)− 2g(C) =− d(d− 1)

(d− 3)2
N3 +

d

d− 3
M2 − (Z + E)(M − Φ̃∗Eτ )

+
d(d− 1)

(d− 3)2
(Eτ |W̃ )3 +

2d− 3

d− 3
(Φ̃∗Eτ )

2 (6.4)

and it is non-negative since C → C ′ is birational. On the other hand, we have

(Eτ |W̃ )3 = (N −N ′ − cΓ|
W̃
)2Eτ |W̃ = N ′2Eτ |W̃

= T ′2EτW̃ = T ′2EτW
′ = (d− 3)2T ′g−1Eτ (6.5)

and

(Φ̃∗Eτ )
2 = (M −M ′ − cF̃ )Φ̃∗Eτ = −M ′Φ̃∗Eτ

= −T ′Eτ X̃ = −T ′EτX
′ = −d(d− 3)T ′g−1Eτ . (6.6)
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Note that T ′g−1Eτ = lengthT ≥ 0 by a simple computation. From (6.4), (6.5), (6.6)

and (Z + E)(M − Φ̃∗Eτ ) = (Z + E)C ≥ 0, we have

−d(d− 1)

(d− 3)2
N3 +

d

d− 3
M2 ≥ (Z + E)C + d(d− 2)lengthT ≥ 0,

which is the desired inequality. 2

Lemma 6.3.

N3 ≥ 6(d− 3)2

(d− 1)(d− 2)
χf .

Proof. Since the linear system ϕ̃∗N ⊗ C(p) = H0(ϕ̃−1(p), N |ϕ̃−1(p)) on a general fiber

ϕ̃−1(p) ≃ P2 induces a Veronese embedding of degree d−3, the pair (ϕ̃−1(p), ϕ̃∗N⊗C(p))
is Hilbert stable by Corollary 5.3 in [24]. Thus we can apply Theorem 2.2 in [10] to the

pair (N, ϕ̃∗N) and hence we get

rank(ϕ̃∗N)N3 − dim(W̃ )deg(ϕ̃∗N)(N |ϕ̃−1(p))
2 ≥ 0,

which is the desired inequality since ϕ̃∗N ≃ f∗ωf . 2

Proof of Theorem 6.1. From (6.1), Lemma 6.2 and Lemma 6.3, we have

K2
f ≥M2 ≥ d− 1

d− 3
N3 ≥ 6(d− 3)

d− 2
χf .

2

Proposition 6.4 (cf. [27]). Let f : S → B be a relatively minimal plane curve fibration

of degree d. Then the following are equivalent.

(i) M2 =
d− 1

d− 3
N3.

(ii) K2
f =

6(d− 3)

d− 2
χf .

(iii) There exists a P2-bundle ϕ : W = P(E) → B and a member X ∈ |dOW (1) + ϕ∗k|
with at most rational double points as singularities such that S is the minimal resolution

of X.

Proof. ((i)⇒(iii)) From the proof of Lemma 6.2, (i) implies that pa(C
′) = g(C) for

general C ∈ |M ′ + f̃∗a|, T ′g−1Eτ = 0 and (Z +E)M ′ = 0. The former implies that X ′

has at most isolated singularities. T ′g−1Eτ = 0 implies that P = P ′ and Eτ = 0. Hence

we have M −M ′ = f̃∗c and then (Z +E)M = 0. It follows from the nefness of M that

ZM = 0 and EM = 0. Therefore, we have Z2 =MZ+Z2 = ρ∗KfZ ≥ 0. Thus, by the

51



Hodge index theorem, we get Z = 0. On the other hand, we have degf∗L+β′′ = 0 from

the proof of Lemma 6.2 and the assumption (i). Thus X = X ′ in W = W ′ is linearly

equivalent to dOW (1)− ϕ∗d for some divisor d of degree degf∗L. It follows that

χ(OX) = χ(OW )− χ(OW (−X))

= 1− b+ χ(OW (KW +X))

= 1− b+ χ(Symd−3f∗L ⊗ (detf∗L ⊗ ωB ⊗OB(−d)))

= 1− b+ g(1− b) + χf − c+ g(2b− 2)

= χ(OS)− c

≤ χ(OS).

