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Artin-Mazur zeta functions of generalized

beta-transformations

SHINTARO SUZUKI

ABSTRACT. In this paper, we study the Artin-Mazur zeta function of a
generalization of the well-known [-transformation introduced by Géra
[7]. We show that the Artin-Mazur zeta function can be extended to a
meromorphic function via an expansion of 1 defined by using the trans-
formation. As an application, we relate its analytic properties to alge-

braic properties of 3.

1. INTRODUCTION

Let 8 > 1. The so-called S-transformation 75 : [0,1] — [0, 1] is defined by

75(x) = B — [Bx]

for = € [0, 1], where [y] denotes the integral part of y € R. It is known that

Z Bn
1 9

where I3(x) = [Bz] for z € [0,1] (e.g.[14],[16]). In this paper, we consider
the generalized f-transformation 73 g : [0,1] — [0, 1] introduced by Géra in

[7]. It is defined as follows: Let 5 > 1 be a non-integer. Let us denote by

2010 Mathematics Subject Classification. Primary 37E05; Secondary 37C30.
Key words and phrases. (-transformations, negative S-transformations, Artin-Mazur
zeta functions, Perron-Frobenius operators.
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2 SHINTARO SUZUKI
E = (E(0),...,E([f])) a (|[8] + 1)-dimensional vector with E(i) € {0,1} for

0 <4< [f]. For x €0,1], we put
7.8(x) = E(Is(x)) + (=1) P07y ().

We note that if E(i) = 0 for 0 < ¢ < [f], the generalized S-transformation
78,k is the f-transformation and if E(i) = 1 for 0 < i < [], 73 g is the
negative [S-transformation whose dynamical properties are studied in [12],
[10] and the references therein.

Similar to the S-transformation, we can define an expansion of numbers
in [0,1] associated with the generalized S-transformation. We define the
([8] + 1) dimensional vector D = (D(0),---,D([f])) by D(i) =i+ E(i) for
0 <4 < [B]. For z € [0,1] and every non-negative integer n = 0 we define

‘digits’ d, (B, E, ) and ‘signs’ e, (3, E, z) by

dn(B, E,2) = E(I5(15 p(2))) + 15(75 p(2)),

en(B, B, x) = (—1)FUsEpE))
and ‘cumulative signs’ s, (8, E, x) by

1, n =20,

2l B, ) = {sn_l(ﬂ,E, Den1(8.E.x), nZ1l.

Then the definition of 73  we can represent x € [0, 1] by



(1.1)
So(ﬁ,E,lL‘)do(ﬁ, E, IL‘) + 81(5,E,1‘)T57E(l’)

v ; 3
_ 50(8, B, 2)do(8, B, %) | 51(8, F, %) (8, E, ) +82<B7an>T§,E<x>
- g 32 32
n-l Si B,E LE (ﬂ,E,ZL‘) Sn(/BuE)‘T)Tn, (.73)
2N M T

for every positive integer n = 1 (see Proposition 1 in [7]). Since 73 z(x) €
[0,1] and s,(B, E,z) € {—1,1}, we have

o0

ZIB7E B7E7
o=y HERGEORD
=0

We call this expansion the 73 g-expansion of x. We note that if 753 g is the
B-transformation, the expansion is equal to the 3-expansion and if 73 is
the negative [-transformation, the expansion is equal to the negative (-
expansion (see [12] and the references therein). If there exists a positive
integer n = 1 such that 73 p(z) € {1/8,---,[B]/B}, by the equation (1.1)

we have

5B, B a)di(B, B x)  sa(B, B, x)ng

T = , + ,

57,—&-1 an—i—l

where ng = 874 p(x) € {1,---,[B]}. In this case, we call the g p-expansion
of z finite. If the 75 g-expansion of 1 is finite then we call 3 simple.
In [7] Géra showed that every map 73 g has a unique absolutely continuous

invariant probability measure pg g and its density function hg g can be
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expressed by using the coefficients of the 74 g-expansion of 1. Precisely, the
density function hg g is expressed as

L ( )_ 1 e STZ(ﬁ)E?l)X[O,Tg’E(l))(:U)
B,E €)= F(B BTL—FI ’

x € [0,1],

’E) n=0

where x4 denotes the characteristic function of A and F(3, E) denotes the

normalizing factor:

> s, (B, E, )77 (1
Fipy = 32 OB D

n=0

We remark that Parry showed that the above result for S-transformations
in [14].

