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Abstract

It is predicted that QCD phase diagram in temperature and density plane has rich phase
structure, for example, a possible existence of a critical point. Exploring the QCD critical
point is one of the main goals in heavy ion physics. For this purpose, measurements of fluc-
tuation observables, especially cumulants of conserved charges, have been actively performed
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)
and at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN). In this Thesis, we focus on the rapidity window ∆η, which is the acceptance of the
detector, dependence of cumulants and correlation functions of conserved charges. One of
the important properties of this observable is that it is expected to have information on the
time history of a collision, which is suggested by an experimental result at the LHC.

We first discuss effects of the global charge conservation (GCC) on higher-order cumu-
lants of conserved charges to confirm this property of ∆η dependence. GCC is one of the
mechanisms that could explain the experimental result on ∆η dependence, even in equilib-
rium. The effects of GCC on the time evolution of conserved-charge cumulants is studied
by employing diffusion master equation in a finite system. We argue that the experimental
result of ∆η dependence observed at the LHC does not receive effects from GCC because
of the finite diffusion distance of charged particles. This result shows that the equilibration
of conserved-charge fluctuations are not established at observation and thus one can extract
information on earlier states, e.g. quark-gluon plasma and QCD critical point, in heavy ion
collisions from this observable.

Next, using this non-equilibrium nature of the ∆η dependence, we discuss dynamical evo-
lution of the second-order cumulant and correlation function of conserved-charges near the
QCD critical point. In this study, the time evolution is described by a stochastic hydrody-
namic equation which respects conserving nature of the fluctuation. We show that the effect
of critical dynamics could be sustainable as a non-monotonic behavior in ∆η dependence
of conserved-charge cumulants and correlation functions, when the hot medium created in
experiments pass the phase boundary near the critical point. These non-monotonic behaviors
serve as unique and robust experimental signals for the search of the critical point.

We also discuss the non-Markov effect, i.e. effect of causality, on charge cumulants with
causal diffusion equations. We show that this effect is tiny.

– i –



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1
1.1 Quantum ChromoDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relativistic Heavy Ion Collision . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Fluctuation observables in heavy ion collisions . . . . . . . . . . . . . . . . . . 11
1.4 Purpose and outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 General introduction to fluctuations 15
2.1 Cumulants and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Cumulants and moments . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Fluctuations in a grand-canonical ensemble . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Basic introduction to fluctuations in a grand-canonical ensemble . . . . 19
2.2.2 Non-interacting gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Fluctuations of conserved charges in classical free gas . . . . . . . . . . 22

2.3 Description of time evolution of fluctuations . . . . . . . . . . . . . . . . . . . 23
2.3.1 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Stochastic diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Critical fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Statics: Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Dynamics: time-dependent Ginzburg-Landau equation . . . . . . . . . 31

3 Fluctuations in QCD 32
3.1 Non-critical fluctuations in equilibrium in QCD . . . . . . . . . . . . . . . . . 32

3.1.1 Fluctuations in hadronic gas . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Fluctuations in deconfined medium . . . . . . . . . . . . . . . . . . . . 34

3.2 Fluctuations near QCD critical point . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Ordering density in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Time evolution of the baryon number density near the critical point . . 37

3.3 Time evolution of fluctuations of conserved charged in relativistic heavy ion
collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Stochastic diffusion equation in Bjorken flow . . . . . . . . . . . . . . . 39
3.3.2 Diffusion master equation in heavy ion collisions . . . . . . . . . . . . . 41

4 Effects of global charge conservation on dynamical evolution of cumulants
in relativistic heavy ion collisions 42
4.1 Stochastic formalism to describe diffusion of hadrons . . . . . . . . . . . . . . 43

– ii –



CONTENTS iii

4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Solving diffusion master equation . . . . . . . . . . . . . . . . . . . . . 45
4.1.3 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Effects of the GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Without initial fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Effect of initial fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Comparison with experimental result at ALICE . . . . . . . . . . . . . 56

4.3 Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Dynamical evolution of critical fluctuations in relativistic heavy ion colli-
sions 59
5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Second-order cumulant and correlation function . . . . . . . . . . . . . 60
5.1.2 Stochastic diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Soft-mode of the critical point . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Analytic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Solution of SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Properties of fluctuation observables . . . . . . . . . . . . . . . . . . . 64
5.2.3 Comment on higher order cumulant . . . . . . . . . . . . . . . . . . . . 66

5.3 Model of collision evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Singular part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Parameterizing the medium evolution . . . . . . . . . . . . . . . . . . . 67
5.3.3 Regular + singular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Effects of criticality on observables . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Non-critical trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Trajectory passing through the critical point . . . . . . . . . . . . . . . 71
5.4.3 Trajectory passing near the critical point . . . . . . . . . . . . . . . . . 73

5.5 Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Memory time effects on time evolution of higher-order cumulants 76
6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Langevin equations in phase space for a single particle . . . . . . . . . 77
6.1.2 Adiabatic elimination for Langevin equation . . . . . . . . . . . . . . . 78
6.1.3 Fokker-Planck equation for a single particle . . . . . . . . . . . . . . . 79
6.1.4 Adiabatic elimination for Fokker-Planck equation . . . . . . . . . . . . 79
6.1.5 Multi-particle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Memory time effects on cumulants . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Summary and outlook 87

A Rapidity 90
A.1 Momentum-rapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Spacetime-rapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3 Pseudo-rapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Examples of probability distributions 92



CONTENTS iv

C Global charge conservation in stochastic diffusion equation 95
C.1 Solution of SDE with two reflecting boundaries . . . . . . . . . . . . . . . . . 95
C.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D Calculations for Fn(∆η) 97

E Superposition of Cumulants 100

F Bjorken model 103
F.1 Energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
F.2 Entropy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
F.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

G Conditions for the appearance of non-monotonicity 105

Bibliography 107



Chapter 1

Introduction

Bulk fluctuations are macroscopic observables which provide us various information on the
microscopic nature of the system. Recently, in relativistic heavy ion collisions, measurements
of fluctuations have been actively performed for experimental study of phase structure of
Quantum ChromoDynamics (QCD). In order to extract information on the structure of
QCD from experimental data and to characterize properties of the system created in the
experiments, it is pivotal to understand the fluctuations in heavy ion collisions. In this Thesis,
we study the phase structure of QCD, properties of matter created in heavy ion collisions
and possible presence of the QCD critical point in the QCD phase diagram by discussing
the fluctuation observables, with a special emphasis on the time evolution of fluctuations in
experiments. First, I would like to provide the basic ideas of QCD and heavy ion collisions in
Secs. 1.1 and 1.2. In Sec. 3.3, we introduce event-by-event fluctuations in relativistic heavy
ion collisions. In Sec. 1.4, the purpose and outline of this Thesis are shown.

1.1 Quantum ChromoDynamics

QCD is the fundamental theory governing the dynamics of strong interaction between quarks
and gluons, which form hadrons such as the proton, nucleon, and pion. Quarks are spin-1/2
fermion, with fractional electric charge, and have flavor degrees of freedom: up (u), down (d),
strange (s), charm (c), bottom (b) and top (t). They carry the baryon number QB = +1/3.
Furthermore, to make up hadrons without violating the Pauli exclusion principle, the quarks
have a new type of quantum number called color: red (R), blue (B), and green (G). On the
other hand, the gluons, which mediate the strong interactions between quarks, are massless
spin-1 gauge boson. Because gluons also carry a color charge, they interact with themselves.
The quantum numbers carried by quarks and gluons are shown in Table 1.1. The study of
QCD plays an important role to understand properties of quarks, gluons, and hadrons.

QCD is described by a non-Abelian gauge theory with the symmetry group SU(3). The
Lagrangian density of QCD is given by [1]

LQCD = q̄α(iγµD
µ
αβ −mδαβ)q

β − 1

4
F a
µνF

µν
a , (1.1)

with q̄ = q†γ0. Here qα( q̄α) represents the quark (anti-quark) Dirac field with color α and
mass m. The quark belongs to the fundamental representation of SU(3) and forms a color
triplet with α = 1, 2, 3. The gauge field Aa

µ represents the gluon which has color a in the

– 1 –



1.1 Quantum ChromoDynamics 2

adjoint representation of the SU(3) called color octet with a = 1, 2, · · · , 8. Dµ = ∂µ + igtaAa
µ

is a covariant derivative acting on the quark field, where g denotes the coupling constant of
QCD, and ta is the fundamental representation of SU(3) Lie algebra satisfying the following
commutation relations: [ta, tb] = ifabctc, with the structure constants fabc. The field strength
of the gauge field is given by F µν

a = ∂µAν
a − ∂νAµ

a − gfabcA
µbAν

c , where the last term leads to
the gluon self interaction.

Particle Symbol Charge JP Mass (GeV)

Up quark u 2
3

1
2

+
2.2 +0.6

−0.4 × 10−3

Down quark d −1
3

1
2

+
4.7 +0.5

−0.4 × 10−3

Charm quark c 2
3

1
2

+
1.27 ± 0.03

Strange quark s −1
3

1
2

+
0.096 +0.008

−0.004

Top quark t 2
3

1
2

+
160 +5

−4

Bottom quark b −1
3

1
2

+
4.18 +0.04

−0.03

Gluon g 0 1− 0

Table. 1.1: Electric charge, spin, parity and mass of quarks and gluons [2].

Asymptotic freedom

There are some remarkable features in QCD. One of them is asymptotic freedom [3,4]. This is
the phenomenon that the coupling constant, which has a dependence on the renormalization
scale Q, becomes small at short distances (large Q). This running coupling is given by the
renormalization-group calculation, and up to the 1-loop order, it is given by

αs(Q) =
g(Q)2

4π
=

1

4πb0 ln(Q2/Λ2
QCD)

, (1.2)

with b0 = (11Nc − 2Nf)/48π
2. In QCD, b0 > 0 because the numbers of color and flavors are

Nc = 3 andNf = 6, respectively. ΛQCD ≈ 200−300 MeV, which is determined experimentally,
is the typical energy scale of QCD. Consequently, one finds from Eq. (1.2) that αs(Q

2) → 0
as Q2 → ∞, which implies that the interaction between quarks and gluons becomes weaker
at high energies or short distances. This property is called asymptotic freedom.

Color confinement

Another important feature is color confinement [5]. Below Q ≈ ΛQCD, the coupling constant
(1.2) becomes large, and it leads to strong forces between quarks and gluons. Consequently,
color-charged particles, such as quarks and gluons, are always bound together in color-singlet
hadrons, and they cannot be observed as a one particle state. In the quark model, hadrons
are classified into baryons and mesons. Baryons are composite particles consisting of three
quarks. They are thus fermions with the baryon number QB = 1. Nucleons, i.e. proton or
neutron, having the mass as about 940MeV are the lightest ones. On the other hand, mesons
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are those composed of a quark and an anti-quark. They thus are boson with no baryon
charge QB = 0. The lightest mesons are pions whose mass is about 140 MeV.

Chiral symmetry

The large coupling of QCD at low energies also leads to another important aspect, the
chiral symmetry breaking [6, 7]. In the chiral limit1, the QCD Lagrangian (1.1) has the
chiral symmetry SU(Nf)×SU(Nf) under q → e−iθataq. In QCD vacuum, this symmetry is
spontaneously broken to SU(Nf) with the nonvanishing a chiral condensate σ = ⟨q̄q⟩, and
massless pseudoscalar mesons called Nambu-Goldstone (NG) bosons, such as pions, emerge.
The chiral condensate serves as an order parameter of the chiral symmetry breaking in QCD
with massless quarks.

In the real world, because of the nonzero masses of quarks, chiral symmetry is not exact,
i.e. it is explicitly broken. However, the light quark sector, i.e. up, down and strange quarks,
has approximate chiral symmetry because their masses are smaller than the QCD scale ΛQCD,
as shown in Table 1.1. This small explicit breaking of chiral symmetry in our world makes
the NG bosons to be massive.

Deconfinement phase transition

The asymptotic freedom at high energies suggests that the liberation of quarks and gluons
from hadrons occurs by increasing temperature T and/or increasing baryon number density
nB [8–10]. The matter of deconfined quarks and gluons is called the quark-gluon plasma
(QGP). The temperature of the phase transition from hadronic matter to QGP should be
the same order as the QCD scale, i.e. Tc ∼ ΛQCD ∼ 1012K. The recent calculations in lattice
QCD Monte Carlo simulation, which is a first principle non-perturbative approach to QCD,
shows that the transition temperature (pseudo-critical temperature) is Tc ≃ 150− 160 MeV
at vanishing baryon chemical potential [11]. Also, the critical density is around nB ∼ Λ−3

QCD ∼
1 fm−3, which is several times larger compared to the density of the normal nuclear matter
nnm ≈ 0.16 fm−3. In nature, such extreme environments can be realized in the early Universe
and at the center of the compact stars.

Note that the deconfinement phase transition is related to the spontaneous breaking of
chiral symmetry as discussed above [12, 13]: The spontaneous breaking of chiral symmetry
is expected to be restored above the QCD scale ∼ ΛQCD. Therefore, chiral symmetry is
approximately restored in QGP, while the hadronic phase is a broken phase.

QCD phase diagram and QCD critical point

On the basis of the above ideas, a first prototype of the QCD phase diagram in the plane
of temperature and the baryon chemical potential µB was proposed in [9]. After the first
conjecture of the phase diagram, various phase diagrams have been proposed until now. In
Fig. 1.1, one of candidates of the QCD phase diagram as a function of T and µB is illustrated,
which is a prediction for realistic finite quark masses, mq ̸= 0. In high temperature and/or
high density region, deconfined and approximately chiral-symmetric phase realizes, whereas in
low temperature and density region, there exists hadronic phase. Besides the deconfinement

1It is an idealized limit of QCD with massless quarks, mq → 0.
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QCD critical point(?)

Hadronic phase

quark-gluon plasma

1st order transition

temperature

baryon chemical potential0

Color Superconductivity(?) 

Fig. 1.1: Schematic QCD phase diagram in the temperature and baryon chemical potential
plane.

phase transition, various interesting physics in the QCD phase diagram has been predicted,
e.g. color superconductivity, which is a state characterized by a condensation of quark Cooper
pairs as electron Cooper pairs in superconducting metals.

One of the most intriguing physics among the QCD phase diagram is the one concerned
with the QCD critical point. (see Fig. 1.1.) From lattice QCD calculations, it is known that
the phase transition on the temperature axis with µB = 0 is a smooth crossover [14,15]. On
the other hand, various effective model calculations suggest that a discontinuous first order
phase transition exists at finite chemical potential [16–24]. The suggestion from these results
is the possible presence of the point at which the first phase transition terminates, the QCD
critical point.

A lot of theoretical prediction for the existence of the QCD critical point and its location
have been given by model calculations [16–24] and numerical calculations on the lattice QCD
at finite chemical potential [25–29], as shown in Fig. 1.2. However, as seen in Fig. 1.2, results
for its location strongly depend on the model. Furthermore, because of the sign problem,
determining its location by using lattice simulations at large chemical potential is difficult.
Thus quantitative conclusions for the QCD critical point have not been obtained yet.

Fluctuations near QCD critical point

When the system undergoes a crossover transition, no singular behavior appears in thermo-
dynamical quantities. On the other hand, when the system is close to a second order phase
transition, critical phenomena, e.g. divergence of fluctuations of order parameter fields, oc-
cur. It is originated from softening of the order parameters in the system as effective potential
becomes flat near the transition. The thermodynamical singularities are characterized by the
static universality class, i.e. the spatial dimensionality of the system, the symmetry of order
parameter and the range of the interaction [33].

For example, in the case of massless two flavor QCD, unlike Fig. 1.1, chiral symmetric and
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Fig. 1.2: Theoritical predictions for the location of the QCD critical point in T -µB plane.
(Figure from Ref. [30].) Black points are predictions by various effective models [16–24, 31].
Green points are predictions by lattice QCD Monte Carlo simulations [25, 29, 32]. The two
dashed lines indicate the phase transition lines from the curvature d2T/dµ2

B at µB = 0,
obtained by lattice Taylor expansion [26,32]. The red circles show locations of the freezeout
points for heavy ion collisions at corresponding center of mass energies per nucleon on the
GeV scale.

broken phases are divided by second and first order phase transition lines (See, Fig. 3.2.1.)
because of the exact chiral symmetry, O(4)≃ SU(2)× SU(2). In this case, the chiral con-
densate is the exact order parameter and therefore its fluctuations diverge near the second
order phase transition. This second order phase transition belongs to the universality class
of the O(4) ferromagnet model [34]. On the other hand, the QCD critical point belongs to
the universality class of the three-dimensional Z2 Ising model, because of the finite quark
masses [34]. Z2 is not a symmetry of the underlying interaction in QCD but of the free
energy at the isolated point in the phase diagram [35]. In this sense, the QCD critical point
is different from the O(4) transition and σ alone is not an exact order parameter.

Near the QCD critical point, mixing between the chiral symmetry and conserved den-
sities, i.e. the energy-momentum densities, ϵ ≡ T 00 and πi ≡ T 0i, the net-baryon number
density, n ≡ q̄γ0q, are allowed, owing to the finite quark masses [36–38]. As a result, the
linear coupling between the chiral condensate and conserved densities is the proper “order-
ing density”2, and thus it causes divergences of conserved-charge fluctuations, in addition to
those of σ.

The effect of the coupling between the chiral condensate and other conserved densities
plays an important role in dynamical critical phenomena, e.g. singularities of transport coef-
ficient. In general, the dynamical universality depends on the slow variables which determine
the effective hydrodynamic theory near the phase transition [39]. Because of the coupling of
σ, n and the energy-momentum densities, it is known that the dynamical universality class

2The ordering density referrer to the soft variables when the effective potential becomes flat near the
second order transition. It plays a role as an order parameter. It includes slow variables whose transport
coefficients go to zero at long wavelength limit near transition. For example, conserved quantities and order
parameters are included in the slow variables.
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of the QCD critical point is the same as that of in the liquid gas phase transition [36–38],
model H in the Hohenberg and Halperin’s classification [39]. This topic will be discussed in
detail in Sec. 3.2.

Finally, we should also note that the higher order cumulants of conserved charges near
the QCD critical point. The second-order cumulant of net-baryon number density diverges
at the QCD critical point [34, 37, 38]. The higher-order cumulants also show such singular
behaviors but the sensitivity to the critical phenomena is more stronger for higher-order
cumulants [40]. Another remarkable feature of higher-order cumulants is that their sign
changes near the critical point [41,42].

Such critical singular behaviors of fluctuations of slow variables, especially those of con-
served charges3, are expected to be a promising observables for experimental search for the
QCD critical point. We will discuss this topic in more detail in Secs. 1.3.

1.2 Relativistic Heavy Ion Collision

As discussed in the previous section, it is expected that QGP can be created at high tem-
perature or high density. The heavy ion collisions is the only practical way providing us a
matter with such conditions to create QGP on the earth. By colliding two heavy nuclei, such
as gold (197Au) and lead (208Pb), accelerated to relativistic energy. At the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and at the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN), heavy ion col-
lisions have been actively performed, and give us experimental data to study the strongly
interacting systems. Indeed, many evidences for the creation of the strongly-coupled QGP
has been discovered in these experiments [43–47].

In this section, we show basic pictures of heavy ion collisions, and introduce recent ex-
periments for the study of the QCD phase diagram.

Space-time picture in heavy ion collisions

In relativistic heavy ion collisions, Lorentz-contracted nuclei collide. Subsequently, secondary
particles are produced from individual collisions, and incoming nucleons lose their kinetic
energies during the collisions. The degrees of energy loss is called the nuclear stopping
power [1], and it depends on the collision energy. One can see the stopping effect from the
particle distribution in rapidity space. See Appendix A, for the definition of the momentum-
rapidity y, the spacetime-rapidity ys and pseudo-rapidity η, and relations among them.

In Fig. 1.3, we shows the rapidity distribution of the net-proton, i.e. the difference
between proton and anti-proton numbers, for central collisions of Au+Au and Pb+Pb with
center-of-mass energy per nucleons

√
sNN =5, 17 and 200 GeV. The peaks in this figure

correspond to the incident nucleons in each distribution. At the AGS energy, the peak is
located at the mid-rapidity region. On the other hand, at the SPS, the peaks are shifted
toward the beam rapidity yp, i.e. forward and backward rapidities, and there exists a dip at
mid-rapidity. At the RHIC, the peaks are more shifted, and the distribution is almost flat
in the mid-rapidity region. This data suggests that the stopping power becomes weaker for
higher energy collisions and thus the incident nucleons pass through each other rather than
stop at the collision point.

3Net-electric charge is also coupled to σ, but it is weaker than those of the net-baryon [41]
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Fig. 1.3: The net-proton rapidity distributions at AGS (
√
sNN = 5 GeV, Au+Au), SPS

(
√
sNN = 17 GeV, Pb+Pb) and RHIC (

√
sNN = 200 GeV, Au+Au). (Figure from Ref. [48].)

To understand these behaviors of the multiplicity distributions in heavy ion collisions, we
introduce two kinds of space-time pictures proposed by Landau [49] and Bjorken [50].

Landau picture

For relatively lower relativistic energy, the colliding nucleons overlap with each other and
almost stop at the mid-rapidity by losing their energies. The lost energies transform to
thermal energies in the overlap region and thus the region becomes hot and dense. Therefore,
the hot and dense matter is created there. This space-time picture is called Landau picture
[49], which provide us a good description for relatively lower energy collisions. The schematic
illustration of the Landau picture is shown in the left panel of Fig. 1.4.

Bjorken picture

In contrast, ultra-relativistic high energy collisions are well-described by the Bjorken pic-
ture [50]. Unlike the Landau picture, it is based on the parton model4.

In ultra-relativistic collisions, the longitudinal sizes of the incident nuclei become infinites-
imally small, because they decrease as the collision energies is taken to be higher. However,
no matter how high the collision energy is taken to be, the wee partons in the incoming nuclei
definitely has a typical size of the QCD scale ∼ 1 fm because of the uncertainty principle
and the non-perturbative nature of wee partons.

In this picture, owing to ultra-relativistic collision energy, the incident nuclei pass through
with each other. After the collision, a very hot and low baryon density medium mainly
composed of gluons, which is produced by interactions among wee partons, are left between

4Partons indicate quarks and gluons in hadrons. Wee partons, i.e. gluons and sea-quarks in a nucleon,
have a very small momentum fraction of the nucleon, x, compared with the valence quark. As x → 0, the
number of wee partons, especially gluons, increases. This idea has been established by the deep-inelastic
scattering experiments.
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Fig. 1.4: Schematic illustrations just after a collision in heavy ion collisions. The left (right)
panel shows space-time picture proposed by Landau (Bjorken). They show a central collision
of two nuclei with radius R in the center-of-mass frame with the center-of-mass energy Ecm/2
per nucleon, i.e.

√
sNN = Ecm. In this frame, longitudinal size of the incident nuclei is given

by 2R/γ where γ = Ecm/2mN is Lorentz factor with the nucleon mass mN.

two ongoing nuclei. After a certain proper time, real quarks and gluons are created from
the medium, and subsequently equilibrated plasma, i.e. quark-gluon plasma, is produced
by interactions between the real quarks and gluons. Then, the matter hydrodynamically
expands strongly in the longitudinal beam direction. The schematic illustration for the
Bjorken picture is also shown in the right panel of Fig. 1.4.

These pictures are consistent with the behaviors of the experimental results of the multi-
plicity distributions in Fig. 1.3. In particular, one can understand the central flat region as
seen in the results at RHIC energies as the production of the hot and low density medium
composed of quarks and gluons during a certain proper time. We should note that the mul-
tiplicity distribution in this flat region is almost constant, which indicates that system in the
region has a boost invariance. To describe such a boost invariant system, the proper time τ
and the spacetime-rapidity ys defined by

τ =
√
t2 − z2, ys =

1

2
ln

(
t+ z

t− z

)
, (1.3)

are often used, because τ is invariant and ys has a good transformation law under the Lorentz-
boost along the longitudinal direction [1]. See Appendix A for this important properties of
the rapidity.

At the LHC, heavy ion collisions are carried out at
√
sNN = 2.76 TeV for Pb+Pb collisions.

At RHIC, the top collision energy is
√
sNN = 200 GeV for Au+Au collisions. For these high

energy collisions, the Bjorken picture is expected to be suitable for descriptions of the space-
time evolution of created matters.

Time evolution of relativistic heavy ion collisions

Next, let us see the time evolution of relativistic heavy ion collisions described the Bjorken
picture in more detail. Fig. 1.5 shows a schematic illustration of the time history of the hot
medium in heavy ion collision:
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Fig. 1.5: Schematic light-cone diagram of time evolution of hot medium in relativistic heavy
ion collision. The vertical axis is time t and the horizontal axis is the longitudinal beam
direction z. Each hyperbolic curve shows a line with a constant proper time τ . The dotted
line represents a line with a constant spacetime-rapidity ys.

1. Pre-equilibrium and thermalization: Two incident nuclei collide at τ = 0 and pass
through each other. Subsequently, a hot and low-density medium mainly consisting of
gluons are created between the nuclei. After a certain proper time, a system composed
of real quarks and gluons are produced in the medium, which is not in equilibrium for a
certain proper time after the collision. Then, the state of quarks and gluons approach
to thermal equilibrium by interactions of them.

2. Quark-gluon plasma: Subsequently, a local thermalization of the hot medium, i.e. a
quark-gluon plasma, is established at a proper time τ = τ0. From experimental data at
the RHIC [43–46], it was discovered that the QGP behaves as a perfect fluid. Moreover,
to explain the experimental data, the proper time τ0 is less than 1 fm. It is known to
be a problem of the early thermalization, and the mechanism of the thermalization is
not completely understood. Because of the strongly coupled nature of QGP, the time
evolution in this stage is well-described by relativistic hydrodynamic theory.

3. Hadronization and chemical freeze-out: Because of the hydrodynamic expansion
of the system, the created medium cools down and begin to undergo the QCD phase
transition from a quark-gluon plasma to hadronic medium. The produced hadrons
weakly interact with one another, and the species of hadrons may change by the inter-
actions. After a certain proper time, the number of each species is frozen, which is called
a chemical freeze-out. Even after the chemical freeze-out, the interactions of hadrons
continue and thus momentum exchanges between particles proceed. The evolution of
weakly interacting hadrons may be described by the hadronic transport models such
as the Ultra-relativistic Quantum Molecular Dynamics model (UrQMD) [51]. Thermo-
dynamic properties of the hadronic medium after chemical freeze-out is well-described
by the hadron resonance gas (HRG) model [52]. We will see this model in more detail
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Fig. 1.6: The temperature and baryon chemical potential at the chemical freeze-out for
different collision energies determined by the thermal model. (Figure from Ref. [53].)

in subsection 3.1.1.

4. Thermal freeze-out: When the volume of the hadronic matter becomes smaller than
a mean free path of each particle, the momentum distribution of particles is frozen
owing to no interactions between particles. This time is called the thermal or kinetic
freeze-out. After the kinetic freeze-out time, hadrons scarcely interact with one another
and eventually are observed by experimental detectors.

A deconfined state of quarks and gluons cannot be directly observed in heavy ion collisions.
Therefore, one must extract information on QGP and phase transition from observation of
hadronic particles. However, interactions in the hadronic state may dilute the information.
In this point, it is a challenging subject to study the QCD phase structure in heavy ion
collisions.

Beam Energy Scan program at RHIC

For the experimental search of the QCD phase structure, the Beam Energy Scan (BES)
program is ongoing at the RHIC. As seen in the previous subsection, the initial temperature
and baryon density of matter created in heavy ion collisions vary depending on the collision
energy. Such collision energy dependences are also suggested by experimental result on
chemical freeze-out points for various collision energies as shown in Fig. 1.6. By utilizing this
property of heavy ion collisions, one can scan a large part of the QCD phase diagram. In
the first phase of the Beam Energy Scan program (BES-I), the experiments with

√
sNN =

7.7−62.4 GeV for Au+Au collisions were carried out [54]. In the second phase (BES-II) [55],
which is planned to start in 2019, high statistical measurements of various observables will
be performed.
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1.3 Fluctuation observables in heavy ion collisions

Bulk fluctuations are macroscopic observables which provide us various information on the
microscopic nature of the medium. In relativistic heavy ion collisions, thus it is believed that
the bulk fluctuations observed by event-by-event analysis are useful observables which enable
us to characterize properties of the hot medium created by collision events and to find the
QCD critical point [32, 40, 41, 41, 56–77]. At the critical point, fluctuations of various ob-
servables diverge reflecting the softening of the effective potential [36–38]. Moreover, various
ways to reveal the medium properties using conserved-charge fluctuations, especially non-
Gaussianity and mixed cumulants, have been suggested [62]. Among the conserved-charge
fluctuations, net-baryon number [78, 79] and net-electric charge fluctuations are observable
in relativistic heavy ion collisions.

Recently, experimental investigation of fluctuation observables in heavy ion collisions has
been actively performed in the BES program at RHIC and LHC (LHC) [54, 80–85]. In
particular, for exploring the QCD phase structure, the higher-order cumulants of conserved
charges, i.e. net-baryon number and net-electric charge, have been actively measured at
RHIC [54,80–83].

In relativistic heavy ion collisions, fluctuations are measured by event-by-event analysis,
where the number of a charged particle is measured in some coverage of a detector for each
event and the fluctuation of the charge is investigated over the ensemble of the event. In
the left panel of Fig. 1.7, we show the recent experimental results on the collision energy
dependence of the ratios of the higher-order cumulants of the net-proton charge in the BES
program. It is known that the cumulants are extensive quantities as we will see in Sec. 2.2.
Thus in experiments, the ratios of the cumulants are observed by eliminating the volume
dependence of cumulants. If the system created in heavy ion collisions are in equilibrated
hadronic phase, the cumulants are almost equivalent to those in the Skellam distribution,
as will be shown in subsection 3.1.1. Thus if the observed cumulants are well-described by
the hadronic degrees of freedom, the results are consistent with the Skellam ones, where the
experimental results take unity. In the left panel of Fig. 1.7, the results are close to the
Skellam ones, but deviations from this baseline are also observed. It is believed that these
deviations from the hadronic ones show signatures of non-hadronic, non-thermal properties
and/or critical singularities of the medium in the experimental data.

