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Abstract

In this thesis, we investigate a codimension-two defect in the supersymmetric gauge theory.
The codimension-two defect is a sort of a non-local operator which has significant role to
disclose various aspects in quantum field theory. The characters of this class of non-local
defects are not largely uncovered in spite of many efforts to address this object. On the
other hand, it has been developed that a wide variety of supersymmetric gauge theories
can be descended from the six-dimensional superconformal field theory that is engineered
by M-theory. The six-dimensional theory of our interest contains a self-dual string as a
physical object. The specific model of the self-dual string was recently proposed as M-
strings as an attempt to directly measure physical spectra in the six-dimensional theory.
We mainly explore the origin of the codimension-two defect in the standpoint of M-strings
and propose that such a defect can be appropriately constructed by introducing an extra
Mb5-brane intersected with the original M5-branes in which M-strings reside. We provide
strong supports for our formation of the defect by evaluating its contribution using the exact

calculation scheme called the topological vertex and the elliptic genus.
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1 Introduction

In high energy physics, the fundamental and essential tool is quantum field theory which has
been brought to us great knowledge about the real world represented by the standard model.
It also manifests powerful applications to nuclear physics and condensed matter physics, and
shows novel interactions with a wide range of mathematics. Quantum field theory is built
essentially by integrating the Poincaré symmetry, translations and rotations in space-time,
with a few axioms (e.g. Wightman axioms and the gauge principle) and possibly internal
symmetries called global (flavor) symmetries. It has been found out that, assuming the
existence of a physical S-matrix, there is only one allowed extension of internal symmetries
named supersymmetry which describes the transformation exchanging bosons and fermions.
Remarkably, this is incorporated with the Poincaré symmetry in the sense that the super-
symmetry algebra is closed with the Poincaré symmetry. Also, this symmetry has potential
for solving long standing problems in the standard model (e.g. the naturalness problem and
the unification of the gauge couplings). Further, we often encounter conformal symmetry
under which physics enjoys the scale invariance as well as translations and rotations. The
famous example equipped with conformal symmetry is a theory at the fixed point of the
renormalization group (RG) flow, and a conformal field theory (CFT) could, for instance,
describe critical phenomena. The integration of supersymmetry and conformal symmetry
is progressing as superconformal symmetry which has been beautifully classified in [1] and
can exist maximally up to six-dimensional space-time. Lately, it has been advanced that the
six-dimensional superconformal field theory (SCFT) can originate a variety of quantum field
theories in lower dimensions, hence, it may be regarded as the “mother” theory of quantum
field theory. However, in fact, the standard notion for particle physics appears to be useless
towards the six-dimensional SCFT, which will be mentioned below. To reveal the much
deeper ranges of quantum field theory, we would like to study this theory using not only
standard local objects but also non-local extended ones.

There do exist some areas in quantum field theory which we cannot simply address with
ordinary local operators as elementary objects. For such a situation, non-local operators or
defects play a significant role to uncover a number of the properties of quantum field theory,
e.g. we can distinguish the phases in terms of their expectation values, particular spectra
can be read from them, and they would give us pieces of evidence for nontrivial dualities. A
representative of non-local operators is a Wilson line operator in gauge theories which can
be viewed as a world-line of heavy charged particles and has a variety of applications. This

is standardly defined by a gauge field A in the form

Wa(y) = TrrP exp (%A) , (1.1)



where R is a representation of a gauge group, and ~ represents a certain path. This belongs
to a class of “electric” operators where operators can be comprised of fundamental fields in
the theory. There are counterparts which cannot be defined by elementary fields, phrased as
“magnetic” operators, and behave as defects in space-time. For the case of line operators, a
magnetic one is called a 't Hooft line. The expectation value of a Wilson and 't Hooft line

in four dimensions, for instance, work as order parameters to parameterize the phases,

Area law in a Wilson line +«—— confining phase,

Area law in a 't Hooft line «— Higgs phase.

The non-local operators are mainly classified by dimension of their support, or equiva-
lently, codimension. We would use the latter concept in this paper since it is rather ubiqui-
tous. When an operator has a n-dimensional support in D-dimensional space-time, we state

it as an operator of codimension-d such that!
d=D —n. (1.2)
For D = 4, from the codimension point of view, non-local operators are sorted as follows.
e codimension-4: usual local operators supported at a point.
e codimension-3: line operators, i.e. Wilson lines and 't Hooft lines.
e codimension-2: surface defects.
e codimension-1: domain walls, interfaces, and boundaries.

In this list, a surface defect is rather special since its codimension and dimension are the
same, d = n = 2, which implies that the electric definition of the defect is completely dual
to the magnetic one. Note that we do not mind distinction between the notions “defect”
and “operator,” and consistently using the former in this paper. Modern perspectives on
the surface defect have been initiated in [2, 3], just as for the 't Hooft line, by studying the
boundary conditions of elementary fields approaching near the defect. Then, the properties
of the surface defect have been investigated through the AdS/CFT correspondence [4, 5, 6,
7, 8]. With these developments, the defect could be used as a powerful tool to test various
dualities, e.g. the Alday-Gaiotto-Tachikawa (AGT) correspondence [9, 10]. Also, there are
some attempts to formulate the geometrical method via knowledge carried by the defect
for computing the BPS spectra of the bulk theory even if the Lagrangian description is not
active for this theory [11, 12, 13, 14]. Recently, it was established for some cases [15] that

In mathematical terminology, if a submanifold M of the D-dimensional manifold satisfies d = D —dim M,

we say that M is a submanifold of codimension-d.



the contributions of the surface defect to the partition function can be evaluated in the
exact way called the supersymmetric localization [16, 17, 18]. Nevertheless, many aspects
of the surface defect have been not yet uncovered, e.g. its part as an order parameter is
absolutely mysterious (but a suggestion were made in [19] from a geometrical viewpoint via
AdS/CFT). Generically speaking, it is challenging to understand codimension-2 defects in
diverse dimensions even until now. We would like to investigate this class of non-local defects
in supersymmetric gauge theories.

Although a vast amount of success has been accumulated in the framework of quantum
field theory, unifying quantum gravity is far from completion. The remarkable candidate to
naturally integrate gravity is superstring theory in ten-dimensional space-time. There are five
types of string theory allowed by theoretical consistency with physical requirements, and later
it has been found [20, 21] that these five theories may be incorporated into so-called M-theory
in eleven-dimensional space-time. Thus, M-theory moves into the center of attention from
its discovery as the ultimate theory including quantum field theory and quantum gravity.
In M-theory, we have two kinds of physical extended objects called a M2-brane and a M5-
brane which have the three-dimensional and six-dimensional world-volume, respectively, and
produce various extended objects termed D-branes in addition to a fundamental string in
string theory. In order to understand these objects, it is relevant and necessary to find out
what quantum field theories should be induced as the world-volume theories on these branes.
For multiple N M2-branes, it has been suggested that the world-volume theory is possibly
described by the Chen-Simons-matter theory with the U(N); x U(N)_; gauge symmetry
a.k.a the ABJM theory [22], where k is a Chern-Simons level. This theory is actually inherent
in desired properties which the M2-brane should have.

On the other hand, the world-volume theory on multiple M5-branes has been found out
to be the six-dimensional N' = (2,0) SCFT [23]. ' = (2,0) means that this theory has the
maximal number, 16, of supercharges in the field theory. This can be also realized as the
world-volume theory on D5-branes (six-dimensional extended objects) at the tip of ADE-type
singularities in type IIB string theory [24]. This theory is described by self-dual tensionless
strings [25] as physical degrees of freedom, which are originated from the boundary of the
M2-brane ending on these M5-branes in M-theory. However, though the ABJM theory has
been well studied, the details of the six-dimensional (2,0) SCFT are unknown mainly because
it is quite hard to analyse directly the self-dual tensionless string. More precisely, there are
several works to suggest the action [26, 27, 28] and equations of motion [29, 30] for the
Abelian (2,0) theory (i.e. on a single M5-brane)?, whereas even the Lagrangian description
for non-Abelian (2,0) theories (i.e. on multiple M5-branes) is not found.

There is an idea to approach the six-dimensional (2, 0) theory; one lets the self-dual string

2Recently, the Witten index of the six-dimensional (2,0) SCFT was directly computed in [31].



have small tension by separating Mb5-branes in one direction and extending M2-branes on
that direction. The self-dual strings deformed in this way were proposed recently as M-strings
[32, 33] drawn as the torus on the M5-brane in Figure 1(a). They originally studied M-strings
compactified on a torus (Figure 1(a)) and really found that the partition function of M-strings
could be computed by the so-called topological vertex [34, 35, 36] (indirect but rather easy to
compute) and the elliptic genus [37, 38, 39] (direct but somewhat complicated). The former
has been constructed as a computational tool in the topological string theory [40] and shown
to be applicable to BPS state counting problems in supersymmetric gauge theories. The
latter provides a quantity to capture information from the world-sheet description of M-
strings. We will see how they work on the M-strings in Section 4.

Our main focus in this thesis is a codimension-2 defect in the six-dimensional (2,0)
theory from the M-strings point of view. Since the branes in M-theory can be intersected
with each other, several types of non-local defects supported on such intersecting subspaces
should be naturally defined in this theory. There are lots of developments to understand a
codimension-4 defect (surface defect) in six-dimensional SCFTs associated with M-theory,
e.g. [41, 42, 43, 44, 45, 46, 47, 48, 49, 50], but a codimension-2 defect may hold a more
relevant role then the codimension-4 one in the context of M-strings. This is because the
codimension-2 defect in the (2,0) theory is only realized on the intersection of different
Mb5-branes where the M2-branes can end on both of them. M-strings as the boundaries of
these M2-branes do not exist in the (2,0) theory without the defect, thus, it is expected
that these M-strings carry extra degrees of freedom, which is one of our motivations. There
is few attempt towards the codimension-2 defect, and this direction is highly challenging
but much relevant to comprehend profound aspects of M-theory. As a conclusion in this
paper, we propose the M-string configuration with an extra M5-brane (M5') intersected
with the original M5-brane from which the codimension-2 defect is engineered, as shown in
Figure 1(b). We show that the partition function of M-strings in the presence of M5’ can
be evaluated by the topological vertex formalism and actually contains the contribution of
the defect given by a elliptic theta function as expected. This result can be confirmed from
the independent calculation of the elliptic genus with additional matters. Further, based on
these results, we are trying to reproduce the partition function with a codimension-2 defect
directly from the framework of the open topological vertex that is still not well formulated.

The organization of the paper is as follows. In Section 2, we would collect and review
shortly present knowledge for a class of codimension-2 defects in four-dimensional super-
symmetric gauge theories. We prepare a basic concept and setup of M-strings in Section 3.
Then, we perform how to compute the partition function of M-strings from the topological
vertex and the elliptic genus in Section 4. Also, we would show the equivalence of these

schemes with the simplest example. In Section 5, we explain our main result as shown in
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Figure 1: Our proposal for a codimension-2 defect in M-strings. (a) M-strings compactified
to a torus on M5-branes which constructed in the original context [32, 33]. (b) the insertion

of an extra M5-brane (M5') to engineer a codimension-2 defect in the six-dimensional theory.

Figure 1(b). The previous two methods are still applicable and give the same answer under
a suitable identification of parameters. Section 6 will be devoted to evaluate the partition
function of our M-strings by directly using the open topological string and present a prelim-
inary result. We are closing this thesis with small comments for future works in Section 7.
There are three appendices to package mathematical ingredients and technical details. The
convention and analysis formulae are aligned in Appendix A. The formulations and basics
for the usage of the topological vertex are provided in Appendix B. Finally, Appendix C

contains calculations which are skipped in the main context.

2 Surface defects in four dimensions

In this section, we would much briefly review recent developments on 4d supersymmetric
gauge theories in the presence of a codimension-2 defect, i.e. a surface defect, and prepare
ideas which will be applied to deriving our main result on the codimension-2 defect in Section
5. Those who would like to know more advanced topics on the surface defect are asked to

read a beneficial review [19].

2.1 Current classifications

It has been found in recent studies that surface defects can be constructed in several seemingly

distinct ways. The current status for them are classified as follows.

e Singular boundary conditions near the defect: The defect is basically defined as giving
matter fields a specific singular behavior as approaching to it. For example, if a surface

defect is located at z = 0, where z is a complex coordinate in R*, a scalar field ¢ becomes



singular as

o) ~ ~. (2.1)

z

The surface defect described by this is often referred to as a Gukov-Witten defect [2],
and there are a variety of works by relying on this definition, e.g. [5, 3, 6, 7, 8, 51].

e The 2d-4d coupled system: we can consider two-dimensional degrees of freedom excited
on the surface defect [52]. This 2d theory is just coupled to a 4d bulk theory, and a
gauge symmetry in four dimensions should be seen as a global symmetry from the view
of the 2d theory localized on the defect. A particular example is called a vortex [53, 12]
as a solitonic object. Recently, another system could be investigated by means of a

superconformal index [54].

e Renormalization group flow construction: given some matter field in the ultraviolet
(UV) region, let its expectation value have a nontrivial spacial dependence. This
expectation value triggers off a RG flow, and in the infrared (IR) scale, a defect really
arises depending on the expectation value of the matter [15]. One can find great

advancements on this construction, e.g. [55, 56, 57, 58, 59].

e Geometric engineering by inserting extra D-branes: it is natural to explore counterparts
of surface defects in string theory and M-theory. It is naively expected that the defects
are realized as the boundaries of D-branes ending on another D-branes or intersecting
D-branes with each other in the geometrical way. This standpoint has been vastly
tested and utilized to support dualities, e.g. the AGT correspondence [10]. Also, there
is an attempt to provide a general prescription of the surface defect from M-theory
[60].

These descriptions could be independently developed but actually construct the same surface
defect in specific circumstances. The first and second one are considered as fundamentally
equivalent in the sense that we obtain a delta function localized on a two-dimensional surface
in the path integral when only 2d degrees of freedom are integrated out. Such a delta function
imposes a boundary condition such as (2.1) on remaining 4d fields in the path integral. For
the third one, since the flux of a vortex would be confined in a tube, we can treat with it as
a string-like object and consider a 2d world-sheet theory of this string. This prescription is
compatible with the second one. In this thesis, we will concentrate on the fourth point that
is suitable for our purpose to discuss a codimension-2 defect in M-theory. We will also give

small comments on the connection of this point with others.



2.2 Geometric engineering

The key idea to geometrically engineer the surface defect in this paper is the so-called geomet-
ric transition that relates the geometry with a brane additionally inserted into the system.
We would explain this in the case of the conifold, the simplest nontrivial example of the
Calabi-Yau three-fold (CY3), which is not only the starting point for generalization to other

CY3’s but also an essential ingredient on our main result derived in Section 5.

2.2.1 Coniforld transition

The conifold. The conifold is defined by the algebraic equation on four complex variables
(x? y? u7 U) Of (C47

xy —uv =0, (2.2)

namely, a complex three-dimensional manifold. To see the topology of the conifold, it is

convenient to change the variables such that
T =z + 129, Yy =2z —1iz9, u = 23 + 124, v = —z3+ 124, (2.3)
where {2;}i=1...4 € C, then the conifold as an algebraic manifold (2.2) is rewritten as
Braa4+2+2=0. (2.4)

Further, setting z; = a; + ib; with a;,b; € R, the real and imaginary part of this equation

become

4 4
> (a7 —b7) =0, > aibi =0, (2.5)
i=1 1=1

respectively. The topology that we would like to know can be easily read from those two

conditions as follows. If concentrating on the slice given by

4
Z ai +b7) = 2r?, r € R, (2.6)
1=1

then the first equation of (2.5) says

4 4
ZCL? = szz = T27 (27)
=1 =1

which means that there are two three-spheres S3’s of the same radius » parametrized by {a;}
and {b;}. However, one set of them is restricted by imposing the second condition of (2.5).
Therefore, {a;} span a three-sphere S* of radius r, while {b;} form a two-sphere S? because

of the constraint (2.5). The slice (2.6) can be thought of as an S? fibration over S® at fixed

10



([ { ]
(0,0) (1,0)
(a) Toric diagram (fiber space) (b) Web diagram (base space)

Figure 2: The toric diagram and web diagram of the conifold. The set of labels on each top

in the toric diagram is toric data which fixes the fiber structure.

r which turns out to be a trivial fibration. Moreover, the conifold shows the singularity at
the point of » = 0 that is equivalent to = y = u = v = 0 in (2.2). As a consequence, the
conifold is described as the cone over S? x 3.

The conifold is a kind of non-compact toric CY3’s. The toric geometry actually can be
visualised by a toric diagram of the so-called toric data which encodes the structure of a fiber
space. In addition, there exists a dual diagram to the toric diagram called the web diagram
displaying the structure of a base space. The toric and web diagram of the conifold are
shown in Figure 2. The tip of the cone in the conifold is now represented as the intersecting
point in the web diagram.

This is as for the generic case where we must relax the singularities of CY3 by appropri-
ately deforming the geometry. There are basically two deformations of the conifold to avoid

the singularity which we will review below.

The deformed conifold. The first one is to deform the complex structure of the conifold,

which is implemented in (2.2) by

zy —ww = pi, € R\{0}. (2.8)

Through the same reparametrization as above, the defining equations in (2.5) are slightly

changed as

4
=1

4
(a? - bf) = 12, Zaibi = 0. (2.9)
i=1

In the first condition of (2.9), the variables {a;} satisty 3.+, a? > pu? for general a; and b;.

In other words, the sphere of b; shrinks as long as this inequality is saturated, Z?Zl a? = u2.
In addition, it can be shown that the second condition of (2.9) is topologically equal to
describing the cotangent bundle 7%53 on S? of a;. This geometry by deforming the conifold

in the way (2.8) is called the deformed conifold whose topology is T*S3.

11
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w = —p?

(a) Web diagram (b) S* as an T? fibration

Figure 3: The torus fibration of the deformed conifold. The structure of the base space is
drawn as (a) in which the dotted interval linking the axises of w = 0 and w = —u? is an

torus fibration, that is, S% as shown in (b).

For our purpose, it is relevant to view the deformed conifold as its torus fibration. Getting
back to the definition (2.8), one can immediately see two U(1) isometries denoted as U(1), X

U(1) which act on the coordinates as
Ul x U()g: (, y, u, v) — (e, ey, ePu, e7Pu). (2.10)

These isometries imply that the deformed conifold has a tow-torus 72 on which the (0, 1)-
cycle SL and (1,0)-cycle Sé generate the action of U(1), and U(1)g, respectively. We here
should mention that the point of z = y = 0 is precisely the fixed point for U(1),, hence,
Sl collapses at this point. Similarly, Sé collapses at w = v = 0. For the former case, the

algebraic equation (2.8) is reduced to

uv = —p?, (2.11)
which describes a cylinder Sé x R. For the latter, (2.8) becomes

zy = 12, (2.12)

which describes another cylinder S} x R. Equivalently, if we define w := uv, Re(w) corre-

sponds to the real axis R of the cylinders with the points where the 1-cycles of T2 collapse,

w=—p®> < S} collapses, (2.13)
w=0 & Sé collapses. (2.14)

There is another real axis of w on which neither S} nor S é shrinks, namely, the torus fibration

over the interval [—u?,0] is realized. This is exactly the torus fibrer expression of S3 of the

12



Figure 4: The web diagram of the resolved conifold. The singularity of the conifold is resolved

by CP! of size t and related to a triangulation of the toric diagram.

radius 4 here just as described in (2.9). Note that this S3 shrinks to zero size as y — 0 to
reproduce the conifold (2.2). We sketch the web diagram of the defamed conifold with the

torus structure and the torus fibration of S? in Figure 3.

The resolved conifold. The second deformation is associated with the K&hler structure
of the conifold, and the resultant manifold is termed the resolved conifold. Let us introduce

homogeneous complex coordinates (A, B) on CP! of the size t,
A2 +|B]* =t, (A, B) ~ (A, AB), (A, B) # (0,0) (2.15)
with A € C\{0}. We would relate (A, B) with the coordinates of the conifold by
Az + Bv =0, Au+ By = 0. (2.16)
Assuming z # 0, the first equation can be solved for A and B as
A=-'B, (2.17)
x
then substituting this into the second equation leads to
xy —uv =0, (2.18)

which is absolutely the conifold (2.2). Although the conifold has the conical singularity at
all zeros as mentioned above, the manifold defined by the algebraic equation (2.18) equipped
with (2.15) can be considered as the resolution of the conifold because any (A, B) are still
solutions to (2.16) even at (x,y,u,v) = (0,0,0,0) and consequently this point is blown up
by the structure of CP' ~ S? of the size t. That is why this geometry is named the resolved
conifold. The web diagram of the resolved conifold is depicted on the left side of Figure 4.
We remark that the web diagram of the resolved conifold can be obtained by a triangulation
of the toric diagram of the conifold (Figure 2(a)). Given a certain triangulation on the toric
diagram, the dual web diagram is produced in the way to draw a line orthogonal to each

edge of the triangles. This process is demonstrated on the right side of Figure 4.

13
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(a) deformed conifold (b) conifold (c) resolved conifold

Figure 5: The geometric transition for the conifold. The bottom line represents an associated

topology for each geometry.

The conifold (Figure 5(b)) and its deformations (Figure 5(a) and 5(c)) pass through with
each other by tuning the radii u and t of S® and S?, respectively, which has been originally
referred to as the conifold transition [61]. This sequence has been cultivated as the geometric

transition [62, 63, 64] in the context of the topological string theory.

2.2.2 Geometric transition in the topological string theory

The topological string theory [40] is a two-dimensional topological field theory on the world-
sheet of a fundamental string, which is basically constructed by topological twists for a
non-linear sigma model (NLSM) whose target space is CY33, and its partition function just
counts the BPS states mapped from the string world-sheet onto CY3. There are two types of
the topological string theory named A-model and B-model according to twists which make
a NLSM topological with preserving supersymmetry. In this paper, our standpoint based on
the web diagram is in the framework of the A-model topological string theory.

Since fundamental objects in string theory are a closed string containing gravity and
an open string which ends on various D-branes, the topological string theory is formulated
for both strings. It has been found [65] that the open topological string theory (i.e the
world-sheet of an open string) on T%S3, the deformed conifold (Figure 5(a)), is equivalent
to the Chern-Simons theory on S% with an U(N) gauge group. The dictionary of this

correspondence is declared as follows. The string coupling constant gs in string theory is

3This is the case of the superconformal theory.

14



related to the Chern-Simons level k, the coupling constant in the Chern-Simons theory, as

B 2
 k+ N

9s (2.19)

In addition, N corresponds to the number of D-branes wrapped on S® because the open
string has boundaries on D-branes in the target space. On the other hand, the resolved
conifold (Figure 5(b)) plays the target space of the closed topological string theory (i.e the
world-sheet of a closed string).

After the establishment of this equivalence and the AdS/CFT correspondence [4], it has
been conjectured [63] that the open topological string theory on the deformed conifold is
dual to the closed one on the resolved conifold. Recall that the resolved conifold possesses
a Kahler parameter ¢, the size of CP!, to resolve the singularity of the conifold. The main

statement of this conjecture is given as the relation
t =1igsN o Q=q", (2.20)

where Q := e! and ¢ := €% (in what follows, we will call Q a Kihler factor)?. This is
geometrically interpreted as the conifold transition (Figure 5), and this duality under the
relation (2.20) is referred to as the geometric transition, which has been proven in [66, 67].
In other words, the geometric transition couples the open topological string theory to the
closed one by operating (2.20) (in this sense, often called the open/closed duality). Note
that the closed topological string theory does not include any D-brane, and it appears after
the geometric transition. As a result, the geometry describing the closed topological string
theory is translated into a physical object, D-brane, in the open topological string theory.
The geometric transition can truly be applied to the general non-compact CY3 in the
same manner as on the conifold explained above. For a generic case, a diagonal segment
in the web diagram always represents CP! as for the resolved conifold (Figure 5(c)), while
S3 depicted as a dotted line in the deformed conifold (Figure 5(a)) is replaced by a certain
3-cycle called Lagrangian submanifold £ in CY3. This follows on the fact that the boundary
conditions keeping supersymmetry in the A-model open topological string are identical with
the geometrical conditions for £. Namely, the emergence of £ in a web diagram ensures the
existence of N D-branes on which an open string ends. Throughout this paper, we call a
thick dotted line presenting £ a Lagrangian brane. There is a case where one CY3 contains
several L£’s, and specifying one of L’s is represented by inserting a Lagrangian brane to the
corresponding edge of the web diagram. Note that no Lagrangian brane is resulted from the

geometric transition if N = 0, that is, there does not exist any D-brane. In short, we are

“More precisely, t is a complexified “area” of CP! whose real part is just a Kahler class and imaginary part
is contributed from NSNS B-field. The fact that ¢ becomes pure imaginary upon the geometric transition

(2.20) implies that CP"* shrinks but a non-zero B-field remains.
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(a) Local P! x P! (b) 4d pure gauge theory

Figure 6: The geometric engineering of the 4d A/ = 2 pure gauge theory from the local

P! x P!, This is in a generic point of the Coulomb branch.

working on the A-model open or closed topological string theory when the web diagram with
or without a Lagrangian brane, respectively, is focused on.

Generically, if we have the set of diagonal segments attached to the same horizontal line
in the web diagram, we can execute the geometric transition by taking the specialization
(2.20) simultaneously but with different N; for each diagonal segment which represents the
resolution by CP! of the size t; (i runs for the number of the associated segments). This
situation will be shown in Section 5. In the rest of this section, we would be mainly devoted

to providing the connection between the geometric transition and the surface defect.

2.2.3 Defects as Lagrangian branes

It has been proposed [68, 69] that we can geometrically engineer the surface defect as the
Lagrangian brane £ that emerges through the geometric transition. We would briefly argue
this correspondence in terms of string theory.

An example which we would like to utilize for explanation is an CY3 with the web
diagram of Figure 6(a) known as the local P! x P!. Remarkably, it has been discovered
in [70, 71] based on much complicated discussions associated with mirror symmetry that
there does exist the direct interpretation of the geometric data of CY3 expressed by the
web diagram into the brane system of string theory, and vice versa. We will rely on this
fact in the later sections. In the current case, the web diagram of the local P! x P! can be
mapped into the D4-branes ending on NS5-branes (NS is a shorthand for Neveu-Schwarz) in
type IIA string theory (Figure 6(b)). This relation allows us to rely highly on the geometric
languages to understand the dynamics of string theory. Further, the low energy dynamics on
the D4-branes of this brane system generates the 4d A/ = 2 pure gauge theory in a generic
point of the Coulomb branch of the moduli space [72]. Namely, the 4d supersymmetric gauge

theory can be engineered by the geometry thanks to the novel correspondence between the
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Figure 7: The geometric transition with producing a Lagrangian brane £ (a dotted line on

the right side). The middle diagram shows the singular CY3 as for the conifold.

geometry and string theory.

Let us give a rough sketch how the surface defect that particularly preserve part of
supersymmetry can be inserted into the 4d theory as the Lagrangian submanifold £ in CY3.
We start with a CY3 whose web diagram is given as on the left side of Figure 7. The
geometry is resolved by CP'’s depicted as the diagonal segments along the center line of this
figure in the same manner as for the resolved conifold. Let Q and Q be Kihler factors for
them in the lower and upper segment, respectively. We carry out the geometric transition

for this geometry as for instance, the Kahler factors are specialized by

0=q. GO-=1 (221)
This operation means that a Lagrangian brane £ appears to attach the bottom edge of the
local P! x P!, but does not on the top edge (on the right side of Figure 7) after the transition.
The consequence of the limitation (2.21) is pictorially performed in Figure 7.

Based on the correspondence of Figure 6 between the local P! x P! and the D4-NS5
system, an extra perpendicular line in the middle of the right picture in Figure 7 is also
viewed as an extra NS5-brane (NS5’), and the appearance of L is translated into a D2-
brane (D2') suspended between the D4-brane and the NS5-brane in the top line of Figure
8. This D2'-brane is spanned on a two-dimensional subspace of the world-volume of the
D4-brane, and it actually behaves as the surface defect from the viewpoint of the 4d theory
on the D4-brane. This is the pictorial prescription to construct the surface defect from
purely the geometry via the geometric transition. Moreover, we can consider the limit where
the extra perpendicular line in the web diagram of Figure 8(a) is moved away at infinity,
correspondingly, the NS5'-brane is pushed away at infinity in a certain direction. Then the
D2'-brane is extending semi-infinitely along this direction. The basic difference between
the situation with and without NS5 is as follows. In the type IIA picture, open strings
stretched between the D2’-brane and D4-brane induces the field theory degrees of freedom
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Figure 8: Lagrangian branes and D2-brane insertions (D2’) with a finite (upper line) and
a semi-infinite extent (lower line) corresponding to the different types of surface defects in

four dimensions.

on the world-volume of not only the D4-brane but also the D2-brane. Accordingly, there
is effectively a 2d supersymmetric gauge theory at the end of the D2'-brane, and its gauge

coupling e? is proportional to the finite extent of the D2’-brane along, say, the 7 direction,

e% o Az’ (2.22)
The semi-infinite D2’-brane in the bottom line of Figure 8 is produced as Az” — oo, which
corresponds to the weak coupling limit of the 2d theory. Completing this limit, the effective
two-dimensional theory may get superconformal symmetry since the running coupling goes
away. The choice of the brane systems in Figure 8 depends on what kind of the surface
defect we would like to study, but actually, the difference between them does not become
important when we investigate physics independent of the 7 direction that D2’ is extending
on. Indeed, the bottom situation in Figure 8 is rather suitable for us because our calculations
are in the case of inserting a semi-infinite brane, and the topological vertex (Appendix B) can
be straightforwardly applied to compute the partition function of the corresponding gauge
theory. In this paper, we would focus on such a situation®.

