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Abstract

The gauge/gravity correspondence is a conjecture of the duality
between field theory and gravity theory. One approach of the study
about the gauge/gravity correspondence is calculation based on as-
sumption of the correspondence. By using a dual description method,
we can obtain a new physical perspective. Another approach is to
compare corresponding objects in the two theories which are dual to
each other. Such a test is important for confirming and extending the
application range of the gauge/gravity correspondence.

In part 1, we study a three-scalar holographic superconductor
model which can describe frustration. We analyze solutions of this
model and compute the free energy of the solutions. We find that there
are chiral ground states in this model. This holographic model will
be useful for study of multicomponent superconductivity in strongly
correlated systems from the viewpoint of the gauge/gravity correspon-
dence.

In part 2, we study the correspondence between geodesic Witten
diagrams and conformal partial waves with an external symmetric
traceless tensor field. We construct an amplitude of the geodesic Wit-
ten diagrams and show that it is consistent with the properties and the
formulas of the conformal partial waves. Construction of the geodesic
Witten diagrams gives us a novel expression of the conformal partial
waves.

We construct and analyze the holographic model by the bottom-up
process in part 1 and we verify the correspondence between the objects
in conformal field theory and AdS spacetime in part 2. These results
lead to understand the holographic description of various objects.
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1 Introduction

The gauge/gravity correspondence [1] is a duality between field theory and
AdS gravity theory. This correspondence is one of well-studied research top-
ics in theoretical physics. The most famous example of the gauge/gravity
correspondence is the duality between N = 4 super Yang-Mills theory and
type IIB super string theory on AdS5×S5. One evidence of this duality is that
these theories have the same symmetry. In particular, superconformal sym-
metry and R-symmetry of the N = 4 super Yang-Mills theory are the same
as isometries of AdS5 and S5. Especially, the gauge/gravity correspondence
in the large N and λ limit implies that the strong coupling gauge theory can
be calculated by the classical gravity theory. N is the number of colors and
λ is the ’t Hooft coupling. This surprising statement is a reason that many
researchers are interested in the gauge/gravity correspondence.

Nowadays it is expected that the gauge/gravity correspondence occurs in
various field theories and gravity theories. Based on this conjecture, many
studies have been conducted. One research method in such studies is to
compute physical quantities with the assumption of the gauge/gravity cor-
respondence. When we cannot calculate one side of the field theories and
the gravity theories, we can pull out the information from the other side by
assuming the gauge/gravity correspondence. A test of the gauge/gravity cor-
respondence is another research method. Construction of a concrete example
of which we can calculate the both sides is important for justification of the
gauge/gravity correspondence.

One example of studies towards application of the gauge/gravity corre-
spondence is holographic QCD [2, 3, 4]. The holographic QCD is a holo-
graphic model which is constructed by D-branes. Effective theory of such
D-brane systems has the QCD-like behavior. By using the holographic QCD
models, we can interpret the properties of QCD such as the confinement
and the chiral phase transition as geometrical properties of the D-branes.
Another example is holographic entanglement entropy [5]. Entanglement en-
tropy is a quantity which measures entanglement between quantum states
and its geometrical interpretation was proposed in [5]. Moreover, by apply-
ing this proposal, the study of quantum gravity from the entanglement has
been challenged [6, 7, 8].

One example of tests of the gauge/gravity correspondence is comparing
degrees of freedom in AdS4/CFT3 by using a localization technic [9, 10]. The
localization is a non-perturbative computation method by super symmetry
[11]. The free energy of ABJM theory [12] on the three-dimensional sphere
was computed by this localization technic and it is consistent with the pre-
diction of the gravity side. Another example is a numerical computation of
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finite N gauge theories [13]. From the viewpoint of the gauge/gravity corre-
spondence, finite N gauge theories are candidates of definitions for quantum
gravity theories. The authors of [13] analyzed one-dimensional U(N) super
Yang-Mills theory numerically and their computation reproduced the quan-
tum gravity effect by the 1/N2 correction.

Motivations to study the gauge/gravity correspondence for the author
are as follows. First motivation is interest in classical equations which ap-
pear in researches of the gauge/gravity correspondence. If the gauge/gravity
correspondence is true, there are the holographic models which correspond
to various physical phenomena. It is expected that such holographic models
have interesting solutions. Conversely, we may predict properties of con-
densed matter systems from the holographic models. Second motivation is
to understand how to construct conformal field theory (CFT) objects which
can be determined by conformal symmetry only in terms of AdS geometry.
Generally, it is difficult to show the gauge/gravity correspondence exactly
because the spectra of the theory are complicated. However, we can verify
the correspondence about CFT objects which do not depend on the detail of
the theory such as conformal partial wave by using conformal symmetry and
isometry of AdS spacetime. Developing a systematic way to construct such
CFT objects by using AdS geometry is an important research theme.

In part 1, we analyze a three-scalar holographic superconductor model
[14]. Holographic superconductor model [15, 16] is a model that describes
phase transition in the AdS black hole. By lowering the Hawking temper-
ature, the phase transition occurs in the holographic superconductor model
and its phase transition is similar to superconductor phase transition. The
holographic superconductor models are expected to be related to strongly
correlated systems . We examine the equations of motion for the three-scalar
holographic superconductor model and evaluate their solutions. Because of
the interactions between the scalar fields, this holographic superconductor
model can express the frustration.

In part 2, we explore the correspondence between geodesic Witten dia-
grams (GWD) and conformal partial waves (CPW) with an external sym-
metric traceless tensor field [17]. CPW is a fundamental object in CFT and
it can be determined by the conformal symmetry only. Recently, GWD has
been proposed as the gravity dual of CPW [18]. We construct an amplitude of
GWD with an external arbitrary symmetric traceless tensor field and verify
that our construction agrees with the known result of CPW. Our approach
is useful to find an unknown expression of CPW with spinning fields. This
work is collaboration with Kotaro Tamaoka.

This thesis is organized as follows. In section 2, we review the GKP-W
relation and its application for the holographic superconductor. We ana-
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lyze the s-wave holographic super conductor model in section 3 (review) and
analyze the three-scalar holographic superconductor model in section 4. In
section 5, we review the conformal partial wave (CPW) and the geodesic
Witten diagram (GWD). We verify the correspondence between the scalar
exchange CPW and GWD with an external spinning field and three external
scalar fields in section 6. Section 7 is conclusion and discussion of this doctor
thesis.
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Part I

Three-scalar holographic
superconductor model for
frustration

2 Review of GKP-W relation

In this section, we review GKP-W relation [19, 20] and how to compute
physical quantities in the holographic superconductor model by using the
GKP-W relation. This review is based on [21, 22] and my master thesis [23].

2.1 GKP-W relation

GKP-W relation [19, 20] is the most fundamental and important concept in
gauge /gravity correspondence. This relation is written as〈

exp

(∫
ddxφ(0)O

)〉
= exp (−Sonshell[φ]) , (1)

φr→∞ =
φ(0)

rd−∆
+ · · · . (2)

Our notation is as below:

- gauge theory side (left hand side)

• O: an operator in the gauge theory

• φ(0): a source term for O
• 〈· · · 〉 =

∫
DO · · · exp(−Sgauge)

• Sgauge: the action of the gauge theory

- gravity theory side (right hand side)

• Sonshell: the classical action of the gravity theory

• asymptotic AdS metric ds2|r→∞ = r2(dt2 + dx2) + 1
r2dr

2

• φ: a field which obeys the EOM

• ∆ is a constant which is determined from the EOM. This constant
is related to conformal dimension of O as we will see later.
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(1) means equality between a generating functional of the gauge theory and a
partition function of the gravity theory. (2) means equality between sources
for operators of the gauge theory and coefficients of the classical solution at
the AdS boundary in the gravity theory. Usually, the GKP-W relation is
formulated by Euclidean formalism, therefore we use a Euclidean action.

Study of the gauge/gravity correspondence in this thesis is roughly di-
vided into two types. First type is application of the GKP-W relation. In
this type of study such as holographic superconductor, only the one side of
gauge and gravity theories is computed and the other side is estimated by
assumption of the GKP-W relation. In part 1, we will analyze a holographic
superconductor model by assuming the GKP-W relation. Second type is rig-
orous checking of the gauge/gravity correspondence between objects in the
both sides. In this type of study, we compute the both sides of gauge and
gravity theories and show equality of the objects. In part 2, we will show
the equality between conformal partial waves in the CFT side and geodesic
Witten diagrams in the AdS side.

2.2 Computation of one-point function by the GKP-W
relation

Consider a perturbative source δφ(0) as φ(0) in (1). In this case, deviation of
the expectation value δ〈O〉 by δφ(0),

δ〈O〉 ≡
〈
O exp

( ∫
ddx δφ(0)O

)〉
−
〈
O
〉

(3)

can be computed from the gravity side by assuming the GKP-W relation,〈
exp

(∫
ddxδφ(0)O

)〉
= exp (−Sonshell[φ]) . (4)

In order to see it, let us compute some examples.

2.2.1 Massless scalar field

Starting from a four-dimensional massless scalar field action,

S =
1

2

∫
d4x
√
g(∇µφ)2, (5)

we derive δ〈O〉 by using (3) and (4). For simplicity, we assume

φ = φ(r). (6)
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We consider a metric like AdS black hole,

√
g = r2, grr =

{
r2 r →∞
0 r → r0

, (7)

where r0 is a horizon radius. Since we use Euclidean metric, the integration
range of r in (5) is from r0 to ∞. From (5), (6) and (7), we get

S =

∫
d3x

∫ ∞
r0

dr
r2grr

2
φ′2

=

∫
d3x

r4

2
φφ′
∣∣∣
r=∞
−
∫
d3x

∫ ∞
r0

dr
(r2grr

2
φ′
)′
φ, (8)

where ′ represents a differential with respect to r and we use partial integra-
tion.

The classical equation of motion for (5) is(
r2grrφ′

)′
= 0. (9)

Since the second term in (8) is zero under (9), we obtain a classical action
Sonshell,

Sonshell =

∫
d3x

r4

2
φφ′
∣∣∣
r=∞

. (10)

(5) is a four-dimensional integral, however, (10) is a three-dimensional inte-
gral at r → ∞ (AdS boundary) by the equation of motion. The GKP-W
relation (4) relates this classical action to a generating functional of the
three-dimensional field theory.

Next, we consider an explicit solution of (9) at r → ∞. At r → ∞, (9)
becomes (

r4φ′
)′

= 0, (11)

therefore, an asymptotic form of the solution at r →∞ is

φ = δφ(0)(1 +
φ(1)

r3
) (r →∞). (12)

Substituting (12) to (10), we get

Sonshell =

∫
d3x
(
δφ(0)

)2 r4

2

(
1 +

φ(1)

r3

)(
− 3

φ(1)

r4

)∣∣∣
r=∞

= −
∫
d3x

3

2

(
δφ(0)

)2
φ(1). (13)
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From (3), (4) and (13), we obtain

δ〈O〉 =
〈
O exp

( ∫
d3x δφ(0)O

)〉
−
〈
O
〉

=
δ

δ(δφ(0))

〈
exp

( ∫
d3x δφ(0)O

)〉
− δ

δ(δφ(0))

〈
exp

( ∫
d3x δφ(0)O

)〉∣∣∣
δφ(0)=0

= 3δφ(0)φ(1) exp
( ∫

d3x
3

2

(
δφ(0)

)2
φ(1)
)
− 3δφ(0)φ(1) exp

( ∫
d3x

3

2

(
δφ(0)

)2
φ(1)
)∣∣∣
δφ(0)=0

≈ 3δφ(0)φ(1), (14)

where we ignore higher order terms of δφ(0) and (12) becomes

φ = δφ(0) +
δ〈O〉
3r3

(r →∞). (15)

Therefore, with assumption of the GKP-W relation, coefficients of the classi-
cal solution at the AdS boundary in gravity theory side correspond to source
and its response in field theory side.