However, it is not so easy to understand the experimental results on fluctuation observ-
ables and to extract information on the QCD phase structure. For example, near the critical
point, it is known that the relaxation time toward equilibrium becomes larger due to the
critical slowing down [68]. Due to this dynamical effect, the enhancement of fluctuations
in the hot medium is limited even if the hot medium pass just on the QCD critical point.
Moreover, as the experimental measurement is performed only for the final state of the time
evolution, the evolution in the late stage modifies the fluctuations.

Recently, an interesting result of the fluctuation observable has been observed by the AL-
ICE Collaboration at the LHC. It is a rapidity window dependence of cumulants of conserved
charges. The rapidity window, ∆η, is the acceptance along the longitudinal direction of the
detector to count the particle number. In the right panel of Fig. 1.7, we show the experimen-
tal result of the variance of the net-electric charge normalized by the total charged particle
number [84]. This quantity called the D-measure is expected that the thermal equilibrium
value in the hadronic medium is 3− 4 [58,59]. The experimental result shows the significant
suppression compared with this equilibrated hadronic value. Furthermore, the suppression
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Fig. 1.7: [Left] Collision energy dependence of net-proton number cumulants in Beam en-
ergy scan program at RHIC. [Right] Rapidity window dependence of the net-electric charge
fluctuation measured by the ALICE Collaboration at the LHC [84]. The right vertical axis
is the D-measure, D = 4⟨(δQnet)

2⟩ /⟨Qtot⟩ with δQ = Q− ⟨Q⟩, for three different centrality
bins in the Pb-Pb collisions at

√
sNN = 2.76TeV. (Left figure from Ref. [85] and Right figure

from Ref. [84]).

becomes more prominent as the pseudo-rapidity window to count the particle number, ∆η, is
taken to be larger. It suggests that the non-hadronic or/and non-equilibrium nature appears
as ∆η is taken to be larger.

Indeed, the ratio of the cumulants are suppressed in the deconfined medium, reflecting
the fact that the charges carried by elementary excitations are smaller in the deconfined
medium [32,58,59], as we will discuss in subsection 3.1.2. It is also known that the approach
of the magnitude of the fluctuation to the equilibrated values of the hadronic medium be-
comes slower as the volume to count the conserved-charge number increases [62, 86]. Thus
the ∆η dependence in the right panel of Fig. 1.7 is reasonably understood if one interprets
the suppression as a survival of the small fluctuation generated in the primordial deconfined
medium and they reflect time history of heavy ion collisions [58,59,62,86,87]. If this interpre-
tation is true, one may be able to extract information on the properties of the medium created
in experiments and the QCD critical point by utilizing this property of the ∆η dependence
of the conserved-charge cumulants.

1.4 Purpose and outline of this Thesis

The purpose of this Thesis is to study the time evolution of critical fluctuations of conserved
charges near the QCD critical point and its consequence on experimental measurements of
fluctuation observables in relativistic heavy ion collisions. In this Thesis, we particularly
focus on the ∆η dependence of cumulants and correlation function of conserved charges,
because it is suggested that this observable have information on time history in heavy ion
collisions even when observed.

In particular, we study the following three subjects:

• First, we study the effect of the global charge conservation (GCC) on the higher-order
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cumulants of conserved charges to confirm the non-equilibrium nature of ∆η depen-
dence, with a special emphasis on the time evolution of fluctuations in the hadronic
medium [75]. GCC is one of the other mechanism which could explain the experimental
result on ∆η dependence of the D-measure shown in the right panel of Fig. 1.7, even in
equilibrium [56,88]. We describe time evolutions of cumulants in a finite volume system
in the rapidity space by employing a Brownian-particle model [62,74]. Then we obtain
solutions of the higher-order cumulants with the effect of the GCC. It is argued that the
experimental result of ∆η dependence observed at LHC does not receive effects from
GCC because of the finite diffusion distance of charged particles. This result suggests
that the equilibration of ∆η dependence is not established at observation and thus one
can extract information on earlier states in heavy ion collisions through this observable.
We emphasize that the magnitude of the effect of GCC can be estimated experimen-
tally by combining the information on the ∆η dependencies of various cumulants of
conserved charges, similarly to other dynamical properties of the hot medium. This
study is based on Ref. [75].

• Second, using non-equilibrium nature of ∆η dependence of conserved-charges, we
discuss dynamical evolution of second-order cumulants and correlation function of
conserved-charges near the critical point. We describe the time evolution of conserved-
charge cumulants and correlation functions in the rapidity space. To describe time
evolution, we employ a stochastic hydrodynamic equation which respects conserving
nature of the fluctuation. We demonstrate that the time evolution is a concept de-
pending on the spatial length scale. Since the soft mode associated with the QCD
critical point is given by the coupling of the sigma mode and conserved charges, this
property also plays a crucial role in the description of the time evolution of fluctuations
near the critical point. We also discuss that there can appear non-monotonic behaviors
in the ∆η dependences of the second-order cumulant and the correlation function of
conserved charges, when the hot medium pass the phase boundary near the critical
point with the model of the susceptibilities and diffusion coefficient near the critical
point. We emphasize this behavior can be used as a unique and robust signal for the
critical point search in experiments. The above discussions are based on Ref. [89].

• Third, we discuss the memory time effect, i.e. effect of causality, with causal diffusion
equations. We derive causal diffusion equations from microscopic framework with two
different methods. We show that the memory time effect retard equilibration of fluc-
tuations but it is small in heavy ion collisions. The above discussions are based on
Ref. [89].

This Thesis is organized as follows: In Chapter 2, we review general properties of fluctu-
ations. In Sec. 2.1, we introduce probability distribution function and cumulants, which is
quantities characterizing the probability distribution. In Chapter 2.2, we see the properties
of cumulants, e.g. their extensive nature, in the statistical mechanism. We also define suscep-
tibilities, i.e. the response to an external force, and correlation function. In Chapter 2.3, we
introduce some stochastic differential equations. The static and dynamic critical phenomena
in the mean-field theory is also reviewed in Sec. 2.4

In Chapter 3, we provide a brief review on fluctuations in QCD by using the results in
Chap. 2. In Sec. 3.1, we show the properties of non-critical fluctuations in the hadronic
matter and deconfined medium. We see that the cumulants of conserved-charges in the



1.4 Purpose and outline of this Thesis 14

deconfined medium are much smaller than those in the hadronic medium. In Sec. 3.2, the
fluctuations of the net-baryon number near the QCD critical point are also discussed. We
show that the ordering density of the QCD critical point is the linear coupling of the net-
baryon density and the chiral condensate. We also see that the dynamical evolution of the
net-baryon number near the QCD critical point can be described by the stochastic diffusion
equation. The equation which is suitable to describe time evolution of fluctuations in heavy
ion collisions are also introduced in Sec. 3.3. We derive the stochastic diffusion equation in
the (τ, ys) coordinate in this section.

Chapter 4 - 6 are the main parts of this Thesis.
In Chapter 4, we study the effect of GCC on the time evolution of the higher-order

cumulants of conserved charges to confirm the non-equilibrium nature of ∆η dependence [75].
In Sec. 4.1.1, we discuss time evolutions of cumulants in a finite volume system by employing
a diffusion master equation. In Sec. 4.2, we show that GCC does not affect the experimental
result of ∆η dependence observed at LHC.

In Chapter 5, we study time evolution of critical fluctuations of conserved charges near the
QCD critical point using a stochastic diffusion equation in the context of relativistic heavy
ion collisions. In Secs. 5.1 - 5.2 we show that the diffusion property of the critical fluctuation
gives a possibility to probe the early time fluctuations with varying the rapidity window size
in experimental measurements of the fluctuation observables. In Secs. 5.3 - 5.4 it is pointed
out that non-monotonic behavior of the second-order cumulant and the correlation function
of conserved charges as a function of the rapidity interval is a robust experimental signal for
the existence of the QCD critical point.

In Chapter 6, we discuss the memory time effect with causal diffusion equations driven
by microscopic framework. It is argued that the memory time effect causes a delay of ther-
malization of fluctuations.

Chapter 7 is devoted to a summary and an outlook of this Thesis.
This Thesis contains seven Appendices: The definitions of the momentum-rapidity,

spacetime-rapidity, and pseudo-rapidity are given in Appendix. A. Some examples of prob-
ability distribution functions are introduced in B. The effects of GCC with a stochastic
diffusion equation for comparison with the results with diffusion master equation in Chap-
ter C. The calculations for some functions and formulae of superposition of cumulants used
in Chapter 4 are shown in Appendixes D and E, respectively. The relation between the
temperature and proper time in the Bjorken flow which is used in Chapter 5 are derived in
Appendix F. The conditions for survival of signal of the QCD critical point in fluctuation
observables are discussed in Appendix G.



Chapter 2

General introduction to fluctuations

In this chapter, we provide a general review on fluctuations based on great textbooks and
reviews [33,73,90]. Applications to those in QCD, heavy ion collisions, and physics near the
QCD critical point are presented in Chap. 3. In Sec. 2.1, we introduce cumulants, which
characterize properties of probability distribution functions. In Sec. 2.2, we consider thermal
fluctuations in quantum statistical mechanics. The results obtained in this section are applied
to discuss non-critical cumulants in QCD. In Sec. 2.3, we introduce some dynamical equations
to describe stochastic processes. The equations are useful in describing time evolution of
conserved-charge cumulants in heavy ion collisions in Chap. 4 - 6. In Sec. 2.4, we briefly
review general aspects of static and dynamical critical phenomena in preparation for studying
those in QCD.

2.1 Cumulants and moments

Generally speaking, a fluctuation is characterized by a probability distribution of an ob-
servable, and it is mathematically represented by a probability distribution function. If one
repeats a measurement of an observable many times, the result of each measurement would
fluctuate. The resulting distribution from accumulated many data can be regarded as a
probability distribution with an appropriate normalization.

Some of the important quantities that characterize a distribution are moments and cumu-
lants. If one knows all the moments or the cumulants of a distribution, one can completely
determine the distribution through this information. In this section, we introduce moments
and cumulants, and see their properties and relations between them.

2.1.1 Cumulants and moments

For a probability distribution function P (m) normalized by
∑

m P (m) = 1 for an integer
stochastic variable m, the n-th order moment of m is defined by

⟨mn⟩ ≡
∑
m

mnP (m), (2.1)

where the bracket ⟨· · · ⟩ denotes the statical average with P (m). In the case of a continuous
variable x, the moments are defined by

⟨xn⟩ ≡
∫

dx xnP (x), (2.2)

– 15 –
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where P (x) is a probability distribution function for a continuous variable x normalized by∫
dxP (x) = 1.
The moment-generating function,

G(θ) ≡ ⟨emθ⟩ =
∞∑
n=0

θn

n!
⟨mn⟩, (2.3)

provides us a convenient way to calculate the moments because the moments for a distribution
P (m) are given by a derivative of G(θ) as

⟨mn⟩ = dn

dθn
G(θ)

∣∣∣∣
θ=0

. (2.4)

For the continuous case, the moment-generating function is defined by

G(θ) ≡
∫

dx exθP (x) = ⟨exθ⟩, (2.5)

and the moments, ⟨xn⟩, are given in the same manner as in Eq. (2.4).
Cumulants are more convenient quantities rather than moments in characterizing a prob-

ability distribution. By introducing the cumulant-generating function,

K(θ) ≡ lnG(θ) =
∞∑
n=1

θn

n!
⟨mn⟩c, (2.6)

the cumulants are defined by

⟨mn⟩c ≡
dn

dθn
K(θ)

∣∣∣∣
θ=0

. (2.7)

From the definitions of moments and cumulants, Eqs. (2.4) and (2.7), one can obtain
relations between them. Using G(0) =

∑
m P (m) = 1, cumulants in terms of moments up to

the forth-order are written as

⟨m⟩c = ⟨m⟩ (2.8)

⟨m2⟩c = ⟨m2⟩ − ⟨m⟩2 = ⟨δm2⟩ (2.9)

⟨m3⟩c = ⟨m3⟩ − 3⟨m⟩⟨m2⟩+ 2⟨m⟩3 = ⟨δm3⟩ (2.10)

⟨m4⟩c = ⟨m4⟩ − 4⟨m3⟩⟨m⟩ − 3⟨m2⟩2 + 12⟨m2⟩⟨m⟩2 − 6⟨m⟩4 = ⟨δm4⟩ − 3⟨δm2⟩2 (2.11)

where ⟨δmn⟩ ≡ ⟨(m − ⟨m⟩)n⟩ denote the central moments. From Eqs. (2.8) - (2.11), one
finds the following two facts. First, the first-order cumulant and the first-order moment are
equivalent. They are usually called the mean value. Second, the cumulants from the second-
to the fourth-order are expressed only by the central moments, and they are independent of
the mean value ⟨m⟩. This fact is generally true for all the cumulants except for the first-order
one. (See, e.g. Ref. [73], for the proof.) The expression for moments in terms of cumulants
are also calculated in a similar way.

Let us see properties of cumulants up to the fourth-order. The second-order cumulant
(2.9) is a quantity called the variance, ⟨m2⟩c ≡ σ2, and it characterizes the width of a
distribution. Sometimes, the variance is simply referred to as a fluctuation because it is
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Fig. 2.1: Examples of distribution functions having nonzero skewness (Left) and kurtosis
(Right). The mean value and variance are set to ⟨x⟩c = 0 and σ = 1. (Figures from
Ref. [73].)

only the nonvanishing cumulant that characterizes a Gaussian distribution as we will see in
subsection B. In contrast, the nonvanishing higher-order cumulants for n ≥ 3 characterize the
deviation from the Gaussian distribution, and are frequently called non-Gaussian fluctuations.
For example, those of the third-order (2.10) and the fourth-order (2.11) are related to the
skewness S and the kurtosis κ as

S ≡ ⟨m3⟩c
⟨m2⟩3/2c

=
⟨m3⟩c
σ3

, κ ≡ ⟨m4⟩c
⟨m2⟩2c

=
⟨m4⟩c
σ4

, (2.12)

which, respectively, characterize the asymmetry and the sharpness of a probability distribu-
tion compared to a Gaussian distribution as shown in Fig. 2.1. In this way, cumulants are
more convenient quantity (compared to moments for example) that characterize a probability
distribution function. This is because the cumulants do not depend on the mean value ⟨m⟩.

I would like to introduce another set of quantities which characterize a distribution; fac-
torial moments and factorial cumulants. The factorial moments and the factorial cumulants
are defined as

⟨mn⟩f ≡ ⟨m(m− 1) · · · (m− n+ 1)⟩ = dn

dsn
Gf(s)

∣∣∣∣
s=1

, ⟨mn⟩fc ≡
dn

dsn
Kf(s)

∣∣∣∣
s=1

, (2.13)

where the factorial moment-generating function Gf and the factorial cumulant-generating
function Kf are given by

Gf(s) ≡
∑
m

smP (m) = G(ln s), Kf(s) ≡ lnGf(s) = K(ln s). (2.14)

The factorial moments and the factorial cumulants are related to the standard moments and
cumulants through Eq. (2.14), respectively. The factorial ones are generally less useful than
the moments and cumulants to understand physical meanings of fluctuations. Nevertheless,
they are sometimes used to make analysis simpler in some analytic calculations (see e.g.
Refs. [62,74,75,91,92]).

Sum of two stochastic variables

Let us consider two integer stochastic variables m1 and m2 and assume that they are in-
dependent from each other. If they respectively obey probability distributions P1(m1) and
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P2(m2), the probability distribution of their sum, m = m1 +m2, is given by

P (m) =
∑

m1, m2

δm,m1+m2P1(m1)P2(m2). (2.15)

By substituting Eq. (2.15) into the definitions (2.3) and (2.6), we obtain the generating
functions of m as

G(θ) =
∑
m1

em1θP1(m1)
∑
m2

em2θP2(m2) = G1(θ)G2(θ), (2.16)

K(θ) = K1(θ) +K2(θ), (2.17)

where Gi(θ) and Ki(θ) are the moment- and cumulant-generating functions of the stochastic
variables mi for i = 1 and 2, respectively. By differentiating both sides of Eq. (2.17), one
obtains the cumulants of m as

⟨mn⟩c = ⟨mn
1 ⟩c + ⟨mn

2 ⟩c (2.18)

This result shows that the cumulants of the sum of two independent variables are given by the
sum of the cumulants of each variable. It suggests that the cumulants of extensive variables
in statistical mechanics are extensive variable as well. We will see this property again in
Sec. 2.2.

Cumulants for multivariables

More generally, let us consider a probability distribution function P (m) for stochastic vari-
ables m = (m1,m2, · · · ,ml). The generating functions of P (m) are defined by

G(θ) ≡
∑
m

P (m)em·θ = ⟨em·θ⟩, K(θ) ≡ lnG(θ), (2.19)

with θ = (θ1, θ2, · · · , θl). In a similar manner to the single variable case, moments and
cumulants for multivariables are found to be

⟨mn1
1 mn2

2 · · ·mnl
l ⟩ = ∂n1

∂θn1
1

∂n2

∂θn2
2

· · · ∂nl

∂θnl
l

G(m)

∣∣∣∣
θ=0

, (2.20)

⟨mn1
1 mn2

2 · · ·mnl
l ⟩c =

∂n1

∂θn1
1

∂n2

∂θn2
2

· · · ∂nl

∂θnl
l

K(m)

∣∣∣∣
θ=0

, (2.21)

and relations between them up to the third-order are expressed as

⟨mi⟩c = ⟨mi⟩, (2.22)

⟨mimj⟩c = ⟨mimj⟩ − ⟨mi⟩⟨mj⟩ = ⟨δmiδmj⟩, (2.23)

⟨mimjmk⟩c = ⟨mimjmk⟩ − ⟨mimj⟩⟨mk⟩ − ⟨mimk⟩⟨mj⟩ − ⟨mkmj⟩⟨mi⟩+ 2⟨mi⟩c⟨mj⟩c⟨mk⟩c
= ⟨δmiδmjδmk⟩. (2.24)

Eqs. (2.22) - (2.24) show that the mixed cumulants are expressed by the mixed central
moments.
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2.2 Fluctuations in a grand-canonical ensemble

To see basic properties of fluctuations, we first introduce fluctuations in an equilibrium system
based on statistical mechanics. Among fluctuations of physical quantities, we specifically
discuss fluctuations of conserved charges in a grand-canonical ensemble, where a system
exchanging particles and energy with a heat bath is considered. A similar situation is realized
in heavy ion collisions, where a small subsystem exchanges particles and energy with the rest
of the system. In this sense, the grand-canonical ensemble is suitable in the description of
statistical properties of heavy ion collisions.

In this section, we first present a basic derivation of moments and cumulants based on
the grand-canonical ensemble. We also introduce susceptibilities, i.e., responses of a system
to external perturbations, and correlation functions. The extensive nature of cumulants and
linear response relations of susceptibilities, which are important property for each of them,
are also shown. Thermal fluctuations in a non-interacting gas are also discussed.

2.2.1 Basic introduction to fluctuations in a grand-canonical en-
semble

A thermal equilibrated system in the grand canonical ensemble is characterized by a grand
canonical partition function,

Z ≡ tr
[
e(Ĥ−µN̂)/T

]
, (2.25)

where T is temperature, N̂ represents a conserved number operator with the corresponding
chemical potential µ, and Ĥ is a Hamiltonian operator. Notice that the Hamiltonian operator
Ĥ commutes with the conserved number operator N̂ as [Ĥ, N̂ ] = 0 because N̂ is conserved.
For anti-particles, the chemical potential is given by −µ. The statistical density matrix ρ̂ is
defined by

ρ̂ ≡ 1

Z
e(Ĥ−µN̂)/T , (2.26)

and moments of an observable Ô in a subsystem of a volume V is expressed as

⟨Ôn⟩ ≡ tr
[
Ônρ̂

]
. (2.27)

Cumulants are also derived from the relations between the moments and the cumulants (2.8)
- (2.11).

In the grand canonical ensemble, moments of quantities characterizing a thermal system
are given by derivatives of the partition function with respect to their conjugate variables.
For example, those for a conserved particle number N̂ in quantum statistical mechanics are
given by

⟨N̂n⟩ = 1

Z
tr
[
N̂ne(Ĥ−µN̂)/T

]
=

1

Z

∂nZ

∂(µ/T )n
. (2.28)

Notice that the partition function corresponds to the moment-generating function (2.3) up
to a normalization constant.
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Similarly, cumulants are given by derivatives of the grand potential Ω ≡ −T lnZ, which
corresponds to the cumulant-generating function (2.6). For the particle number operator N̂ ,
the cumulants are defined by

⟨N̂n⟩c ≡
∂n(−Ω/T )

∂(µ/T )n
. (2.29)

Some important properties

To see some important properties of fluctuations, we introduce the grand potential per unit
volume ω,

Ω ≡ ωV. (2.30)

Here we have used the fact that the grand potential is an extensive variable, which is valid
if the volume V is so large that the microscopic correlation length is negligible. Then the
cumulants of N̂ is given by

⟨N̂n⟩c = χ(n)V, (2.31)

with the cumulants per unit volume,

χ(n) ≡ ∂n(−ω/T )

∂(µ/T )n
. (2.32)

From Eq. (2.31), one finds that all the cumulants are extensive variables, as briefly mentioned
in subsection 2.1.1.

The quantities χ(n) introduced in Eq. (2.32) are called generalized susceptibilities. The
name of χ(n) originates from the fact that the n-th order susceptibility is a response of the
(n− 1)-th order susceptibility to a perturbation from an external field µ,

χ(n) =
⟨N̂n⟩c
V

=
∂

∂(µ/T )n
⟨N̂n−1⟩c

V
=

∂χ(n−1)

∂(µ/T )n
. (2.33)

For n = 2, the relation between the susceptibility and the fluctuations of the conserved
particle number (2.33) is called the linear response relation, and χ(2) is simply referred to as
a susceptibility. From now, we simply write the second order susceptibility χ(2) as χ.

From the extensive nature of cumulants, one can find a relation between the generalized
susceptibility and correlation functions. Since the conserved number N̂ in a volume V is
given by

N̂ ≡
∫
V

dxn̂(x), (2.34)

with the particle number density n̂(x), the n-point correlation function of N̂ is related to the
n-th order cumulants ⟨N̂⟩c as

⟨N̂n⟩c =
∫
V

dx1 · · · dxn⟨n̂(x1) · · · n̂(xn)⟩c. (2.35)
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Comparing Eqs. (2.31) and (2.35), one obtains a relation between the susceptibility and the
correlation function as

⟨n̂(x1)n̂(x2) · · · n̂(xn)⟩c = χ(n)δ(x1 − x2)δ(x2 − x3) · · · δ(xn−1 − xn). (2.36)

This is because it is the only relation that satisfies Eq. (2.33) in any volume V [73]. The
relation (2.35) indicates that the particle densities at different positions in coordinate space
do not correlate with one another.

2.2.2 Non-interacting gas

Next, let us consider a system with a non-interacting ideal gas of a single species of particles.
Owing to the absence of interactions between particles, the particle number N is conserved
in this system. Assuming that there is one conserved quantum number in the system, the
grand potential per unit volume is given by [73]

−ω

T
= g

∫
d3p

(2π)3
ln
(
1± e−(E(p)−µ)/T

)±1
(2.37)

where g is the number of internal degrees of freedom, e.g. g = 2s + 1 for the degeneracy of
the spin s. In Eq. (2.37), the upper sign (+) and lower sign (-) refers to fermions and bosons,
respectively. E(p) is the dispersion relation: For relativistic particles E(p) =

√
p2 +m2

where m is the mass, and for non-relativistic particles E(p) = p2/2m.
From Eqs. (2.31) and (2.32), the particle number density is given by

⟨n⟩c =
⟨N⟩c
V

=
∂(−ω/T )

∂(µ/T )
= g

∫
d3p

(2π)3
1

e(E(p)−µ)/T ± 1
, (2.38)

which are the Fermi-Dirac and Bose-Einstein distributions.

Classical free gas

One of the interesting limits of these distributions is the classical limit. This corresponds to
the dilute limit ⟨n⟩c/T 3 ≪ 1 and it occurs when

E(p)− µ ≫ T. (2.39)

for all values of p. In the classical limit, the integrand in Eqs. (2.37) can be approximated
as ln(1 ± e−(E(p)−µ)/T )±1 ≈ e−(E(p)−µ)/T . Accordingly, the grand canonical potential (2.37)
becomes that of a free classical Boltzmann gas as

−ω

T
= geµ/T

∫
d3p

(2π)3
e−E(p)/T . (2.40)

In the classical limit, the generalized susceptibilities χ(n) are found to be

χ(n) =
⟨Nn⟩c
V

=
∂n(−ω/T )

∂(µ/T )n
= −ω

T
, (2.41)

for all n ≥ 1. From the result, one finds that all the cumulants are the same. It implies
that the cumulants in a classical free gas are determined by a Poisson distribution. This is
one of the remarkable features of the cumulants in a classical free gas. See Appendix B for
properties of a Poisson distribution function.
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2.2.3 Fluctuations of conserved charges in classical free gas

Next, we consider a classical free gas of particles with some independent conserved charges,
such as the baryon number and the electric charge. First, let us consider a single species
of particles with a set of conserved charges qi. In this case, the chemical potential for the
particles is µ =

∑
i qiµi, where µi represents the chemical potential for a conserved charge

labeled by i. Then, susceptibilities of a total charge Qi ≡ qiN labeled by i are obtained by
differentiating the grand potential Eq. (2.40) with respect to µi/T as

χ
(n)
i =

⟨Qn
i ⟩c
V

=
∂n(−ω/T )

∂(µi/T )n
= qni ge

∑
i qiµi/T

∫
d3p

(2π)3
e−E(p)/T

= qni

(
−ω

T

)
= qni

⟨N⟩c
V

. (2.42)

On the far right hand side in the second line of Eq. (2.42), we have used Eq. (2.41). From
the result, one finds a relation between cumulants

⟨Qn1
i ⟩c

⟨Qn2
i ⟩c

= qn1−n2
i . (2.43)

This result shows that the magnitude of the charge cumulants is solely determined by the
value of the charge carried by the effective degree of freedom in a given system. It is one
of the characteristic features of cumulants that are sensitive to the microscopic nature of a
system.

Finally, we consider several species of particles labeled by j with a set of conserved charges
q
(j)
i . Note that the different species of particles are uncorrelated in a classical free gas. In
this case, the grand potential per unit volume in a classical free gas is given by

−ω

T
=
∑
j

(
−ωj

T

)
=
∑
j

gje
∑

i q
(j)
i µi/T

∫
d3p

(2π)3
e−E(p)/T . (2.44)

where ωj represent the grand potential of particles labeled by j.
By differentiating the grand potential with respect to µi/T , the cumulants of the total

charge Qi =
∑

j q
(j)
i N (j) are found to be

⟨Qn
i ⟩c =

∑
j

q
(j)
i

n
(
−ωj

T

)
V =

∑
j

q
(j)
i

n
⟨N (j)⟩c, (2.45)

with particle number N (j).
One can also calculate the charge cumulants ⟨Qn

i ⟩c directly from the relation Qi =∑
j q

(j)
i N (j) as

⟨Qn
i ⟩c =

⟨(∑
j

q
(j)
i N (j)

)n⟩
c

=
⟨(

q
(1)
i N (1) + q

(2)
i N (2) + · · ·

)n⟩
c

=
∑
j

q
(j)
i

n
⟨N (j)n⟩c =

∑
j

q
(j)
i

n
⟨N (j)⟩c. (2.46)

In the second line of Eq. (2.46), we have used the fact that there are no correlations between
different species of particles in an ideal gas, e.g. ⟨N (j)N (k)⟩c = 0 for all the j ̸= k. On the
far right hand side in the second line of Eq. (2.46), the use is made of Eq. (2.41).

In the next chapter, these general results will be applied to fluctuations in QCD.
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2.3 Description of time evolution of fluctuations

Study of dynamical fluctuations are also useful to study a non-thermal system. In this section,
we introduce some basic stochastic equations to describe dynamical evolution of the system.

2.3.1 Langevin equation

One of the basic equations which describes a stochastic dynamical process is the Langevin
equation. The Langevin equation has a simple form but it has been very successful in
describing dynamical evolution of various systems.

Let us consider a single heavy particle with velocity v(t) moving in a fluid composed of
numerous number of small and light particles. For simplicity, we now restrict our attention
to a one-dimensional system. In the fluid, a Brownian particle receives two forces, a drag
force and a stochastic force. The latter force varies rapidly and randomly, and thus it can
be neglected in the macroscopic time scale. However, it should be taken into account to
describe fluctuations correctly. Then the equation of motion for a Brownian particle is given
by Newton’s law as

dv(t)

dt
= −γv(t) +X(t) (2.47)

where γ = β/m with m and β being the particle mass and drag coefficient, respectively. γ−1

corresponds to the relaxation time of the velocity.
In the macroscopic limit, it should reproduce the ordinary equation of motion. In other

words, taking an ensemble average of the Langevin equation (2.47), the stochastic force X(t)
should vanish as

d⟨v(t)⟩
dt

= −γ⟨v(t)⟩. (2.48)

Thus the mean value of X(t) is given by

⟨X(t)⟩ = 0. (2.49)

On the other hand, the correlation between the stochastic forces can take nonzero value.
Since the stochastic force varies in time rapidly and randomly, the correlation of them at
different times with a macroscopic separation may be vanishing. Thus we assume the time
correlation of X(t) is local,

⟨X(t1)X(t2)⟩ = Aδ(t1 − t2), (2.50)

with an unknown coefficient A. The correlation of the stochastic forces (2.50) are referred to
as white noise.