We would place brief comments on the relation of the geometric engineering with a vortex

5The case of the top in Figure 8 with taking certain limits has been nicely discussed in [69)].

18



string theory. The vortex string is a solitonic object realized as a specific BPS configuration
in 4d theories. This has a support of the two-dimensional subspace, and its world-volume
theory is know as a 2d supersymmetric gauge theories coupled to the 4d bulk theory [12].
This fact matches with the second perspective in Section 2.1, thus, the vortex is a natural
candidate to describe the surface defect. The BPS solution for the vortex actually includes
a singular behavior of a gauge field near the vortex, which implies that the vortex may also
be compatible with the first perspective in Section 2.1. The analysis for the surface defect in
[57] is based on those viewpoints. Further, the brane system corresponding to the geometric
transition in Figure 8(b) is essentially identical with the brane construction of the vortex
string [12]. In other words, we would think of the vortex string description for the surface

defect as the field-theoretic construction of the geometric transition.

2.3 AGT correspondence
2.3.1 Basic statements

The prominent application of the surface defect is in the 2d-4d duality known as the AGT
correspondence [9]. It has originally declared relationship between the 4d N' = 2 SU(2) gauge
theory with four flavors and the Liouville CF'T on the two-sphere, which is basically found
by comparing the instanton partition function [73] of the N = 2 theory with the Liouville
conformal block. After this breakthrough, it has been revealed by lots of nontrivial tests that
this correspondence does hold for a much general class of the A/ = 2 theories called class S
[74] and CFT’s on the Riemann surface ¥ with several numbers of genera and punctures.
The novel point of this correspondence is that the 4d supersymmetric theory is equivalent
to the 2d non-supersymmetric CFT.

The AGT correspondence is heuristically derived from the 6d (2,0) theory compactified

on a Riemann surface ¥ and a four-manifold My =R? . or 5% _ |

6d (2,0) theory
on My x X

/ N (2.23)
4d N = 2 gauge theory 2d Liouville CFT
on My on X

where €; and ey are called (2-deformation parameters respecting two-dimensional rotations
and R?2

2
€1 €927

on the planes R

4 2 2
R: . ~R? xR2. (2.24)

€1,€2

Namely, introducing the Q-deformation parameters breaks the rotational symmetry SO(4)
of R* into SO(2)., x SO(2),. On the other hand, the Q-deformation brings the effect to
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regularize the divergence from the infinite volume of R* so that®

Vol (R, .,) _/ 1=—o, Vol (R?)) _/ =1 (2.25)
R

4 2 €
€1,€Q Rel 1

In general, the advantage of the (2-deformation is that we can compute the volume of the Q-
deformed manifold by only using the contributions from the fixed point of symmetries (called
the Duistermaat-Heckman fixed point theorem) without struggling the entire integration.
This fact lets us derive exactly the Nekrasov instanton partition function [77, 73] that is
the volume integral of the instanton moduli space and plays a central role in the AGT
correspondence.

Soon after the discovery of the AGT correspondence, non-local operators, i.e Wilson-'t
Hooft loops and surface defects, in the 4d supersymmetric gauge theory have been incorpo-
rated in this duality [10]. We would focus on the story of the surface defect denoted as Dy
with a parameter t which is the combination of the labels used in the Gukov-Witten defect
[2]”. In the original paper [10], the following brane configuration in type IIA string theory

has been proposed to construct the surface defect in the AGT correspondence:

My
01 2 3 4 5 6 7 89
NS5 | x x x x x X (2.26)
D4 X X X X X
D2 | x x X

As shown above, the 4d N' = 2 gauge theory in question is induced on the 0123 direction
of the D4-brane, and the boundary D of the D2'-brane ending on the D4-brane realizes the
surface defect in that theory. This D2'-brane on the flat space keeps half of supersymmetry,
and after the Q-deformation, the surface defect as the boundary of D2’ still preserves half
of supersymmetry if its support D is extended on a submanifold of My respecting the -
deformation, that is, D = RZ (or RZ,). With this brane system, they have noticed that the
surface defect may be described by a certain vertex operator called the degenerate field ®9 ;

carrying a momentum b in the Liouville CFT,
(1)271(2“) == €_g¢(z), (2.27)

where z represents its insertion point on Y. The first expectation of the AGT correspondence

has come from the behavior of the instanton partition function Z™ in the semiclassical limit

5There is the so-called Duistermaat-Heckman formula [75, 76] to calculate the volume for the symplectic

manifolds of even dimensions.
"We here do not specify the parameter t, but basically this parametrizes the breaking pattern of the

symmetry initiated by inserting the surface defect.
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€16 — 0. This behavior in the presence of the surface defect can be determined from the

viewpoint of the brane system (2.26),

20 oxp [—f (@ Wy . ] , (2.28)

€1€2 €1

The coefficient of the leading term is the Seiberg-Witten prepotential [77]. The function
W(a,t) turns out to be exactly the integral of the Seiberg-Witten differential Agw over an

open path starting from some reference point p, in the Seiberg-Witten curve,
P
W(a,t) = / ASW (2.29)

where the endpoint p roughly corresponds to t characterizing the surface defect in the IR
region. On the Liouville CFT side, the corresponding limit on the correlation function with
the degenerate field can be directly evaluated as

Fla)  Wia,2) +}

ZLiouV
h2 hb

~ exp [— (2.30)

where & is a fixed overall scale factor. The form (2.30) in the CFT perfectly agrees with
(2.28) on the 4d side under identifications

€1 = hb, ea = h/b (2.31)

as originally stated in [9]. This observation strongly supports the AGT correspondence with
the surface defect. We should remark that the function W(a,t) (or W(a, z)) cannot be seen
unless the surface defect (or the degenerate field) is inserted. The emergence of this function
is really a specific consequence to consider the surface defect. We shortly write down the
dictionary of the AGT correspondence including the surface defect in the Table 1.

We note that there precisely are the higher-dimensional generalizations of the AGT cor-
respondence: the 5d supersymmetric gauge theories and the theories of the g-deformed
Virasoro algebra [78, 79]: the 6d supersymmetric gauge theories and the theories of the
elliptic-deformed Virasoro algebra [80, 81].

2.3.2 Construction via the geometric transition

Indeed, the brane configuration in type ITA string theory (2.26) proposed for the AGT
correspondence with the surface defect is identical with the brane system of Figure 8 to
engineer the surface defect by the geometric transition. It has been actually pointed out
[68, 69, 82, 83, 84] that there is a class of the AGT correspondence in the presence of the
surface defect which can be derived in the framework of the geometric transition explained

in the previous subsection. We would show a simple example of this statement.
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N = 2 gauge theory

Liouville CFT

)-deformation parameters
€1 €2

Q=¢€¢ +e

Liouville parameters
b:1/b
Q=b+1/b

) Complex modulus of a tube
UV gauge coupling myv ] ]
) — gluing Riemann surfaces
exp [2miTyvy]
q

Conformal dimension of a

Mass m for an SU(2) flavor oo

m(Q —m)

— Liouville exponential e

Ap,

M t f
Coulomb branch parameter a omettum ot an

0t Q < intermidiate primary field o9
2

(%

Instanton partition function Liouville conformal block

. — )
7 (q, €1, €9,7) ZLIO‘“’(a, b,1/b,q)
Degenerate primary
Surface defect
— operator at z € X

D
‘ ®21(2)

Table 1: The basic dictionary of the AGT correspondence with the surface defect.

We begin with the 4d N' =2 SU(2) x SU(2) gauge theory shown as the quiver diagram
in the top of Figure 9(a). Through the relation between the geometry and type ITA string
theory as Figure 6, this 4d theory can be engineered by the geometry of the web diagram
on the top of Figure 9(b), where thin dotted lines connecting the vertical lines indicate a
subspace compactified on S! in the corresponding CY3. From the dictionary of the AGT
correspondence, this theory is mapped into the Liouville CFT on a torus with two punctures
that is often denoted as 71 (the top of Figure 9(c)). The connection displayed in the top line
of Figure 9 has been checked by the direct computations of the Nekrasov partition function
and the correlation function on the torus. Although the geometry of the web diagram in
question is not toric at all, the geometric transition still consistently works. Choosing the
special values of the Kéahler factors on the web diagram to take the geometric transition,
we obtain the web diagram with a Lagrangian brane depicted in the bottom of Figure 9(b)
from which the 4d /' = 2 SU(2) gauge theory with a matter in the adjoint representation
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j

T
(a) 4d N = 2 theory (b) Geometric engineering (c) Liouville CFT

Figure 9: The simplest picture of the AGT correspondence in the presence of a surface
defect. (a) The 4d N' = 2 SU(2) x SU(2) quiver gauge theory (top) and N = 2 SU(2)
gauge theory with a matter in the adjoint representation (a solid line) and a surface defect
D (bottom). (b) The geometric engineering of the 4d theories in (a). The surface defect as a
Lagrangian brane in the bottom is generated through the geometric transition as explained
in the previous subsection. (c) CFTs denoted as 751 and 77 with a degenerate operator (a

cross) which corresponds to the 4d theories in (a).

and the surface defect is engineered (the bottom of Figure 9(a)). On the CFT side, we
take the corresponding limit of the associated parameters, which results in simply replacing
one puncture with a degenerate operator drawn as a cross in the bottom of Figure 9(c).
We would here name this CFT 77%;. It seems surprising that only tuning the parameters
changes the type of the operator in the theory, however, this phenomena can naturally be
understood as the consequence of the geometric transition. The duality picture in Figure 9
has been clarified at least up to few lower levels of the expansions of the Nekrasov partition
function and the CFT correlation function [82]. Remarks that the geometric transition really
turns the field theories at the beginning to others. This is the basic story to derive the AGT
correspondence in the presence of the surface defect from the geometric transition, and one

can find other examples in the literatures.
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2.4 M-theoretic realization

The AGT correspondence could be descended from the 6d (2,0) theory as mentioned in
(2.23), it is natural to ask a question what is the six-dimensional origin to give rise to the
surface defect in the 4d N/ = 2 gauge theory and the degenerate field in the Liouville CFT
simultaneously. Recalling that the 6d (2, 0) theory should be embedded into M-theory as the
world-volume theory of the multiple M5-branes, the surface defect may also be engineered
by the brane in M-theory. In fact, the brane configuration in type IIA string theory (2.26)
can be lifted up to M-theory as follows. Both NS5 and D4-brane become Mb-branes, and

the D2'-brane that is inserted to make the surface defect is replaced with a M2-brane:

My P
0 1 2 3 4 5 6 g 7 89
M5 | x x x x x X (2.32)
M5 | x x x X X X
M2 | x x X

where fj = 10 stands for the eleventh direction of space-time that we will call the M-theory
circle. 'We now put a tilde on the Mb-brane (1\7[/5) that goes down to the NS5-brane to
distinguish the one down to the D4-brane. The point of this M-theory construction is
that the M2-brane ends on the Mb5-brane and extends semi-infinitely to the 7 direction
transverse to the M5-brane and the Riemann surface . From the standpoint of the AGT
correspondence, the boundary D of the M2-brane causes the emergence of the surface defect
in the four-dimensional space-time My, and the fact that the M2-brane looks a point z on X
can induce the degenerate field ®51(z). Thus, we comprehend that appropriately inserting
the M2-brane leads to the connection between the surface defect and the degenerate field in
the AGT correspondence.

Finally, we would provide other candidates in M-theory to build the surface (codimension-
2) defect in four dimensions. The defect as the boundary D of M2-brane on the M5-brane
in (2.32) is codimension-4 from the viewpoint of the 6d (2,0) theory and then is reduced to
a codimension-2 one in the 4d N = 2 effective theory®. We can revive the situation with
incorporating a probe M5-brane instead of the M2-brane. Since the Mb5-brane cannot have
a boundary, we produce a codimension-4 defect in the 6d SCFT by intersecting the probe
Mb5-brane with the multiple M5-branes on a two-dimensional subspace D and extending its
other parts in R* transverse to the multiple M5-branes, that is, being the point z on .
This Mb5-brane looks introducing the same surface defect as from the M2-brane above in
four dimensions. The last candidate is a probe M5-brane wrapped not only on the two-

dimensional subspace D but also on . This turns out to be a codimension-2 defect in the

8See [60] for quite general (but not complete) constructions along this way.
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6d (2,0) theory. In six dimensions, the codimension-2 defect should be essentially distinct
from the codimension-4 one, even so, they seem to originate the identical surface defect of
the 4d effective theory in the IR where the size of ¥ becomes relatively small to that of
My. This equivalence is quite of interest but not so clear for the moment, and we would
not pursue this issue beyond the scope of this paper (we will comment in Section 7). These

codimension-4 (M2 and M5) and codimension-2 (M5) defects are summarized as follows.

space-time : My x X x R?

| | U
Mb5-brane : My x ¥ x {pt} ~ 6dN =(2,0) SCFT ~» 4d N =2 theory on My
U U
M2-brane : D x {pt} x R  ~» codimension-4 defect ~- surface defect
M5-brane : D x {pt} x R* ~» codimension-4 defect -~ surface defect
M5-brane: D x ¥ x R? ~s codimension-2 defect ~ surface defect

3 M-strings

3.1 Basic setup

The 6d (2,0) SCFT is not considered as the standard gauge theory in the sense that this
theory contains a self-dual 2-form field in a tensor multiplet, which implies that a dynamical
object in this theory is not a particle but a string which we would call a self-dual string. It is
known that the self-dual string should be tensionless to respect the conformal symmetry, but
it is quite hard to analyze its dynamics by means of usual ways in quantum field theory. To-
wards understanding the self-dual string, a promising system in M-theory has been proposed
by [32], which is named M-strings. The 6d (2,0) SCFT naturally arises on the world-volume
of the multiple M5-branes where the M2-brane can end, thus, the self-dual string is realized
as the boundary of the M2-brane. In this construction, normally the self-dual string becomes
tensionless since the M5-branes are on top of each other (Figure 10(a)) and the M2-branes
stretched on each M5-brane do not acquire tension. In order to resolve this point, they have
introduced the system where M Mb5-branes are slightly separated in one direction together

with k; M2-branes suspended between them®. The configuration is as follows:

0
M M5 | x x x x x x {a}
/{Z'MQ X

Rl,l R4 R4

I 1 T 1 1

(3.1)

X X

9This circumstance is referred to as the tensor branch where scalars in the tensor multiplet have nonzero

expectation values, as an analogue of the Coulomb branch.
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Figure 10: (a) Self-dual tensionless strings on multiple M5-branes. (b) M-strings as self-dual

strings on M5-branes separated in the 6 direction. M-strings are depicted as bold lines.

where § = 10 and {ai}izl,“_7 m denote the positions of the M5-branes aligned along the 6
direction. The self-dual string as the boundary of the M2-brane in this setup is called the
M-string and may capture at least partially the sector of BPS states in the 6d (2,0) SCFT
even though it has a small tension. We here take the flat space transverse to the M5-branes
and M2-branes as a first step, and in the next subsection, we replace it with the singular
background. Note that it is possible that different numbers of the M2-branes are put in each

interval between the M5-branes. In a general way, for i =1,2,..., M — 1,
k; M2-branes in the i-th interval [a;, a;+1] of the M5-branes.

Let us see supersymmetry preserved on M-strings made in the system (3.1). The six-
dimensional world-volume of the Mb5-brane extended in the 012345 directions without the

M2-brane has the superconformal group OSp(2,6|4) whose bosonic subgroup is
SO(2,6) x SO(5)r C OSp(2,64). (3.2)

Precisely, SO(2, 6) is the conformal symmetry on the M5-brane and SO(5) g is an R-symmetry
corresponding to a rotational symmetry!'” of the space transverse to it in the eleven-dimensional
space-time. As a result, the 6d (2,0) theory on the stack of the M5-branes keeps this sym-
metry. For M-strings (3.1), we separate somewhat these M5-branes along the 6 direction,
which means that the rotation along this direction is broken down while the 789f directions
are not affected. Therefore, the original R-symmetry SO(5)p is reduced to the rotational

symmetry along these directions,

10A Spin group is often useful to characterize the supercharges as done in [32] since it is the double cover

of a SO group, but this discrepancy is not essential here.
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Now, we turn on the M2-branes extending the 6 direction with boundaries along the 01
directions on the M5-branes (3.1) which appears as M-strings as explained. Adding them of
course breaks the Lorentz group SO(1,5) C SO(2,6) into its subgroup,

SO(1,5) — SO(1,1) x SO(4). (3.4)

The former acts on the world-sheet of M-strings and the latter does on the space transverse
to M-strings as the rotation, or equivalently, the subspace of the Mb5-branes on which M-
strings are not wrapped. Consequently, the supercharges for preserved supersymmetry are
labelled by the charge of SO(1, 1) and the representations of SO(4) ~ SU(2);, x SU(2)r and
SO(4)g ~ SU(2), x SU(2)r.

Further, it can be checked how many supercharges M-strings have. What we have to
do for this is to see independent components of an eleven-dimensional spinor € (i.e. a 32-
component spinor) as a parameter of the supersymmetry transformations. Let rM (M =

0,1,...,9,f) be eleven-dimensional gamma matrices (i.e. 32 x 32 matrices) satisfying

129 _ MMMy . pMapMe My (3.5)

Then, to preserve supersymmetry on the Mb-brane and M2-brane requires the following

conditions:

[012345¢ — ¢ for the Mb-brane,

(3.6)
I'6c = ¢ for the M2-brane.
Combining these with the property (3.5) results in
[0le = [2345¢ — 78%¢, (3.7)

At the beginning, there are 32 supercharges in eleven dimensions, and the presences of the
M5-brane and M2-brane reduce its number to 32 x % X % = 8 by imposing (3.6). In addition,
the relation (3.7) tells us that the chiralities of the supercharges under SO(1, 1), SO(4), and
SO(4)g are the same. Finally, we can conclude by using the specific forms of I'™ that the
remaining supersymmetry on the two-dimensional world-sheet of M-strings is N' = (4,4).
From above consideration, the supercharges denoted as Q,, and éaa are transformed under
SO(1,1) and four SU(2)’s as follows:

SO(1,1) | SU@). | SU@k | SU@)L | SU@)
Qi | — 2 1 2 (3.8)
Qaa + 2 1 2

N[—= D=

where «,a = + for SU(2)1, and @(Q)L, and &, a = 4 for SU(2)r and §I/J(2)R, respectively.

We will refer to éda as left-moving supercharges and Q. as right-moving ones. Note that
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Figure 11: The M5-brane as a domain wall for the M2-branes ending on it.

the R-symmetry of the 2d A/ = (4, 4) theory is SU(2)3. Thus, three of four SU(2)’s in (3.8)
form really the R-symmetry, and the rest one is regarded as a global symmetry.

We would comment on the role of the M5-brane from the M2-brane point of view. For
the Mb-brane at the position a;y1 in the 6 direction, k; M2-branes are ending on it from the
left and k;11 M2-branes from the right (Figure 11). It has been found [42, 85, 86, 87] that
the ground states of the multiple M2-branes on the boundary are labelled by partitions u;
(ti+1) of k; (kit1), and the M5-brane serves as a domain wall to support the existence of
such ground states. In this sense, the contribution of a single M5-brane on which M2-branes

can end will be called a domain wall partition function (Section 4.2).

3.2 On Taub-NUT space

The 6d (2, 0) theory arises also in type IIB string theory on the ADE-type singularity [24]. In
order to make it suitable to connect M-strings with that type IIB picture, we would take the

M-string configuration on the Axn_q singularity generated by 'y as the simplest extension
[33],

R1:1 R4 R* /T N~C2 /Ty
001 2 3 4 5 6 789
(3.9)
MM | x x x x x x A{a}
kii M2 X X X

where

.0 .,
ry=24 (" n=1,2,- N—=1%  ~, =2k, (3.10)
0 !

Actually, this action is Zy orbifolding of which the M5-brane and M2-brane are sit on the

singularity. This orbifold causes the breakdown of (4, 4) supersymmetry of original M-strings
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(3.1) as follows. Let (w1, ws) be complex coordinates on R* ~ C? transverse to the M5-brane

and M2-brane. In our case, the orbifolding I'y acts on this space so that
Iy (wy,we) — (71w1,’yl_1w2), (3.11)

which precisely breaks the rotational symmetry on C? and accordingly supersymmetry be-
cause the supercharges (3.8) are charged under this rotation §I§(2)L X @(2)3 Nevertheless,
we can preserve part of supersymmetry by embedding 'y into its subgroup. Here, we select

the embedding T'y C SU(2)g that, from our charge assignments (3.8), gives the action
Iy : (@dp Qss Doty Qo) (71éd+77f1éa;a Qatr Qo). (3.12)

Namely, the left-moving supercharges Qs are nontrivially transformed under I' y whereas the
right-moving ones Q,, are invariant, in other words, M-strings on the orbifolding singularity
keep N = (0, 4) supersymmetry as on its world-sheet theory.

From now on, we would resolve the singularity of I'y since it is hard to deal directly
with it. The natural resolution of the Ax_; singularity is taken to be a Taub-NUT space
which we will denote as TNy. This space is a hyper-Kdhler manifold and the geometry in

the presence of the Kalza-Klein (KK) monopole whose metric is given by

2 =2 ~1 7o)
dsty = HdZ*+ H " (ds+ A -d¥)

N 1 1 . (3.13)
——t 5 VH = -V x A,
|# —T7|  Liy

H(Z) =
I=1
where the coordinates # and s is a three-dimensional vector and a parameter along S' of
the asymptotic radius Lty. Thus, TNy has in general the topology of R? x S'. #; for
fixed I is a point called a center of TNy where S! shrinks at this point. H (%) should be the
solution to the Laplace equation in three dimensions, and the gauge field A becomes a source
of the KK monopole. The Taub-NUT space shows the Ax_; singularity if all centers are
coincided as summarized in Table 2. Note that the naive resolution of the Ay _1 singularity
is an asymptotically locally Euclidean (ALE) space which is a specialized version of TNy
as Lty — oo. Indeed, the choice of either the ALE space or TNy does not matter here
because our final results do not depend on the asymptotic radius Ltn. We would continue
discussions with the Taub-NUT space for future analysis.
It is well known that the singular limit of the Taub-NUT space can be viewed as an

algebraic manifold defined locally by the equation
XN+vz=0 (3.14)

around the origin, that is, when all centers are collected at the origin. This is recast to our

parametrization by X = wjwsy, Y = w{v ,and Z = wév . Based on this expression, we can
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metric topology singulairty
ds?y = HdZ? + H™(ds + A - d7)? R3 x §1 ]
|| — oo dsty = p3-da? + Lin(ds + A - di)? R3 x 5! 0
1
dndshy = — (dr? + r*(d6? + sin® 0d¢?))
r
|Z—F| ~ 0 with + r(dy — cos 0de) R 0
iy # %y for V.J = dp? + p2dQ?
(¢ :=dms, p:=2r =2|Z — 1))
F—71| ~ 0 with || Fdstn = dp® + p°dQ3 = dwdw; C/Ly: (wiwa) |
N-1
Ty = 2y for VJ (¢ = %s, wi g € C) ~ (’}/1’w1,"}/1_1’w2)
Table 2: The limits of the Taub-NUT space.
immediately find the following U(1) isometries of TN y!!:
U(1)y : (wr, w2) — (2™ wy, e 2™ wy), (3.15)
U1y : (wy, ws) — (2%, 2™ uy). (3.16)

Those turn out to be crucial in the next subsection to implement the torus compactification

of M-strings. In what follows, we take S' of TNy labeled by s to be the 7 direction in our

eleven-dimensional space-time.

3.3 Torus compactification

Let us go to a further modification of M-strings in addition to replacing C? with the Taub-

NUT space. For practical reasons, we would employ M-strings sharing the 01 directions with

the M5-branes to be compactified on a two-torus T2 (Figure 12)'2,

T2 R4

€1,€2 TNy

\'0 1 2 3 4 5 6 78 9 &
MM | x x x x x x A{a}
ki M2 | x X X

"The isometry is enlarged to U(1); x SU(2), for N = 1.
12Tn [88], an additional circle compactification in the M-strings system has been studied.
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M5

0000

Figure 12: M-strings compactified on a torus.

and consequently the physical quantities of M-strings get the dependance on a complex

modulus 7 of T? given by
(3.18)

where Ry (R;) is a radius of the 0 (1) direction. The advantages of the torus compactification
are to be able to introduce more parameters in the manner compatible with supersymmetry
and make it doable to compute the partition function of M-strings from the gauge theory
languages (see Section 4).

Since there are two 1-cycles on T2, we can have the system of M-strings enriched with
three parameters by twisted boundary conditions along these 1-cycles. For the 1 direction
over which the 7894 directions are viewed as a fibration, the twist is denoted as U(1),, called

the mass deformation with a parameter m,
U(l)m : (w17w2) = (gmwlagn;le)a 9m = €2mm. (319)

The reason why we name m the mass is that this parameter is identified with the mass
of matter fields in the adjoint representation of the 5d quiver gauge theory (Section 4.1).
Actually, the action of U(1),, is similar to that of I'y (3.11), which implies that this action
can be embedded in the same manner as for I'y. Hence, when taking U(1),, C SU(2)g, this

acts on the supercharges as
U(l)m : (éd+’ Qva;u QOH-’ Qa—) = (gm@a_t,_)g;q,l @d;7 Qa+7 Qa—)' (320)

The right-moving supercharges are still invariant, as a result, (0,4) supersymmetry on M-
strings are compatible with the mass deformation.

The possible twist along the other 1-cycle, the 0 direction, is the {2-deformation U(1),, x
U(1)e, [77] that corresponds to the infrared (IR) regularizations of the 2345 directions.
Note that these directions are often concentrated on as the space(-time) on which the four-

dimensional supersymmetric gauge theory is defined, in particular, when we consider the
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UMm | UM)e, | U(D)e

Qi | +1 | +3 | —3
Q- | +1 | +3 | -3
Q;JF -1 —% +%
Q- - -1 -1 +3
Q| 0 0 0

Qi 0 +1 +1
Q.| o -1 -1
Q__ 0 0 0

Table 3: The supercharges transformed under U(1),,, U(1),, and U(1),.

torus relatively small compared with the energy scale of the theory on the 2345 directions.
This is in the case of, e.g., the AGT correspondence [9] as mentioned in Section 2.3. Let
(21, 22) be complex coordinates on the 2345 directions, then in our situation, the action of
U(1)e, x U(1)e, is given by

U(1)e X U(1)g, = (21, 20) = (77021, €772 ), (3.21)

: (wl7w2) = (gllwlug-y_-lw?%

where g4 := emi(eite2) and g_ = e™(@1—€2)  With our convention of the supercharges, this

action also can be embedded into four SU(2)’s (3.8) so that

(Q14 9y Qvar Q-a) = (9= 9= Qiw, 94 Qrar 95 Q-a)  when acting on (av, &),
(Qai Qs Qatr Qo) = (Qais Qo 97 Qa9+ Qo) when acting on (a, @).
(3.22)

Thus, the net action unifying those is dictated by

U(1)e, x U(1)e, : (épr, éjr;, Q1,9 ) (g_épr,g_éjr;,g:lé;ir,g:lQ;;),
: (Q++7 Q—i——v Q—-H Q——) = (Q++7g-2|—Q+—agI2Q—+v Q——)'

The fact that only Q44 and Q__ are neutral under U(1)., x U(1)., states that the Q-
deformation along the 0 direction breaks N' = (0,4) supersymmetry to N' = (0,2). The

(3.23)

charges of Qn, and @aa under these twists are collected in Table 3. In conclusion, M-strings
compactified on 72 which are placed at the tip of the Ay_; singularity of the Taub-NUT
space basically has (0,4) supersymmetry on its world-sheet, and physical quantities with
nontrivial m, €1, and €z can only preserve (0,2) supersymmetry of it.

We are closing this section with comments on two issues. The one is about the relation

between the twists and the isometries of the Taub-NUT space. The mass deformation (3.19)
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and the Q-deformation (3.21) are obliviously identified with the U(1) isometries (3.15) and
(3.16) of TNy,

U(D)m

1)y, (3.24)
U'(l)61 X U(l) b

U
U(1)
These two isometries ensure that we can introduce two types of the twists along 72 in the
way to preserve at least (0,2) supersymmetry.

The other is associated with the enhancement of supersymmetry in the case of TNy—;
where the background is flat but still has a single center of the Taub-NUT space. The non-
zero values of all twist parameters still break it to N' = (0,2) as shown above, but some of
supersymmetry might be possible to recover by tuning these parameters since some super-
charges get neutral under the twists (3.19) and (3.21). From the charge under these twists in
Table 3, if we set m = £5%=, then two of four left-moving supercharges become invariant
under the twists, thus, supersymmetry get enhanced to ' = (2,2). On the other hand, when
choosing €1 + €2 = 0 (later called the unrefined limit), all of four right-moving supercharges
do not nontrivially rotated, as a result, N = (0, 4) arises. There is another possibility to tune
parameters as m = :I:%, which naively does not give extra supersymmetry. However, it
has been pointed out [32] that extra fermion zero-modes present with this tuning, and in
fact, supersymmetry enlargement may occur by appropriately removing these modes. We
will concretely demonstrate this phenomena in Section 4.3. If turning off all twist param-
eters, M-strings on TNy has N = (4,4) supersymmetry as explained in Section 3.1. These

observations are summarized:

twist parameters (TN;) | supersymmetry
m=e =€ =0 (4,4)

m = 1952 (2,2)
m#0,61+6220 (04)
m = 8592 (0,2)"
m#07617éo7627é0 (02)

(3.26)

where * means supersymmetry enhancement due to the fermion zero-modes.