In order to derive (12), we assume that the second term also vanishes if
the first term vanishes. We can also consider a solution as

φ = δφ(0) +
φ(1)

r3
(r →∞). (16)

With δφ(0) = 0, we obtain

Sonshell = −
∫
d3x

3

2
δφ(0)φ(1), (17)

〈O〉 =
3

2
φ(1) exp

( ∫
d3x

3

2
δφ(0)φ(1)

)∣∣∣
δφ(0)=0

=
3

2
φ(1) (18)

and thus, (16) becomes

φ =
2〈O〉
3r3

(r →∞). (19)

2.2.2 Massive scalar field

Consider an action of a massive scalar field in four-dimensional spacetime,

S =
1

2

∫
d4x
√
g[(∇µφ)2 +m2φ2] (20)
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and we assume (6) and (7) again. Classical action Sonshell of (20) is the same
as (10), but the equation of motion is

m2r2φ−
(
r2grrφ′

)′
= 0. (21)

Asymptotic form of the solution at r →∞ is

φ = δφ(0)
( 1

r∆−
+
φ(1)

r∆+

)
(r →∞), (22)

∆± =
3±
√

9 + 4m2

2
. (23)

In scalar field theories on flat spacetime, a field with m2 < 0 corresponds
to tachyon and its existence is related to instability of the theory. However,
on AdS spacetime, there is possibility that the theory is stable with m2 < 0
since the equation of motion includes the AdS metric. The bound of m2 such
that the theory is stable is called as Breitenlohner-Freedman bound [24].
In particular, the theory is stable if m2 > −d2

4
on d + 1-dimensional AdS

spacetime. This condition corresponds to the fact that ∆± has no imaginary
part. On four-dimensional AdS spacetime, the theory is stable if m2 > −9

4
.

Then, we continue the computation with m2 = −2. With m2 = −2, (22)
is

φ = δφ(0)
(1

r
+
φ(1)

r2

)
(r →∞). (24)

Substituting it to (10), we get

Sonshell =

∫
d3x
(
δφ(0)

)2 r4

2

(1

r
+
φ(1)

r2

)(
− 1

r2
− 2

φ(1)

r3

)∣∣∣
r=∞

= −
∫
d3x

1

2

(
δφ(0)

)2
r
∣∣∣
r=∞
→ −∞, (25)

and we encountered the divergence. In the case of massless scalar field, the
first term of φ becomes zero because of the derivative with respect to r and
Sonshell is finite. In the case of massive scalar field, however, the first term of
φ does not vanish and Sonshell diverges.

Holographic renormalization is a way to solve this problem about the
divergence and it is a method to remove the divergence by adding counter
terms to the action (for example, see [25]). In particular, we add boundary
terms which have symmetry of the gravity theory (e.g. general coordinate
transformation symmetry) to the action for cancellation of the divergence.
In order not to change the EOM under the holographic renormalization, we
use the boundary terms.
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In the example of (20), we use a counter term as

SCT =
1

2

∫
d3x
√
γφ2
∣∣∣
r=∞

, (26)

where γµν is a three-dimensional induced metric of gµν at r →∞. In asymp-
totic AdS spacetime as (7), we get

√
γ
∣∣
r=∞ = r3. (27)

Adding SCT to the action, we obtain

Sonshell + SCT =
1

2

∫
d3x
(
δφ(0)

)2
r3
(1

r
+
φ(1)

r2

)(
− 1

r
− 2

φ(1)

r2
+

1

r
+
φ(1)

r2

)∣∣∣
r=∞

= −
∫
d3x

1

2

(
δφ(0)

)2
φ(1), (28)

and thus, we can remove the divergence. Similar computation as the massless
scalar field gives

δ〈O〉 ≈ δφ(0)φ(1), (29)

φ =
δφ(0)

r
+
δ〈O〉
r2

(r →∞). (30)

2.2.3 U(1) gauge field

Consider an action of a U(1) gauge field in four-dimensional spacetime,

S =
1

4

∫
d4x
√
gF 2

µν . (31)

We assume that At is only nonzero as

At = At(r) (32)

and we also assume (7) and

At(r)|r=∞ = 0. (33)

(33) corresponds to a boundary condition in the next section. Under these
assumptions, the EOM and Sonshell are

(r2A′t)
′ = 0 (r →∞), (34)

Sonshell =
1

2

∫
d3x r2AtA

′
t

∣∣∣
r=∞

. (35)

13



Assuming a solution of (34) as

At = δA
(0)
t

(
1 +

A
(1)
t

r

)
(r →∞), (36)

we get

Sonshell = −1

2

∫
d3x
(
δA

(0)
t

)2
A

(1)
t . (37)

Since we consider a massless gauge field, there is no divergence. Define an
operator J t which corresponds to δA

(0)
t or consider a generating functional

〈exp
(∫

d3x δA
(0)
t J t

)
〉, (38)

in the gauge theory side. Similar computation as (14) gives

δ〈J t〉 ≈ δA
(0)
t A

(1)
t , (39)

At = δA
(0)
t +

δ〈J t〉
r

(r →∞). (40)

For later convenience, we consider a relation between Euclidean and Lorentzian
formalism. They are related as

SE = −iSL, tE = itL, AtE = −iAtL , 〈J tE〉 = i〈J tL〉, gttE = −gttL .
(41)

Thus, in Lorentzian formalism, (40) becomes

AtL = δA
(0)
tL
− δ〈J tL〉

r
(r →∞). (42)

Instead of (32), if we consider

Ax = Ax(r), (43)

similar computation gives

δ〈Jx〉 ≈ δA(0)
x A(1)

x , (44)

Ax = δA(0)
x +

δ〈Jx〉
r

(r →∞). (45)
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2.3 Relation between mass and dimension of operators

From the above computation, we saw that a classical solution of the gravity
theory corresponds to an expectation value of an operator and its source
in the field theory. In this subsection, we consider which coefficient of the
classical solution corresponds to the expectation value of the operator based
on [26].

As a condition for the expectation value of the operator, we impose finite-
ness of the action. In particular, we need finiteness at the AdS boundary. In
addition, we need a boundary condition for finiteness at the horizon.

For example, consider a massive scalar field in d+ 1-dimensional asymp-
totic AdS spacetime

ds2 =
1

z2

(
dz2 +

d∑
i=1

(dxi)2
)

(z → 0), (46)

where we used a change of variables

r =
1

z
. (47)

The AdS boundary is z = 0. The action is the same as (20),

S =
1

2

∫
dd+1x

√
g[(∇µφ)2 +m2φ2]. (48)

Now, φ depends on z and also xi. Near z = 0, (48) becomes

1

2

∫
ddx dz z−d+1

[
(∂zφ)2 + (∂iφ)2 +

m2

z2
φ2
]
. (49)

A classical solution of this action can be written as

φ = z∆A(~x) (z → 0). (50)

∆ is a solution of
∆(∆− d) = m2, (51)

and its explicit form is

∆± =
d±
√
d2 + 4m2

2
. (52)

At z → 0, the solution of ∆+ is smaller, and therefore, we generally interpret
it as the expectation value of the operator. In fact, substituting (50) to (49),
we get

1

2

∫
ddx dz z2∆−d−1

[
(∆A)2 + (z∂iA)2 + (mA)2

]
. (53)
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Because of 2∆+ − d− 1 > −1, there is no divergence at z → 0 in the case of
the solution of ∆+.

In the case of the solution of ∆−, there is the divergence at z → 0 because
of 2∆−−d− 1 < −1. We can not interpret it as the expectation value of the
operator in this situation. In order to loosen the condition for the expectation
value of the operator, we use holographic renormalization. In particular, we
perform a partial integration of z−d+1(∂zφ)2 and remove the boundary term
by the counter term. Then, (49) becomes

1

2

∫
ddx dz z−d+1

[
− φ

z−d+1
∂z(z

−d+1∂zφ) + (∂iφ)2 +
m2

z2
φ2
]

=
1

2

∫
ddx dz z−d+1

[
− ∆(∆− d)

z2
φ2 + (∂iφ)2 +

m2

z2
φ2
]

=
1

2

∫
ddx dz z2∆−d+1

[
(∂iA)2

]
, (54)

and there is no divergence if 2∆− − d+ 1 > −1. Thus, we can interpret the
solution of ∆− as the expectation value of the operator with this holographic
renormalization.

Summarizing the above, if

−d
2

4
≤ m2 < −d

2

4
+ 1, (55)

we can interpret the two solution of ∆± as the expectation value of the
operator. If

−d
2

4
+ 1 ≤ m2, (56)

we can interpret the solution of ∆+ only as the expectation value of the
operator. In addition,

∆ =
d− 2

2
(57)

is mass dimension of a scalar field in d-dimensional spacetime and it is known
as unitarity bound in CFT (for example, see [27, 28, 29]). Therefore, modi-
fication by holographic renormalization is considered to be correct.

3 Review of s-wave holographic superconduc-

tor model

In this section, we review [15, 16] by S. A. Hartnoll, C. P. Herzog and G. T.
Horowitz. Their papers are the origin of the study of holographic supercon-
ductor and various models are computed after these papers. This review is
based on my master thesis [23].
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3.1 S-wave holographic superconductor model

In the study of holographic superconductor, we analyze classical solutions
of holographic models whose phase transition is similar to superconductor.
From now, we consider a 3+1 dimensional holographic model which corre-
sponds to 2+1 dimensional s-wave superconductor.

3.1.1 Correspondence between superconductor and black hole

Rigorous correspondence between superconductor and gravity theory is not
understood well. Then, we consider a gravity theory which has characteristic
physical quantity of superconductivity as a bottom up approach.

Since superconductivity is a phase transition phenomenon when tempera-
ture is lowered, we need the temperature in the holographic model. Moreover,
we need an electromagnetic field for an electric current and an order param-
eter to distinguish between a normally conducting phase and a supercon-
ducting phase. In order to satisfy these property, we introduce a holographic
model on AdS black hole spacetime with a scalar flied and a U(1) gauge field.
We consider AdS black hole because there is Hawking temperature in black
hole. The scalar field represents the order parameter of s-wave superconduc-
tivity with angular momentum l = 0. As we will see later, this scalar field is
zero at high temperature, however it becomes nonzero at low temperature.
Therefore, it is suitable for the order parameter of superconductivity.

3.1.2 Action of the model

We consider an action of the s-wave holographic superconductor model as

S =

∫
d4x
√
−g
[
− 1

4
F µνFµν −m2|Ψ|2 − |∂Ψ− iAΨ|2

]
, (58)

where Ψ is a scalar field, Aµ is a U(1) gauge field and Fµν = ∂µAν − ∂νAµ.
We consider AdS black hole spacetime as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), (59)

f(r) = r2 − M

r
, (60)

where M is a black hole mass. At r →∞, (59) becomes AdS metric

ds2 = −r2dt2 +
dr2

r2
+ r2(dx2 + dy2). (61)
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The horizon radius of the black hole r0 which is defined by f(r0) = 0 is

r0 = M1/3. (62)

Hawking temperature of the black hole T is

T =
3M1/3

4π
. (63)

We set mass of the scalar field m2 as

m2 = −2. (64)

This value is larger than Breitenlohner-Freedman bound -9/4 in four-dimension.
In the study of holographic superconductor model, (64) is commonly used
as mass of a scalar field on four-dimensional spacetime. The reasons are as
follows: ∆± is integer, mass of the four-dimensional scalar field which is de-
rived by compactification of supergravity is (64), etc. However, (58) is not
derived from supergravity directly, (64) is not always necessary.

In order to justify (58), we use approximation which is called as the probe
limit. The probe limit means that we ignore the effect of the scalar field and
the U(1) gauge field for the metric. The action before using the probe limit
is (58) with Einstein-Hilbert action

S =

∫
d4x
√
−g
[ 1

16πG
(R−2Λ)− 1

4
F µνFµν−m2|Ψ|2−|∂Ψ− iqAΨ|2

]
, (65)

where q is charge of the scalar field and G is the Newton constant. With
redefinition of the scalar field and the U(1) gauge field such as Ψ→ Ψ/q and
Aµ → Aµ/q, we get

S =
1

16πG

∫
d4x
√
−g
[
R−2Λ+

16πG

q2

{
−1

4
F µνFµν−m2|Ψ|2−|∂Ψ−iAΨ|2

}]
.