The purpose of this paper is to give the analytic continuation of the
Artin-Mazur zeta function of a generalized S-transformation (-, ,(z) via
the generating function for the coefficients of the 73 g-expansion of 1. The

Artin-Mazur zeta function is given by

[e.e]

Crs.p(2) = exp <Z %ﬁFiXTng),

n=1

where Fix7g p, = {z € [0,1] ; 7§ p(z) = 2} for n > 1 and A denotes
the cardinality of A. We denote by pg g(z) the generating function for the

coefficients of the 73 g-expansion of 1:

N-1

pp,E(2) = Z sn(B, E, 1)d, (5, E,1)z"

n=0

+ kOSN(ﬁv E7 1)ZN
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if 8 is simple, where N is the minimal positive integer with Té\fE(l) €

{1/B,...,[8]/B8} and ko = BTéYE(l), and
pﬁ,E(z) = ZSR(B7E7 1)dn(67E7 1)zn
n=0

if B is not simple. We set ¢3 r(2) = 2pg r(z). The main theorem in this

paper is:

Theorem 1.1. The Artin-Mazur zeta function Cr,; ,(2) of the generalized
B-transformation g g converges absolutely in |z| < 1/8 and ¢ g(z) has a
radius of convergence greater than or equal to 1. In addition, for z € C with

|z| < 1/8, we have

(1.2 e 2

where pg (2) is a ‘cyclotomic factor’, i.e., a rational function whose numer-
ator and denominator are the products of cyclotomic polynomials. There-
fore, (- ;(2) can be extended to a meromorphic function in the unit open
disc. In particular, if the sequence of integers {s,(8, E,1)dn(5,E,1)}7%,
is eventually periodic, then (r, (z) can be extended to a rational function.
Otherwise Cr,; ;(2) can not be ertended to a meromorphic function beyond

the unit circle. Furthermore, (r, ;(2) has a simple pole at 1/f.

The equation (1.2) enables us to relate the analytic properties of the
Artin-Mazur zeta function (;, . (2) to the algebraic properties of /3.
In [6], Flatto et al. proved the equation (1.2) in the case of S-transformations.

We note that Theorem 1.1 is extension of this result (see also [9]).
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In [13], Milnor and Thurston introduced the kneading matrix for a piece-
wise monotone continuous map in the interval and proved that its Artin-
Magzur zeta function can be expressed by using the reciprocal of its kneading
determinant. After that Preston [15] extended the result to the case where
the map has a finite number of discontinuities (see also [2]). Since general-
ized S-transformations are included in Preston’s situation, it seems that the
analytic continuation of the Artin-Mazur zeta function (;, . (z) is calculated
explicitly by the kneading determinant. However, the relation between the
kneading determinant and the generating function pg g(2) is not clear, for
now.

This paper is organized as follows. In Section 2, we summarize the notions
we need to prove Theorem 1.1 and we give the proof in Section 3. In Section
4, we study the analytic properties of (r, ,(2) and show that if (;, ()
has no pole in the unit open disk except z = 1/8 then [ is a Pisot or
Salem number (see Proposition 4.2). In Section 5, we consider the Artin-
Mazur zeta function of a negative S-transformation and see that the Artin-
Mazur zeta function has no pole in the disk {z € C;|z|] £ 1/5} except
z = 1/ (see Proposition 5.1). In addition, we show that the Artin-Mazur
zeta function converges to a meromorphic function associated with the Thue-
Morse sequence in the unit open disk as 8 N\ 1 (see Theorem 5.3). In Section
6, we discuss Chebyshev maps considered as a generalization of Chebyshev

polynomials. They are defined by

Tg(x) = cos(3 arccos x)
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for x € [-1,1], where 8 > 1. As an application of Theorem 1.1, we prove

that a dynamical zeta function of this map is analytic in the unit open disk
and it can be extended to a meromorphic function defined in the open disk

{z € C;|z| < B} (see Theorem 6.4).

2. PRELIMINARIES

We introduce basic notions which are used in the proof of Theorem 1.1.
Let X be a non-empty set and S : X — X a map. We set FixS = {z €
X; Sz =z} and assume that fFixS™ < 400 for every positive integer n = 1.
The Artin-Mazur zeta function (g(z) is formally defined by

o0 Zn
_ Z HTie QN
Cs(z) = exp(Z - fFix S )
n=1

Next, we give basic notions about symbolic dynamics. It is well known

that Artin-Mazur zeta functions of subshift of finite types can be calculated

by Bowen-Lanford Formula. We summarize them in the following.

Let Y ={0,1,...,N — 1} be a finite set endowed with the discrete topol-
ogy and ©F = Y720 with the product topology. The left shift o : 3+ — $F
is defined by

o{antnzo = {zn+1}nto
for {x,}5°, € . Then the left shift is a continuous transformation. The
pair (X7, 0) is called the full shift.

Let M = (mij)gfj;lo be an N x N matrix with m;; € {0,1} for 0 < 4,5 =

N — 1. Put

St = {an o € 57| mapa,,, =1 for all n € Zx}.
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Then EI/[ is a closed and o-invariant subset of ¥*. We denote by o, the
restriction of o to X3,. The pair (¥7,,0a) is called the subshift of finite
type determined by a structure matrix M. It is clear that oj; has a finite
number of n-fixed points. The next proposition is known as Bowen-Lanford

Formula.

Proposition 2.1 (Bowen-Lanford [3]). Let M be an N x N matriz with
mij € {0,1} for 0 £ i,5 < N — 1 and (X,,0m) the subshift of finite
type determined by M. Let M1, ...,An be eigenvalues of M. For z € C with
|z] < 1/maxi<;<y{Ai}, we have

1

Conr(2) = m-

Now, we define the set of monotone pieces of the map 77 5. For 0 <=M

we put

1A

isp -1
[5].