We now calculate the mean value and the variance of the velocity. The solution of the
Langevin equation (2.47) with an initial condition v(t0) = v0 is

v(t) = v0e
−γt +

∫ t

t0

dt′ e−γ(t−t′)X(t′). (2.51)

By taking the average of the solution, one obtains the mean of v(t) as

⟨v(t)⟩c = ⟨v0⟩e−γ(t−t0). (2.52)
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Similarly, using Eqs.(2.49) and (2.50), the variance of v(t) is given by

⟨v(t)2⟩c = ⟨v(t)2⟩ − ⟨v(t)⟩2 = ⟨v20⟩ce−2γ(t−t0) +
A

2γ
(1− e−2γ(t−t0)), (2.53)

with ⟨v20⟩c = ⟨v20⟩ − ⟨v0⟩2 being the initial fluctuation of ⟨v(t)2⟩c. Here we have assumed that
⟨v(t)X(t)⟩ = 0 because of the randomness of X(t).

In the limit of t → ∞, Eq. (2.53) approaches A/(2γ). It is the thermal equilibrium value
of ⟨v(t)2⟩c and it should reproduce that obtained from statistical mechanism, i.e. ⟨v2⟩eqc =
kT/m = T/m. Thus we obtain A = 2γT/m and

⟨X(t1)X(t2)⟩ =
2γT

m
δ(t1 − t2). (2.54)

Eq. (2.54), which relates macroscopic observables to the microscopic random force, is known
as the fluctuation-dissipation relation [93].

It is known that the distribution of the velocity in the white noise approximation (2.50)
or (2.54) is given by a Gaussian, which is completely determined by the mean value and the
variance only, as

P (v, t|v0, t0) =
1√

2π⟨v(t)2⟩c
exp

(
−(v(t)− ⟨v(t)⟩c)2

2⟨v(t)2⟩c

)
. (2.55)

From Eqs. (2.52) and (2.53), the mean value and the variance of v relax as ⟨v⟩eqc = 0 and
⟨v⟩eqc = m/T with a relaxation time ∼ γ−1. Thus the distribution approaches to a stationary
distribution,

P (v)eq =
1√

2πT/m
exp

(
−mv2

2T

)
, (2.56)

which is consistent with the Maxwell-Boltzmann distribution.

Fokker-Planck equation

From the Langevin equation, one can derive a stochastic equation for a probability distri-
bution. In this subsubsection, we introduce a derivation of it from Eq. (2.47). Let us begin
with Ito’s formula, which is obtained by

df(v) = f(v + dv)− f(v)

=
∂f

∂v
dv +

1

2

∂2f

∂v2
dv2 = −γv

∂f

∂v
dt+ γ2T

β

∂2f

∂v2
dt, (2.57)

where terms higher than dt2 are neglected. Time evolution of an arbitrary function f(x, v)
is given by

∂⟨f(v)⟩
∂t

=

⟨
df(v)

dt

⟩
=

d

dt
⟨f(x, v)⟩ = −

⟨
γv

∂f

∂v
− γ2T

β

∂2f

∂v2

⟩
= −

∫
dv

[
γv

∂f

∂v
− γ2T

β

∂2f

∂v2

]
P (v, t|v0, t0)

=

∫
dvf(v)

[
∂

∂v
(γv) + γ2T

β

∂2

∂v2

]
P (v, t|v0, t0) (2.58)
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with a conditional probability distribution P (x, t|x0, t0). Also it is written by

d

dt
⟨f(v)⟩ =

∫
dvf(v)

∂

∂t
P (v, t|v0, t0). (2.59)

Comparing them, one finds

∂

∂t
P (v, t|v0, t0) = γP (v, t|v0, t0) + γv

∂

∂v
P (v, t|v0, t0) + γ2T

β

∂2

∂v2
P (v, t|v0, t0). (2.60)

This equation for the probability distribution function is called the Fokker-Plank equation.
One can also obtain the fluctuation-dissipation relation (2.54) from the fact that the Maxwell-
Boltzmann distribution (2.56) is a stationary solution of Eq. (2.60).

2.3.2 Stochastic diffusion equation

The stochastic diffusion equation (SDE) is a very useful tool to describe time evolution of
hydrodynamic slow variables, i.e. conserved charges. SDE for a charge density n(z, t) in the
Cartesian coordinates is obtained by the conservation law

∂

∂t
n(z, t) = − ∂

∂z
j(z, t) (2.61)

and a constitutive equation

j(z, t) = −D
∂

∂z
n(z, t) + ξ(z, t), (2.62)

with the current j(z, t), the diffusion constant D, and the stochastic force ξ(z, t). In the
macroscopic limit, Eq. (2.62) reproduces to a phenomenological relation called Fick’s law.
Substituting Eq. (2.62) into Eq. (5.39), SDE is obtained as

∂

∂t
n(z, t) = D

∂2

∂z2
n(z, t)− ∂

∂z
ξ(z, t). (2.63)

The relaxation time generally corresponds to the coefficient of the density. Therefore, in the
Fourier space, one finds typical time scale of relaxation in SDE is given by

τr = (Dq2)−1, (2.64)

where q is the Fourier conjugate to the position z. The result tells us that the relaxation time
in SDE becomes very large in the long wavelength limit. In this sense, SDE is suitable to
describe time evolutions of hydrodynamic conserved densities. This result also implies that
relaxation time varies according to the length scale. It is one of the important features of
diffusive processes.

Similar discussions in subsection 2.3.1 can be applied to SDE. If one takes an average of
SDE (2.63), it must agree with a diffusion equation without the stochastic force ξ. Thus

⟨ξ(z, t)⟩ = 0. (2.65)

We may also assume that time and spatial correlations are local and vanish in the macroscopic
time and length scales. Thus the correlation of the stochastic forces are given by

⟨ξ(z1, t1)ξ(z2, t2)⟩ = Bδ(z1 − z2)δ(t1 − t2), (2.66)
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with an unknown coefficient B. The magnitude of B is determined by a requirement that
the correlation of the solutions of Eq. (2.63) should approach to their thermal value in the
limit of a → ∞. Thus in a similar manner in subsection 2.3.1, one obtains

B = 2Dχ, (2.67)

where χ denotes the susceptibility of the charge density. From the result, the fluctuation-
dissipation relation in SDE is given by

⟨ξ(z1, t1)ξ(z2, t2)⟩ = 2Dχδ(z1 − z2)δ(t1 − t2). (2.68)

2.4 Critical fluctuations

When a system undergoes a second order phase transition, critical singular phenomena may
occur. For example, fluctuations (e.g. cumulants, susceptibilities and correlation functions)
of order parameters or ordering densities, which include hydrodynamic modes as mentioned
in subsection 1.1, diverge around the second order phase transition since the free energy
becomes flat near the transition [33].

In this section, we introduce a mean-field theory to describe critical phenomena of a system
with one order parameter σ. It is recognized that mean-field studies, in which fluctuations
of order parameters around their averages are neglected, are not correct in many cases [33].
Nevertheless, they provide useful insights of critical behaviors of more complicated system.

In subsection 2.4.1, we consider static critical phenomena near a second order phase tran-
sition and a tricritical point, both of which are important to understand critical behaviors in
QCD systems. We also consider a spatially inhomogeneous system to treat spatial correla-
tions and define the correlation length of fluctuations.

2.4.1 Statics: Ginzburg-Landau theory

The Ginzburg-Landau theory is a simple mean-field theory providing us a general framework
to describe critical phenomena. The concept of this theory is as follows: The free energy
density f(σ) is expressed by the order parameter σ, solely on the basis of underlying sym-
metries in a system. Assuming that f(σ) is an analytic function in σ, f(σ) can be written
by a Taylor series as

f(σ) =
∑
n

an(K)σn, (2.69)

near a second order phase transition where |σ| ≪ 1. We note that in this theory a minimum of
the free energy density corresponds to an equilibrium state. In other words, the equilibrium
state is a state such that the stationary condition ∂σf(σ) = 0 and the condition for the
minimum value ∂σf(σ)

2 > 0 are satisfied.

Second order phase transition

First, we consider a second order phase transition. For this case, the Landau free energy is
given by

f(σ) =
1

2
aσ2 +

1

4
bσ4 − hσ. (2.70)
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Fig. 2.2: Landau free energy around the second order phase transition for h = 0 (Left) and
h ̸= 0 (Right).

For a thermodynamic stability, b > 0 should be satisfied.
First, for simplicity, we consider a case of h = 0. In this case, the free energy density

f(σ) is invariant under a sign inversion of the order parameter σ ↔ −σ. Such a system has a
global symmetry called the discrete Z2 symmetry. In the right panel of Fig. 2.2, we show f(σ)
as a function of σ for different values of a. For a > 0, the free energy is parabolic and has
a single global minimum at σ = 0. On the other hand, for a < 0, two local minima σ+ and
σ− = −σ+ appear to stabilize the system. In this case, the free energy still has Z2 symmetry,
but the realized thermal state changes their sign with σ → −σ. It is called the spontaneous
symmetry breaking, and the two states, σ+ and σ−, are regarded as the symmetry breaking
phases at low temperature [33]. In this sense, a = 0 corresponds to the second order phase
transition. Thus we set a = a0(T −Tc) with a0 > 0, where T and Tc denote temperature and
critical temperature.

To see behavior of the equilibrium state in more detail, let us consider the stationary
condition for Eq. (2.70), which is given by

∂f(σ)

∂σ
= aσ + bσ3 − h = 0. (2.71)

Its solutions correspond to equilibrium states, and for h = 0 they are found to be

σ0(h = 0) =

{
0 (T ≥ Tc)

±
(
−a

b

)1/2
= σ± (T < Tc)

. (2.72)

This result shows that two equilibrium states below Tc is proportional to |T −Tc|1/2 and they
take the same absolute value for different signs.

Next, we consider a case of h ̸= 0, i.e., the Z2 symmetry is explicitly broken. The left
panel of Fig. 2.2 shows the free energy density for h = 0 and different values of a. For this
case, an equilibrium state is found to be

σ0(h ̸= 0) =
h

a
S

(
a

(bh2)1/3

)
, (2.73)

where S(x) is a function that behaves as S(x) → 1 for |x| → ∞ and

S(x) ≃
{

x (T ≥ Tc)
|x|3/2 (T < Tc)

. (2.74)
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Fig. 2.3: Phase diagram in (a, b) plane and associated form of free energy for h = 0 (Left)
and h ̸= 0 (Right). Shaded region expresses symmetry broken phase.

for x ≃ 0. This result shows that the equilibrium state changes smoothly around Tc. It
indicates that the boundary between the symmetric and the broken phases is smeared, and
thus the second order transition changes to a smooth crossover [34].

Finally, let us derive the second-order susceptibility of σ, which is the response to the
external field h. Using Eq. (2.71), the susceptibility is derived as

χ =
∂σ0(h)

∂h
=


1

a
∝ |T − Tc|−1 (T ≥ Tc)

− 1

2a
∝ |T − Tc|−1 (T < Tc)

, (2.75)

where σ0(h) is the solutions of Eq. (2.71). The result (2.75) shows that the susceptibility for
h = 0 diverges at the critical temperature T = Tc. In this sense, fluctuations are sensitive to
the critical phenomena.

Tricritical behavior

To describe the critical phenomena around a tricritical point, we consider a case that the
coefficient of σ4 term can be negative. In this case, we should take into account σ6 term for
a thermodynamic stability,

f(σ) =
1

2
aσ2 +

1

4
bσ4 +

1

6
cσ6 − hσ, (2.76)

where a = a0|T − Tc| with a0 > 0 and c > 0. In the left panel of Fig. 2.3, we show the phase
structure in the (a, b) plane and the corresponding form of the Landau free energy (2.76) for
h = 0.

Let us see behaviors of the Landau free energy (2.76). For simplicity, we first consider
the case of h = 0. The stationary condition of Eq. (2.76) is given by

∂f(σ)

∂σ
= aσ + bσ3 + cσ5 − h = 0. (2.77)

and its solution for h = 0 is found to be

σ0(h = 0) =


0 (T ≥ Tc)

±
(
−b±

√
b2 − 4ac

2c

)1/2

(T < Tc)
. (2.78)
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Fig. 2.4: Schematic phase diagram in (a, b, h) space.

For b > 0, the system undergoes a second order phase transition at a = 0, as discussed in
subsubsection 2.4.1. On the other hand, for b < 0, the free energy density shows different
behaviors. When a has a large value, the free energy has a simple form with a global minimum
at σ = 0. As a decreases, i.e. T decreases, two local minima at σ ̸= 0 emerge in the free
energy. These local minima correspond to metastable states, and they appear at a = b2/4c.
As a decreases further, two minima at σ ̸= 0 become smaller than the minimum at σ = 0 for
a < 3b2/16c. In other words, equilibrium state changes discontinuously from σ = 0 to σ ̸= 0.
It indicates the first order phase transition occurs at a = 3b2/16c. For 0 < a < 3b2/16c, there
are one metastable at σ = 0, but it disappears at a = 0 and two minima at σ ̸= 0 are left.
The existence of the metastable state is one of the characteristic features of the first order
phase transition. These discussions are summarized in Fig. 2.3, and the second order line
and first order line for h = 0 given by

a = 0, b > 0, h = 0 (second order line), (2.79)

a =
3b2

16c
, b < 0, h = 0 (first order line) (2.80)

are shown as solid lines, and regions where the metastable states are divided by two dashed
lines, (a = b2/4c, b < 0) and (a = 0, b < 0) At b = 0, one finds that the second and first
order lines are smoothly connected with each other at a = 0, which show a tricritical point
at (a, b) = (0, 0).

Next, let us consider a case with a small external field h ̸= 0. In this case, the second
order phase transition disappears and changes to a crossover transition, as discussed in sub-
subsection 2.4.1. On the other hand, it is known that the first order phase transition line does
not disappear but it shifts [1] as shown in the right panel of Fig. 2.3. The endpoint of the first
order line is called the critical point, where σ undergoes a second order phase transition. In
terms of the free energy, two minima at σ > 0 approach with each other, and they eventually
form a global minimum at the critical point [1]. As the magnitude of the external force
increases, the location of the critical point moves farther away from the tricritical point [1].
In Fig. 2.4, we show the schematic diagram in the (a, b, h) plane. The planes at h = 0 and
h ̸= 0 correspond to the left and right panels of Fig. 2.3, respectively. In the (a, b, h) plane,
the tricritical point is located at (a, b, h) = (0, 0, 0). For (a, b, h) = (0, b > 0, 0), there is a
second order phase transition line as shown in the left panel of Fig. 2.3. For b < 0, two second
order lines, which are formed by the critical point, start from the tricritical point along the
direction of (b < 0, h > 0) and (b < 0, h < 0). Three critical line thus are smoothly connected
at the tricritical point. The name of tricritical point originates from this. In Fig. 2.4, the
two second order lines correspond to the edge of the wing-like shaded surface. This surface
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where the first order transition takes place.
The edge of the wing surface is determined by the following conditions:

∂f(σ)

∂σ
=

∂2f(σ)

∂σ2
=

∂3f(σ)

∂σ3
= 0. (2.81)

Eq. (2.81) is the condition that the potential is flat. These conditions leads to

a = 5cσ4, b = −10

3
cσ2, h =

8

3
cσ5, (2.82)

and thus

h = ±8c

3

( a

5c

)5/4
= ±8c

3

(
−3b

10c

)5/4

(critical point line). (2.83)

Inhomogeneous system

So far we have implicitly assumed homogeneity in space. Now we consider an order param-
eter with spatial dependence, σ(z), and calculate the susceptibility of σ(z) for a spatially
inhomogeneous system.

For a spatially inhomogeneous system, the Landau free energy is given by

F [σ] =

∫
dz

[
1

2
aσ(z)2 +

1

4
bσ4 +

1

2
κ(∇σ(x))2 − hσ(z)

]
. (2.84)

for a = a0|T − Tc| with a0 > 0 and b > 0. For this case, instead of Eq. (2.71), the stationary
condition reads

δF [σ]

δσ
= [a+ bσ(z)2 − κ∇2]σ(z)− h = 0, (2.85)

where δ/δσ denotes a functional derivative. This equation is called the Ginzburg-Landau
equation [33]. To solve Eq. (2.85), we linearize it. For small deviations from homogeneous
solutions for h = 0 (2.72), σ(z) = σ0 + δσ(z), linearized equation is given by [33]

δh(z) ≈ (a+ 3bσ2
0 − κ∇2)δσ(z). (2.86)

In the Fourier space, one obtains the response function to the external filed in the linear
approximation as

χ(q) =
δσ(q)

δh(q)
=

1

a+ 3σ2
0 + q2

≡ 1

ξ−2 + q2
. (2.87)

Here ξ denotes the correlation length, with which the correlation function is expressed as

⟨σ(z)σ(0)⟩c ∼
e−|z|/ξ

4π|z|(d−1)/2
. (2.88)

The correlation length ξ shows the following behaviors

ξ =


1

a1/2
∝ |T − Tc|−1/2 (T ≥ Tc)

1

2a1/2
∝ |T − Tc|−1/2 (T < Tc)

. (2.89)

Comparing Eqs. (2.75) and (2.89), one finds that the susceptibility (2.75) quadratically di-
verges with the correlation length at the mean-field level.
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2.4.2 Dynamics: time-dependent Ginzburg-Landau equation

In the previous subsection, we considered critical phenomena in equilibrium states. As seen
in Eqs. (2.75) and (2.89), correlation length of order parameters diverges around a second
order phase transition in an equilibrium, and it also causes a divergent behavior in suscepti-
bilities. At the same time, time evolution of the order parameters becomes slow, which is a
phenomenon called critical slowing down [33]. To describe such slow and collective dynamics
of a many body system, the concept of the Langevin equation (2.47) is suitable.

In the Landau functional, a set of hydrodynamic slow variables, i.e., order parameters and
conserved quantities, are only macroscopic variables, and other fast variables are regarded as
microscopic random forces. In this case, the critical dynamics is described by the non-linear
Langevin equation

∂σ(x)

∂t
= −γ(z)

δF [σ]

δσ(z)
+ ξ(z, t) (2.90)

This phenomenological equation is called the time-dependent Ginzburg-Landau (TDGL)
equation [94]. In Eq. (2.90), γ is the transport coefficient of σ(z). The form of γ de-
pends on whether the considering variable is conserved or non-conserved. The correlation
of the stochastic force ξ(z, t) is local in spacetime and its magnitude are determined by the
fluctuation-dissipation theorem as

⟨ξ(z, t)⟩ = 0, ⟨ξ(z1, t1)ξ(z2, t2)⟩ = 2Tγ(z1 − z2)δ(t1 − t2). (2.91)

For simplicity, we consider the case of Eq. (2.84) with b = 0. Then Eq. (2.90) in the
Fourier space is written by

∂σ(q)

∂t
= −(a+ κq2)γ(q)σ(q) + ξ(q, t). (2.92)

The relaxation time of σ(z) corresponds to the coefficient of the σ(z). Therefore it is given
by

τr =
1

(a+ κq2)γ(q)
. (2.93)

The relaxation time in the long wavelength limit q → 0 is

τr =
1

aγ(0)
∼ |T − Tc|−1. (2.94)

if Γ(q) stays finite with this limit. It shows that the relaxation time diverges near the second
order phase transition, which is called the critical slowing down.

Suppose that there are some slow variables in a given system; such a situation is relevant
in QCD. Firstly, for this case, one should take into account a streaming term in Eq. (2.90) [33].
This term is non-dissipative and causes a non-linear coupling between slow variables. The
magnitude of this term is determined by Poisson-bracket relations between slow variables [39].
Such a non-linear coupling leads to a strong increase of the transport coefficient and governs
the critical dynamics. In addition to the non-dissipative term, there also exists a dissipative
one in the first term of the TDGL equation (2.90) [39]. This term arises from the coupling
between slow variables in the Landau free energy. This non-linear coupling results in the
critical slowing down of the transport coefficient.



Chapter 3

Fluctuations in QCD

In the previous chapter, we discussed general aspects of fluctuations in both non-critical and
critical cases. In this chapter, we discuss fluctuations in QCD by applying the results and
theory discussed in the previous chapter. In Sec. 3.1, we first see properties of non-critical
cumulants in QCD based on the great review [73]. We show that ratios of the cumulants
in a deconfined medium are much smaller than those in a hadronic one. In Sec. 3.2, static
and dynamic critical phenomena near the QCD critical point is reviewed. We discuss the
ordering density and fluctuations of conserved charges near the QCD critical point based of
the original papers [37, 38]. We also derive an equation which properly describes conserved-
charge fluctuations near the QCD critical point. In Sec. 3.3, we introduce some stochastic
equations to describe fluctuations of conserved charges in relativistic heavy ion collisions.

3.1 Non-critical fluctuations in equilibrium in QCD

In this section, we consider thermal fluctuations of conserved charges in a hadronic and
deconfined medium, in order. The conserved charges we consider in this section are the net-
baryon number, the net-electric charge, and the net-strange number, which are conserved
in QCD. We also consider a system consisting of a classical free gas of particles in a grand-
canonical ensemble. As briefly mentioned in Sec. 2.2, a similar situation is realized in heavy
ion collisions where a small subsystem in the mid-rapidity region exchanges particles and
energy with the rest of the system. Also, quantum statistical effects are almost negligible for
typical values of temperature and density reached at heavy ion collisions [73,77]. Therefore,
we can utilize results in Sec. 2.2.

3.1.1 Fluctuations in hadronic gas

First, let us consider a medium at low temperature and low chemical potential. As explained
in subsection 1.1, fundamental degrees of freedom of such a medium is hadrons. We now
assume that all the hadrons satisfy the condition (2.39) and interactions between hadrons
can be neglected. For this case, the thermodynamics of the medium is well-described by the
grand-canonical ensemble for a non-interacting classical gas, as seen in subsection 2.2.2:

−ωH

T
=
∑
j

gj

∫
d3p

(2π)3
e−(E(p)−q

(j)
B µB−q

(j)
Q µQ−q

(j)
S µS)/T , (3.1)

– 32 –



3.1 Non-critical fluctuations in equilibrium in QCD 33

which is the grand potential for the so-called hadron resonance gas (HRG) model [52]. Here
the sum covers all known species of hadrons [2]. In QCD, there are three conserved charges;
the net-baryon number, net-electric charge and net-strange number. Thus we introduced the
corresponding three chemical potentials µB, µQ, and µS. gj represents the number of internal

degrees of freedom of a hadron labeled by j. q
(j)
i with i=B, Q, and S denotes the baryon

number, the electric charge, and the strange number carried by a hadron j, respectively.
There are some important features of HRG model: First, the grand potential for this model
(3.1) contains all known hadrons including resonant states as free particles. Thus effects of
interactions among them are effectively incorporated [94]. Second, in heavy ion collisions,
all hadrons except for pions with the mass mπ ≃ 140 MeV satisfy the condition (2.39) after
chemical freeze-out. This argument is supported by experimental results in RHIC [53, 95].
Finally, thermodynamic quantities calculated by HRG model show good agreements with
those by the lattice QCD calculations below pseudo-critical temperature T ≲ Tc ≃ 150 MeV
at vanishing chemical potential [11].

In a similar manner as in subsection 2.2.2, cumulants of conserved charges in HRG model
are easily calculated. First, let us consider the cumulants of the net-baryon number in
HRG model. Among hadrons, baryons and anti-baryons carry the net-baryon number, while
mesons do not. Since the baryon number carried by baryons and anti-baryons are q(B) = +1
and q(B) = −1, respectively, the cumulants of the net-baryon number in HRG model are
found to be

⟨Qn
B,net⟩c =

∂n(−ωH/T )

∂(µB/T )n
V =

[
−ωB

T
+ (−1)n

(
−ωB̄

T

)]
V

= ⟨N (B)⟩c + (−1)n⟨N (B̄)⟩c. (3.2)

from Eq. (2.45). Here ωB(B̄) and N (B,B̄) represent a grand potential for baryons (anti-baryons)
and the particle number of the baryon (anti-baryon), respectively. Eq. (3.2) shows that all
the odd or the even order cumulants are equivalent, which indicates that the cumulants of the
net-baryon number in HRG model are determined by a Skellam distribution (see Appendix B
for properties of Skellam distributions). Consequently, ratios of the odd or the even order
cumulants are unity as

⟨Q2n−1
B,net⟩c

⟨QB,net⟩c
= 1,

⟨Q2n
B,net⟩c

⟨QB,tot⟩c
= 1 (in HRG) (3.3)

for integer n. Here QB,tot = N (B) +N (B̄) represents the total number of the baryons.
Similarly, we calculate the cumulants of the net-electric charge. For simplicity, let us first

consider a pion gas system. For this case, the cumulants of the net-electric charge are also
determined by a Skellam distribution:

⟨Qn
Q,net⟩c = ⟨N (π+)⟩c + (−1)n⟨N (π−)⟩c. (3.4)

Hence, ratios of the cumulants are given by

⟨Q2n−1
Q,net⟩c

⟨QQ,net⟩c
= 1,

⟨Q2n
Q,net⟩c

⟨QQ,tot⟩c
= 1 (in a classical free gas of pions) (3.5)

for integer n with the total charge QQ,tot = N (π+) +N (π−).
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In reality, there are baryons which carry an electric charge q
(i)
Q = ±2 in addition to those

carrying q
(i)
Q = ±1. Thus, the cumulants of the net-electric charge in HRG model is given by

⟨Qn
Q,net⟩c =

∂n(−ωH/T )

∂(µQ/T )n
V

= ⟨N (qQ=1)⟩c + (−1)n⟨N (qQ=−1)⟩c + 2n
[
⟨N (qQ=2)⟩c + (−1)n⟨N (qQ=−2)⟩c

]
, (3.6)

where N (qQ=q) denotes the number of particle with the electric charge q. The second term
is the contribution from baryons with q

(i)
Q = ±2, and it leads to deviate from a Skellam

distribution. However, in heavy ion collisions, this contribution is well suppressed owing to
their heavy masses [73]. The quantum statistics, e.g. the Bose-Einstein statistics of pions, also
causes the deviation from a Skellam distribution [73,77]. On the other hand, for temperature
and density reached at heavy ion collisions, the Fermi-Dirac statistics of baryons have little
effects on the cumulants of the net-electric charge [73].

In heavy ion collisions, the cumulants in HRG model are usually used as a baseline to
compare with experimental results [80–82]. It is because deviations from the cumulants
in HRG model indicate experimental signals of non-hadronic, non-thermal, and/or critical
phenomena.

3.1.2 Fluctuations in deconfined medium

Next, we consider cumulants in a system composed of quarks and gluons. Assuming extremely
high temperature, quarks and gluons may behave as free particles because of the asymptotic
freedom of QCD. For this case, if we neglect effects of the quantum statistics, cumulants of
net-quark number are given by a Skellam distribution as those of the net-baryon number in
HRG model as

⟨Nn
q,net⟩c = ⟨N (q)⟩c + (−1)n⟨N (q̄)⟩c. (3.7)

where N (q,q̄) represents the particle number of quarks (anti-quarks). The net-quark number
is related to that of the net-baryon as 3Nq(q̄) = NB(B̄). Consequently, from Eq. (3.2), one
obtains the cumulants of the net-baryon number in the deconfined medium as

⟨Qn
B,net⟩c =

1

3n
[
⟨N (q)⟩c + (−1)n⟨N (q̄)⟩c

]
. (3.8)

Ratios of the cumulants in the deconfined medium are thus given by

⟨Q2n−1
B,net⟩c

⟨QB,net⟩c
=

1

32n−2
,
⟨Q2n

B,net⟩c
⟨QB,tot⟩c

=
1

32n−1
(in a classical free gas of quarks and gluons). (3.9)

These results show that the cumulants of the net-baryon number in a free quark (and gluon)
gas are significantly suppressed compared with those in the hadronic gas. Even if the quantum
statistics are taken into account, the suppression of cumulants in the deconfined medium is
not altered. (See, e.g. Ref. [73] for detailed effects of the Fermi-Dirac statistics of quarks on
fluctuations.)

Next, we consider cumulants of the net-electric charge. Since quarks have the electric
charge qQ = ±1/3,±2/3 depending on their flavor, the cumulants of the net-electric charge
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are given by

⟨Qn
Q,net⟩c =

∑
f

q
(f)
Q

n
[
⟨N (f)⟩c + (−1)n⟨N (f̄)⟩c

]
. (3.10)

Here we again neglected effects of the quantum statistics. To further proceed, we consider
two flavor QCD and assume that the particle number of up and down quarks (anti-quarks)
are equivalent, N (u),(ū)N (d),(d̄) For this case, the cumulants of the net-electric charge are

⟨Qn
Q,net⟩c =

(
2

3

)n [
⟨N (u)⟩c + (−1)n⟨N (ū)⟩c

]
+

(
1

3

)n [
⟨N (d)⟩c + (−1)n⟨N (d̄)⟩c

]
(3.11)

=
2n + 1

3n
[
⟨N (u)⟩c + (−1)n⟨N (ū)⟩c

]
. (3.12)

We now also assume that entropy is always conserved and that all the quarks and gluons
are confined into pions after the phase transition. For this case, the total number of charged
particles in the pion gas is given by ⟨QQ,tot⟩c = 2/3⟨Ntot⟩c with the total particle number
⟨Ntot⟩c. On the other hand, the total number of charged particles in a gas composed of free
light quarks and gluons are given by ⟨N (u)⟩c + ⟨N (ū)⟩c = 12/40⟨Ntot⟩c because quarks have
24 degrees of freedom, which are 2 flavors, 3 colors, 2 spins and quark-anti-quark pairs, and
gluons have 16 degrees of freedom, which are 8 colors and 2 polarizations. Then one obtains
the following relation between the total numbers of charged particles,

3

2
⟨QQ,tot⟩c =

40

12

[
⟨N (u)⟩c + ⟨N (ū)⟩c

]
. (3.13)

Using this result, one finds that the cumulants of the net-electric charge in a free classical
gas of light quarks and gluons are given by [59]

⟨Q2n−1
Q,net⟩c

⟨QQ,net⟩c
=

22n−1 + 1

32n−1
,
⟨Q2n

Q,net⟩c
⟨QQ,tot⟩c

=
22n + 1

20 · 32n−2
(in a classical free gas of quarks and gluons).

