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Artin-Mazur zeta functions of generalized

beta-transformations

SHINTARO SUZUKI

Abstract. In this paper, we study the Artin-Mazur zeta function of a

generalization of the well-known β-transformation introduced by Góra

[7]. We show that the Artin-Mazur zeta function can be extended to a

meromorphic function via an expansion of 1 defined by using the trans-

formation. As an application, we relate its analytic properties to alge-

braic properties of β.

1. Introduction

Let β > 1. The so-called β-transformation τβ : [0, 1] → [0, 1] is defined by

τβ(x) = βx− [βx]

for x ∈ [0, 1], where [y] denotes the integral part of y ∈ R. It is known that

the β-expansion of x is given by

x =

∞∑
n=0

Iβ(τ
n
β (x))

βn+1
,

where Iβ(x) = [βx] for x ∈ [0, 1] (e.g.[14],[16]). In this paper, we consider

the generalized β-transformation τβ,E : [0, 1] → [0, 1] introduced by Góra in

[7]. It is defined as follows: Let β > 1 be a non-integer. Let us denote by
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E = (E(0), . . . , E([β])) a ([β] + 1)-dimensional vector with E(i) ∈ {0, 1} for

0 ≦ i ≦ [β]. For x ∈ [0, 1], we put

τβ,E(x) = E(Iβ(x)) + (−1)E(Iβ(x))τβ(x).

We note that if E(i) = 0 for 0 ≦ i ≦ [β], the generalized β-transformation

τβ,E is the β-transformation and if E(i) = 1 for 0 ≦ i ≦ [β], τβ,E is the

negative β-transformation whose dynamical properties are studied in [12],

[10] and the references therein.

Similar to the β-transformation, we can define an expansion of numbers

in [0, 1] associated with the generalized β-transformation. We define the

([β] + 1) dimensional vector D = (D(0), · · · , D([β])) by D(i) = i+ E(i) for

0 ≦ i ≦ [β]. For x ∈ [0, 1] and every non-negative integer n ≧ 0 we define

‘digits’ dn(β,E, x) and ‘signs’ en(β,E, x) by

dn(β,E, x) = E(Iβ(τ
n
β,E(x))) + Iβ(τ

n
β,E(x)),

en(β,E, x) = (−1)E(Iβ(τ
n
β,E(x))),

and ‘cumulative signs’ sn(β,E, x) by

sn(β,E, x) =

{
1, n = 0,

sn−1(β,E, x)en−1(β,E, x), n ≧ 1.

Then the definition of τβ,E we can represent x ∈ [0, 1] by
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x =
s0(β,E, x)d0(β,E, x)

β
+
s1(β,E, x)τβ,E(x)

β

=
s0(β,E, x)d0(β,E, x)

β
+
s1(β,E, x)d1(β,E, x)

β2
+
s2(β,E, x)τ

2
β,E(x)

β2

= · · ·

=
n−1∑
i=0

si(β,E, x)di(β,E, x)

βi+1
+
sn(β,E, x)τ

n
β,E(x)

βn

(1.1)

for every positive integer n ≧ 1 (see Proposition 1 in [7]). Since τnβ,E(x) ∈

[0, 1] and sn(β,E, x) ∈ {−1, 1}, we have

x =
∞∑
i=0

si(β,E, x)di(β,E, x)

βi+1
.

We call this expansion the τβ,E-expansion of x. We note that if τβ,E is the

β-transformation, the expansion is equal to the β-expansion and if τβ,E is

the negative β-transformation, the expansion is equal to the negative β-

expansion (see [12] and the references therein). If there exists a positive

integer n ≧ 1 such that τnβ,E(x) ∈ {1/β, · · · , [β]/β}, by the equation (1.1)

we have

x =

n−1∑
i=0

si(β,E, x)di(β,E, x)

βi+1
+
sn(β,E, x)n0

βn+1
,

where n0 = βτnβ,E(x) ∈ {1, · · · , [β]}. In this case, we call the τβ,E-expansion

of x finite. If the τβ,E-expansion of 1 is finite then we call β simple.

In [7] Góra showed that every map τβ,E has a unique absolutely continuous

invariant probability measure µβ,E and its density function hβ,E can be
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expressed by using the coefficients of the τβ,E-expansion of 1. Precisely, the

density function hβ,E is expressed as

hβ,E(x) =
1

F (β,E)

∞∑
n=0

sn(β,E, 1)χ[0,τnβ,E(1))(x)

βn+1
, x ∈ [0, 1],

where χA denotes the characteristic function of A and F (β,E) denotes the

normalizing factor:

F (β,E) =
∞∑
n=0

sn(β,E, 1)τ
n
β,E(1)

βn+1
.

We remark that Parry showed that the above result for β-transformations

in [14].

The purpose of this paper is to give the analytic continuation of the

Artin-Mazur zeta function of a generalized β-transformation ζτβ,E (z) via

the generating function for the coefficients of the τβ,E-expansion of 1. The

Artin-Mazur zeta function is given by

ζτβ,E (z) = exp
( ∞∑
n=1

zn

n
♯Fixτnβ,E

)
,

where Fixτnβ,E = {x ∈ [0, 1] ; τnβ,E(x) = x} for n ≥ 1 and ♯A denotes

the cardinality of A. We denote by ρβ,E(z) the generating function for the

coefficients of the τβ,E-expansion of 1:

ρβ,E(z) =
N−1∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n

+ k0sN (β,E, 1)zN
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if β is simple, where N is the minimal positive integer with τNβ,E(1) ∈

{1/β, . . . , [β]/β} and k0 = βτNβ,E(1), and

ρβ,E(z) =
∞∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n

if β is not simple. We set ϕβ,E(z) = zρβ,E(z). The main theorem in this

paper is:

Theorem 1.1. The Artin-Mazur zeta function ζτβ,E (z) of the generalized

β-transformation τβ,E converges absolutely in |z| < 1/β and ϕβ,E(z) has a

radius of convergence greater than or equal to 1. In addition, for z ∈ C with

|z| < 1/β, we have

(1.2) ζτβ,E (z) =
pβ,E(z)

1− ϕβ,E(z)
,

where pβ,E(z) is a ‘cyclotomic factor’, i.e., a rational function whose numer-

ator and denominator are the products of cyclotomic polynomials. There-

fore, ζτβ,E (z) can be extended to a meromorphic function in the unit open

disc. In particular, if the sequence of integers {sn(β,E, 1)dn(β,E, 1)}∞n=0

is eventually periodic, then ζτβ,E (z) can be extended to a rational function.