4 Partition function of M-strings

In this section, we would give the prescriptions how to compute the partition function of M-
strings. As mentioned above, we do not have on hand any direct evaluation of the partition
function because there is no known Lagrangian description of the 6d (2,0) theory. Neverthe-

less, thanks to the chain of the duality, somehow indirect methods which have been developed
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for decades are actually applicable to the M-strings calculations. There are basically two

perspectives for the moment suitable to the M-string.

e BPS state counting: roughly, the M-string can be viewed as the BPS particle on the

M5-brane world-volume R*

e1,eo» Which turns out to be the instanton counting problem.

This issue can actually be connected with the A-model topological string theory in
which a partition function is exactly computed by the refined or unrefined topological

vertex formulated in terms of geometry.

e 2d world-sheet theory: the 2d N = (0,4) gauge theory may be induced on the world-
sheet of M-strings on the Taub-NUT space. The matter contents of the world-sheet
theory can be read off from string theory through the duality. As a result, we compute

its partition function on T2 as an elliptic genus by the localization technique.

The refined topological vertex is technically more powerful but conceptually rather indirect
than the elliptic genus, but the fact that results obtained independently from them match
clarifies the validity of these techniques for M-strings. Note that, in what follows, we call
the M-theory circle a direction compactified on S! in eleven-dimensional space-time which
becomes much small as M-theory is reduced to type ITA string theory. We will compute the
partition function of M-strings from the former standpoint in Section 4.3 and the latter in

Section 4.4.

4.1 BPS counting with the refined topological vertex

Let us see M-strings from the 4d plane R? _ in the M5-brane at the starting point (3.17).

€1,62
Each collection of k; M-strings is viewed as k; independent points on Rﬁlm. Actually, those
positions of M-strings become the parameters of its moduli space. The number of real
parameters of this moduli space is 4k; N, which is equivalent to that of k; SU(N) instantons
with a finite size [33]. Therefore, the M-string partition function can be computed as that of
this instanton moduli space. With the power of dualities in string theory, we may implement
this calculation by utilizing the so-called refined topological vertex in the topological string
theory. To see this, in this subsection let the 1 direction be the M-theory circle. As this circle
goes tiny, the M5-branes and the M2-branes wrapped on this circle are reduced to D4-branes

and fundamental strings indicated as F1, respectively, in type IIA string theory'?:

st RZ, ey TNy

J

(4.1)

0 2 3 4 5 6 789
X X X X X Aa}
X

X

13For the moment, we assume that the mass parameter m is turned off.
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D5 D5 D5 I
NS5 —i J—h i

mass deformation
s e e,

NS5

T

Figure 13: The (p, ¢)-web diagram on the 67-plane that encodes the contribution of M-strings
(3.9). This is the case of (M, N) = (3,3).

In order to make it easy to find the M-theory origin, we keep the labels for the coordi-
nates of eleven-dimensional space-time even when the ten-dimensional string theory is under
consideration. This reduction of course does not affect the Tabu-NUT space.

Then, we perform T-duality along the 7 direction that is S' of TNy. This T-duality
brings the D4-branes into D5-branes wrapped on the 7 direction but does not change F1.
Further, it is known that the dense N centers of TNy are transformed to N NS5-branes.
The resultant configuration is the following D5-NS5 system with F1’s stretched between the

separated Db-branes:

Sl R31152 Sl

0 2 3 4 5 6 7 8 9 4
MD5 | x x x x x {a} X (4.2)
k; F1 X X
N NS5 | x x x X X X

This configuration projected onto the 67-plane is shown on the left side of Figure 13 where the
dotted line on the D5-brane indicates that the 7 direction is compactified (as well as in Figure
9). We would restore the mass parameter m corresponding to the twisted boundary condition
on the 789y directions. Since the D5-brane extends to the 7 direction, an Ramond-Ramond
(RR) field coupled to the D5-brane has non-zero components with this direction, thus, the
RR charge of the D5-brane is shifted by this twisted boundary condition when going around
the 7 direction. We have to complement this shift because of the charge conservation on the
D5-brane. The fact that the D5-brane is intersected with the NS5-brane allows us to absorb
it into the NSNS charge of the NS5-brane. This argument is carried out by introducing
the so-called (p, q)-fivebrane at the intersecting point where p and ¢ are the NSNS and RR
charge, respectively, namely, an (1, 0)-fivebrane is NS5 and an (0, 1)-fivebrane is D5. For the
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current situation, the (1, 1)-fivebrane is brought into as the diagonal line shown on the right
side of Figure 13, for example, with (M, N) = (3,3). This picture generically is called the
(p, q)-web diagram. We here treat only with this type of the (p, q)-web diagram along the
story of the M-string.

As a surprising fact, we can appropriately interpret the (p,q)-web diagram as purely a
geometric object: it is just translated into a web diagram of CY3 introduced in Section 2.2.2
[89, 90, 91]. This is a prominent example that physics of string theory and the gauge theory
induced on the the (p, ¢)-web diagram is naturally investigated in the languages of geometry.
This fact also allows us to be able to evaluate the partition function of M-strings as we
will see. Upon this correspondence, the mass deformation also has the natural geometrical
interpretation. Getting back to the (p,q)-web diagram without the mass deformation in
Figure 13, the D5-brane and the NS5-brane cross at a point on the 67-plane. This intersecting
point is mapped into a singularity in the corresponding CY3, here nothing but the conifold
(Section 2.2). As aresult, the mass deformation at that point actually resolves the singularity
of the conifold by blowing up it with CP! of the size m as done in Section 2.2.2. This is
another reason to take the mass deformation instead of keeping full supersymmetry on the
M-string.

The great success of relationship between the (p,q)-web system and CY3 provides the
application of the A-model topological string theory to the gauge theory on the D5-branes
under consideration. The basic ingredient of the computation in the A-model is the topolog-
ical vertex [34] of which the combinatorics can produce the BPS partition function for the
general CY3 with a web diagram dual to the (p, ¢)-web diagram in type IIB string theory.
Therefore, the contribution of M-strings can be systematically evaluated by the topological
vertex. Moreover, there is the refined version of the topological string theory called the

refined topological string [35, 36] basically to incorporate the Q-deformation parameters
Q= 6271'7:61’ g = 6727”‘62 (43)

in the formulation of the topological string theory. From now on, we always say the unrefined
topological string as the standard topological string theory to distinguish it from the refined
one. Note that the refined topological string goes back to the unrefined one as taking the

limit
G1=¢q < ea+te=0 (4.4)

Their definitions and necessary tools for the calculation are packed in Appendix B. Also, to

avoid complexity, we basically note the details of calculations together in Appendix C.
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4.2 Domain wall partition function

At first, to easily derive the partition function of M-strings, we write down the partition
function for the domain wall (Figure 11) that corresponds to the contribution of a single
Mb5-brane on the Taub-NUT space. More precisely, the reasons to prepare this as a building
block are that, by the construction of the refined topological string, gluing the domain
walls produces the web diagram for M-strings with general (M, N), and we need divide the
refined topological string partition function by the domain wall partition function to drop
parts come only from the KK towers of tensor multiplets in the 6d (2,0) theory and extract
correctly information about M-strings. Let us denote the domain wall partition function as
Z s N (Qi q1, g2), where the parameters are defined as follows. The web diagram for the
domain wall on TNy contains a single vertical line (i.e. a single M5) with N internal diagonal
segments. The vertical or diagonal internal line represents CP! of a Kihler parameter ¢;, or

equivalently, a Kéahler factor @),
Qi — e27riti’ (45)

where i runs for 1 to 2N. Since there are N external lines on both the left side and the
right side, we assign Young diagrams ,u;-r and v; on the left and the right, respectively, used
in the definition of the refined topological vertex (see Appendix B). Further, we define an
additional Kéhler factor ) such that

2N
2T = Q, = H Q;. (4.6)
i=1
We will identify 7 with the complex modulus of the torus on which M-strings are wrapped.

4.2.1 On TN,

As the first example, we would focus on the simplest domain wall, i.e. one M5-brane on TNj.
From string duality explained above, the associated brane system in type IIB string theory
consists of one D5-brane and one NS5-brane, and the web diagram of the corresponding CY3
is depicted in Figure 14. This diagram is obtained by combining two refined topological

vertex C,,, (B.8), thus, the refined topological string partition function is written as

Z(Q1, Qi q1,02) = > (—Q1) N (=Q2)IC, 1, (02,01)Cpy 1, (01, 02)- (4.7)

P1,P2

Following the definition of the refined topological vertex (B.8) and the gluing prescription in
Appendix B, (4.7) can be deformed in the form of the infinite product (done in Appendix
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Figure 14: The domain wall corresponding to a single M5-brane on TNj.

C.1),

ZVI(Q17Q27QTaq17QQ)

2
Hef 12 fel

=q ® q° ZT(Q2>Q1)ZV1((]17Q2)
PR VI S I | [P, I S |
><H T s e i il
1—-—0Qr *,U,Tr+i*1 —p1i+g +,L i+i—1
Q ijE=1 (1—Qkq, " ") (1 - Qkq Z I

(4.8)

where the indices (i,7) run for all of the positions of boxes in the Young diagrams p; and

v1, and in this case,

Qr = Q1Q2. (4.9)

We need a further operation to derive the correct partition function of M-strings. To extract
the contribution from M-strings, the factor originated purely from the degrees of freedom
expect those self-dual strings should be removed. This can be achieved by the normalization
that the domain wall partition function is divided by the same one with Young diagrams
on the external lines being trivial, u; = v; = (). Concretely, the normalized domain wall

partition function Z;} is given by

ZV1 (Qla Q27 QT7 q1, q2)
R ZV1 (Q17Q27Q75q17q2)
' ZS(Q17Q27Q7'7(]17(12)

Het 12 el

ZQ1 2 QQ ? ZM’II‘(QQ)ql)ZVl(qth)

vl —it3 H1,i J+ _ *I/T-+ifl —n ﬂ-J,_j_l
xﬁ H (1-QQi gy gy NI-QQk g T gy )

—pl il g i pl—j u j—i+1
k=1 | (4,5)em (1- qu b qs i )1 Qk b 1] )
H —i+5 vii—j+ 1.~ '-H—l —viiti—%
< 11 (1= QU1 22 (1 -y 1g, " 2, ?)
VigH —viiti—1 v+l vy =)
(id)en (1-Qkg, ™ g )1 = Qkq,” g Y)

(4.10)
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Note that the parts independent of the Young diagrams on the external lines in (4.8) are
dropped off by the normalization procedure. This is the wanted contribution of the domain

wall in Figure 14.

4.2.2 On TNy

The second example is one M5-brane on TNy for which the web diagram with a specific
assignment of Kahler factors is shown in Figure 15. Since there are four vertices and,
correspondingly, four Kahler factors, the domain wall partition function Z;!72 in terms of

the refined topological vertex is given by

Zn(Q1,Q2,Q3,Quiq @) = Y (—Q1)P(=Qa)P2 (= Q) 13l (—Qy)lP4]

P1,0P2,P3,P4

X Corp (a2, 1)ty (01, 42)Cpr 1 (02, 1) Gy (015, G2)-
(4.11)

We can translate the skew schur functions in the refined topological vertex into the infinite
product over the Young diagrams in the same manner as for the previous case (shown in

Appendix C.2). The result has also a factorized form,

DT 124063 112 ey 12+ lvll®

ZZ%Z%(QMQZ;QS;Q4;QT§Q17Q2) = Q1 2 QQ 2 Z,E(Q%QQZM;F(Q%Q1)ZJ2(Q17Q2)ZV1(Q1792)

X Z;VLIJLQQ(QDQ%Q37Q47QT§Q17Q2)7 (412)

where Q; = Q1Q2Q3Q4 (4.6) and the last factor collects the infinite products,

2511?32 (Q17 Q27 Q3a Q47 Q‘H q1, Q2)

_q —u i —viti—d _q —Hl i —veiti—d

3 ﬁ 1 ﬁ (1 - QaQ3QuQk g, ™ g " )1 —QuQk g Py )
o 1-07 T e g i+J _“T'J"i_l —p1,i+7
ot DO e (1-Q3QuQ% 'q, W @™ )1 —Qkg" " g")

oy —pl il iti—1 q —ha A= —up g1
(1_Q2Qlﬁ lql > 2(12 ' 2)@‘@1@2@4@4C 1‘]1 > 2@2 ’ 2)
X
1 Mg il it —Hg =L g it
(1 - Q1Q2Qk g, " 3" (1 - Qg TP ")
_q VEii—d g -t _1 VT —pzati—g
% (1_62162]}C 1Q1 b 2Q2 ' 2)(1_Q1Q3Q4Q7’f 1(]1 b 2(]2 : %)

T ; . T ; .
k=1 Vit —vp -l —viH vl
(1-QuQuQ7 gy ™ gy 7 )1 =QFg ™ gy )

,T_+'7l _ ; .1 7T_+'7l _ ; 1
o (1 - Q1QaQsQE gy ™ 2" Ty - QsQE g, 2 g, T2y
k1 Vo ti —viitj—1 —vg i vy i1
(1 -Q2Q30Q7 91 7 D) ! )(1—@’7?(]1 > qs ’ )

(4.13)

Then, normalizing (4.13) by the one with setting u; = ps = v1 = vo = ) results in the

products of these four Young diagrams as
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Figure 15: The domain wall corresponding to a single M5-brane on TNs.
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X T
(1_Q3Q4Qk71 +'L 1 —N2z+])(1 Q 1Q4 1quulj o i — j+1)
3 741 45
/J Z+ V1,i j+ _ . _y ,z"l‘j_l
X H (1-Qr'q " 2q21 )1 Q11Q§Q1 Lt 2(12 ' )
(id)em (1- q1 Lt ity () Qrgtha T iy
g T
<1—Q2Q’“‘1qi R leQ’“ a ”%q;“"f%)
>< T
- +Z —vyi+j—1 vy —itl
k 1 V1 Jj— )(1 Q2 Q3 Qk 2,j qg1 ])

(1 — Q2Q30Q7
2 _V2,i+j_%)

- uT ity v ,i—g+— - —Ha,j
(1- Q3Q]ﬁ lq1 27 2‘]22 )1 —-Q5 le(h t do
V2] Z‘qu’zz ])

T +i i+i—1
YT (1 - Qh

(i,5)€v2 (1- 7411 2 1 2
1 ity —vaiti—d - ul =ity vai—j+3
(1 — QuQ% g o gy ’ 2)(1—Q41Q§q1u 2‘122 )
=T i+i—1 v i1 i
(1 QQuQ g, ™ gy (1 - Q1'Q Qg gy )
(4.14)

This domain wall partition function for Figure 15 will be made use of in Section 5.2 to

evaluate the contribution from a codimension-2 defect to M-strings.
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Figure 16: The domain wall corresponding to a single M5-brane on TNy

4.2.3 On TNy

Finally, for general usage, we would like to write down the domain wall partition function
for the web diagram with generic N shown as Figure 16. The joint of 2N vertices can be

written in the following expression:

Zn i (Qisar, g2) = ZH DIl (= Qag) P2l C e (@2,01)Cy r (015 00),
{pi} a=1
(4.15)
where {p;}i=1,2.....28 = {p2a—1, P2a}a=1,2,-, v and the indices of the Kéhler factors and
the Young diagrams are defined modulo 2N. We can generalize the process to deform the

partition function used in the above examples, which leads to the nicely factorized form,

ZZ}ZQQ ’:f}]\r (Qza QT; q1, QZ)

2
N T2 el

=[[a ® @ ZyE(‘]Qan)ZVa(QDQQ)]

a=1
_ T +’L'*l —u <i+j_l +Z Ma,i""j_l
ﬁ ﬁ (1—Qk 1Qba q1 2QQ " 2> ( Qk 1QabQ1 2Q2 2
X
(1-Qk b Tl o it - aiti—1
ab=1iji1 Q ) (1 — Q¥ 'Quay 0" ]> ( — QI Qe gy
(4.16)

where Q- is precisely (4.6), and Qap, Qj,, Qup, and sz are the products of some set of the

Kéhler factors, as summarized in Table 4. Note that there are simple relations, QuQj, = Q-
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a<b a=1>b a>b
2b—1 2b—1
Qu | JI @s| Q2 H Qs H Qu
s=2a—1 =2a—1
2b—2 2b—2
Wl I @ | @Qay H Qs H Qs
s=2a s'=2a
B 2b—2 2b—2
Qo || J[ @ | @ H Qs H Qs
s=2a—1 =2a—1
B 2b0—1 2b—1
|l ] Qs Q- H Qs H Qs
s=2a s'=2a

Table 4: The products of Kéahler factors.

and Q2a— 1 a)ab =

ng,légb. We visualize which region of the consecutive Kéhler factors is

included in each one of Table 4 as Figure 17 and 18.

As the final step, the normalization of the domain wall partition function (4.16) for

general N provides

Z N (Q4,Qri 1, ¢2)

_ Zing iy Qi Qri a1, ¢2)
Z80 Qi Qrs 1, 02)

N
Heg i Jlvall® ~
= Hq 2t 2
a=1

Z,1(q2,q1) Zv, (1, %)]

V 7‘+ a,i +
<1 _Qk 1Qbaq1 2 M —J > (1

<ILII

+’L i+ i1
—1 2 “Ha,iT] T3
QabQ1 5] )

a,b=1k=1 (i,j)€pn

y’ a,i +1 +Z 1 a,z"l‘
(1— ' Quagy " 5 - ) 1- Q¥ 'Qubay g " ])
- +1/ —V 'L+] Ma Z+ Vp,q ]+
<1_Qk lQba @ b > < Qk lQab \J 2q2b 2>

Va —i+1 V % - + —vpit+j—1
<1 Qﬁ 1Qab 1 7 b ]> <1 Qﬁ 1Qba 1 QQ bl >
(4.17)

< 11

(Z‘)j)el’b

This is the general formula for the contributions of the domain wall, and we can also derive
the general partition function of M-strings by gluing (4.17) M times which is the number of

domain walls.
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Figure 17: Qgp, Qab, 6;17 for ¢ > b. Each is a product of the Kahler factors in the region

covered by the corresponding colored up-and-down arrow.
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Figure 18: Qup, éab, (NQﬁlb for a < b. Each is shown in the same manner as in Figure 17.
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4.3 M-string contributions

Let us turn to computing the M-string partition function that should be a quantity for the
BPS states captured by M-strings on the world-volume of the M5-branes. It actually turns
out that the quantity obtained simply by combining the domain wall partition functions
becomes the form of a generating function G ) of M-strings. In what follows, we will
denote the partition function of k& M-strings with M M5-branes on TNy as Z n ). As
described in Appendix B, when connecting the external edges of the domain walls, we need
to assign a Kéhler factor (Jy and a Young diagram p on each glued segment of the web
diagram and sum over y. Therefore, gluing the domain wall partition functions computed

above provides schematically the following generating function:

Gy (Qis Qr;q15G2) = Z Z Q)M 2 N (Qis a1, a2), (4.18)

k=0 |ul=k

where the summation of |u| = k£ means that it is taken over possible Young diagrams with
the number of boxes being k. The appearance of this sum naturally reflects the fact that
the ground state of k M2-branes ending on the M5-brane is parametrized by the partitions
of k as drawn in Figure 11. We will use the Kahler factor Qs to characterize CP! depicted
as the horizontal internal segment on the we diagram that corresponds to the finite extent
of the M2-brane along the 6 direction.

Here, we introduce an additional index on Kahler factors @); and Young diagrams p, to

label the number of the M5-branes so that
an 1> Q2a7 ,ua for a=1,2,---,N, anda=1,2,---, M. (4.19)

From now on, we use German letters a, b,... for the number of the domain walls. With
this convention, we arrange three conditions which have to be imposed on Kéahler factors to

consistently glue the domain walls.

e The only one compactification radius along the vertical axis,
Q, = H QY QL for Va. (4.20)
e The net effect of resolving the singularities is the mass deformation,

N
M = Q= [J QS for Va. (4.21)

e For each hexagon, the total length of the compactified direction should be the same,

QY. = Qlrlity. (4.22)
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Figure 19: The web diagram corresponding to M-strings with two Mb5-branes on TNj.

Note that any condition on Qgcu()z for the horizontal internal segments does not occur. More-

over, to avoid the equations being indistinct, we define
_ -1
Q= (@) . (4.23)

4.3.1 The simplest case

The simplest example to demonstrate the calculation is the M-strings with (M, N) = (2,1).
The corresponding web diagram is obtained as in Figure 19 by gluing two domain walls of
Figure 14 with setting a Kahler factor @)y on the line connecting them. Accordingly, we have
to multiply two domain wall partition functions of (4.10) to derive the partition function of

M-strings, which gives

G(?,l) (an)a QT; q1, Q2) = Z(_Qf)WIZg‘( gl)v le)a QT; q1, %)Z@(Q?)’ Qg)a QT; q1, QQ)

:Z(—Qf)m'ﬂh g’ ZyT(CJ2,Q1)ZM(Q1,Q2)
M

1 1 —itE it 1 1 -3 —piti—3
xﬁ (1-QVQk 1, " 2ah 7 2)(1 - @V g, 2g, "2
—uTi pwr—iv1 |,
k=1 (i)en (1- Qb gy (1 - Qkgy” gy )
2 1 —its pi—j+i 2 1 -3 —piti—3
L =07 g T (1- QP 0k gy 2, )
—pTi-1 wr—i )
(1-Qk, " " )1 - Qhay” gy
(4.24)
Here note that the condition for the unique compactified radius (4.20) becomes
1) A1 2) (2
Q- =@y = ey, (4.25)
and the resolution by the mass deformation (4.21) imposes the relation
1 2
Qm =0 = Q. (4.26)
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The third condition (4.22) does not occur because the web diagram of Figure 19 does not
have a hexagonal loop. The existence of the infinite product over k is actually a key to recast
these terms in Gy 1 into the elliptic theta function 6 (z; Q) of the complex modulus Q- by
means of the Jacobi’s tuple product identity (A.56). In the following, whenever its complex
modulus is -, we will use an abbreviated notation 6 (z) unless otherwise stated. We would
here perform how this recasting works and show that we can generalize it systematically
to the example below. Indeed, since there is a slight difference between the numerator and

denominator to generate the theta function, we would like to consider separately them.

e The numerator of (4.24): first of all, we use the relation (4.25),

—1 i 'Ll i
nélrln)_HH< le ‘*‘2534‘)( le 3 H+J2)

k=1 (i,j)€En

< QQ Qk 1 Z+2 gl Jts >< Ql Qk 1 i— é “H—] 2)

> gl il 1
_ H <1—Q§1)Qflq1 +2qu J+2> < Q “i Nz+] 2>

k=1 (i,5)ep
1
( Q12)Q z+2 Nz J+2>< Ql Qk 1 i 2 Nzﬂ 2)_ (4_27)

Comparing this with the definition of 6;(x;p) of multiplicative variables (A.55), the terms
coming from the same domain wall could be brought together with the infinite product of
k into the Jacobi’s triple product identity (A.56). With this observation, we concentrate on
the factors of the first domain wall (i.e. including only le)),

1) i— é ;M-i—j 5
ﬁ(l_Ql Qk 1 H’Q ;"l —Jj+3 )( Ql Q ; HH‘J 2) — <Q11 — % ) ’
k=1 —ZQT ( (1) - 2Q2 M_H_Q) (QT;QT)OO
(4.28)

where (2;p)s is the g-Pochhammer symbol (or the g-shifted factorial) defined in (A.60).
The remaining factors from the second domain wall can be straightforwardly transformed

into the elliptic theta function in the same manner, hence, we have

—(1) i—3 —piti—3 —it3 pi—j+
I . 20, <Q5)Q1 g, 2) <Q1 g 2)

(2,1) — 1 I
(ij)en \1QF (Qr; Qr)oo (Q(l) i—;q;m-i—j—é) <Q(2) —it+1 gl J+s3 >

1 4 1 4
2
NGNS L B ik w3 o (@), it it
= (Q1 Q1 ) H - 01| Q1'q1 *qo 0| Q1 ¢ b} :
(i,5)€n ZQ? (Q’T;QT)OO
(4.29)
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Note that the first factor in the product of p that does not contain (qi1,g2) will be simply

cancelled with that of the denominator.

e The denominator of (4.24): we bring the functions Z T Zu together,

1 a —p A i1 pl—itl g
— = ITIT 0-@iq, ™ ") (1 - Qi b))
’ (1-1) (1-ii)
pl =1 Br=i .
x(1-QFq " g™ (1-QFq" gy "), (4.30)
(2-0) (2-if)
where the terms labeled by (1-i), (1-ii) originally belong to the first domain wall and ones

G =

labeled by (2-i), (2-ii) to the second domain wall. The situation differs from the numerator.
The factors in the first line of the infinite product cannot be directly combined into the
elliptic theta function via the Jacobi’s triple product identity because the powers of ¢; and
g2 do not match; we can incorporate terms which include the same power of variables. In
the present case, the combination of the terms (1-ii) and (2-i) is adequate to do this, and
also that of the terms (1-i) and (2-ii) is. Substituting the definition of Zl(ql,qﬂ given in

(B.8), the former is deformed as
1 = i1 i T il
7 ( ) H H (1_Qk o qu 7)1 - ﬁ‘h g QQMJFJ)
p\d1,492) (3,5)En (o 20)

oo
pl—itl . ul—itl . pl =1
= 1] (1—611] @ ]> [[a-@tq ™ 7)1 - Qg ")

(4.5)€n k=1
k—1 M _Z+ 3 '+z_1 - z+
H H(l_QT a’ a5’ j)(l_ qu 3 ")
(i.5)Ep k=1

0, < +Z 1q2—m+j>
- H I ; (4.31)
JQLZQ8<%+ZMQWH>(QﬁQHm

Similarly, the other set of the terms (1-i), (2-ii), and Z .7 (q2,q1) can generate a single elliptic

theta function. As a result, we obtain

—1h; Tyi—1 _ it —uT4i _ i+i—1
H ) 91< q2M+J) 64 (ql J q2,u+J >
Gden _
(2.1) PR A 1 A 1
(i,7)Ep ZQ‘? (QT;QT)OO _“;'F'H_l —pi+J 2 _“JT'H —pi+j—1 2
q 75 aq 'y
2

& 1 —pl =1 T S |
=q 2 %2 H e 01 <Q1 ! QQu J>91 <Q1 ! QQ# / >

(i,5)ep ZQ’Ig' (QT; QT)OO

(4.32)
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where, in the last line, we used the formulae (A.4) and (A.5) to pull out the prefactors of ¢;
and ¢a. As we commented, the first factor independent of (q1,¢2) in the product of p cancels
the one that appears in the numerator (4.29). We should remark that the calculation process
for the denominator here happens for the general case. A term in a certain domain wall is
combined with the one coming from the nearest neighbor domain wall into 0 (z) (see details
in Appendix C.4).

Now, we are in the stage to write down the partition function of M-strings. Getting G?;‘f)

and G‘(iQeIi) back into the generating function (4.24) leads to

G(Q,l) (Qma Q’Tv Qf; qi, q2)

T2 Jull® Gig'
- Z(_Qf)\u\ql 7 g, 2 ﬁ
p (2,1)

—(1) i-% —pi+j-1 —(2) —it+i pi—j+i
61 <Q§ PR "’)91 <Q§ g 2)

1 —pTi-1 —uTi s
(i.j)en 91 <(]1 J q2#1+] 01 q J q2M2+J 1

it —piti-t 1,5 pimits
. 01 < w2 2) 61 (leql 4y ’
=3 (~QsQum)" ’
Z ( me) H L et G —Hy i1
[ (i.j)en 01 (@ (b (@ 2

where the condition (4.26) is put in. This is precisely the form of the generating function as

|1l
=> <—Qf gl)Qf))
o

(4.33)

(4.18). From this expression, we can simply extract the partition function of & M-strings,

_q =3 —Hiti—3 1 L p—gtd
01 (Qm1Q1 2(]2 2> 01 <Qm1Q1 2Q2 :

Z(2,1,k)(QmaQr;Q1aQQ) = Z H By : T -
lul=k (G.5)ep 01 <q1 J q2m+J> 6, <q1 J q;uz‘+J* )

(4.34)

This function equipped with the theta function is expected since M-strings are now com-
pactified on the torus 72 and its partition function should have the elliptic property that
is usually realized as the theta function as for many situations in physics. At this point, 7
defined in (4.6) is smoothly identified with the complex modulus of T2. The reason to hold
this identification is roughly that the complex modulus is mapped into the size of the elliptic
fibration in CY3 [32]. Although it is not really trivial that the theta function arises from
the refined topological vertex, its emergence strongly supports us to correctly produce the

contribution of M-strings.
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The limit m = (e + €2)

We would consider a certain limit on the M-string partition function to see supersymmetry
enhancement as commented in the last of Section 3. At fist, by using the formula (A.12), we

rewrite the numerator of (4.34) as

1

_1 i—3 —its _1 it J-3
01 <Qm1Q1 24, 2>91 (le‘h 24, 2>

2010 @Qm, Qriqr, ) = Y H rE— I (4.35)
lul=k (ij)ep 01 ( q; 7 O NN P
Here, we concentrate on the following limit:
1 a1
m = *(61 + 62) S Qm=4/—. (436)
2 )
Substituting this specialization into (4.35), we have
01 (7' ) 01 (a7'ad)
(4.37)

|lul=k (i,j)en 01

Zoan@ane)= >, 1] —F -l iy ~ g1
((h] g4 >91<Q1J g5 )

As a result, the above partition function vanishes if the Young diagram g contains at most

one box, (i,7) = (1,1) because
01(gi a7 Qr) = 01(1;Q-) = 0

for the first theta function in the numerator. This sequence is interpreted as the emergence
of fermion zero-modes [32] which corresponds to an overall U(1) of U(k) and really the
center of mass degree of freedom of the M-strings on the M5-branes. We need get rid of this
contribution in order to still retain the nontrivial partition function. A simple treatment
which does not exclude other contributions from the M-strings is to divide Z5 ;) (4.37) by
Z(9,1,1) the partition function of a single M-string and then do the limit (4.36). Namely,

Z(511)(Qm, Q73 q1,q2)
2(27171)(Qm7 Qr; qu, q2) =L (ertes) .