(66)
At the limit of G/q2 → 0, the latter part of (66) is smaller than the former
part and (66) comes down to Einstein-Hilbert action. Therefore, in the probe
limit, we can derive (58) from (66) by choosing (59) as a solution of Einstein-
Hilbert action and considering the latter part of (66) as a perturbative action
of the scalar field and the U(1) gauge field.

In [15, 16], the authors used the action in Lorentzian formalism as (58).
In order to analyze the EOM and its solutions, we can use Lorentzian formal-
ism because the EOM is the same in Lorentzian and Euclidean formalism.
However, we need to use Euclidean formalism to compute the free energy of
the solutions.
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3.1.3 Derivation of Hawking temperature

We can derive Hawking temperature by using periodicity of Euclidean metric.
In this subsection, we derive (63) by this method.

With tE = it, (59) becomes

ds2
E =

dr2

f(r)
+ f(r)dt2E, (67)

where we ignore x and y components. Since Hawking temperature is related
to radiation from the black hole, we approximate f(r) near the horizon r0.
With a coordinate transformation, we obtain

ds2
E '

dr2

f ′(r0)(r − r0)
+ f ′(r0)(r − r0)dt2E

= dρ2 + ρ2d
(f ′(r0)

2
tE

)2

, (68)

ρ ≡ 2
√

(r − r0)/f ′(r0). (69)

Next, we impose that (68) represents polar coordinates. In other words,
we impose that a period of f ′(r0)tE/2 is 2π as an angle of two-dimensional
flat space. This condition is the same that a period of imaginary time tE is

β =
4π

f ′(r0)
. (70)

The inverse number of β corresponds to Hawking temperate T ,

T =
1

β
=
f ′(r0)

4π
=

3M
1
3

4π
. (71)

Imposing the periodicity in the direction of imaginary time is a technique
of finite temperature field theory. From this derivation, we can imagine
that Hawking temperature of black hole corresponds to temperature of finite
temperature field theory. If we impose that ρ is real number as a radius of
two-dimensional plane, we get r ≥ r0 from (69). Therefore, a range of r is
from r0 to ∞ in Euclidean formalism.

3.2 Phase transition of the scalar field

In this subsection, we analyze the phase transition of the scalar field which
corresponds to the order parameter of superconductivity.
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3.2.1 Equations of motion

The EOM of Ψ from (58) is

DµDµΨ−m2Ψ = 0, (72)

and the EOM of Aν is

∇µF
µν + iΨ(DνΨ)∗ − iΨ∗(DνΨ) = 0, (73)

where Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ and Dµ ≡ ∇µ − iAµ. Next, we
consider a solution of these equations with the ansatz as

Ψ = Ψ(r), At = Φ(r), Ar = Ax = Ay = 0, (74)

where Ψ and Φ are real functions. r dependence of Ψ and Φ means uniformity
of the field theory side. With this ansatz, let us see explicit forms of the EOM.
Christoffel symbols for the computation are

Γrrr =
−f ′

2f
, Γxrx = Γyry =

1

r
, Γrxx = Γryy = −fr, Γtrt =

f ′

2f
, Γrtt =

ff ′

2
.

(75)

Substituting (74) to (72), we obtain

gµν(∂µDνΨ− ΓλµνDλΨ− iAµDνΨ)−m2Ψ

=fΨ
′′

+
(
f ′ +

2f

r

)
Ψ
′
+

Φ2

f
Ψ−m2Ψ = 0. (76)

Dividing (76) by f , we get

Ψ′′ +
(f ′
f

+
2

r

)
Ψ′ +

Φ2

f 2
Ψ +

2

f
Ψ = 0, (77)

where m2 = −2. Similarly, (73) becomes

∂µF
µν + ΓµµλF

λν + iΨ(DνΨ)∗ − iΨ∗(DνΨ) = 0. (78)

In the case of ν = x, y, the left hand side is zero. In the case of ν = r, (78) is

iΨ
(
Ψ
′)∗ − iΨ∗Ψ′ = 0, (79)

and the left hand side is zero with Ψ = Ψ∗. In the case of ν = t, (78) is

Φ
′′

+
2

r
Φ
′ − 2Ψ2

f
Φ = 0. (80)

20



3.2.2 Asymptotic solution

We consider an asymptotic solution of (77) and (80) at r →∞. Assume that
Φ is finite at r →∞. With this assumption, (77) is

Ψ′′ +
4

r
Ψ′ +

2

r2
Ψ = 0 (r →∞). (81)

Therefore, the asymptotic solution is

Ψ =
Ψ(1)

r
+

Ψ(2)

r2
(r →∞). (82)

Similarly, (80) at r →∞ is

Φ
′′

+
2

r
Φ
′
= 0 (r →∞), (83)

and the asymptotic solution is

Φ = µ− ρ

r
, (84)

where we put a minus sign because of (42).
As discussed in section 2, we interpret the coefficients in (82) and (84)

as the source and its response in the field theory side. Since the mass of the
scalar field (64) satisfies the condition (55), we can interpret both Ψ(1) and
Ψ(2) as the expectation value of the operator. In addition, we interpret µ as
a chemical potential (source) and ρ as a charge density (response).

3.2.3 Boundary conditon

In order to solve the EOM, we need to decide boundary conditions. Now, we
impose three boundary conditions.

First boundary condition is

Φ = 0 (r → r0). (85)

Since gtt in −
√
−ggttΦ2Ψ2 diverges at r → r0, this condition prevents the

divergence of −
√
−ggttΦ2Ψ2 in (58).

Second condition is

3r0Ψ
′
+ 2Ψ = 0 (r → r0). (86)

This condition is related to (77) and finiteness of Ψ at r → r0.
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Third condition is

Ψ(1) = 0 or Ψ(2) = 0. (87)

This condition means that the source of the scalar field in the field theory
side is zero. For example, in the case of Ψ(1) = 0, Ψ(1) is the source and Ψ(2)

is its response. If the temperature is enough low, Ψ(2) can take a nonzero
value because of µ.

Since there are the two differential equations with second order, their so-
lution has four parameters. With the three boundary conditions, the freedom
of the solution decreases and we can describe the solution by one parameter.

3.2.4 Phase transition

Before the numerical computations, consider how the phase transition occurs
qualitatively.

For any value of Hawking temperature T , there is a solution of (77) and
(80) as

Ψ = 0, Φ = µ(1− r0

r
). (88)

In fact, we can check that this solution satisfies (80) and the boundary con-
dition (85). Since Ψ of this solution is zero, this solution represents normal
conductivity.

If Hawking temperature T is low enough, the scalar field can have a
nonzero value and there is a solution as

Ψ =
Ψ(1)

r
or

Ψ(2)

r2
, Φ = µ− ρ

r
(r →∞). (89)

This solution represents super conductivity because of the nonzero scalar
field. The reason for such a solution is the coefficient of |Ψ|2 in (58). We
denote this coefficient by m2

eff. Substituting (12) to m2
eff, we get

m2
eff = m2 + gttΦ2 = m2 −

µ2(1− r0
r

)2

r2
(

1− r3
0

r3

)
= m2 −

( 3µ

4πT

)2 1− r0
r

1 + r
r0

+ r2

r2
0

. (90)

Thus, if T is low, m2
eff becomes little and the phase transition can occur

such as a phase transition by Higgs potential. For this phase transition, the
shape of the metric and the existence of the scalar field and the U(1) field
are important.
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In the low temperature region, the Euclidean classical action Sonshell can
determine which solution is favored. In the holographic superconductor
model, the right hand side of (1) corresponds to the generating functional
of the field theory. Therefore, we consider Sonshell as a free energy and the
solution with smaller Sonshell is favored. Generally, the free energy of the
super conductivity solution is smaller than one of the normal conductivity
solution and the phase transition occurs. We will compute the free energy in
the next section.

3.2.5 Result of numerical computation

We solve the simultaneous equations (77) and (80) with the boundary con-
ditions (85), (86) and (87). We perform numerical computations by Mathe-
matica. We use a numerical code on the homepage of C. P. Herzog [30].

Denote the operators in the field theory by Oi. We consider these oper-
ators as order parameters. We normalize these operators as

〈Oi〉 =
√

2Ψ(i), i = 1, 2. (91)

Figure 1 and figure 2 show numerical result of Oi. The horizontal axes are
Hawking temperature T , and the vertical axes are 〈O1〉 and

√
〈O2〉. We

normalize the horizontal and vertical axes by the critical temperature Tc at
which the phase transition occurs. As it can be seen from the figures, 〈Oi〉
has nonzero value below the critical temperature Tc and the phase transition
occurs.

For the numerical computations, we need to determine two parameters:
Hawking temperature T and the coefficient of (89) (for example, ρ). However,
we can consider only one parameter by using the symmetry of the metric (59).
In order to see it, consider a coordinate transformation as

r = ar′, t =
t′

a
, x =

x′

a
, y =

y′

a
. (92)

Under this transformation, (59) becomes

ds2 = −f(r′)dt′2 +
dr′2

f(r′)
+ r′2(dx′2 + dy′2), (93)

f(r′) = r′2 − M/a3

r′
. (94)

Hawking temperature of this coordinate system is

T ′ =
3M1/3

4πa
=
T

a
. (95)
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Figure 2: T dependence of O2
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Moreover, (89) changes as

Ψ′(r′) =
Ψ′(1)

r′
+

Ψ′(2)

r′2
= Ψ(r) =

Ψ(1)

r
+

Ψ(2)

r2
=

Ψ(1)/a

r′
+

Ψ(2)/a2

r′2
, (96)

Φ′(r′) = µ′ − ρ′

r′
=

Φ(r)

a
= µ/a− ρ/a

r
= µ/a− ρ/a2

r′
, (97)

where ′ means the physical quantity in the r′ coordinate system. Thus, some
relations hold such as

ρ

T 2
=

ρ′

T ′2
. (98)

After all, the solutions which satisfy (98) are equivalent under the coordinate
transformation (92). In the numerical computations, we first computed with
T = 3/4π, and we changed the coordinate system to ρ = 1 by using (98). In
fact, we used

ρ

(3/4π)2
=

1

T 2
. (99)

ρ in the left hand side is the value in the numerical computation and T in the
right hand side is the value with ρ = 1 after the coordinate transformation.

3.3 Electric conductivity

In the holographic superconductor model, we can also calculate electric con-
ductivity. In order to compute electrical conductivity, we need a source of a
electric field. Therefore, we introduce a perturbation of Ax. In addition, we
use an ansatz as

Ax = Ax(r) exp(−iωt), (100)

where ω is frequency of the electric field, ω = 0 corresponds to a direct current
and ω 6= 0 corresponds to an alternating current. In first order perturbation
of Ax, the EOM of Ax is

A′′x +
f ′

f
A′x +

(ω2

f 2
− 2Ψ2

f

)
Ax = 0. (101)

We use the classical solution which we computed in the previous section as
Ψ.

From (45), the asymptotic solution is

Ax = A(0)
x +

A
(1)
x

r
. (102)

Moreover, we impose a boundary condition as

Ax(r0) ∝ f−iω/3r0 (103)
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This condition means that there is no flow from inside of the black hole. In
fact, (103) satisfies (101) as

−iω(−iω − 3r0)f−iω/3r0−2 − 3r0iωf
−iω/3r0−2 + ω2f−iω/3r0−2 = 0. (104)

Near r = r0, the metric (59) becomes

ds2 ≈ −fdt2+fdr2
∗ + r2(dx2 + dy2), (105)

r∗ =
log f(r)

3r0

, (106)

under the approximation of f ′ = 3r0. In this coordinate system, (100) be-
comes

Ax ∝ exp[−iω(r∗ + t)], (107)

and this solution is flow into the black hole under the time evolution.