On the other hand, since Φ: S̃ → X is a resolution of singularities of X, we have

χ(OX) ≥ χ(OS̃) = χ(OS). Hence c = 0 and X has at most rational singularities. Since

X is a hypersurface of W , any singularity of X is a rational double point. We can see

that S̃ = S and d = detf∗L.

((iii)⇒(ii)) By a simple computation, we have

K2
f = d(d− 1)(d− 3)degE + 3(d− 1)(d− 3)k,

where k := degk. Moreover, by the similar computation as above, we have

χ(OX) = χ(OW )− χ(OW (−X))

= (g − 1)(b− 1) +
d(d− 1)(d− 2)

6
degE + (d− 1)(d− 2)

2
k.

Since X has at most rational double points, we get

χf = χ(OS)− (g − 1)(b− 1)

= χ(OX)− (g − 1)(b− 1)

=
d(d− 1)(d− 2)

6
degE + (d− 1)(d− 2)

2
k.

Hence (ii) holds.

((ii)⇒(i)) It is clear. 2
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7 Algebraization of fibers

We consider a proper surjective holomorphic map f : S → ∆ from a non-singular com-

plex surface S to a small disk ∆ = {t ∈ C||t| < ϵ} such that the general fiber f−1(t)

over t ̸= 0 is a non-singular curve of genus g and put F := f−1(0). The pair (f, F ) is

called a fiber germ of genus g. A fiber germ (f, F ) is relatively minimal if F contains no

(−1)-curves. In the sequel, we always assume that any fiber germ is relatively minimal.

Two relatively minimal fiber germs (f : S → ∆, F ) and (f ′ : S′ → ∆, F ) are holomor-

phically equivalent if there exist biholomorphic maps ϕ : S → S′ and ψ : ∆ → ∆ such

that f ′ ◦ ϕ = ψ ◦ f after shrinking ∆ if necessary. Let A be a set of holomorphically

equivalence classes of fiber germs of genus g and χ : A → Σ a map from A to a set

Σ. The map χ is an algebraic invariant (cf. [35]) if for any fiber germ (f : S → ∆, F )

in A, there exists a natural number n such that for any fiber germ (f ′ : S′ → ∆, F ′)

in A which satisfies Sn ≃ S′
n over SpecC[t]/(tn), we have χ(f, F ) = χ(f ′, F ′), where

Sn := S ×∆ SpecC[t]/(tn). For example, the map µ : A → Γ̂g which sends a fiber

germ (f, F ) to its topological monodromy µf is an algebraic invariant, where Γg is the

mapping class group of genus g and Γ̂g is the set of its conjugacy classes.

Let Ad denote the set of holomorphically equivalence classes of fiber germs whose

general fiber is a smooth plane curve of degree d. The following is our main theorem:

Theorem 7.1. There exists a non-negative algebraic invariant Indd : Ad → 1
d−2Z≥0

such that for any relatively minimal plane curve fibration f : S → B of degree d, the

value Indd(F ) equals to 0 for any general fiber F of f and

K2
f =

6(d− 3)

d− 2
χf +

∑
p∈B

Indd(Fp)

holds.

Now, we define the function Indd. Let (f : S → ∆, F ) be a fiber germ in Ad. Then,

by Theorem 4.1, there exists a line bundle L on S such that the restriction L|Ft
is a g2d

on Ft = f−1(t) for any t ̸= 0 and it is unique up to a multiple of a divisor consisting of

components of F = f−1(0). It follows that L⊗d−3 ≃ ωf (Γ) for some divisor Γ consisting

of components of F . Using the line bundle L, we define Indd(f, F ) by

Indd(f, F ) :=Γ2 + 2(d− 3)

(
d+ 1

d− 2
length(R1f∗L⊗d−2)− length(R1f∗L⊗d−1)

)
+ 2(d− 3)

(
length(Td−1)−

d+ 1

d− 2
length(Td−2)

)
,
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where Tk is the torsion sheaf defined by the natural exact sequence

0→ Symkf∗L → f∗L⊗k → Tk → 0.

We have seen that the value Indd(f, F ) is independent of a choice of the line bundle L
when the fiber germ (f, F ) is realized in a global fibration S → B. From (5.5), in order

to prove Theorem 7.1, we must show that for any fiber germ (f, F ) in Ad, Indd(f, F ) is

well-defined, that is, not depend on a choice of L and non-negative algebraic invariant.

The following is a key lemma.