Otherwise ζτβ,E (z) can not be extended to a meromorphic function beyond

the unit circle. Furthermore, ζτβ,E (z) has a simple pole at 1/β.

The equation (1.2) enables us to relate the analytic properties of the

Artin-Mazur zeta function ζτβ,E (z) to the algebraic properties of β.

In [6], Flatto et al. proved the equation (1.2) in the case of β-transformations.

We note that Theorem 1.1 is extension of this result (see also [9]).



6 SHINTARO SUZUKI

In [13], Milnor and Thurston introduced the kneading matrix for a piece-

wise monotone continuous map in the interval and proved that its Artin-

Mazur zeta function can be expressed by using the reciprocal of its kneading

determinant. After that Preston [15] extended the result to the case where

the map has a finite number of discontinuities (see also [2]). Since general-

ized β-transformations are included in Preston’s situation, it seems that the

analytic continuation of the Artin-Mazur zeta function ζτβ,E (z) is calculated

explicitly by the kneading determinant. However, the relation between the

kneading determinant and the generating function ρβ,E(z) is not clear, for

now.

This paper is organized as follows. In Section 2, we summarize the notions

we need to prove Theorem 1.1 and we give the proof in Section 3. In Section

4, we study the analytic properties of ζτβ,E (z) and show that if ζτβ,E (z)

has no pole in the unit open disk except z = 1/β then β is a Pisot or

Salem number (see Proposition 4.2). In Section 5, we consider the Artin-

Mazur zeta function of a negative β-transformation and see that the Artin-

Mazur zeta function has no pole in the disk {z ∈ C; |z| ≦ 1/β} except

z = 1/β (see Proposition 5.1). In addition, we show that the Artin-Mazur

zeta function converges to a meromorphic function associated with the Thue-

Morse sequence in the unit open disk as β ↘ 1 (see Theorem 5.3). In Section

6, we discuss Chebyshev maps considered as a generalization of Chebyshev

polynomials. They are defined by

Tβ(x) = cos(β arccosx)
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for x ∈ [−1, 1], where β > 1. As an application of Theorem 1.1, we prove

that a dynamical zeta function of this map is analytic in the unit open disk

and it can be extended to a meromorphic function defined in the open disk

{z ∈ C; |z| < β} (see Theorem 6.4).

2. Preliminaries

We introduce basic notions which are used in the proof of Theorem 1.1.

Let X be a non-empty set and S : X → X a map. We set FixS = {x ∈

X;Sx = x} and assume that ♯FixSn < +∞ for every positive integer n ≧ 1.

The Artin-Mazur zeta function ζS(z) is formally defined by

ζS(z) = exp
( ∞∑
n=1

zn

n
♯FixSn

)
.

Next, we give basic notions about symbolic dynamics. It is well known

that Artin-Mazur zeta functions of subshift of finite types can be calculated

by Bowen-Lanford Formula. We summarize them in the following.

Let Y = {0, 1, . . . , N − 1} be a finite set endowed with the discrete topol-

ogy and Σ+ = Y Z≧0 with the product topology. The left shift σ : Σ+ → Σ+

is defined by

σ{xn}∞n=0 = {xn+1}∞n=0

for {xn}∞n=0 ∈ Σ+. Then the left shift is a continuous transformation. The

pair (Σ+, σ) is called the full shift.

Let M = (mij)
N−1
i,j=0 be an N ×N matrix with mij ∈ {0, 1} for 0 ≦ i, j ≦

N − 1. Put

Σ+
M = {{xn}∞n=0 ∈ Σ+| mxnxn+1 = 1 for all n ∈ Z≧0}.



8 SHINTARO SUZUKI

Then Σ+
M is a closed and σ-invariant subset of Σ+. We denote by σM the

restriction of σ to Σ+
M . The pair (Σ+

M , σM ) is called the subshift of finite

type determined by a structure matrix M . It is clear that σM has a finite

number of n-fixed points. The next proposition is known as Bowen-Lanford

Formula.

Proposition 2.1 (Bowen-Lanford [3]). Let M be an N × N matrix with

mij ∈ {0, 1} for 0 ≦ i, j ≦ N − 1 and (Σ+
M , σM ) the subshift of finite

type determined by M. Let λ1, . . . , λN be eigenvalues of M. For z ∈ C with

|z| < 1/max1≦i≦N{λi}, we have

ζσM (z) =
1

det(I − zM)
.

Now, we define the set of monotone pieces of the map τnβ,E . For 0 ≦ i ≦ [β]

we put

Ji =

{
[ iβ ,

i+1
β ), 0 ≦ i ≦ [β]− 1,

[ [β]β , 1], i = [β].

For every positive integer n ≧ 1, we define the set of open intervals An(β,E)

by

A1(β,E) =
{
J̊0, J̊1, · · · , J̊[β]

}
and

An(β,E) =
{
I ∩ τ−1

β,EJ ̸= ∅ ; I ∈ A1(β,E), J ∈ An−1(β,E)
}
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for n ≧ 2. We note that if I ∈ An(β,E) then there exists a unique word

p0 · · · pn−1 ∈ {0, 1, · · · , [β]}n such that I =
∩n−1

i=0 τ
−i
β,EJpi and τ

n
β,E is contin-

uous on I.

Finally, we introduce a linear operator on the set of all functions from

[0, 1] to R associated with a generalized β-transformation.