Z(011)(Qrs 41, @2) = (4.38)
This gives properly the non-zero result, and it is found that this is compatible with the
elliptic genus of the 2d N' = (4,4) SU(k) gauge theory (at least of rank k < 10) [32] that
is exactly computable by the supersymmetric localization [38, 39]. This should not be U(k)
since the overall U(1) is removed in (5.32). We can check quantitatively that the enlargement

of supersymmetry happens due to the fermion zero-modes in the limit of the mass parameter.
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Figure 20: The web diagram corresponding to M-strings with M MS5-branes on TNy.

4.3.2 The general formula for the partition fucntion

As for the domain wall, we can compute the M-string partition function captured by the
web diagram of general (M, N)'* in Figure 20. Gluing M domain wall partition functions
of (4.17) results in

G(M,N) (Qz(u)7 QT7 ngi?la q1, QQ)
[M—-1 N

= > [TTTI(-e%)

{“5;1)} _Cl:1 a=1

(1), (1) (1)
Sy e 1
Zpd 47 QM Qrian, 42)

[M—1

(6) (b) ()
~ b >00--- M
X H Zu(la_/ff (bfll;l (b—1)(QZ(‘ )aQT;QDC]Z) Zm((alw?l) (M—1) (M—l)(Qz( ))QHQLQQ)a
| p—2 Hq Ho N Hq Ho K
(4.39)
where uﬁf‘) and Qgcac)b are a Young diagram and a Kahler factor, respectively, on the a-th

segment from the bottom that joints the a-th and (a 4 1)-th domain wall. The domain wall

1A class of geometries with the chains of CP'’s is known as the bubbling Calabi-Yau geometry [92, 93].
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partition functions are

D00 ‘
Zyg.. @2 N : the 1st domain wall at the left end,

(b) (0) (b)
Z“(lb 13 ol - © the b-th domain wall in the middle,

2

~

7% iy e : the M-th domain wall at the right end.
1251 Ho N

We would rewrite (4.39) in terms of the elliptic theta function by generalizing the calcula-
tion steps from (4.24) to (4.33). Because this is basically straightforward but notationally
complicated, we throw details into Appendix C.4. The final result is given by

G N (QE% Q- Qﬁcf‘i; q1,92)

o 0 (269 (826.0)
-2 H [H (252) H H<b> o (<) o (D)0.9) | A

{z(zu)} b=1 a=1 a,b= I(Z])EM

where we define for the weights in the sectors of | ,u,gb)\,

Do (2) " (MTeses) )

and for the multiplicative variables of the elliptic theta function,

(b+1)T (b)

A (i, ) = Qg T e T (4.42)
B = QT g, w9
i, j) == Qéz)ql g T el (4.44)
DY (i) = Qég)q{b;’h; T qug”) o (4.45)
with Q (ng)>_1 and
1 for a = b,
Q) = (4.46)

~ -1
(Q;(bb)> for a # b.
Finally, the general formula for the partition function of M-strings originated from &k, M2-

branes stretched between the a-th and (a + 1)-th M5-branes on TNy can be read as
Moy N o1 (A% () ) o1 (BL(i.))
2o i (@Y. Qi a2) = > ITII II
(M,N,k) i 2 Ty 2L . )
w1 a1 e 01 (C ) ) 00 (D5 (0. ))

SN 8 =k D=1 @=L (G fepd

(4.47)

WhereE:(kl,k:g,--- Jky—1) fora=1,2,--- M —1.
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4.4 Elliptic genus of the world-sheet theory

The other perspective to calculate the M-string partition function is on the world-sheet
theory of M-strings. Since the M-string on TNy keeps basically (0,4) supersymmetry, its
world-sheet theory could be a 2d N = (0,4) theory with U(k;) gauge symmetries associated
with the stacks of the M2-branes and several matter fields in some representations of U(k;).
The matter contents of this theory may not easily be read off from the world-volume of the
M>5-brane since we know much less the 6d SCFT'®. Nevertheless, we can nicely pick up them
from string theory as the low energy prescription of M-theory. Then, we calculate exactly
the elliptic genus of the 2d theory on M-strings by the so-called supersymmetric localization
[16, 17).

4.4.1 N =(0,2) elliptic genera

At first, we would list the formulae for the elliptic genera of 2d NV = (0,2) supersymmetric
theories. The elliptic genus [37], simply speaking, is a partition function on a torus of the
complex modulus 7, or equivalently, an index on the Hilbert space of quantum mechanics.
This quantity can be evaluated exactly in the path integral formalism by using the localiza-
tion [54, 38, 39]. The formulae basically are written in terms of the elliptic theta function
61(z|7) (A.55). If one would know more about 2d N/ = (0,2) and (0,4) theories, see e.g.
[94, 95, 96, 97, 98].

The N = (0,2) theory consists of a vector V', a chiral ®, and a Fermi multiplet ¥ which

contain the following fields as on-shell degrees of freedom:

N =(0,2) || scalar fermion gauge

vector V' At Ay (4.48)
chiral ¢ 1) W

Fermi ¥ vy

The elliptic genus on the Neveu-Schwarz (NS) sector'® of the Hilbert space H is defined as
T (€5:7) = Trp (—1) Pptepfn=a/n [T 2miss, (4.49)
i

where F' is the fermion number operator, and Hi,, Hgr are the left-moving and right-moving

Hamiltonian, respectively. Jg is the charge generator of the right-moving U(1) R-symmetry,

5 More precisely, there is the list of multiplets in the 6d SCFT, but it is quite hard to fix the appropriate

reduction to the 2d theory because we do not have any Lagrangian description which encodes interactions.
%11 the similar way, the elliptic genus on the Ramond (R) sector is given by

(€5 7) = Trye (—1) p/ep™n [ 276401,

K3

52



and f; are Cartan generators of a flavor symmetry. The multiplicative parameter is given by
p = e?™7 and & corresponds to chemical potentials associated with a flavor symmetry. We
now assume that the theory has one flavor symmetry, but we can easily generalize it to the
case of several flavor symmetries. As an usual argument, we can choose supercharges such
that the elliptic genus does not depend on p. We obtain the elliptic genus by multiplying
one-loop determinants Aq_j,p as contributions from all multiplets in the theory of interest.

The one-loop contributions of the multiplets in (4.48) are given as follows.

e The vector multiplet V' with a gauge group G,

. rankG 101 (o - v|T
Al loop = (—277217(7')2) H 1(77(7_)|) (4.50)
a€cadj
a#0

e The chiral multiplet ® in a representation R,

4.51
1loop H 01 P U‘i‘f@fz‘T) ( )
e The Fermi multiplet ¥ in a representation R,
ib1(p- v+ fiilT)
A1 loop — H = ) (452)

SR n(r)

where o and p are the elements of the root and weight of G. The function n(7) is the

Dedekind eta function,

N

o0
n(r) = etz H (1- 62”“”) = p2(P; D)oo, (4.53)
where (p;p)oo is the g-Pochhammer symbol (or the g-shifted factorial) given in (A.60). For
instance, the elliptic genus of the U(k) gauge theory with one chiral and one Fermi multi-
plet in the fundamental representation and transformed under an U(1)¢, and U(1)g, global

symmetry is written as

i 01 (v + &2)

/d vg91 i — j) JH1 b+ 1) (4.54)
where we omit 7, and ~ stands for the equality up to a prefactor independent of integration
variables v; which are taken in the maximal torus T of U(k). Remark that as for the
refined topological vertex, we often use a convention Z(a; p) with a collection of multiplicative

parameters a = {a;} defined by a; = €™ (i.e. the exponentiations of arguments).
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Figure 21: The D2-D6-NS5 system projected onto the 56-plane.

4.4.2 Type ITA brane system
Field contents

Let the 7 direction, S! of TNy, be the M-theory circle in (3.17). As the circle shrinks,
the Mb5-branes and the M2-branes unwrapped on this S' are mapped to NS5-branes and
D2-branes, respectively. The centers of TNy now are affected by this reduction to change
to N D6-branes. Thus, we reach to the D2-D6-NS5 system of type ITA string theory (called
the ITA brane model in [99]'7),

T2 R§1‘62
01 2 3 4 5 6 89 1
M NS5 | x x x x x x {a} (4.55)
k; D2 X X X
N D6 X X X X X X X

We would focus on the D2-branes whose world-volume theory originally is a 3d N = 2 gauge
theory. The 2d N = (0,4) effective theory of our interest that becomes the quiver gauge
theory is obtained by reducing this 3d theory. We remark that since the multiplets of the
N = (0,4) theory can be decomposed into these of the N' = (0,2) theory, we list the field
contents induced on the D2-branes in the languages of N' = (0, 2) as follows [99]. The gauge
group of the 2d theory is ®f\i IlU(ki) that arises from open strings ending on the stacks of k;

"They have mainly investigated the world-sheet theory of self-dual strings as the boundary of the ABJM
theory [22] phrased as the ABJM slab and discussed its connection to the ITA brane model.
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D2-branes. There are associated (0, 2) vector multiplets Vi), including gauge fields A ,;) and

fermions )‘i%i)’
of scalars b‘();‘)” and fermions xf’%i). Further, Fermi multiplets A(;) which does not have the

and (0,2) chiral multiplets B(;) in the adjoint representation which consist

gauge fields appear:

Aﬂ(i)’ )\i%i) S V(z) 1 vector
bgg‘%, Xﬁ% € By; : chiral » adjoint of U(k;), (4.56)
S\f(bz) € Ay : Fermi

where we recycle the notation in the previous section that «,a = + for SU(2);, and @(Q)L,
and ¢,a = & for SU(2)g and SU(2)g, respectively. From the point of view of the D2-branes
in the i-th interval [a;, a;+1], the open strings stretched between the D2-branes and D6-branes
give rise to chiral multiplets ®(;) in the fundamental representation k;, containing scalars
d)?;) and fermions T/Jd_(iy and Fermi multiplets U ;), \il(i) comprised of fermions ¥ (;), 1;+(¢),

respectively:

¢((il')a wi(z) S CI)(Z) : chiral
/ler(i) € \Il(i) : Fermi k; of U(kz) (4.57)
1[14_(2-) € \if(i) : Fermi

Moreover, we actually find the open strings between the i-th and the (i 4+ 1)-th stacks of
D2-branes, which lead to chiral multiplets Y(;), with scalars y?i) and fermions )\d_(i), and

Fermi multiplets X(;), with fermions Xi(i)’ in the bifundamental representation (k;, k;y1):

Y Ao € Yo ¢ chiral } (ki Kis1) of Uk:) x Ulkiyn), (4.58)
Xt € Xy : Fermi
where the first entry k; belongs to U(k;) and the second k; 1 to U(k;11). We should note
that there are also the fields conjugate to the above one, that is, chiral and Fermi multiplets
in the bifundamental representation (k;,k;,1) in addition to chiral and Fermi multiplets in
the antifundamental representation k;. The matters in (4.56)-(4.58) and their conjugate
compose (0,4) multiplets (see Table 5). Figure 21 shows the brane system with open strings
originating these fields which are connected from the D2-branes in the i-th interval. This
picture can be compared with the well-known brane system of type IIB string theory as

worked in [33]. We would briefly mention this standpoint in the next subsection.

The simplest example of (M, N) = (2,1)

To make discussions concrete, now we would restrict ourselves to the simplest example,
(M, N) = (2,1), as in the previous subsection, and then shortly demonstrate the computation

of the elliptic genus of this theory following [99]. In this case, there is only one stack of k
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N=(0,4) | N=(0,2) || Uk) | UL)pm | U)e | U(1)e
vector V' ad]j 0 0 0
vector ~
Fermi A adj 0 +1 +1
chiral B adj 0 +1 0
hyper -
chiral B adj 0 0 +1
chiral ® k 0 —1 -1
hyper ~ — 1 1
chiral ® k 0 -3 -3
Fermi ¥ k -1 0 0
Fermi ~ _
Fermi ¥ k —1 0 0

Table 5: The matter contents of the 2d U(k) gauge theory on k& D2-branes ending on M = 2
NS5-branes and lain on N = 1 D6-brane.

D2-branes, hence, the world-sheet theory is the N = (0,4) U(k) gauge theory without
bifundamental fields. The matter contents are immediately read off from the above list, as
summarized in Table 5 with U(1) charges under twists introduced in (3.19) and (3.21).

The elliptic genus of this theory is contributed from the A" = (0,2) multiplets displayed
in Table 5 and written in the integral form by combining their one-loop determinants given
n (4.50)-(4.52),

01(v; —vj + €1 + €2)
T : d* 01 (v; — j
2:Lk) (m, €1, €27 / v g i v) yl 1 (vi — v + €1)01(v; — vj + €2)

91 (vi —m) b1 (—v; —m

. H L0 (v — e — %62)) 61 ((_Ui - %6)1 — 3€2) (4.59)
We can easily find that the integrand possesses infinitely many poles, thus, the integration
contour must be carefully chosen to pick up appropriate sets of poles. The correct prescrip-
tion to do this turns out to be the so-called Jeffrey-Kirwan (JK) residue [38, 39]. However,
the calculation based on the JK residue seems quite intricate, hence, we would accept an
alternative viewpoint called the Higgs branch localization. This idea has been introduced in
studying the exact partition function on a two-sphere [100, 101]'®, while the form of (4.59)
is termed the Coulomb branch localization. Roughly speaking, the Coulomb branch local-
ization is taken on the locus where a gauge field is localized on a non-trivial configuration,
i.e. part of the gauge symmetry remain unbroken. The Higgs branch localization is a way
to focus on the locus where matter fields are localized on a non-trivial configuration but

trivial for the gauge field, which means that the gauge symmetry is completely violated and

8The higher dimensional versions of the Higgs branch localization also have been derived in [102, 103, 104,
105, 106, 107, 108, 109].
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the integration over v; does not occur. The final result of the Higgs branch localization is
expressed by the summation over vacua in the Higgs branch of the moduli space. What
we have to do is to determine BPS configurations constrained by the D-term and F-term
condition that are the equations of motion for auxiliary fields. In the present situation, these

conditions are found out to be
66 — 66 + [b,5) + [b, 0] + ¢+ L = 0,
¢6 + [b,b] = 0,
where an FI parameter ¢ is turned on. Note that these are just identical with the ADHM

(4.60)

equations for the moduli space of k£ U(1) instantons, which is consistent with the observation
stated at the beginning in Section 4.1. The moduli space of the theory in question should be
determined by (4.60) and U(k) gauge invariance. In the case of { # 0 for explanation, the
gauge symmetry is entirely broken by some condensed scalars. Accordingly, the theory flows
to a non-linear sigma model in the IR which describes the moduli space of £ U(1) instantons,
and Z(5 1 1) is actually the elliptic genus of this non-linear sigma model. In the non-linear
sigma model, the isometries of the target space are parametrised by m, €1, and €3, and we
can incorporate them by gauging these isometries and coupling the resultant background
gauge field to the theory. Especially, the target space owns a finite number of fixed points
which are invariant under isometries associated with €1, eo. At each fixed point, we can
sufficiently approximate the non-linear sigma model to a free theory with chiral and Fermi
multiplets coupling to background fields. Therefore, the resultant elliptic genus is given by
bringing the contributions from all fixed points.

With above arguments, the following formula for the elliptic genus is conjectured:

Z H 91 uj (91 (uz uj; + €1 + €2)

T )
@1,k (M, €1, €257 w; —uj +€1) 01 (u; — u; + €2)

{us} t.5= 1
01 ( 0
xH ! (u = m) 6, (zu T) — (4.61)
91 61 — *62) 91 ( — 561 — 562)
where the summation is taken over fixed points u := diag(ui,ug, -+ ,ug). Note that this

expression still includes fermion zero-modes in the numerator of the first line and seemingly
may be trivial. It is expected that these zero-modes are excluded by substituting the precise
values of the fixed points. With the charge assignments read from Table 5, the fixed points

of isometries generated by €; and e in the target space are to be determined by

1
ub—bu+eb=0, ugp + —(e1 +€2)p =0,
o ) ] 21 ] (4.62)
ub — bu + e3b = 0, —¢u+§(61+62)¢:0-

Therefore, the fixed points u are described by (4.60) and the BPS conditions (4.62) as an

eigenvalue problem. The way to solve these equations is well-studied mathematical problem,
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for example, the solutions for ( > 0 are in a vector with k linearly independent entries
given by the forms <Z~>bll~ﬂ (¢ = 0). It is known that those solutions can be recast into ones

characterized by a Young diagram p with k£ boxes as

()i = <Z - ;) €1+ <j - ;) €2, (4.63)

where labels (4, j) stand for the positions of boxes in p1. A careful sight of (4.63) finds out that
the fermion zero-modes in the numerator of (4.61) really are canceled by the contributions
of the scalars in the denominator. Through sort of effort with nontrivial mathematical

identities, we finally obtain

0 (— i — L i1 O (—m — (5 — ey — (7 — L
1(2717k)(m,61,62;7') _ Z H 1 ( m + (Z 2)61 + (] 2)52) 1 ( m (l 2)51 (] 2)62) .
L=k Gijyen 01 ((—M;F +i)er + (pi —J + 1)62) 61 ((M]T —i+ e + (—p +j)62)
(4.64)

This can be seen as the elliptic genus of a free theory with 2k chiral and Fermi multiplets
coupled to the background fields for U(1),,, U(1),,, and U(1).,. Remark that the number
2k is nothing but that of the Higgs branch in the moduli space. Rewriting this formula with

multiplicative variables gives

_ i—1 _j+l _ —i+l j_l
th <Qm1Q1 2Q2 2> th <leql 2‘]2 2>
Zo,1,0)(Qm; Q73 q1,G2) = Z H — T -
(i “H i1 pi =il p—j
lul=k (i.9)en 01 ( q 45 01 qq 9>

This is in agreement with (4.35) up to an overall sign'?. One can of course explicitly see the

(4.65)

enhancement of supersymmetry with setting m = %(61 + €2) as for the refined topological

vertex case shown in (5.32).

4.4.3 Type IIB brane system on the flat space

Finally, let us make brief comments on the brane system of type IIB string theory used
mainly in [33] for approaching the world-sheet theory of the M-strings.

We would restart the argument from the ITA brane system (4.55). Taking T-duality along
the 1 direction that is one of the 1-cycles of T2 results in the following brane configuration

in type IIB string theory:

9We are not sure that this sign is relevant for agreement. It is necessary to take a sum over k for (4.65)
if we would like to compare it with the partition function G(2,1) (4.33) of the refined topological vertex.
However, k the number of M-strings is fixed in computing the elliptic genus, and relative weights for elliptic

genera in the sum of k cannot be simply determined only from the computation here.

o8



NS5 NS5 NS5

27?1,—1)A, S\i(l—l)v X (i-1) ’-\

o)

N D5

a; Qit1 Ai+2

Figure 22: The D1-D5-NS5 system projected onto the 16-plane, T-dual to Figure 21.

T2 R§1’€2

O 1 2 3 4 5 6 8 9 +f
M NS5 | x x x x x x {a} (4.66)
ki D1 X X
N D5 X X X X X X

Note that N Db5-branes are on top of each other, and the mass deformation affects again
the intersection of the D5-brane and the NS5-brane to introduce (N, 1)-fivebrane depicted
as slanting lines in Figure 22. The 2d gauge theory on the D2-branes that we focused on in
the previous subsection corresponds to the world-volume theory of the D1-branes. There are
various open strings stretched from the D1-branes to the neighboring stacks of the D1-branes
and the multiple D5-branes, and the detailed analysis of their lightest spectra concludes the
same N = (0,2) matter contents on the D1-branes [33] as (4.56)-(4.58) obtained from the
type IIA brane system.

4.4.4 Type IIB brane system on the orbifolded space

There is another interesting brane configuration of type IIB string theory. Assuming the
6 direction is compactified in the IIA brane model (4.55), T-duality along this direction
provides the D1-D5 system on TNj;:

T2 R?, s TNy
0 1 2 3 4 5 6 8 9
‘ ! (4.67)
k; D1 | x X
NDSy | x X X X X X
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As explained in Section 3.2, TNj; acts on the stack of the D1-branes as Zs-orbifold, and
the world-volume theory of the D-branes at the tip of Zj;-orbifold becomes generically a
quiver gauge theory [110]. Indeed, the current brane system (4.67) has been well studied in
[111, 112] that the world-volume theory of the D1-branes turns out to be the 2d N' = (0,4)
®f\i IlU(ki) quiver gauge theory with fundamental chiral and Fermi multiplets, and the field
contents of this theory are basically identical with these (4.56)-(4.58) in the ITA brane model
except for a bifundamental chiral and Fermi multiplet [33]. The last multiplets are caused
from the extra compactification of the 6 direction. On this frame, the partition function
of M-strings can be considered as the elliptic genus of this 2d quiver gauge theory, and the
equivalence of this elliptic genus, after removing the additional bifundamental multiplets,
to the partition function by the refined topological vertex has been checked in the case of
(M,N) = (2,1) [33]. These different perspectives to give the same elliptic genus play a role
to justify the application of the refined topological vertex to the M-strings. We can rely on
one of these duality frames in computing the M-string partition function according to our

convenience.

5 M-strings with a codimension-two defect

In this section, we would explain the realization of a codimention-2 defect of the six-
dimensional theory in the context of M-strings that is our main result obtained in [113].
As mentioned in Section 2.4, while the codimension-4 defect in the world-volume theory
of the stack of M5-branes can be constructed by probe M2-branes ending on it or probe
Mb5-branes intersected with it, the codimension-2 defect is only made from an intersecting
Mb5-brane because of the matter of dimension. This construction of the codimension-2 defect
is also true for the M-string system, and we will show the effects of the defect as an operator

in the 6d theory and as new matter contributions onto the M-string world-sheet theory.

5.1 Brane configuration

We would concentrate on the situation of (M, N) = (2,1), i.e one collection of k¥ M2-branes
suspended between two Mb-branes on TN;. Our proposal is that a half-BPS codimension-2
defect in the 6d SCFT is produced by inserting a probe M5-brane (M5’) into the M-string

configuration as follows (Figure 23):
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M5’

T2 RZ, RZ, TN,
o 1 2 3 4 5 6 7 8 9 i
2M5 | x x x x x x {a;} (5.1)
kM2 | x x X
1 M5 | x X X X X X

This M5’ hits the singularity of the background, which is basically the same construction
as given in [51] where the stack of the Mb5-branes to produce the codimension-2 (Gukov-
Witten type) defect in 4d gauge theories extends to the subspace of the orbifolded space.
This codimension-2 defect also can generate a surface defect in the 4d N' = 2 gauge theory
belonging to the 2345 directions along which we take the twist of the Q-deformation. In
general, the introduction of non-local operators breaks part of or full supersymmetry. In

fact, to preserve supersymmetry requires a condition,
rO1578¢ — ¢ for the M5'-brane, (5.2)

in addition to (3.7). Therefore, (0,4) supersymmetry on M-strings is broken down to (0, 2)
supersymmetry, and M5’ is really a half-BPS defect.

The ingredient of our proposal is that the contribution of M5’ is calculable by the refined
topological vertex and the localization. In the rest of this section, we would verify our
proposal with performing the computation of its partition function. We trace again the
passes for the original setup of M-strings in the previous section. On the perspective of the
BPS state counting as in Section 4.1 where the M-theory circle is taken to be the 1 direction,

our M-string configuration (5.1) is reduced to the following brane system of type IIA string
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D5

NS5

Figure 24: The D5-NS5-D3’ system that can engineer a codimension-2 defect.

theory:
st R R?, TN,
0 2 3 45 6 1T 8 9
2D4 | x x x x x Aa} (5.3)
kF1 | x X
1 D4 | x X X X X

Then, performing T-duality along the 7 direction results in

Sl Rgl REQ Sl
0O 2 3 4 5 6 7 8 9
2 D5 X X x x x Aa} x (5.4)
k F1 X X
1 D3 | x X X X
1 NS5 | X x X X X X

where the brane originated from the defect M5'-brane is signalled by a prime on it. The resul-
tant D5-NS5-D3’ system is drawn in Figure 24. The insertion of M5’ makes the appearance
of D3 in the (p,q)-web diagram, and through the correspondence between the (p,q)-web
and the web diagram of CY3, it is mapped into the presence of a Lagrangian brane L.
This is because the boundary condition preserving the half amount of supersymmetry in
the A-model topological string theory is absolutely equivalent to the condition for £ in CY3
as a target space. This effect may in principle be evaluated by the open topological string
theory which will be argued in the next section. However, we face difficulty that for £ on
the internal segment in the web diagram, a tensor product p ® v appears in the formula of
the open topological vertex (see details in Section 6), and its calculation seems impossible to
proceed at the present stage. However, we find that the geometric transition [62, 63, 64] is
applicable to reproduce (5.4) and allows us to compute the partition function with avoiding
this problem. Therefore, we proceed the discussion based on the geometric transition in the

next subsection. We will come back this issue and try to resolve in Section 6.
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Figure 25: The web diagram connected to the (p, q)-web diagram with two D5-branes (ver-
tical) and two NS5-branes (horizontal).

5.2 Partition function via the geometric transition

To construct the M-string system (5.1) via the geometric transition, the starting point is the
web diagram corresponding to two D5-branes and two NS5-branes with the mass deformation

as depicted in Figure 25, which is descended from M-strings (3.9) with (M, N) = (2,2):

Sl Rgl e Sl

0 2 3 4 5 6 7 8 9 4
2D5 | x x x x x {a} X (5.5)
k F1 X X
2NS5 | x x x %X X X

This geometry can be obtained by gluing two domain walls whose partition functions are al-
ready given in (4.14). We remark again that in consistently linking them, there are necessary

conditions,
Q- = 01"y QY = QP oY QP (5.6)
for the compactifying radius being identical on both vertical lines, and
le)le) = Q?)Qg), or equivalently, Q( Q Q(Q) (5.7)

for the total length of a vertical and diagonal segment in the hexagon being equal, in addition

to the relation

Qm =Q"Q = QP (5.8)
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respecting the net effect of the mass deformation by m. Its generating function with combin-
ing (5.6)-(5.8) is wrote down from the general expression (4.40) with setting (M, N) = (2, 2)
(and the direct computation performed in Appendix C.3 for validity) as

] I
Gon(@ Qrige) = Y <_Qf,1Qg2>Qg2> \/ZE) (_Q 20000 \/Z?)