Lemma 7.2. For any fiber germ (f : S → ∆, F ) in Ad and any natural number n,

there exists a plane curve fibration f : S → P1 of degree d such that Sn is isomorphic

to Sn := S ×P1 SpecOP1,0/m
n over SpecC[t]/(tn) ≃ SpecOP1,0/m

n and all the other

singular fibers of f are irreducible Lefschetz plane curves of degree d with one node,

where m denotes the maximal ideal of OP1,0.

Proof. We can take a line bundle L on S such that L|Ft
is the g2d on Ft for any t ̸= 0 from

Theorem 4.1. Thus, we can take a rational map S · · · → ∆×P2 over ∆ that embeds Ft

to P2 = {t}×P2 for any t ̸= 0. Let φ(t;X,Y, Z) be a defining equation of Ft ⊂ P2
(X:Y :Z)

for t ̸= 0, which is a homogeneous polynomial of degree d with respect to X,Y, Z and

determined uniquely up to a multiple of a constant. We may assume that φ(t;X,Y, Z)

is holomorphic in t ̸= 0 after shrinking ∆ if necessary. By Riemann’s extension theorem,

φ(t;X,Y, Z) is holomorphic at t = 0. Thus the image of a rational map S · · · → ∆×P2

can be written as X := {(t, (X : Y : Z)) ∈ ∆× P2|φ(t;X,Y, Z) = 0}. Let

φ(t;X,Y, Z) = φ(0;X,Y, Z) + t
dφ

dt
(0;X,Y, Z) + · · ·+ tm

m!

dmφ

dtm
(0;X,Y, Z) + · · ·

be the Taylor expansion near 0 ∈ ∆ and define

φ[n](t;X,Y, Z) := φ(0;X,Y, Z) + t
dφ

dt
(0;X,Y, Z) + · · ·+ tn

n!

dnφ

dtn
(0;X,Y, Z).

Take a sufficiently large m ≫ n and general homogeneous polynomials ψn+1(X,Y, Z),

. . . , ψm(X,Y, Z) of degree d. Let Φ(t0, t1;X,Y, Z) be the homogenization of the poly-

nomial

φ[n](t;X,Y, Z) + tn+1ψn+1(t;X,Y, Z) + · · ·+ tmψm(t;X,Y, Z)

with respect to t ∈ C and put X := {((t0 : t1), (X : Y : Z)) ∈ P1×P2|Φ(t0, t1;X,Y, Z) =
0}. Taking a resolution of singularities of X and its relatively minimal model over P1,

we get a plane curve fibration f : S → P1 of degree d such that Sn is isomorphic to Sn.

Since ψn+1, . . . , ψm are general, any singular fiber of f over P1 \ {0} is an irreducible

Lefschetz plane curve of degree d with one node by Kuno’s result [29]. 2

54



Lemma 7.3. Indd : Ad → Q is a well-defined algebraic invariant.

Proof. Fix a fiber germ (f, F ) of Ad arbitrarily and denote by IndLd (f, F ) the value

Indd(f, F ) defined by using a line bundle L as above. Note that the value IndLd (f, F ) is

completely determined by the restriction Ln := L|Sn for a sufficiently large n (depending

on (f, F )). From Lemma 7.2, we can take a plane curve fibration f : S → P1 of degree

d such that Sn is isomorphic to Sn. We will show that the line bundle Ln is the

restriction of some line bundle L on S to Sn via the isomorphism Sn ≃ Sn. Note

that the topological monodromies of (f, F ) and (f, F ) are the same and F ≃ F . Take

a subvariety U of the Kuranishi space of the stable model F ′ of (f, F ) parametrizing

smooth plane curves of degree d or its limit and consider the universal family C → U .
Then the cyclic group G = ZN acts on C and U equivariantly and the quotient fibration

C/G→ U/G contains the two fiber germs (f, F ) and (f, F ), where the number N is the

minimal pseudo-period of the topological monodromy of f . We may assume that C/G
and U/G are normal by taking normalizations. Applying Theorem 4.1 to C/G→ U/G,
we obtain a divisorial sheaf L on C/G such that the restriction of L to any general fiber

is a g2d. We can write L ≃ L|S ⊗ OS(D) for some divisor D consisting of components

of F and then Ln ≃ L|S ⊗ OS(D)|Sn
, where L|S is a line bundle on S obtained by

glueing the restriction of L to a neighborhood of the fiber F with a line bundle on S \F
obtained by Theorem 4.1. The line bundle L := L|S ⊗OS(D) is the desired one. Since

IndLd (f, F ) and IndLd (f, F ) are determined by Ln, we have IndLd (f, F ) = IndLd (f, F ).