)

s 1

_ B, o
% {[211 '

For every positive integer n = 1, we define the set of open intervals A, (5, E)

by
A (8, E) = {j07j1,"' ,JO[B]}
and

An(ﬁ)E) = {ImTﬁilE‘]# 0 5 I e Al(ﬂvE)vJ € Anfl(ﬁvE)}
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for n = 2. We note that if I € A, (8, F) then there exists a unique word
P Pn—1 € {0,1,--- [B]}" such that [ = ﬂz 0 Ts. 5T, and Th g is contin-
uous on I.

Finally, we introduce a linear operator on the set of all functions from

[0,1] to R associated with a generalized S-transformation.

Definition 2.2. Let F be the set of all functions from [0, 1] to R. We define

the operator £ : F— F by

T8,E

Lopf@ =" W)
for x € [0,1].

We remark that the operator (1/5)L is the Perron-Frobenius operator

T8,E

for a generalized [-transformation 75 g. Perron-Frobenius operators associ-
ated with piecewise expanding maps on the interval are useful for studying
its ergodic properties (e.g. [4], [11]).

3. THE PROOF OF THEOREM 1.1

The next lemma shows a basic property of the operator L, .

Lemma 3.1. Let n = 0 be a non-negative integer. Then we have
Loy 2 X(0,8 (1) (T)

= en(ﬁv Ev 1)X(0’7—g2,1(1))($) + dn(ﬁa E7 1)X(O,1) (1’)

for z € (0,1)\ {753 (1)}.
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Proof. By the definition of £ if e, (8, F,1) = +1 we have

TB,E’

Loy o X0z y)(®) = Hy € (0.755(1) : 7= 75.5())
= I(r} p(1) + 1

for z € (0,7'57'51(1)) and

Lo e X0,z ,0) (@) = Hy € (0,75 5(1)) 5 = =755(y)}
= Ig(15 (1))

for z € (Tg'gl(l), 1) since the map 73 g is bijective in J; for 0 =i < [5] — 1.

Similar to the above calculation, if e, (3, E,1) = —1 then we have
LTﬂ,EX(O,TE,E(l))(ﬁ) = Ig(15 (1))

for z € (O,nggl(l)) and

for z € (ngél(l), 1).

By definition, we have
dn (B, E,1) = Ig(75 p(1))
if e,(8,E,1) = +1 and
dn(B, E,1) = I5(75 p(1)) + 1
if e, (8, F,1) = —1. Hence we get the assertion. O

The following lemma states that non-simple S-numbers are approximated

by simple S-numbers.



Lemma 3.2 (Géra [7]). Letn = 1 be a positive integer and E = (E(0), ..., E(n))
an (n + 1)-dimensional vector with E(i) € {0,1} for 0 < i < n. Then the

set of all simple numbers is dense in (n,n + 1).

The next lemma shows that if a real number 5y > 1 is not simple, we
can approximate the coefficients of the 73, g-expansion of 1 by those of the

73, p-expansion of 1 where 3 is sufficiently close to 3.

Lemma 3.3. Let n = 1 be a positive integer and E = (E(0),..., E(n)) an
(n + 1)-dimensional vector with E(i) € {0,1} for 0 < i < n. Assume that
Bo € (n,n + 1) is not simple. Then for every positive integer m = 1 there

exists 6 > 0 such that

{Si(/Bv E7 l)dl(ﬁ7 Ea 1)}’1";0 = {Si(ﬁ()a Ea 1)d1(507 E7 1)}110

whenever |8 — Bo| < 9.

Proof. We note that since 5y € (n,n + 1) is not simple, we have

Igy (75, 5(1)) Igy (mh, (1) +1

Bo

< Téo,E(l) <

for every i = 1.
For 5 € (n,n+ 1), we put
Pi(B) = 8- (E(n) + (=1)"™75(1))
= B13,r(1).
By the definition of the polynomial Py, we have Pi(8y) = Bo7s,,r(1) and
n < Pi(By) < n+1. Since P;(f3) is continuous at [y, there exists § > 0 such

that n < Pi(f) < n+ 1 whenever |3 — | < . So we have n/f < 153 (1) <
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(n+1)/p whenever |8 — By| < 0. Hence, we obtain ey(3, E,1) = eo(Bo, E, 1)

and I5(75,5(1)) = Ig(7s,,5(1)), namely,
81(57E7 1)d1(B7E7 1) - 81(507 E7 1)d1(ﬁ07 E7 1)

whenever |8 — By| < 0.

For 8 € (8o — 8, Bo + &), we put

Py (B) = BTE,E(D'
Similar to the above argument, there exists a positive number n > 0 such
that
s2(8, E,1)d2(B, E,1) = s2(Bo, E,1)d2(Bo, E,1)
whenever |8 — o] < 1. The assertion is obtained by repeating the above

argument inductively. (]

The next lemma states that if Gy is not simple, we can approximate the
number of all n-fixed points of 75, g by that of 73 g where (3 is sufficiently

close to fy.