(3.14)

In this case, the cumulants of the net-electric charge are much smaller compared to those in
a free pion gas.

Numerical calculations of the ratios of the cumulants of the conserved charges are carried
out in the lattice QCD Monte Carlo simulations [27, 96–101]. In Fig. 3.1, we show a recent
result on the ratio of the fourth- and the second-order cumulants of the net-baryon number
on the lattice QCD [96]. Fig. 3.1 shows that the value of the ratio is consistent with those in
HRG model (3.3) below the pseudo-critical temperature Tc ≃ 150 MeV. On the other hand,
one finds that the ratio approaches the value in the non-interacting quark gas (3.9) above Tc.
This result suggests that the system below Tc is described by hadronic degrees of freedom,
and the non-hadronic nature emerges above Tc.

In this way, fluctuations of conserved charges are very sensitive to microscopic properties of
a system and thus useful to diagnose fundamental degrees of freedom underlying the system.
There is a possibility that the significant suppression observed in experimental results on the
D-measure at the LHC as shown in the right panel of Fig. 1.7 shows these small cumulants
in the primordial deconfined medium.
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Fig. 3.1: Ratio of the fourth- and second-order susceptibilities of the net baryon number
χB
4 /χ

B
2 = ⟨N4

B.net⟩c/⟨N2
B.net⟩c as a function of temperature calculated on the lattice. The

black symbols labeled by “WB continuum limit” correspond to the continuum extrapolation.
(Figure from Ref. [96].)

3.2 Fluctuations near QCD critical point

As mentioned in Sec. 1.1, in the QCD with massless two flavor, chiral symmetry is exact.
Consequently, chiral symmetry serves as an order parameter of a QCD system. On the other
hand, in the real world, it is non-trivial because of the explicit chiral symmetry breaking.
In Refs. [36–38], the order parameters and both static and dynamic critical phenomena in
the QCD phase diagram are discussed. In this section, we briefly review the results of
Refs. [36–38]. In subsection 3.2.1, we see that the ordering density of QCD with finite quark
masses is given by a linear coupling of the chiral condensate and conserved densities, and that
all the fluctuations of hydrodynamic slow densities diverge with the same critical exponent
in this case. Through this chapter, we discuss in the Cartesian coordinates.

3.2.1 Ordering density in QCD

In QCD, the Landau free energy density is given by the same form as in Eq. (2.76) but is
modified as

f(σ) =
1

2
a(T, µB)σ

2 +
1

4
b(T, µB)σ

4 +
1

6
c(T, µB)σ

6 − h(mq)σ, (3.15)

where we neglect the pseudoscalar density in the mean-field approximation. T , µB and mq

represent the temperature, the baryon chemical potential, and the quark mass, respectively.
In the chiral limit, QCD has an exact chiral symmetry: It corresponds to the Landau free
energy Eq. (3.15) with h = 0, and the phase diagram has the tricritical point at (a = b =
h = 0) as shown in the left panel of Fig. 2.3. Also the chiral symmetric and the broken
phases should be divided by the O(4) critical line determined by Eq. (2.79) and the first
order one determined by Eq. (2.80). On the other hand, the QCD phase diagram with the
explicit chiral symmetry breaking is described by Eq. (3.15) with h ̸= 0, and thus the QCD
critical point corresponds to the Z2 critical lines determined by Eq. (2.83), which form the
edges of the wing-like surfaces of the first order phase transitions in Fig. 2.3. In this case,
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Fig. 3.2: Schematic phase diagram in (T, µ,mq) plane.

the conserved energy density ϵ ≡ T 00, the momentum density πi ≡ T 0i, and the conserved
baryon number density n ≡ q̄γ0q, should be included in theory [37, 38] in addition to the
chiral condensate σ ≡ q̄q. In Eq. (3.15), the conserved densities implicitly exist as functions
of σ2 owing to the symmetry [37]. In the (T, µB,mq) plane, these constructions are illustrated
in Fig. 3.2.1.

To define order parameters, let us introduce local response functions χij ≡ −∂i∂jf(σ),
which are expressed by a 3 × 3 matrix (i, j = h, a, b) [37] as

χij = − ∂2f

∂i∂j
= χhh

 1 σ0 σ3
0

σ0 σ2
0 σ4

0

σ3
0 σ4

0 σ6
0

 , χhh ≡ 1

a+ 3bσ2
0 + 5cσ4

0

. (3.16)

Here σ0 denotes the solution of the stationary condition (2.77). By using Eqs. (2.78) and
(2.79), all the susceptibilities except χhh vanish when the system approaches from the sym-
metric phase (T ≃ Tc) to the O(4) critical line. Thus no singularity exists in the susceptibil-
ities of conserved densities because T and µB, which are expressed by a and b, are conjugate
fields of the energy density and the baryon number, respectively [37]. In contrast, if the O(4)
critical line is approached from the broken phase, χhh diverges and χaa = 4/3b are nonvan-
ishing because σ2 = −a/b → 0. When the tricritical point is approached from the broken
phase with b = h = 0 and σ4 → −a/c, χhh and χaa diverge as ∼ 1/|a| and ∼ 1/|a|1/2, respec-
tively, while χbb has no singularity. It indicates that the susceptibility of the linear coupling
of the energy and baryon densities conjugate to a diverges. Thus both the σ and this linear
coupling of conserved densities are the ordering densities of the tricritical point [37]. At the
Z2 critical lines where σ ̸= 0, all the susceptibilities show singularities as χhh → 0. It shows
that the ordering density in the Z2 phase transition is the linear coupling of all the densities,
and thus the divergences of susceptibilities of other conserved densities coupling to the chiral
order parameter σ can occur [36].

3.2.2 Time evolution of the baryon number density near the crit-
ical point

Now we know that the linear coupling of σ, nB, and the energy-momentum density play a
role of the order parameter in QCD. Because of the mixing of them, dynamics near the QCD
critical point becomes complicated. To understand that, we consider dynamical critical phe-
nomena near the QCD critical point. For simplicity, we first neglect the energy-momentum
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tensor and employ the Gaussian model [33]. Then the Landau free functional is given by [38]

F [σ] =

∫
dz

[
a

2
σ2 + bσn+

c

2
n2 +

A

2
(∇σ)2 +B(∇σ)(∇n) +

C

2
(∇n)2 −mqσ − µn

]
,

(3.17)

where parameters a, b, c, A,B,C are functions of the temperature T and the baryon chemical
potential µ. Here we explicitly write down the coupling term Bσn.1

In a similar manner as in subsection 2.4.2, the linearized TDGL equations for σ and n
are given by

σ̇(q) = γσσ(q)Xσ(q)− γσn(q)Xn(q) + ξσ(q), (3.18)

ṅ(q) = γnσ(q)Xσ(q)− γnn(q)Xn(q) + ξn(q), (3.19)

where γσn = γnσ because of Onsager’s principle. The noise correlators are given by

⟨ξi(z1, t1)ξj(z2, t2)⟩c = 2γijδ(z1 − z2)δ(t1 − t2), (3.20)

with γij being the transport coefficients for i, j = σ, n. It is known that time evolution of
non-conserved quantities is relaxational type. On the other hand, those of conserved ones
are diffusive because conservation laws for them must be satisfied. From these reasons, we
set transport coefficients for small momenta as γσσ(q) = Γ+O(q2), γσn(q) = λ̃+O(q4), and
γnn(q) = λ+O(q4). As a result, one obtains linearized equations to leading order in the long
wavelength limit as

σ̇ = −Γaσ − Γbn+ ξσ, (3.21)

ṅ = −Γbn− (λ̃a+ λb)∇2σ − (λ̃b+ λc)∇2 + ξn (3.22)

where Γ, λ̃, λ > 0. As mentioned in subsection 2.4.2, the second term in Eqs. (3.21) and (3.22)
is dissipative coupling term, which arises from the second term of the potential (3.17). Solv-
ing eigenvalues problems of Eqs. (3.21) and (3.22), one finds two eigenmodes with different
frequency scales near the critical point:

v1 =

(
1
0

)
with ω1 = −iΓa, (3.23)

v2 =

(
−b
a

)
with ω2 = −iλ

∆

a
q2. (3.24)

Here ∆ ≡ AC − B2 → 0 near the critical point. The first mode is relaxational because its
frequency is given by a constant. This mode corresponds to σ field alone. On the other hand,
the second mode is diffusive because its frequency is proportional to q2. This mode relaxes
with a hydrodynamic relaxation time τr2 ∼ (Dq2)−1 with the diffusion constant

D = λ
∆

a
, (3.25)

1In this functional (3.17), ∆ ≡ AC − B2 = 0 is satisfied because potential becomes quadratic near the
critical point. At the transition, the flat direction of the free energy is σ/n = −B/A = −C/B, which
are derived by the stationary conditions. The correlation functions of σ and n for q → 0 are found to be
χσ = ∂mqσ0 = c/∆ and χn = ∂µn0 = a/∆. Here σ0 and n0 are the solutions of the stationary conditions.

The correlation length are obtained in a similar manner in subsubsection 2.4.1 as ξ ∼ ∆−1/2.
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with ∆ = ac − b2. Near the critical point, ∆ → 0, the diffusion coefficient goes to zero,
which is the critical slowing down. Accordingly, in the long wavelength limit, this mode
relaxes much slowly with a hydrodynamic time scale τr2 ∼ (Dq2)−1 → ∞. Around the phase
transition, this mode is the flat direction of the free energy (3.17). From the results, one
understands the relaxation process of σ and n in the long wavelength limit q → 0: First, σ
alone fall down to the bottom of the potential at a shorter time scale τr1 ∼ (ΓA)−1. After
then, n approaches to an equilibrium state at much longer time scale τr2 ∼ (Dq2)−1 → ∞.
At this time, σ just traces the profile of n because this relaxation process is governed by
n. Indeed, the hydrodynamic equation for n (3.22) is rewritten by the one with no coupling
term as

∂tn(z, t) = D∇2n(z, t) +∇ξ′n(z, t), (3.26)

with ∇ξ′n(z, t) = ξ(z, t). This equation is equivalent to SDE (2.63). It indicates that time
evolution of the net-baryon number fluctuations near the critical point is described by the
ordinary stochastic diffusion equation for n solely in the long wavelength limit.

Now we incorporate the energy-momentum density. It is known that among the energy-
momentum density, two transverse components of the momentum densities relax diffusively.
Using a similar discussion as in σ and n, only the transverse components of momentum
densities become hydrodynamical for small momenta q. Consequently, there are two hydro-
dynamic modes near the QCD critical point, the conserved baryon density, and the conserved
transverse momentum densities. It is the same set of hydrodynamic variables with the liquid-
gas phase transition, which belongs to the dynamic universality class of model H in Hohenberg
and Halperin’s classification [39]. As a result, the baryon number density obeys SDE with
the diffusion constant D with critical exponents of the model H near the QCD critical point
in the linearized approximation.

3.3 Time evolution of fluctuations of conserved charged

in relativistic heavy ion collisions

Event-by-event fluctuations of conserved charges are expected to be promising observables
to characterize the microscopic nature of a system and to explore the QCD critical point.
Since the fluctuation observables in relativistic heavy ion collisions are essentially dynamical,
it is important to understand their dynamical properties for extracting information on the
QCD phase structure. Indeed, recent experimental results on the variance of the net-electric
charge at the ALICE suggests the cumulants of conserved charges as a function of the rapidity
interval are not equilibrated in the final stage in heavy ion collisions. In this chapter, we
introduce some useful equations to describe time evolution of cumulants of conserved charges
in relativistic heavy ion collisions.

3.3.1 Stochastic diffusion equation in Bjorken flow

SDE is a useful equation to describe time evolution of conserved-charge fluctuations. As
discussed in Sec. 1.2, it is known that the system created in relativistic heavy ion collisions
is well-described by the Bjorken model. Useful coordinate to describe a spacetime picture of
such a system is (τ, ys) coordinates, which are defined in Eq. (1.3).
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In this subsection, we derive SDE in the (τ, ys) coordinates to describe time evolution of
cumulants in heavy ion collisions. Let us start from the conservation law,

∂µ(n(z, t)u
µ) = −∂µj

µ, (3.27)

with the charge density n(z, t) in the Cartesian coordinates and the charge current jµ. Here
uµ = γ(1,v) with γ = 1/

√
1− v2 is the local fluid velocity which satisfies uµuµ = 1. We

assume that a constitutive equation is given by

jµ = D∇µn(z) + ξµ. (3.28)

with the gradient ∇µ = ∂µ−uµu
ν∂ν and metric gµν = diag(1,−1,−1,−1). ξµ is the stochas-

tic noise current. In the local rest frame, i.e. uµ = (1, 0, 0, 0), SDE in the Cartesian coordi-
nates (2.63) is obtained from Eqs. (3.27) and (3.28).

t and z are written in terms of τ and η as

t = τ cosh ys, z = τ sinh ys. (3.29)

The local fluid velocity uµ is then given by

uµ = γ(1, 0, 0, vz) = (t/τ, 0, 0, z/τ) = (cosh ys, 0, 0, sinh ys), (3.30)

with vz = z/t. It is called Bjorken’s flow.
Using

∂µ =

(
∂
∂t
∂
∂z

)
=

(
cosh ys − sinh ys
− sinh ys cosh ys

)(
∂
∂τ

1
τ

∂
∂ys

)
, (3.31)

one obtains the following relations

∂µu
µ =

1

τ
, uµ∂µ =

∂

∂τ
. (3.32)

With the help of Eq. (3.32), Eq. (3.27) is rewritten as(
∂

∂τ
+

1

τ

)
n(z, t) =

1

τ

∂

∂τ
(n(z, t)τ) = −∂µj

µ. (3.33)

By differentiating Eq. (3.28), one finds

∂µj
µ = D∂µ∇µnτ + ∂µξ

µ = D∇µ∇µn(z, t) + ∂µξ
µ. (3.34)

We now assume that the noise current has only the ys component in the (τ, ys) coordi-
nate. Then, from the fact that n(z, t) and ξ(z, t) have the same dimension, the noise cur-
rent is given by ξµ = (sinh ys, 0, 0, cosh ys)ξ(z, t). Then, using that ∇µ∇µ = −τ−2∂2

ys and
∂µ(sinh ys, 0, 0, cosh ys) = τ−1∂ys , Eq. (3.34) is rewritten as

∂µj
µ = −D

τ 2
∂2

∂y2s
n(z, t) +

1

τ

∂

∂ys
ξ(z, t). (3.35)
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Combining Eqs. (3.33) and (3.35), one finds that

∂

∂τ
(n(z, t)τ) =

D

τ 2
∂2

∂y2s
(n(z, t)τ)− 1

τ

∂

∂ys
(ξ(z, t)τ) (3.36)

If we set n(z, t)τ = n(ys, τ), ξ(z, t) = ξ(ys, τ), and Dτ−2 = D(τ), we obtains SDE in the
(τ, ys) coordinates as

∂

∂τ
n(ys, τ) = D(τ)

∂2

∂y2s
n(ys, τ)−

∂

∂ys
ξ(ys, τ). (3.37)

In Chap. 5, we use Eq. (3.37) to describe fluctuations of conserved-charges in heavy ion
collisions when the created system pass near the QCD critical point.

3.3.2 Diffusion master equation in heavy ion collisions

The Langevin equation and SDE describe various dynamical fluctuations. However, there
is a fatal disadvantage in these equations: They cannot treat higher-order cumulants which
are observed in actual experiments. It originates from the assumptions (2.50) and (2.68).
In Eqs. (2.50) and (2.68), we assume that the stochastic force is temporarily local. On the
other hand, it is known from a general argument for a Markov process that the fluctuation
of Eq. (5.5) in an equilibrium becomes Gaussian unless the diffusion coefficient explicitly
depends on the charge density [62, 90]. To describe time evolution of the higher-order cu-
mulants, we should employ stochastic equation with discrete nature or use a colored noise
correlation, which is not temporarily local [62].

One of the candidates which enable us to treat higher-order cumulants appropriately
is the diffusion master equation (DME), which is a Brownian motion model with discrete
particle number. Let us briefly introduce a model of DME in a one-dimensional system.
We consider a system divided into discrete cells with an equal finite length. We denote the
particle number existing in the m-th cell as nm and the probability distribution that each
cell contains nm particles as P (n, τ) with n = (· · · , nm, · · · ). Now, we assume that each
particle moves to the adjacent cells with probability γ(τ) per unit proper time, as a result of
microscopic interactions. The probability P (n, τ) then obeys the differential equation

∂τP (n, τ) = γ(τ)
∑
m=0

[(nm + 1){P (n+ em − em+1, τ)

+ P (n+ em − em−1, τ)} − 2nmP (n, τ)]
]
, (3.38)

where em is a unit vector whose components are all zero except the m-th one, which is
unity. This equation is called DME. In the continuum limit, the first- and the second-
order cumulants of the analytic solution of Eq. (4.3) are consistent with those derived from
SDE [62, 75]. It is known that the equilibrium values of charge cumulants with DME in an
infinitely long system are equivalent to those in a Poisson or a Skellam distribution [62,73,74].
Therefore, this equation is suitable to describe a system in QCD, which is well-described by
a classical free gas.

In Chapter 4, we will investigate effects of GCC on time evolution of cumulants of con-
served charges by using DME.



Chapter 4

Effects of global charge conservation
on dynamical evolution of cumulants
in relativistic heavy ion collisions

One of the important properties of these fluctuations is that their higher-order cumulants
normalized by a conserved quantity are suppressed in the deconfined medium, reflecting
the fact that the charges carried by elementary excitations are smaller in the deconfined
medium [32, 58, 59] as discussed in Sec. 3.1. As shown in the right panel of Fig. 1.7, recent
experimental result on the net electric charge fluctuation by the ALICE Collaboration at the
LHC [84] shows that the value of the second-order cumulant of the net electric charge called
the D-measure is significantly suppressed compared with the one in the equilibrated hadronic
medium. This result is reasonably understood if one interprets the suppression as a survival
of the small fluctuation generated in the primordial deconfined medium [58,59,62,86,87].

The experimental result of the ALICE Collaboration also shows that the suppression of
⟨Q2

net⟩c/⟨Qtot⟩c becomes more prominent as the pseudo-rapidity window to count the number
of particles, ∆η, is taken to be larger. This ∆η dependence can also be reasonably explained
with the above interpretation. This is because the approach of the magnitude of the fluc-
tuation to the equilibrated values of the hadronic medium becomes slower as the volume
to count the conserved-charge number increases [62, 86]. In Ref. [62], it is also pointed out
that the combined experimental information on the ∆η dependencies of various cumulants
of conserved charges enables us to verify the above picture of the second-order fluctuation.

However, there exists another mechanism called global charge conservation (GCC) to
cause the suppression of ⟨Q2

net⟩c compared with the thermal value. If one counts conserved
charge in the total system created by the heavy-ion collisions, there are no event-by-event
fluctuations because of charge conservation. This fact is referred to as GCC [56]. Owing
to the finiteness of the hot medium generated in heavy ion collisions, the fluctuations in a
finite-∆η range, ⟨Q2

net⟩c,∆η, are also affected by GCC. Moreover, this effect is more prominent
for larger ∆η. In Refs. [59,88], on the assumption that the equilibration is established in the
final state of the heavy ion collision, the magnitude of this effect at finite ∆η is estimated as

⟨Q2
net⟩c,∆η = ⟨Q2

net⟩c,GC (1−∆η/ηtot), (4.1)

where ⟨Q2
net⟩c,GC is the fluctuation in the grand canonical ensemble and ηtot denotes the total

length of the system along the rapidity direction. Note that the system is assumed to be
expanding longitudinally with Bjorken scaling.

– 42 –
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However, note that the suppression of ⟨Q2
net⟩c/⟨Qtot⟩c observed at the ALICE detector [84]

is more significant than the one described solely by Eq. (4.1) as we will discuss in Sec. 4.2.3.
This result shows that there exists another contribution to the suppression besides GCC, such
as the non-thermal effect as originally addressed in Refs. [58, 59]. Since Eq. (4.1) assumes
equilibration, when the fluctuation is not equilibrated the effect of GCC at ALICE will be
modified from this formula. The effect of GCC at LHC energies, therefore, has to be revisited
with the non-equilibrium effects incorporated.

In the present study, we investigate the effect of GCC on cumulants of conserved charges
under such non-equilibrium circumstances by describing the time evolution of fluctuations
in a system with finite volume. We extend the analyses of Refs. [62, 86] to the case of a
finite volume with reflecting boundaries.We also discuss the effects of GCC on higher-order
cumulants of conserved charges.

By comparing our result with the experimental result from ALICE in Ref. [84], we find
that the net-electric-charge fluctuation in the rapidity window observed by this experiment
is hardly affected by GCC. This result comes from the fact that the rapidity at which the
fluctuations are affected by GCC is approximately limited within the average diffusion dis-
tance of each particle from the boundaries. Accordingly, when ηtot is sufficiently large, the
fluctuations observed at the mid-rapidity region are not affected by the GCC. We also argue
that the combination of the cumulants of conserved charges enables us to confirm this picture
experimentally.

4.1 Stochastic formalism to describe diffusion of

hadrons

4.1.1 Model

In the present study, we consider heavy ion collisions with sufficiently large
√
sNN, at which

the mid-rapidity region has an approximate boost invariance. Useful coordinates to describe
such a system are the spacetime-rapidity ys and proper time τ . We denote the net number
of a conserved charge per unit ys as n(ys, τ), and set τ = τ0 at hadronization, which phe-
nomenologically takes place at almost the same time with chemical freeze-out at sufficiently
large

√
sNN.

Because of the local charge conservation, the probability distribution of n(ys, τ0) at
hadronization inherits from the one that existed in the deconfined medium [56]. After
hadronization, particles diffuse and rescatter, and the distribution of n(ys, τ) continues to
approach that of the equilibrated hadronic medium until kinetic freeze-out at τ = τf . The
particle number in a rapidity window ∆η at mid-rapidity is given by

Q(τ)∆η =

∫ ∆η/2

−∆η/2

dys n(ys, τ). (4.2)

In the following, we investigate the time evolution of the probability distribution of Q(τ)∆η

in hadronic medium with a finite volume until τ = τf . We then obtain the cumulants of
the conserved charge at τ = τf , ⟨Q(τf)

n⟩c,∆η as functions of ∆η, of which the comparison
with experiments will turn out to enable us to extract the diffusion constants of the hadronic
medium and initial fluctuations at τ = τ0, besides the effect of GCC.
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Fig. 4.1: Brownian motion model with two reflecting boundaries.

Here, we note that the second-order cumulant of Eq. (4.2), ⟨Q2⟩c,∆η is directly related
to the correlation function, ⟨δn(ys1)δn(ys2)⟩, because the latter is obtained by differentiating
the former. The correlation function is further related to the balance function [102–105].
The experimental information on the ∆η dependence of ⟨Q2⟩c,∆η, therefore, is in principle
the same as that obtained from these functions. On the other hand, higher-order cumulants
of Q∆η contain information which cannot be described by the two-point correlation function.
In this study, to describe the time evolution of fluctuation of Q(τ)∆η we adopt the diffusion
master equation [62]. In this model, we divide the system with the total rapidity length ηtot
into M discrete cells with an equal finite length a = ηtot/M , as shown in Fig. 4.1. We then
consider a single species of particles for the moment, and denote the particle number existing
in the mth cell as nm and the probability distribution that each cell contains nm particles as
P (n, τ) with n = (n0, n1, · · · , nm, · · · , nM−2, nM−1). The model will be extended to the case
of multiparticle species later. Finally, we assume that each particle moves to the adjacent
cells with a probability γ(τ) per unit proper time, as a result of microscopic interactions.
The probability P (n, τ) then obeys the differential equation

∂τP (n, τ) = γ(τ)
M−1∑
m=0

[(nm + 1){P (n+ em − em+1, τ)

+ P (n+ em − em−1, τ)} − 2nmP (n, τ)]
]
, (4.3)

where em is a unit vector whose components are all zero except the mth one, which is unity.
In order to take account of the finite size of the hot medium, we further require that the cells
at both ends, at m = 0 and M − 1, exchange particles only with inner adjacent cells, m = 1
and M −2, respectively. After solving Eq. (4.3) exactly, we take the continuum limit, a → 0.
In this limit, each particle in this model behaves as a Brownian particle without correlations
with one another [62,93].

The average and the Gaussian fluctuation of n(ys, τ) in Eq. (4.3) in the continuum limit
agree with those of the stochastic diffusion equation [86]

∂

∂τ
n(ys, τ) = D(τ)

∂

∂ys

2

n(ys, τ)−
∂

∂ys
ξ(ys, τ), (4.4)

with two reflecting boundaries when one sets D(τ) = γ(τ)a2 [62]. Here, ξ(ys, τ) is the
temporarily local stochastic force, whose property is determined by the fluctuation-dissipation
relation. On the other hand, it is known from a general argument for the Markov process that
the fluctuation of Eq. (4.4) in equilibrium becomes Gaussian unless D(τ) explicitly depends
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on n(ys, τ) [62, 90]. This property of Eq. (4.4) is not suitable to describe the higher-order
cumulants observed in relativistic heavy ion collisions, since the experimentally measured
cumulants [80–82,84] take nonzero values close to the equilibrated cumulants. On the other
hand, the diffusion master equation (4.3) can give rise to nonzero higher-order cumulants in
equilibrium because of the discrete nature of the particle number [62]. This is the reason
why we employ the diffusion master equation instead of the stochastic diffusion equation.

4.1.2 Solving diffusion master equation

Next, we determine the time evolution of cumulants by solving Eq. (4.3). The following
numerical procedure is similar to that in Ref. [62], whereas the introduction of boundaries
gives rise to a new complexity. Determination of the initial condition also becomes more
involved owing to the GCC. We first consider the time evolution of the probability P (n, τ)
with a fixed initial condition

P (n, 0) =
M−1∏
m=0

δnm,Nm , (4.5)

namely, the initial particle numbers are fixed as nm(τ = τ0) = Nm for all m without fluctua-
tions. By introducing the factorial-generating function,

Gf(s, τ) =
∑
n

M−1∏
m=0

snm
m P (n, τ), (4.6)

Eq. (4.3) is transformed into

∂τGf(s,τ) = γ(τ)
[
(s1 − s0)∂s0 + (sM−2 − sM−1)∂sM−1

+
M−2∑
m=1

(sm+1 − 2sm + sm−1)∂sm

]
Gf(s, τ). (4.7)

To solve Eq. (4.7), we employ the method of characteristics. The solution of Eq. (4.7) satisfies

d

dτ
Gf(s(τ), τ) = 0. (4.8)

Here the characteristic line s(τ) = (s0, s1 · · · sM−2, sM−1) is the solution of the characteristic
equation

ds

dτ
= γ(τ)As, (4.9)

with

A =



1 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 0 0 0 0 −1 1


. (4.10)
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Introducing the Fourier transform of sm as

rk =
M−1∑
m=0

smumk, (4.11)

with

umk =
1

M
cos

πk(m+ 1/2)

M
, (4.12)

one finds a simple form of the characteristic equation (4.9) in the Fourier space as

d

dτ
rk = ωk(τ)rk(τ), (4.13)

with

ωk(τ) = 2γ(τ)

[
1− cos

(
πk

M

)]
≃ γ(τ)

(
πk

M

)2

, (4.14)

where the last nearly-equality is satisfied if k/N ≪ 1.Then the solution of Eq. (4.13) is

rk(τ) = rk(0)e
Ωk(τ), (4.15)

where

Ωk(τ) =

∫ τ

τ0

dτ ′γ(τ ′)

(
πk

M

)2

. (4.16)

With the initial condition (4.5), one finds the initial factorial-generating function is given
by

Gf(s, 0) =
M−1∏
m=0

(
M−1∑
k=0

rk(0)vkm

)Nm

. (4.17)

The inverse Fourier transform of Eq. (4.11) is given by sm =
∑M−1

k=0 rkvkm with

vkm =

{
1 (k = 0)

2 cos
πk(m+ 1/2)

M
(k ̸= 0)

. (4.18)

Substituting Eq. (4.15) into Eq. (4.17), one obtains the solution with the initial condition (4.5)
as

Gf(s, τ) =
M−1∏
m=0

(
M−1∑
k=0

rkvkme
−Ωk(τ)

)Nm

. (4.19)

The cumulants of nm are given by

⟨nm1nm2 · · ·nml
⟩c =

∂lK

∂θ1 · · · ∂θl

∣∣∣∣
θ=0

, (4.20)
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with K(θ, τ) = lnGf(s, τ)|sm=eθm . For example, the cumulants up to the fourth-order are
calculated to be

⟨nm⟩c =⟨nm⟩fc, (4.21)

⟨nm1nm2⟩c =δm1m2⟨nm1⟩c + ⟨nm1nm2⟩fc, (4.22)

⟨nm1nm2nm3⟩c =δm1m2δm1m3⟨nm1⟩c + {δm1m3⟨nm1nm2⟩fc + (comb.)}
+⟨nm1nm2nm3⟩fc (4.23)

⟨nm1nm2nm3nm4⟩c =δm1m2δm1m3δm1m4⟨nm1⟩c + {δm1m3δm1m4⟨nm1nm2⟩fc + (comb.)}
+{δm1m3δm2m4⟨nm1nm2⟩fc + (comb.)}
+{δm1m4⟨nm1nm2nm3⟩fc + (comb.)}+ ⟨nm1nm2nm3nm4⟩fc, (4.24)

with

⟨nm⟩fc =
M−1∑
m′=0

M−1∑
k=0

Nm′umkvkm′e−Ωk(τ), (4.25)

⟨nm1nm2⟩fc = −
M−1∑
m′=0

M−1∑
k1,k2

Nm′um1k1um2k2vk1m′vk2m′e−[Ωk1
(τ)+Ωk2

(τ)], (4.26)

⟨nm1nm2nm3⟩fc = 2
M−1∑
m′=0

M−1∑
k1,k2,k3

Nm′um1k1um2k2um3k3vk1m′vk2m′vk3m′

× e−[Ωk1
(τ)+Ωk2

(τ)+Ωk3
(τ)], (4.27)

⟨nm1nm2nm3nm4⟩fc = −6
M−1∑
m′=0

M−1∑
k1,k2,k3,k4

Nm′um1k1um2k2um3k3um4k4vk1m′vk2m′vk3m′vk4m′

× e−[Ωk1
(τ)+Ωk2

(τ)+Ωk3
(τ)+Ωk4

(τ)]. (4.28)

In Eqs. (4.21)-(4.24), (comb.) means the sum over all possible combinations for subscripts of
nm.