As section 3.2, we consider the coefficients of (102) as the physical quan-

tity in the field theory side. A
(0)
x = Ax is a source and A

(1)
x = 〈Jx〉 is a current

density. With this assumption, the electric conductivity σ(ω) is

σ(ω) =
〈Jx〉
Ex

= −〈J
x〉

Ȧx
= −i〈J

x〉
ωAx

= − iA
(1)
x

ωA
(0)
x

. (108)

In [15], the authors found that the DC electric conductivity (108) at ω = 0
of the holographic model diverges. This divergence is the origin of the name
“holographic superconductor”.

Moreover, the DC electric conductivity with a lattice effect is studied in
[31]. The authors of [31] considered a neutral scalar field source

φ1(x) = A0 cos(k0x), (109)

on a charged black hole. This source violates transformation invariance.
They found that the electric conductivity has a power-law behavior

|σ(ω)| = B

ω2/3
+ C, (110)

at intermediate frequency. This property is similar to the property of the
cuprate high-temperature superconductor (normal phase) [32]. Because of
this coincidence, it is considered that the holographic models can describe
the high-temperature superconductor.
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4 Frustrated holographic superconductor

In this section, we consider a three-scalar holographic superconductor model.
We analyze its equations of motion and solutions. By choosing specific values
of parameters, we find that there are two chiral solutions whose free energy is
minimum. Therefore, this holographic model can describe frustration. This
part is based on our paper [14].

4.1 Motivation

Frustration is a situation where there are several competing constraints (see,
for example, [33, 34]). This competition can trigger degeneracy of ground
states. Because of this degeneracy, frustrated systems can have a rich phase
structure. Antiferromagnets on a triangular lattice is an example of the
frustrated systems.

For example, consider a potential

f(θ) = cos(θ1 − θ2) + cos(θ2 − θ3) + cos(θ3 − θ1), (111)

and compute its minimum. We can minimize two of the potential terms in
(111), however, we cannot minimize all terms together. Thus, the potential
(111) is one example which describes the frustration. Configurations of θ
which minimize the potential (111) are

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
2π

3
, (112)

and

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
4π

3
. (113)

We can define chirality of θ to distinguish these two minima as we will see
later. As this example shows, the frustrated systems tend to have some
ground states.

In condensed matter physics, a three-band superconductor model was
proposed as a frustrated systems [35]. This model is considered to study
multiband superconductivity such as Fe-based superconductor [36]. In or-
der to cause frustration, the authors of [35] introduced three scalar order
parameters and Josephson coupling between the scalar fields as (111). In
this model, θi are complex phases of the scalar fields. They found that their
model has chiral ground states which correspond to (112) and (113). These
states have nonzero chirality and their free energy is the same.
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Based on [35], we expected that a three-scalar holographic superconductor
model also has the similar solutions which correspond to the chiral ground
states. Moreover, the Fe-based superconductor is one of high temperature
superconductors by strongly correlated effects. Therefore, we may reveal
the physics of the Fe-based superconductor from holographic superconductor
models with multi order parameters This is a motivation to study the three-
scalar holographic superconductor model.

4.2 Three-scalar holographic superconductor model

We consider a three-scalar holographic superconductor model as

S =

∫
d4x
√
−g
[
− 1

4
F µνFµν − |Dµϕ1|2 − |Dµϕ2|2 − |Dµϕ3|2

−m2
1|ϕ1|2 −m2

2|ϕ2|2 −m2
3|ϕ3|2

− ε12(ϕ∗1ϕ2 + ϕ1ϕ
∗
2)− ε23(ϕ∗2ϕ3 + ϕ2ϕ

∗
3)− ε31(ϕ∗3ϕ1 + ϕ3ϕ

∗
1)

− η(|ϕ1|4 + |ϕ2|4 + |ϕ3|4)
]
, (114)

Dµ = ∇µ − iAµ, (115)

where we introduce a U(1) field Aµ, three complex scalar fields ϕi, three
nonzero Josephson coupling εij, and a nonnegative constant η. The potential
term ε12(ϕ∗1ϕ2 +ϕ1ϕ

∗
2)+ε23(ϕ∗2ϕ3 +ϕ2ϕ

∗
3)+ε31(ϕ∗3ϕ1 +ϕ3ϕ

∗
1) with ε12 = ε23 =

ε31 > 0 corresponds to (111). In this section, we use the AdS black hole
metric as

ds2 =
1

z2
(−f(z)dt2 + dx2 + dy2 +

dz2

f(z)
), (116)

f(z) = 1−
( z
zh

)3

, (117)

where z = 1/r and zh is the horizon radius of the black hole. We consider the
probe limit and fix this metric. The quartic potential in (114) is one choice
where the chiral ground states exist.

4.3 Solutions with η = 0

First, we analyze the three-scalar holographic superconductor model with
η = 0. Its equations of motion of ϕi are

DµDµϕ1 −m2
1ϕ1 − ε12ϕ2 − ε31ϕ3 = 0, (118)

DµDµϕ2 −m2
2ϕ2 − ε23ϕ3 − ε12ϕ1 = 0, (119)

DµDµϕ3 −m2
3ϕ3 − ε31ϕ1 − ε23ϕ2 = 0. (120)
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There are three types of the solutions in these equations:

Sol.1 ϕ1 = ϕ2 = ϕ3 = 0.

Sol.2 One scalar field is zero and the others are nonzero such as
ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

Sol.3 ϕ1 6= 0, ϕ2 6= 0, ϕ3 6= 0.

In order to study frustration between the three scalar fields, we examine
Sol.3. For simplicity, we rewrite ϕi as

ϕi = ψie
iθi , (121)

where ψi > 0 and we use an ansatz

At = At(z), ψi = ψi(z), θi = const., (122)

and the other components of Aµ are zero. With this ansats, the equations of
motion are

∇µF
µν − 2ψ2

1A
ν − 2ψ2

2A
ν − 2ψ2

3A
ν = 0, (123)

∇µ∇µψ1 − AµAµψ1 −m2
1ψ1 − ε′12ψ2 − ε′31ψ3 = 0, (124)

∇µ∇µψ2 − AµAµψ2 −m2
2ψ2 − ε′23ψ3 − ε′12ψ1 = 0, (125)

∇µ∇µψ3 − AµAµψ3 −m2
3ψ3 − ε′31ψ1 − ε′23ψ2 = 0, (126)

ε12ψ1ψ2 sin (θ1 − θ2) + ε31ψ1ψ3 sin (θ1 − θ3) = 0, (127)

ε23ψ2ψ3 sin (θ2 − θ3) + ε12ψ2ψ1 sin (θ2 − θ1) = 0, (128)

ε31ψ3ψ1 sin (θ3 − θ1) + ε23ψ3ψ2 sin (θ3 − θ2) = 0, (129)

ε′12 ≡ ε12 cos (θ1 − θ2), ε′23 ≡ ε23 cos (θ2 − θ3), ε′31 ≡ ε31 cos (θ3 − θ1).
(130)

Let us focus on the equations of θi. There are two types of the solutions:

Sol.3a sin (θ1 − θ2) 6= 0, sin (θ2 − θ3) 6= 0, sin (θ3 − θ1) 6= 0.

Sol.3b sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

As we will see later, Sol.3a has nonzero chirality.
Consider a condition for the existence of Sol.3a. From (128) and (129),

we get

ψ2 = −ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)
ψ1, ψ3 = −ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)
ψ1. (131)
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Because of ψi > 0, we need

ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)
< 0,

ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)
< 0. (132)

Substituting (131) to (124), (125) and (126), we get

∇µ∇µψ1 − AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 = 0, (133)

∇µ∇µψ1 − AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 = 0, (134)

∇µ∇µψ1 − AµAµψ1 −
(
m2

3 −
ε31ε23

ε12

)
ψ1 = 0. (135)

Therefore, Sol.3a exists only if

m2
1 −

ε12ε31

ε23

= m2
2 −

ε23ε12

ε31

= m2
3 −

ε31ε23

ε12

. (136)

Let us consider the other solutions with (136).

Sol.1 ϕ1 = ϕ2 = ϕ3 = 0.

Generally, nonzero scalar fields decreases the free energy. Therefore, the
free energy of this solution is not minimum if Hawking temperature is
low enough.

Sol.2 ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

From (120), we get

ψ2 = −ε31

ε23

ψ1e
i(θ1−θ2), (137)

and

θ1 − θ2 = 0 or π, (138)

are the solutions of the equations of θi. Substituting (137) to (125) and
(126), we get

∇µ∇µψ1 − AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 = 0, (139)

∇µ∇µψ1 − AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 = 0, (140)
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and the solution with ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0 can exist if (136) holds.
Similarly, we can derive other solutions with ϕ1 = 0, ϕ2 6= 0, ϕ3 6= 0
and ϕ1 6= 0, ϕ2 = 0, ϕ3 6= 0. Since the mass squared of ψ1 in (133) and
(139) is the same, the free energy of these solutions is the same as that
of solution 3a.

Sol.3b sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

In this case, we can use the diagonalization. We diagonalize a matrix
as m2

1 ε′12 ε′31

ε′12 m2
2 ε′23

ε′31 ε′23 m2
3

 . (141)

If (136) holds, we can transform this matrix to a diagonal matrix asm2
1 − ε12ε31

ε23
0 0

0 m2
1 − ε12ε31

ε23
0

0 0 m2
1 + ε31ε23

ε12
+ ε23ε12

ε31

 . (142)

In order to analyze the free energy, we assume that the scalar fields
with m2

1 − ε12ε31

ε23
and m2

1 + ε31ε23

ε12
+ ε23ε12

ε31
can not coexist in this model.

We will explain this assumption later. If ε12ε23ε31 > 0 holds, the free
energy of this solution is the same as that of the solution 3a since
m2

1 − ε12ε31

ε23
< m2

1 + ε31ε23

ε12
+ ε23ε12

ε31
. However, if ε12ε23ε31 < 0 holds, the

free energy of the solution corresponds to m2
1 + ε31ε23

ε12
+ ε23ε12

ε31
is smaller

than that of the solution 3a.

In short summary, we found that there are some solutions whose free
energy is same if η = 0, ε12ε23ε31 > 0 and (136) hold.

4.4 Solutions with η > 0 and their free energy

Second, we study the three-scalar model with η > 0, ε12ε23ε31 > 0 and
(136).1 In particular, we compute the free energy with η > 0 by substituting
the solutions with η > 0 to the action.

We can derive the equations of motion of ψi as

∇µ∇µψ1 − AµAµψ1 −m2
1ψ1 − ε′12ψ2 − ε′31ψ3 − 2ηψ3

1 = 0, (143)

∇µ∇µψ2 − AµAµψ2 −m2
2ψ2 − ε′23ψ3 − ε′12ψ1 − 2ηψ3

2 = 0, (144)

∇µ∇µψ3 − AµAµψ3 −m2
3ψ3 − ε′31ψ1 − ε′23ψ2 − 2ηψ3

3 = 0, (145)

1We would like to thank K. Hashimoto for useful suggestion about this subsection.
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and the equations of motion of Aµ and θi are the same as (123), (127), (128)
and (129). From now, we set

m2
1 = m2

2 = m2
3, ε12 = ε23 = ε31 > 0. (146)

In this choice, the chiral ground states is symmetric with respect to θi such
as (112) and (113).

Sol.2 ϕ1 6= 0, ϕ2 6= 0, ϕ3 = 0.