M1, B2
—~(1)=1)=1) i—% —p1i+i—3 1) i—1 iti—2
01 (Qg)Qg)Qi)‘h 2‘]2”1’ ! 2> <Q§ )‘h 2 2#1, ’ 2)
< 11

(i,5)€p1 01 (Ql Q > qo Hrat > <Q2 Q qgl’ ]>

o, (QPQ?Q? lz+2 p1i—j+3 >91< (2) z+2 g“ j+1 )
X
91 < -‘qu M1, iti— 1> 1 <ql_ul j+7/ 1 _/1/1 7,+]>
<Q§1)Q§1)Q ‘_% ”2 iti— 2) 0, < '—éqQ—HQ,H-j—é)
< ] 1
(ij)Epa 01 <Q§1)Q4(11)qihj i #21 ]+1> . —#1J+Z q;“hﬂ)

A(2) —i+i pai—j+3 =27 —i g
91( S e ”2>01 (Q”Q (Ol ”2>

T ; . T . . ’
“Hy it —po -1 —Hy =Ll —po g
01 <Q1 T b1 {q ™ 5

(5.9)

X

iy

where recalling our notation @Z@ = (ngu))_l_ Now, we apply the geometric transition
explained in Section 2.2 to this web diagram in order to engineer the defect as a Lagrangian
brane. We remark that the geometric transition for the refined case, i.e. general (q1,¢q2), is
not yet entirely understood in the standard languages of geometry. Nevertheless, it has been
suggested in [69] that an elementary (single) surface operator in 4d supersymmetric gauge
theories on Rfl ¢, can be realized as a Lagrangian brane in this way. We would extend their

discussion to M-strings. As the simplest attempt, we accept the limit of the parameters,

—(1 —(2
RV A R I El RSV P T
@’ 0 q1
Note that in the unrefined limit, ¢ = ¢1 = g2, these are reduced to

le) =1, QgZ) =g t=e7s, (5.11)

From the dictionary of the geometric transition (Section 2.2.2), these signify that, while no
D-brane appears on the left side, a single D-brane does on the right side. In other words,
there should be a Lagrangian submanifold on the right side where a D-brane can be wrapped

on (Figure 26). That is why it is thought that the specialization (5.10) should work well to
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[
q2

Figure 26: The web diagram with (M, N) = (2,2) (the left one) and the geometric transition

to generate a Lagrangian brane represented by a dotted line on the right side.

engineer a surface defect even for the refined topological string theory. At the same time,

we precisely set

Qm =05 = QY (5.12)

since the resolution caused from the mass deformation is executed by the CP!’ s of Kihler
factors le) and Q:(}Z) after the geometric transition. Also note that, in this limit, the com-
bination of (5.6) and (5.7) leads to

QMY = QP = @V = QmQ4- (5.13)

We would denote the partition function obtained by the geometric transition as the one with
* in the superscript to clearly declare the starting setup and the operation of the geometric
transition. Combining (5.10)-(5.13) together into G4y (5.9), we find that the resultant
function G‘(‘m) (an), Q+;q1,q2) contains

—=(1)=1) j—1 —p1,i+7 i
H 01 (Qg )Qé(l )(h 1(12 - +]> 01 (ql 43 1 ﬂ)
+i— i+i—3 —it+l i—J
(ij)em 0y <Q4 a ,U27 q2 —p1,i+] 2> (Q2 Q MQJ + q,lzn, J>

o (QQ Va7 o (a7 -

+ _ — +i—1 _—
91( lq2ulz+] 1)91( /J'l] = q2'uflz+.7>

At this point, the second factor in the first line of the numerator, 6 <q’i_1q; HLitd ; QT>,

vanishes even if p; consists of only one box. Accordingly, we must set u; = () to get the
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nontrivial contribution, and then,

i— it 1) i—2 -t

@ ol 0 (@2 OVgi-1g742 +g>9 <Q( )bt )

Gloy (@ Qrian ) = 3 (-Qr208”) ™ 11 i} it () 1 ot
H2 (i,5)€p2 01 <Q4 ¢ 2 b i 2> 0, (Q2 QS Qi_l(b 12,5 ])

(2) —it+1 N22]+
91< 1 2 2

PRIC
01 (q;u R )
)
)

—z Mz i J+2)

X

>

1

0 <QmIQ1_l+2 S >

) ]+Z 1 _/142 ’L+‘7>

) g+Z 1 _/'LQ i+J
N

(Q 1i—% —#21-‘:-3
=3 (~Qr20m) T]

o -3 -H — 1
12 (7»7])611‘2 91 ( 2,7 /»‘2 z+.7

91 (Qm1Q4 Cighri ]+2)
91 (leQ —z uzz j+1>

where we used (5.13) in the last line. Finally, the partition function of k& M-strings is

01 q;

(5.15)

withdrawn as

1 i—5 —piti—3 1 —its pi—jts

o 01( olay 2a 2>91 (leqlz 2qy" 2>
2{2,27143)(@4 7Qm7QT;qlvq2) = Z H ! T . —;LT+Z'—1 ;
|ul=Fk (i,5)ep 91( ’ q;mﬂ_l) 0, (ql J qQ_MH‘])

_1~2) — i 2

0 (QuPa )

6’1 (Qm1Q4 0 g jﬂ)

(5.16)

where we drop off the subscript of the Young diagram. Omne can notice that the first line
of Zé,?, k) completely agrees with the partition function Z(y ;1) (4.34) of M-strings without
the M5’-brane. This observation can be a support for our prescription of the geometric
transition with turning on two parameters (qi1,¢2). The second line of Z&Q k) should be
the contributions of the M-strings attaching the M5-brane and encode the BPS sector that
might not be reached without the defect. The difference of ¢go between the numerator and
the denominator is originated from the specialization (5.10), which means that our present

defect is placed on the surface Rg C R?

€1,€2

corresponding to our M5 in (5.1). We will
confirm this calculation in the next subsection from the standpoint of the world-sheet theory

as before. In addition, we are discussing the properties of our defect in Section 5.4.

5.3 Partition function from the ADHM sigma model

To confirm the geometric transition and our result, we would reuse the type IIA string picture

in Section 4.4.2 to compute the elliptic genus of the world-sheet theory in the presence of a
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defect. Now, the M-theory circle is the 7 direction, which reduces the system (5.1) to

T2 RZ, RZ,
O 1 2 3 4 5 6 8 9 1
2NSHh | x x x x x x {a} (5.17)
k D2 X X X
1 D4 | x x X X X
1 D6 X X X X X X X

From open strings stretched between k D2-branes and a D4’-brane descended from M5, there
would be an (0, 2) chiral multiplet ©p; and an (0, 2) Fermi multiplet ©pe, in the fundamental
representation of U(k) in addition to the original multiplets in Table 5. We assume that they
are accompanied with an U(1)¢ global symmetry. The emergence of Ogp; and Oper does not
change the D-term and F-term constrain in (4.60), thus, the formula (4.61) is modified to

simply multiply new one-loop contributions from O.,; and Oper,

k
—uj) 01 (uj —uj + €1 + €2)
T J J
(.op (M €1, €2,657) {Z}Zgl ot )b (o)
: '91 ul - m) 01 (_Uz' — m) 04 (uz + f — 62)
XHQ LYo, (—u — Ley — L X 01 (wi + )
=1 1 61 262) 1( Ui — €1 262) 1 (u;

(5.18)

The charge of €2 comes form the fact that the D4’-brane is extending the 45 directions, i.e.
Rzz. Actually, this does also not affect the BPS conditions to determine fixed points, in
particular the left one in the second line of (4.62). Therefore, the fixed points on the moduli
space are still given by (4.63). Along the same line as to get (4.64), we conclude

Y 10 +(i—3)a+ (j— 3)e2) 01 (—m — (i — 3)e1 — (j — 3)ea)
=k (i)en 01 (( pj +i)er + (i —j + 1)62) 01 ((M}F —i+1)er + (—p +j)62>
" 01 ((Z — 5)61 + (- 5)62 +&— 62)

(91 ((Z — %)61 + (] - %)62 +§)

This elliptic genus is thought of as the one of a free theory including 2k chiral and Fermi

I(*272,k;) (mv €1, €2, ga

(5.19)

multiplets with additional & chiral and Fermi multiplets. In the form of multiplicative vari-
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ables,

Zhom) (€™, Qm, Qr; 1, q2) =

_q i3 i+ 1, ity -3
01 <QmIQ1 24y 2>91 <QmIQ1 24y 2>
T S | pr—itl .
g7 gt >91 (qu b J)
a1 _ia3
1

(5.20)

where we used (A.12) and an inversion formula (A.46) in the last line. This is exactly the

same as (5.16) under the identification

AT = Qi [ (5.21)

We can reproduce the result of the refined topological vertex via the geometric transition

from the viewpoint of the world-sheet theory that should be the 2d A/ = (0,2) U(k) gauge

theory with an extra chiral and Fermi multiplet. The validity of the refined version of the

geometric transition got supported in this point.

5.4 Characteristics of the defect

In this subsection, we would like to discuss our results for the codimension-2 defect as the

intersecting M5'-brane.

5.4.1 Operator interpretation in the Hilbert space of the M2-brane

Let us focus on the contribution Zﬁefe“ of a codimension-2 defect in (5.16),

defect(Qf), Qm, Q- q1, QQ) = H

ACHRIT 1 0 (@' ar'd™)
(ij)en (Q#@f)q{iqéﬂ“) jen 0 (Qﬁ@f@f%)
(5.22)

where the formula (A.12) is used for the second equality. Following the definition of the

product over the Young diagram (A.2), we can find that many theta functions are canceled
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Figure 27: The action of the defect on a state in the Hilbert space of the M2-brane which
labeled by a Young diagram.

out between the numerator and denominator, and this is simplified as

d(p) 172 _—i_pi+1

Zdefect( (2) Q Q ) ) _ H 01 (Qm Q4 q1 4 )
2 4 Wm, Wriq1,42 =)

i=1 6 (Qm Q4 91 QZ)

(5.23)

The remaining contributions here are visualized onto the Young diagram in Figure 27, where
black and white dots stand for the positions of boxes contributing to the partition function
in the numerator and denominator, respectively. We try to provide the interpretation to
defe“ as the expectation value of an operator acting on the Hilbert space of M2-branes.
One can see this Hilbert space simply as follows [32]. In the generating function of M-
strings, the distances of Mb5-branes as domain walls and the complex modulus 7 are treated
as independent parameters, hence, we can consider the limit that the size of a torus of the
M-string becomes sufficiently smaller than the separation of the M5-branes. The stacks of
the M2-branes look like an one-dimensional system along the 6 direction. If this direction is
virtually regarded as “time” in this system, the M2-branes may be described in terms of this
Hilbert space with the Mb5-brane domain walls as operators acting on it. Then, the states
of the M2-branes span this Hilbert space whose ground states |u) are labelled by a Young
diagram p, and the “Hamiltonian” is given by H = |u|. A domain wall Z on which the
different numbers of the M2-branes are attached from the left and right actually acts on this
Hilbert space, and the domain wall partition function A (4.8) and the generating function

G(2,1) (4.24) of M-strings on TN; can be schematically written as

ZZ;(QTTMQT;leqQ) = </"’1T|Z|Vl>a (524)
Gan(@™, Qs Qriq1, a2) = (0|Ze~ 1 Z|0), (5.25)

where Q; = e, and |v) is a complete basis of the Hilbert space. Also, we can re-express

our result (5.15) in the languages of this Hilbert space. Let Z* be a domain wall with a
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codimension-2 defect, then,

5@, Q. Qr, Qri a1, @2) = (01Ze~ 1 27(0)
= (01Ze 7 |u) (1| 2710)
I

= > e 01 Z|p) (™| 2710). (5.26)

Therefore, the expectation value (u*|Z*|0) includes the contribution (5.23) from the defect.
Note that (| Z*|0) contains the spectra of M-strings attaching both the domain wall and the
defect, but we can easily extract the effect of the defect since its contributions are factorized.
Accordingly, we can specify the action of the codimension-2 defect on a state of a certain u

shown as in Figure 27. We are seeking its physical meaning as a future work.

5.4.2 'World-sheet description

In the previous subsection, we could identify the world-sheet theory of k M-strings in the
presence of a codimension-2 defect with the 2d N' = (0,2) U(k) gauge theory. Recall that
this theory is comprised of the /' = (0, 2) matter contents listed in Table 5 and additionally
A chiral multiplet Oy; } . , )
«— open strings between k& D2-branes and a D4’-brane in (5.17),
A Fermi multiplet Oge,
originated from introducing the defect. We can interpret the appearance of O¢,; and Oper
as describing the effect of the defect in the sense of two-dimensional degrees of freedom. We
would like to pursue the relation between (Ocpni, Oper) and the action of Figure 27 as the
operator in the Hilbert space of the M2-branes.
Further, we assumed that O.,; and Op., are simultaneously rotated under the global
symmetry U(1)¢, and the equivalence of the partition functions computed by two methods

is valid with the identification (5.21), or equivalently,

€1 + €2 (2)

where Qf) = exp(27ritf)) is a Kihler parameter of CP! associated with an internal line in

the web diagram (Figure 25). We naively expect that this global symmetry is originated from
the rotation in the 78-plane of (5.1) where the defect M5’ extends to it. This expectation
is actually true because the first and second part of (5.27) are nothing but g¢,, (3.19) and
g+ (3.21), respectively, that are the generators of the mass and {2-deformation acting on
the 78-plane. On the other hand, the role of the final one tf) is still mysterious. We are

exploring its exact meaning in the context of M-strings.
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5.4.3 Specializations of the mass and supersymmetry enhancement

For the case of TN which is basically flat, the theory on M-strings has (4,4) supersymmetry.
The insertion of a codimension-2 defect breaks half of them, and the M-string system with the
defect keeps (2, 2) supersymmetry. As explained in Section 3.3, physical quantities containing
nontrivial twist parameters are invariant only under (0, 2) supersymmetry, however, this can
be enlarged if we tune these parameters. Among these situations, we would pick up two of
them in (3.26).

The limit m = J(e; — €2)

The first case is the limit

m=g@a-a) & Qn=yab (5.28)

where N' = (0,2) is enhanced to N' = (2,2). It has been pointed out that the partition
function of M-strings without the defect is reduced to a constant, that is, does not depend
on the complex modulus 7, which we can directly verify. However, this phenomena does not

occur in the presence of the defect. Substituting the limit (5.28) into (5.23) gives

i—% pits
u>91<Q4 TS >
defect .
i=1 Q4 Q1 2

This could capture physical states respecting (2,2) supersymmetry which are completely
hidden for M-strings without the defect.

The limit m = %(61 + €2)
The second limit is the one argued in Section 4.3,

1
mzi(el—i—eg) & Qm= 4 (5.30)

q2

Let us try if this enhancement is the case for our defect. Again using the formula (A.12),

the result (5.16) becomes

-1 gl o1
(@ i)
Zhom)(Qi " Qm, Qriq1,q2) = Z H

—ny =l i —pTHi i
lul=F (i.j)en 91< i q2“1+3> 0, (Ql H; Zq2 fi+j 1)

91 <leQ4 a ' j+2>
91 <leQ4 a'gy j+1>'

(5.31)
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Figure 28: The geometric transition on the uncompactified web diagram, i.e. the toric CY3.

The thin gray region is an arbitrary diagram which is not affected by the geometric transition.

Then, the situation is the same as in Section 4.3 where the substitution of (5.30) leads to
the fermion zero-modes, thus, we expect that supersymmetry enhancement happens even in
the presence of the defect. We have to remove these zero-modes corresponding to the overall

U(1) part of U(k) to get a nontrivial contribution,

2?272,/.3) (Qf)a Qm,Qriq1,q2)

200 QY Qm, Qri a1, @2) = (5.32)
(2,2,k)\Ved > iemy T dls * (2 . ’
2(272’1) (Q4 ) Qma QT; q1, q2) m:%(61+62)
where the part of a codimension-2 defect is written as
—(2) —i—1 i— i+ 2
01 <Q§)ql gy 2)
11 (5.33)

—(2) —i—1 i3\
(i.j)En 91 < Sl)qll Qq/; J 2)
(4.9)#(1,1)

This form seems the one of a chiral multiplet in the 2d ' = (2, 2) theory, and supersymmetry

might get enhanced. We would postpone a precise check of this enhancement near future.

5.4.4 Generalization of the geometric transition

More general parameter tuning for the geometric transition in the refined case has been
suggested in [69] to be able to insert nonelementary surface defects in the 4d gauge theory

as multiple Lagrangian branes. The natural extension of the specialization (5.10) is

gl) _ (Ll’ QgZ) = q% i for r,s > 0. (5.34)
p) 95V 42

In [69], it has been found that the emergence of the surface defect labeled by (r,s) via
the geometric transition could restrict the shape of the associated Young diagram. They
considered only web diagrams without any compactification, that is, toric CY3 cases. For
example of Figure 28 and the choice of the preferred direction in the refined topological vertex
different from our calculation, the refined topological string partition function contains the

factor
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boundary

Figure 29: The zero-dimensional boundary on the Young diagram due to the surface defect.

,j+l #T—i—‘,—l —j+1 pT—s—i
1— qu 2q23 2 . 1— q71" J q2] (5 35)
,jJr% ,l’Jr% 1— r—j+1 —s—i ’
1-Qq qs Ehl 2
where we implement the limitation (5.34) as
T
Q= ZA % for ,5 > 0. (5.36)
2

This type of the specialization may be expected to geometrically engineer the surface defect

in Réhez whose support is given by

z{z5 =0, (5.37)

where 21 and z9 are complex coordinates on R?l and R2

c,» respectively. One can immediately

see that this factor vanishes if the conditions 7 > r 4+ 1 and ,ujT — ¢ > s are simultaneously
satisfied. This is because the numerator contains 0 when there is a box in some position for
j>r+1and M;f —4 > s. Thus, the insertion of this surface defect brings a zero-dimensional
boundary on the Young diagram such that the nontrivial partition function picks only up

the boxes of positions within
1<j<r or 1<i<p,-—s (5.38)

in the Young diagram (see Figure 29). Consequently, the shape of the diagram is restricted
to be hook-shaped.
Let us apply the general limitation (5.34) to our M-strings. Putting it to the generating

function (5.9) gives
_q it -1 1 —itE gl
o 61 (leqi g, 2>91 (leqlz gy 2>
Zon( @1 Qm, Qriqre) = > ][] ST ST e
lul=k (G.5)ep 01 <q1 ! qds Hi >01 ((Il ! 4o Hi J)

o, (Q;Zlaf)q;ifrqgi*j+l+s>
o, (Q;f@f)qf g “)

X

(5.39)
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The above result (5.16) is the case of (r,s) = (0,1). The defect as in the second line of
(5.39) does not make an effect to constraint the shape of the Young diagram (see Figure
27). From the field theory viewpoint, this discrepancy seems not to matter since the theory
and also the kind of the defect under consideration in [69] basically differ from ours. On
the other hand, in the standpoint of the topological vertex, this gap might be interpreted
as the difference of the normalization to derive the partition function for the BPS counting.
Specifically, the basic ingredient of the refined topological vertex is to select the preferred
direction, but this is actually a technical artifact, hence, results naively computed by the
refined topological vertex should not depend on the choice of the preferred direction (see an

example in Appendix B.2). This statement is schematically given as

zPGH : (5.40)

0

ZPGH is in the calculation scheme of [69], and a wavy line stands for the preferred

where
direction. These need to be normalized in order to produce the partition function in the
gauge theory, and for the current situation, our normalization is different from that in [69],

0

ZPGH _ ZDGH : (5.41)

21k =2 , (5.42)

as a result, ZPGH £ Z(2,1,k)- The normalization is simply the scheme in the sense of the
topological vertex, but the choice of it looks physically meaningful. We wonder if this is

really in the case or not.

6 Defects and open topological string

In the previous section, we found that the insertion of a Lagrangian brane corresponding
to a codimension-2 defect can be calculated by the refine topological vertex through the
geometric transition, which is confirmed by comparing it with the elliptic genus of the M-
string world-sheet theory with the defect. However, we notice that there is the situation
where the geometric transition may not naively be applied to generating the Lagrangian
brane. In order to overcome this point, the direct computation of the open topological

vertex is necessary. We restrict ourselves to the unrefined case (q1 = q2 = ¢) as the first
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Figure 30: The parameter assignments for the unrefined open topological vertex.

attempt. Since there are still ambiguities for the formalism of open topological vertex, we

would fix them from our results obtained so far.

6.1 A-model open topological string
Gluing rules

We start with packaging rules to bring a Lagrangian brane into the unrefined closed topo-
logical vertex based on parameter assignments shown in Figure 30. In the topological string
theory, the Lagrangian submanifold in CY3 appears as the boundary condition of an open
string to preserve half of supersymmetry. This boundary condition actually is encoded into
inserting a holonomy X in the context of the matrix model that is utilized to derive the for-
mula of the topological vertex, thus, the effect of the Lagrangian brane in the web diagram

is expressed to multiply the topological vertex C,,, by
Tr,r X x Tror X7, (6.1)

where, roughly speaking, the inverse of X comes from opposite orientations on the glued
edges. Note that the trace is taken over the transpose of o1 (032), which is different from the
original formulation in [34]. We here would use this convention. There is an extra Ké&hler
factor @r, as in Figure 30(a). Also, we have to take the framing factor fp(q)Z defined in (B.4),
where a tilde on / is used for the framing factor of the open topological vertex because,
unlike the closed topological vertex, it is a free parameter for the moment. Bringing all
together, the topological vertex in the presence of a Lagrangian brane of Figure 30(b) is in

the following form:

Z (_Q)‘p‘fp%@ag(Q)EC(pé@ol)nTvC(pT®Uz)>\#T <ff’®"1 (q)fQ‘LU”TrG;rX> (fﬁT@f’Q (q)e(QQil)‘UQITr”gX_1> '

P,01,02

(6.2)
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141

Figure 31: The domain wall on TN; with a Lagrangian brane.

In practice, the trace of X can be written by the Schur function,

Tr, X = s,(x), (6.3)
where the collection x = {x;} is a set of eigenvalues of X. The simplest example as an
application of the open topological vertex is given below, which is sufficient for our purpose.
The simplest web diagram with a Lagrangian brane

We demonstrate the actual computation with the web diagram in Figure 31. The partition

function of the open topological string following (6.2) is given by

ZZ; (Q17 QL) Q) = Z (_Q1)|p1‘( QQ)‘pﬂC T(p2®0'1) (q)Cpl(pg®02)V1 (q)

P1,P2,01,02

% (foazon (@ QF Trr X ) (100, (@) (QeQED ™ Trp X 71) . (64)

Here we take an ad hoc value £ = 1. A problem to proceed with the computation is to deal
with the skew Schur functions possessing the tensor product of Young diagram. Fortunately,
we can reduce those to the standard skew Schur functions thanks to the formula (A.37) and

its definition (A.32) as follows,

S (- Q) (= Q2QE ) ) 30 (T )8 Ty 2 (s (@)sp (27 )

01,02

> (ZN%%MANQ‘“‘“)) (ZNZ;?@%/W—“?—%) 57 (- Qu)s 3 (~Qa@p ' w ™)
71,092 " Y2

— Z 3’}/1/)\1(q_ul_ ) 72/)\2 <ZM TS, T QLx> (Z pQUT 02 QQQLI _1)>
A1, A2

= Z 871//\1(q_m_n)sw//\z(q_le_n)svlT/pg(—QLfU)SwQT/pz(—Q2Q£1x_1)» (6.5)
AL,A2

T
where we use the property N, = NMT . Then, we evaluate the domain wall partition

function (6.4) along the same manner for the one (4.7) without a Lagrangian brane (see
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Appendix C.5 for details), and the resultant form is

[e.9]

1

7(5 T+Ky ) _ _ 1
2 (@i Quia) =" s lasn (M ] 1=

n=1 T
o (1 _ QirchquulT,ijm,inl) (1 _ Q§71Q2q7ufj+jfu1,¢+if1)
ij k=1 (1 _ Qiq—ljﬂj-ﬁ-]—#l,i-H—l) (1 o Qﬁq_l’;’j—’—]_yl’i—ﬂ_l)
oy i1 SN, D
(1- @ tQuemtiiay) (1-@rrlep e i hut)
X (1 — Q7w ) .

(1- Q@ @Que i) (1- @by gy )
(6.6)

To use this for the comparison with the result obtained via the geometric transition in Section

5, we again normalize this partition function,

Z(Qi, Qu; q)

ZZ}(Q@QL;Q) = Zg(Qz‘ QL q)

1
3 (R#”l[‘ +Hu1 )

=4 Su?(q_n)sul(q_n)
e (1 — Qf_lqule»j_j"'“lvi_i"‘l) (1 _ Qﬁ_lQQ(]_VEi—H_m’H_i_l)
<11 11 Y I
k=1 (i,j)€p (1 — QkgMg I ) (1 — Qkgtta I )
(1 — Q51 Qag" ‘””lv"‘i“) (1 - Qk_lqu_“lT,j+j—V1,i+i—1)
T T
< 11 v —
(i,5)€m (1 — Qﬁq vy ti—viiti ) (1 . Qﬁqyl’ﬂ JHvii—it )
) (1= Qi1 Qug ™+ hay) 40 (1-QE1QuQue ay)
- i~ _ il
=1 (1 — Qﬁ IQLqZ 2.7,‘]') i—1 (1 _ Ql; IQIQLQ V1,7t 21‘]’)
N (1-Qrerle i) A (1-@kerterte i)

, (6.7
M (1-@sQrta i) 1 (—aorarte )

X

where d(p) and d(p) represent the number of rows and columns, respectively, in the Young

diagram pu.

6.2 Comparison to M-strings with a codimension-two defect

We would check if the above prescription of the open topological vertex correctly reproduces
our results (5.16) (or equivalently (5.20)) in the previous section. We should remark that the
resolution corresponding to the mass deformation (i.e. a diagonal line) on the domain wall
in Figure 31 differs by ninety degrees from the one in Figure 14. These web diagrams are
related by the so-called flop transition [114, 115, 116, 117]. We first introduce the concept

of the flop transition and next apply it to the comparison with the M-string calculation.
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flop transition
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Figure 32: The flop transition in the case of the conifold.

Flop transition

The flop transition [114, 115, 116, 117] is a transformation to exchange different resolutions
on web diagrams. The partition function of the topological string theory should be invariant
under the flop transition, and this statement can be understood as follows. As shown in
Figure 4, a web diagram with the resolution is dual to to a triangulated toric diagram. This
relation is an one-to-many correspondence since the way of triangulations is not unique,
namely, there are several web diagrams corresponding to one toric diagram. The different
triangulations are translated into the flop transition acting on the associated web diagrams
(Figure 32). However, a quantity does not depend on the choice of triangulations up to the
suitable transformation of parameters. This requirement has directly been verified for the

unrefined case [114, 115] and the refined case [116] with a transformation

Qm = Qr_nl (6.8)

Note that originally this was derived in the case of toric CY3’s, and it is also found [117]
that the flop transition actually works on non-toric ones corresponding to M-strings on which

we are focusing in this paper. For M-strings, the following transformation is additionally
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Figure 33: The web diagram with a Lagrangian brane corresponding to the M-strings of

(M,N) = (2,1) in the presence of M5 up to the flop transition.

requested:

Q- = Q-, (6.9)

where @, is the complex modulus for the compactified web diagram corresponding to the
one on the left side in Figure 32. At the level of the partition function Z; ) of & M-
strings, the invariance under the flop transition may be valid by accompanying the inversion
formula (A.46) of 6;(z;p) with transformations (6.8) and (6.9). The conditions on other

Kahler factors can be determined recursively [117].

Comparison in the simplest case: (M,N) = (2,1)

Let us test whether the computation of the open topological vertex in this section is consistent
with the conclusion in Section 5. First of all, we would calculate the refined topological string
partition function for the web diagram in Figure 33 by the same strategy as in Section 4.1.
We can immediately glue (6.7) with a domain wall partition function 25 (le); q) which does

not possess a Lagrangian brane,

Con(@Q, QL. Qrae) = (—Q)MZE QM ) 253, Qus 0)
o

~ o\l 0, (Q;nlq—i-wi—ﬂl) 6, (Q;llqi—uﬂrj—l)

- % <_Qme> (igu 0, <q*#JT+i*M+J'*1) 6, <q7u3+i7u¢+jfl)

oo dp) (1 — Qk-1Qugrit—2z) dw) (1 —QFQ ¢ 20!
XHH( Sk—10 i1 ) ( ~ _1L7T ‘1>_ ’

k=1 i=1 (1—Qr QLg’ 256) =1 (1—Q’7‘ZQL ¢ Mg 1)

(6.10)

where we use a tilde on Kéahler factors to distinguish the ones used in the web diagram of

Figure 25 because these are primarily different. Obliviously, the contribution of the open
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flop transition

Figure 34: The flop transition transforming the web diagram used in this section into the

one considered in the previous section.

topological string is extracted as

i oo d(p) (

ZP(Qu, Qrs a1, 2) = [ | ,
" ) » 415 ~1._ 1 ~ 1 Ty 1

k=1 i=1 <1 — 5 1QLq7’ 2.%') j=1 (1 — QﬁQqu Kj+3 23;—1>

This form seems not to be simply formed into the elliptic theta function, but with the

definition (A.2), we can actually do as follows.

o [d(w) ps (1 B Qﬁ—lQquj#if%x d(p) #y (1 _ @5Q51q4+j+%x—1)

2(Qu.Qriane) = [T T T1 ; 1111

sl (1 _QrQ;! q_iﬂ—éx_l)

(1- Q51 Quai4e) (1- Qb a9+5am)

k=1 (ij)ep (1 - Qlﬁ_lQLq_j”*%x) (1 - QﬁQElq‘iﬂ“%x—l)
i (0 a)

(ij)en O (QEICJ‘”J"%JC‘I; QT) '

This is essentially identical with the unrefined limit of (5.29) obtained by the geometric

(6.12)

transition in the previous section®?, but we have to keep in mind that the equivalence between
both calculations is up to the flop transition. Consequently, we conjecture the following

identification with parameters used in (5.16):

=07, z=q73. (6.13)

We now demonstrate the flop transition to match up to the partition function obtained

through the geometric transition (5.16). Upon the flop transition, the relation (6.9) gives
the same elliptic theta function for both expressions, and the condition (6.8) fixes the trans-
formation law of Qf) [117] as

QY — QuQY. (6.14)

20The weight ¢~ !*! may be absorbed into the overall one in é(g,l) (6.10), but we postpone this point.
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Therefore, the extra Kéahler factor Qr, is transformed as

QL — Q@Y. (6.15)

Finally, we can observe that the open string contribution (6.12) perfectly coincides with the
result (5.16) (except for the weight factor ¢~ 1#). As a result, we suggest that the unrefined
open topological vertex (6.2) is the (preliminary) correct prescription. Note that the value
of ¢ here was taken for computational simplicity, and we would like to find the way to

appropriately determine this as a future work.