Next, we take the continuum limit a → 0. We set the boundaries at ys = ±ηtot/2. Then,
the lower spacetime-rapidity side of the mth cell is located at ys = (m−M/2)a. The particle
number per unit rapidity is n(ys) = nm/a. The probability distribution P (n, τ) in Eq. (4.3)
becomes a functional of the particle number density n(ys), which is denoted as P [n(ys), τ ].
From Eq. (4.21), one finds that the average of n(ys) coincides with the solution of Eq. (4.4)
with D(τ) = γ(τ)a2. We thus take the continuum limit with fixed D(τ). Using Eq. (4.22),
it is also confirmed that the Gaussian fluctuation in our model agrees with that of Eq. (4.4)
for sufficiently smooth initial conditions in this limit. We show it in Appendix C.

With the fixed initial condition n(ys, τ0) = N(ys), the cumulants of Eq. (4.2) at proper
time τ are calculated to be

⟨Q(τ)n⟩c,∆η =

∫ ηtot/2

−ηtot/2

dys N(ys)Hn(ys), (4.29)
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where

H1(ys) =I(ys), (4.30)

H2(ys) =I(ys)− I(ys)
2, (4.31)

H3(ys) =I(ys)− 3I(ys)
2 + 2I(ys)

3, (4.32)

H4(ys) =I(ys)− 7I(ys)
2 + 12I(ys)

3 − 6I(ys)
4, (4.33)

with

I(ys) =
∆η

ηtot

∞∑
k=−∞

cos

(
πkys
ηtot

)
sinc

(
πk∆η

2ηtot

)
cos

(
πk

2

)
e
− 1

2

(
πkd(τ)
ηtot

)2

. (4.34)

Here,

d(τ) =

[
2

∫ τ

τ0

dτ ′D(τ ′)

]1/2
(4.35)

is the average diffusion length of each Brownian particle [93], and sinc(x) = sin(x)/x is the
sinc function.

Next, we extend the above results to the cases with general initial conditions with nonva-
nishing initial fluctuations. In the following, we also extend the formula to treat cumulants
of the difference of densities of two particle species, n1(ys, τ) and n2(ys, τ):

Qnet(τ)∆η =

∫ ∆η/2

−∆η/2

dys (n1(ys, τ)− n2(ys, τ)), (4.36)

in order to consider cumulants of conserved charges,which are given by the difference in
particle numbers; in the following we assume that the net number (4.36) is a conserved charge.
If there exists the initial fluctuation P [N1(ys), N2(ys), τ0] = J [N1(ys), N2(ys)], the probability
distribution of a conserved charge P [n1(ys), n2(ys), τ ] is given by the superposition of the
solutions of fixed initial condition

P [n1, n2, τ ] =
∑

{N1,N2}

J [N1, N2]PN1 [n1, τ ]PN2 [n2, τ ], (4.37)

where PN [n, τ ] is the solution of Eq. (4.3) with the fixed initial condition n(ys, τ0) = N(ys)
and the sum runs over functional space of N1(ys) and N2(ys). Using Eq. (4.37) and the same
technique used in Ref. [62], one can obtain the cumulants of Eq. (4.36). See appendix E for
detailed derivations of the cumulants of Eq. (4.36).

4.1.3 Initial condition

Next, let us constrain the initial condition. Because we consider a finite system, the initial
condition at τ = τ0 should be determined in accordance with the GCC, i.e., the fluctuation
of the net particle number in the total system should vanish in the initial condition. In the
following, we constrain ourselves to the initial condition satisfying boost invariance between
the two boundaries. In order to obtain the initial conditions which conform the GCC, here we
model the initial configuration by an equilibrated free classical gas in a finite volume. In this
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system, by using the fact that each particle can be observed at any spatial points in the system
with the same probability, one can obtain the correlation functions by taking the continuum
limit of the Multinomial distribution. See Appendix B for properties of the Multinomial
distribution. The result for the correlation functions of Nnet,tot(ys) = N1(ys) ∓ N2(ys) up to
the third order is given by

⟨Ni(ys)⟩c = [Ni]c, (4.38)

⟨Ni1(ys1)Ni2(ys2)⟩c = [Ni1Ni2 ]c(δ(1, 2)− 1/ηtot), (4.39)

⟨Ni1(ys1)Ni2(ys2)Ni3(ys3)⟩c = [Ni1Ni2Ni3 ]c(δ(1, 2)δ(2, 3)

− [δ(1, 2) + δ(2, 3) + δ(3, 1)]/ηtot + 2(1/ηtot)
2), (4.40)

⟨Ni1(ys1)Ni2(ys2)Ni3(ys3)Ni4(ys4)⟩c = [Ni1Ni2Ni3Ni4 ]c[δ(1, 2)δ(2, 3)δ(3, 4)

− [δ(1, 2)δ(1, 3) + δ(1, 2)δ(1, 4)

+ δ(1, 3)δ(1, 4) + δ(2, 3)δ(2, 4)]/ηtot

− [δ(1, 2)δ(3, 4) + δ(1, 3)δ(2, 4) + δ(1, 4)δ(2, 3)]/ηtot

+ 2[δ(1, 2) + δ(1, 3) + δ(1, 4)

+ δ(2, 3) + δ(2, 4) + δ(3, 4)]/η2tot − 6(1/ηtot)
3],
(4.41)

when at least one of in is (net) where the subscript in denotes (net) or (tot). Here,
[Ni1 · · ·Nil ]c are susceptibilities of the initial condition in the grand canonical ensemble [62],
and δ(j, k) = δ(ysj − ysk). The expression for fourth- and higher-order terms are lengthy but
obtained straightforwardly. The total number is not conserving and can have event-by-event
fluctuation even when the total system is observed. Reflecting this property, we also assume
that the number of Ntot at τ = τ0 in the total system obeys the one given by the grand
canonical ensemble. One then finds that when all in are (tot) in Eqs. (4.38) - (4.40) terms
containing ηtot do not appear. We note that Eq. (4.39) reproduces Eq. (4.1).

Using these initial conditions and Eq. (4.29), one obtains the first four cumulants of
Qnet(τ)∆η as

⟨Qnet⟩c,∆η =[Nnet]c∆η, (4.42)

⟨Q2
net⟩c,∆η =[Ntot]c[∆η − F2(∆η)]− [N2

net]c[∆ηp− F2(∆η)], (4.43)

⟨Q3
net⟩c,∆η =[Nnet]c[∆η − 3F2(∆η) + 2F3(∆η)]

−3[NnetNtot]c[∆ηp− (1 + p)F2(∆η) + F3(∆η)]

+[N3
net]c[2∆ηp2 − 3pF2(∆η) + F3(∆η)], (4.44)
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⟨Q4
net⟩c,∆η =[Ntot]c[∆η − 7F2(∆η) + 12F3(∆η)− 6F4(∆η)]

+3[N2
tot]c[F2(∆η)− 2F3(∆η) + F4(∆η)]

−4[N2
net]c[∆ηp− (1 + 3p)F2(∆η) + (3 + 2p)F3(∆η)− 2F4(∆η)]

+[N2
netNtot]c

[
2∆ηp2 − p

(
3 + 2p− 1

∆η
F2(∆η)

)
F2(∆η)

+ (1 + 2p)F3(∆η)− F4(∆η)

]
−[N4

net]c

[
6∆ηp3 − 4p

(
3p− 1

∆η
F2(∆η)

)
F2(∆η)

+3pF3(∆η)− F4(∆η)

]
, (4.45)

with

Fn(∆η) =

∫ ηtot/2

−ηtot/2

dys[I(ys)]
n, (4.46)

and p = ∆η/ηtot. See Appendix D for detailed form of Fn(∆η). Using limτ→τ0 Fn(∆η) = ∆η,
one can check that only the last term of Eqs. (4.42) - (4.45) take a nonzero value at τ = τ0.
The initial condition Eqs. (4.38) - (4.40) thus are reproduced for τ = τ0.

4.1.4 Equilibration

If D(τ) is constant, although physically this is not the case, the system settles down to an
equilibrium state in the large τ limit. The cumulants in this limit are obtained by substituting
limτ→∞ Fn = ηtotp

n for n ≥ 2 into Eqs. (4.42) - (4.45). One then obtains for second and third
order

⟨Q2
net⟩c,∆η = [Ntot]c(1− p), (4.47)

⟨Q3
net⟩c,∆η = [Nnet]c(1− p)(1− 2p), (4.48)

respectively, with p = ∆η/ηtot. These p dependencies are consistent with the Binomial
distribution functions [78, 79]; in particular, Eq. (4.47) is nothing other than Eq. (4.1). See
Appendix B for properties of the Binomial distribution. Equation (4.48) is the generalization
of Eq. (4.1) to third order. On the other hand, the p dependence of the fourth-order cumulant
in the τ → ∞ limit does not agree with the Binomial form,

⟨Q4
net⟩c,∆η ∝ (1− p)(1− 6p+ 6p2), (4.49)

if the initial fluctuation of the total number, [N2
tot]c has a nonzero value.

4.2 Effects of the GCC

Next, let us study how GCC affects the rapidity-window dependence of the cumulants of
conserved charges up to the fourth-order.

The cumulants of conserved charges (4.42) - (4.45) are described by using three variables
∆η, ηtot, and d(τ), having the dimension of spacetime rapidity. Among them, the diffusion
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length d(τ) is an increasing function of the elapsed time τ − τ0. When we describe the time
evolution in what follows, we use the dimensionless parameters

L ≡ ηtot/d(τ), T ≡ d(τ)/ηtot. (4.50)

4.2.1 Without initial fluctuation

First, we consider the ∆η dependence for the fixed initial condition, i.e., all fluctuations
vanish at τ = τ0,

[N2
net]c = [N3

net]c = [N4
net]c = [NnetNtot]c = [N2

netNtot]c = [N2
tot]c = 0. (4.51)

In Figs. 4.2, we show the ∆η dependence of ⟨Qn
net⟩c,∆η for n = 2, 3 and 4, for several values

of L. The horizontal axis is normalized by d(τ), while the vertical one is normalized by
the equilibrated value in an infinite volume, ⟨Qtot⟩c,∆η or ⟨Qnet⟩c,∆η. For comparison, we
also show the result with an infinite volume by the dashed and dotted lines. The figure
shows that ⟨Qn

net⟩c,∆η vanishes at ∆η/d(τ) = L for each L, namely ∆η = ηtot, which is a
trivial consequence of GCC. On the other hand, as ∆η becomes smaller than this value, the
result with finite L approaches that with infinite volume. The effect of GCC vanishes almost
completely except for the range

∆η/d(τ) ≳ L− 2. (4.52)

This is a somewhat unexpected result compared with the previous estimate (4.1).
One can, however, give a physical interpretation to this result as follows: We first note

that Eq. (4.52) is rewritten as

ηtot −∆η

2
≲ d(τ). (4.53)

In this expression, the left-hand side is the distance between the left (right) boundary and
the left (right) edge of the rapidity window, while the right-hand side is the diffusion length
of each Brownian particle. When Eq. (4.53) is satisfied, particles which are reflected by one
of the boundaries at least once can enter the rapidity window. Therefore, the existence of the
boundaries can affect the fluctuations of conserved charges in the rapidity window. On the
other hand, when the condition (4.53) is not satisfied, particles inside the rapidity window do
not know the existence of the boundaries; in other words, the fact that the system is finite.
In the latter case, therefore, the fluctuations in the rapidity window are free from the effect
of GCC.

Figure 4.2 also shows that, for L = 3, the ∆η dependence of ⟨Q2
net⟩c,∆η becomes almost

a linear function; note that this is the behavior consistent with Eq. (4.1). For L = 3, the
diffusion length is almost comparable with the system size. When the condition d(τ) ≳
ηtot/2 is satisfied, each particle can be anywhere in the system with almost equal probability
irrespective of its initial position at τ = τ0. Because this is nothing but the condition for
the establishment of the equilibration of the system, the estimate (4.1), which relies on the
equilibration of the system, becomes applicable.

In this analysis, it is assumed that the particle current vanishes at the two boundaries.
This assumption would not be suitable to describe the hot medium created by heavy ion
collisions, since the hot medium does not have such hard boundaries but only baryon-rich
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Fig. 4.2: Second order (Top), third order (Middle) and fourth order (Bottom) cumulants of
conserved charges without initial fluctuation as a function of ∆η/d(τ) with five finite values
of the parameter L and infinite L.
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Fig. 4.3: Second-order (Top), third-order (Middle) and fourth-order (Bottom) cumulants
of conserved charges without initial fluctuation as a function of ∆η/ηtot with five values of
the parameter T . The corresponding results in an infinite volume are also plotted for several
values of T .
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regions. From the above discussion, however, it is obvious that the effect of boundaries
does not affect the fluctuations in the rapidity window unless the condition (4.53) is realized
irrespective of the types of the boundaries.

In Figs. 4.3, we show ⟨Qn
net⟩c,∆η/⟨Qtot⟩c,∆η for n = 2, 3, and 4, respectively, as a function

of ∆η/ηtot with the total length ηtot for five values of T including infinity. When one can
estimate the value of ηtot in experiments, the plots in Fig. 4.3 are suitable for comparison
with the experiments [84]. The corresponding results in an infinite volume are also plotted
for several values of T by the dashed and dotted lines. With fixed ηtot, larger T corresponds
to larger τ . The top panel of Figure 4.3 shows that, as T becomes larger, the fluctuation
increases and approaches a linear function representing the equilibration, Eq. (4.1) or (4.47).
Moreover, the comparison of each result with the infinite volume results shows that GCC
can affect the fluctuations only for cases with large ∆η/ηtot. As we shall see later, the
largest rapidity windows covered by STAR at the top RHIC energy and ALICE correspond
to ∆η/ηtot ≃ 0.2. Figure 4.3 suggests that, for this rapidity coverage, when the value of
⟨Q2

net⟩c,∆η shows a suppression compared with Eq. (4.1), the effect of the GCC is negligible.
From the middle and bottom panels of Fig. 4.3, which shows the third- and fourth-order

cumulants for several values of T , one obtains completely the same conclusion for the effect
of GCC. The figure shows that the effect of GCC is visible only for large values of ∆η/ηtot.
We also notice that in Fig. 4.3 the ∆η/ηtot dependence in the large-τ limit limit becomes of
Binomial form [(4.49)]. This limiting behavior, however, is not realized for initial conditions
with [N2

tot]c ̸= 0.

4.2.2 Effect of initial fluctuation
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Fig. 4.4: Fourth-order cumulants of conserved charges under the initial condition (4.54) with
five values of T .

Second, let us look at the ∆η dependence of cumulants with initial conditions having
nonvanishing fluctuations. We first consider the effect of the fluctuations of total charge
number [N2

tot]c, which is an observable proposed in Ref. [62] as a new probe for hadronization
mechanism. To see the effect of [N2

tot]c, we set to zero all the cumulants including net charge
at τ = τ0: [N2

net]c = [N3
net]c = [N4

net]c = [NnetNtot]c = [N2
netNtot]c = 0. The second-order
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Fig. 4.5: [Top] Second-order cumulants of conserved charges under the initial condition (4.55)
with five values of T . The experimental results from Ref. [84] with ηtot = 8 are also plotted
by squares for comparison; see, Sec. 4.2.3 for a detailed discussion. [Middle] Third-order and
[Bottom] fourth-order cumulants of conserved charges under the initial condition (4.55) with
five values of T .
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cumulant does not change from the previous result in Fig. 4.3 by including [N2
tot]c, but the

fourth-order cumulant does. In Fig. 4.4, we show the ∆η dependence of the fourth-order
cumulant with

[N2
tot]c = [Ntot]c, (4.54)

which is realized in the Poissonian case. By comparing the results with those of the infinite
volume shown by the dashed and dotted lines, one obtains the same conclusion for the effect
of GCC as in the previous section, i.e., the effect alters the fluctuation only for large ∆η/ηtot.

Figure 4.4 also shows that the ∆η dependence in Fig. 4.4 is qualitatively different from
the one in the bottom panel of Fig. 4.3. For example, although ⟨Q4

net⟩c,∆η is non-monotonic
and becomes negative in the bottom panel of Fig. 4.3, such behaviors are not observed in
Fig. 4.4, irrespective of the value of T . Moreover, these differences are observed even for small
∆η/ηtot. This result indicates that the magnitude of [N2

tot]c can be experimentally estimated
by measuring the ∆η dependence of ⟨Q4

net⟩c,∆η [62].
Next, to see the effect of initial fluctuations of conserved charges, in Figs. 4.5 we show

the second-, third- and fourth-order cumulants with the initial condition

[N2
net]c = [N4

net]c = [NnetNtot]c = [N2
netNtot]c = 0.5[Ntot],

[N3
net]c = 0.5[Nnet]c, [N2

tot]c = [Ntot]c. (4.55)

The value [N2
net]c = 0.5[Ntot] is taken from the estimate in Ref. [58]. By comparing the results

with and without boundaries in these figures, one finds that the effect of GCC is observed
already from small ∆η/ηtot in this case. This is because the initial condition determined in
Eqs. (4.39) and (4.40) already include the effect of GCC to some extent. These initial con-
ditions are determined under an assumption that the medium just before the hadronization
consists of equilibrated quarks. The effect of GCC on the diffusion in the hadronic medium
with small ∆η/ηtot is still almost invisible even in this case.

4.2.3 Comparison with experimental result at ALICE

We finally inspect the ∆η dependence of the net electric charge fluctuations observed at
ALICE [84] in more detail. In order to estimate the effect of GCC, we must first determine
the magnitude of ηtot. From the pseudo-rapidity dependence of charged-particle yield at LHC
energy,

√
sNN = 2.76 TeV, in Ref. [106], we take the value ηtot = 8 in the following. Note

that this value is considerably smaller than twice the beam rapidity 2ybeam ≃ 16. While the
choice of ηtot is ambiguous [106], the following discussion is not altered qualitatively by the
choice ηtot in the range 8 ≲ ηtot ≲ 12. With the choice ηtot = 8, the maximum rapidity
coverage of the 2π detector, TPC, of ALICE, ∆η = 1.6 [84], corresponds to ∆η/ηtot = 0.2.

In the top panel of Fig. 4.5, we overlay the experimental result of ⟨Q2
net⟩c,∆η/⟨Qtot⟩c,∆η =

D/4 in the bottom of Fig. 4.3 of Ref. [84] for the centrality bin 0% to 5% with ηtot = 8. From
the figure, one can immediately conclude that the suppression of ⟨Q2

net⟩c,∆η in this experiment
cannot be explained solely by the naive formula of GCC [Eq. (4.1)]. From the discussion in
the previous sections, it is also concluded that the effect of GCC on the diffusion in the
hadronic stage is negligible in this experimental result.

From the top panel of Fig. 4.5, one can also estimate that the value of T is about T ≃ 0.08.
The bottom panels of figures 4.3 and 4.5, and figure 4.4 show that, with this value of T , the
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dependence of ⟨Q4
net⟩c,∆η/⟨Qtot⟩c,∆η on ∆η for ∆η/ηtot ≲ 0.2 is sensitive to the initial condi-

tions, such as [N2
tot]c and [Nn

net]c. In particular, if the fluctuations at the hadronization are
well suppressed, the change of the sign of ⟨Q4

net⟩c,∆η/⟨Qtot⟩c,∆η will be observed experimen-
tally as in the bottom panel of Fig. 4.3. In this way, the combination of ∆η dependencies
of the higher-order cumulants should be used as an experimental probe to investigate the
primordial thermodynamics at LHC energy. Of course, the use of the ∆η dependencies of the
net-baryon-number cumulants [78,79] in addition will provide us more fruitful information.

Using the above estimate on T , the value of the diffusion length until observation is
also estimated as d(τ) = 0.64. To compare the result with the experimentally observed
fluctuations, we must incorporate the blurring effect caused by the use of momentum-rapidity
as a proxy of spacetime-rapidity ys in experimental measurements of fluctuations [73, 107].
For pions, this effect increases the diffusion length about 0.5 after the thermal freeze-out [107].
Thus, we estimate the value of the diffusion length in the hadronic stage as d(τ)H = Since the
diffusion length is directly related to the diffusion constant through Eq. (4.35), it is possible
to make an estimate on the latter by using this relation. First, we assume that the diffusion
constant in the Cartesian coordinate takes a constant value, DH , in the hadronic medium.
The diffusion constant in Eq. (4.35) is the one in the rapidity coordinate, which is related to
DH as

D(τ) = DHτ
−2. (4.56)

By substituting Eq. (4.56) into Eq. (4.35) and carrying out the τ integral, we obtain

DH =
d(τ)2

2

[
1

τ0
− 1

τf

]−1

. (4.57)

Second, from the analysis of the dynamical models for LHC energy [108], we estimate the
proper times of chemical and kinetic freeze-out as τ0 ≃ 8 to 12 fm and τf ≃ 20 to 30 fm,
respectively. Substituting these values into Eq. (4.57), we obtain

DH = 0.9 to 2.4 fm. (4.58)

Although this is a rough estimate, it is notable that the value is not far from those estimated
by combining the lattice simulations and the balance function [104].

4.3 Brief summary

In this chapter, we investigated the effect of GCC on cumulants of conserved charges in
heavy ion collisions by studying the time evolution of cumulants in a finite volume system
with reflecting boundaries in the spacetime rapidity space with the diffusion master equation.
Our result shows that the effect of GCC appears in the range of the diffusion length from the
boundaries. This result suggests that the effects of GCC must be investigated dynamically
by taking into account the time evolution of the system generated in heavy ion collisions. By
comparing our result with the ∆η dependence of net-electric-charge fluctuation at ALICE
[84], we showed that the effects of GCC on the diffusion in the hadronic medium on cumulants
of conserved charges are almost negligible in the rapidity window available at the ALICE
detector.



4.3 Brief summary 58

We also emphasized that the ∆η dependence of fluctuations of conserved charges will
tell us information on the properties and the time evolution of the hot medium generated in
heavy ion collisions; namely, the initial charge distribution, the mechanism of hadronization,
the phase transition and the diffusion constant.

Thus if system passes near the QCD critical point during the space-time evolution of a
collision, one can expect some signatures of the critical point should appear in the ∆η de-
pendence of conserved-charge cumulants. In the next chapter, we will discuss time evolution
of ∆η dependence of critical fluctuations of conserved charges.



Chapter 5

Dynamical evolution of critical
fluctuations in relativistic heavy ion
collisions

In the interpretation of the experimentally-observed fluctuations, it should be remembered
that the fluctuations observed in these experiments are not those in an equilibrated medium
near the critical point. First, near the critical point, the relaxation time toward equilibrium
becomes large owing to the critical slowing down [68]. Due to this effect, the enhancement
of fluctuations is limited even if the medium passes just on the QCD critical point. Second,
because the experimental measurement is performed only for the final state, the evolution
in the late stages modifies the fluctuations before the detection [62, 75]. To extract the
information on the critical fluctuation from the experimental data, proper understanding
and description of these effects are indispensable.

The time evolution of critical fluctuations has been discussed in the literature [68–72].
In Refs. [68, 69, 71], the effect of the critical slowing down is discussed for fluctuation of a
uniform order parameter field σ = ⟨q̄q⟩. However, it is known that the soft mode of the
QCD critical point is not the pure σ mode, but is given by the coupling of this mode and
conserved charges [36–38, 109]. The soft mode of the critical point thus is a diffusion mode.
As we will see in the present study, the time evolution of diffusion modes is dependent on the
length scale, and this effect is crucial for the description of its dynamics. One of the main
goal of the present study is to describe the dynamical evolution of the critical fluctuation by
including the coupling effect.

The other aim of this paper is to connect the critical enhancement with experimental
observables. To connect the critical fluctuation described by thermodynamics to the exper-
imental data, the use of conserved charges, especially the net-baryon number, makes vari-
ous aspects apparent (see, detailed discussion in Ref. [73]). To understand the dynamic of
conserved-charge fluctuations in heavy ion collisions, a total description of the time evolution
of conserved charges throughout the evolution of the hot medium is required. Although this
problem has been discussed for hadronic medium [62, 75], the whole description including
critical enhancement has not been carried out yet in the literature. The second goal of this
study is to realize this subject.

In the present study, in order to address these problems we employ a simple stochastic
diffusion equation. In this model, the singularity associated with the critical point is incor-
porated by the time-dependent susceptibility and diffusion coefficient. Needless to say, this

– 59 –
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model is a counterpart of the stochastic hydrodynamics [110], and is suitable to describe fluc-
tuation of conserved charges. Moreover, as nicely shown in Refs. [36–38], this model is also
suitable to describe the slow critical fluctuations. This model is formally solved analytically.
After describing general property, we analyze the time evolution of fluctuation numerically
with a phenomenological parametrization for susceptibility and diffusion coefficient. We show
that the time evolution of the fluctuations strongly depends on the rapidity window ∆y to
define the fluctuations. We also show that the ∆y dependence of the second-order cumu-
lant can have a non-monotonic behavior when the medium undergoes a critical enhancement
during the time evolution. It is argued that this non-monotonic behavior serves as a robust
experimental signal for the existence of the critical enhancement in the QCD phase diagram.

In the present study we limit our attention only to the second-order cumulant, and skip
the analysis of third and much higher order cumulants, because even at the second order non-
trivial outcomes are obtained from the analysis. We also discuss time evolution of correlation
functions of conserved charges. We show that the above argument on non-monotonicity is
also applicable to the rapidity interval dependence of the correlation functions. The relation
between the cumulant and the correlation function is also studied in detail.

This paper is organized as follows. In the next section we introduce the stochastic diffusion
equation, and argue that this model is suitable to describe the time evolution of conserved
charges including the critical fluctuation. We then solve this equation analytically, and discuss
general properties in Sec. 5.2. In Sec. 5.3, we define a phenomenological model, which is
numerically solved in Sec. 5.4. The last section is devoted to discussions and a summary. In
Chapter 3.2.2, we give a brief review of Refs. [36–38], which clarified the diffusion property
of the QCD critical point.

5.1 Model

5.1.1 Second-order cumulant and correlation function

In this study, we investigate the time evolution of the second-order cumulant and the cor-
relation function of conserved charges in the hot medium produced in heavy ion collisions.
We assume a boost-invariant Bjorken model for the event evolution throughout this paper
in order to simplify the analysis, and adopt the Milne coordinates, the spacetime rapidity
y = tanh−1(z/t) and proper time τ =

√
t2 − z2.

Let us consider a conserved-charge density per unit rapidity n(y, τ), where transverse
coordinates have been integrated out. In heavy-ion collisions, one may specify the net-
baryon number [78] or net-electric charge for the conserved charge. The total charge in a
finite rapidity interval ∆y at mid-rapidity at proper time τ is given by

Q∆y(τ) =

∫ ∆y/2

−∆y/2

dy n(y, τ). (5.1)

The second-order cumulant, or variance, of Q∆y(τ) is given by

⟨Q∆y(τ)
2⟩c = ⟨δQ∆y(τ)

2⟩

=

∫ ∆y/2

−∆y/2

dy1dy2⟨δn(y1, τ)δn(y2, τ)⟩, (5.2)
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where ⟨δn(y1, τ)δn(y2, τ)⟩ is the correlation function with δn(y, τ) = n(y, τ) − ⟨n(y, τ)⟩. In
a boost invariant system, the correlation function depends only on the rapidity difference
ȳ = y1 − y2, and Eq. (5.2) is rewritten as

⟨Q∆y(τ)
2⟩c =

∫ ∆y

−∆y

dȳ (∆y − |ȳ|) ⟨δn(ȳ, τ)δn(0, τ)⟩. (5.3)

This reveals an intimate relation between ⟨Q∆y(τ)
2⟩c and ⟨δn(y, τ)δn(0, τ)⟩. We investigate

both of these functions in this paper. From Eq. (5.3), it is also shown that

lim
∆y→0

∂

∂∆y

⟨Q∆y(τ)
2⟩c

∆y
= lim

ȳ→0
⟨δn(ȳ, τ)δn(0, τ)⟩, (5.4)

when the limits in both sides exist.

5.1.2 Stochastic diffusion equation

We consider the time evolution of the conserved charge density n(y, τ) at long time and length
scales. This is well described by the stochastic diffusion equation (SDE) [73, 110], which is
written in the τ–y coordinates as

∂

∂τ
δn(y, τ) = Dy(τ)

∂2

∂2y
δn(y, τ) +

∂

∂y
ξ(y, τ) , (5.5)

where the diffusion coefficient Dy(τ) in the τ–η coordinates is related to the Cartesian one
DC(τ) as Dy(τ) = DC(τ)τ

−2. The noise term ξ(y, τ) represents the coupling with “short-
time” fluctuations, whose average should vanish ⟨ξ(y, τ)⟩ = 0. The noise term appears with
the y-derivative here so as to satisfy the conservation constraint.