Since IndLd (f, F ) is independent of the choice of the line bundle, we see that Indd is

well-defined. In order to prove that Indd is an algebraic invariant, we apply the similar

arguments as above to any fiber germ (f ′ : S′ → ∆, F ′) in Ad with Sn ≃ S′
n. Thus we

have Indd(f, F ) = Indd(f
′, F ′) for a sufficiently large n. Such a number n depends only

on (f, F ) and L. Thus Indd is an algebraic invariant. 2

Definition 7.4. A fiber germ (f : S → ∆, F ) in Ad is called a Lefschetz fiber germ of

type 0 if S ⊂ ∆× P2 and F = f−1(0) is an irreducible Lefschetz plane curve of degree

d with one node.

Lemma 7.5. For any Lefschetz fiber germ (f, F ) of type 0 in Ad, we have Indd(f, F ) =

0.

Proof. We can take a line bundle L defining Indd(f, F ) such that L⊗d−3 ≃ ωf by

restricting O(1) on ∆×P2 to S. Moreover, we can see that R1f∗L⊗d−2 = R1f∗L⊗d−1 =

Td−2 = Td−1 = 0 since F is irreducible and H1(F,L⊗d−2|F ) = H1(F,L⊗d−1|F ) = 0.

Thus we have Indd(f, F ) = 0. 2

Lemma 7.6. For any fiber germ (f, F ) in Ad, the value Indd(f, F ) is non-negative.
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Proof. Fix a fiber germ (f : S → ∆, F ) in Ad arbitrarily. Since Indd is an algebraic

invariant, we can take a natural number n such that for any fiber germ (f ′ : S′ → ∆, F ′)

of Ad such that Sn ≃ S′
n, we have Indd(f, F ) = Indd(f

′, F ′). From Lemma 7.2, we can

take a plane curve fibration f : S → P1 of degree d such that Sn ≃ Sn and any other fiber

germ of f is Lefschetz of type 0. Thus we get from (5.5), Theorem 6.1 and Lemma 7.5

that

Indd(f, F ) = Indd(f, F ) = K2
f −

6(d− 3)

d− 2
χf ≥ 0.

2

Combining (5.5) with Lemma 7.3 and Lemma 7.6, we get Theorem 7.1.

Proposition 7.7. For a fiber germ (f : S → ∆, F ) ∈ Ad, Indd(f, F ) = 0 holds if and

only if S is obtained by resolving singularities of some family X ⊂ ∆ × P2 of plane

curves of degree d with at most rational double points as singularities.

Proof. From Proposition 6.4 and Theorem 7.2, we get the assertion. 2

8 Local signature

For an oriented compact real 4-dimensional manifoldX, the signature Sign(X) is defined

to be the number of positive eigenvalues minus the number of negative eigenvalues of

the intersection form on H2(X). In this section, we consider the signature for complex

surfaces with plane curve fibrations. For a given condition P on smooth curves, let

AP be the set of holomorphically equivalence classes of fiber germs whose general fiber

has the condition P. Then a Q-valued function σ : AP → Q is a local signature if for

any relatively minimal fibered surface f : S → B whose general fiber F satisfies the

condition P, we have σ(F ) = 0 and Sign(X) =
∑

p∈B σ(Fp). In this section, we treat

relatively minimal plane curve fibrations f : S → B of degree d.

Definition 8.1. We define σalg
d : Ad → Q by

σalg
d =

4

12− λd
Indd −

8− λd
12− λd

e,

where λd := 6(d− 3)/(d− 2) and e : Ad → Q is defined by e(f, F ) := etop(F )− 2 + 2g,

which is clearly an algebraic invariant.

The function σalg
d is in fact a local signature, that is, the following holds:

Proposition 8.2 (cf. [5]). For a relatively minimal plane curve fibration f : S → B of
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degree d, we have

Sign(S) =
∑
p∈B

σalg
d (Fp).