7 Summary and outlooks

In this thesis, we constructed a codimension-2 defect in the 6d SCFT appropriately as a
probe Mb-brane. The physical degrees of freedom in this theory on which we focused are
M-strings realized as the boundaries of M2-branes ending on slightly separated Mb5-branes,
and we computed the partition function of M-strings in the presence of the codimension-2
defect by using the refined topological vertex and the supersymmetric localization. As main

results in the paper through these calculations, we could

e find that the geometric transition to engineer the defect works for the M-string system:

e evaluate the refined topological string partition function with a Lagrangian brane in

the internal segment.

In general, the codimension-2 defect in diverse dimensions are defined in a way to impose
a specific singular behavior near the support of the defect on fundamental fields in the theory.
However, we propose that the definite action of a class of defects realized via the geometric
transition is as given in Section 5.4.1. On the other hand, the partition function of M-strings
with the defect can be somewhat directly calculated from the point of view of its world-sheet
theory which is read from type IIA string theory. The presence of the defect introduces an
additional chiral and Fermi multiplet, which is confirmed by comparing these results under
the suitable parameter identification. We believe that these results become the first step to
classify codimension-2 defects in the 6d SCF'T and build applications towards understanding
this theory, and as mentioned in Section 5.4.2, it is an important issue to reveal the interplay
of these points as a future direction.

Further, to make our computation robuster, we tried to directly apply the open topo-
logical vertex to our defect. It is found that we can avoid somehow severe problems on its
usage, and the preliminary result perfectly matches with the previous calculations. We also
suggest that, at least for the unrefined case, the open topological vertex used in this paper
is a correct form with fixing some ambiguities for the known formulation. In closing this

paper, we would shortly comment on open problems in which now we are interested.
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Connection with codimension-4 defects

In the six-dimensional standpoint, the relation between a codimension-2 and codimension-4
defect is a long standing problem. As considered in this paper, the former is constructed
only from an intersecting Mb5-brane, and the latter is basically originated from a M2-brane
with the boundary on the M5-branes. They are of course distinct in M-theory, however,
their discrepancy might not appear in the low energy field theory, namely, these engineer
completely the same surface defect in the 4d IR theory. It has been suggested [118] that
it can be interpreted as a transformation called the separation of variables connecting the
Wess-Zumino-Witten (WZW) model and the Liouville theory on a Riemann surface ¥ where
the M5-brane is wrapped on and the M2-brane is rendered a point, respectively (see e.g.
[119, 120, 121]). In the sense of the AGT correspondence, the former is in the case where the
Mb5-brane is wrapping X, and the latter where the M2-brane behaves as a vertex operator.
It is quite interesting to explore whether our codimension-2 defect could nontrivially confirm

the statement of this framework.

Reduction to five dimensions

The codimension-2 defects in five dimensions have been investigated in [122] by making use
of the geometric engineering in the (p, ¢)-fivebrane web diagram as we done in this paper.
The 5d supersymmetric gauge theory can be realized by reducing one of spatial directions
in the world-volume of the Mb5-branes, and for our situation, this is the limit where the 1
direction as a 1-cycle of a torus shrinks as in Section 4.1, that is, in terms of the complex

modulus,
Ry — 0= 7 — i00. (7.1)

In this limit, the elliptic theta function produces to the trigonometric function, which is a
regular situation for the reduction of the 6d theory on a torus to the 5d theory on a circle.

Moreover, our system may be reduced to the 4d gauge theory on Re, ¢, as Ry — 0 (we
usually need to be careful in shrinking the 0 direction that is originally the time direction,
however, we naively consider this situation because here the 0 direction completely is Euclid-
ian, not the thermal one). As commented in Section 5.1, the result is highly similar to the
instanton counting problem considered in [51]. They have given the general formula for the
instanton partition function in the presence of the defect and tested the AGT correspondence
with several examples. We are wondering if our defect in M-strings could be the origin to
describe the one studied in [51, 122].

82



Relation to an Y-operator

There is an effort to interpret and reformulate supersymmetric gauge theories in terms of
representation theory [123] where the main idea is to think of the shape of a quiver diagram
for the gauge theory as a Dynkin diagram. Then, it is conjectured that the partition function
of the quiver gauge theory is dual to a character formula which is one of basic ingredients in
representation theory. Also, this character has been generalized to an one-parameter family
of ¢ (unrefined) and a two-parameter family of (g1, g2) (refined) which are named g-character
and gg-character, respectively. These parameters are ones for the 2-deformation. On this
correspondence, the so-called Y-operator Y [124, 125, 126] has a crucial role to connect them
in the concrete way. Schematically, Y(x,q) depending basically on some fugacity x and ¢

turns out to satisfy the difference equation

Y+ (Gt

In fact, the action of Y(x,q) is very similar to that of our defect expressed by the ratio of

> + (polynomial) = 0. (7.2)

the elliptic theta functions in the sense of eigenvalues of a difference operator. We now are
investigating the relation between our codimension-2 defect and the Y-operator based on the

above equation.

The modular property

Because M-strings are compactified on a torus, we would expect the invariance of the M-
string partition function under the SL(2,Z) transformation. However, this is not the case
because 601 (z;p) is not equipped with the modular property as mentioned in Appendix A.5.
Instead, the partition function of M-strings is holomorphic with 7 as expected from the
formalism of the topological vertex. We can take this to be modular invariant by adding the
non-holomorphic term by hand. This implies that there are holomorphic anomaly equations
derived from the M-string partition function [32]. This should be true also for our M-strings
with a probe M5'-brane, and it is interesting to understand the meaning of the holomorphic

anomaly equation in the context of M-strings from the viewpoint of the string world-sheet.

The refined open topological vertex

The concrete formalism of the refined open topological string is still not established as far
as we know. There are basically three points which must be resolved; fixing the framing
factor; decomposing the tensor product of Young diagrams; two-parameter generalization
of the Schur function associated with a holonomy X. An ad hoc way for first two issues
is to determine these factors such that the open topological vertex computation becomes

compatible with our result based on the geometric transition. On the final point, in fact,
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Figure 35: The web diagram with additionally compactifying the horizontal direction.

it is expected that the insertion of X written as the Schur function s,(x) in the unrefined
case is replaced with the Macdonald function P,(x;¢1,g2) as commented in [69]. This is an
absolutely analogue of the extension from the unrefined topological vertex to the refined one.

We would try to test if this replacement could work by comparing it with our result.

On further compactification

There is an additionally modified version of M-strings that the 6 direction in (3.17) is also
compactified, and the corresponding (p, q)-fivebrane web diagram with (M, N) = (2,2) is
shown in Figure 35. The refined topological vertex still can be applied to this setup, and
the M-string partition function is also evaluated as the elliptic genus [88]. However, we may
not make use of the geometric transition to engineer the defect in this M-string system and
need the direct calculation from the open topological vertex (Section 6) or the elliptic genus.
This is another motivation to absolutely formulate the refined version of the open topological
vertex, which is in turn applied to the analysis of a more general class of the codimension-2

defects. The result in Section 6 has possibility to overcome this issue.

Interpretation in matrix model and B-model

The formula of the topological vertex has been initiated from the observation of similarity
between the topological string theory and the Chern-Simons matrix model [63]. This is in
the unrefined case, and its refined extension is conjectured to be described by the so-called
refined Chen-Simons theory. With these developments, we would like to know whether there
could be a counterpart in the matrix model to our results. Further, there are some works,
e.g. [68, 127], to try to translate and analyse the topological vertex results of the A-model
topological string theory into the languages of the B-model. It is natural and important for

us to seek the interpretation of our results in the B-model.
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Figure 36: The sequence of the Young diagram Y and its transpose YT,

A Analysis

In this appendix, we would collect notations and formulae which play a central role in

computing our main focuses.

A.1 Young diagrams
Convention

There are several ways to define the Young diagram Y. We here accept the decreasing

sequence of nonnegative integers that is useful for the instanton counting,

Y={Y,€ZxY12Y2 > - >Y;},

(A1)
YT ={Y;" € ZxolY;" = #{ilYi > j}},

where T means the transpose of the original diagram (Figure 36), and #{i|Y; > j} represents

the number of ¢ satisfying Y; > j. For notational simplicity, we use the following symbols:

d(y’) d(y’) diY) v; d(y) Y,
=Y v, Wwir=>v2 [ rain=1]11r6H=1I]]]rG5. (A2
i=1 i=1 (4,4)€Y i=1 j=1 j=11i=1

where d(Y) and d(Y') are the number of rows and columns, respectively, with non-zero entry
in Y. Similarly, we will use CZ(Y) for the number of columns in Y. One can immediately find

that |Y| is the total number of the boxes of Y and
Y| =Y"], Y o W|=[Y[+[W], d(Y") = d(Y). (A.3)

In addition, we introduce the concepts of an arm and a leg of the Young diagram. Given a
box whose position is labelled by s = (4, 7) in the Young diagram Y, Y; is the length of the
i-th row and YjT is the height of the j-th column as shown in Figure 36. Then, Y; — j and
YjT — ¢ are to be the length of an arm and a leg, respectively, in Y (see Figure 37). Note

that these values become negative when the boxes are outside Y.
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Figure 37: The length of an arm (horizontal arrow) and a leg (vertical arrow) for the box
s=(i,j)inY.

Useful formulae

We enumerate formulae associated with the Young diagram which significantly utilized in

the computation of the topological vertex. First, the following relations hold:

- LS r v IYTP Y]
n(Y)i=) (-DYi=33 Y -1= ) -i="F--5, A4
=1 =1 (z,])GY
T 18 Dalmbe
Ty ._ ; T _ (V. 1) = ) — _ =1
A= -yt =g Yo vi-n = 3 -y = BE-FL s
=1 =1 (z,])EY
Next, the hock length A(7, j) and the content c(i,j) are defined as
hi,j)=Yi—j+Y' —i+1, (A.6)
c(i,j) =7 —1i, (A7)
which satisfy
> b, 5) =n(Y") +n(Y) + Y], (A.8)
(i,5)eYy
o . N _ T Y P
Ky = Z oij) =n(Y") = n(Y) = "= = . (A.9)
(i,5)€Y

Moreover, for the Young diagrams Y and W, we have

Yoy = Y wi (A.10)

(3,5)EW (4,9)€Y
Sy = TR, (A.11)
(3,9)€Y
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where the first one was shown in [128]. Finally, when we normalize the partition function
of the refined topological string, the following formulae with the Young diagrams p and v is

highly made use of:

11 (1—62 11+2 yte ) 11 <1—Q 1”2(1% 5>, (A.12)

(1,5)en (i,4)€n

o0 y- ]
1 —Qq ' vty A
H Qq—z—i-l 2 < q2#+] H 1—- qu q12/ ! )

i,5=1 (i,5)En (i,5)€v

(A.13)

where (@) is some parameter. There are expressions descended from this by limiting u or v,

(o)

By =gl
1-Qq ¢ T T Thicl i
H R R H 1-Qq’ Qg ! Q 1 2'u T, (A.14)

= 1o Qae (id)En

N?‘”E —j+3 1

o0
1— q i—L1 —j+=
11 1_Z+1 _2j+; = ]I (1—Qq1 gy 2>, (A.15)

ij=1 1-Qq : (i,5)ep

00 —ity e —j+3

]-_qu ’ 92 : _ 1+2 Jj— %
H ST T IT (1-Qa"2ay ?). (A.16)
ij=1 1=Qq ¢y (i,j)en

or equivalently, for the convenient usage in our calculations,

o0

—ul+i-g —vitj—3
1-Qq “ g ’ —its pi—j+3 —pF+i—% —vi4j—3
H —T j—% = H 1_@1 2(]2 2 H 1_Qq13 2(]2 2 ),
2

ij=1 1-Qq, *q (i.j)en (i.j)ev
(A.17)
7luT+Z — i —1 .
ﬁ 1-Qq 7 qy pity H (1 . uz—i-] 1> (1 _ qui}“—z—l—lqgi_j)
e .
i,j=1 1- Q(ﬁqg i,J)EM
(A.18)

A.2 Schur function

The main ingredient of the topological vertex (Appendix B) is the Schur function that is
a kind of symmetric polynomials. The vast details about the symmetric polynomial are
packaged in, e.g., [129, 130]. Let us denote the set of N variables (z1,z9,...,zN) as x
shortly. Given a representation labelled by the Young diagram Y, the Schur function is
defined by

det x}-fﬁN -
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where

det Yt V-1 =
J

N—i _
det ;=

Yi+N-1 Yi+N-1 Yi+N-1
a1 Lo TN
x%’g—i—N—Z 1’Y2+N_2 $§2+N—2
; , (A.20)

Yn_1+1 Yn_1+1 Yn-1+1
Ty Lo TN
Yy Yy Yy
x] To Ty
N-1 N-1 N-1
x] Ty Ty
] -2 xév 2 x%_z

_ = J[ @-=) (A.21)

1<i<j<N

xy ) TN

for the numerator and the denominator, respectively. The denominator is nothing but the

Vandermonde determinant. For examples with N = 3, the Schur functions for the symmetric

and antisymmetric representation of two boxes are given by

4 .4
] x5 a3
_ 1 .1 1
sm(r) = | 1 23 i
T
3 .3 .3
Ty Ty I3
_| .2 .2 .2
sg(e) = | o a3 a3

H (:BZ — Z’j) = 1‘% + .%'% + 1'22), + T1X2 + o3 + T3,
1<i<j<3

H (:L'l — :L‘j) = X129 + Tox3 + x3271.
1<i<j<3

The Schur function is sometimes alternatively shown by the following economical expression

reflecting the symmetric character:

sy(z) = Try X, (A.22)

where the variables x = (z1,x2,...) are eigenvalues of the matrix X. The Schur function

satisfies the following relations:

sy (az) = a¥lsy (z), (A.23)

syaw (z) = sy (z)sw (), (A.24)

sy (g") = g2 sy (g") = (1) syr (g™, (A.25)

sy (q")sw (g™ = sw(q™)sy ("), (A.26)

89



where ky is defined in (A.9) and n := —n —1—% = {—%, —%, —g,'--} (n € Zsp), and the

Cauchy formulae,

1 =1
Y osv@sv(y) =[] oy P %xfy}“ : (A.27)
Y ij>1 v 3.5, k=1
L
D syr(@)sy(y) = [] (1 +ziyy) = exp |- k iy (A.28)
Y i,j>1 | k=1

where the sum of Y is taken over all of representations. We should remark that the Schur
function can precisely become the orthogonal basis of the vector space A spanned by N-
order homogeneous polynomials. In fact, let (-, -) be a scalar product on A" (i.e. a Zy-valued

bilinear form), then the relation (A.27) is equivalent to
(sy(z),sw(x)) = oyw for VY, VIV, (A.29)
where dyw is the Kronecker delta.

A.3 Skew Schur function

There is a generalization of the Schur function called the skew Schur function sy y () defined
by

(syyw,sv) = (sy,swsv). (A.30)

The functions have the same argument when we omit it. Note that, by definition, the product
of the Schur functions also spans AY and can be re-expanded by the Schur function with

some coeflicients N}YWv
Sy sw = ZN)‘//WSV' (A.31)
%
Putting this into the original definition (A.30) with orthogonality (A.29), we have
(syywisv) =Y Ny (sv, sr)
R

Y
— Ny

- ZN%/R<SR7 3V>7
R
thus, the skew Schur function is alternatively defined as

Sy/w = ZN%RSR' (A.32)
R
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Here, the coefficients ./\/'Vi[/, r are called Littlewood-Richardson coefficients since it counts the
multiplicity of the representation parameterized by Y in the decomposition of the tensor
product W ® R and can be determined using the Littlewood-Richardson rule. The skew
Schur function is reduced to the standard Schur function by setting W = ) in (A.30),

syp(r) = sy (z). (A.33)
Similarly for the Schur function, this function satisfies the following relations:

syw(ar) = a'yl_‘w‘sww(x), (A.34)

S sy @ sy ) = [ ——— 3 svpv@)swyv (®), (A.35)
Y 3 Y

0> 1- ZiYj
Z syywr(@)syr v (y) = H (1 + zy5) Z syt yy (T)swyyr(y)- (A.36)
Y ij>1 Y

Furthermore, as for (A.24), by compounding the definition (A.30), (A.31), and the orthogo-
nality (A.29),

(s(yer)/w»8v) = (SYSR, swsv)

=Y MRy (P, Q)
P.Q

= ZN}I/DRNVJEV
P

=Y Ny rNolsq:sv)
P,Q

= ZN}];R<8P/W7 SV>a
P

thus, we can express the skew Schur function with the tensor product of the Young diagrams

as

S(YQR)/W = ZN}ERSP/W- (A.37)
P

A.4 Macdonald function

The Macdonald function P,(x; g1, ¢2) has been introduced firstly in [130] as the two-parameter
generalization of several significant symmetric functions. The Macdonald function is uniquely
determined by requiring basic properties of the symmetric function, and reproducing some-

how familiar symmetric functions as specializing two parameters (g1, ¢2):
(I) Py(z;q,1) = m,(x): the monomial symmetric function.

(IT) Py(x;1,q) = e,r(x): the elementary symmetric function.
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(II1) lim P(;q, q%) = P{V/P(z): the Jack symmetric function.
q%

(IV) P,(x;0,q) = P,(x;q): the Hall-Littlewood function.

(V) P,(x;q,q) = sp(x): the Schur function.

The explicit form of P,(z;q1,¢2) is quite complicated to write down here (first few terms

can be found in [35]), instead we summarize the expressions sufficient for our calculations

obtained by limiting = = ¢,

it}
Polaraza) = [ ——5 for
(e l—aq a5
1 .
2, Pi—]
Py(afia2.a) = [] f%_qiil for
(e l—aq a5
-3 —pi i
Pylg; a2 m) = ] h % —r; for
(ien 1 — g7 gy "
*PiJrj*%
PpT (41592, q1) = H it 1, for
(ien 1 — g7 gy

A.5 Theta functions

The elliptic theta functions are defined by [131]

01(zl7) = = 3 emimnta) a2milnt3)(++3)

neL

92(2’7_) _ ZewiT(n+%)2+2m(n+%)Z: 0, (Z + %‘ 7_) ’

nel

93(Z|T) — Z eﬂ'iTn2+27rinz
neL

94(Z|T) — Z e7ri7'n2+27rz'n(z+%)
neL

9

LT

|q1’ < 17

oyt < 1,

|QI’ < 11

lgrt] < 1.

= ¢ 1 T2, (z+%|7),

= s (= +317)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)
(A.43)
(A.44)

(A.45)

where we have a variable z € C and a constant 7 € C whose imaginary part is positive. They

satisfy inversion and periodic properties listed below which we can easily check from their

definitions,
01(—z|T) = =01(z|7), 01(z + 1|7) = —01(2|7),
Oo(—2z|7) = O2(2|7), O2(z + 1|1) = —02(2|7),

92

01(z + 7|7
Os(z + 7|7

=€
€

( )
( )
03(z + 7|7)
04(z+ 7|T)

—€

—TIT—2T2 91 (
—TMIT—2T12
O (

77ri7—727riz03 (

—67ﬂi772m294(2’|7').



It is also worth enumerating their modular transformations, that is, T" and S transformation
of SL(2,7Z):

O1(2|7 + 1) = T 6y (2|7), 61 (2] = 1) = —i(—ir) Jhe™ 0, (=), (A.50)
B(2|7 + 1) = €5 05(2|7), by (2] — 1) = (—ir) ée”’f2e4( 1), (A.51)
Bs(z|7 + 1) = 6a(z|7), b3 (2] = 1) = (—ir)se™ 0s(z|r), (A52)
Ba(zlr + 1) = b3(2|7), 0s (2] — 1) = (—ir) ée“fez( 7). (A.53)

It is well known that the elliptic theta functions can be re-expressed in terms of the infinite

product, for instance,

0o
0, (Z‘T) — —Zleﬂ‘i‘r o™iz H (1 . eQﬂik‘r) (1 o 627rik7627riz) (1 - 627Ti(k71)76727riz>
k=1
) 00
— 26% sin 7z (1 _ eQm'kT) (1 _ 827rikm'627riz> (1 - eQ?TikTe—QﬂiZ) ) (A54)

There are other expressions 6,(x;p) (a = 1,...,4) for the elliptic theta functions with setting
r = ¥ and p := 2™ with |p| < 1 due to Im(7) > 0, e.g. for 61 (z|7),

01(x;p) = —ip%x% ﬁ (1 —pk> (1 — pkgy) (1 — pk*1$*1> , (A.55)

which is nothing but the Jacobi’s triple product identity. Further, this identity for 6,(x;p)

can be rewritten as the following useful forms:

1

= —ips22(p, pz, 2" p)oo, A56
A57
A58

)
)
)
A.59)

(
(
1 I (
(

where the g-Pochhammer symbol (or the g-shifted factorial) is given by

1 for n =0,
n—1
k
@pu=q L=t fornzt (A.60)
H(l —ap F)7L forn < 1,
k=1

and (7;P) o 1= limy,, o0 (7 p), With |p| < 121, For simplicity, we use the shorthand notation

(1'1; Zo, - 7xr§p)n = ($1§p)n(x2§p)n T (xr§p>n- (A'Gl)

21 As named, p is normally denoted by ¢, but we keep p as an elliptic variable for avoiding confusion with

q in the topological vertex.
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On the other hand, the theta function closely related to the elliptic theta functions is
defined by

1 sn(n— n —
B(a;p) = > (—1)"p2"" V" = (2, pa Y p)ec, (A.62)
(Pip)eo 2,

which is often used in the literatures of physics??. This function actually fulfils the following

inversion formula and difference equation:

O(z~5p) = 2~ 0(z;p) = O(ap; p), (A.63)
n “n 7n(n—1)
O(zp";p) = (—x)"p~ 2 O(x;p). (A.64)
The elliptic theta functions (A.42)-(A.45) are replaced with this theta function via the Ja-
cobi’s triple product identity,

01(x;p) = ipSa% (p; p)oo O(x; p), (A.65)
O (w;p) = pSa 2 (95 p)os O(—3 ), (A.66)
O3(2;p) = (3 P)oc O(—2p?3 p), (A.67)
04(x;p) = (5 P)oc O(ap2;p). (A.68)

Eisenstein series

We have another series expansion for the elliptic theta function useful to discuss the modular
property,
oo

01(z;7) = (2miz)n(T)3 exp Z By,
k

WEQk(T)(27TiZ)2k , (A.69)
=1

where the 24th power of the Dedekind eta function n(7)%* = A(7), called the modular
discriminant, is a modular form of the weight 12, and By are the Bernoulli numbers defined

as the coeflicients of the Taylor expansion,

= —z". (A.70)

22There are several notations with the symbol O(x; p) also in the literatures of mathematics. For example,
n? n 1 1
=) pz(-a)" = (pm?w,p?x ;p> :
nez >

which is called the theta function of Jacobi in our paper [132] (denoted by 6,(x) with the base p as ter-
minology). This is absolutely identical with 64(z;p), and the elliptic theta functions above are frequently
referred to as the theta functions of Jacobi (or Jacobi’s theta functions) without distinction. Remark that

some notations are basically related with each other only by redefining x.
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The function E9(7) is the Eisenstein series of the wight 2k defined by

2 = " Y p—
E =14+ — h-l_1 1 2 _ n A.71
2k<T) + C(l —2]{7) nz:ln 1 _qn BQk nz:IUQk 1(n)q ) ( )

where ((1 — 2k) is the Riemann zeta function given by ((s) = >.-°;n~*. In addition,
0z(n) = > g, d" is called the divisor sum function which is the summation over the a-th
power of the positive divisors of n € N. Precisely speaking, the Eisenstein series Eo(7) is

regarded as the one by normalizing the holomorphic Eisenstein series,

_ Go(T) B 1
P = 26(2k)° )= (m,ngz:\(o,o) (m o nr)2" )

and transformed as

b er + d)?Ey(1) — ime(er + d for k=1,
By <m+ ) ) )" Ea(7) ( ) (A73)
cr +d (e 4 d)?k By, (1) for k> 1,

under the modular transformation

c

<a Z) € SL(2,Z). (A.74)

Therefore, Eo(7) is not a modular form. To make it a modular form, we have to add a

non-holomorphic term such that

=~ 3

E 7):=FE - — A.
A(r7) i= Ealr) ~ o (AT5)
then F»(7,7) becomes exactly a modular form of the weight 2,
5 (ar+bY 95
2 <c7’+d> = (e + d)"Ea(). (A.76)

This observation actually tells us that if we exchange Es(7) with Eo(7,7) in 61(2;7) (A.69),
the M-strings partition function becomes non-holomorphic but invariant under the modular

transformation acting on the twist parameters as

(A.77)

ar+b m €1 €9
L(2,7Z) : .
SL(2,2) (T’m’el’ez)’_)<c7'+d’c7'+d’c7'+d’c7'+d>

B Topological vertex

The topological vertex [34] and its refined extension [35, 36] are basic blocks to compute
quantities, e.g. a free energy and Gromov-Witten invariants, in the A-model topological

string theory?. There are a wide variety of works associated with the topological string

23The counterpart in the B-model topological string theory is called the topological recursion [133].
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theory beyond the original geometrical perspectives, and recently it was found that this
technique might be applied to condensed matter physics [134]. We would summarize the
definitions of the unrefined /refined topological vertex and demonstrate how to use it to count
the BPS states on Calabi-Yau three-folds (CY3’s). The details of deriving the formulation
and further geometrical aspects of the topological vertex are not shown here because these
are not the scope of this paper, and our standpoint is to make use of it as a computational
tool relying on its successful advancements in string theory and gauge theories. The readers
who are interested in arguments beyond this paper?! is asked to refer to the literatures

89, 90, 34, 91, 35, 36, 128, 138, 139, 140].

B.1 Unrefined case

The topological vertex C,,,(q) [34] is a function of ¢ charactering the trivalent vertex of
Figure 38, which is the web diagram of the simplest CY3, C3. A class of non-compact toric
CY3’s?® basically can be described in terms of the web diagram by appropriately gluing this
trivalent vertex. The indices u, v, and p there represent Young diagrams assigned on the
ends of the vertex, and the directions of arrows on edges fix the Young diagrams such that
we choose p if the arrow is outgoing from the vertex and its transpose u! if the arrow is
ingoing. These labels correspond to the boundary conditions of fundamental strings in the
topological string theory. The topological string theory is a supersymmetric non-linear sigma
model on the world-sheet of a string whose target space is CY3, and the string is wrapped
on a two-dimensional subspace of CY3. Thus, the partition function of the topological string
theory captures information about BPS states yielded by the string states on CY3 (more
precisely, counts the holomorphic maps of the world-sheet to the target space). Through
the correspondence between the web diagram of CY3 and the (p, ¢)-fivebrane web in string
theory [89, 90, 91], the presence of the edges in the former is mapped to the corresponding
D-branes where open strings can end on. Roughly, in this viewpoint, the boundary condition
and the winding direction of the strings are characterized by the Young diagram and the

arrow on the edge, respectively. The topological vertex C},,(q) has been derived as

Cuvp(a) = q%(nu-i-np)sp(q—n) Z SuT/A(q_p_n)Su/A(q_pT_H)a
A (B.1)

1 1 3 5
Ky 1= ||1/H2 — ||VTH2, n:=-n+ 5= {—2, 5 —2,---} (n € Z>o),

where the functions used here are the Schur function (A.19) and skew Schur function (A.32).

The parameter assignment of C,,, is depicted in Figure 38. There we also give vectors v

2For example, the topological string theory is well established only in the perturbative sense, and one of

interesting directions is towards its non-perturbative definition [135, 136, 137] (and references therein).
25The toric manifold is a n-dimensional complex manifold equipped with n isometries which commute with

each other.
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Uy

U

Figure 38: The definition of the unrefined topological vertex. u, v, and p are Young diagrams,

and a vector v is appropriately chosen for each associated edge.

for edges to fix the so-called framing since it has been shown that the final result has an
ambiguity of this framing [141]. The appropriate way to specify this framing will be provided

below. For C3 as an example, the vectors are
Uy = (_1a _1)a Uy = (130)a Vp = (Oa 1)a (B2)

along the directions of arrows in Figure 38. Note that the topological vertex has a non-trivial

symmetry called cyclic symmetry,

Chvp(@) = Cou (@) = Cuppu(a)- (B.3)

Next, we would like to give the prescription of gluing the topological vertex to obtain the
partition function on a non-compact toric CY3 as a target space. For given two vertices, the

gluing process is comprised of the following four steps:

(UR1) Fix a pair of edges to connect the vertices so that one has the outgoing arrow with a

Young diagram p and the other has the ingoing arrow with a Young diagram pT.

(UR2) Multiply the topological vertices (B.1) by a Kahler factor (—Q)”! which corresponds

to a Kihler parameter of CP! arising on a internal segment after making a joint.

(UR3) In addition to the Kéhler factor, we have to include the so-called framing factor f,(q)*
(¢ € Z) [141] given by

f(q) = (~1)lPlg=2". (B.4)

(UR4) Finally, take a sum over p allocated on the glued edge.

We should note that an exponent ¢ of the framing factor is determined as follows. One
specifies vectors for the edges counterclockwise next from the glued edge on the vertices in

question (Figure 39) and then take the exterior product of those vectors,
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Figure 39: Our convention to determine the exponent of the framing factor.

Figure 40: The web diagram of O(0) @ O(—2) — PL.

) . (B.5)

This value is actually what we have to use for the framing factor. We would demonstrate

v

{ = v, A\v, = det (
v

<
S
N TN

this below with a simple example.

Example: O(0) @ O(—2) — P.