Lemma 3.4. Let n = 1 be a positive integer and E = (E(0),..., E(n)) an
(n + 1)-dimensional vector with E(i) € {0,1} for 0 < i < n. Assume that
Bo € (n,n+ 1) is not simple. Then for a positive integer m = 1 there exists

6 > 0 such that
fFix TéE = f Fix TEO,E

for 1 £ i1 < m whenever |5 — Bo| < 9.

Proof. Recall that since Sy € (n,n + 1) is not simple, we have
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Iy (Thy.5(1))
Bo

Igy (mh, (1) +1

(3.1) o

< Téo,E(l) <

for every ¢ = 1. By the proof of Lemma 3.3, for a positive integer m = 1

there exists ¢ > 0 such that

(3.2) Ig(rh p(1)) = Ig,(7h, (1))

and
(3.3)

for 1 < ¢ £ m whenever |5 — y| < §. We put the polynomials fi,..., fi,

with integral coeflicients as

for 1 £ i < m and |8 — By] < d. By the equality (3.2) and the inequality
(3.3) we have
fi(Bo) = 7hy 5 (1)
for1<¢<m.
Let i € {1,---,m} and A;(8, E) be the set of open intervals defined in
Section 2. Remark that for J € A;(5, E) the two endpoints of the image
Té7E(J) are in the set {0,753 (1), -- ,Té7E(1),1}. Therefore, the equality

(3.2) and the inequality (3.1) and (3.3) yield that
1A (8, E) = §Ai(Bo, E)

for 1 < i < m whenever |5 — By| < 6.
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Let I € Ai(Bo, E) and put I = (a(fo),b(60)). Then by the definition of

the set of open intervals A;(Sy, E), we have

lim Ti x), lim 7—i ) € 0,7_ 1’“_’7_1' 1,1 )
I\a(ﬂo) /807E( ) :E/‘b(ﬁo) ,Bo,E( ) { IBOyE( ) 507E( ) }

If there exists an i-fixed point y € I then we get y € I because Bo is not

simple. In addition, if Té()’ p 1s increasing on I, we have

lim Ti ) < a , lim Ti 513>b '
I\a(ﬁo) IBO,E( ) (/BO) z/b(ﬂo) BO,E( ) (/BO)

If Téo p 1s decreasing on I then we have

lim Ti ) > a , lim Ti T <b '
I\a(ﬁo) IBO,E( ) (BO) z/b(ﬂo) BO,E( ) (/BO)

Assume that limg~ 4(g,) Té()’E(x) < a(fp) and limx/b(ﬁo)Téo,E(fﬁ) > b(Bo).
Since fi(8) = 74 (1) is continuous at By we obtain that there exists a

positive number 7 such that

lim 75 o(2) <a(B), lim 75 p(z) >b
Jlim 7 p(a) < alB), lim. 7hp(a) > b(S)

whenever [3—f| < 7. The other case where limx q(g,) TéO’E(I‘) > a(fp) and
limy, s g) Té()’E(m‘) < b(Bp) is similar. Since §4;(Bo, E) < +oo for 1 < i < m,

we can get the assertion. ([

Proof of Theorem 1.1. Let n = 1 be a positive integer and A, (3, E) the set
of open intervals defined in Section 2. Since 75 ; is strictly monotone on

I € A,(B, E), we have

iFixrg p = 44 (8, ).



15

We put L., . = (1/B)L+s - Then the operator L

5.5 is known to be the

T8,
Perron-Frobenius operator for 73 g. As a consequence of the Lasota-Yorke

inequality for 75 g applied to the constant function 1, we have that there

exists a constant C' > 0 such that

A

1
\/ ZT&El c’
0

1
for n =2 1, where \/ f denotes the total variation of a function f on [0, 1]
0

(see the proof of Theorem 1 in [11]). Since

1 1
<
sup \f(x)\_\o/f+/0 f dm

z€[0,1]

for a function of bounded variation f on [0, 1], where m denotes the Lebesgue

measure on [0, 1] (see Lemma 2.3.1 in [4]), and

1 1
//anldm—/ldm—l
B.B
0 0

by the definition of the Perron-Frobenius operator, there exists a constant

C > 0 such that

sup |L 1(z)] £ C
J:E[O,l]| 7 1(2)]
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for n 2 1. Then we have

Therefore, we get

o fFixT?
limsup 1/ TAE <g
n—00 n

Hence we obtain (;, ;(z) converges absolutely in {z € C| |2| < 1/8}.