Proof. The claim holds from Hirzebruch’s signature theorem Sign(S) = K2
f − 8χf ,

Theorem 7.1 and Noether’s formula 12χf = K2
f + ef . 2

Recall that Kuno [29] defines a local signature σtop
d for (C∞-)fibrations of plane curves

of degree d over a closed surface by using Meyer’s signature cocycle from the topological

point of view. In fact, two local signatures σalg
d and σtop

d coincide on Ad:

Theorem 8.3 (cf. [35]). We have σalg
d (f, F ) = σtop

d (f, F ) for any fiber germ (f, F ) in

Ad.

Proof. We see that two functions σalg
d and σtop

d are algebraic invariants. Moreover, we

have

σalg
d (f, F ) = σtop

d (f, F ) = − d+ 1

3(d− 1)

for any Lefschetz fiber germ of type 0. Thus the claim holds from Lemma 7.2. 2

9 Local signature associated with an effective divisor onMg

Let Mg and Mg respectively denote the moduli space of smooth curves of genus g

and the moduli space of stable curves of genus g. The rational Picard group ofMg is

generated freely by the Hodge bundle λ and the boundary divisors δ0, δ1, . . . , δ[g/2] for

g ≥ 3, where we use the notation in [21]. Let D be an effective divisor on Mg and D

the compactification of D in Mg. Then we can write D ∼Q aλ −
∑[g/2]

i=0 biδi for some

rational numbers a, bi > 0, where the symbol ∼Q means the Q-linear equivalence.

Let f : S → ∆ be a relatively minimal degeneration of curves of genus g, that is, f

is a surjective proper flat morphism from a complex smooth surface S to a small open

disk ∆ such that f−1(t) is a smooth curve of genus g for any t ̸= 0 and the central fiber

F := f−1(0) is relatively minimal. We take the stable reduction f̃ : S̃ → ∆̃ of f via ∆̃→
∆; z 7→ zN . Resolving singularities of S̃, we obtain a semi-stable reduction f̂ : Ŝ → ∆̃.

Note that N can be taken as the pseudo-period of the topological monodromy µf of f

as a pseudo-periodic class (cf. [3]). Put F := f−1(0) and F̂ := f̂−1(0). Let

Lsd(F ) := σ(f, F ;h∂S)−
1

N
σ(f̂ , F̂ ;h∂Ŝ)

be the local signature defect of (f, F ) (more precisely, see [3]) and

eF := (etop(F )− (2− 2g))− 1

N

(
etop(F̂ )− (2− 2g)

)
.
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On the other hand, the local invariants c21(F ), c2(F ) and χF were defined in [34] for a

fiber germ F of a global fibration f : S → B. Indeed,

Proposition 9.1. We have eF = c2(F ) and

Lsd(F ) =
1

3
(c21(F )− 2eF ) = 4χF − eF .

Proof. These invariants satisfy the following properties: Let f : S → B be a fibered

surface of genus g and f̂ : Ŝ → B̃ be the semi-stable reduction of f via a cyclic covering

B̃ → B of degree N . Then we have

Sign(S)− 1

N
Sign(Ŝ) =

∑
p∈B

Lsd(Fp),

K2
f −

1

N
K2

f̂
=
∑
p∈B

c21(Fp),

ef −
1

N
ef̂ =

∑
p∈B

c2(Fp) =
∑
p∈B

eFp
, (9.1)

χf −
1

N
χf̂ =

∑
p∈B

χFp
.

Let F be an arbitrary fiber germ in a global fibration f : S → B. Taking base change,

we may assume that any fiber of f other than F is semi-stable. Thus we get the

assertion from Hirzebruch’s signature formula Sign(S) = K2
f − 8χf , Noether’s formula

12χf = K2
f + ef and (9.1) since Lsd(F̂ ) = c21(F̂ ) = c2(F̂ ) = eF̂ = χF̂ = 0 for any

semi-stable fiber germ F̂ . 2

Let ρf̂ : ∆̃→Mg be the moduli map of the semi-stable reduction f̂ : Ŝ → ∆̃. For an

effective divisor E onMg not containing the image ρf̂ (∆̃), we can define the pull-back

ρ∗
f̂
E. Let E(F̂ ) := deg(ρ∗

f̂
E). Note that even when E ∼ E′ holds for two effective

divisors E and E′, it is not always true that E(F̂ ) = E′(F̂ ) because we treat local

fibrations here. Given an effective divisor D on Mg such that D does not contain

ρf̂ (∆̃) with D ∼Q aλ−
∑[g/2]

i=0 biδi, we put

λD(F̂ ) :=
1

a

(
D(F̂ ) +

∑
i

biδi(F̂ )

)
.

