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Introduction. Adopting the terminology of [1]”, a ring A is called n-
invariant (or strongly n-invariant) if A satisfies the condition: Given a ring B
and indeterminates X, -+, X,; Y, -+, Y, if A[X,, -+, X,] is isomorphic to
B[Y,, -, Y,], then 4 is isomorphic to B (or if any ring B and any isomorphism
p: A[X,, -+, X,]—>B(Y,, ---,Y,] are given, then @(A)=B). If a ring 4 is
n-invariant (or strongly n-invariant) for every integer n=1, 4 is said to be
invariant (or strongly invariant).

Several types of rings are known to be invariant or strongly invariant re-
spectively (cf. [1], [2], [8] etc.). However we have not any good criteria for a
ring to be invariant or strongly invariant, and it is tempting to look for criteria
of this kind. A purpose of the present paper is to give sufficient or necessary
conditions for a ring to be strongly invariant in terms of locally finite (or locally
finite iterative) higher derivations.

The present paper consists of three parts. In the first section, definitions
of locally finite (or locally finite iterative) higher derivations are recalled, and
several results which follow easily from definitions are given. In the second
section, sufficient or necessary conditions for strong invariance are given. In the
final section we shall see how well these conditions work in giving examples and
counter-examples. In the appendix we shall prove a Lemma on a ring which
has a locally finite iterative higher derivation.

Our terminology is essentially the same as that of [1].

1. Preliminaries

We shall begin with

DrerINITION 1.1.  Let A be a ring (or an algebra over a ring R). A locally
finite higher derivation on A is a set of endomorphisms D={D,, D,, ---} of the

abelian group A satisfying the following conditions :
(1) D,=1identity, D;(ab) = >} D (a)Dy(b) for any a, b of A.
R

(2) For any a of A, there exists an integer n>>0 such that D,,(a)=0 for every

*)  The senior author is supported by Takeda Science Foundation
1) The number in the bracket refers to the bibliography at the end of the paper.



2 M. MivanisHt AND Y. NAKAI

m>n.
When A is an R-algebra and D, is R-linear for all n>0, D is called R-trivial.
D is called iterative if D satisfies the additional conditions :

3) D,.D,.=(i'lfj)D,-+jfor all i, j>0.
1

The concept of locally finite (or locally finite iterative) higher derivations
has its own geometric meanings. Namely we have

Lemma 1.2. Let A be a ring (or an algebra over a ring R). Then the
Sfollowing conditions are equivalent to each other:

(1) D is a locally finite higher derivation (or a locally finite R-trivial higher
derivation) on A.

(2) The mapping ¢: A—A[t] given by <p(a)=§2‘_J D, (a)t" is a homomorphism

of rings (or R-algebras), where t is an indeterminate.
Similarly the following conditions are equivalent to each other :
(1) D is a locally finite iterative higher derivation (or a locally finite itera-
tive R-trivial higher derivation) on A.
(2) @: A—A[t] defined in the above condition (2) is a homomorphism of rings
(or R-algebras) such that (p Qid.)p = (1d.QA)p, where A: Z[t]— Z[t]QZ][t]
(or A: R[t]—>R[t]QrR[t]) is a homomorphism of Z-algebras (or R-algebras) defined
by A(t)=tQ@1+1Qt (cf. the following diagram);
@
4 — A[f]=AQxrR]t]
¢>l pQid
AQRgR[t] ——> AQrR[{]QrR[¢
®rR[t] ARA QrR[f]@rR[?]

(3") “@: Spec(A)X 2G, z— Spec(4) (or *p: Spec(A) X G, r—> Spec(4))
is an action of the additive group scheme G, z (or G, g) on Spec(4).

Proof. The equivalence between (1) and (2) is nothing but a reformulation
of the definition. The equivalence of (1), (2') and (3") will be found in [7].

Let D be a locally finite higher derivation on a ring 4. An element a of
A is called a D-constant if D a)=0 for all {>0. An easy remark on D-constants
is the following

Lemma 3. Let A be an integral domain and let D be a locally finite higher
derivation on A. Then any invertible element of A is a D-constant.