We would show the way to access the topological vertex with one of the simplest CY3,
0(0) ® O(—2) — P! (Figure 40). The only necessary thing is to determine an integer
exponent ¢ of the framing factor. In Figure 40, we choose horizontal edges to link the

vertices, and following the prescription (B.5),

-1 1
l = v, Avy = det ( 0 1) =1. (B.6)

Combining the steps (UR1)-(URA4), the topological string partition function is written as

ZZ?)(Qa q) = Z(_Q)‘p‘fp(Q)C,uup(Q)C/\in (9)- (B.7)

p
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0
(a) Parameters and the preferred direction (b) 3D Young diagram

Figure 41: The definition of the refined topological vertex. The wavy line stands for the

preferred direction.

B.2 Refined case

The topological vertex given in the previous subsection depends on a single parameter g,
and the two parameter extension has been constructed in [35, 36, 142]?°, which is called the
refined topological vertex. Accordingly, the previous vertex C),,,(¢q) was rephrased as the
unrefined topological vertex. The main purpose of this generalization is to reproduce the
instanton counting with the -background (€1, €2) in four-dimensional quantum field theories
as well as the unrefined one does, but we should remark that it is not known whether the
refined topological vertex can be interpreted consistently in the languages of geometry and
string theory. Therefore, at least with the current status, we would treat it as a systematic
computing method, but developing examples to justify the refined topological vertex is now
making its applicable range wider and wider. The refined topological vertex C.,(q1,¢2) is
defined as

Al =1v]

T2 il el @ Cn—p o7 _n
C,u,up((ha q2) =q ? 4o 2 Zp(q1; CI2) Z ((11) SHT/)\<(]1 qo )Sl//)\(ql ‘D) )7
A

- 1 1 1 3
Zp(q1,q2) = H Tl ni=-n+_-= {— -z } (n € Zso).
ier L —q’ a5’

(B.8)

The main distinction from the unrefined topological vertex is that we need to specify the
preferred direction expressed as a wavy line in Figure 41(a). The role of the preferred direction
is seen as follows. We put a Young diagram on each end, hence, the vertex can be viewed
as a three-dimensional Young diagram as in Figure 41(b). This is because there now exist

two parameters (g1, g2) corresponding to the Q-background, and then we can distinguish the

26 At the beginning, the formulation of the refined topological vertex has been proposed by [35] and [36]
independently, and latter it was argued in [143] that they are precisely equivalent.
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edges by bringing them together with the edges of the vertex like as Figure 41(a). When it
is mapped into the three-dimensional Young diagram, all axises are independent, thus, we
project it onto a two-dimensional slice by choosing one axis to utilize the standard method for
an usual Young diagram. The choice of the slice on the three-dimensional Young diagram is
implemented by the preferred direction. Upon the computation with the refined topological
vertex, firstly we fix the preferred direction, secondly assign (q1,¢2) on the remaining edges.

Note that the function Zp(ql, q2) is essentially the Macdonald polynomial P,(x; g2, 1) (A.38),

T2
Zy(q1,02) = qf%Pp(qf”; 42, q1)- (B.9)

The refined topological vertex C,,(q1,¢2) in the unrefined limit ¢; = g2 = ¢ is reduced, as
required, to the unrefined one Cy,,(q) due to the property (V) of the Macdonald function.
Let us turn to providing the gluing prescription for the refined topological vertex. The
rule is basically the same as for the unrefined case, but there are differences come from the
number of the parameters and the preferred direction. For given two refined vertices, this is

achieved by the following steps:

(R1) Fix a pair of edges to connect the vertices so that one has the outgoing arrow with a

Young diagram p and the other has the ingoing arrow with a Young diagram p?.

(R2) Further, fix the preferred direction on one edge of the one vertex, then for the other
vertex the preferred direction is chosen on the edge extending to the same axis as the

previous one.

(R3) Assign parameters (g1, g2) on two of three edges as follows: If the preferred direction is
not on the glued edge, these parameters are placed in the same manner as Figure 41(a)
for the one vertex so that ¢; (¢g2) presents on the glued edge, and then the parameters
are put on the other vertex such that ¢a (¢1) resides in the glued edge: If the preferred
direction is on the glued edge, ¢; in the one vertex and gs in the other vertex are set
as to belong to the edges counterclockwise next from the glued edges as if the edges

associated with ¢; and g would be connected.

(R4) Multiply the refined topological vertices (B.8) by a Kihler factor (—Q)l and the
framing factor f,(q1, q2)" (¢ € Z) for the refined one given by

U102 lwll?
fu(q1,q2) = (—1)'“'(]1 gy if the preferred direction is the glued edge,
- I P R [P e ]
fu(q1,q2) = (—1)"‘|q1 2 g if the preferred direction is not the glued edge.

(B.10)
(R5) Finally, take a sum over p allocated on the glued edge.
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Figure 42: The web diagram of O(0) & O(—2) — PL. The preferred direction is set along the

vertical line in (a) and along the horizontal glued line in (b).

The forms in (B.10) have been determined in [139, 140] by requesting the refined topological
string partition function to match the superconformal index of the gauge theory engineered

by the associated (p, q)-fivebrane web. We perform this procedure with O(0) ® O(—2) — P!

Example: O(0) @ O(—2) — P! revisited

There are three different ways to select the preferred direction in gluing two vertices, here
we implement two of them in the refined topological vertex computation since the crucial
point is whether the preferred direction is taken on the glued segment or not (Figure 42).

As before, the power of the framing factor is £ = 1. For the case (a) in Figure 42,

ZI0(Qs q1,q2) = Z(—Q)‘p‘ fo(a2,01)Copw (a1, 42)Crppra(ar, g2).- (B.11)
p

For the case (b) in Figure 42 where the preferred direction is on the glued edge, following
the step (R3), we assign ¢; on the edge of p in the left vertex and g2 on the edge of A in the

right vertex. As a result, we have

Z0(Qsq1,q2) = Z(—Q)‘p‘ fp(a2, 01)Crvp(qr, 42)Cpapr (g2, 1)- (B.12)
p

Independence of the choice of the preferred direction

The preferred direction is a simply artificial technique to execute the formalism of topological
vertex, thus, the final results computed by the several choices of the preferred direction must
be completely equivalent. This expectation leads to the infinite number of the conjectures

of nontrivial mathematical identities. Indeed, one can immediately see that (B.11) looks
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Figure 43: The compactification process in the topological vertex.

highly different from (B.12), however, equivalence between them as the independence of the

preferred direction has been rigorously established in [32].

B.3 Compactification

It is a regular circumstance to consider quantum field theories on space-time with compacti-
fied directions including a class of them geometrically engineered by the brane system. This
also happens for CY3 via the correspondence between its web diagram and a brane configu-
ration in string theory, namely, the web diagram of CY3 may contain a compactified segment
if the corresponding brane is wrapped on some compactified subspace. Such a situation has
been firstly considered in [138], and the computation of the M-string partition function is in
this framework as explained in Section 4.1. We would like here to provide the prescription of
the computation with the topological vertex in the presence of the compactified direction in
the web diagram. Throughout this paper, we express it as a dotted curve shown as in Figure
43. The procedure is rather simple; first we assign a Young diagram v for the outgoing
arrow and vT for the ingoing arrow; second multiplying the topological vertex by a Kihler
factor (—Q)""; third taking the sum over v. This is quite similar to the process to glue the

topological vertices but does not need the framing factor, which is depicted in Figure 43.

C Calculation details

In this appendix, we would package the details of computations which are skipped to show

in the main context.

C.1 Domain wall on TN;

Let us perform the computation of the domain wall partition function Z} (4.8) and the
normalized one ZZ} (4.10) for the web diagram in Figure 44. At first, the formula of the

refined topological vertex with parameter assignments as shown in Figure 44 directly gives
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Figure 44: The parameter assignments on the web diagram for a single M5-brane on TNj.

Z0(Q1,Q2,Qrq1,¢2) = D (—Qu)(—Qy)”IC oot (42, 01)C0my, (a1, G2)

P1,P2
HeTh? el ~
=q * @ ° Zg(ea)(a,e) )], (C.1)
where
\>\2\g|/\1l
q2
Zm — —Q1) Im |p2] <>
> 3 Qe (2

P1,P2 /\1 A2
—-n —M? —H1_—n -n_—ui —V1T —-n C.2
X Spa i \ 22 41 Spr/M\92 d1 ) SpT /. (ql 4 )SplT/AQ @ tat). (C2)

In any case of calculating the domain wall partition function, the main problem is evaluating
the skew Schur functions in the factor Z}}! into the infinite product by repeating the formulae
(A.34)-(A.36) of the skew Schur function. For the purpose to do this and extend to the generic

case, we would like to treat a slightly simple expression

5 A A
Zo = >0 S AP AP BPBRs o (X0) 00, (X2) 8,10, (¥2) Spupn, (Y1), (C3)
P1,P2 A1,A2

where A; 2 and B 2 are just parameters and we will use
Cy:=A4,B, (a=1,2) and C = H C,. (C.4)

Before going to details, we note strategy to advance the deformation of Z}\ step by step:

(i) Use (A.34) for skew Schur functions whose Young diagrams have the same index so

that coefficients A; and B; are combined into Cj.
(ii) Use (A.36) for the pairs of skew Schur functions with p; and p} .
(iii) Use (A.34) again for skew Schur functions whose Young diagrams have the same index.

(iv) Use (A.35) for the pairs of skew Schur functions with \7.
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(v) Repeat step (i) and (ii).
(vi) Repeat step (iii) and (iv).

Note that the actual arguments of the skew Schur functions are abbreviated as, e.g., X; =
{X1,i}i=1,2,.. We perform the sequence from step (i) to (vi) N times, where N is the number
of external lines on the left side or the right side of the web diagram. After that, we get
coefficients C; back to A; and B; by again (A.34), then it will be found that the summand is
basically the same as Z at the starting point but with all variables multiplied by C. Thus,
we can immediately continue this £k — oo times subsequently, and then the infinite product
will arise. Finally, there should be 2N? terms in the numerator and denominator. Let us

demonstrate this strategy to (C.3).
Step (i):

Sv A A
Zul1 = Z Z A|101\A‘2/72‘3|1 1|B‘2 2|3p1/)\1 (X1) ST /2 (X2) 85T /Ao (Y) Spa /A1 (Y1)

P1:P2 A1,A2
A A
=3 3 clcl 2lsm/h (A1X1) 5,73, (X2) 5,15, (A2Y2) 55,70, (Y1)
P1,P2 )\1,/\2
Step (ii):
Z = ] 1+ AiX1,:Xa;) (1+ AgYa,Vi )
ij=1
A A
DD IRe e z\% Jor (A1 X1) sym ), (X2) syr ), (A2Y2) sy, (V1) -
P1,P2 A1,A2
Step (iii):
ZZII = H (14 A1 X1 X0 ;) (14 AYo,;Y1 )
ij=1
x SN ooy sy, (ALX) sy, (C1X2) syr,r (A2Y2) 531, (C2Y1) .
P1,P2 >\17)\2

Step (iv):

[e.9]

T _ H (14 A1 X1, X55) (14 AY3,11)
e (1 - AlCQXLiYLj) (1 — A201Y277;X27j)

1,j=1

X Z Z C{m'C‘;QISm/)\g (Ale) Sp;r//\"lr (ClXQ) Spflr/AIT (AQYQ) 8,01/X2F (021/1) .
P1,P2 >\17)\2
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Step (v):

S _ IO—O[ (14 A1 X1 X5;5) (14 AY3,Y15)
H it (1—-A1CX ;Y1) (1 —AC1Y2,;X5 ;)
X Z Z Cll)\llc‘z)\Q'Sm/er (CQAle) Spg/)\flr (ClXQ) Sp"lr//\"lr (ClAQYQ) Spl/kg (CQYl)
P1,P2 >\11>\2

o0

_ H (14 41X, X0,5) (14 AY,:Y1)
(1-A1CX ;Y1) (11— AC1Y2,;X55)

(14 CrA1X1,;,C1X2;) (1 + C1AY5,;CoY1 )
ij=1

x> > cleRels,, ), (CoA1X1) 5y, 1 (C1X3) 5y, 51 (C1A2Y2) 53/, (C2Y1).
P1,P2 A1,\2

Step (vi):

o0

i | (1+ A1 X1, Xo ) (14+CALX; Xo ) (14 AoYa;Y7,) (1+ CAYR,Y0 )
Ha i=1 (1—-A1CX1 ;Y1) (1 —AC1Yo,; X5 ;)
clrrlole! CoA1 X C1CH X C1 AsY: C1CyY
XYY OGS sy, (CoA1X) 5y, (C1C2X2) 5y, ,r (C1A2Y2) 83, /p, (C1C5Y7)
P1,P2 )\17>\2
_ ﬁ (1+ A1 X1, X)) 1+ CALX X ) (14 AYpYi) (14 CAsYa,Ya )
1 (1 — A102X17iY17j) (1 — CQAle’iC)/Lj) (1 — AQClYQ’iXQJ) (1 — 01A2Y7277:CX27]‘)

X Z Z C|1p1|0|2p2|5p1/)\1 (CgAle) Sp?/)xg (CXQ) SPE/M (ClAQYQ) 8p2/>\1 (CY&) .
P1,P2 )\1,)\2

Then, we use (A.34) to factor out coefficients C|1p1|0|2p2| so that

2V1 _ 10—0[ (1 + A1X17iX2,j) (1 + CA1X1,Z‘X2,J') ' (1 + AQYQ,Z'YL]‘) (1 + CAQYQJ‘YL]‘)
m i) (1 — A102X177;Y17j) (1 — CZAle,iCYLj) (1 — A201Y2in27j) (1 — ClAQ}/Qﬂ'CXQJ)
X Z Z A‘lpl‘A‘2P2|B‘1>\1|B|2)‘2‘5p1//\1 (CQAlBle) SplT/)\2 (CX2) Sp;r//\2 (CIAQBQ)/Q) 8p2/>\1 (CYl)
P1,P2 A1,\2
_ ﬁ (L4 A1 X1, X0,5) (1 + AiCX1i Xp5) (14 AY2;Y15) (1+ ACY3,Y1)
=1 (1 — AlCQXLiYLj) (1 — A1CQCX171'Y1J) (1 — AQC&YQJ‘XQ’]‘) (1 — A2C1CY2,7;X2J‘)
A A
X Z Z A‘lpl‘A‘QPQIB:‘l 1|B|2 Q‘Spl/h (CXl) Sp?/)xz (CXQ) Sp;r/AQ (CYQ) Sp2/)\1 (C'Yl) .
P1,P2 )\1,)\2

(C.5)

As commented above, we have the same summand as the one at the beginning except a

coefficient C' in the arguments of the skew Schur functions. Accordingly, we can iterate the
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sequence of step (i)-(vi) as

le _ lo_o[ (1 + Ale,iX2,j) (1 + Achl,iXQ,j) . (1 —+ A102X17iX2,j) (1 —+ A103X1,iX2,j)
11 (

=1 1-— AlCQXLiYLj) (1 — Al(?gCXMYLj) (1 — A10202X1’Z’Yl’j) (1 — AlCQCgXLZ'}/Lj)
(1 + A2Y27iY17j) (1 + AQC}/QJ;YLJ‘) (1 + AQCQYQ"L‘Y]_,]') (1 + A203Y27iY1’j)

X
(1 — A201Y27iX27j) (1 — AQClCYQJ'XQ,j) (1 — A20102Y2,Z’X27j) (1 — A20103Y2,¢X2,j)

% Z Z A‘lpl‘A‘zpﬂB‘l)\l|B|2)\2‘5p1/)\1 (C2X1) Sprlf/,\Q (C2X2) Sp;f/)\Q (CQYQ) sz/)\l (02}/1)
1,02 A\1,\2

X (14 A4,CF 11X, X, 14+ AsCF 1YY, ~
— H H ( 1 - 1, 2’]) X ( + A2 — 2, 173) lim Z“ (CkX“ Ck}/z)
- (1 — Alcgck 1X171‘Y17j) (1 — AgC’lC’f 1Y271'X2’j) k—o00 M

(C.6)
The last part does not become nontrivial unless the condition
1l = |p2| = [Ar] = [As] (C.7)

is satisfied from the definition of the skew Schur function. Then, with the assumption |C| < 1,

this factor is simplified as

- 1
. v ky. ky\ _ lo]
khlgozull(c X;, C%Y;) = EU Cl = nlzll T on (C.8)
Thus,
= HOO 1 HOO 1+ A0 11X, X0 5) (14 ACF 1Yo,V
Zl/l — ( 1 — 17 27]) ( 2 _27 17]) . (Cg)
M 1-Cn (1 — AlCQC”f 1X17Z‘Y17j) (1 — AQClC’“ 1Y'2’Z‘X27j)

n=1 i,7,k=1

Getting back the original parameters identified with

Ae=-Qu Bi=\|%  B= /2  0=00.=0,
72 Q1 (C.10)
T

_ _ _ _ o T
X1 = 4o ”1(]1 n7 Xo = q1 “ qs n’ Yy = q1 n‘]g U17 Y| = ‘D) nql i

into the above expression, we have

T L1 1 T o1 1
k—1 —Hi;Timg —viiti—g k-1, ~VijttT3 —miti—g
) 00 (1 — Q07 qy Y q; 2 1-Q7 g 4; :

V 1
Zo=1li—g 1l

T : . T ; .
. Ny Vit vt “H L it
n=1 ivj k=1 <1 - Qkqy 5 1—-Qkg "7 g

(C.11)
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As a result, the final form of Z7} can be given by

ZVl(Ql Q27QTaQI>q2)
et 12 e

=0 ' @7 Z(e2q)Zu(a,e)
1 —HL i —viiti—d 1 vt —pniti—d
ﬁ 1 ﬁ (1_Q2Q§ 1‘]1 I 2(12 ' ? 1_Q1Ql-ﬁ lql i 2Q2 ' ?
X
Y T L .
n=1 1 Q’T i,5,k=1 <1 o Q +Z 2_1/1 itI— 1> <1 . qu-:ql ‘ul,j+7' 1q2_,u‘1,i+.7)

(C.12)

To view this as a partition function in the corresponding quantum field theory, we need

to normalize this by the same function with uy = vy = (),

Z& (Qla Q27 QT7 Q17q2)
Zg))(le Q27 QTa q1, q2)

ZV1 (Ql, Q2,Qr; q1, q2)

T2
Heg 112 gl

=q ° ¢° ZMT(Q27Q1)ZV1(Q17Q2)

_1 VLT ity _ —uf it -1
e H(i:j)EHl <1 - QQQ?’ 1q117J 2q21 2 H(i,j)el/l 1 — QQQT 1kq1 L.j 2q2 1 2
X H

T ; .

- k *Vl,jJrz i k 1/1J i+1 s

k=t H(Z'J)Em <1 —Wrq vty ) < - Q%q tiTd
T .1 -1 T -1 -1
k-1, Y1778~ k=111, rai—its

Hpem (1 ~ Qg ‘) [Tijen (1 - Q@7 0 s
T i1 gy 4 —i il
_ Ok, Hij H1,it] k “1] H1,i—J+
e jem <1 Q7 92 1= Q7q; b
Hef 12 e

=q ° ¢° ZT(Q?:QI)ZV1(Q17C]2)
vl j—itg pi—j+ Vi i—t g -2
<1—Q2Qlﬁ Lg, 2 gyt 2) 1—@QiQ g 7 g 2)

X

o0

x H H u i+I— 1 - +i uyi—i —i+1

k=1 | (i,)em (1 . Q 1,1 Nlj > (1 _ Qk 1,i //41 i )
1 B —vi - L Hij—ity vii—j+d
H <1_Q2Q£ g 1 — QY ey ’

X
T+ i+1
(id)em (1 by gy T 1) <1Q’“ T g ‘7)

(C.13)

This is exactly (4.10) what we want.

C.2 Domain wall on TN,

We here derive the domain wall partition function Z;1;2 on TNy with the parameter as-
signments shown in the web diagram of Figure 45. Gluing four refined topological vertices

results in
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Figure 45: The parameter assignments on the web diagram for a single M5 on TNos.

Z02(Q1,Q2,Q3,Quaq2) = Y (—Q1)(=Q2)l(—Q3) 3l (— Q)P

P1,02,03,04

x Corp (a2, 1) Cpypry, (01, 42)Cpr 1 (02, 1) C 1y (015, G2)

2
T 12 +1e3 112 [ 12+l

=q ? q Z T(Q27(J1)Z T(QQ,CH)ZW(CH,Q2)Z/1(CI1,Q2)
X ZZ?ZZQ(QLQ%Q3,Q47QT§QL(I2)a (014)

where

[Aal=IAgl+Aal =M1 ]

ZV1V2

e ST Y (@) (—Qu)eRl (—Qy) il (— Q) (‘D

P1:P2:P3:P4 A4, A3,A2,\1 o
X Spa/x (2 ¢ Spr/x\92° D) SpT/x, (0"e") Sof e\ 2
I — — -n_ - =3 o=
X Spa/As (qz " 2) Spa/As <q2 "a n) 5pT /M (02"a2"™) 53 /24 <q1 e n) - (C15)

We will again use the shorthand notation C' := Hi:l AqBg. As for the previous example,

we define and evaluate the following general expression:

o NS Al Al gl gl gl phel sl g

P1,02,03,P4 A4, A3,A2,\1

X Spi/a (Xl) splT/)\z (XQ) Spg/Ag (YZ) Spa/As (1/3) Sps/A3 (X?’) spST/)\4 (X4) Sp:f/)\4 (}/4) Spa/M (YI) .
(C.lﬁ)

Again, the sequence of (i)-(vi) described in the previous section works as follows.

108



Step (i):

2;1111 1}/32 _ Z Z C{m | C£P2 | Ci‘ip?) \ CJLM \

P1,P2,03,P4 A4, A3,A2,A1
X Sp1 /A1 (A1X1) SpT /Ao (X2) SpT /Ao (A2Y3) Spa/Xs (¥s)

X 8/73/)\3 (A3X3) SP:{/ALL (X4) Sp4T/)\4 (A4Y4) Sp4/)\1 (Yl) .

Step (ii):

o
zoe = [ (04 AiX1iXa;) (14 A2Y2:Ys;) (14 AsX3,:Xy;5) (14 AaYaV1,)
1,7=1

% Z Z C{pl | C£P2 | C:LPB \ CJLPAL |

P1,02,03504 Aa,A3,A2,\1
X 83T, (A1X1) Sy1 /01 (X2) 8317 (A2Y2) 851, (V3)
X 7T /s (A3X3) sy1 o1 (Xa) sy7 /1 (AdYa) syr)p, (Y1)

Step (iii):

0
ZZIIII?Q — H (1 —+ A1X17Z‘X27j) (1 =+ AQYQJ'Yg’j) (1 + A3X37iX47j) (1 + A4Y21JY17]‘)
ij=1

> Z Z C|1)\1 ‘ C|2)\2 | Ci‘%)\g | CJL)\U

P1,02,03:P4 Aa,A3,A2,A1
X 8310, (A1 X1) sy1 )01 (C1.X2) sy1 /1 (A2Y2) 531/, (C2Y53)

X S)\E/PS (A3X3) 8)\3T/p'3r (03X4) S)\’ll‘/p:{ (A4§/4) S)\4T/p4 (C4Y1) .

Step (iv):

[e.e]

7o~ ] (14 A1 X0, Xo5) (1 + AaYo,V35) (1 + A3 X3 Xa5) (1 + AaYaiYa )
e S (U= A Xa Y 5) (1= AgCriXa,iYa) (1= A2C03Y2,:X45) (1 — A3CaY1:X3,5)

),

< SN epilaelolelope

P1:P25P3,P4 A4, A3,A2,A1
X 85, a1 (A1X1) s,1 5m (C1X2) 5,7 /31 (A2Y2) s, /ar (CaYs)
X 894/)‘:{ (A3X3) Spg/)\g (CgX4) Spflr/)\"lr (A4Y4) Sp3/)\:f (C4Y1) .
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Step (v):

[e.9]

=11 (1+ A1 X1, Xo5) (14 AoYp,V35) (1 + A3 X5, Xy5) (1 + AsYy,; Y1)
L (1= A1Ca X033 5) (1 — AyC1Xo3Yy5) (1 — ApCsY2, Xy 5) (1 — A3CuYi:X3;)

Fuivo
ZMI,UQ

4=

o Z Z C\lm \ C|2p2| C:Lps | CAILMI

P1:P2:P35P4 Ay, A3,A2,A1
X S oy AT (A1C2X7) SpT /AT (C1X29) 8T AT (A2C5Y3) Sp1 /AT (CaY3)
X 8, /AT (A3C1X3) ST AT (C3X4) SpT /AT (A4C1Yy) Sps/Af (CaY1)

[e.9]

=11 (14 A1X1iX05) (14 AoYa,Vs5) (1 + A3 X3, Xy ;) (1 + AgYyY1,)
(1 - A1CaX1,;Y55) (1 — AsC1 X9, Y 5) (1 — A2C3Y2, X4 5) (1 — A3CaY1,; X3 5)

iji=1
X (14 A1C2C03X1,X15) (1 + A3CaC1 X33 X25) (1 + AsC3CaY1,Ya ) (1 + AyC1CoY3,Ya5)
o Z Z C\lm \ C|2p2| C:Lpal CAILMI

P1,P2,03,P4 Ag,A3,A2,\1
X xa/ps (A1C2X1) 55,51 (C1X2) 5, /1 (A2C3Y2) 5,y (C2Y3)
* $x/ps (A3CaX3) 53,51 (C3Xa) 53,57 (AaC1Y) 83570, (Cad1)

Step (vi):

[e.9]

g~ ] L A1) (L4 A¥aY5g) (14 As X Xag) (1t AdYaViy)
(

pipe — st 1 —A1CoX1,;Y35) (1 — AyCi1 X0, Yy ) (1 — AaCsY5 ;. Xy ) (1 — A3CaY7 X3 5)

X (14 A1Co03X1,;X4aj) (1 4+ A3C1C1 X5, X0 ;) (1 + AsC3C4Y1 ;Yo ) (1 + AsC1CaY5,Yy )
CY S alepiopicp

P1:P2,03,P4 Aa,A3,A2,\1

X 823/ ps (AIC2X1) Sxa/pT <C401X2) Sxa/pT A203Y2) S\i/p1 (Clc2}/3)

X 83, /ps (A301X3) Sxa/pT (C2C3X4) SXg/pT AsC1Ya) 83y py (C3CaY1)

o0

(
(
1 (1+ A1 X1, X0) (14 AgYa,Ys) (1 + A3 X3, Xay) (1 4+ AsYaiYa )
(1= ACoX1,3Y3,5) (1= AaCrXo, Vi) (1= ApCsYa i Xa ) (1 — A3CaY1,: X3 5)

(14 A1C2C5X1 ;X4 ;) (1 + A3CiC1 X3, X2;) (14 A2C3C4Y1 ;Y ;) (1 4+ AsC1CY3,Ya j)

Z?J:1

X
(1= A1CoC3CX13Y15) (1 — ApC3CC1Xo,Ya ) (1 — A3C1CaCaX3,iY35) (1 — AaCrC2C3X4,Y) )
« Z Z C\l)q | 0‘2)\2| C:|))>\3 ‘ Cf‘4|

P1,P2,03:P4 Ag,A3,A2,A1

X Sp/na (A1C2X1) 8,13 (CaC1X2) 5,15, (A2C3Y2) 8/, (C1C2Y3)
X 81 /a (A3CaX3) 5,75, (C2C3X4) 5,15, (AaC1Ya) 85,5, (C3CaY1) -
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For N = 2, we have to iterate the sequence of (i)-(vi) once more and obtain

ViV
Zmuz
o @]

_ H (1 + A1X17Z‘X27j) (1 + AlCXLi_XQJ') . (1 + AQYQJ‘}/E),,]‘) (1 + AQC}/QJ‘}/E}J‘)
(1—-A102X1,Y3;5) (1 —A1CCX;Y35) - (1 — AsC1 X9 ;Ya5) (1 — AyC1C XYy )

y (1+ A3X3,X4;)(14+ A3CX3,X4;) - (1+ AsYs ;Y1) (1 4+ AsCY4 ;Y1 )
(1= AxC3Y5,;Xy;) (1 — AsC3CY2 ;X4 j) - (1 — A3CuY1,;,X35) (1 — A3C4CY1,X35)
(1+ A10203X1,; Xy 5) (1 + A1C2C30 X, ;X j) - (1 + A3C1C1 X5, X ;) (1 + A3C1C1C X3, X0 5)

1,j=1

1= ALCo0501X13Y15) (1 — A1C2C3C1CX1 Y1) - (1 — A3C501C1 XaiYa,) (1 — ApC3010,0Xs,Ya)
(1 4+ AxC3C4Y1,:Y2 ;) (1 + AsC3C4CY1 ;Yo ) - (1 + AsCrCoY3,Yy ) (1 + AyC1CoCY3,;Yy )

X
(1 —A3C1C2C04X3,;Y35) (1 — A3C1C2CCX3,Y3 ) - (1 — AyC1C2C3X4:Ya j) (1 — AyCr1CoC3C Xy ;Y4 )

o1l glezl glesl 4loal plnl plAel plAs| gl
x ) > APAP AP AP B By B B,
P1:P25P3,P4 Ay, A3,A2,A1

X Sp3/A3 (CXl) Spg/)\4 (CXQ) szlr//\4 (CYQ) Spa/M (C}/g)
X 3,01/>\1 (CXg) Sp}‘/)\Q (CX4) Sp%“/)q (CY4) SPQ/)\3 (CYl) . (017)

We put this expression into the last three lines sequentially infinite times, then, this expres-

sion is simply written in the form of the infinite product,

ZVU/Q B lo_o[ lo—O[ lo—o[ 1 + AlC’“_le ’Lij) . (1 + Agck_1Y27iY37j)
Hipz 1-Cn i 1 1 — AngCk 1X, Zng) (1 — A4Cle—1X27iY47j)

" (14 A3C*1X5,X4 ;) - (1 + AsCP 1Yy, )
(1 — AC3CF 1Y, Xy ) - (1 — A3C4C*=1Y1 ;X3 5)
(1+ A1CoC3CH 1 X1 Xy 5) - (14 A3C1C1CF 1 X5, X5 5)
“ 1= ACaC3Ci0F X Yn ) - (1 — AsC3CaCrOF 1 Xy, Yy )
N (1 + A203C'4Ck 1Y17ZY27]) . (1 + A40102Ck_1Y3,iY47j)
(1- A3010204Ck_1X372-Y3,j) (11— A40102030k_1X47iY47j)’

(C.18)
where we use
o0
Jim Znn (CFX;, CFY;) = (C.19)
For our purpose to get Z!'2 | substituting the original parameters identified with
Aa:_Q(l7 B1:B3: ﬂa B2:B4: @7 CZQT?
qz q1
— _ T _ — _ — _
Xi=¢"q" Xo=q 'q", X3 =q,"q", Xi=q "% g5,
—n *H? -n_—uv —-n *Mg —-n_—u2
Yi=q ¢, Yo=4¢q; "¢ ", Ys=¢q5"q," ", Yi=q; "¢
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Figure 46: The web diagram obtained by gluing two domain walls on TNs.

into (C.18) leads to

Z;llllifg (Qh QQv Q37 Q47 QT; q1, Q2)

PR TS e R TS S

B ﬁ 1 ﬁ (1 - Q2Q3QuQF gy " gy (1 —QuQE g, T gy °)
o 1—-07 T e g i+J _“T'J"i_l —p1,i+7
ot L7 (1-QsQu@F g " g™ ) (1= Qkq " gy

1 1
-3 —Viti—3

T . T -1 -1
1 THg it 1 THyti—5 —voiti—3
(@Ot TR T (1 u0a@uQl g Ry
k— —/JT,-—‘ri—l —p1,i+] —;1,T7.+i—1 —p2,i+j
(1 _QIQQQT 1Q1 3 qs H J)(l _QECH > qs e J)
1 Vit -3 1 Vit —paiti— 3
% (1- QIQITC 1(]1 i 2Q2 ' 7)1 - Q1Q3Q4Q7’? 1(]1 i 2(]2 ’ %)

T X X T . R
k—1 V1Tt —vo+j—1 Vi Tt —vy -1
(1-Q@QuQ7 a7 g 7 )1 - Qg gy )

1 Vit —py -1 1 Va3 —po -1

" (1—-Q1Q2Q3QF g, 7" 2" 721 — QsQE g, 7 2q, T TR)
_ _VT_+Z' _ 1+—1 —VT-+i _ 1+_1
(1= @QsQr a7 g, 7)1 = Qb ™ gy ™)

2 T41 2
(C.20)

thus, we can produce (4.13).