Since the sequence of integers {s, (8, E,1)d, (5, E,1)}72 is bounded, it
is clear that ¢g p(z) has the radius of convergence greater than or equal to
1. Furthermore, we obtain that ¢g r(2) is a rational function or has the
unit circle as the natural boundary by the theorem of Pélya and Carleson,
which states that a formal power series Y~ a,2" with integral coefficients
which converges in the unit disk is a rational function or has the unit circle
as the natural boundary (see Theorem 5.3 in [17]). Furthermore, if {a,}5°,
is bounded, we can show that Y 7 ja,2" is a rational function if and only if
{an}52 is eventually periodic. Since {s,(8, E,1)d, (8, E,1)}>2 is bounded,
we can apply this argument to ¢g g(z) directly.

We are in the position to prove the equation (1.2). Assume that g

is simple and take the minimal positive integer N such that 7'[]3\,[ p(l) €
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{1/8,---,[B]/B} and set ko = 3 - TéYE(l). We put
1 p
{o,ﬁ,...,[ﬁ],l} U{rsp(L),..., 5 (1)}

:{ao,...,aNer] ;G < Qi fOl‘OéiéN-ﬁ-[ﬁ]—l}

and I; = (aj, ai41) for 0 =i = N + [3] — 1. Then {I;},_, N4IPI=1 5 a Markov
partition for 73 .

We also put A = UZOZOTE’%{CL(), oyangg )t and BT ={0,1,..., [B]+ N —
1}%20. We define the coding map T : [0,1] \ A — T+ by T(z) = (Y20,
where y; = k if 75 p(z) € I}, for i 2 0. Then the closure of T([0, 1]\ A) in XF
is a shift-invariant set and a subshift of finite type whose structure matrix

M = (mij)Ogi,]éN—&-[B}—l satisfies

N+[g]-1
(3'4) T/gEXI Z mMijX1;

for0Si SN+ [f]—1
Let A be the subspace of F spanned by a = {x7, };Y:ng 7L Tt is clear that

L, A CA. Since ; NI; =0 if i # j , so « is linearly independent in F

T8,E

and a basis for A. By the equation (3.4), M is the matrix representation of

L : A — A relative to the basis a. We define the basis & for A by

5.5
X(0,1) X(0,75,(1))s « - X(OTN L1y (ngE(l))
and
X5
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for k € {0,...,[8] — 1} \ {ko}. By Lemma 3.1 and

we have that the (N + [8]) x (N + [5]) matrix L, where

dO(/BaEvl) 60(6,E,1> O

dN—l(BaEal) €N_1(B,E,l)
L= ko
1

is the matrix representation of £ : A — A for the basis &. By Proposition

T8,E

2.1, we get
Conr (2) = det(I — zM)~!
= det(I — zL)7%,

By repeating the Laplace expansion along the first row, we get

Z
L

det(I —z2L) =1 — sn(B, B, 1)dn (B, F,1)2" !
0

n

+ kosn (8, B, 1)z F1
=1-¢3k(2).

Therefore, we obtain

1

CUM(Z) - 1— ¢B,E(Z)
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We remark that z € Fixo?, if and only if 77 !(z) € Fix73 , and T ()
is an interior point of I € A, (8, E) or there exists an end point z of I €
An (B8, E) such that z = limy_,, T o 75 (y).

If 75, satisfies lim, ~ Té\’gl(x) = Té\fgl(l)7 we have

ﬁFiXT[g’E = tFixcl,

for i 2 1. Therefore we have pg g(2) = 1.

In the case where lim, »; Tév E L) Tév E 1(1), there are only four cases

to consider at the end since Té\jgl € {0,1} and lim, ~; Tévbfl(x) € {0,1}.

Case 1. We consider the case where lim, » Té\gl (x) =1, Té\jgl(l) =

0 and E(0) = 0. Since 1 is not a fixed point of Tévgl and

limy 1 T'o 74 (y) is a fixed point of oVt we get

tFixr '+ N+ 1 = fFixo(y T

for i 2 1. Therefore we have

Crp.p(2) = exp (f: %ﬁ Fix Té{\é;_l)i)

n=1
00 (N41)i
z

= Con(2) - exp(— Z i )

=1
1 — ZVtL
1 -¢pr(2)
Hence we obtain
N+1

paE(2) =1—2 .
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Case 2.

Case 3.

Case 4.

SHINTARO SUZUKI

We consider the case where lim, Tévgl(x) =1, ngl(l) =

0 and E(0) = 1. Since 1 is not a fixed point of Tévgl but is

a fixed point of Tévg2, we get

tFix7 V4 N 41 = fFixo (T
and
#Fixr 7 = fFixo ) T 4+ N 42

for i 2 1. Hence we obtain

1 _ZNJrl
pp.E(2) = 1_N+2

We consider the case where lim, Tévgl(x) =0, ngl(l) =
1 and F(0) = 0. Then 1 is a fixed point of Tévgl and

limy_,1 T'o 7§ p(y) is not a fixed point of oL Therefore

we get

tFixr§ o = iFixo (T 4 N 1

for 4 = 1. Hence we obtain

1
pp,E(2) = 1N+

We consider the case where lim, T/é\fgl () =0, Té\jgl (1) =

land E(0) = 1. Then limy 1 To7 5(y) is not a fixed point

N+1
M

of o but is a fixed point of J]\]\/]IH. Therefore we get

ﬁFiXTé{E+l)i = ﬁFixag\f[V—H)i +N+1



and

ijiXTéAj;Q)i +N+2= ﬁFiXUE\]j—Fz)i

for i 2 1. Hence we obtain

1 _ZN+2
pp.E(2) = 1_  N+L

Therefore, for z € C with |z| < 1/ we obtain

_p3a(2)
Cryp(2) = T—650(2)
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If 5 is not simple, by Lemma 3.2, we can take a sequence {f,}°°; such

that each f,, is simple and 8, — 5 as n — oo.