Proof. Let @: A—A[t] be the homomorphism defined as above. If a is
an invertible element of 4, ¢(a) is invertible in A[¢]. Hence p(a)= 4. q.e.d.
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The set of all D-constants form a subring A4, of A4, and it is easy to see that
A, is algebraically closed in 4. If D is iterative, we can say more about 4,.
Namely,

Lemma 1.4. Let A be aring, let D be a locally finite iterative higher deriva-
tion on A and let A, be the subring of D-constants. If there is an element t of A
such that D,(t)=1 and Dt)=0 for all i>>1, then A=A,[t] and t is algebraically
independent over A,. If A is an R-algebra and D is R-irivial, A, is an R-sub-
algebra of A.

For the proof, we refer to [7].

When an integral domain 4 has a locally finite higher derivation D, we
can ask if the quotient field K of A4 is a simple transcendental extension of a
subfield of K. (If this is the case, we say that 4 is birationally ruled.) A
partial answer is given in

Lemma 1.5. Let k be a field, let A be a finitely generated k-domain, let K
be the quotient field of A and let D be a non-trivial (i.e., A+ A,) locally finite
higher derivation on A. Assume one of the following conditions:

(1) D is iterative.

(2) dim A=1 and the set of k-rational points of Spec(A), Spec(A)(k), is
a dense subsei of Spec(4).

(3) The k-algebra homomorphism @: A—A[t] defined by D gives K(t)=
P(K)(2).

Then A is birationally ruled.

Proof. (1) When D is iterative, the additive group scheme G, j acts non-
trivially on Spec(4). Our assertion then follows from ([7], Theorems 2.1, 2.2
and the remark at P. 205). Moreover, K is a simple transcendental extension
of the quotient field K, of 4, (loc. cit.).

(2) Assume the second condition. Then there is an element a of 4 such
that @(a)=a+a,t++-+a,t" and @(a)eEA, where a,€4 (1<i<m) and a,=0.
Since Spec(A4)(k) is dense in Spec(A4), there is a k-algebra homomorphism
n: A—k such that z(a,)#+0. The composite p=(z Qid)p: A—k[t] is a k-algebra
homomorphism such that p(4)dk. Since dim A=1, Ker p=0. Hence by
Luroth’s theorem, 4 is rational.

(3) Consider the ¢ '-adic valuation of K(#) over K and its valuation ring
b*. Let us set b=b*Np(K). Let p* and p be the maximal ideals of b* and
b respectively. Since D is non-trivial, there is an element a of 4 such that
p(a)eeA. Write @(a)=a+at+-+a,t” with a,#+0. Then @(a)™'=t"(a,+
Ayt Fat?) T ep*Np(K)=p. Hence p=+0. Since tr. deg,p(K)=
tr. degy(b/p)+ht p, the residue field v*/p*, which is isomorphic to K, is not
algebraic over the residue field b/p. Since b* is obviously a discrete valuation
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ring, we can conclude by Nagata’s theorem [9] that K is a simple transcendental
extension of a finite algeraic extension of b/p. q.e.d.

An easy consequence of the first case of Lemma 1.5 is

Corallary 1.6. Let k be a field and let A be a finitely generated k-domain
of dimension 1. If A has a non-trivial locally finite iterative higher derivation
D, then A is a polynomial ring over the algebraic closure k, of k in A.

Proof. We have only to show the existence of a k,-rational point in Spec(4).
It is easy to see that 4, is a subfield of 4 and is in fact the algebraic clusure of
kin A. Then, Lemma 1.5 implies that Spec(4) is birational to the affine line
A* over k,. Hence Spec(4) has a k,-rational point. q.e.d.

The assumption that 4 is a finitely generated k-algebra is not necessary in
proving (1.6). For the proof we refer to the appendix.

2. Strongly invariant rings

In this section, we are interested in looking for sufficent or necessary con-
ditions for a ring to be strongly invariant. A sufficient condition for strong
I-invariance is given, making use of Nagata’s theorem [9], in the

Theorem 2.1. ([1]). Let k be a field and let A be an affine k-domain.
If A is not birationally ruled, then A is strongly 1-invariant.

If 4 is not birationally ruled, it seems plausible that 4 is strongly invariant.
However the authors could not determine whether this is true or not. Another
sufficient condition for strong invariance is stated as follows:

Theorem 2.2. Let A be a ring and assume that A contains a subdomain C
of infinite cardinality, whose non-zero elements are non-zero divisors of A. If A
has no non-trivial locally finite higher derivation, then A is strongly invariant.