Substituting (137) to (143) and (144), we get

∇µ∇µψ1 − AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 − 2ηψ3

1 = 0, (147)

∇µ∇µψ1 − AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 − 2η

(
ε31

ε23

)2

ψ3
1 = 0, (148)

and these equations are the same with (146). This equation is the
same equation in [37, 38]. Substituting (137) to (114), the on-shell
action becomes

Son-shell =

∫
d4x
√
−g
[
− 1

4
F µνFµν − 2|Dµψ1|2 − 2

(
m2

1 −
ε12ε31

ε23

)
ψ2

1 − 2ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
F µνFµν − |Dµψ

′|2 −
(
m2

1 −
ε12ε31

ε23

)
ψ′2 − η

2
ψ′4
]
,

(149)

where a new scalar field ψ′ is redefined as

ψ′2 ≡ 2ψ2
1, (150)

for comparison of the free energy. The coefficient of the quartic po-
tential in (149) is η/2. In the case of ϕ1 = 0, ϕ2 6= 0, ϕ3 6= 0 and
ϕ1 6= 0, ϕ2 = 0, ϕ3 6= 0, we can obtain the similar on-shell action.

Sol.3a sin (θ1 − θ2) 6= 0, sin (θ2 − θ3) 6= 0, sin (θ3 − θ1) 6= 0.
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Substituting (131) to (143), (144) and (145), we get

∇µ∇µψ1 − AµAµψ1 −
(
m2

1 −
ε12ε31

ε23

)
ψ1 − 2ηψ3

1 = 0, (151)

∇µ∇µψ1 − AµAµψ1 −
(
m2

2 −
ε23ε12

ε31

)
ψ1 − 2η

(
ε31 sin (θ3 − θ1)

ε23 sin (θ3 − θ2)

)2

ψ3
1 = 0,

(152)

∇µ∇µψ1 − AµAµψ1 −
(
m2

3 −
ε31ε23

ε12

)
ψ1 − 2η

(
ε12 sin (θ2 − θ1)

ε23 sin (θ2 − θ3)

)2

ψ3
1 = 0.

(153)

If (146) holds, the solution 3a is possible only if

1 =

(
sin (θ3 − θ1)

sin (θ3 − θ2)

)2

=

(
sin (θ2 − θ1)

sin (θ2 − θ3)

)2

. (154)

There are two solutions of θi which satisfy this condition with (132):

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
2π

3
, (155)

and

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 =
4π

3
. (156)

These configurations are the same as (112) and (113). We define chi-
rality as the sign of i(ϕ∗1ϕ2 − ϕ1ϕ

∗
2) = 2ψ1ψ2 sin (θ1 − θ2). With this

definition, the solutions (155) and (156) are chiral as figure 3. Substi-
tuting (131) and (154) to (114), the on-shell action can be obtained
as

Son-shell =

∫
d4x
√
−g
[
− 1

4
F µνFµν − 3|Dµψ1|2 − 3

(
m2

1 −
ε12ε31

ε23

)
ψ2

1 − 3ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
F µνFµν − |Dµψ

′|2 −
(
m2

1 −
ε12ε31

ε23

)
ψ′2 − η

3
ψ′4
]
,

(157)

where a new scalar field ψ′ is redefined as

ψ′2 ≡ 3ψ2
1, (158)

and the coefficient of the quartic potential in (157) is η/3.
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θ1 θ1

θ2 θ2θ3 θ3

Figure 3: Chiral solutions (155) and (156). Three allows describe the phase
angles of the three scalar fields. By using a mirror operation, we can inter-
change the two solutions.

Sol.3b sin (θ1 − θ2) = sin (θ2 − θ3) = sin (θ3 − θ1) = 0.

Consider the solution with cos (θ2 − θ3) = 1, cos (θ1 − θ2) = cos (θ3 − θ1) =
−1 as an example. Towards the diagonalization, we redefine ψ′i as

ψ′1 ≡
2√
6
ψ1 +

1√
6
ψ2 +

1√
6
ψ3, (159)

ψ′2 ≡ −
1√
2
ψ2 +

1√
2
ψ3, (160)

ψ′3 ≡ −
1√
3
ψ1 +

1√
3
ψ2 +

1√
3
ψ3. (161)

With this definition and (146), (114) becomes

S =

∫
d4x
√
−g
[
− 1

4
F µνFµν − |Dµψ

′
1|2 − |Dµψ

′
2|2 − |Dµψ

′
3|2

−
(
m2

1 −
ε12ε31

ε23

)
ψ′21 −

(
m2

1 −
ε12ε31

ε23

)
ψ′22 −

(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ′23

− η(ψ4
1 + ψ4

2 + ψ4
3)
]
. (162)

Since rigorous proof of the existence of solutions is difficult, we assume
that there are only four types of solutions with η = 0:

- ψ′2 6= 0, ψ′1 = ψ′3 = 0 or ψ′1 6= 0, ψ′2 = ψ′3 = 0.

- ψ′1 = Aψ′2 6= 0, ψ′3 = 0 (A is constant).

- ψ′1 = ψ′2 = 0, ψ′3 6= 0.

- ψ′1 = ψ′2 = ψ′3 = 0.

This assumption is reasonable because the scalar fields with different
mass squared do not become nonzero together in a two-scalar model
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[39] as we explained before. With this assumption, we can derive the
solution with η = 0 as

ψ′1 = ψ, ψ′2 = Aψ,ψ′3 = 0, (163)

ψ1 =
2√
6
ψ, ψ2 =

1−
√

3A√
6

ψ, ψ3 =
1 +
√

3A√
6

ψ, (164)

ψ > 0,− 1√
3
< A <

1√
3
. (165)

Then, we consider whether (164) is the solution with η > 0. Substitut-
ing (146) and (164) to (143), (144) and (145), we get

∇µ∇µψ − AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − 4

3
ηψ3 = 0, (166)

∇µ∇µψ − AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − (1−

√
3A)2

3
ηψ3 = 0, (167)

∇µ∇µψ − AµAµψ −
(
m2

1 −
ε12ε31

ε23

)
ψ − (1 +

√
3A)2

3
ηψ3 = 0. (168)

Since these equations are not the same with η > 0, (164) is not the
solution with η > 0. In the case of cos (θ1 − θ2) = 1, cos (θ2 − θ3) =
cos (θ3 − θ1) = −1 and cos (θ3 − θ1) = 1, cos (θ1 − θ2) = cos (θ2 − θ3) =
−1, we can obtain the same conclusion.

In the case of cos (θ1 − θ2) = cos (θ2 − θ3) = cos (θ3 − θ1) = 1, we can
find the solution as

ψ1 = ψ2 = ψ3. (169)

In fact, by substituting (146) and (169) to (143), (144) and (145), we
get

∇µ∇µψ1 − AµAµψ1 −
(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ1 − 2ηψ3

1 = 0, (170)

∇µ∇µψ2 − AµAµψ2 −
(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ2 − 2ηψ3

2 = 0, (171)

∇µ∇µψ3 − AµAµψ3 −
(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ3 − 2ηψ3

3 = 0, (172)
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and we obtain the on-shell action as

Son-shell =

∫
d4x
√
−g
[
− 1

4
F µνFµν − 3|Dµψ1|2 − 3

(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ2

1 − 3ηψ4
1

]
=

∫
d4x
√
−g
[
− 1

4
F µνFµν − |Dµψ

′|2 −
(
m2

1 +
ε31ε23

ε12

+
ε23ε12

ε31

)
ψ′2 − η

3
ψ′4
]
,

(173)

where a new scalar field ψ′ is redefined as

ψ′2 ≡ 3ψ2
1, (174)

and the coefficient of the quartic potential in (173) is η/3.

Third, we compute the free energy of the three solutions by a numerical
computation. For the numerical calculation, we set the parameters as m2

1 +
ε31ε23

ε12
+ ε23ε12

ε31
= 0,m2

1 − ε12ε31

ε23
= −2 and η = 1/2. We impose boundary

conditions as

ψ′(z) = 〈O2〉z2 (Sol.2 and Sol.3a), ψ′(z) = 〈O3〉z3 (Sol.3b), At(z) = µ− ρz,
(175)

and we fix µ = 1 as section 3.2. We can derive the equations of motion of ψ′

from (149), (157) and (173).
Figure 4 shows a plot of the three solutions. Sol.2, Sol.3a and Sol.3b

correspond to the blue, red and green curves, respectively. We define Tc as
a critical temperature of Sol.3a. Figure 5 shows a plot of the free energy
density SE/

∫
dtdxdy. In order to calculate SE, we use the Euclidian action

of (149), (157) and (173). From this figure, we can conclude that the free
energy of Sol.3a (the red curve) is minimum . Therefore, the solutions (155)
and (156) are the chiral ground states if η > 0 and (146) hold.

4.5 Short summary

Summarizing the above, we have analyzed the three holographic supercon-
ductor model and its equations of motion. This holographic model can de-
scribes the frustration between the scalar fields because of the Josephson
coupling such as ε12ε23ε31 > 0. We have studied the classical solutions of
our holographic model with η > 0 and (146). Especially, we have found
that there are the chiral ground states (155) and (156). The degeneracy
and nonzero chirality of the ground states are strongly related to the frus-
tration. Because there is a holographic model [31] which has the property
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Figure 4: Plot of the coefficients of the scalar field in each solution. corre-
spond to The blue, red and green curves represent Sol.2, Sol.3a and Sol.3b,
respectively. Tc is a critical temperature of Sol.3a.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.12

-0.10

-0.08

-0.06

SE/
∫
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T/Tc

Figure 5: Plot of the free energy density. The free energy of Sol.3a which
corresponds to the red curve is minimum.

of the cuprate high-temperature superconductor, our holographic model also
may predict the property of frustrated superconductors in strongly correlated
systems. Analysis with other parameters values or other ansatz is interesting
as a future work in order to find a rich phase structure.
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Part II

Correspondence between
conformal partial wave and
geodesic Witten diagram

5 Review of conformal partial wave and geodesic

Witten diagram

In this section, we review conformal partial wave (CPW) and geodesic Witten
diagram (GWD). In particular, we review the correspondence between CPW
and GWD with external scalar fields in [18]. This review is also based on
[22, 40, 41, 42, 43] and our paper [17].

5.1 Conformal partial wave

Conformal partial wave (CPW) is a basis of correlation functions of CFT. It
can be determined by conformal symmetry only and does not depend on the
detail of the theory.

5.1.1 Definition

Consider a d-dimensional Euclidean CFT. It is well-known that four point
functions of primary fields Oi in CFT are expanded by CPW W∆,`(xi),

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
O

C12OC
O

34W∆,`(xi), (176)

where O is a primary field with conformal dimension ∆ and spin `, C12O
and CO34 are the operator product expansion (OPE) coefficients. The OPE
coefficients are related to the coefficients of three point functions and they
depend on the detail of the theory. On the other hand, CPW W∆,`(xi) is
defined as a basis of correlation functions such as (176) and it does not depend
on the detail of the theory. This universality of CPW comes from constraints
of correlation functions in CFT.

5.1.2 Property

CPW has the following three properties [40]. We can also define CPW as a
function which has these properties. However, we can not determine the nor-

38



malization of CPW by using these property only. For simplicity, we consider
scalar primary fields Oi with conformal dimension ∆i.

1. Transformation law under conformal transformation

By definition, the scalar primary fields Oi with conformal dimension
∆i are transformed under conformal transformation as

O′i(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆i
d

Oi(x), (177)

where
∣∣∂x′
∂x

∣∣ is the Jacobian of the conformal transformation. From
this transformation law of the scalar primary operators, CPW of Oi is
transformed under the conformal transformation as

W∆,`(x
′
i) =

(
Π4
i=1

∣∣∣∣∂x′∂x

∣∣∣∣−
∆i
d

)
W∆,`(xi). (178)

2. Solution of the conformal Casimir equation

Since the conformal group in d-dimension is equivalent to the Lorentz
group in d+2-dimension as SO(d+1, 1), we use the Lorentz generators
LAB in d+2-dimension instead of the generators of conformal symmetry.
LAB acts on a local field O(x) as

[LAB,O(x)] = (Lx)ABO(x), (179)

where (Lx)AB is the differential operator of x and its explicit form
depends on O(x).