Definition 2.2. Let F be the set of all functions from [0, 1] to R. We define

the operator Lτβ,E : F → F by

Lτβ,Ef(x) =
∑

y:τβ,E(y)=x

f(y)

for x ∈ [0, 1].

We remark that the operator (1/β)Lτβ,E is the Perron-Frobenius operator

for a generalized β-transformation τβ,E . Perron-Frobenius operators associ-

ated with piecewise expanding maps on the interval are useful for studying

its ergodic properties (e.g. [4], [11]).

3. The proof of Theorem 1.1

The next lemma shows a basic property of the operator Lτβ,E .

Lemma 3.1. Let n ≧ 0 be a non-negative integer. Then we have

Lτβ,Eχ(0,τnβ,E(1))(x)

= en(β,E, 1)χ(0,τn+1
β,E (1))(x) + dn(β,E, 1)χ(0,1)(x)

for x ∈ (0, 1) \ {τn+1
β,E (1)}.
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Proof. By the definition of Lτβ,E , if en(β,E, 1) = +1 we have

Lτβ,E
χ(0,τnβ,E(1))(x) = ♯{y ∈ (0, τnβ,E(1)) ; x = τβ,E(y)}

= Iβ(τ
n
β,E(1)) + 1

for x ∈ (0, τn+1
β,E (1)) and

Lτβ,E
χ(0,τnβ,E(1))(x) = ♯{y ∈ (0, τnβ,E(1)) ; x = τβ,E(y)}

= Iβ(τ
n
β,E(1))

for x ∈ (τn+1
β,E (1), 1) since the map τβ,E is bijective in Ji for 0 ≦ i ≦ [β]− 1.

Similar to the above calculation, if en(β,E, 1) = −1 then we have

Lτβ,Eχ(0,τnβ,E(1))(x) = Iβ(τ
n
β,E(1))

for x ∈ (0, τn+1
β,E (1)) and

Lτβ,Eχ(0,τnβ,E(1))(x) = Iβ(τ
n
β,E(1)) + 1

for x ∈ (τn+1
β,E (1), 1).

By definition, we have

dn(β,E, 1) = Iβ(τ
n
β,E(1))

if en(β,E, 1) = +1 and

dn(β,E, 1) = Iβ(τ
n
β,E(1)) + 1

if en(β,E, 1) = −1. Hence we get the assertion. □

The following lemma states that non-simple β-numbers are approximated

by simple β-numbers.
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Lemma 3.2 (Góra [7]). Let n ≧ 1 be a positive integer and E = (E(0), . . . , E(n))

an (n + 1)-dimensional vector with E(i) ∈ {0, 1} for 0 ≦ i ≦ n. Then the

set of all simple numbers is dense in (n, n+ 1).

The next lemma shows that if a real number β0 > 1 is not simple, we

can approximate the coefficients of the τβ0,E-expansion of 1 by those of the

τβ,E-expansion of 1 where β is sufficiently close to β0.

Lemma 3.3. Let n ≧ 1 be a positive integer and E = (E(0), . . . , E(n)) an

(n + 1)-dimensional vector with E(i) ∈ {0, 1} for 0 ≦ i ≦ n. Assume that

β0 ∈ (n, n + 1) is not simple. Then for every positive integer m ≧ 1 there

exists δ > 0 such that

{si(β,E, 1)di(β,E, 1)}mi=0 = {si(β0, E, 1)di(β0, E, 1)}mi=0

whenever |β − β0| < δ.

Proof. We note that since β0 ∈ (n, n+ 1) is not simple, we have

Iβ0(τ
i
β0,E

(1))

β0
< τ iβ0,E(1) <

Iβ0(τ
i
β0,E

(1)) + 1

β0

for every i ≧ 1.

For β ∈ (n, n+ 1), we put

P1(β) = β · (E(n) + (−1)E(n)τβ(1))

= βτβ,E(1).

By the definition of the polynomial P1, we have P1(β0) = β0τβ0,E(1) and

n < P1(β0) < n+1. Since P1(β) is continuous at β0, there exists δ > 0 such

that n < P1(β) < n+1 whenever |β− β0| < δ. So we have n/β < τβ,E(1) <
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(n+1)/β whenever |β−β0| < δ. Hence, we obtain e0(β,E, 1) = e0(β0, E, 1)

and Iβ(τβ,E(1)) = Iβ(τβ0,E(1)), namely,

s1(β,E, 1)d1(β,E, 1) = s1(β0, E, 1)d1(β0, E, 1)

whenever |β − β0| < δ.

For β ∈ (β0 − δ, β0 + δ), we put

P2(β) = βτ2β,E(1).

Similar to the above argument, there exists a positive number η > 0 such

that

s2(β,E, 1)d2(β,E, 1) = s2(β0, E, 1)d2(β0, E, 1)

whenever |β − β0| < η. The assertion is obtained by repeating the above

argument inductively. □

The next lemma states that if β0 is not simple, we can approximate the

number of all n-fixed points of τβ0,E by that of τβ,E where β is sufficiently

close to β0.

Lemma 3.4. Let n ≧ 1 be a positive integer and E = (E(0), . . . , E(n)) an

(n + 1)-dimensional vector with E(i) ∈ {0, 1} for 0 ≦ i ≦ n. Assume that

β0 ∈ (n, n+ 1) is not simple. Then for a positive integer m ≧ 1 there exists

δ > 0 such that

♯Fix τ iβ,E = ♯Fix τ iβ0,E

for 1 ≦ i ≦ m whenever |β − β0| < δ.

Proof. Recall that since β0 ∈ (n, n+ 1) is not simple, we have
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(3.1)
Iβ0(τ

i
β0,E

(1))

β0
< τ iβ0,E(1) <

Iβ0(τ
i
β0,E

(1)) + 1

β0

for every i ≧ 1. By the proof of Lemma 3.3, for a positive integer m ≧ 1

there exists δ > 0 such that

(3.2) Iβ(τ
i
β,E(1)) = Iβ0(τ

i
β0,E(1))

and

(3.3)
Iβ(τ

i
β,E(1))

β
< τ iβ,E(1) <

Iβ(τ
i
β,E(1)) + 1

β

for 1 ≦ i ≦ m whenever |β − β0| < δ. We put the polynomials f1, . . . , fm

with integral coefficients as

fi(β) = τ iβ,E(1)

for 1 ≦ i ≦ m and |β − β0| < δ. By the equality (3.2) and the inequality

(3.3) we have

fi(β0) = τ iβ0,E(1)

for 1 ≦ i ≦ m.