By Lemma 3.3 and Lemma 3.4, for z € C with |z| < 1/ we obtain

bp,,8(2) = ¢p.E(2)
and
Crg i (2) = Grpp(2)

as n — +oo. Furthermore, for z € C with |z| < 1/ we have

Ppae(2) = 1
as n — +o0o. Hence we get
1
Crppl) = T———
mel?) = 7 bp.E(2)

for z € C with |z| < 1/8.

The fact that (3 g(2) has a simple pole at z = 1/ is proved in the next

section.

(]
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4. ANALYTIC PROPERTIES OF (r; ,(2)
Now we can study the analytic properties of (., ,(z). We put
N
Vo,p(2) =Y sa(B, B, 1)7h p(1)2"

n=0

if B is simple, where N is the minimal number with TéYE(l) e{1/8,...,18]/5}

and otherwise we take N = oo.

Proposition 4.1. (1) (;,; ,(2) can be expressed as

pg,e(2)

CTB,E(Z) - (1 - B2)vs.E(2)

for z € C with |z| < 1/8.

(2) Cry.(2) has a simple pole at 1/B and its residue can be erpressed as

_ pae(1/B)
B E(1/8)

(3) For z € C with 0 < |z| < 1/2, we have g g(z) # 0.

Proof. (1). We shall prove the equation:
1—¢p,p(z) = (1 - B2)Ype(2)
By the definition of e, (3, E, 1) and d, (8, E, 1), we have
(1) = (8, B, 1)(578 (1) — du(B, E, 1)
for n € Z>(. Therefore we get

dn(/Ba E7 1) = 6 : Tg,E(l) - en(ﬁv Ea 1)7—57—51(1)'
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If 8 is simple, it holds that
N-1

¢B,E(Z) = Z Sn(ﬁ7 E7 ]-)dn(B? Ea 1)Zn+1 + kOSN(ﬁa Ea 1)ZN+1
n=0

N—-1
Z Sn 5)E 1 BT,B E( )_en(ﬁ7E7 1)TE+E1(1))
n=0

N
= (BZ - 1) Z Sn(ﬁa Ea 1)TE,E(1)Zn+1 +1
n=0

Hence we have
1 —¢sr(2) = (1 - B2)YsE(2).

If 5 is not simple, it holds that

¢,5(2) =Y sn(B,E,1)dn(8, E, 1)2" !
n=0
=(Bz—=1)> sa(B, B, )75 g(1)2" + 1.
n=0

Hence we have
1 —¢pe(2) = (1 - B2)Ys E(2).

(2). From (1), we get

(Z_l) pee(z)  _ 1psE(2)
B) (1= B2)pe(z)  Bipn()

Note that if 5 is not simple, we know that pg p(z) = 1 from the proof of
Theorem 1.1 and ¢g g(1/8) = BF(B,E) > 0, where F'(3, E) denotes the
normalizing factor for the invariant density hg g(z).

We consider the case where ( is simple. Since pg g(1/8) # 0 from the

proof of Theorem 1.1, it is enough to show that ¢ p(1/8) # 0. Let N be
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the minimal positive integer with Té\fE(l) e{1/8,...,18]/B}. Put

N Sn(l)XOT 1 (:E)
hE7E(x) — Z [ 5 B,E( ))

n+1
n=0 ﬁ

for € [0,1]. Then from Lemma 3.1, we obtain

N
1 Loy 5 X[0,m5.5(1)) (%)
5575 Ehﬂ E\X Z B+l

DXjo,m5 (@) 1
- Z B“il "B

This shows that hj () is a fixed point of the Perron-Frobenius operator for
78,E, that is, this function is the 73 g-invariant density. Similar to Lemma
10 in [7], we get I i is non-negative. Since Y p(l/B)=p- fol h pdm > 0,
we get the conclusion.

(3). If B is simple then we have

if 2] < 1/2.
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If 8 is not simple then we have

1= ,(2)] = |3 sa(V)7h p(1)2"
n=1

0
<Dl
n=1

_ I
[

<1

if |z| < 1/2. Therefore we get the conclusion. O

Finally, we relate the analytic properties of (., (z) to the algebraic prop-
erties of 5. Let n = 1 be a positive integer and E = (E(0),...,E(n))
an (n + 1)-dimensional vector with F(i) € {0,1} for 0 < i < n. For
B € (n,n+1), we denote by M (S, E') the minimum modulus of any poles of
Crs.z(2) in the unit open disk {z € C;|z| < 1} except z = 1/8. If no other
pole exists in the unit open disk, we put M (3, E) = 1.