For simplicity, consider a scalar exchange CPW W∆,0(xi). By inserting
the complete set into (176), we can express W∆,0(xi) as

W∆,0(xi) =
1

C12OCO34

∑
α

〈0| O1(x1)O2(x2) |α〉 〈α| O3(x3)O4(x4) |0〉 ,

(180)

where |α〉s are states for the conformal family of O(x) and O(x) is
a scalar primary field with conformal dimension ∆. Consider the
quadratic Casimir of the Lorentz group 1

2
LABL

AB. |α〉s are the eigen-
states of 1

2
LABL

AB and their eigenvalues are [44]

1

2
LABL

AB |α〉 = C2(∆, 0) |α〉 = −∆(∆− d) |α〉 . (181)
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Let us derive the conformal Casimir equation for CPW. By using (179)
and the conformal invariance of the vacuum, we obtain

1

2
(L(0)

x1
+ L(0)

x2
)AB(L(0)

x1
+ L(0)

x2
)AB 〈0| O1(x1)O2(x2) |α〉

=
1

2
〈0| [LAB, [LAB,O1(x1)O2(x2)]] |α〉

= 〈0| O1(x1)O2(x2)
1

2
LABL

AB |α〉 , (182)

where L
(0)
x is the differential operator for a scalar primary field. From

(180), (181) and (182), we obtain a second order differential equation

1

2
(L(0)

x1
+ L(0)

x2
)AB(L(0)

x1
+ L(0)

x2
)ABW∆,0(xi) = C2(∆, 0)W∆,0(xi). (183)

This equation is the conformal Casimir equation for CPW.

3. Boundary condition

Since the conformal Casimir equation is a second order differential
equation, we need a boundary condition to obtain the solution. This
boundary condition can be determined by OPE. Consider OPE of the
scalar primary fields Oi(xi) as

O1(x1)O2(x2) ∼ C12O|x12|∆−∆1−∆2O(x2) + · · · , (184)

where x12 ≡ x1−x2. The power of x12 in the OPE is determined by the
conformal dimensions of the scalar fields. From this OPE, we obtain
the boundary condition of CPW as

lim
x12→0

W∆,0(xi) ∝
1

|x12|∆1+∆2−∆
. (185)

5.1.3 How to construct CPW

In this subsection, we introduce some methods to construct CPW explicitly.

1. Solving the conformal Casimir equation directly

First method is solving the conformal Casimir equation and finding its
solution which satisfies the properties of CPW in the last subsection.
For example, in [45], the authors solved the conformal Casimir equation
and found an expression of CPW in terms of hypergeometric functions.
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2. Shadow formalism

Second method is so-called shadow formalism [47, 48, 49, 50, 51]. De-

fine the shadow operator Õ(x) of a scalar primary operator O(x) with
conformal dimension ∆ as

Õ(x) ≡
∫
ddx′

O(x′)

|x′ − x|2(d−∆)
. (186)

This shadow operator Õ(x) is a scalar operator with conformal dimen-
sion d−∆. Let us construct an integral∫

ddxO(x)|0〉〈0|Õ(x). (187)

and insert (187) into (176). Then, we obtain∫
ddx〈O1(x1)O2(x2)O(x)〉〈Õ(x)O3(x3)O4(x4)〉 ∝ W∆,0(xi)+KOWd−∆,0(xi),

(188)
where KO is a constant. Since the integral in (188) satisfies the con-
formal Casimir equation and conformal dimension of (187) is zero, we
can obtain CPW by computing the integral in (188). Wd−∆,0(xi) is
the shadow CPW and it is a solution of the conformal Casimir equa-
tion with a boundary condition different from W∆,0(xi). In particular,
the authors of [50, 51] derived a double integral representation for the
scalar CPW by using the shadow formalism.

3. Construction of the amplitude of geodesic Witten digram

Third method is constructing the amplitude of GWD which we will
define in the next subsection. In [18], the authors proposed GWD as
the gravity dual of CPW. In particular, they constructed and com-
puted the amplitude of GWD with external scalar fields and showed
the correspondence between the amplitude of GWD and CPW up to
normalization. It is expected that this correspondence holds for any
fields such as symmetric tensor fields, antisymmetric tensor fields, and
fermionic fields. For justification of the construction, it is better to
confirm that the amplitude of GWD which we constructed satisfies the
properties of CPW.

5.2 Geodesic Witten diagram

In this subsection, we explain what is GWD.

41



GWD is a diagram which describes the reaction process on AdS spacetime
such as Witten diagram. However, the integration range in GWD is different
from the integration range in the Witten diagram. For the Witten diagram,
we integrate interaction points over all AdS spacetime. On the other hand,
for GWD, we integrate interaction points over the geodesics between external
fields at the AdS boundary. Witten diagram was proposed as the gravity dual
of correlation functions of CFT in [20], and GWD was proposed as the gravity
dual of CPW in [18].

For example, consider a scalar exchange GWD with four external scalar
fields as Figure 6. We define the amplitude W∆,0(xi; ∆i) of this GWD as

W∆,0(xi; ∆i) ≡
∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′Gb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

×Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4), (189)

where λ and λ′ are proper time coordinates of the geodesics γ12 and γ34. γij
are the geodesics between boundary points xi and xj. y(λ) and y(λ′) are co-
ordinates of γ12 and γ34. Gb∂ and Gbb are the bulk-boundary propagator and
the bulk-bulk propagator on AdS spacetime, respectively, (see, for example,
[22, 52])

Gb∂(y, xi; ∆i) ≡
(

u

u2 + |x− xi|2

)∆i

, (190)

Gbb(y, y
′; ∆) ≡ ξ∆

2F1

(
∆

2
,
∆ + 1

2
,∆ + 1− d

2
; ξ2

)
, (191)

ξ ≡ 2uu′

u2 + u′2 + |x− x′|2
. (192)

We use d+ 1-dimensional AdS metric as

ds2 =
du2 + dxadxa

u2
, yµ = {u, xa}. (193)

The explicit form of y(λ) is

u(λ) =
|x1 − x2|
2 coshλ

, (194)

xa(λ) =
xa1 + xa2

2
− xa1 − xa2

2
tanhλ. (195)

We note that (189) coincides with a double integral expression of CPW in
[50] (d = 4).
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Figure 6: Scalar exchange geodesic Witten diagram with four external scalar
fields. The orange dot curves describe the geodesics γij between the boundary
points xi and xj. The blue straight lines represent the scalar propagator. The
interaction points are integrated over y on the geodesics γij.

5.3 Embedding formalism

In order to check the correspondence between CPW and GWD, embedding
formalism is useful (see, for example, [53, 54, 55, 56, 57, 58, 59, 60, 61, 62])
. In this subsection, we review this formalism.

Since conformal symmetry in d-dimension and isometry of AdSd+1 are
equivalent to Lorentz symmetry in d+2-dimension, we can use d+2-dimensional
embedding Minkowski spacetime to express a d-dimensional CFT and a the-
ory on AdSd+1. This method is called the embedding formalism.

Let us embed AdSd+1 and d-dimensional flat space Rd into d+2-dimensional
Minkowski spacetime R1,d+1 explicitly. AdSd+1 coordinates yµ = {u, xa} are
embedded into Y A such that

Y A ≡ (Y +, Y −, Y a) (196)

=
1

u
(1, u2 + x2, xa) (197)

where Y A are coordinates of R1,d+1. On the other hand, d-dimensional flat
space Rd at the AdS boundary is embedded into XA such that

XA ≡ (X+, X−, Xa)

= (1, x2, xa), (198)

where XA are also coordinates of R1,d+1.
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In the embedding formalism, we introduce fields on d + 2-dimensional
Minkowski spacetime R1,d+1 and impose constraints of the fields for the d-
dimensional CFT and the theory on AdSd+1. First, we impose the transverse
condition to traceless symmetric tensor fields as

XA1T
A1A2···Al
∂ (X) = 0, YA1T

A1A2···Al
b (Y ) = 0, (199)

where T∂ is a tensor field in the boundary CFT and Tb is a tensor field in
AdSd+1. Second, we impose the condition for primary traceless symmetric
tensor fields in the boundary CFT as

TA1A2···Al
∂ (λX) = λ−∆TA1A2···Al

∂ (X). (200)

Moreover, we introduce the index-free notation [53, 54, 61] to express the
tensor fields simply. In this notation, we use auxiliary fields Z and W to
contract vector indices,

T∂(X;Z) ≡ ZA1 · · ·ZAlT
A1A2···Al
∂ (X), Tb(Y ;W ) ≡ WA1 · · ·WAlT

A1A2···Al
b (Y ).

(201)
We can restrict Z to Z2 = Z ·X = 0 and W to W 2 = W · Y = 0 [54].

The propagator in the embedding space [54] is expressed as

Gb∂(X, Y ; ∆) ≡ 1

(−2X · Y )∆
, (202)

Gbb(Y1, Y2; ∆) ≡ ξ∆
2F1

(
∆

2
,
∆ + 1

2
,∆ + 1− d

2
; ξ2

)
, (203)

ξ−1 ≡ −Y1 · Y2. (204)

By using these propagators, we can express the amplitude of the scalar GWD
(189) as

W∆,0(Xi; ∆i) =

∫ ∞
−∞

dλ′
[∫ ∞
−∞

dλGb∂(Y1(λ), X1,∆1)Gb∂(Y1(λ), X2; ∆2)Gbb(Y1(λ), Y2(λ′); ∆)

]
×Gb∂(Y2(λ′), X3; ∆3)Gb∂(Y2(λ′), X4; ∆4), (205)

where Y1A(λ) and Y2(λ′) are

Y1A(λ) =
e−λX1A + eλX2A√
−2X1 ·X2

, Y2A(λ′) =
e−λ

′
X3A + eλ

′
X4A√

−2X3 ·X4

. (206)
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5.4 Correspondence between scalar conformal partial
wave and scalar geodesic Witten diagram

In this subsection, we show that the amplitude of the scalar GWD (189),
(205) satisfies the properties of the scalar CPW based on [18]. This check
means the correspondence between the scalar CPW and the scalar GWD up
to normalization.

1. Transformation law under conformal transformation

For simplicity, consider a scale transformation

x′ = αx. (207)

Under this transformation, the scalar CPW is transformed as

W∆,0(x′i) =
(
Π4
i=1α

−∆i
)
W∆,0(xi). (208)

The isometric transformation of AdS which corresponds to the scale
transformation is

u′ = αu, x′ = αx. (209)

By definition, the bulk-boundary propagator Gb∂ (190) is transformed
under this isometric transformation as

Gb∂(y
′, x′i; ∆i) = α−∆iGb∂(y, xi; ∆i). (210)

The bulk-bulk propagator Gbb (191) is invariant under the isometric
transformation since ξ is invariant under the isometric transformation.
In addition, the geodesics between the boundary points are transformed
to the geodesics between the new boundary points under the isometric
transformation. This proposition can be proved from the facts that the
geodesic is the shortest path between two points and the length of a
path is invariant under the isometric transformation. Therefore, the
amplitude of the scalar GWD (189) is transformed as

W∆,0(x′i; ∆i) =

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′Gb∂(y
′(λ), x′1; ∆1)Gb∂(y

′(λ), x′2; ∆2)Gbb(y
′(λ), y′(λ′); ∆)

×Gb∂(y
′(λ′), x′3; ∆3)Gb∂(y

′(λ′), x′4; ∆4)
(211)

=
(
Π4
i=1α

−∆i
)
W∆,0(xi; ∆i). (212)

This transformation law is consistent with the transformation law of
the scalar CPW (208). We can also show the correspondence of the
transformation law under the other conformal transformation.
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2. Solution of the conformal Casimir equation

In the embedding formalism, the Lorentz generators are expressed as

(L
(`)
X )AB = XA

∂

∂XB
−XB

∂

∂XA
+ S

(`)
AB, (213)

where S
(`)
AB with ` = 0, 1 are

S
(0)
AB = 0, (S

(1)
AB)CD = ηACηBD − ηBCηAD. (214)

For the index-free notation, we define S
(1)
AB as

S
(1)
AB ≡ ZC(S

(1)
AB)CD

∂

∂ZD
= ZA

∂

∂ZB
− ZB

∂

∂ZA
. (215)

We will use the fact that the Laplacian on AdS and the quadratic
Casimir are related [63] as

1

2
(L

(0)
Y )AB(L

(0)
Y )AB f(Y ) = −∇2

Y f(Y ), (216)

where f(Y ) is an arbitary scalar function on AdS and the covariant
derivative in the embedding formalism is [54]

∇A ≡
∂

∂Y A
+ YA

(
Y · ∂

∂Y

)
+WA

(
Y · ∂

∂W

)
. (217)

Then, let us show that the scalar GWD W∆,0(xi; ∆i) satisfies the con-
formal Casimir equation. Define F∆1,∆2,∆(X1, X2, Y2) as

F∆1,∆2,∆(X1, X2, Y2) ≡
∫ ∞
−∞

dλGb∂(Y1, X1; ∆1)Gb∂(Y1, X2; ∆1)Gbb(Y1, Y2; ∆),

(218)

W∆,0(xi; ∆i) =

∫ ∞
−∞

dλ′ F∆1,∆2,∆(X1, X2, Y2(λ′))Gb∂(Y2(λ′), X3; ∆3)Gb∂(Y2(λ′), X4; ∆4).