Let i ∈ {1, · · · ,m} and Ai(β,E) be the set of open intervals defined in

Section 2. Remark that for J ∈ Ai(β,E) the two endpoints of the image

τ iβ,E(J) are in the set {0, τβ,E(1), · · · , τ iβ,E(1), 1}. Therefore, the equality

(3.2) and the inequality (3.1) and (3.3) yield that

♯Ai(β,E) = ♯Ai(β0, E)

for 1 ≦ i ≦ m whenever |β − β0| < δ.
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Let I ∈ Ai(β0, E) and put I =
(
a(β0), b(β0)

)
. Then by the definition of

the set of open intervals Ai(β0, E), we have

lim
x↘a(β0)

τ iβ0,E(x), lim
x↗b(β0)

τ iβ0,E(x) ∈ {0, τβ0,E(1), . . . , τ
i
β0,E(1), 1}.

If there exists an i-fixed point y ∈ Ī then we get y ∈ I̊ because β0 is not

simple. In addition, if τ iβ0,E
is increasing on I, we have

lim
x↘a(β0)

τ iβ0,E(x) < a(β0), lim
x↗b(β0)

τ iβ0,E(x) > b(β0).

If τ iβ0,E
is decreasing on I then we have

lim
x↘a(β0)

τ iβ0,E(x) > a(β0), lim
x↗b(β0)

τ iβ0,E(x) < b(β0).

Assume that limx↘a(β0) τ
i
β0,E

(x) < a(β0) and limx↗b(β0) τ
i
β0,E

(x) > b(β0).

Since fi(β) = τ iβ,E(1) is continuous at β0 we obtain that there exists a

positive number η such that

lim
x↘a(β)

τ iβ,E(x) < a(β), lim
x↗b(β)

τ iβ,E(x) > b(β)

whenever |β−β0| < η. The other case where limx↘a(β0) τ
i
β0,E

(x) > a(β0) and

limx↗b(β0) τ
i
β0,E

(x) < b(β0) is similar. Since ♯Ai(β0, E) < +∞ for 1 ≦ i ≦ m,

we can get the assertion. □

Proof of Theorem 1.1. Let n ≧ 1 be a positive integer and An(β,E) the set

of open intervals defined in Section 2. Since τnβ,E is strictly monotone on

I ∈ An(β,E), we have

♯Fixτnβ0,E ≦ ♯An(β,E).
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We put L̃τβ,E = (1/β)Lτβ,E . Then the operator L̃τβ,E is known to be the

Perron-Frobenius operator for τβ,E . As a consequence of the Lasota-Yorke

inequality for τβ,E applied to the constant function 1, we have that there

exists a constant C
′
> 0 such that

1∨
0

L̃τnβ,E
1 ≦ C

′

for n ≧ 1, where
1∨
0

f denotes the total variation of a function f on [0, 1]

(see the proof of Theorem 1 in [11]). Since

sup
x∈[0,1]

|f(x)| ≦
1∨
0

f +

∫ 1

0
f dm

for a function of bounded variation f on [0, 1], wherem denotes the Lebesgue

measure on [0, 1] (see Lemma 2.3.1 in [4]), and

∫ 1

0
L̃τnβ,E

1 dm =

∫ 1

0
1 dm = 1

by the definition of the Perron-Frobenius operator, there exists a constant

C > 0 such that

sup
x∈[0,1]

|L̃τnβ,E
1(x)| ≦ C
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for n ≧ 1. Then we have

♯An(β,E) ≦
n∑

i=0

(Lτnβ,E
1)(τ iβ,E(1)) + (Lτnβ,E

1)(0)

= βn ·
( n∑
i=0

(L̃τnβ,E
1)(τ iβ,E(1)) + (L̃τnβ,E

1)(0)
)

≦ βn · (n+ 2) · sup
x∈[0,1]

|L̃τβ,E1(x)|

≦ C(n+ 2)βn.

Therefore, we get

lim sup
n→∞

n

√
♯Fixτnβ,E

n
≦ β.

Hence we obtain ζτβ,E (z) converges absolutely in {z ∈ C| |z| < 1/β}.

Since the sequence of integers {sn(β,E, 1)dn(β,E, 1)}∞n=0 is bounded, it

is clear that ϕβ,E(z) has the radius of convergence greater than or equal to

1. Furthermore, we obtain that ϕβ,E(z) is a rational function or has the

unit circle as the natural boundary by the theorem of Pólya and Carleson,

which states that a formal power series
∑∞

n=0 anz
n with integral coefficients

which converges in the unit disk is a rational function or has the unit circle

as the natural boundary (see Theorem 5.3 in [17]). Furthermore, if {an}∞n=0

is bounded, we can show that
∑∞

n=0 anz
n is a rational function if and only if

{an}∞n=0 is eventually periodic. Since {sn(β,E, 1)dn(β,E, 1)}∞n=0 is bounded,

we can apply this argument to ϕβ,E(z) directly.

We are in the position to prove the equation (1.2). Assume that β

is simple and take the minimal positive integer N such that τNβ,E(1) ∈
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{1/β, · · · , [β]/β} and set k0 = β · τNβ,E(1). We put

{
0,

1

β
, . . . ,

[β]

β
, 1
}
∪ {τβ,E(1), . . . , τN−1

β,E (1)}

= {a0, . . . , aN+[β] ; ai < ai+1 for 0 ≦ i ≦ N + [β]− 1}

and Ii = (ai, ai+1) for 0 ≦ i ≦ N + [β] − 1. Then {Ii}N+[β]−1
i=0 is a Markov

partition for τβ,E .