Recall that a Perron number is a real algebraic integer 5 > 1 whose Galois
conjugates have an absolute value less than 5. A Pisot number is a real
algebraic integer greater than 1 whose Galois conjugates have an absolute
value less than 1 and a Salem number is a real algebraic integer greater than
1 whose Galois conjugates have an absolute value not greater than 1, and

one of which has an absolute value 1.

Proposition 4.2. (1) Let n = 2 be a positive integer and B € (n,n+1). If

1 is an eventually periodic points of T3 g, then 8 is a Perron number.
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(2) If M(B, E) =1 and 1 is an eventually periodic points for 73 g, then [ is

a Pisot or Salem number.

Proof. (1). Assume that §3 is not simple. Then there exists positive integers

N and k such that

N+k—1

1= ¢pp(z)=1— > (8 B 1)dn(B, E,1)2" "

n=0

2N+k—1

- Z Sn(ﬁaEa 1)dn(ﬁaE7 1)Zn+1 :

n=N+k

1
1— 2NV

Hence we have 2V T#=1(2N —1)(1 — ¢4 g(1/2)) is a monic polynomial whose
coeflicients are integers having a zero at 5. We remark that this polynomial
has no zero in the set {z € C;|z| > S} by the equation (1.2). If 5 is simple,
by the definition of ¢s g(2), we know that 2V T1(1 — ¢5 p(1/2)) is a monic
polynomial whose coefficients are integers with a zero at 5. In addition, this
polynomial has no zero in {z € C;|z| > (} by the equation (1.2). From
Proposition 4.1 (1) and Proposition 4.1 (3), 1 — ¢ g(1/z) has no zero in the
circle {z € C;|z| = B} except z = 8 since 5 > 2 by the assumption n = 2.
This shows that 8 is a Perron number.

(2). By the proof of (1), there exist non-negative integers m, n such
that 2™ (2" — 1)(1 — ¢g,r(1/2)) is a monic polynomial whose coefficients
are integers having a zero at . Since 1 — ¢g p(z) has no zero in {z €
C;1/B = |z| < 1} except z = 1/, we get 1 — ¢g r(1/2) has no zero in
{z € C;1 < |z| £ B} except z = B. This shows that 3 is a Pisot or Salem

number. O
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5. NEGATIVE [3-TRANSFORMATIONS

In this section, we study the analytic properties of the Artin-Mazur zeta
function of a negative S-transformation.

Let 8 > 1 be a non-integer and E; = (E1(0),...,E1([5])) a ([8] + 1)-
dimensional vector with E(i) =1 for 0 < ¢ < [3]. We note that 75 g, is a

negative S-transformation.

Proposition 5.1. The Artin-Mazur zeta function CTBvEl (z) has no pole in

the disk {z € C;|z| = 1/5} except z =1/p.

Proof. Let ug g, be the 75 g -invariant measure defined in Section 1. Note

that the associated operator Ur, ,, LYup g,) — L*(up E,) defined by

Uy o, f =Fomsp ae pgp

has a simple eigenvalue at 1 and no eigenvalue in the unit circle if and only
if (78,p,, 118,E, ) is exact.

In addition, since ug g, is the unique ergodic absolutely continuous 75 g, -
invariant probability measure (see [7]), by the theorem of Baladi and Keller
(Theorem 2 in [1]) and the theorem of Keller (Theorem 1 and 2 in [§]),
we know that (7, , () has no pole in the circle {z € C;[z] = 1/8} except
z = 1/ if and only if (78 k,,ps,r,) is exact. Therefore the statement
follows from the fact that (75 g,, 1 E,) is exact (see Corollary 2.3 in [12])

and Theorem 1.1. O

From Proposition 5.1 and Theorem 1.1, we get the conclusion that every

Yrrap number is a Perron number (It was first proved in [12]). Note that
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we call a real number 5 > 1 a Yrrap number if 1 is an eventually periodic

point of 75 g, .
Proposition 5.2. Fvery Yrrap number is a Perron number.

Proof. In the proof of Proposition 4.2 (2), we assume that n = 2 only to
reach the result that 1 — ¢ (1/2) has no zero in the circle {z € C;|z| = 8}
except z = . Therefore by Proposition 5.1, we get the statement similar to

the proof of Theorem 4.2 (2). O

Now, we consider an asymptotic behavior of the Artin-Mazur zeta func-

tion (g g, (2) as B — 1. In [12], Liao and Steiner showed that
lim d(ﬂa Ela 1) = {mn—i-l + 1}%0:01
B—1

where {m,,}7°, denotes the Thue-Morse sequence 0100111---. This limit

means that for all N 2 1, there exists a positive number § > 0 such that

{dn (B, Er, 1)}Ino = {mus1 + 1150
whenever 1 < f < 1+ 4. By the above fact, for z € C with |z| < 1 we have

oo

(1= g5 (2) = D (man +1)(=2)"

i
n=0
since the coefficients of the power series 1 — ¢g g, (2) are bounded.
In addition, in [5] Dubickas gave the analytic continuation of the gener-
ating function for the sequence {m,, + 1}, explicitly, that is,
o0 )

S (mn + 1)z = [0+ 2@ HEDTHE)

n=0 i=1
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for z € C with |z] < 1.