Proof. Assume that A4 is not strongly invariant. Then there is a ring
B (#A4) such that 4[X,, .-+, X,]=B[Y,, ---,Y,], where X,, ---. X,,and Y, --, Y,
are algebraically independent over 4 and B respectively. Since A= B, there is
an element a< 4 such that, regarded as an element of B[Y}, ---, Y,], a is written
in the form a=2>1b,,.. , Yi1- Yo" with b,, .. o €B. Let w,, ---,w, be positive
integers. Define a locally finite higher derivation D on B[Y, :-,Y,] by a
homomorphism of rings ¢@: B[Y,, ---, Y, ]—>B[Y,, ---, Y, #], which is given by
@(b)="> for all be B and ¢(Y,)=Y;+#"i for 1<i<n. We can choose w,, -+-, w,
so that ¢(a) = bt™+(a polynomial in ¢ of degree <m with coefficients in
B[Y,, ---,Y,]), where b= B and m>0. Since B[Y,, ---, Y, ]=4[X], .-+, X,)], we
can rewrite @(a) in the form ¢(a)=f(X,, ---, X, )"+ (a polynomial in ¢ of
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degree<<m and with coefficients in A[X,, -+, X,]). Then by virtue of the
following easy sublemma, there are elements c,, -+, ¢, in C such that f(c,, -, ¢,)
+0. Letq: A[X,,---, X, t]— A[t] be the A-algebra homomorphism given by
q(t)=t and ¢(X,)=c; for 1<i<nm. Let ¢ be the canonical injection ¢: 4—
A[X,, -, X,] and let p=gqpe. Then p: A—A[t] is a homomorphism of ring
with p(4)d& A. Therefore p defines a non-trivial locally finite higher derivation
on A4 and this is a contradiction. q.e.d.

Sublemma. Let A and C be as in Theorem 2.2. Let f(X,, ---, X,,) be a
polynomial over A in n-indeterminates X,, -+, X,. If f(c,, -+, c,)=0 for any set
(€15 *++ €4) Of elements of C, then f is identically zero.

The proof is standard and we therefore omit it.

The assumption on 4 in Theorem 2.2 is satisfied if either the characteristic
of A is zero or A contains an infinite field.

A criterion of strong invariance given in Theorem 2.2 is rather difficult to
use practically, and is well complemented by the following result, which can be
proved by the same principle as in Theorem 2.2.

Theorem 2.3. Let k be an infinite field and let A be a k-domain satisfying
the conditions:

(1) Spec(A4)(k) is dense in Spec(A).

(2) There is no non-onstant k-morphism from the affine line to Spec(4).
Then A is strongly invariant.

The converse of Theorem 2.2 does not hold as it is shown by the following

Theorem 2.4. Let k be a field and let A be the affinie ring of the affine cone
of a smooth projective variety U. Assume that there is no non-constant k-rational
mapping from the affine line A' to U, k being an algebraic closure of k. Then A
is strongly invariant, while A has a non-trivial locally finite higher derivation.

Proof. (1) Write A=k[Z, ---, Z,}/(F,, --+, F,,), where F, . F, are
homogeneous polynomials of k[Z,, -+, Z,]. Define a higher derivation D on
k[Z,, -++, Z,] by setting D,=id., D,(Z,)=Z; and D ;(Z;)=0 for 0<i<t and j >2.
It is then easy to see that D induces a non-trivial locally finite higher deriva-
tion D on A.