We also put A =
∪∞

n=0 τ
−n
β,E{a0, . . . , aN+[β]} and Σ+ = {0, 1, . . . , [β]+N−

1}Z≧0 . We define the coding map T : [0, 1] \ A → Σ+ by T (x) = (yi)
∞
i=0,

where yi = k if τ iβ,E(x) ∈ Ik for i ≧ 0. Then the closure of T ([0, 1]\A) in Σ+

is a shift-invariant set and a subshift of finite type whose structure matrix

M = (mij)0≦i,j≦N+[β]−1 satisfies

(3.4) Lτβ,EχIi =

N+[β]−1∑
j=0

mijχIj

for 0 ≦ i ≦ N + [β]− 1.

Let A be the subspace of F spanned by α = {χIj}
N+[β]−1
j=0 . It is clear that

Lτβ,E
A ⊂ A. Since Ii ∩ Ij = ∅ if i ̸= j , so α is linearly independent in F

and a basis for A. By the equation (3.4), M is the matrix representation of

Lτβ,E
: A → A relative to the basis α. We define the basis α̃ for A by

χ(0,1), χ(0,τβ,E(1)), . . . , χ(0,τN−1
β,E (1)), χ(0,τNβ,E(1))

and

χ( k
β
, k+1

β
)
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for k ∈ {0, . . . , [β]− 1} \ {k0}. By Lemma 3.1 and

Lτβ,Eχ( k
β
, k+1

β
) = χ(0,1),

we have that the (N + [β])× (N + [β]) matrix L, where

L =



d0(β,E, 1) e0(β,E, 1) 0
...

. . .
...

dN−1(β,E, 1) eN−1(β,E, 1)
k0
1
... 0
...
1


is the matrix representation of Lτβ,E : A → A for the basis α̃. By Proposition

2.1, we get

ζσM (z) = det(I − zM)−1

= det(I − zL)−1.

By repeating the Laplace expansion along the first row, we get

det(I − zL) = 1−
N−1∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n+1

+ k0sN (β,E, 1)zN+1

= 1− ϕβ,E(z).

Therefore, we obtain

ζσM (z) =
1

1− ϕβ,E(z)
.
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We remark that x ∈ FixσnM if and only if T−1(x) ∈ Fixτnβ,E and T−1(x)

is an interior point of I ∈ An(β,E) or there exists an end point x of I ∈

An(β,E) such that x = limy→x T ◦ τnβ,E(y).

If τβ,E satisfies limx↗1 τ
N+1
β,E (x) = τN+1

β,E (1), we have

♯Fixτ iβ,E = ♯FixσiM

for i ≧ 1. Therefore we have pβ,E(z) ≡ 1.

In the case where limx↗1 τ
N+1
β,E (x) ̸= τN+1

β,E (1), there are only four cases

to consider at the end since τN+1
β,E ∈ {0, 1} and limx↗1 τ

N+1
β,E (x) ∈ {0, 1}.

Case 1. We consider the case where limx↗1 τ
N+1
β,E (x) = 1, τN+1

β,E (1) =

0 and E(0) = 0. Since 1 is not a fixed point of τN+1
β,E and

limy→1 T ◦ τnβ,E(y) is a fixed point of σN+1
M , we get

♯Fixτ
(N+1)i
β,E +N + 1 = ♯Fixσ

(N+1)i
M

for i ≧ 1. Therefore we have

ζτβ,E (z) = exp
( ∞∑
n=1

zn

n
♯Fix τ

(N+1)i
β,E

)

= ζσM (z) · exp
(
−

∞∑
i=1

z(N+1)i

i

)

=
1− zN+1

1− ϕβ,E(z)
.

Hence we obtain

pβ,E(z) = 1− zN+1.
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Case 2. We consider the case where limx↗1 τ
N+1
β,E (x) = 1, τN+1

β,E (1) =

0 and E(0) = 1. Since 1 is not a fixed point of τN+1
β,E but is

a fixed point of τN+2
β,E , we get

♯Fixτ
(N+1)i
β,E +N + 1 = ♯Fixσ

(N+1)i
M

and

♯Fixτ
(N+2)i
β,E = ♯Fixσ

(N+2)i
M +N + 2

for i ≧ 1. Hence we obtain

pβ,E(z) =
1− zN+1

1− zN+2
.

Case 3. We consider the case where limx↗1 τ
N+1
β,E (x) = 0, τN+1

β,E (1) =

1 and E(0) = 0. Then 1 is a fixed point of τN+1
β,E and

limy→1 T ◦ τnβ,E(y) is not a fixed point of σN+1
M . Therefore

we get

♯Fixτ
(N+1)i
β,E = ♯Fixσ

(N+1)i
M +N + 1

for i ≧ 1. Hence we obtain

pβ,E(z) =
1

1− zN+1
.

Case 4. We consider the case where limx↗1 τ
N+1
β,E (x) = 0, τN+1

β,E (1) =

1 and E(0) = 1. Then limy→1 T ◦τnβ,E(y) is not a fixed point

of σN+1
M but is a fixed point of σN+2

M . Therefore we get

♯Fixτ
(N+1)i
β,E = ♯Fixσ

(N+1)i
M +N + 1
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and

♯Fixτ
(N+2)i
β,E +N + 2 = ♯Fixσ

(N+2)i
M

for i ≧ 1. Hence we obtain

pβ,E(z) =
1− zN+2

1− zN+1
.

Therefore, for z ∈ C with |z| < 1/β we obtain

ζτβ,E (z) =
pβ,E(z)

1− ϕβ,E(z)

If β is not simple, by Lemma 3.2, we can take a sequence {βn}∞n=1 such

that each βn is simple and βn → β as n→ ∞.