In general, for a relatively minimal fiber germ F , we define

λD(F ) := χF +
λD(F̂ )

N

58



and

δ(F ) := eF +
δ(F̂ )

N
= etop(F )− (2− 2g),

which are independent of the choice of N .

Now we consider a global fibration f : S → B, that is, a surjective morphism from

a smooth projective surface S to a smooth projective curve B with connected fibers.

Assume that the moduli point of the general fiber of f is not contained in D. From

(9.1), we have

χf =
∑
p∈B

λD(Fp), ef =
∑
p∈B

δ(Fp).

From Hirzebruch’s signature formula Sign(S) = 4χf − ef , we can write

Sign(S) =
∑
p∈B

(4λD(Fp)− δ(Fp)).

We call σD(F ) := 4λD(F )− δ(F ) the local signature of a fiber germ F associated with

D. Note that the divisor 4λ− δ is called the signature divisor in [6].

10 Examples

Now we consider two effective divisors Eg,−1 and Eg,1 onMg, which parameterize curves

C of genus g having a special Weierstrass point. Let C be a smooth curve of genus g. Let

p be a Weierstrass point of C, i.e., a point on C satisfying h0(gp) ≥ 2. Then p is said to

be exceptional of type g−1 (resp. of type g+1) if h0((g−1)p) ≥ 2 (resp. h0((g+1)p) ≥ 3).

The locus Eg,−1 (resp. Eg,1) on Mg is (roughly) defined by the set of curves of genus

g with an exceptional Weierstrass point of type g − 1 (resp. of type g + 1) with the

natural scheme structure, which is of codimension 1 for g ≥ 3. For more details, see

[16]. For g = 2, the loci E2,−1 and E2,1 are empty. For g = 3, E3,−1 is coincide with the

hyperelliptic locus H3 as a set, but as a divisor, we have E3,−1 = 8H3. Indeed, once a

genus 3 curve has one exceptional Weierstrass point of type 2, it becomes hyperelliptic

and hence has 8 Weierstrass points of type 2 automatically. Since the hyperelliptic

Weierstrass point is exceptional of type g − 1 and g + 1, the hyperelliptic locus Hg is

contained in both Eg,−1 and Eg,1. In particular, E3,−1 = 8H3 is a subdivisor of E3,1.

Thus we can define an effective divisor HF := E3,1−E3,−1. As a different definition, let

HF be the locus on the moduli spaceM3 \H3 of smooth plane quartics parameterizing

plane quartic curves with a hyperflex, i.e., 4-fold tangent point. Then the above HF is

just the closure of HF inM3. The locus HF has multiplicity 1 around general points.
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For g ≥ 4, Eg,−1 and Eg,1 also have multiplicity 1 around general points. It is known

that the rational divisor classes of Eg,−1 and Eg,1 are given by

Eg,−1 =
g2(g − 1)(3g − 1)

2
λ− (g − 1)2g(g + 1)

6
δ0 −

[g/2]∑
i=1

i(g − i)g(g2 + g − 4)

2
δi,

Eg,1 =
(g + 1)(g + 2)(3g2 + 3g + 2)

2
λ− g(g + 1)2(g + 2)

6
δ0 −

[g/2]∑
i=1

i(g − i)(g + 1)(g + 2)2

2
δi

(cf. [16], [13], [14]). In particular, we have

E3,−1 = 72λ− 8δ0 − 24δ1, E3,1 = 380λ− 40δ0 − 100δ1,

H3 = 9λ− δ0 − 3δ1, HF = 308λ− 32δ0 − 76δ1.

Now, we will check using the simplest example of fibered surface of genus 3 that two

local signatures σH3
and σHF associated with H3 and HF give different localizations.