Therefore, as an application of Theorem 1.1, we have the following result:

Theorem 5.3. For z € C with |z| < 1, we have

[e.o]

: _ 204 (1)) /3\—1
ggnlcmﬂxz)—r[l(l—z( COTOE)L

6. CHEBYSHEV MAPS

In this section, we consider the Chebyshev maps T : [-1,1] — [—1,1]

defined by
Ts(x) = cos(3 arccos )

for z € [—1,1], where 5 > 1. If § > 1 is an integer, then the map is the
well-known Chebyshev polynomial of nth order. For every g > 1, Géra [7]
showed that the Tg-invariant density is expressed as a function associated
with the orbit {Tg( —1)}9° . As an application of Theorem 1.1, we can show
that the Artin-Mazur-Ruelle zeta functions of a Chebyshev map, which is

defined by

Zﬁ<z>=e><p<§§ > @)

m:Té‘m B

is analytic in the unit open disk {z € C;|z| < 1} and can be extended to a
meromorphic function in the disk {z € C;|z| < 5} associated with the orbit

T2(—1)}>°,. The results are based on the next proposition.
B n=0
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Proposition 6.1 (Proposition 17 in [7]). Let 8 > 1 and put ®(x) =

cos(mz) : [0,1] — [—1,1]. Then

Tsp=®1oTs0®,
where E = (E(0),...,E([8])) is the vector with E(k) = 0 for even k and
E(k) =1 for odd k.

The above proposition yields the next lemma.

Lemma 6.2. Let 8 > 1 be a non-integer and Tz a Chebyshev map. Let 75 g

be the map defined in Proposition 6.1. Then for x € Fix 1y p\ {1}, we have
(T3)"(®(x)) = B".
Proof. By Proposition 6.1, we have
TZ}E(@’) =d 1o Tg o ®(x)

for z € [0,1]. Since Tj(1) = 1 for every positive integer n = 1 and ®(0) = 1,

for x € Fix73 5 \ {1}, we get
(T5) (®(2)) = (Porfpod ) (®(x))

= (75 p(2)) - (75, p)" (271 (@()) - (271 (®(2))

By simple calculation, we get the following lemma.
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Lemma 6.3. Let § > 1 and T : [-1,1] — [—1,1] be a Chebyshev map.

Then the map Tp is differentiable in (—1,1) and

lim (T3 (z) = B>

r—1

We define a sequence {s},(3, —1)}>2, as follows. Let E* = (E*(0),..., E*([8]))
be a ([5] + 1)-dimensional vector with E*(k) = 0 if [5] — k is even and
E*(k) = 1if [B] — k is odd, namely, E*(k) = 0 if the kth branch of the
map T is increasing and E*(k) = 1 if the k-th branch of the map Tjp is

decreasing. We define

. 1 (n=0)
e {s*lw, 1) (~)FUIBED (> ),

where j(T%(—1)) € {0,1,...,[B]} denotes the number of the branch to which
Ti(—1) belongs.

From Proposition 6.1, we know that

Sn(ﬁa E, 1) = S;kz(ﬁ7 *1)

for n € Z>;, where E is the vector defined in Proposition 6.1.

Theorem 6.4. Let 8 > 1 satisfy Ty (—1) ¢ {—1,1} for every positive integer
n 2 1. Then Zg(z) is analytic in the unit open disk and for z € C with

|z| <1 we have

1-2/8
(L= 2)(1— 2/8%) (S g s (B, —1) - (1/m) arccos(T§ (~1)) - 27 /57)

Zg(z) =



32 SHINTARO SUZUKI
Furthermore, the convergence radius of the formal power series -2 s* (8, —1)-
arccos(T (—1)) - (2"/B8") is B, so Zg(z) can be extended to the meromorphic

function in {z € C;|z| < B}.

Proof. By Lemma 6.2 and Lemma 6.3, we get

eal$E ot

xT"

(0¥

y=rg o | (G n=1
> on fFix 1) iSO | SV |
z B.E z z
ST I S o)
nzln 'Bn n:lnﬁn n:lnﬁn
Therefore, for z € C with |z| < 1 we have
o 1-3
(6.1) Z5() = G (5) 7=
5 1%

From Proposition 4.1 (1), we have

z 1
CT*B’E (E) N (1 - Z) Z;.LOZO 3n(57 E7 1)7-575}(1) ’ Zn/ﬁn

Hence the result follows from the relation

371(67 E7 1) = 8;(67 _1)

and
T8 p(l) =0 1o Th o ®(1)

1
=— T7(-1)).
- arccos(Tjg(—1))
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Note that the analytic properties of Zs(z) are related to those of (;, ,(2)

from the equation (6.1).
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