By Lemma 3.3 and Lemma 3.4, for z ∈ C with |z| < 1/β we obtain

ϕβn,E(z) → ϕβ,E(z)

and

ζτβn,E
(z) → ζτβ,E (z)

as n→ +∞. Furthermore, for z ∈ C with |z| < 1/β we have

pβn,E(z) → 1

as n→ +∞. Hence we get

ζτβ,E (z) =
1

1− ϕβ,E(z)

for z ∈ C with |z| < 1/β.

The fact that ζβ,E(z) has a simple pole at z = 1/β is proved in the next

section. □
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4. Analytic properties of ζτβ,E (z)

Now we can study the analytic properties of ζτβ,E (z). We put

ψβ,E(z) =

N∑
n=0

sn(β,E, 1)τ
n
β,E(1)z

n

if β is simple, whereN is the minimal number with τNβ,E(1) ∈ {1/β, . . . , [β]/β}

and otherwise we take N = ∞.

Proposition 4.1. (1) ζτβ,E (z) can be expressed as

ζτβ,E (z) =
pβ,E(z)

(1− βz)ψβ,E(z)

for z ∈ C with |z| < 1/β.

(2) ζτβ,E (z) has a simple pole at 1/β and its residue can be expressed as

−
pβ,E(1/β)

βψβ,E(1/β)
.

(3) For z ∈ C with 0 ≦ |z| < 1/2, we have ψβ,E(z) ̸= 0.

Proof. (1). We shall prove the equation:

1− ϕβ,E(z) = (1− βz)ψβ,E(z).

By the definition of en(β,E, 1) and dn(β,E, 1), we have

τn+1
β,E (1) = en(β,E, 1)(βτ

n
β,E(1)− dn(β,E, 1))

for n ∈ Z≧0. Therefore we get

dn(β,E, 1) = β · τnβ,E(1)− en(β,E, 1)τ
n+1
β,E (1).
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If β is simple, it holds that

ϕβ,E(z) =
N−1∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n+1 + k0sN (β,E, 1)zN+1

=

N−1∑
n=0

sn(β,E, 1)
(
βτnβ,E(1)− en(β,E, 1)τ

n+1
β,E (1)

)

= (βz − 1)

N∑
n=0

sn(β,E, 1)τ
n
β,E(1)z

n+1 + 1.

Hence we have

1− ϕβ,E(z) = (1− βz)ψβ,E(z).

If β is not simple, it holds that

ϕβ,E(z) =

∞∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n+1

= (βz − 1)
∞∑
n=0

sn(β,E, 1)τ
n
β,E(1)z

n+1 + 1.

Hence we have

1− ϕβ,E(z) = (1− βz)ψβ,E(z).

(2). From (1), we get

(
z − 1

β

) pβ,E(z)

(1− βz)ψβ,E(z)
= − 1

β

pβ,E(z)

ψβ,E(z)
.

Note that if β is not simple, we know that pβ,E(z) = 1 from the proof of

Theorem 1.1 and ψβ,E(1/β) = βF (β,E) > 0, where F (β,E) denotes the

normalizing factor for the invariant density hβ,E(x).

We consider the case where β is simple. Since pβ,E(1/β) ̸= 0 from the

proof of Theorem 1.1, it is enough to show that ψβ,E(1/β) ̸= 0. Let N be
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the minimal positive integer with τNβ,E(1) ∈ {1/β, . . . , [β]/β}. Put

h∗β,E(x) =

N∑
n=0

sn(1)χ[0,τβ,E(1))(x)

βn+1

for x ∈ [0, 1]. Then from Lemma 3.1, we obtain

1

β
Lτβ,Eh

∗
β,E(x) =

N∑
n=0

sn(1)Lτβ,Eχ[0,τβ,E(1))(x)

βn+1

=

N∑
n=1

sn(1)χ[0,τβ,E(1))(x)

βn+1
+

1

β

= h∗β,E(x).

This shows that h∗β,E(x) is a fixed point of the Perron-Frobenius operator for

τβ,E , that is, this function is the τβ,E-invariant density. Similar to Lemma

10 in [7], we get h∗β,E is non-negative. Since ψβ,E(1/β) = β ·
∫ 1
0 h

∗
β,Edm > 0,

we get the conclusion.

(3). If β is simple then we have

|1− ψβ,E(z)| =
∣∣∣ N∑
n=1

sn(1)τ
n
β,E(1)z

n+1
∣∣∣

≦
N∑

n=1

|z|n

<
|z|

1− |z|

< 1

if |z| ≦ 1/2.
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If β is not simple then we have

|1− ψβ,E(z)| =
∣∣∣ ∞∑
n=1

sn(1)τ
n
β,E(1)z

n+1
∣∣∣

<

∞∑
n=1

|z|n

=
|z|

1− |z|

< 1

if |z| ≦ 1/2. Therefore we get the conclusion. □

Finally, we relate the analytic properties of ζτβ,E (z) to the algebraic prop-

erties of β. Let n ≧ 1 be a positive integer and E = (E(0), . . . , E(n))

an (n + 1)-dimensional vector with E(i) ∈ {0, 1} for 0 ≦ i ≦ n. For

β ∈ (n, n+1), we denote by M(β,E) the minimum modulus of any poles of

ζτβ,E (z) in the unit open disk {z ∈ C; |z| < 1} except z = 1/β. If no other

pole exists in the unit open disk, we put M(β,E) = 1.

Recall that a Perron number is a real algebraic integer β > 1 whose Galois

conjugates have an absolute value less than β. A Pisot number is a real

algebraic integer greater than 1 whose Galois conjugates have an absolute

value less than 1 and a Salem number is a real algebraic integer greater than

1 whose Galois conjugates have an absolute value not greater than 1, and

one of which has an absolute value 1.

Proposition 4.2. (1) Let n ≧ 2 be a positive integer and β ∈ (n, n+ 1). If

1 is an eventually periodic points of τβ,E, then β is a Perron number.
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(2) If M(β,E) = 1 and 1 is an eventually periodic points for τβ,E, then β is

a Pisot or Salem number.