(2) We shall show next that A4 is strongly invariant. Assume that we are
given a k-algebra B such that A[X,, -+, X,]=B[Y,, -, Y,], where X, -+, X,
and Y,, -+, Y, are algebraically independent over 4 and B respectively. By
virtue of Lemma 2.7 below, we may assume that k is algebraically closed. Set
V=-Spec(4) and W=Spec(B). Noting that B is an affine k-domain as well, V'
and W are the affine varieties defined over k. Then we have V' X A=W X A",
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where A” stands for the affine #-space. First of all we show that for any point
w of W, the affine space w=A" (which is a fibre of the canonical fibration
Wx A"—W) coincides with an affine space v X A" for some point v of V, v X A"
being a fibre of the canonical fibration ¢: VX A" V. Let = be the canonical
projection V' — (0, ---, 0)—=U. The image =q(wXx A") should be one-point,
since there is no non-constant rational mapping from A' to U. Therefore the
image g(w X A”) is either one-point or an affine rational curve with only one
place at infinity. Assume the latter case. Then g(wX A”") coincides with a
generator of the cone. Hence g(w X A”) passes through the vertex O=(0, ---, 0)
of the cone, which is the only singular point of V. 'This means that @ X A" has
a non-empty intersection with the singular locus O X A" of VX A”. However it
is easy to see that W has the only one singular point =,, and the singular locus
of WX A” must be w,X A". Since the affine space w X A" has no non-empty
intersection with the singular locus O X A”=w,X A" if w=+w,, the above ob-
servation leads to a contradiction. Thus g(wXx A”) is a one-point v of ¥ and
wX A" is contained in the affine space vX A" Then we have obviously
wX A"=vX A”". Actually this is the case for all points w of W, taking into
account the fact that O X A"=w,X A". This means that every maximal ideal of
B is vertical relative to 4. Then we conclude our proof owing to the result

([1], (1.13)). q.e.d.

To state Lemma 2.7 which we used in the above proof, we need

DErFINITION 2.5. Let R be a ring and let A be an R-algebra. A is called
R-n-invariant (or strongly R-n-invariant) if A satisfies the condition: Given an
R-algebra B and indeterminates X, -+, X,; Y, «+-, Y, if A[X,, -+, X,)] is R-iso-
morphic to B[Y,, -+, Y], then A is R-isomorphic to B (or if any R-algebra B and
any R-isomorphism ¢: A[X,, -, X,]=>B[Y,, -+, Y,] are given, then ¢(A)=B).
If an R-algebra A is R-n-invariant (or strongly R-n-invariant) for all n>1, A4 is
simply called R-invariant (or strongly R-invarinat).

Lemma 2.6. Let R be a ring and let A be a reduced R-algebra. Assume
that A satisfies the condition: Given any R-algebra B and a relation A[X,, -, X,]
=B[Y,,-,Y,], X,,, X, and Y,, ---, Y, being algebraically independent over A
and B respectively, we have B[X,, -, X, |=B[Y,, -, Y,]. Then A is strongly
R-n-invariant.

For the proof, we refer to [2].
Now the result used in the proof of Theorem 2.4 can be stated as follows:

Lemma 2.7. Let R be a ring and let A be a reduced R-algebra. Let R’
be an R-algebra which is a faithfully flat R-module. If AQgR’ is strongly R'-n-
invariant, A is strongly R-n-invariant.



STRONGLY INVARIANT RINGS 7

Proof. Assume that we are are given an R-algebra B such that
A[X,, -+, X, |=B[Y,,-+,Y,]. Then(AQrR)[X,, ::, X, ]=(BQgR)[Y,,*:-,Y,].
Since AQgR’ is strongly R’-n-invariant, we have AQrR'=B®zR’. On the
other hand, we have the canonical inclusion B[X,, ---, X, ] B[Y,, --, Y,], and
(BQrR)[X,,+, X, ]=(BQgR')[Y,,+--, Y,]. By the (fpqc)-descent theory ([5],
IV (2.7.1)), we have B[X,,--, X,]=B[Y, -, Y,]. Then Lemma 2.6
acomplishes our proof. q.e.d.

One of the concrete examples which satisfy the conditions of Theorem 2.4
is: A=k[X, Y, Z][(X*+ Y*+Z°).

Before going to further sufficient conditions for strong invariance, we shall
give a necessary condition:

Theorem 2.8. Let A be a ring. If A is strongly 1-invariant, A has no
non-trivial locally finite iterative higher derivation.