(219)

Since F∆1,∆2,∆(X1, X2, Y2) does not have a vector index, it is invariant
under the SO(d+ 1, 1) rotation. Therefore, we obtain

(L
(0)
X1

+ L
(0)
X2

+ L
(0)
Y2

)AB F∆1,∆2,∆(X1, X2, Y2) = 0. (220)

From (216) and (220), we get

1

2
(L

(0)
X1

+L
(0)
X2

)AB(L
(0)
X1

+L
(0)
X2

)AB F∆1,∆2,∆(X1, X2, Y2) = −∇2
Y2
F∆1,∆2,∆(X1, X2, Y2).

(221)
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Because Gbb(Y1, Y2; ∆) is a eigenfunction of ∇2
Y2

and its eigenvalue is
∆(∆− d) [64], we get

1

2
(L

(0)
X1

+L
(0)
X2

)AB(L
(0)
X1

+L
(0)
X2

)ABW∆,0(xi; ∆i) = −∆(∆−d)W∆,0(xi; ∆i).

(222)
For this derivation, we assume that the two geodesics do not intersect
each other. This assumption is related to the convergence of the OPE
and W∆,0(xi; ∆i). (222) is just the conformal Casimir equation (183).

3. Boundary condition

A the limit of x12 → 0, the propagators behave as

lim
x12→0

Gb∂(y, x1; ∆1) ∝ |x12|−∆1 , lim
x12→0

Gb∂(y, x2; ∆2) ∝ |x12|−∆2 ,

(223)

lim
x12→0

ξ ∝ |x12|, lim
x12→0

Gbb(y, y
′; ∆) ∝ |x12|∆. (224)

Therefore, we get

lim
x12→0

W∆,0(xi; ∆i) ∝ lim
x12→0

Gb∂(y, x1; ∆1)Gb∂(y, x2; ∆2)Gbb(y, y
′; ∆)

∝ 1

|x12|∆1+∆2−∆
. (225)

Thus, the boundary condition ofW∆,0(xi; ∆i) is the same as the bound-
ary condition of the scalar CPW (185).

5.5 Merit of geodesic Witten diagram for conformal
partial wave

In this subsection, we list merits of GWD for CPW.

1. The properties of CPW is manifest in terms of the AdS propagator.

As we saw in the previous subsection, we can show that the expression
of CPW which constructed from the amplitude of GWD satisfies the
properties of CPW in terms of the AdS propagator.

2. A systematic way to find an expression of CPW by the AdS propagator

If we know the explicit form of the AdS propagator and three point
interactions in AdS spacetime, we can define the amplitude of GWD
systematically. Therefore, the construction of the amplitude of GWD
is a systematic way to find an expression of CPW.
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Figure 7: Scalar exchange geodesic Witten diagram with an external spin-
n field and three external scalar fields. The blue wave line represents the
propagator of the spin-n field. The meaning of the other lines is explained
in the caption of figure 6.

3. Calcualtion of the amplitude is familiar for theoretical particle physi-
cist.

Any theoretical particle physicist learns how to calculate the amplitude
of Feynman diagram. Therefore, calculation of the amplitude by using
the propagator is friendly for theoretical particle physicist. Moreover,
we may apply a numerical technic to calculate Feynman diagram for
calculation of GWD.

6 Geodesic Witten diagram with an external

spinning field

In this section, we construct the amplitude of scalar exchange GWD with an
external spinning field as figure 7 and show that its amplitude corresponds
to conformal partial wave (CPW) up to normalization based on our paper
[17].

6.1 Motivation

Since CPW is an important and fundamental object in CFT, deriving an
expression of CPW is an interesting research project of CFT (see, for exam-
ple, [44, 45, 46, 47, 49, 48, 50, 51]). In particular, the CPW which includes
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external operators with spin is important because the stress tensor plays a
central role in CFT. However, in [18], the authors considered GWD with
external scalar fields only as the gravity dual of CPW. Therefore, towards
the generalization to external fields in any representation, we study the cor-
respondence between CPW and GWD with an external spinning field as the
simplest case.

6.2 Direct proof of the correspondence with an exter-
nal spin-1 field

In this subsection, we derive an expression of CPW with an external spin-1
field explicitly by using (189). We check that this expression corresponds to
the amplitude of GWD.

In order to derive the expression of CPW, we use the shadow formalism.
In preparation for the shadow formalism, consider the relational expression
between three point functions. In a CFT, the forms of the three point func-
tions are determined by conformal symmetry,

〈O1(x1)O2(x2)O3(x3)〉 =
1

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
, (226)

〈J a(x1)O2(x2)O3(x3)〉 =
1

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
×
(

xa12

|x12|2
− xa13

|x13|2

)
,

(227)

where Oi(xi) are scalar primary fields with conformal dimension ∆i and
J a(x1) is a spin-1 primary field with conformal dimension ∆1 +1. We ignore
the OPE coefficients since we would like to show the correspondence up to
normalization. We can derive the relation between (226) and (227)

(
∂

∂xa1
+

2∆1(x12)a
|x12|2

)
〈O1(x1)O2(x2)O3(x3)〉 = (∆3+∆1−∆2)〈Ja(x1)O2(x2)O3(x3)〉.

(228)

From now, we denote CPW which includes four external primary fields
with conformal dimension ∆i and spin `i as W

(`1,`2,`3,`4)
∆,` (xi; ∆i). ∆ and `

represent conformal dimension and spin of an exchanging primary operator.
Similarly, we denote the amplitude of GWD as W(`1,`2,`3,`4)

∆,` (xi; ∆i). From
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(188) and (228), we obtain (up to normalization)(
W

(1,0,0,0)
∆,0 (xi; ∆̃i)

)
a

=

∫
ddx〈Ja(x1)O2(x2)O(x)〉〈Õ(x)O3(x3)O4(x4)〉|BC

=

(
∂

∂xa1
+

2∆1(x12)a
|x12|2

)∫
ddx〈O1(x1)O2(x2)O(x)〉〈Õ(x)O3(x3)O4(x4)〉|BC

=

(
∂

∂xa1
+

2∆1(x12)a
|x12|2

)
W

(0,0,0,0)
∆,0 (xi; ∆i)

=

(
∂

∂xa1
+

2∆1(x12)a
|x12|2

)
W(0,0,0,0)

∆,0 (xi; ∆i), (229)

where ∆̃i = ∆i + δi1. |BC means imposing the boundary condition for the
CPW to ignore the shadow CPW and the explicit boundary conditions for
CPW are

lim
x12→0

W
(0,0,0,0)
∆,0 (xi; ∆i) ∝

1

|x12|∆1+∆2−∆
, (230)

lim
x12→0

(
W

(1,0,0,0)
∆,0 (xi; ∆̃i)

)
a
∝ 1

|x12|∆1+∆2−∆
× (x12)a
|x12|2

. (231)

Thus, we have obtained the expression of CPW with an external spin-1 field
(229) by using (189).

However, the relation between the expression (229) of CPW and the spin-
1 AdS propagator is not manifest. In order to examine it, we deform (229)
by using the spin-1 AdS propagator. In particular, we will show(

∂

∂xa1
+ 2∆1

(x12)a
|x12|2

)∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′Gb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

×Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4)

=

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
(
G1
b∂(y(λ), x1; ∆1 + 1)

)µ
a
Gb∂(y(λ), x2; ∆2)

×u(λ)2 ∂

∂yµ(λ)
(Gbb(y(λ), y(λ′); ∆))

×Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4),
(232)

where G1
b∂(y, x1; ∆1 + 1) is the spin-1 bulk-boundary propagator (see, for

example, [54, 65]),

(
G1
b∂(y, x1; ∆1 + 1)

)µ
a
≡
(

u

u2 + |x− x1|2

)∆1
(

δµa
u2 + |x− x1|2

− 2
(y − x1)a(y − x1)µ

(u2 + |x− x1|2)2

)
.

(233)
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L.h.s of (232) is the explicit form of the last line in (229). On the other hand,

r.h.s of (232) is a definition of the amplitude of GWD W(1,0,0,0)
∆,0 (xi; ∆̃i). For

this definition, we introduce a three point interaction coefficient u2 ∂
∂yµ

which

is the usual coupling of the scalar QED such as Aµg
µνφ∂νφ

†. Therefore, the
relation (232) shows the correspondence between CPW and GWD with an
external spin-1 field.

In order to prove (232), we transform

∂

∂xa1

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆). (234)

From (194), (195) and the definitions of the propagators, we get

∂

∂xa1

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

=− (∆1 + ∆2)
(x12)a
|x12|2

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

+

∫ ∞
−∞

dλ
(
G1
b∂(y(λ), x1; ∆1 + 1)

)µ
a
Gb∂(y(λ), x2; ∆2)u(λ)2 ∂

∂yµ(λ)
(Gbb(y(λ), y(λ′); ∆))

− (x12)a
|x12|2

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)
∂yµ(λ)

∂λ

∂

∂yµ(λ)
Gbb(y(λ), y(λ′); ∆).

(235)

By using integration by parts, we obtain

∂

∂xa1

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

=− 2∆1
(x12)a
|x12|2

∫ ∞
−∞

dλGb∂(y(λ), x1; ∆1)Gb∂(y(λ), x2; ∆2)Gbb(y(λ), y(λ′); ∆)

+

∫ ∞
−∞

dλ
(
G1
b∂(y(λ), x1; ∆1 + 1)

)µ
a
Gb∂(y(λ), x2; ∆2)u(λ)2 ∂

∂yµ(λ)
(Gbb(y(λ), y(λ′); ∆)) ,

(236)

where we assume |∆1 −∆2| < ∆ to use the integration by parts. Then, we
obtain the final expression (232) after integrating (236) by λ′ with multiplying
Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4).

In the last definition of the amplitude, we used the minimal coupling
Aµg

µνφ∂νφ
† since it is invariant under the isometric transformation. We can

also use other couplings which are invariant under the isometric transfor-
mation such as Aµg

µνφ∂ν∇2φ†. The amplitude of GWD with this coupling
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is ∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
(
G1
b∂(y(λ), x1; ∆1 + 1)

)µ
a
Gb∂(y(λ), x2; ∆2)

×u(λ)2 ∂

∂yµ(λ)
∇2 (Gbb(y(λ), y(λ′); ∆))

×Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4)

= ∆(∆− d)

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
(
G1
b∂(y(λ), x1; ∆1 + 1)

)µ
a
Gb∂(y(λ), x2; ∆2)

×u(λ)2 ∂

∂yµ(λ)
(Gbb(y(λ), y(λ′); ∆))

×Gb∂(y(λ′), x3; ∆3)Gb∂(y(λ′), x4; ∆4), (237)

where we used [22]

(∇2 −∆(∆− d))Gbb(y(λ), y(λ′); ∆) = −
2∆+1πd/2Γ(∆− d−2

2
)

Γ(∆)

1
√
g
δ(d+1)(y(λ)− y(λ′)).