Proof. (1). Assume that β is not simple. Then there exists positive integers

N and k such that

1− ϕβ,E(z) =1−
N+k−1∑
n=0

sn(β,E, 1)dn(β,E, 1)z
n+1

−
2N+k−1∑
n=N+k

sn(β,E, 1)dn(β,E, 1)z
n+1 · 1

1− zN
.

Hence we have zN+k−1(zN − 1)(1−ϕβ,E(1/z)) is a monic polynomial whose

coefficients are integers having a zero at β. We remark that this polynomial

has no zero in the set {z ∈ C; |z| > β} by the equation (1.2). If β is simple,

by the definition of ϕβ,E(z), we know that zN+1(1 − ϕβ,E(1/z)) is a monic

polynomial whose coefficients are integers with a zero at β. In addition, this

polynomial has no zero in {z ∈ C; |z| > β} by the equation (1.2). From

Proposition 4.1 (1) and Proposition 4.1 (3), 1−ϕβ,E(1/z) has no zero in the

circle {z ∈ C; |z| = β} except z = β since β > 2 by the assumption n ≧ 2.

This shows that β is a Perron number.

(2). By the proof of (1), there exist non-negative integers m, n such

that zm(zn − 1)(1 − ϕβ,E(1/z)) is a monic polynomial whose coefficients

are integers having a zero at β. Since 1 − ϕβ,E(z) has no zero in {z ∈

C; 1/β ≦ |z| < 1} except z = 1/β, we get 1 − ϕβ,E(1/z) has no zero in

{z ∈ C; 1 < |z| ≦ β} except z = β. This shows that β is a Pisot or Salem

number. □
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5. Negative β-transformations

In this section, we study the analytic properties of the Artin-Mazur zeta

function of a negative β-transformation.

Let β > 1 be a non-integer and E1 = (E1(0), . . . , E1([β])) a ([β] + 1)-

dimensional vector with E1(i) = 1 for 0 ≦ i ≦ [β]. We note that τβ,E1 is a

negative β-transformation.

Proposition 5.1. The Artin-Mazur zeta function ζτβ,E1
(z) has no pole in

the disk {z ∈ C; |z| ≦ 1/β} except z = 1/β.

Proof. Let µβ,E1 be the τβ,E1-invariant measure defined in Section 1. Note

that the associated operator Uτβ,E1
: L1(µβ,E1) → L1(µβ,E1) defined by

Uτβ,E1
f = f ◦ τβ,E a.e. µβ,E1

has a simple eigenvalue at 1 and no eigenvalue in the unit circle if and only

if (τβ,E1 , µβ,E1) is exact.

In addition, since µβ,E1 is the unique ergodic absolutely continuous τβ,E1-

invariant probability measure (see [7]), by the theorem of Baladi and Keller

(Theorem 2 in [1]) and the theorem of Keller (Theorem 1 and 2 in [8]),

we know that ζτβ,E1
(z) has no pole in the circle {z ∈ C; |z| = 1/β} except

z = 1/β if and only if (τβ,E1 , µβ,E1) is exact. Therefore the statement

follows from the fact that (τβ,E1 , µβ,E1) is exact (see Corollary 2.3 in [12])

and Theorem 1.1. □

From Proposition 5.1 and Theorem 1.1, we get the conclusion that every

Yrrap number is a Perron number (It was first proved in [12]). Note that
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we call a real number β > 1 a Yrrap number if 1 is an eventually periodic

point of τβ,E1 .

Proposition 5.2. Every Yrrap number is a Perron number.

Proof. In the proof of Proposition 4.2 (2), we assume that n ≧ 2 only to

reach the result that 1−ϕβ,E(1/z) has no zero in the circle {z ∈ C; |z| = β}

except z = β. Therefore by Proposition 5.1, we get the statement similar to

the proof of Theorem 4.2 (2). □

Now, we consider an asymptotic behavior of the Artin-Mazur zeta func-

tion ζβ,E1(z) as β → 1. In [12], Liao and Steiner showed that

lim
β→1

d(β,E1, 1) = {mn+1 + 1}∞n=0,

where {mn}∞n=0 denotes the Thue-Morse sequence 0100111 · · · . This limit

means that for all N ≧ 1, there exists a positive number δ > 0 such that

{dn(β,E1, 1)}Nn=0 = {mn+1 + 1}Nn=0

whenever 1 < β < 1 + δ. By the above fact, for z ∈ C with |z| < 1 we have

lim
β→1

(1− ϕβ,E1(z)) =

∞∑
n=0

(mn + 1)(−z)n

since the coefficients of the power series 1− ϕβ,E1(z) are bounded.

In addition, in [5] Dubickas gave the analytic continuation of the gener-

ating function for the sequence {mn + 1}∞n=0 explicitly, that is,

∞∑
n=0

(mn + 1)zn =
∞∏
i=1

(1 + z(2
i+(−1)i−1)/3)
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for z ∈ C with |z| < 1.

Therefore, as an application of Theorem 1.1, we have the following result:

Theorem 5.3. For z ∈ C with |z| < 1, we have

lim
β→1

ζτβ,E1
(z) =

∞∏
i=1

(1− z(2
i+(−1)i−1)/3)−1.

6. Chebyshev maps

In this section, we consider the Chebyshev maps Tβ : [−1, 1] → [−1, 1]

defined by

Tβ(x) = cos(β arccosx)

for x ∈ [−1, 1], where β > 1. If β > 1 is an integer, then the map is the

well-known Chebyshev polynomial of nth order. For every β > 1, Góra [7]

showed that the Tβ-invariant density is expressed as a function associated

with the orbit {Tn
β (−1)}∞n=0. As an application of Theorem 1.1, we can show

that the Artin-Mazur-Ruelle zeta functions of a Chebyshev map, which is

defined by

Zβ(z) = exp
( ∞∑
n=1

zn

n

∑
x=Tn

β x

1

|(Tn
β )

′(x)|

)

is analytic in the unit open disk {z ∈ C; |z| < 1} and can be extended to a

meromorphic function in the disk {z ∈ C; |z| < β} associated with the orbit

{Tn
β (−1)}∞n=0. The results are based on the next proposition.
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Proposition 6.1 (Proposition 17 in [7]). Let β > 1 and put Φ(x) =

cos(πx) : [0, 1] → [−1, 1]. Then

τβ,E = Φ−1 ◦ Tβ ◦ Φ,

where E = (E(0), . . . , E([β])) is the vector with E(k) = 0 for even k and

E(k) = 1 for odd k.