Example 10.1. Let {Cλ}λ ⊂ |4HP2 | be a general Lefschetz pencil of quartics. The base

locus of {Cλ}λ consists of 16 points and they are on smooth members. Blowing up at

these 16 points, we obtain a non-hyperelliptic fibration f : S → P1 of genus 3. By a

simple computation, we get χf = 3, ef = 27, K2
f = 9 and Sign(S) = −15. Note that

all singular fibers of f are irreducible curves with one node and the number of them is

27. Thus we have H3(f) = 0, λ(f) = 3, δ0(f) = 27 and δ1(f) = 0. Hence we have

HF(f) = 60. This implies that the number of smooth curves in a general Lefschetz

pencil of quartic curves with a hyperflex is 60. Let Fhf and F0 respectively be a smooth

quartic fiber germ of f with one hyperflex and an irreducible fiber germ of f with one

node. Then clearly we have

δ0(Fhf) = 0, δ1(Fhf) = 0, H3(Fhf) = 0, HF(Fhf) = 1

and

δ0(F0) = 1, δ1(F0) = 0, H3(F0) = 0, HF(F0) = 0.

Thus we get

λH3(Fhf) = 0, λH3(F0) =
1

9
, σH3(Fhf) = 0, σH3(F0) = −

5

9

and

λHF (Fhf) =
1

308
, λHF (F0) =

8

77
, σHF (Fhf) =

1

77
, σHF (F0) = −

45

77
.

Thus two local signatures σH3
and σHF are different.
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Next, let us consider the genus 2 case. The rational Picard group ofM2 is generated

by λ, δ0 and δ1 with one relation 10λ = δ0 + 2δ1. For a semi-stable fiber germ F̂ of

genus 2, we put λ(F̂ ) := (δ0(F̂ ) + 2δ1(F̂ ))/10. For a not necessarily semi-stable fiber

germ F , we define λ(F ) by using the semi-stable reduction similarly as in the previous

section. We also define a (pre-)Horikawa index Ind(F ) := 10λ(F )−δ(F ) for a relatively

minimal genus 2 fiber germ F . It coincides with the original Horikawa index defined by

using the double covering data (cf. [35], [22], [37]) and hence it is non-negative. A local

signature can be defined by σ(F ) := 4λ(F )− δ(F ) for any fiber germ F of genus 2.

Now, we define another local signature for non-bielliptic genus 2 fiber germs. Let B2
be the bielliptic locus onM2 and B2 its closure inM2. They are irreducible codimension

1 loci. From [19], the rational linearly equivalence class of B2 is

B2 =
3

2
δ0 + 6δ1 = 30λ− 3

2
δ0 = 15λ+ 3δ1.

Thus, for non-bielliptic genus 2 fiber germs, two localizations of the Hodge bundle λ

can be realized as follows. We put

λB2,0(F̂ ) :=
1

30
B2(F̂ ) +

1

20
δ0(F̂ )

and

λB2,1(F̂ ) :=
1

15
B2(F̂ )−

1

5
δ1(F̂ )

for a semi-stable non-bielliptic fiber germ F̂ of genus 2. By using semi-stable reduction,

we define λB2,0(F ), λB2,1(F ) for any non-bielliptic fiber germ F of genus 2. Then

σB2,i(F ) := 4λB2,i(F ) − δ(F ), i = 1, 2 are local signatures for genus 2 non-bielliptic

fibrations.

Example 10.2. Let F0, F1 and Fb respectively be non-bielliptic genus 2 fiber germs the

image of whose moduli map meets ∆0, ∆1 and B2 transversally (and does not meet

other loci among them) at the moduli point of the central fiber. Then we have

σ(F0) = −
3

5
, σ(F1) = −

1

5
, σ(Fb) = 0,

σB2,0(F0) = −
4

5
, σB2,0(F1) = −1, σB2,0(Fb) =

2

5
,

σB2,1(F0) = −1, σB2,1(F1) = −
9

5
, σB2,0(Fb) =

4

15
.

For example, take a general member R in the complete linear system |pr∗1OP1(N) ⊗
pr∗2OP1(6)|, N ∈ 2Z>0 on P1 × P1 and construct the double covering S → P1 × P1
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branched over R. Then the composite f : S → P1 of the double covering and the first

projection pr1 is a non-bielliptic fibration of genus 2. By a simple computation, we have

χf = N, K2
f = 2N, ef = 10N, Sign(S) = −6N.

Since R is general, we may assume that any singular fiber germ of f is of type F0 as

above. Thus the number of fiber germs of type F0, F1 and Fb is 10N , 0 and 15N ,

respectively.
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