When the noise correlation is local in time and space, the fluctuation-dissipation relation
specifies its value to be [73]

⟨ξ(y1, τ1)ξ(y2, τ2)⟩
= 2χy(τ)Dy(τ)δ(y1 − y2)δ(τ1 − τ2). (5.6)

Here, χy(τ) denotes the susceptibility of the conserved charge per unit rapidity and is related
to the one in the Cartesian coordinates χC(τ) as χy(τ)/τ = χC(τ). The susceptibility χy(τ) is
related to the second-order cumulant in equilibrium as ⟨Q2

∆y⟩c,eq = χy∆y. Furthermore, the
scale separation dictates that ⟨n(y, τ)ξ(y′, τ ′)⟩ = 0 for τ < τ ′. In the rest of this paper, we
suppress the subscripts of the diffusion coefficient and susceptibility and denoteD(τ) = Dy(τ)
and χ(τ) = χy(τ), unless otherwise stated.

The SDE (5.5) is not only suitable for describing the time evolution of conserved charges
in a non-critical system, but also a good phenomenological equation to deal with the slow
dynamics near the QCD critical point. This is because the critical mode there is identified as
a linear combination of the σ mode and conserved charges, and therefore its evolution must
be consistent with the conservation law [36–38, 70]. As a consequence, the equation for the
critical mode is given by the same form as in Eq. (5.5). See Chapter 3.2.2 for more detailed
discussion. Hence, in the present study, we use Eq. (5.5) solely to describe the time evolution
throughout the event trajectories passing near and away from the critical point.
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In our study, the critical enhancement and slowing down of fluctuation can be described
by the τ -dependent susceptibility χ(τ) and diffusion coefficient D(τ): Near the critical point,
χ(τ) grows sharply and D(τ) becomes vanishingly small, reflecting respectively the large
fluctuation and critical slowing down.

In the next section, we derive the formal solution of Eq. (5.5) with τ dependent χ(τ)
and D(τ), and discuss its general property. We then parametrize the trajectories of collision
events in terms of possible τ -dependence of the susceptibility χ(τ) and diffusion coefficient
D(τ) including the effect of the critical point, and analyze the time evolution numerically in
Secs. 5.3 and 5.4.

5.1.3 Soft-mode of the critical point

Before closing this section, we comment on the difference between the treatment of the critical
fluctuation in the present and previous studies. In Refs. [68, 69, 71], the time evolution of
the system is analyzed by choosing the σ field as the critical slow mode, and they assume
that the σ fluctuation is spatially constant1. If one assumed a non-conserved density as a
slow mode, this treatment would be justified because it would follow a relaxation equation
without ∂/∂y at the leading order, and can relax locally in the rapidity space.

This assumption is in contrast to the conserved charge fluctuation discussed in the present
study, which can relax only through the diffusion. As discussed already, the evolution equa-
tion of the critical fluctuation has to be consistent with the charge conservation [38]. In order
to respect this property, the evolution has to be dealt with the SDE as was done in the present
study2. As we will see in the next section, the time evolution of the charge fluctuations is
naturally dependent on their length scale ∆y. This fact makes the problem complicated
because the critical mode can no longer be regarded as a spatially uniform mode. But, at the
same time the diffusion property opens a possibility to study the critical fluctuation through
the ∆y dependence of the cumulant in experiments.

5.2 Analytic properties

In this section, we formally solve the SDE (5.5) and study general properties of the second-
order cumulant and correlation function analytically.

5.2.1 Solution of SDE

Defining the Fourier transform of δn(y, τ) via n(q, τ) =
∫
dy e−iqyn(y, τ), the formal solution

of Eq. (5.5) with the initial condition n(q, τ0) at τ = τ0 is obtained as

n(q, τ) = n(q, τ0)e
−q2[d(τ0,τ)]2/2

+

∫ τ

τ0

dτ ′ iqξ(q, τ ′)e−q2[d(τ ′,τ)]2/2, (5.7)

1 In Refs. [68, 69], the evolution of the “correlation length” of the σ mode is considered. As shown in
Ref. [71], this quantity is equivalent to the fluctuation of spatially uniform σ mode.

2 Strictly speaking, neglected in Eq. (5.5) is the coupling of the soft mode with the momentum modes,
which plays a role in describing the critical dynamics more precisely [109]. This mode is discussed in Ref. [70].
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where

d(τ1, τ2) =
[
2

∫ τ2

τ1

dτ ′D(τ ′)
]1/2

(5.8)

denotes the diffusion “length” in rapidity space from τ1 to τ2 with τ1 < τ2. The diffusion
length d(τ1, τ2) is a monotonically increasing (decreasing) function of τ2 (τ1), satisfying the
boundary condition d(τ, τ) = 0. The correlation function at proper time τ is obtained by
taking the average of the product of Eq. (5.7) as3

⟨δn(q1, τ)δn(q2, τ)⟩
=⟨δn(q1, τ0)δn(q2, τ0)⟩e−(q21+q22)[d(τ0,τ)]

2/2

+

∫ τ

τ0

dτ1dτ2⟨iq1ξ(q1, τ1)iq2ξ(q2, τ2)⟩

× e−q21 [d(τ1,τ)]
2/2 e−q22 [d(τ2,τ)]

2/2, (5.9)

where we have used ⟨n(y1, τ0)ξ(y2, τ)⟩ = 0.
To proceed further, we assume that the initial fluctuation satisfies the locality condition,

⟨δn(y1, τ0)δn(y2, τ0)⟩ = χ(τ0)δ(y1 − y2). (5.10)

Indeed, this condition holds in equilibrium at the length scale at which extensive property of
thermodynamic functions is satisfied [73]. We then obtain ⟨δn(q1, τ0)δn(q2, τ0)⟩ = 2πδ(q1 +
q2)χ(τ0), and Eq. (5.9) is calculated to be

⟨δn(q1, τ)δn(q2, τ)⟩

=2πδ(q1 + q2)

(
χ(τ0) e

−q21 [d(τ0,τ)]
2

+ 2q21

∫ τ

τ0

dτ ′χ(τ ′)D(τ ′)e−q21 [d(τ
′,τ)]2

)
. (5.11)

The correlation function in y space is obtained from Eq. (5.11) as

⟨δn(y1, τ)δn(y2, τ)⟩
=χ(τ0)G(y1 − y2; 2d(τ0, τ))

+

∫ τ

τ0

dτ ′χ(τ ′)
d

dτ ′
G
(
y1 − y2; 2d(τ

′, τ)
)

(5.12)

=χ(τ)δ(y1 − y2)

−
∫ τ

τ0

dτ ′χ′(τ ′)G
(
y1 − y2; 2d(τ

′, τ)
)
, (5.13)

where χ′(τ) = dχ(τ)/dτ and we have defined the normalized Gauss distribution

G(ȳ; d) =
1√
πd

e−ȳ2/d2 . (5.14)

We note that the correlation function depends on D(τ) only through the diffusion length
d(τ ′, τ).

3 This procedure to solve the stochastic equation corresponds to Stratonovich integral [90]. There is
alternative method called Ito stochastic integral. These two stochastic integrals give the same result for
Eq. (5.5).
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Fig. 5.1: Function F (X) defined in Eq. (5.16).

By substituting Eq. (5.13) into Eq. (5.3), the second-order cumulant is calculated to be

⟨Q∆y(τ)
2⟩c

∆y
= χ(τ)−

∫ τ

τ0

dτ ′χ′(τ ′)F
( ∆y

2d(τ ′, τ)

)
, (5.15)

where

F (X) = erf(X) +
e−X2 − 1√

πX
(5.16)

with the error function erf(x) = 2√
π

∫ x

0
dte−t2 . The behavior of F (X) is shown in Fig. 5.1.

As in the figure, F (X) is a monotonically increasing function satisfying

lim
X→0

F (X) = 0, lim
X→∞

F (X) = 1. (5.17)

5.2.2 Properties of fluctuation observables

From Eqs. (5.15) and (5.13), we find several notable features in the rapidity dependences of
the cumulant and the correlation function.

First, we consider the behavior of ⟨Q∆y(τ)
2⟩c in the small and large ∆y limits. Using

Eq. (5.17), the cumulant in these limits is easily obtained as

⟨Q∆y(τ)
2⟩c

∆y
−−−→
∆y→0

χ(τ). (5.18)

⟨Q∆y(τ)
2⟩c

∆y
−−−−→
∆y→∞

χy(τ)−
∫ τ

τ0

dτ ′χ′(τ ′)

= χy(τ0). (5.19)

These results show that ⟨Q∆y(τ)
2⟩c takes the local-equilibrium value χ(τ) in the small ∆y

limit, while it recovers the initial value in the opposite limit. This shows that the relaxation
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time toward equilibrium is infinitesimal in the small ∆y limit, but it diverges in the large
∆y limit. The latter means that an equilibration of the conserved-charge fluctuation over
the whole system cannot be achieved within a finite time, because it takes a long time to
transport a charge from one end to the other in the rapidity space. The results (5.18) and
(5.19) also imply that one can study the history of the time evolution of the susceptibility
χ(τ) by studying the ∆y dependence of ⟨Q∆y(τ)

2⟩c [62].
Second, when χ(τ) increases (decreases) monotonically in τ , χ′(τ) ≥ 0 (≤ 0), then

⟨Q∆y(τ)
2⟩c/∆y for a given τ is a monotonically decreasing (increasing) function of ∆y:

χ′(τ)

{
≥ 0
≤ 0

⇒ ∂

∂∆y

⟨Q∆y(τ)
2⟩c

∆y

{
≤ 0
≥ 0

. (5.20)

This can be easily shown from Eq. (5.15) with knowing the fact that F (X) is a monoton-
ically increasing function. Note that this holds for any values of D(τ) > 0. Taking the
contraposition of Eq. (5.20), one concludes that χ(τ) must have at least one extreme when
⟨Q∆y(τ)

2⟩c/∆y is non-monotonic as a function of ∆y. In particular,

⟨Q∆y(τ)
2⟩c/∆y

has a local maximum
as a function of ∆y

⇒
χ(τ)

has a local maximum
as a function of τ

(5.21)

The same argument is also applicable to the correlation function. From the fact that G(ȳ, d)
monotonically decreases with increasing ȳ, it is again easy to show that

χ′(τ)

{
≥ 0
≤ 0

⇒ ∂

∂ȳ
⟨δn(ȳ, τ)δn(0, τ)⟩

{
≥ 0
≤ 0

, (5.22)

By taking the contraposition, one obtains

⟨δn(ȳ, τ)δn(0, τ)⟩
has a local minimum
as a function of ȳ

⇒
χ(τ)

has a local maximum
as a function of τ

(5.23)

The properties (5.21) and (5.23) can be quite useful in extracting the τ dependence
of χ(τ) in relativistic heavy ion collisions. If the experimental result of ⟨Q∆y(τ)

2⟩/∆y or
⟨δn(ȳ, τ)δn(0, τ)⟩ has a non-monotonic behavior as a function of rapidity, this immediately
means the existence of a non-monotonicity in χ(τ) as a function of τ . It is known that
the susceptibilities of baryon number and electric charge have a peak structure along the
phase boundary around the QCD critical point [41, 111]. A possible peak in ⟨Q∆y(τ)

2⟩c/∆y
or ⟨δn(ȳ, τ)δn(0, τ)⟩ serves as an experimental signal for the existence of such a critical
enhancement, i.e., a landmark of the phase boundary in the QCD phase diagram. This is
the most important conclusion of this paper.

It should be keep in mind that the inverses of Eqs. (5.21) and (5.23) do not necessar-
ily hold. That is, even if χ(τ) is a non-monotonic function of τ , there is a possibility that
⟨Q∆y(τ)

2⟩c/∆y and ⟨δn(ȳ, τ)δn(0, τ)⟩ are monotonic. Therefore, from the monotonic behav-
ior of ⟨Q∆y(τ)

2⟩c/∆y and/or ⟨δn(ȳ, τ)δn(0, τ)⟩ one cannot conclude anything about the τ
dependence of χ(τ). In Appendix G, we discuss the condition for the appearance of the
non-monotonic behaviors in these functions in more detail.
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5.2.3 Comment on higher order cumulant

Using SDE (5.5), it is possible to calculate the third and much higher order cumulants and
correlation functions. As is easily shown, however, the higher order correlation function
⟨δn(y1, τ)δn(y2, τ) · · · δn(yN , τ)⟩, and accordingly the higher order cumulants, vanishes in the
τ → ∞ limit for N ≥ 3 [73]. Therefore, the fluctuation of n(y, τ) in equilibrium described
by Eq. (5.5) thus obeys Gaussian distribution.

Because of this property, if one wants to describe the relaxation of higher order fluctuations
toward nonzero non-Gaussian equilibrium values, the SDE (5.5) is not an appropriate choice.
In relativistic heavy ion collisions, observed higher order cumulants take values close to their
nonzero equilibrium value [73]. This suggests that they approach the equilibrium value by
the diffusion process. The approach cannot be described by the SDE (5.5). This is one of the
reasons that we limit our attention to the second-order cumulant and correlation function
in the present study. To describe the relaxation of higher-order cumulants toward nonzero
non-Gaussianity, a different approach is needed. In Ref. [62], for example, the non-interacting
Brownian particle model is employed to describe this process.

5.3 Model of collision evolution

In the previous section we showed that a non-monotonic behavior of ⟨Q∆y(τ)
2⟩c/∆y and

⟨δn(ȳ, τ)δn(0, τ)⟩, if observed, is a direct experimental evidence for the existence of a
peak structure in susceptibility χ(τ). In the rest of this paper, we demonstrate the ap-
pearance of the non-monotonic behavior by studying the behavior of ⟨Q∆y(τ)

2⟩c/∆y and
⟨δn(ȳ, τ)δn(0, τ)⟩ with a phenomenological parametrization of χ(τ) and D(τ) for a collision
event evolution passing near and away from the QCD critical point. In this section we first
introduce the model for χ(τ) and D(τ). Then, the time evolution of fluctuation is studied in
the next section.

In this study, we write the susceptibility and the diffusion coefficient at temperature T as
a sum of their singular and regular contributions:

χ(T ) = χcr(T ) + χreg(T ), (5.24)

1

D(T )
= τ 2

( 1

Dcr
C (T )

+
1

Dreg
C (T )

)
, (5.25)

where χcr(T ) and χreg(T ) denote the singular and regular parts of susceptibility per unit
rapidity, respectively. We also define the singular and regular parts of diffusion coefficients
Dcr

C (T ) and Dreg
C (T ) in Cartesian coordinate. We then parametrize a map of the evolution

time to the temperature T = T (τ) to obtain the τ dependences.

5.3.1 Singular part

First, we discuss the singular parts χcr(T ) and Dcr(T ). It is known that the QCD critical
point belongs to the same static universality class as the 3D Ising model. The magnetization
M of the Ising model as a function of the reduced temperature r and the magnetic field H
near the critical point is parametrized with two variables R ≥ 0 and θ in the linear parametric
model [112,113] as

M(R, θ) = m0R
βθ, (5.26)
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where r and H are expressed as

r(R, θ) = R(1− θ2), (5.27)

H(R, θ) = h0R
βδh(θ) = h0R

βδθ(3− 2θ2). (5.28)

The critical point is located at r = H = 0. The crossover (r > 0, H = 0) and first-order
transition (r < 0, H = 0) lines correspond to θ = 0 and |θ| =

√
3/2 with R > 0, respectively.

We adopt approximate values β = 1/3 and δ = 5 for the Ising critical exponents [112]. From
Eq. (5.26), one can calculate the magnetic susceptibility as

χM(r,H) =
∂M(r,H)

∂H

∣∣∣∣
r

=
m0

h0

1

R4/3(3 + 2θ2)
. (5.29)

As the susceptibility of a conserved charge χ near the QCD critical point should share the
the same critical behavior as χM(r,H), we set

χcr(r,H)

χH
= ccχM(r,H) = cc

m0

h0

1

R4/3(3 + 2θ2)
, (5.30)

with a dimensionless proportionality constant cc. The susceptibility in the hadronic medium
χH will be defined in Sec. 5.3.3. We fix the normalization constants m0 and h0 by imposing
M(r = −1, H = 0+) = 1 and M(r = 0, H = 1) = 1.

In reality, the finite system size effect in heavy-ion collisions prevents the divergence of
χ [76]. But we ignore this effect because the growth of fluctuation would be limited more
severely by the finiteness of the evolution time due to the critical slowing down [68].

For determining Dcr
C , we rely on the dynamic universality argument [39]. Since the QCD

critical point belongs to the model H [38] in the classification of Ref. [39], the singular
part Dcr

C scales with the correlation length ξ as Dcr
C ∼ ξ−2+χη+χλ , where the exponents χη

and χλ for model H are obtained by the renormalization group calculation as χη ≃ 0.04
and χλ ≃ 0.916 [39]. As the correlation length ξ and the susceptibility χcr are related as
χcr ∼ ξ2−χη , the singular part Dcr

C can be expressed in terms of χcr:

Dcr
C (r,H) = dc

[
χcr(r,H)

χH

](−2+χη+χλ)/(2−χη)

(5.31)

with a proportionality constant dc having a dimension of diffusion coefficient. Note that Dcr
C

vanishes at the critical point, reflecting the critical slowing down.
In our model, we leave the strengths of the critical component cc and dc as free parameters.

The reduced temperature r controls the distance of the trajectory from the critical point.
We will vary the r value to simulate the change of the collision energy in the next section.

5.3.2 Parameterizing the medium evolution

To utilize the above universality argument for describing heavy-ion collision events, we need a
map between the Ising variables (r,H) and the physical variables (T, µ) in QCD, in addition
to a map from the proper time τ to (T, µ) at a given collision energy. To skip these mappings,
we follow a simple approach adopted in Refs. [68,69,71]: We assume that (T, µ) in QCD are
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Fig. 5.2: Schematic figure of the mapping.

linearly mapped to the Ising variables (r,H) near the critical point, and that H changes alone
while r is fixed during the event evolution. We write the linear relation between H and T as

T − Tc

∆T
=

H

∆H
, (5.32)

with Tc being the critical temperature. The ratio ∆T/∆H controls the width of the critical
region in the QCD phase diagram, , as shown in Fig. 5.2 To relate T and τ , we assume the
one-dimensional Bjorken expansion and a conservation of total entropy. The relation is then
obtained as [71]

T (τ) = T0

(τ0
τ

)c2s
, (5.33)

where c2s is the sound velocity and T0 is initial temperature of the system at initial proper
time τ0.

In our calculation we set the initial time τ0 = 1.0 fm/c with temperature T0 = 220 MeV,
the critical temperature of the QCD critical point Tc = 160 MeV, and the kinetic freeze-out
temperature Tf = 100 MeV [95], where we stop the evolution. The parameters for the critical
region in Eq. (5.32) are set to ∆T/∆H = 10 MeV. For the sound velocity c2s , we adopt
c2s = 0.15 which is indicated in a lattice calculation in the transition region at µ = 0 [114].

5.3.3 Regular + singular

We assume that the susceptibility per unit rapidity χ(T ) approaches a constant value χQ (χH)
at high (low) temperature, which we call quark-gluon plasma (hadronic) value. We note that
the value of the χQ depends on the trajectory in the (T, µ) plane and is not determined only
from the thermal property [58,59]; see also Refs. [56,73]. We also note that the susceptibility
per unit rapidity approaches a constant value in the late stage in heavy-ion collisions because
the particle abundances are fixed after the chemical freeze-out. In the present study, we use
the value estimated in Ref. [58] assuming entropy conservation,

χQ

χH
≃ 0.5. (5.34)
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Fig. 5.3: Net-baryon number susceptibility per unit rapidity χ(T ) (upper) and diffusion
constant in the Cartesian coordinate DC(T ) (lower) as a function of T for several values of r
and Cc. The regular parts of the susceptibility χ(T ) = χreg(T ) and of the diffusion constant
DC(T ), labeled ”reg”, are also shown. Dashed lines show the thermal values in the QGP and
hadron phases.

For the diffusion coefficient, we assume that the coefficient in the Cartesian coordinates
approaches constant values, DQ

C and DH
C , at high and low temperatures, respectively. We

take DQ
C = 2.0 fm from an estimate in the lattice QCD calculation [27] and DH

C = 0.6 fm
from Ref. [75].

The regular parts χreg(T ) and Dreg
C (T ) are then constructed by smoothly interpolating

these values at high and low temperatures

χreg(T ) = χH
0 + (χQ

0 − χH
0 )S(T ), (5.35)

Dreg
C (T ) = DH

0 + (DQ
0 −DH

0 )S(T ), (5.36)

with

S(T ) =
1

2

(
1 + tanh

(
T − Tc

δT

))
. (5.37)

Here χQ,H
0 and DQ,H

0 are determined so that χ(T ) and DC(T ) coincide with the presumed
values χQ,H and DQ,H

C at T = T0,f , respectively. We set the width of the crossover region,
δT = 10 MeV.

In Fig. 5.3, we plot the susceptibility χ(T )/χH and the diffusion coefficient DC(T ) as a
function of T for several values of r and cc with dc = 1 fm. The upper panel of Fig. 5.3 shows
that χ(T )/χH for r = 0 diverges at T = Tc. The sharp peak around Tc remains even for r = 1
with cc = 4. The regular part Eq. (5.35), labeled by “reg” is also shown for comparison. The
lower panel of Fig. 5.3 shows that D(T ) with the singular part vanishes at T = Tc for r = 0,
which is a manifestation of the critical slowing down.
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Fig. 5.4: The time slices of the regular second-order cumulant (Left) and the regular corre-
lation function (Right) of the net baryon number.

5.4 Effects of criticality on observables

Now, we analyze the time evolution of the fluctuation and correlation function using the
parametrization obtained in the previous section, and study the effect of the QCD critical
point on observables.

One remark concerned with the comparison of our results with the experimentally-
observed fluctuations is that the diffusion described by the SDE (5.5) proceeds in the co-
ordinate space, but the experimental measurements are performed in momentum space. The
imperfect correlation between the two rapidities due to thermal motion gives rise to the
“thermal blurring” effect [73, 107]. For nucleons, this effect increases the diffusion length
by about 0.25 after the thermal freeze-out [107]. We consider this effect in the subsequent
analyses.

In this section, we show the numerical results of the cumulant and correlation function
by the following normalized functions

K(∆y) =
⟨Q∆y(τ)

2⟩c
⟨Q2

∆y⟩c,H
=

⟨Q∆y(τ)
2⟩c

χH∆y
, (5.38)

C(ȳ) =
⟨δn(ȳ, τ)δn(0, τ)⟩

χH
, (5.39)

where ⟨Q2
∆y⟩c,H = χH∆y is the cumulant in the equilibrated hadronic medium.

5.4.1 Non-critical trajectory

First, we study the case without the singular parts by setting χ(τ) = χreg(T (τ)) and D(τ) =
Dreg(T (τ)). This corresponds to the collision events which pursue a trajectory away from
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the critical point in the crossover region (or, in the QCD phase diagram without a first order
phase transition). As in Fig. 5.3, χreg(T ) behaves monotonically as a function of T in this
case.

In Fig. 5.4, we show the results of K(∆y) and C(ȳ) for several values of T from the
initial temperature T0 = 220 MeV to the kinetic freeze-out Tf = 100 MeV, together with
the result after the thermal blurring. Remark that the result only after thermal blurring
can be compared with experimental results. Other results are shown to understand the time
evolution of these quantities.

At the initial time with T = 220 MeV, K(∆y) is given by a constant, while C(ȳ) vanishes,
in accord with the locality condition Eq. (5.10). As T is lowered, nontrivial structures emerge
in these functions. As discussed in Sec. 5.1, K(∆y) at ∆y = 0 equals to its thermal value,
i.e. χ(T )/χH, which increases monotonically with time in this non-critical case. K(∆y)
at nonzero ∆y follows this trend but the increase is slower because of the finite diffusion
time. As a result, the cumulant of a conserved charge is strongly dependent on ∆y. We also
note that K(∆y) decreases monotonically in ∆y, which is consistent with the discussion in
Eq. (5.20) that K(∆y) should be monotonic when χ(τ) is monotonic. K(∆y) approaches
its initial value χQ/χH for a wider ∆y. Notice that the behavior of K(∆y) after thermal
blurring is qualitatively consistent with the experimental result in the second-order cumulant
of net-electric charge observed at the LHC [84].

The ∆y dependence of the second-order cumulant has been studied in Refs. [62, 75, 86].
The analysis of these studies corresponds to the parameter choice δT = 0 in Eq. (5.35),
i.e. χ(τ) jumps discontinuously at Tc. Since our result is qualitatively unchanged from the
previous one, the transition parameter δT = 10 MeV seems not much important.

The right panel of Fig. 5.4 shows C(ȳ). One finds that this function also behaves mono-
tonically as a function of ȳ, which is consistent with Eq. (5.22). We also notice that C(ȳ)
always takes a negative value. This is directly confirmed by substituting χ′(τ) > 0 into
Eq. (5.13).

5.4.2 Trajectory passing through the critical point

Let us examine the case that the trajectory in heavy ion collisions passes right through the
critical point (r = 0). In Fig. 5.5, we show the evolution of K(∆y) and C(ȳ) along the critical
trajectory (r = 0) for several values of T and after thermal blurring with cc = 4 and dc = 1.

In the left panel of Fig. 5.5, K(∆y) at T = Tc = 160 MeV shows a remarkable enhance-
ment, which comes from the divergence of χ(τ) at T = Tc as shown in Fig. 5.3. This figure,
however, shows that the cumulant stays finite for nonzero ∆y even at the critical point. This
result shows the critical slowing down. We remark that the effect of the critical slowing down
is dependent on ∆y as discussed in Sec. 5.2.2. After passing through the critical point, the
value of K(∆y) at ∆y = 0 decreases rapidly in accordance with the suppression of χ(τ), while
the decrease at nonzero ∆y is slower because of the slower diffusion for the larger ∆y. As a
consequence, a non-monotonic structure appears in K(∆y). In Fig. 5.5, the non-monotonic
behavior continues to exist in K(∆y) until kinetic freeze-out time and even survives the
thermal blurring. Therefore, the non-monotonic behavior of K(∆y) can be observed exper-
imentally in this case. As discussed in Sec. 5.2.2, this non-monotonic behavior, if observed,
is a direct signal for the existence of the critical enhancement of χ(τ).

An important lesson to learn from this result is that the non-monotonic behavior of
K(∆y) can survive whereas the magnitude of fluctuation itself is almost smeared to the
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Fig. 5.5: The time slices of the second-order cumulant (Left) and the correlation function
(Right) of the net baryon number for r = 0 and Cc = 4.

equilibrated hadronic value K(∆y) = 1; the maximum value of K(∆y) after thermal blurring
is K(∆y) ≃ 1.2 at ∆y = 0.75. This result suggests that the study of the non-monotonicity of
K(∆y) is advantageous for the search of the critical enhancement than the value of K(∆y)
with fixed ∆y. Therefore, it is a quite interesting experimental subject to analyze the ∆y
dependence.

In the right panel of Fig. 5.5, one can draw the same conclusion on the ȳ dependence
of C(ȳ). C(ȳ) at ȳ → 0 changes from negative to positive around Tc. Triggered by this
behavior, the non-monotonic ȳ dependence of C(ȳ) manifests itself. The non-monotonicity
again survives after thermal blurring, suggesting that it can be measured experimentally.

We note that similar non-monotonic behaviors of correlation functions are also observed
in Ref. [70] and that of the mixed correlation function in Ref. [105]. The appearance of the
non-monotonicity in these studies is understood completely the same way as that in Sec. 5.2.

Next, we consider the case with a weaker critical enhancement by setting cc = 1, but still
keeping r = 0, i.e., the trajectory passing through the critical point. We show the results in
Fig. 5.6. Although results above T = 155 MeV look almost the same as those for cc = 4,
the non-monotonicity of K(∆y) disappears already at T = 100 MeV. As the growth of the
susceptibility with cc = 1 is weaker, and the signal is drowned out by the diffusion in the
hadronic phase. As discussed in Sec. 5.2.2, the absence of the non-monotonicity in K(∆y)
does not necessarily mean the absence of the peak structure in χ(τ).

The right panel of Fig. 5.6 shows the result for the correlation function. The figure shows
that the non-monotonic behavior of C(ȳ) generated at the critical point survives at T = 100
MeV and even after the thermal blurring. This result suggests that the non-monotonic
signal in C(ȳ) is observable even when it disappears in K(∆y). In fact, we will discuss in
Appendix G that the non-monotonicity in C(ȳ) is more sustainable than that in K(∆y).
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Fig. 5.6: The time slices of the second-order cumulant (Left) and the correlation function
(Right) of the net baryon number for r = 0 and Cc = 1.

5.4.3 Trajectory passing near the critical point

Finally, let us study the time evolution of fluctuations for r > 0, which corresponds to the
case where the system undergoes a crossover transition. Shown in Fig. 5.7 is the result of
K(∆y) and C(ȳ) for r = 1 and cc = 4. The results are qualitatively the same as that in
Fig. 5.5. By closely comparing these results, one finds that the non-monotonic signal with
r = 1 for T ≤ 150 MeV is much clearer than Fig. 5.5, although χ(T ) does not diverge with
r = 1.

There are two reasons behind this result. First, D(τ) for r = 1 does not vanish because
the trajectory does not pass right through the critical point (see, Fig. 5.3). Therefore, the
critical slowing down for r = 1 is less important than that for r = 0, and the fluctuations
can grow faster around Tc. Second, χ(T )/χH for r = 1 and cc = 4 is larger than that for
r = 0 at T ≲ 155 MeV in our parametrization, as seen in Fig. 5.3. Therefore, χ(T ) for r = 1
decreases toward χH more slowly. This behavior makes the non-monotonic peaks in K(∆y)
and C(ȳ) more prominent. Note, however, that the second observation may be dependent
on the parametrization of χ(T )/χH, and model dependent.

This argument suggests that the non-monotonic signals can be observed even when the
trajectory does not pass just through the critical point. Moreover, it is possible that the
trajectory off the critical point is more favorable for the emergence of the non-monotonicity.