The above proposition yields the next lemma.

Lemma 6.2. Let β > 1 be a non-integer and Tβ a Chebyshev map. Let τβ,E

be the map defined in Proposition 6.1. Then for x ∈ Fix τnβ,E \ {1}, we have

(Tn
β )

′(Φ(x)) = βn.

Proof. By Proposition 6.1, we have

τnβ,E(x) = Φ−1 ◦ Tn
β ◦ Φ(x)

for x ∈ [0, 1]. Since Tn
β (1) = 1 for every positive integer n ≧ 1 and Φ(0) = 1,

for x ∈ Fix τnβ,E \ {1}, we get

(Tn
β )

′(Φ(x)) = (Φ ◦ τnβ,E ◦ Φ−1)′(Φ(x))

= Φ′(τnβ,E(x)) · (τnβ,E)′(Φ−1(Φ(x)) · (Φ−1)′(Φ(x))

= Φ′(x) · (τnβ,E)′(x) · (Φ−1)′(Φ(x))

= (τnβ,E)
′(x)

= βn.

□

By simple calculation, we get the following lemma.
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Lemma 6.3. Let β > 1 and Tβ : [−1, 1] → [−1, 1] be a Chebyshev map.

Then the map Tβ is differentiable in (−1, 1) and

lim
x→1

(Tn
β )

′(x) = β2n.

We define a sequence {s∗n(β,−1)}∞n=0 as follows. Let E
∗ = (E∗(0), . . . , E∗([β]))

be a ([β] + 1)-dimensional vector with E∗(k) = 0 if [β] − k is even and

E∗(k) = 1 if [β] − k is odd, namely, E∗(k) = 0 if the kth branch of the

map Tβ is increasing and E∗(k) = 1 if the k-th branch of the map Tβ is

decreasing. We define

s∗(β,−1) =

{
1 (n = 0)

s∗n−1(β,−1) · (−1)E
∗(j(Tn

β (−1))) (n ≧ 1),

where j(Tn
β (−1)) ∈ {0, 1, . . . , [β]} denotes the number of the branch to which

Tn
β (−1) belongs.

From Proposition 6.1, we know that

sn(β,E, 1) = s∗n(β,−1)

for n ∈ Z≧1, where E is the vector defined in Proposition 6.1.

Theorem 6.4. Let β > 1 satisfy Tn
β (−1) /∈ {−1, 1} for every positive integer

n ≧ 1. Then Zβ(z) is analytic in the unit open disk and for z ∈ C with

|z| < 1 we have

Zβ(z) =
1− z/β

(1− z)(1− z/β2)
(∑∞

n=0 s
∗
n(β,−1) · (1/π) arccos(Tn

β (−1)) · zn/βn
) .
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Furthermore, the convergence radius of the formal power series
∑∞

n=0 s
∗
n(β,−1)·

arccos(Tn
β (−1)) · (zn/βn) is β, so Zβ(z) can be extended to the meromorphic

function in {z ∈ C; |z| < β}.

Proof. By Lemma 6.2 and Lemma 6.3, we get

Zβ(z) = exp
( ∞∑
n=1

zn

n

∑
x=Tn

β x

1

|(Tn
β )

′(x)|

)

= exp
( ∞∑
n=1

zn

n

∑
y=τnβ,E(y)

1

|(τnβ,E)′(y)|
−

∞∑
n=1

zn

n

1

βn
+

∞∑
n=1

zn

n

1

β2n

)

= exp
( ∞∑
n=1

zn

n

♯Fix τnβ,E
βn

−
∞∑
n=1

zn

n

1

βn
+

∞∑
n=1

zn

n

1

β2n

)
.

Therefore, for z ∈ C with |z| < 1 we have

(6.1) Zβ(z) = ζτβ,E

( z
β

)
·
1− z

β

1− z
β2

.

From Proposition 4.1 (1), we have

ζτβ,E

( z
β

)
=

1

(1− z)
∑∞

n=0 sn(β,E, 1)τ
n
β,E(1) · zn/βn

.

Hence the result follows from the relation

sn(β,E, 1) = s∗n(β,−1)

and

τnβ,E(1) = Φ−1 ◦ Tn
β ◦ Φ(1)

=
1

π
arccos(Tn

β (−1)).

□
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Note that the analytic properties of Zβ(z) are related to those of ζτβ,E (z)

from the equation (6.1).
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7. P. Góra, Invariant densities for generalized β-maps, Ergod. Th. & Dynam. Sys. 27

(2007), 1583–1598.

8. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise

monotonic transformations, Math. Z. 180 (1982), 119–140.

9. S. Ito and Y. Takahashi, Markov subshifts and realization of β-expansions, J. Math.

Soc. Japan 26 (1973), 33–55.

10. C. Kalle, Isomorphisms between positive and negative beta-transformations, Ergod.

Th. & Dynam. Sys. 34 (2014), 153–170.



34 SHINTARO SUZUKI

11. A. Lasota and J. Yorke, On the existence of invariant measures for piecewise mono-

tonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.

12. L. Liao and W. Steiner , Dynamical properties of the negative beta transformation,

Ergod. Th. & Dynam. Sys. 32 (2012), 1673–1690.

13. J. Milnor and W. Thurston, On iterated maps of the interval, Lecture Notes in Math-

ematics 1342, Springer, Berlin, 1988, pp. 465–563.

14. W. Parry, On the β-expansions of real numbers, Acta. Math. Acad. Sci. Hungar. 11

(1960), 401–416.

15. C. Preston, What you need to know to knead, Adv. in Math. 78 (1989), 192–252.
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