C.3 Generating function on TNy

For consistency, we would directly reach the generating function G, 2 (5.9) that is necessary
as the starting point of our main arguments in Section 5.2. This is obtained by gluing two

domain wall partition functions (C.20) as shown in Figure 46,
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G(2,2)(Qf—a), Qr;q1,q2)
= — lpzl(_ || Zrrpz (1) . 700
( sz) ( Qfl) o0 (Qz ) QT; qi1, Q2) 1 2 (Q QTa qi1, Q2)

1,042
o] | et 1| +|m2\|2 e 12 4eol1? _ _
= Z (=Qp)" (=Qp )" gy q@ C Z T(Q2,(J1)Z v (G20 01) Zpuz (15, 42) Zyar (a1, 42)
1,42
-1 — al a1
« ﬁ (1—@2 Qk Lgi 2¢ ‘“ iti— )(1_ gl) kgr Z+2q51,1 ]+2)
1 - 'H —p1,itg—1 uk —i1 p
=1 Lugem (1- 0570107 o T g g g
(1)
(1) k1 i3 pi—it+3 T
L (1-Qier a"dy )(1 - QY T 4 2qy )
“ +i i+j—1 ul —it+1 i—j
(1—Q 1,5 2#1, J )(1—Qk 1,j qu ])
(1-ii)
11— l 1
« (1—Q4 Qk lq 1 2t K2t = )( Q4 Qk o pzi—jtg 2)
+7’ - i+ /.L —1+1 i
Gien (1= QQQE g ™ (1 Q1 Qi Qkq o )
1 1 —its o ,i_]+* 1 “ iti—
< (1—Q§)Qlﬁ 1q1 gy ) Q3 Q 2g, )
—H3 i —pgiti—1 1, z+1 i—j
(1— qu 2,3 q2#2, J )(1_Q§q12,] qu, ])
_q ity pi—ity 2 1 - i
y (1 —Q4 Q’“ 1q1 2 (1 - g >Qk 3 g mtiTTy
T Fiel ity T T
(i.7)€m (1_Q1 Q2 : > ") Q1 Q2 Qk gy
(2-)
(2 k- lq % —miti—g —ity pi—its
(1_Q Qr 4 )(1 Ql 7- 1 4y’ )
,LL +’L L — ’L+ ,LL i—J+1
(1—Qkq, " g j)( — QT I
(%)
-2 M Z+‘] 7“+ H2,4 .7+
« (1—Q3 JQE g 2, )( - Q¥ Qqu 2 22 2)

+'L

—H2,i i—J+1

(i,5)Epz (1—Q3 Q4 ¥ Q1 & QQ#Q’ﬂ)(l Q Q4 Qk ch 52 j+)
—ity pioi—j+ 5 i+

(=@ TR T (- gk g,

—pg i1 —pp i) 2=t i —j+1
(1- ’qu ’ q@ )(1 - ]ﬁql] QQZ )

(C.21)

Because the deforming process into the elliptic theta function is different between the nu-

merator and denominator, we concentrate separately on them.

e The numerator of (C.21): We can naively combine factors from the same domain wall into

01(x;p). For instance, picking up the first line in the first bracket that belongs to the first
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(left) domain wall in Figure 46, then we have

( Qk 1q1 q2ulz+.7 2)( Q;l)Q l+2 le ]+2)
-3 —i+1 i—j+l
:( Ql QS Q4 Q 2 le'f’] 2)(1_Qg1)Q31)Qi1)Qﬁ_1ql +2q/211, ]+2)
1) (1) — P R |
2 (Qﬁ”@é”@i”ql 2 gy )

N A_l 1,7 '
iQF (Qr: @r)o TIQUI GV R gy

(C.22)

_ -1
where we use QQ, = le)le) le)Qil) with the convention le) = (le)) . Similarly, other

parts can be recast into 0 (x;p), and we gather them together,

num —(D)=1)=1) i-2 —pri+i—5 —(1) i—% —p1iti—+
mn — ] QPP el el x 6, (Qﬁ)Qé)Qi)ql 2gy 2)01 (QE gy 2 >

(Zvj)el"/l

(2 z+ =it =(2) —i+5 pi—i+
x 61 (Ql QQ Q ) qul - >91< g)fh gy

(C.23)

where we omit constant factors depending only on ), since these are canceled out by the
ones in the denominator. Along this way, we can obtain the similar expression Gl(g”;)m for
the po sector.

e The denominator of (C.21): Unlike the numerator, factors from a certain domain wall are
formed together with ones from the next domain wall into 6;(x;p). There are two groups to
make a pair. The first group does not need to incorporate the function Zu(ql, g2) with itself.

For example, the terms labeled by (1-i) and (2-i) are combined as
0o PR T Z 1
H(l — le)le)Qf lql M2 j 0 H1,i+g )(1 _ Ql QQ Qk ,U'2] Hl —j+ )
k=1
1 i+i—1 i
- H(l - Q4 Qk ! q2 SHit )( Ql Q4 Qk: “2] }Ll —j+ )

k=1
<Q11) Qg q;ul,m—l)
— . (C.24)

+7/ i+7—1
—'LQT QT7 Q‘r \/Ql D) ,

On the other hand, the second group is requested to bring the function Eu(ql, g2) such as,
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for the pair of (1-ii) and (2-ii),
1
Z,r(q2, 1) =

e} T . . T . .
k41, THL; T —pa i1 k P70 pai—j+l
:1_[(1_627-+ 4 b 4z ' )(1_QTQ11] QQl )
k=1

T .
“Hi Tt —pyati—1
6 <q1 gy

= . C.25
\/ —HLG T i1 (©29)
Q (Q’T7 Qr)oo P

We can divide the remaining parts into those two groups and apply the same deformation

H(l_Q j 2—le+] 1)( Qk “1] #lz J+1)

as above, and consequently, in the p; sector,

en T _; il —H il T 4ie1 it
G?2,2)u1 _ H qu i i+ \/Q le)le)lel) % 6, ( " +7 )91 (Ch M 0" +J>

(ifj)eﬂl
+z iti— 1 1 =i+l g,
% 01 (Ql Q q2 —p1,it+J 1> <Q(2 )Q( ) “27 qgl ]>
(C.26)

We can also generate the similar expression G?zeg)m for the po sector.

Finally, collecting them together with using the relations (5.7) and (5.8) results in

2 num num
et112 +Hu2H e 12+ lpol1? G e
2

Gn(@Q,Qria1,42) = > (=Qp)"l(=Qp) Mg 3 Géif)m ' G(dif)m
K1sp2 (2,2)m (2,2)p2

1] | 2]
2 2 q1 1 1 q2
= (—Qf,lczﬁ)c;é),/) <—Qf,2 gw[)
B, 2 92 q1
—~(1)=(1)=1) i—% —p1i+i—s 1) -1 —piti—+
H 01 (Qg)Qg)Qi)ql 2q2“17 J 2>91< ()ql 2q2ﬂl J 2)
% —(1)— —uX i 1 i1 .
(ivj)eul 91 <Q:([1)Q4(11)q1 p’2,]+ q2_p'1,z+j—1> (Q2 Q M27 + q'gl’l_‘j>
<Q1 Q2 Q ’+2 #12 J+5 >91< z+2 /;u Jjts )
01 ( Jrl(]ﬂ“ i+ 1) 1 <q1“1J+l 1 M17,+.7>
1) (1) _l l’l’21+.7 Z—l —M2’2+]—l
(i @)
" H s s AR 1=l —poitj
(7]6#261 (Ql Q 2,0 > 1 q2 2,1 )

. i+ i R —(2)— —1 i
0, <Q§2)q1 +2q52, J+2>01 <Q 2)Q Q +2q52 —Jj+3 >

24711 —pz -1 “Hg L —ps it
01 ( q2 ‘ 119 ! q2 ‘

(C.27)
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We can verify the generating function G329 (5.9).

C.4 Generating function on TNy

Let us apply the procedure described in the previous subsection to deriving the generating

function G,y on general TNy written in Section 4.3.2. Recall the form obtained by gluing

M domain walls,
o @ 0. .
(v,N) (Q; Qr,Qf,a,QMC]z)
M—1 (a)
WOl S0 @
=> |11 H (—Qﬂ) ] Zyy o> N QWM. Qs a1, 90)
{MU‘)} L a=1 a=1
(0,0, (©)

SHy b
X H Z" Cs 1) e 1) (b—l)(Qz(' )7Q7;q17QQ)

[bmo M

~

Zw(?zi\;f.&) (M-1) (M 1)(@' 7QT7qlaQQ)
M Ho

(C.28)

Let us pick up the b-th and (b + 1)-th domain wall from (C.28),

b) (b b b+1) (b+1 b+1
Z“§ )#é) ( ) " Z”( >M§ ). < )
<b 1) (b 1), (b 1) (b) <b) ,Mg\i;)

[N Hm(;b 1)TH2 Il (b)H2 HH(b)THQ i (bH)HQ
a

q qy Z(b 1)T(QQ7Q1)Z ® (q1,q2) -y * gy P Z(b)T(QQ>QI)Z (b+1)(Q17QQ)]
~1

(b) b—1) . (6) b1} .
N (I—Qk 1Q ubJT H_Qqu’(“ ) J+é) ( Qk IQ(B) “Hy Tie zq Nt(” )+Jé>

e ba 2 5

X H H H (b—1)p (o-1)_ .4 ENCEDE: 1 - (h 5
ab=1k=1 | ; e, (=D ( 1Q “bg lq'ua,i Jt+ ) < Q My i u +])
’ ,])E a ba 2 ab 1
b—1 i b b—1
( Qk 1Q 7“51] )TJ”*%q ()+]_) ( Qk IQ(b) “t(zj T —it3 ”b J+é>
ba a4 2
X
b) . .
H(b> Eo1gy(0) pray T C1mi(e) —HS )T ) i1
(,5)€py 1 T Qab Q" gy Qba Q 4

b+1 b b+1 b
Qk 1Ql(b+1 #éj T Z+2qﬂ¢(”)3+2) <1 Qk IQ (b+1) 1_“13 )T—H q2 ¢(zz)+-7 )

(1 ;
<| 11
(&) (h) ; ( )T (b)
—1X(b+1) ub =t g —J+1 (b+1 Fi=l —py i +J
T < Qb a, 7 qy "’ 1- Q Q ds
b +1 b b+1 .
( ~QEqlet PG >+]_> < _ gty #EU’T—%Q;Z(” ’ J+§>
X
l_I(h+1) ~1(b+1) #a ok #(h n_ L o b—l—l) _M(h+1)T+,L jLl(jfv;rl)Jrjfl
(,5)€my Q Qb a4 qs

(C.29)
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Both include the contributions of the b-th domain wall encoded into the products of ,u(b)

and it is enough to concentrate on this sector,

Gn&mNb) (b)TH2 12 (b)HZ
G?X?Nh) [Hq @ ° Z (b)T(Qqul)Z (b)(qbfh)]

(b—1)T_ . 1 (b) .1 (-7 _., 1 (b)
1(b) —Mb o3 —Heiti—3 Py ity Vel =ity
N ( Qk 1Q( \J 2q2 a,i ) ( Qk 1Qba \J 2q2a1
<11 11
(6)T (6) _ . ()T (b)
1, . k—1 b) H‘b] —i+1 'u‘a.z_-y k—1 _H‘b +i a +-7 1
@b=1 (; j)epl? < - Q'Q, g, s - Q7 Qab 0 gy

J/

(1-i) (1- ii)
(6)

(b+1)T (b+1) (b)
E—1~/(b+1) ub —it+3 u,”—a+ k—1 b+1) —u,, +i— P ti— 3
( Q Q o QQ Q Q QQ

()

OF ¢ ()
b+1 u =t g =g+l b+1 *u +i—l —pg, i
< Qk 1Q( * ) = 5 > ( Qk 1Q( ) QQ >

(2-ii) (2-1)

X

(C.30)

where the first and second line in the product of ,u((lb) come from the b-th and (b + 1)-th
domain wall, respectively. We can transform independently these in the numerator G?}\lfN b)
and denominator G?]?/? N,p) into the elliptic theta function 6, (x;p) as follows.

e The numerator of (C.30): As done in Section 4.3 and Appendix C.3, the factors sit in

the same domain wall can be combined into 6 (z;p). This is rather easily implemented by

defining
(b+1)T (b)
b, s ~b+1) p —itg pg;—it+3
A (i, ) = Qe “q % (C.31)
(b—1)7 , . (b)
b),. . — +i—= al_A'_]_,
BLY (i,4) == Quo'qy ™ 2" : (C.32)

then, we have

[T (1-ealen) (1-e ' Ale0) (1- Bl .0) (1- 4B 6.0)
H 6, (A(b)(i ')) 6, (ij)(i, j))

ab=1 \/A( ®) (,7) \/B((lz)(i,j)

N (b+1) ~(b)
Q Q By . - b) . -
10 I |- —teo (ADG0) 0 (BE G )) (C.33)
pgt T T
eb=Lipep N7 @

_ -1
where A((lz) (i,7) = (A((IZ) (1, j)) , and ~ stands for the equality up to factors depending
only on @, which will be canceled out in the final step. From the definition in Table 4, the
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prefactor of Kahler parameters is simplified as

(b (b+1
Qb—HQ _ 2b)1 2h— 1) for a =10,

C.34
Q-QY QR for a#b. .

Moreover, the denominator in the square root will be also canceled out after the joint of all

domain walls. To see this, using the relation, }; »ew YjT =2 (.)ey WjT,

Nz()b;q)T M<b7 nrT Ml()f’;rZ)T _Ml()f”j)T

H 11 @ ¢ q
@b=1 (i el (i.4)eps ™

N - b b
_ R
=11 II 47 Il « a0

@b=1 (i jyeu (i) ens” (ig)eps ™

N

(b—1)T (b+2)T
“Hp Hp,

=11 I a™ I« . (C.35)

@0=1 (i jen (i.5)ep

The same cancellation happens for the rests by gluing all domain walls. Therefore, the actual

contributions of the numerator is given by

N
mive =11 I vaSale (afG.n)e (B5G.0)).  (C36)
@b=1 (i jepus

e The denominator of (C.30): As for the numerator, it is convenient to define

I CL u(®
COe, ) = Qg " 7" ™ for the terms (14) and (24) in (C.30),  (C.37)
( ) ( (h)T —i M(b> +1
D,y (i,7) := Qg qlb q"" for the terms (1-ii) and (2-ii) in (C.30), (C.38)

with a normalized notation for the specific product of Kéhler factors,

S0 _ 1 for a = b,
Qp ~p)) ! (C.39)
Qup for a # b.

These factors do not contain any Kéahler factor if a = b and, hence, should be incorporated

with the functions Zu(b)T(qQ, ‘h)ZM(b) (q1,¢q2). With its definition (B.8), the denominator for
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a = b becomes

N oo
1 lh(lh) —i+1 l”’L(zbZ . _Nfzh)T'H 1 —,U«(b)'f‘]
1010 | - (1—@5% ST g - Qg 0
b) Z/Jéb) (CZLQQ)

1 7u<b>T+Z Ef’)ﬂ 1 pOT iy
><~<1—Q’g 0 1—Qk R
Z o (42,q1)
N oo (o) O (b)T b)
ua =il pg i —J g i 1 aﬁJ
. b)

_ ()T F (0) (b)T_Z (6) _
><<1—Q§q1#‘” +q2u iti— 1) <1—Qk 1ua] u,” ]+1>
01 (C((m)(z ])) 61 (D( )(z j))

=1 fyept®) [ me TR Sl T
J 41 Q2 a4, 4;
()T ()

_ ﬂ 1 « s z+2q2ﬂa1‘]+501 (QZ’(M)) 61 (DELZ)(MD

=1 j)eul

O SR . .
= T ge g T 6 (c®6.9)) o (DG 5)) (C.40)
a=1 (ig)ens”

_ -1
where fo;) (1,7) = (Da[;) (i,j)) . On the other hand, the contributions from a # b are

deformed as

N oo (b)T ®) . <>T ®),
HH H k—1x/(0) My =il pg i—j k-1 —Hp o Tl —pg 4y
<1_QT Qab 1 7 QQ )( Q Qba QQ
(b)

a7 k=1 (i j)eus
(o) (b) (6)T (b)
k—1gy/(b) ~Hpj 1 —Hg;+i—1 k-1 [ R D e A
< — Qg s - Q7 Qab 1 9

0 (C96.)) o (D860, 5))
_};[bul;{ \/C (i,7) \/fo;)(ivj)

(b)l

q1

()" I gt (e (26
a#b (i,§)€ ab

N N N
-1l <q1> I I == (Cfl?(i,j)) b1 (Dfﬁ?(i,j))- (C.41)
a;éb (l] Gu m
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Combining (C.40) and (C.41) together provides the denominator contribution as

N
G?J?;Nb) H( )'“")| 3l
a=1

N
< ]I
@b=1 (i, j)ens)

N—1
QETLREMOE <q1> Tl
q3
q2

\/ﬁe <cf£’(z‘,j)> 0, (Dg?))(z‘,j)) .
ba

&

(C.42)

Then, as gluing M domain walls, the partition function of a single domain wall is written

from (C.36) and (C.42) by

O 3T 2R ()7
—1)l#a | s —allH 2
) )
il

num N
G{v ) 1] 2\|u<">T|\2 ||u“’>u2
Gden 4i
b+1
x H T Ve
@0=1 (i jeul?)

N=1,,(b Al
— ﬁ(_l)lum <Zi) N (ﬁ Q% 1Q2b+1>
a=1
01 (A (0,9)) 1 (B (0. 9))

I T

Ry (A6 61 (B G.9)
ba Hab (Cé?(i,j)) 01 (D,(z?(i’j)>

(b)‘

@0=1 (i j)eul!

® 01 (C Y, )> 01 (D( (i, J)>'

(b)‘
a

(C.43)

Finally, we can simplify the generic generating function (C.28) as the ratio of the elliptic

theta functions,

M-1
> 1l
{pet)y o=t

M-1
=2 11
{ue} =1

G(M,N) (an)) QT) ngc,?la q1, QQ) =

where we define

{ﬂ (_Q(b)>|“‘<lb)|} i, b)]
a=1 he G?]?/III:va)

[
I |

ﬁ H(b) 61 E

@0=1 (i j)eul;

Qf, Q ( > - (HQ% 1Q2b+1)> :

C.5 Unrefined open topological vertex for the domain wall on TN;

(C.45)

In this subsection, the domain wall partition function on TN; with a Lagrangian brane

Z71(Qi, Qu; q) (6.6) is concretely derived by the formalism of the unrefined open topological

120



string (6.2). The starting point with £ = 1 is

2 (Qi, Quiq) = Z (_Ql)w(_Q2)|pzlcpf(pz®o1)u?(Q)Cm(pgT@az)vl(Q)

P1,02,01,02

% (foazos @Q Trr X) (160, (@(@Q ) Trg X 71) . (C.46)

Putting the formulae of the unrefined topological vertex (B.1) and (6.5) into it leads to

1
= (,L{Hrlr +qu1 )

Z0(Qi,Quiq) = q° 5,205 (7" 23, (C.47)

Zzll _ Z (_Ql)\pll(_Qz)lpzl
P1:P2:715,72,A1,A2
—uT— —v1— —p1— = —-1,.—
X 8o (478,10 (@7 T8y, 00 (@7 TN 50,00 (07 T n (—QLE) s, (—Q2Qp Y.
(C.48)

The main differences from the closed topological string in Appendix C.1 are the number
of the skew Schur functions and Young diagrams over which we take the summations. As

before, let us consider an useful form,

%le — S (—Qu(—Qy)!

P1,P2,71,72,A1,A2
X 5101/>\1 ()(1)SPIT/)\2 (X2)571//\1 (Yl)s’yir/pg (Y2)572/>\2 (Zl)s,bT/p2 (ZQ) (049)

The strategy is basically the same as for the previous cases, but we would carefully trace the

computational process. First of all, using (A.34) to the skew Schur function with py,

Ezll - Z (_Ql)lx\l\(_qb)\pzl

P1:P2:71,72,A1,A2
X Sﬂl//\l (—Qle)SP}“/)\Q (ng)swl/)\1 (Yl)s“/lT/Pg (}/72)872/)\2 (Zl)s,yg“/m (ZQ). (0.50)

Next, applying the formula (A.36),

o0

2 = ] (1= QuX1.:Xa,) (14 Y14Y2;) (1 + Z1,:72;)

,j=1

« Z (_Ql)lx\ll(_QQ)lpz\

P1,02571572,A1,A2

X AT, (—@1X1) 831 7 (X2) 8y /3y (Y1) 831 )01 (Y2) 5,1 0, (Z1) 537 17 (Z2).
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Then, again using (A.34) to the skew Schur functions whose Young diagrams have the same

number,
— o0
Zi =[] (01— @i X1 Xa) 1+ Y1,:Y2) (1 + Z1,iZ2)
ij=1

X > (=) (—Qa)"!

P1,02571572,A1,A2

X 533 /1 (— QLX) 85T /7 (X2)8p /3y (Y1)807 37 (= Q1Y2) 8,7, (- Q221) 837 /7 (Z2).

We can now employ the formula (A.35) in addition to (A.36),

o0

Z =[] (01— @i X1 X)) 1+ Y1, Y2) (1 + Z1,Z2)

ij=1

« Z (_Ql)m\(_%)w

P1,02571572,A1,A2

(1= QY171 ;)
(1+ Q1 X1, Z25) (1 4+ Q1X2,:Y2 ;)

X sox p (@1 X0) sy vr (X2)syr (V1)1 )37 (@1 Y2) 5,1 0 (= Q2 21) 5, /o1 (Z2)-

Further, applying (A.34)-(A.36) leads to

o

7 =11 (1= QX1 Xo,) L+ Y1,:Yo5) (1 + Z1i225) (1 = QoY1 21,5) (1 - @1Y2,22)
mSD (14 QX1 Z55) (1 + Q1 X3,:Y25) (1 - QrX1,:Y1;) (1= Qr X521 ;)

<Y QMM

P1,02,71,72,A1,A2

X 8y 14 (Qr X1)s,1 )01 (—Q1X2)s 31 )1 (Y1) 5, ) pr (—Q1Y2) 537 /0 (—Q2Z1) 5, py (Z2),

and this settles down by using (A.34) once more,

oo

I (1= QX1 Xo;) (L4 V1,:Yo5) (1 + Z1i225) (1 = QoY1,i21,5) (1 = Q1Y2,i22,5)
Go A QiXiZey) (T+ QiXoiYay) (1 - QrXiiYay) (1 - QrX2:21,5)

% Z (_Ql)lml(_QQ)\w\

P17P27’717’Y21>\17>\2
X 8y 147 (QrX1)s,1 )1 (—Q1X2)857 /01 (=Q2Y1)5), )T (—Q1Y2) s 3T )y m (—Q221) ), /p, (—Q122).
(C.51)

7Vl
ZM1 -
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This looks like the form of (C.50) but not identical, and we repeat the sequence from (C.50)
to (C.51) once again. The result is given by

ﬁ (1-Q1X1,;X2;) (1 —QiQ-X1,:X2;) (1+Y1,:Ye;)(1+Q-Y1,Y2;)
P 14+ Q1 X1, Z25) (1 + @Q1Q-X1,:Z25) (1 4+ Q1X2,Ya;) (1 +Q1Q-X2,Y2;)
(1—Q2Y1,21;) (1 — QeQ:Y1,iZ15) (L+ Z1,Zs;) (1 + QrZ1,iZ2)
(1-Q-X1,:Y1;) (1 - Q2X1,:Y1:) (1-QrX2:71;) (1 —Q2Xa,;21;)
X (1= 1Y2;Z;5) (1 — Q1Q-Y2,:25) Z (=@ (—Qy)lP?!

P1,02,71,72,A1,A2

X Sp1 /M (QTXl)Sp?/AQ (QTX2)S’)/1/)\1 (QT}G)SWF/pE (QTYV2)572/)\2 (QTZ].)S»YQT/pQ (QTZZ)'
(0.52)

V1
ZM1 =

We get to the same alignment of the skew Schur functions as in (6.6) except a factor ) in the

arguments. Iterating this sequence infinite times produces the following infinite products:

S _ ﬁ 1 ﬁ (1= QI X1 Xp;)  (1+QF 1,Y3)
" 1-Q7 ij k=1 (1 + QlQﬁ_le,z‘Zz,j> (1 + Q1Q£_1X271‘§/27j>

n=1
k—1 E—1
T T am g (@), (@
where we again employ the fact
|
lim 72 (Q X, QLY:, Q1 Z) = 11 Tgr forle-l <t (C.54)

Here, replacing the parameters with the original variables as

Xy =g, Yi=q ™ Zy=q
Xy =g 17", Yy = —Quz, Zy = —QoQ; z 7t (C.55)

brings Z/”}l back to Z:llT,

0o 1 0o <1 _ Q571Q1q7u5j+jfu1,i+ifl) (1 B Qf_lemeﬁijﬁiﬂ)
S _
I IL1-Qr Z,J,l;[ ) (1 _ qu—u{j+j—u1,i+z‘—1) (1 _ kq—vﬁj+j—ul,i+i—1)
— 2Jyv= T T
_ i L —1-1 T 4451 4
(k) (- @etape b he)
X (1 — Qraix; ) .

<1 - ﬁ—lQlQLq*V17i+i*%x]’> (1 _ QﬁQilqiu?’jJrji%xi_l)
(C.56)
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As a result, we can obtain the domain wall partition function with a Lagrangian brane using
the open topological vertex,

o0

1
7(’i T+Ry ) _ o 1
Z0(QuQuig) =¢” T s r(@ s (6 [ [ 5
n=1 1 QT
00 (1 — Q/;—lqu—err,j-f—j—m,i-i-i—l) (1 _ Q§_1Q2q_V1T,j+j_Ul,i+i—1)
X
i,5,k=1 (1 — Q’;qfﬂfﬁj*m,ﬂrifl) (1 _ Q,quf,,lijJrj,l,MJrifl)

_ 41 _ 1 —pT 451
(- taurnin) (- 0rapts )
— _ 451 1 T o1
(1- Q5 @uQua ™+ ay) (1 - QhQp g )

X

(1 — Qf_xixj_l) .

(C.57)
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