However, the signal of the critical enhancement, of course, ceases to exist as the trajectory
departs further off the critical point. Indeed with cc = 4 the non-monotonic behavior in
K(∆y) and C(ȳ) disappear for r ≳ 5 and 8, respectively, as shown in Fig. 5.8. The non-
monotonic behaviors of K(∆y) and C(ȳ) never appear in this parameter region.
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5.5 Brief summary

The most important conclusion of the present study is Eqs. (5.21) and (5.23), i.e. the
non-monotonic behaviors of K(∆y) and C(ȳ), if observed, are direct experimental signals
of the critical enhancement of the fluctuations of conserved charges. When this argent is
applied to real heavy ion collisions, however, one has to consider several subtleties. First,
throughout this study we assumed Bjorken space-time evolution. This assumption, however,
is violated for lower energy collisions. In particular, in the energy range of the BES program
at RHIC, one has to consider the effect of the violation seriously. For lower energy collisions,
the effects of global charge conservation [75] arising from the finite size system would also
affect fluctuation observables seriously. It, however, is expected that these effects do not
alter our conclusions on non-monotonicity. First, the violation of Bjorken picture makes the
correspondence between the coordinate and momentum space rapidities worse. The blurring
effect becomes stronger [73, 107], and this effect makes the experimental measurement of
non-monotonicity difficult. Even in this case, however, the relations Eqs. (5.21) and (5.23)
should hold, because the thermal blurring effect acts to enhance the diffusion length. From
the analysis in Ref. [75], it is also expected that the the effects of global charge conservation
do not alter our conclusion. Of coarse, our argument would be completely violated for lower
energy collisions at which the longitudinal expansion is strongly suppressed.

In this study, we described the critical fluctuation by the stochastic diffusion equation
(5.5). Although the use of this model is well justified to describe sufficiently long scale
fluctuations, the fluctuations in heavy ion collisions can not be slow enough to apply this
picture. Near the critical point, the correlation length may become comparable with the
typical scale of fluctuations [115]. To consider these effects, the SDE (5.5) has to be modified.
One direction is to include higher order derivative terms. The other important extension is
to include the σ field explicitly as a dynamical field, and solve the coupled equation. Near
the critical point, the coupling of the conserved charges with energy momentum must also
be taken into account [70], although this effect is completely neglected in the present study.
To deal with these subjects, the realistic numerical simulations of the space-time evolution
in, for example, the chiral fluid model [72] would be attractive, which would also realize the
simulation of realistic three dimensional expansion.

In this study, we investigated the time evolution of the second order cumulant and the
correlation function of conserved charges, especially focusing on the effects of critical slowing
down near the critical point and dissipation in the late stages, in heavy-ion collisions which
passes near the critical point. We adopted the stochastic diffusion equation with critical
nature being encoded in the time-dependent susceptibility and diffusion coefficient. This
model can describe the dynamics of critical mode near the critical point by incorporating
its diffusive property, which was not considered in previous studies on the critical slowing
down. We showed that the dynamical property of conserved-charge fluctuation is dependent
on the rapidity window. We pointed out that the effect of the critical enhancement in
susceptibility near the critical point can be observed as the non-monotonic behaviors in the
second-order cumulant and correlation function. Our numerical result suggests that these
non-monotonic behaviors are more robust signal than the value of these functions themselves.
It is, therefore, a quite interesting experimental subjects to analyze the rapidity dependences
of these functions in heavy-ion collisions.



Chapter 6

Memory time effects on time
evolution of higher-order cumulants

The SDE (5.5) are useful equations but it is known that they have a problem that they
violate the causality. These equations are first order in time and second order in space. As a
result, propagation speeds of the particles described by these equations become infinitely [87].
To improve this problem, the temporarily local correlation of the stochastic noises assumed
to solve the SDE should be replaced by one that the noise correlation propagates with a
relaxation time, i.e. ⟨ξ(t1)ξ(t2)⟩ ∼ e−t/τr . In such stochastic processes with temporarily non-
local correlation are known to be of non-Markov, where the past information affects on the
present state [90]. In the non-Markov processes, the concept of memory time emerges and
becomes much important.

The memory time effects on the second-order cumulants of conserved charges were inves-
tigated in Ref. [87], where the authors employed the phenomenological equation called the
Maxwell-Cattaneo equation, which does not violate the causality.

In the present study, we study the memory time effects on the higher-order cumulants. We
find that these effects cause a delay of equilibration of cumulants of conserved charges. In this
study, we start from microscopic model to treat time evolution of the higher-order cumulants.
In Sec. 6.1, we derive equations with non-Markov nature from two Langevin equation. In
the derivation of these equations, we employ the adiabatic elimination procedure. Then we
extend our discussion to a multi-particle system and obtain the cumulants of the particle
number. In Sec. 6.2, we investigate the effects of the memory time on the time evolution of
cumulants by comparing results with the SDE (5.5).

6.1 Model

In the present study, we consider a one-dimensional system in the Cartesian coordinate (t, z).
For simplicity, we assume infinitely long system. First, we consider a motion of a single
charged particle, which moves in the phase space obeying Markovian equations. Then we
introduce a procedure called an adiabatic elimination to incorporate the memory time effect.
After this procedure, one can obtain a probability distribution function for the position of
the particle, which has non-Markov nature.

In this study, we derive the non-Markov solutions with two different methods. In sub-
sections 6.1.1 and 6.1.2, we derive the solution straightforwardly from the two Langevin
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equations for the position and velocity of the particle. In subsections 6.1.3, we also start
from the same Langevin equations, but derive the corresponding Fokker-Planck equation
from these equations. Using the procedure of the adiabatic elimination, we obtain a equation
with the memory time called Cattaneo equation.

In subsection 6.1.5, we introduce a multi-particle system to discuss cumulants of conserved
charges.

6.1.1 Langevin equations in phase space for a single particle

First, we consider a motion of a single particle in a phase space. We start from two Langevin
equations for a position z and velocity v of particle:

dz

dt
= v (6.1)

dv

dt
= −γv +

√
2γT

m
ξ(t), (6.2)

where m, T represent mass of the particle, temperature, respectively, and γ = β/m with the
drag coefficient β. Now both z(t) and v(t) are Markov process.

First, we solve the equation for the velocity (6.2). It is the same equation as Eq. (2.47) with
X(t) = ξ(t)

√
2γT/m. Compared with Eqs. (2.49) and (2.54), the average and correlation of

the noise term ξ(t) are given by

⟨ξ(t)⟩ = 0, ⟨ξ(t1)ξ(t2)⟩c = δ(t1 − t2). (6.3)

The solution of Eq. (6.2) is equivalent to (2.72). We now use the results (2.72), (2.52), and
(2.53) in subsection 2.3.1.

From the solution of the velocity (2.72), one can obtain the position of the particle with
initial position x(t0) = x0 as

z(t) = z0 +

∫ t

t0

ds v(s). (6.4)

Thus the mean value of x(t) is

⟨z(t)⟩c = ⟨z0⟩c +
∫ t

t0

ds ⟨v(s)⟩c = ⟨z0⟩c +
⟨v0⟩c
γ

(1− e−γt), (6.5)

where we have used Eq. (2.52). Similarly, using the solution of the velocity (2.72), the
deviation from the mean value is given by

z(t)− ⟨z(t)⟩c =
∫ t

t0

ds v(s)− v0
γ
(1− e−γt)

=

∫ t

t0

ds

[
v0e

−γs +

∫ s

t0

dt′ e−γ(s−t′)ξ(t′)

]
− v0

γ
(1− e−γt)

=
v0 − ⟨v0⟩c

γ
(1− e−γt)− 1

γ

∫ t

t0

dt′
√

2γT

m
ξ(t′)(1− e−γ(t−t′)). (6.6)
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Thus one can calculate the variance of the velocity as

⟨z(t)2⟩c = ⟨(z(t)− ⟨z(t)⟩c)2⟩c

=
⟨v20⟩c
γ

(1− e−γt)2 +
1

γ2

∫ t

t0

dt′1

∫ t

t0

dt′2
2γT

m
⟨ξ(t′1)ξ(t′2)⟩c(1− e−γ(t−t′1))(1− e−γ(t−t′2))

=
⟨v20⟩c
γ

(1− e−γt)2 +
2T

γm

[
t− 1

γ
(1− e−γt) +

1

2γ
(1− e−2γt)

]
. (6.7)

In the last line of Eq. (6.7), we have used Eq. (2.54). It shows that ⟨x(t)2⟩c approaches
2T/(γm) with relaxation time of v(t), τr = γ−1. Compared with the Einstein’s result [93],
i.e. the average diffusion length is given by

√
⟨z(t)2⟩c =

√
2Dt with the diffusion constant

D, we obtain the Einstein relation [90]

D =
T

γm
=

T

β
. (6.8)

Assuming that the correlation of z(t) is Gaussian, we obtain the conditional probability
distribution for z(t) as

p(z, t|z0, t0) =
1√

2π⟨z(t)2⟩c
exp

[
−(z(t)− ⟨z(t)⟩c)2

2⟨z(t)2⟩c

]
, (6.9)

with Eqs. (6.5) and(6.7).

6.1.2 Adiabatic elimination for Langevin equation

z(t) and v(t) are still Markov process. Now we take into account the non-Markov nature.
We assume that the drag force β is very large and thus the relaxation time of v(t) is much
short compared to z(t). As a result, v(t) relaxes to be its stationary value, i.e. that of the
Maxwell-Boltzmann distribution, with keeping z(t) to be constant. The average and the
second-order cumulants of v(t) are then given by

⟨v0⟩c = ⟨v⟩sc = 0, ⟨v20⟩c = ⟨v2⟩sc = T/m. (6.10)

Such an approximation is known as an adiabatic elimination [90]. By eliminating a fast
variable, in this case, v(t), the non-Markov nature is taken into account in a slow variable
z(t). Under this approximation, the position z(t) is now given by

p(z, t|z0, t0) =
1√
2πσ2

zz

exp

[
−(z(t)− ⟨z0⟩c)2

2σ2
zz

]
, (6.11)

with the averaged diffusion length

σzz =

√
2D

γ
(e−γt − 1) + 2Dt. (6.12)

The first term in the above equation cannot obtained from the Langevin equation for the
position (6.1) solely. It represents the non-Markov nature. In the limit of t → 0, σxx →√
γDt. It indicate that the average propagation speed is given by vp ∼ σxx/t =

√
γD.

From the result, the solution (6.11) does not violate causality. The averaged diffusion length
(6.12) approaches to

√
2Dt, which is the one obtained from the ordinary stochastic diffusion

equation, with a time scale ∼ γ−1, which is called the memory time, τm. It indicates that the
memory time effects, i.e. the effects of a past information, disappear with this time scale.
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6.1.3 Fokker-Planck equation for a single particle

There is another way to take into account the memory time effect. We also start from the
Langevin equations (6.1) and (6.2). Then we construct the corresponding Fokker-Planck
equation. Using the Einstein law (6.8), Eq. (6.2) is rewritten as

dv

dt
= −γv + γ

√
2Dξ(t). (6.13)

Ito’s formula corresponding to the Langevin equations (6.1) and (6.13) is given by

df(z, v) = f(z +∆z, v +∆v)− f(xz, v)

=
∂f

∂z
dz +

1

2

∂2f

∂z2
dx2 +

∂f

∂v
dv +

1

2

∂2f

∂v2
dv2 +

∂2f

∂z∂v
dxdv (6.14)

=
∂f

∂z
vdt− ∂f

∂v
(γv) dt+ γ2D

∂2f

∂v2
dt (6.15)

In the similar manner as Eqs. (2.58) and (2.59) in subsection 2.3.1, one obtains a Fokker-
Planck equation (6.16) related to the Langevin equations,

∂p(z, v)

∂t
= [γL1 + L2]p(z, v) (6.16)

with

L1 =
∂

∂v

(
v +D

∂

∂v

)
, L2 = − ∂

∂z
v. (6.17)

In Eq. (6.16), first term arises from the contribution of the velocity. Indeed, the equation
∂tp = γL1p is equivalent to Eq. (2.60), which is the Fokker-Planck equation for the velocity.
Eq. (6.16) is still Markovian. To incorporate the non-Markov nature, we use a similar method
in the previous subsection: We assume that γ s very large and thus it leads to rapid relaxation
of v(t) to stationary state Eq. (6.10). In the next subsection, we consider such approximation
on the basis of Ref. [90].

6.1.4 Adiabatic elimination for Fokker-Planck equation

Now we introduce a projector P on z and v as

(Pf)(z, v) = ps(v)

∫
dv1f(z, v1), (6.18)

where ps(v) is the stationary distribution function for v, which is a solution of

L1ps(v) = 0. (6.19)

This projector has the following properties:

P 2 = P, (6.20)

PL1 = L1P = 0, (6.21)

P = lim
t→∞

exp(γL1t), (6.22)

PL2P = 0. (6.23)
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First two properties are trivial ones. The property (6.22) arises from the fact that
exp(L1t)f(z, v) is a solution of the Fokker-Planck equation ∂tp = L1p and thus it approaches
the stationary distribution in the limit of t → 0. Eq. (6.23) is derived by using stationary
condition (6.10),

(PL2Pf)(z, v) = (ps(v)

∫
dv)

(
− ∂

∂z
v

)
(ps(v)

∫
dv1)f(z, v1)

= −ps(v)⟨v⟩s
∂

∂z

∫
dv1 f(z, v1) = 0. (6.24)

Introducing the Laplace transformation of any function of time f(t)

f̃(s) =

∫ ∞

0

dt e−stf(t), (6.25)

which satisfies ∫ ∞

0

dt e−stdf

dt
= sf̃(s)− f(0), (6.26)

one obtains the Laplace transform of the

sp̃(s)− p(t0) = (γL1 + L2)p̃(s). (6.27)

Applying the projector P to Eq. (6.27), one finds that

sũ(s)− u(t0) = P (γL1 + L2)p̃(s)

= PL2(Q+ P )p̃(s) = PL2Qp̃(s) = PL2w̃(s). (6.28)

with ũ(s) = P p̃(s), Q = 1 − P and w̃(s) = Qp̃(s). Here, we have used relations (6.21) and
(6.23). Similarly, applying the projector Q to Eq. (6.27),

sw̃(s)− w(t0) = γQL1p̃(s) +QL2p̃(s)

= γL1Qp̃(s) +QL2(Q+ P )p̃(s) = (γL1 +QL2)w̃(s) + L2ũ(s). (6.29)

Now we assume that w(t0) = Qp(t0) = (1 − P )p(t0) = 0, which indicates that v(t0) is a
stationary Markov process, i.e. p(t0) = ps(v)

∫
du1p(X, v1). From Eqs. (6.29) and (6.28), one

obtains

sw̃(s) = −PL2[−s+ γL1 +QL2]
−1L2ũ(s) + u(t0), (6.30)

To include Non-Markov nature, we take the limit γ → 0. However, we should note that
the large γ limit implies that s is finite, s ≪ γ. It indicates that the solution is valid on a
time scale t ≫ γ−1, and that finer details of time evolution could not be described accurately.
To describe short-time behaviors of the particle appropriately, we introduce a scaled Laplace
transform variable, s1 = sγ−1. Then, in the limit γ → ∞, Eq. (6.30) becomes

sw̃(s)− u(t0) ≃ −γ−1PL2 (−s1 + L1)
−1 L2ṽ(s)

= −ps(v)

∫
dv1

∂

∂z
v1(−s+ γL1)

−1

(
∂

∂z

)
v1ps(v1)p̃(z), (6.31)
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with p̃(z) =
∫
dv1 p̃(s). In the second line in Eq. (6.31), we use Eqs. (6.19) and (6.10). From

Eq. (6.19), using∫ ∞

0

dt e(−s+γL1)t = (−s+ γL1)
−1
[
lim
t→∞

e(−s+γL1)t − 1
]

= (−s+ γL1)
−1
[
lim
t→∞

e−stP − 1
]
= −(−s+ γL1)

−1, (6.32)

which is obtained from Eq. (6.19), Eq. (6.31) is rewritten by

sw̃(s)− u(t0) = ps(v)

∫
dv1

∂

∂z
v1

∫ ∞

0

dt e−steγL1t

(
∂

∂z

)
v1ps(v1)p̃(z). (6.33)

Because eγL1tvps(v) is a solution of the Fokker-Planck equation ∂tf = γL1f with a initial
condition f(v, t0) = vps(v),

eγL1tvps(v) =

∫
dv1 p(v, t|v0, t0)ps(v1)v1. (6.34)

where p(v, t|v0, t0) is a conditional probability for v with a initial value v(t0) = v0. Substi-
tuting Eq. (6.34) into Eq. (6.33),

sw̃(s)− u(t0) = ps(v)

∫
dv1

∂

∂z
v1

∫ ∞

0

dt e−st

(
∂

∂z

)∫
dv2 p(v1, t|v2, t0)ps(v2)v2

= ps(v)
∂

∂z

∫ ∞

0

dt e−st

(
∂

∂z

)
⟨v(t)v(t0)⟩sp̃(z)

= γDps(v)
1

s+ γ

∂

∂z

(
∂

∂z

)
p̃(z). (6.35)

In the third line of Eq. (6.33), we integrate with respect to t after using ⟨v(t)v(t0)⟩s =
γDe−γ(t−t0). Then, using Eqs. (6.25) and (6.26), Eq. (6.33 is transformed as∫ ∞

0

dt
∂

∂t
ps(v)p(z) =

γD

s+ γ

∫ ∞

0

dt ps(v)
∂

∂z

(
∂

∂z

)
p(z) (6.36)

where p(z) =
∫
dv p(z, v). After some calculations for Eq. (6.36), we finds the Fokker-Planck

equation for p(z),

γ−1∂
2p(z)

∂t2
+

∂p(z)

∂t
= D

∂2p(z)

∂z2
. (6.37)

To derive Eq. (6.37), we have set initial condition as ∂tp(z, t)|t=t0 = 0. Eq. (6.37) is called
Maxwell-Cattaneo equation.

By integrating Eq. (6.37), one obtains

∂p(z)

∂t
= D

∂2p(z)

∂z2

∫ t

t0

dt1 exp[γ(t1 − t)]p(t1). (6.38)

It shows a non-Markov nature, which indicates that the prediction of p(t+∆t) requires the
knowledge of p(t1) for t0 ≤ t1 ≤ t. With a time scale of the memory time ∼ τm = γ−1,
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Fig. 6.1: Schematic figure of system discussed in subsection 6.1.5.

Eq. (6.37) approaches to the ordinary stochastic diffusion equations with a time scale as
shown in Eq. (2.63).

Under the initial condition p(z, t0) = δ(z − z0) with initial position of the particle z0, the
solution of the Maxwell-Cattaneo equation is given by [116]

p(z, t|z0, t0) =
e−γt0/2

2

[
δ
(
z − z0 +

√
γDt

)
+ δ

(
z − z0 −

√
γDt

)
+

√
γ

4D

{
I0

(√
γ

4D

√
γDτ 2 − (z − z0)2

)

+

√
γDt2

γDt2 − (z − z0)2
I1

(√
γ

4D

√
γDt2 − (z − z0)2

)}]
θ
(
γDt2 − (z − z0)

2
)

(6.39)

where Ia(z) denotes the modified Bessel function of the first kind and θ(z) is a step function.
This result shows that the particle initially propagates with the speed vp =

√
γD, which

shows that the solution (6.39) also does not violate the causality. This behavior of the
solution (6.39) at short time is consistent with the result (6.11).

6.1.5 Multi-particle system

In this section, we consider a multi-particle system to obtain higher-order cumulants of
conserved charge [107]. For simplicity, we discuss a system with a single species of particles
in the present study. By using the way in subsection 4.1.2 [62, 75, 79], the extension to the
case of multi-particle species are possible.

We start our discussion from the discretized coordinate space and finally take a continuum
limit. We divide the system into N discrete cells with an equal finite length δz, as shown
in Fig. 6.1.5. We set the particle number at the initial t = t0 in the m th cell as Mk. From
the fixed initial condition, these particles then move from the m′ th cell to the m th cell
with a probability pm′m. Then the probability distribution for the particle number n =
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(n1, n2, · · · , nN) at t is given by the Multinomial distribution as

P (n) =
∑
k

N∏
m′

M1!

km′1!km′2! · · · km′N !
p
km′1
m′1 · · · pkm′N

m′N =
N∏
m′

(∑
m

pm′m

)Mm′

, (6.40)

where km′m express the particle number moving from the m′ th cell to the m th cell. The
properties of the Multinomial distribution is shown in Appendix B.

In the similar manner in Chapter 4, we introduce the factorial-generating function

Gf(s) =
∑
n

sn1
1 sn2

2 · · · snN
N P (n) =

∏
m′

(∑
m

smpm′m

)Mm′

. (6.41)

Using the factorial-cumulant-generating function defined by Kf(s) = lnGf(s), one can obtain
the cumulants as in Eq. 4.20 in Chapter. 4. In the present case, the cumulants up to the
fourth-order are also given by Eqs. (4.21) -(4.24), but in the present case, the factorial
cumulants are replaced by

⟨nm⟩fc =
∑
m′

Mm′
pm′m∑
m pm′m

, (6.42)

⟨nm1nm2⟩fc = −
∑
m′

Mm′
pm′m1pm′m2

(
∑

m pm′m)2
, (6.43)

⟨nm1nm2nm3⟩fc = 2
∑
m′

Mm′
pm′m1pm′m2pm′m3

(
∑

m pm′m)3
, (6.44)

⟨nm1nm2nm3nm4⟩fc = −6
∑
m′

Mm′
pm′m1pm′m2pm′m3pm′m4

(
∑

m pm′m)4
. (6.45)

In Eqs. (4.21)-(4.24), (comb.) means the sum over all possible combinations for subscripts of
nm.

Next, we take the continuum limit δz → 0. In this limit, we replace the particle number
density as n(z, t) = nm/δz and the probability as pk′k = p(z − z′). The sums over m′ in
Eqs. (6.42) -(6.45) become the integrals with respect to z′.

The particle number in a finite volume ∆z is given by

Q∆z(t) =

∫ ∆z/2

−∆z/2

dz n(z, t). (6.46)

With the fixed initial density M(z′), the cumulants of Q∆z(t) are found to be

⟨Qn⟩c,∆z =

∫ ∞

−∞
dz′ M(z′)Hn(z

′) (6.47)

where

H1(z
′) =I(z′), (6.48)

H2(z
′) =I(z′)− I(z′)2, (6.49)

H3(z
′) =I(z′)− 3I(z′)2 + 2I(z′)3, (6.50)

H4(z
′) =I(z′)− 7I(z′)2 + 12I(z′)3 − 6I(z′)4, (6.51)
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Fig. 6.2: X = ∆z/
√
Dt dependence of second-order cumulant of particle number with non-

Markov nature for two different value of K = 2
√
γ−1t. The results labeled by ”L” and ”C”

correspond to those with solutions (6.11) and (6.39), respectively. The result with ordinary
stochastic diffusion equation (2.63) is also plotted.

with

I(z′) =

∫ ∆z/2

−∆z/2

dzp(z − z′) (6.52)

We now obtains the general formulae for the cumulants of the particle number Q∆(t) with the
fixed initial condition. Substituting the solutions with non-Markov nature (6.11) and (6.39),
one obtains the cumulants of particle number Q∆(t) which do not violate the causality.

The extension to the cumulants with nonvanishing initial fluctuations is possible by using
the superposition of the solutions (4.37) as in Chapter 4.

6.2 Memory time effects on cumulants

In this section, we see the memory time effects on the cumulants of the particle number. We
show X = ∆z/

√
Dt dependence of the cumulants (6.47) of the particle number by using the

dimensionless parameter

K = 2
√
γ−1t. (6.53)

The large K indicates that the memory time γ−1 is long, whereas the small K means that
the memory time is short. For simplicity, we assume an uniform initial condition M(z′) =
M = const. where there is no fluctuation.

In Fig. 6.2, we show the second-order cumulant of the particle number normalized by
their thermal value as a function of X = ∆z/

√
Dt for two different values of K. The solid

lines labeled ”L” are the cumulants with solution (6.11). The broken lines labeled ”C” are
the cumulants with solution (6.39). We also show the second-order cumulant with the SDE
(2.63). For the large value of K, cumulants with non-Markov nature deviate from the result
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Fig. 6.3: X = ∆z/
√
Dt dependence of third- (Left) and fourth- (Right) order cumulant of

particle number with non-Markov nature for two different value of K = 2
√
γ−1t. The results

labeled by ”L” and ”C” correspond to those with solutions (6.11) and (6.39), respectively.
The result with ordinary stochastic diffusion equation (2.63) is also plotted.

with the SDE. As K is taken to be smaller, the results approach to the one with the SDE.
These are reasonable results. Since the memory time becomes larger as K is taken to be
smaller, the memory time effect is larger. From Fig. 6.2, the non-Markov nature have an
effect to delay the equilibration of the system, because the equilibrated value of the second-
order cumulant in this normalization takes unity [58,59]. It is the advantageous result because
it indicates that information on the past stage is easy to survive. However, it is not so large
and thus it doses not so affect the results on the cumulants.

In Fig. 6.2, one also finds that the behaviors of results with (6.11) and (6.39) for smaller
X are different. It might be because the time derivative of Maxwell-Cattaneo equation
(6.37) is at most second order, which is originated from the approximation in Eq. (6.31).
The memory time effect, however, is small

In Fig. 6.3, which is the third- and fourth-order cumulants normalized by their thermal
values for several values of K, one obtains completely the same conclusion for the memory
time effect. These figures also show that the memory time effect delays the equilibration of
the cumulants. But this effect is not so large.

6.3 Brief summary

In this study, we investigated the memory time effects on the time evolution of cumulants of
the particle number. We started from two Langevin equations for the velocity and position
of a single particle. Then we obtained two solutions with non-Markov nature from two
different methods. We saw that these solutions do not violate the causality. Introducing
the multi-particle system, where all the particle diffuse in the space with same probability
distribution function for a single particle, we obtained the cumulants of the particle number
with non-Markov nature.

The obtained results showed that the memory time effect is large when the memory time
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is large. One also found that this effect retards the equilibration of cumulants. However, this
effect could be negligible because it is not so large.



Chapter 7

Summary and outlook

In this Thesis, we studied time evolution of critical fluctuations of conserved charges near the
QCD critical point using a stochastic diffusion equation in the context of relativistic heavy ion
collisions. We showed that the diffusion property of the critical fluctuation gives a possibility
to probe the early time fluctuations with varying the rapidity window size in experimental
measurements of the fluctuation observables. It is pointed out that non-monotonic behavior
of the second-order cumulant and the correlation function of conserved charges as a function
of the rapidity interval is a robust experimental signal for the existence of the QCD critical
point.

In Chapter 4, we investigated the effect of GCC on cumulants of conserved charges in
heavy ion collisions to confirm the non-equilibrium nature of ∆η dependence [75]. We studied
the time evolution of cumulants in a finite volume system with reflecting boundaries in the
spacetime rapidity space with the diffusion master equation. Our result shows that the effect
of GCC appears in the range of the diffusion length from the boundaries. This result suggests
that the effects of GCC must be investigated dynamically by taking into account the time
evolution of the system generated in heavy ion collisions. By comparing our result with the
∆η dependence of net-electric-charge fluctuation at ALICE [84], we showed that the effects of
GCC on the diffusion in the hadronic medium on cumulants of conserved charges are almost
negligible in the rapidity window available at the ALICE detector.

We also emphasized that the ∆η dependence of fluctuations of conserved charges will
tell us information on the properties and the time evolution of the hot medium generated in
heavy ion collisions; namely, the initial charge distribution, the mechanism of hadronization,
the phase transition and the diffusion constant.

In Chapter 5, we investigated the time evolution of the correlation function and the
second-order cumulant of the net-baryon number around the critical point if the system passes
near the critical point in heavy ion collisions. In our investigation, we adopted the stochastic
diffusion equation in the coordinate-rapidity space with critical nature being encoded in the
time-dependent susceptibility and diffusion coefficient. Our results show that the effect of
the critical point appears as the characteristic non-monotonic behaviors in the fluctuations
in the rapidity space. We propose these non-monotonic behaviors of the fluctuations of the
net-baryon number as unique and robust signals of the search of the QCD critical point in
heavy ion collisions.

We also discussed the conditions that these non-monotonic signals of the critical point
survive by focusing on the behaviors of the fluctuations near the intercept. If the sign of the
slope of the correlation function is negative, the signal of the correlation function survives.

– 87 –
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Similarly, if that of the second-order cumulant is positive, the signal of the cumulant survives.
Our results suggest that the magnitude of the susceptibility around the critical point and the
diffusion length until experimental measurement are crucial for observing the signals.

In Chapter 6, we investigated the non-Markov effects on the time evolution of cumulants of
the particle number. We started from two Langevin equations for the velocity and position
of a single particle. Then we obtained two solutions with non-Markov nature from two
different methods. We saw that these solutions do not violate the causality. Introducing
the multi-particle system, where all the particle diffuse in the space with same probability
distribution function for a single particle, we obtained the cumulants of the particle number
with non-Markov nature.

The obtained results showed that the non-Markov effect is large when the memory time
is large. One also found that this effect retards the equilibration of cumulants. However, this
effect could be negligible because it is not so large.

There are some extensions to this studies: For example, effects of the global charge
conservation [75] on critical fluctuations must be considered, which would affect fluctuation
observables in heavy ion collisions with the lower collision energy. The inclusion of the
non-linear coupling between the net-baryon number density and the transverse momentum
density in hydrodynamic equations for the conserved-charge densities appeared as a drift
term should also be done. To describe more realistic expansion of the fireball created in
heavy ion collisions, 3+1 dimensional calculation is required, which would work to survive
the signals because diffusion in the longitudinal direction is limited. To make it possible to
treat time evolution of the higher-order fluctuations of the conserved quantities around the
critical point, improvements of the stochastic equation is also necessary.