(238)

(237) is the same as the amplitude of GWD with the minimal coupling up
to normalization. As this example shows, we should use the coupling which
is invariant under the isometric transformation to define the amplitude of
GWD because of the transformation law of CPW under the conformal trans-
formation.

In conclusion, we have proven the relation (232) between CPWW
(1,0,0,0)
∆,0 (xi; ∆̃i)

and the amplitude of the scalar exchange GWD W(1,0,0,0)
∆,0 (xi; ∆̃i) which in-

cludes an external spin-1 field and three scalar fields.

6.3 Proof of the correspondence by the conformal Casimir
equation

Let us check that the amplitude of GWD W(1,0,0,0)
∆,0 (xi; ∆̃i) satisfies the con-

formal Casimir equation by using the embedding formalism.
In the embedding formalism, the bulk-boundary propagator with spin J

[54] is expressed as

GJ
b∂(X, Y ;Z,W ; ∆) ≡ ((−2X · Y )(Z ·W ) + 2(Z · Y )(X ·W ))J

(−2X · Y )∆+J
. (239)

With these expressions of the propagators, the amplitude of GWDW(1,0,0,0)
∆,0 (Xi;Z1; ∆i)
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in the embedding formalism is

W(1,0,0,0)
∆,0 (Xi;Z1; ∆i)

=

∫ ∞
−∞

dλ′
[∫ ∞
−∞

dλG0
b∂(Y1(λ), X2; ∆2)

{
G1
b∂(Y1(λ), X1;Z1,∇Y1 ; ∆1)Gbb(Y1(λ), Y2(λ′); ∆)

}]
×G0

b∂(Y2(λ′), X3; ∆3)G0
b∂(Y2(λ′), X4; ∆4), (240)

where we denote the scalar bulk-boundary propagator as G0
b∂. By a similar

discussion as section 5.4, we can show that (240) satisfies the conformal
Casimir equation,

1

2
(L

(1)
X1

+ L
(0)
X2

)AB(L
(1)
X1

+ L
(0)
X2

)ABW(1,0,0,0)
∆,0 = −∆(∆− d)W(1,0,0,0)

∆,0 , (241)

where L
(1)
X is

(L
(1)
X )AB ≡ XA

∂

∂XB
−XB

∂

∂XA
+ ZA

∂

∂ZB
− ZB

∂

∂ZA
. (242)

6.4 Correspondence with an external spin-n field

In this subsection, we define the amplitude of GWD with an external spin-n
field. We see that this definition of GWD is consistent with the formula of
CPW in [53]. Moreover, we determine the three point interaction in AdS
spacetime for this amplitude.

As an extension of (240), we define the amplitude of GWD with an ex-

ternal spin-n field W(n,0,0,0)
∆,0 as

W(n,0,0,0)
∆,0 (Xi;Z1; ∆i)

≡
∫ ∞
−∞

dλ′
[∫ ∞
−∞

dλG0
b∂(Y1(λ), X2; ∆2) {Gn

b∂(Y1(λ), X1;Z1,∇Y1 ; ∆1)Gbb(Y1(λ), Y2(λ′); ∆)}
]

×G0
b∂(Y2(λ′), X3; ∆3)G0

b∂(Y2(λ′), X4; ∆4). (243)

For convenience, we also define

F
(n,0;0)
∆1,∆2,∆

(X1, X2, Y2;Z1) ≡
∫ ∞
−∞

dλG0
b∂(Y1, X2; ∆2) {Gn

b∂(Y1, X1;Z1,∇Y1 ; ∆1)Gbb(Y1, Y2; ∆)} ,

F
(0,n;0)
∆1,∆2,∆

(X1, X2, Y2;Z2) ≡
∫ ∞
−∞

dλG0
b∂(Y1, X1; ∆1) {Gn

b∂(Y1, X2;Z2,∇Y1 ; ∆2)Gbb(Y1, Y2; ∆)} .

(244)

From now, we check whether our definition of the amplitude of GWD (243)
is reasonable for the gravity dual of CPW.
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In [53], the authors derived a formula of CPW with symmetric traceless
tensors by using the scalar CPW and the differential operators. They defined
the following differential operators:

D11 ≡ (X1 ·X2)

(
Z1 ·

∂

∂X2

)
− (Z1 ·X2)

(
X1 ·

∂

∂X2

)
− (Z1 · Z2)

(
X1 ·

∂

∂Z2

)
+ (X1 · Z2)

(
Z1 ·

∂

∂Z2

)
,

D22 ≡ (X2 ·X1)

(
Z2 ·

∂

∂X1

)
− (Z2 ·X1)

(
X2 ·

∂

∂X1

)
− (Z2 · Z1)

(
X2 ·

∂

∂Z1

)
+ (X2 · Z1)

(
Z2 ·

∂

∂Z1

)
,

D12 ≡ (X1 ·X2)

(
Z1 ·

∂

∂X1

)
− (Z1 ·X2)

(
X1 ·

∂

∂X1

)
+ (Z1 ·X2)

(
Z1 ·

∂

∂Z1

)
,

D21 ≡ (X2 ·X1)

(
Z2 ·

∂

∂X2

)
− (Z2 ·X1)

(
X2 ·

∂

∂X2

)
+ (Z2 ·X1)

(
Z2 ·

∂

∂Z2

)
.

(245)

By using these operators, we obtain the relation of F
(n,0;0)
∆1,∆2,∆

(X1, X2, Y2;Z1)

and F
(0,n;0)
∆1,∆2,∆

(X1, X2, Y2;Z2),

(D11)nF
(0,0;0)
∆1+n,∆2,∆

=

(
−1

2

)n
F

(n,0;0)
∆1,∆2,∆

, (246)

(D22)nF
(0,0;0)
∆1,∆2+n,∆ =

(
−1

2

)n
F

(0,n;0)
∆1,∆2,∆

, (247)

(D12)nF
(0,0;0)
∆1,∆2+n,∆ =

(
−1

2

)n
F

(n,0;0)
∆1,∆2,∆

, (248)

(D21)nF
(0,0;0)
∆1+n,∆2,∆

=

(
−1

2

)n
F

(0,n;0)
∆1,∆2,∆

. (249)

Since W(n,0,0,0)
∆,0 includes F

(n,0;0)
∆1,∆2,∆

(X1, X2, Y2;Z1), we can derive a formula

between W(n,0,0,0)
∆,0 and W(0,0,0,0)

∆,0 from the relation of F
(n,0;0)
∆1,∆2,∆

(X1, X2, Y2;Z1)
and this formula agrees with (3.40) of [53]. Therefore, we conclude that the
amplitude of GWD with an external spin-n field (243) corresponds to CPW.

Let us consider the three point interaction to construct the amplitude
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(243). We can deform (243) as

W(n,0,0,0)
∆,0 (Xi;Z1; ∆i)

=

∫ ∞
−∞

dλ′
[∫ ∞
−∞

dλG0
b∂(Y1(λ), X2; ∆2)

× Gn
b∂(Y1(λ), X1;Z1; ∆1)A1···An ∂

∂Y A1
1

· · · ∂

∂Y An
1

Gbb(Y1(λ), Y2(λ′); ∆)

]
×G0

b∂(Y2(λ′), X3; ∆3)G0
b∂(Y2(λ′), X4; ∆4), (250)

Gn
b∂(Y,X;Z; ∆)A1···An ≡

1

n!

∂

∂WA1
· · · ∂

∂WAn
Gn
b∂(Y,X;Z,W ; ∆). (251)

From this expression, the three point interaction for the amplitude is identi-
fied as

Sint =

∫
AdS

dY TA1···An
∆1

φ∆2

(
∂

∂Y A1
· · · ∂

∂Y An
φ∆

)
(252)

=

∫
AdS

dY TA1···An
∆1

φ∆2 (∇A1 · · · ∇Anφ∆), (253)

where we used the transverse condition (199) and the traceless condition of
TA1···An for the replacement of ∂

∂Y A
with ∇A.

6.5 Short summary

Summarizing the above, we have defined the amplitude of the scalar exchange
geodesic Witten diagram (GWD) with an external spinning field as (243).
We have verified that our construction of the amplitude of GWD satisfies
the formulas and the properties of the conformal partial wave (CPW) such
as (232), (241) and (246). We also have studied the appropriate three point
couplings in the AdS spacetime for the correspondence between GWD and
CPW such as (237) and (253). Thus, we have been able to show the cor-
respondence between the scalar exchange CPW and GWD with an external
spinning field. Construction of the amplitude of GWD is a systematic way to
find an expression of CPW as the solution of the conformal Casimir equation.
Therefore, our study will lead to make a discovery of a novel expression of
CPW with general external fields such as the stress tensors.
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7 Conclusion and discussion

In part 1, we have studied the three-scalar holographic superconductor model
(114) based on the three-band superconductor model which describes the
frustration in condensed matter physics. We have found that there are several
solutions whose free energy is the same in this holographic model if η = 0,
ε12ε23ε31 > 0 and (136) hold. The condition ε12ε23ε31 > 0 is important
for the frustration between the scalar fields. In addition, we have analyzed
the three-scalar holographic superconductor model with η > 0 and (146).
By computing the free energy, we have found that the solutions (155) and
(156) which correspond to the chiral ground states exist. These solutions
have nonzero chirality and their free energy is minimum. Our holographic
model will be a hint to study frustrated superconductors in condensed matter
physics.

Future direction of the study in part 1 is research of domain wall solutions
of the holographic model. The existence of the domain wall is discussed in
the three-band superconductor model in condensed matter physics [35] and a
holographic two-band superconductor model [66]. It is a interesting problem
whether there is the domain wall solutions which connect the chiral ground
states (155) and (156) because topological solitons such as the domain wall
are related to phase transitions in particle physics and condensed matter
physics. Application to the Fe-based superconductor is another future work.
For example, by deriving various classical solutions of the holographic model
and comparing their free energies, we may predict the phase structure of the
Fe-based superconductor. Also, finding their solution is interesting from the
viewpoint of classical gravity.

In part 2, we have explored the correspondence between the conformal
partial wave (CPW) and the geodesic Witten diagram (GWD) with an ex-
ternal spinning field. We have constructed the amplitude of GWD and found
the three point interactions in the AdS spacetime for the correspondence. We
have shown that the amplitude of GWD which we constructed satisfies the
properties of CPW. Our result is a first step for the generalization to GWD
with external fields in any representation.

Future direction of the study in part 2 is the generalization to combina-
tion of external fields such as symmetric tensor fields, antisymmetric tensor
fields and fermionic fields. Since the degrees of freedom of three point func-
tions in CFT is not generally one for the fields in any representation, the
tensor structure of CPW for general fields cannot be determined uniquely.
In order to clarify the correspondence for such CPW, it is important to ex-
amine the relation of the bases between the three point functions in CFT and
the three point interactions in the AdS spacetime [61]. In particular, CPW
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of the stress tensors can be used to study the gravity theories [67] because
the stress tensor in CFT corresponds to the graviton in the gravity side. Ex-
pressions of CPW in terms of GWD is useful for such study since the three
point interactions in the AdS spacetime is used to construct the amplitude
manifestly. Moreover, it is also interesting to construct super CPW [68] from
GWD. For this construction, it is expected that an introduction of the AdS
superspace [69, 70] is necessary.

For a future work of the gauge/gravity correspondence, the author is
interested in the role of symmetry and consistency for the origin of the
gauge/gravity correspondence. Discovery of the gauge/gravity correspon-
dence is based on the superstring theory which is one candidate of consistent
quantum gravity. Moreover, recent progress of conformal bootstrap [71] im-
plies that the CFT spectrum is strongly constrained by conformal symmetry
and consistency. Therefore, it is reasonable to imagine that symmetry and
consistency have an important role in the gauge/gravity correspondence. In
particular, we would like to know how much examples of the gauge/gravity
correspondence which can be determined by symmetry and consistency only
exist. Our study of the correspondence between GWD and CPW will be a
clue to solve this question.
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