Up to now, the second-order cumulant of the net-electric charge at LHC has been the
only fluctuation of conserved charges whose rapidity-window dependence was measured. If
the measurement of the rapidity-window dependencies of the higher-order cumulants of net-
electric-charge number, as well as those of net baryon number, are performed at both RHIC
and LHC, it will make it possible to reveal various aspects of the hot medium created by
heavy ion collisions.
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Appendix A

Rapidity

In this appendix, we show definitions and properties of the momentum-rapidity, the pseudo-
rapidity and the coordinate-space rapidity. We also show relations between them.

A.1 Momentum-rapidity

If we take the longitudinal beam axis as the z-axis in the Cartesian coordinates (t, x, y, z),
the definition of momentum-rapidity is given by

y =
1

2
ln

(
E + pz
E − pz

)
=

1

2
ln

(
1 + β

1− β

)
, (A.1)

where pz is momentum component along z-axis (longitudinal momentum) and β = pz/E =
vz represents particle velocity in the z-direction with particle energy E =

√
m2 + |p|2and

particle mass m.1 For small β, one obtains y ≃ β, i.e. in the non-relativistic limit the rapidity
corresponds to the velocity. One of remarkable properties of the rapidity is that it changes
in a additive way under a Lorentz boost along the z-axis from a frame S to a new frame S ′:

y′ = y +
1

2
ln

(
1 + βb

1− βb

)
(A.2)

where βb is the velocity of the S ′ frame with respect to the S frame. Accordingly, multiplicity
distribution expressed as a function of the rapidity has boost invariance.

A.2 Spacetime-rapidity

Next, we define the space-time rapidity ys

ys =
1

2
ln

(
t+ z

t− z

)
. (A.3)

In relativistic high energy collision, the spacetime-rapidity of a particle is equivalent to the
momentum-rapidity of the particle, and thus it also has a good transformation law under a
Lorentz boost along the longitudinal direction as Eq. (A.2). It is a reason that space-time
rapidity ys is employed to describe relativistic high energy heavy ion physics.

1The longitudinal momentum and the energy are expressed with γ = (
√

1− β2)−1 as pz = mγvz and
E = mγ.
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A.3 Pseudo-rapidity

Next we introduce the pseudo-rapidity η defined by

η = − ln

(
tan

θ

2

)
. (A.4)

where θ is the polar angle of the momentum vector p with respect to the beam axis. In the
ultra-relativistic limit, i.e. E ≃ |p| ≫ m, the momentum-rapidity (A.1) is equivalent to the
pseudo-rapidity,

y ≃ 1

2
log

(
|p|+ pz
|p| − pz

)
=

1

2
log

(
1 + cos θ

1− cos θ

)
= − log

(
tan

θ

2

)
= η, (A.5)

by using pz = |p| cos θ. In experiments, the pseudo-rapidity is useful because it is determined
directly from the particle production angle θ.



Appendix B

Examples of probability distributions

In this Appendix, we introduce some specific probability distributions. They play important
roles to describe fluctuations in heavy ion collisions or in calculations in our works. We also
show the cumulants of each distributions, which are mostly derived by using Eqs. (2.3), (2.6)
and (2.7)

Binomial distribution

The Binomial distribution is a discrete probability distribution of the number of success
events in N independent success or failure trials. If the probability of the success are given
by p, the Binomial distribution function is defined by

BN,p(m) =
N !

m!(N −m)!
pm(1− p)N−m, (B.1)

and their cumulants are given by

⟨mn⟩c = ξnN (B.2)

with

ξ1 = p, ξ2 = p(1− p), ξ3 = p(1− p)(1− 2p), ξ4 = p(1− p)(1− 6p+ 6p2). (B.3)

From Eq. (B.2), one finds that the cumulants of the Binomial distribution are proportional
to the number of trials N , which indicate the extensive properties of cumulants.

A specific property of the Binomial distribution is reproductive property: For two inde-
pendent variables obeying Binomial distributions with the same probability, the sum of the
variables again obeys a Binomial distribution. This property can be easily proved by using
Eqs. (2.18) and (B.2).

Poisson distribution

If the probability of success in the Binomial distribution is infinitesimally small, the distribu-
tion corresponds to the Poisson distribution. Thus the Poisson distribution is obtained from
the binomial distribution in the limit of p → 0 with the fixed mean value λ = pN ,

Pλ(m) =
λme−λ

m!
. (B.4)
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In the Poisson distribution, the cumulants are

⟨mn⟩c = λ (B.5)

for any n ≥ 1. This result shows that all the cumulants of a Poisson distribution function
are the same as the mean value.

The Poisson distribution also has the reproductive property, as the Binomial one.

Skellam distribution

The Skellam distribution is defined by the difference of two integer stochastic variables which
independently obey Poisson distribution functions. For uncorrelatedm1 andm2 with Pλ1(m1)
and Pλ2(m2), the Skellam distribution is given by

Sλ1,λ2(m) =
∑

m1,m2

δm,m1−m2Pλ1(m1)Pλ2(m2). (B.6)

Using Eq. (2.18), one can easily calculate the cumulants of the Skellam distribution as

⟨mn⟩c = ⟨mn
1 ⟩c + (−1)n⟨mn

2 ⟩c = λ1 + (−1)nλ2. (B.7)

From the result, one finds that all the odd cumulants take λ1 −λ2, whereas all the even ones
take λ1 + λ2.

Gauss distribution

If the mean and the variance of the Binomial or Poisson distribution are enough large, the
higher order cumulants for n ≥ 3 are not too large. In this case, a reasonable approximation
to the Binomial or Poisson one is given by the Gaussian distribution,

PG
x0,σ

(x) =
1

σ
√
2π

exp

[
−(x− x0)

2

2σ2

]
. (B.8)

The Gaussian is a continuous distribution, and their cumulants are straightforwardly calcu-
lated by using Eqs. (2.2) and (2.8) - (2.11),

⟨x⟩c = x0, ⟨x2⟩c = σ2, (B.9)

and

⟨xn⟩c = 0 for n ≥ 3. (B.10)

These results show that the Gaussian distribution, of course, does not have non-Gaussianity,
and it is determined only by the mean and the variance.

The Gaussian distribution also has the reproductive property, as the Binomial and Pois-
sonian ones.
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Multinomial distribution

The multinomial distribution is a generalization of the Binomial distribution to the one that
event-1 occurs m1 times, · · · , and event-k occurs mk times in N independent trials. Then
the definition of the multinomial distribution is given by

MN,p1,p2··· ,pk(m1,m2, · · · ,mk) =
N !

m1!m2! · · ·mk!
pm1
1 · · · pmk

k , (B.11)

where pi denotes the probability that the event-i occurs, and N satisfies N =
∑n

i=1mi.
If pi = p for all the i is assumed, the cumulants of the multinomial distribution are given

by

⟨ma1 · · ·man⟩c = Nξn, (B.12)

with

ξ1 = p, ξ2 = p(δa1,a2 − p), ξ3 = p[δa1,a2δa2,a3 − {δa1,a2 + δa1,a3 + δa2,a3}p+ 2p2],

ξ4 = p[δa1,a2δa2,a3δa3,a4 − {δa1,a2δa1,a3 + δa1,a2δa1,a4 + δa1,a3δa1,a4 + δa2,a3δa3,a4}p
+ {δa1,a2δa3,a4 + δa1,a3δa2,a4 + δa1,a4δa2,a3}p
+ 2{δa1,a2 + δa1,a3 + δa1,a4 + δa2,a3 + δa2,a4 + δa3,a4}p2 − 6p3]. (B.13)

In the case of a1 = · · · = an, Eq. (B.13) corresponds with those of the binomial one (B.3).



Appendix C

Global charge conservation in
stochastic diffusion equation

In this appendix, we show time evolution of a particle density in finite volume system with
reflecting boundaries. We now employ the stochastic diffusion equation (SDE) for a descrip-
tion of time evolution. The purpose of this appendix is to check that the cumulants of the
densities with SDE are equivalent to those with the stochastic master equation as discussed
in chapter 4 With SED, one can treat only the Gaussian fluctuations. Therefore, we derive
the first- and second-order cumulants of the density with the same setting with the study in
Chap. 4.

C.1 Solution of SDE with two reflecting boundaries

As the analysis in Chap. 4, we consider heavy ion collisions with sufficiently large
√
sNN, at

which the mid-rapidity region has an approximate boost invariance, and use the coordinate
(ys, τ) to describe the system. We denote the net number of a conserved charge per unit ys
as n(ys, τ), and set the initial time as τ = τ0.

In the present study, we consider the time evolution of n(ys, τ)

∂

∂τ
n(ys, τ) = D(τ)

∂

∂ys

2

n(ys, τ)−
∂

∂ys
ξ(ys, τ). (C.1)

in the finite system with the total length of the system along the rapidity direction ηtot.
Here, D(τ) is the diffusion coefficient of charges in the (ys, τ) coordinate , which is related
to the diffusion constant in the Cartesian coordinate D as D(τ) = Dτ−2. Assuming that the
particles cannot go out from the finite system, corresponding boundary conditions are

∂ysn(ys, τ)|± ηtot
2

= ξ(ys, τ)|± ηtot
2

= 0. (C.2)

Introducing the Fourier and inverse Fourier transform of n(ys, τ) and ξ(ys, τ) under the
boundary condition (C.2) as

n(ys, τ) =
∞∑
k=0

nk(τ)u
c
k(η), nk(τ) =

∫ ηtot/2

−ηtot/2

dys n(ys, τ)v
c
k(ys) (C.3)
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with

uc
k(η) = cos

(
πkys
ηtot

)
, vck(η) =


1

ηtot
(k = 0)

2

ηtot
cos

(
πkη

ηtot

)
(k ̸= 0)

, (C.4)

and

ξ(ys, τ) =
∞∑
k=0

ξk(τ) sin

(
πkys
ηtot

)
, ξk(τ) =

2

ηtot

∫ ηtot/2

−ηtot/2

dys ξ(ys, τ) sin

(
πkys
ηtot

)
, (C.5)

SDE in Fourier space is given by

∂τnk(τ) = −D(τ)

(
πk

ηtot

)2

nk(τ) +

(
πk

ηtot

)
ξk. (C.6)

Its solution is

n(ys, τ) =
∞∑
k=0

∫ ηtot/2

−ηtot/2

dy′s
[
n(y′s, τ0)u

c
k(ys)v

c
k(y

′
s)e

−Ωk(τ0,τ)

+

(
πk

ηtot

)∫ τ

τ0

dτ ′ ξ(ys, τ
′)uc

k(ys)v
c
k(y

′
s)e

−Ωk(τ
′,τ)

]
, (C.7)

with

Ωk(τ
′, τ) =

∫ τ

τ ′
dτ ′′D(τ ′′)

(
πk

ηtot

)2

. (C.8)

C.2 Correlation

As discussed in subsection 5.1.2, the noise term ξ should satisfy ⟨ξ(t)⟩ = 0. When the noise
correlation is temporary and spatially local, it is determined by the fluctuation-dissipation
relation as

⟨ξ(ys1 , τ1)ξ(ys2 , τ2)⟩c = 2[N1N2]cD(τ1)δ(ys1 − ys2)δ(τ1 − τ2), (C.9)

where [N1N2]c denotes the second-order susceptibility. In the classical free gas, all the suscep-
tibilities are equivalent as discussed in subsection 2.2.3. Therefore, [N1N2]c = N(ys) where
N(ys) is the initial particle density.

Then the cumulants of the particle number density

⟨n(ys, τ)⟩c =
∞∑
k=0

∫ ηtot/2

−ηtot/2

dy′s N(y′s)u
c
k(ys)v

c
k(y

′
s)e

−Ωk(τ0,τ) (C.10)

⟨n(ys1 , τ)n(ys2 , τ)⟩c =
∞∑
k=0

∫ ηtot/2

−ηtot/2

dy′s N(y′s)u
c
k(ys)v

c
k(y

′
s)e

−Ωk(τ0,τ)

−
∞∑

k1=0

∞∑
k2=0

∫ ηtot/2

−ηtot/2

dy′s N(y′s)u
c
k1
(ys)u

c
k2
(ys)v

c
k1
(y′s)v

c
k2
(y′s)e

−[Ωk1
(τ0,τ)+Ωk2

(τ0,τ)].

(C.11)

One finds that these results corresponds to the results (4.21) and (4.21) with D(τ) = γ(τ)a2.
In continuum limit, (4.21) and (4.21) completely coinside with above equations.



Appendix D

Calculations for Fn(∆η)

In this appendix, we show detail calculations for Eq. 4.46 for k ≤ 4. For calculations for
Fn(∆η), we use the following relations:

lim
k→0

sinc (ak) = 1, (D.1)

where sinc(x) = sin(x)/x is the sinc function,∫ a/2

−a/2

dys cos

(
πkys
a

)
= aδk=0, (D.2)

∫ a/2

−a/2

dys cos

(
πk1ys
a

)
cos

(
πk2ys
a

)
=

1

2

∫ a/2

−a/2

dys

[
cos

(
π[k1 + k2]ys

a

)
+ cos

(
π[k1 − k2]ys

a

)]
=

1

2
a(δk1,k2 + δk1,−k2) = aδk1,k2 , (D.3)

∫ a/2

−a/2

dys cos

(
πk1ys
a

)
cos

(
πk2ys
a

)
cos

(
πk3ys
a

)
=

1

4

∫ a/2

−a/2

dys

[
cos

(
π[k1 + k2 + k3]ys

a

)
+ cos

(
π[k1 − k2 + k3]ys

a

)
+cos

(
π[k1 + k2 − k3]ys

a

)
+ cos

(
π[k1 − k2 − k3]ys

a

)]
=

1

2
a(δk1+k2,k3 + δk1−k2,k3), (D.4)
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and ∫ a/2

−a/2

dys cos

(
πk1ys
a

)
cos

(
πk2ys
a

)
cos

(
πk3ys
a

)
cos

(
πk4ys
a

)
=

1

8

∫ a/2

−a/2

dys

[
cos

(
π[k1 + k2 + k3 + k4]ys

a

)
+ cos

(
π[k1 − k2 + k3 + k4]ys

a

)
+cos

(
π[k1 + k2 − k3 + k4]ys

a

)
+ cos

(
π[k1 + k2 + k3 − k4]ys

a

)
cos

(
π[k1 − k2 − k3 + k4]ys

a

)
+ cos

(
π[k1 − k2 + k3 − k4]ys

a

)
+cos

(
π[k1 + k2 − k3 − k4]ys

a

)
+ cos

(
π[k1 − k2 − k3 − k4]ys

a

)]
=

1

4
a(δk1+k2−k3,k4 + δk1+k2+k3,k4 + δk1−k2−k3,k4 + δk1+k2−k3,k4) (D.5)

By using above relations, one obtains

F1(∆η) =

∫ ηtot/2

−ηtot/2

dysI(ys)

=
∆η

ηtot

∫ ηtot/2

−ηtot/2

dys

∞∑
k=−∞

cos

(
πkys
ηtot

)
sinc

(
πk∆η

2ηtot

)
cos

(
πk

2

)
e
− 1

2

(
πkd(τ)
ηtot

)2

= ∆η, (D.6)

F2(∆η) =

(
∆η

ηtot

)2 ∫ ηtot/2

−ηtot/2

dys

(
∞∑

k=−∞

cos

(
πkys
ηtot

)
sinc

(
πk∆η

2ηtot

)
cos

(
πk

2

)
e
− 1

2

(
πkd(τ)
ηtot

)2
)2

=
∆η2

ηtot

∞∑
k=−∞

sinc

(
πk∆η

2ηtot

)2

cos2
(
πk

2

)
e
−
(

πkd(τ)
ηtot

)2

, (D.7)

F3(∆η) =

(
∆η

ηtot

)3 ∫ ηtot/2

−ηtot/2

dys

(
∞∑

k=−∞

cos

(
πkys
ηtot

)
sinc

(
πk∆η

2ηtot

)
cos

(
πk

2

)
e
− 1

2

(
πkd(τ)
ηtot

)2
)3

=
∆η3

η2tot

∞∑
k1,k2=−∞

sinc

(
πk1∆η

2ηtot

)
cos

(
πk1
2

)
e
−
(

πk1d(τ)
ηtot

)2

× sinc

(
πk2∆η

2ηtot

)
cos

(
πk2
2

)
e
−
(

πk2d(τ)
ηtot

)2

×
[
sinc

(
π[k1 + k2]∆η

2ηtot

)
cos

(
π[k1 + k2]

2

)
e
−k1k2

(
πd(τ)
ηtot

)2

+sinc

(
π[k1 − k2]∆η

2ηtot

)
cos

(
π[k1 − k2]

2

)
e
k1k2

(
πd(τ)
ηtot

)2
]
, (D.8)
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and

F4(∆η) =

(
∆η

ηtot

)4 ∫ ηtot/2

−ηtot/2

dys

(
∞∑

k=−∞

cos

(
πkys
ηtot

)
sinc

(
πk∆η

2ηtot

)
cos

(
πk

2

)
e
− 1

2

(
πkd(τ)
ηtot

)2
)4

=
∆η4

η3tot

∞∑
k1,k2,k3=−∞

sinc

(
πk1∆η

2ηtot

)
cos

(
πk1
2

)
e
−
(

πk1d(τ)
ηtot

)2

× sinc

(
πk2∆η

2ηtot

)
cos

(
πk2
2

)
e
−
(

πk2d(τ)
ηtot

)2

× sinc

(
πk3∆η

2ηtot

)
cos

(
πk3
2

)
e
−
(

πk3d(τ)
ηtot

)2

×
[
sinc

(
π[k1 + k2 + k3]∆η

2ηtot

)
cos

(
π[k1 + k2 + k3]

2

)
e
[k1k2+k2k3+k3k1]

(
πd(τ)
ηtot

)2

+ sinc

(
π[−k1 + k2 + k3]∆η

2ηtot

)
cos

(
π[−k1 + k2 + k3]

2

)
e
[k1k2−k2k3+k3k1]

(
πd(τ)
ηtot

)2

+ sinc

(
π[k1 − k2 + k3]∆η

2ηtot

)
cos

(
π[k1 − k2 + k3]

2

)
e
[k1k2+k2k3−k3k1]

(
πd(τ)
ηtot

)2

+sinc

(
π[k1 + k2 − k3]∆η

2ηtot

)
cos

(
π[k1 + k2 − k3]

2

)
e
[−k1k2+k2k3+k3k1]

(
πd(τ)
ηtot

)2
]
. (D.9)

Eq. (D.6) shows that F1(∆η) is fixed to ∆η. On the other hand, one finds some limits of
Fn(∆η) for n ≥ 2 as limτ→0 Fn(∆η) = ∆η and limτ→∞ Fn(∆η) = ηtot (∆η/ηtot)

n.



Appendix E

Superposition of Cumulants

In this appendix, we show cumulants of a probability distribution given by a superposition
of probability distributions [74,79].

Let us consider a probability distribution P (m) for integer stochastic variables m =
(m1,m2, · · · ,mk), and assume that P (m) is written by the superposition of sub-probabilities,

P (m) =
∑
N

J(N )PN (m), (E.1)

where PN (m) are sub-probabilities labeled by integer variables N = (N1, N2, · · · , Nk). Here
the weight of each sub-probability J(N) satisfies

∑
N J(N ) = 1, and thus it is also regarded

as a probability. Furthermore, we consider a case that all the mi obey the probability
distributions PNi

(mi) and the sub-probability distributions PN (m) can be factorized as

PN (m) =
∏
i

PNi
(mi). (E.2)

Now, the cumulant-generating function of P (m) is given by

K(θ = (θ1, · · · , θk)) = ln
∑
m

emθP (m) = ln
∑
m

emθ
∑
N

J(N)
∏
i

PNi
(mi)

= ln
∑
N

J(N)
∏
i

(∑
mi

emiθiPNi
(mi)

)
= ln

∑
N

J(N)
∏
i

eKNi
(θi) = ln

∑
J

e
∑

i KNi
(θi), (E.3)

with

KNi
(θi) ≡ ln

∑
mi

emiθiPNi
(mi),

∑
J

≡
∑
N

J(N). (E.4)

Here, KNi
(θi) is the cumulant-generating function of PNi

(mi).
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By using the cumulant expansion, Eq. (E.3) is rewritten as

K(θ) =
∑
n

1

n!

∑
J

[∑
i

KNi
(θi)

]n
c

=
∑
J

[∑
i

KNi
(θi)

]
c

+
1

2

∑
J

[∑
i

KNi
(θi)

]2
c

+
1

3!

∑
J

[∑
i

KNi
(θi)

]3
c

+
1

4!

∑
J

[∑
i

KNi
(θi)

]4
c

+ · · · , (E.5)

with

∑
J

[∑
i

KNi
(θi)

]n
c

=
∑
J

[∑
i

δKNi
(θi)

]n
=
∑
J

[∑
i

(
KNi

(θi)−
∑
J

KNi
(θi)

)]n
(E.6)

for 1 ≤ n ≤ 3, and

∑
J

[∑
i

KNi
(θi)

]4
c

=
∑
J

[∑
i

δKNi
(θi)

]4
− 3

∑
J

[∑
i

δKNi
(θi)

]22

. (E.7)

One obtains cumulants of mi by taking the derivatives of the K(θ) with respect to θi as

⟨mn
i ⟩c =

∂n

∂θni
K(θ)

∣∣∣∣
θ=0

≡ K
(n)
i . (E.8)

The cumulants up to the fourth-order are

K
(1)
i =

∑
J

K
(1)
Ni

, (E.9)

K
(2)
i =

∑
J

K
(2)
Ni

+
∑
J

[δK
(1)
Ni

]2, (E.10)

K
(3)
i =

∑
J

K
(3)
Ni

+ 3
∑
J

δK
(1)
Ni

δK
(2)
Ni

+
∑
J

[δK
(1)
Ni

]3, (E.11)

K
(4)
i =

∑
J

K
(4)
Ni

+ 3
∑
J

[δK
(2)
Ni

]2 + 4
∑
J

δK
(1)
Ni

δK
(3)
Ni

+ 6
∑
J

[δK
(1)
Ni

]2δK
(2)
Ni

+
∑
J

[δK
(1)
Ni

]4. (E.12)

Here K
(n)
Ni

=
∂n

∂θni
KNi

(θi)

∣∣∣∣
θ=0

is the cumulants of the sub-probabilities PNi
(mi). In the above

calculations, we use normalization conditions
∑

N J(N) = 1 and
∑

mi
PNi

(mi) = 1
Similarly, the derivatives of K(θ) leads to cumulants of m = mi −mj for i ̸= j as,

⟨mn⟩c =
∂n

∂θ̄n
K(θ)

∣∣∣∣
θ=0

≡ K(l), (E.13)



102

where ∂/∂θ̄ = ∂/∂θi − ∂/∂θj. To be specific, the cumulants up to fourth-order are

K(1) =
∑
J

[K
(1)
Ni

−K
(1)
Nj

], (E.14)

K(2) =
∑
J

[K
(2)
Ni

+K
(2)
Nj

] +
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

]2, (E.15)

K(3) =
∑
J

[K
(3)
Ni

−K
(3)
Nj

] + 3
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

][δK
(2)
Ni

+ δK
(2)
Nj

]

+
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

]3, (E.16)

K(4) =
∑
J

[K
(4)
Ni

+K
(4)
Nj

] + 3
∑
J

[δK
(2)
Ni

+ δK
(2)
Nj

]2

+ 4
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

][δK
(3)
Ni

− δK
(3)
Nj

]

+ 6
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

]2[δK
(2)
Ni

+ δK
(2)
Nj

] +
∑
J

[δK
(1)
Ni

− δK
(1)
Nj

]4. (E.17)



Appendix F

Bjorken model

In this appendix, we show solutions of the energy density, entropy density, and temperature
in the (1+1) dimensional Bjorken flow (1.3). We now assume the perfect fluid.

F.1 Energy density

We start from the conservation law for energy and momentum density

∂µT
µν = 0. (F.1)

Energy-momentum density is given by

T µν = (ϵ+ P )uµuν − gµνP, (F.2)

with gµν = diag(+1,−1,−1,−1). Here P and ϵ express the pressure and energy density. uµ

is the local flow velocity (3.30), which satisfies uµuµ = 1. Thus

∂µT
µν = −gµν

∂P

∂τ

∂τ

∂xµ
+

∂(ϵ+ P )

∂τ

∂τ

∂xµ
uµuν + (ϵ+ P )

{
∂uµ

∂xµ
uν + uµ ∂u

ν

∂xµ

}
= 0. (F.3)

Using Eq. (3.32) and uµuµ = 1, one obtains

∂ϵ

∂τ
+

ϵ+ P

τ
= 0 (F.4)

F.2 Entropy density

From Eq. (F.4), one can derive the conservation of the entropy density defined by

s =
S

V
=

ϵ+ P

T
, (F.5)

with the temperature T . Using Eq. (3.32) and the fact that dϵ = Tds at constant volume,
one finds

ds

dτ
+

s

τ
= 0. (F.6)
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It indicates the entropy conservation

s(τ)

s(τ0)
=

τ0
τ
, (F.7)

or

∂(suµ)

∂xµ
= ∂µs

µ = 0. (F.8)

F.3 Temperature

The sound velocity is defined by

c2s =
dP

dϵ
. (F.9)

Using Eqs. (F.4) and (F.5), Eq. (F.9) is rewritten as

dT

dτ
= c2s

(
−T

τ

)
. (F.10)

The solution of Eq. (F.10) is given by

T = T0

(τ0
τ

)c2s
. (F.11)

It is a relation between the temperature and proper time in the one dimensional Bjorken
flow.



Appendix G

Conditions for the appearance of
non-monotonicity

In Sec. 5.2, we showed that the non-monotonicity of K(∆y) and C(ȳ) in Eqs. (5.38) and
(5.39) serves as direct experimental evidence for the existence of a peak structure in χ(τ). In
this appendix, we take a much closer look at the conditions for the appearance of the non-
monotonic behaviors in these functions and discuss which function is better in sustaining the
non-monotonicity.

To simplify the problem, in this appendix we consider the functional form of χ(τ) which
has only one maximum as a function of τ . Then, χ′(τ) changes the sign only once from positive
to negative. In this case, K(∆y) (C(ȳ)) can have only one local maximum (minimum). Thus,
the necessary and sufficient condition for the appearance of a local maximum (minimum) in
K(∆y) (C(ȳ)) is given by

lim
∆y→0

∂K(∆y)

∂∆y
> 0 and lim

∆y→∞

∂K(∆y)

∂∆y
< 0, (G.1)

lim
ȳ→0

∂C(ȳ)

∂ȳ
< 0 and lim

ȳ→∞

∂C(ȳ)

∂ȳ
> 0, (G.2)

respectively.
From Eq. (5.15), the ∆y derivative of K(∆y) is given by

∂K(∆y)

∂∆y
= −

∫ τf

τ0

dτ ′
χ′(τ ′)

2χHd(τ ′, τf)
F ′
( ∆y

2d(τ ′, τ)

)
, (G.3)

where, F ′(X) = dF (X)/dX. Using

lim
X→0

F ′(X) = π−1/2, lim
X→∞

F ′(X) = π−1/2X−2, (G.4)

one obtains

lim
∆y→0

∂K(∆y)

∂∆y
=− 1

2
√
π

∫ τf

τ0

dτ ′
χ′(τ ′)

χHd(τ ′, τf)
, (G.5)

lim
∆y→∞

∂K(∆y)

∂∆y
=− 1

2
√
π(∆y)2

∫ τf

τ0

dτ ′
χ′(τ ′)d(τ ′, τf)

χH
. (G.6)

Here, d(τ ′, τf) is a monotonically decreasing function of τ ′ with d(τf , τf) = 0. The integral in
Eq. (G.5) is given by χ′(τ ′) with a weight 1/d(τ ′, τf), which takes larger value for larger τ ′.
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The sign of χ′(τ ′) with later τ ′ is more strongly reflected to the sign of Eq. (G.5). On the
other hand, in Eq. (G.6) χ′(τ ′) is integrated with a weight d(τ ′, τf) taking larger value for
earlier τ ′. The sign of χ′(τ ′) with earlier τ ′ is more responsible for that of Eq. (G.6).

Next, the ȳ derivatives of C(ȳ) is calculated to be

∂C(ȳ)

∂ȳ
=

ȳ

4
√
π

∫ τf

τ0

dτ ′
χ′(τ ′)

χH

e−ȳ2/d(τ ′,τf)
2

d(τ ′, τf)3
. (G.7)

By taking the small ȳ limits, we have

lim
ȳ→0

∂C(ȳ)

∂ȳ
=

ȳ

4
√
π

∫ τf

τ0

dτ ′
χ′(τ ′)

χHd(τ ′, τf)3
, (G.8)

Equation (G.8) shows that the sign of ∂C(ȳ)/∂ȳ in the small ȳ limit is determined by the
integral of χ′(τ ′) with a weight 1/d(τ ′, τf)

3. In the large ȳ limit, on the other hand, the weight
is given by e−ȳ2/d(τ ′,τf)

2
/d(τ ′, τf)

3, which concentrates the initial time τ ′ = τ0 in ȳ → ∞ limit.
The sign in the large ȳ limit thus is determined only by χ′(τ0), which is positive in the present
situation.

Now, let us compare the conditions Eqs. (G.1) and (G.2). As discussed above, the second
condition in Eq. (G.2) is always satisfied, while that in Eq. (G.1) is not necessarily true but
dependent on the functional form of χ(τ). Next, the first conditions in Eqs. (G.1) and (G.2)
are not always satisfied, but the latter is more easily realized because the weight is more
concentrated to later τ ′. From these observations, one concludes that the appearance of the
non-monotonicity is more likely to appear in C(ȳ) rather than K(∆y).

Although the manifestation of non-monotonicity is more robust in C(ȳ) than K(∆y), in
the experimental analyses it is meaningful to analyze both of these functions. In the above
argument, the position of the local maximum (minimum) is not determined. The ranges
of ∆y and ȳ which can be measured in experiments are limited due to the coverage of the
detector, and the manifestation of a local maximum (minimum) in this range depends on
the functional form. Therefore, the analysis of both K(∆y) and C(ȳ) enlarges the finding of
non-monotonicity.
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