Proof. Assuming that 4 has a non-trivial locally finite iterative higher
derivation D, we shall show that 4 is not strongly 1-invariant. Define a ring
homomorphism @: A—>A[t] as usual, and let B=g@(A). We claim that A[f]=
B[#]. In fact, the inclusion B[tf]<A[#] is obvious. To show the converse
inclusion, we need the notion of length of each element of 4 with respect to a
given locally finite iterative higher derivation D. The length /(@) of an element
a of A is a non-negative integer # such that D,(a)=0 and D,,(a)=0 for all m>n.
By induction on the length /(a), we prove the inclusion: AcCB[t]. If l(a)=0,
then acB. Assume that all elements of 4 of length <z belong to B[f]. Let
a be an element with /(@)=n. Then [(DJa))<n if :>1. Hence D,(a)<E B[t].
By the way, ¢(a)=a+D,(a)t+---+D,(a)t". Hence acB[f]. Thus we have
proved A[t]=B[t]. Since D is non-trivial, B=A. Therefore 4 is not strongly
1-invariant. q.e.d.

A question which arises from Theorem 2.8 1s: Let 4 be a ring. If 4
has no non-trivial llocally finite iterative higher derivation, is 4 strongly
invariant (or at least strongly l-invariant)? When A4 is an affine domain of
dimension 1 over a field, this is true and was essentially proved in [1], (3.4).
We have in fact

Theorem 2.9. Let k be a field and let A be an affine k-domain of dimension
1. Then the following conditions are equivalent to each other:

(1) A is strongly invariant.

(2) A is strongly 1-invariant.

(3) A4 has no non-trival locally finite iterative higher derivations.
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Proof. The implication (1)=(2) is clear, while (2)=(3) follows from (2.8).
Therefore it remains to show (3)=(1). For this, we use the result, proved in
[1]; (3.4), that under the above assumptions 4 is either strongly invariant or A
is a polynomial ring k,[x] over the algebraic closure &, of kin 4. In the latter
case, A has a non-trivial locally finite iterative higher derivation. Therefore, 4
should be strongly invariant under the condition (3). q.e.d.

When dim A=2, a partial answer to the above question is stated as follows:

Theorem 2.10. Let k be an algebraically closed field of characteristic zero
and let A be an irrational smooth k-affine domain of dimension 2. Then one of
the following three cases takes place:

(1) A is strongly 1-invariant.

(2) A has a non-trivial locally finite iterative higher derivation.

(3) There is a surjective morphism from Spec(A) to a non-singular complete

curve of genus>0.

Proof. If A is not strongly 1-invariant, there exists a k-algebra B (+4)
such that A[X]=B[Y], where X and Y are algebraically independent over 4
and B respectively. Then the ruling of Spec(A[X]) given by the fibration
Spec(A[X])=Spec(4)x A'—Spec(A4) does not coincide with the ruling of the
same variety given by the fibration Spec(B[Y])=Spec(B)x A'—>Spec(B). For,
otherwise, all maximal ideals of B are vertical relative to 4. Henec 4=B (cf.
[1], (1.13)). Let V'=Spec(4) and W=Spec(B). Then VX A'=Wx A'. Let
V be a non-singular completion of ¥, whose existence will be clear and which
we may assume that F=V—V has no exceptional curves of the first kind. Vis
a ruled surface (cf. (2.1)). Let C be the base curve of V and let z: V—C be
the canonical projection. By the assumption that A4 is not rational. Cis a
non-singular complete curve of genus >0. Denote by /, the affine line wx A*
for any we Wand by [/, the image of /,, by the canonical projection ¢q: VX A'—V.
For a general we W, [, is an affine rational curve with only one place at infinity.
Since the genus of Cis >0, /7, must be contained in a fibre of z. Therefore, for
a sufficiently general point we W, I/, is isomorphic to A" and is of the form:
(a fibre of #)—(the point of infinity). Moreover, I7,N 1}, =¢ if I;,=1},.

If #(V)=C. we are led to the third case in the statement of Theorem.
Assume that z(V')#C. Then z(V') is an affine open set of C. Let (V)=
Spec(4,). A, is a k-subalgebra of 4. It is now easy to see that there exists an
element s of A, such that setting U=(the set of points of z(V) where s does not
vanish), z7'(U) is a trivail P'-bundle, i.e., z7'(U)=U X P*, and that for any
uce U, VNz"'(u) is of the form for I/, some w W and is isomorphic to A"
Let F'=F Nz (U). Since z|z: F’/—U is generically one to one and the
characteristic of & is zero, 7|z is birational. Shrinking U to a smaller affine
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open set of C if necessary, we may assume that 7| z/: F'—U is an isomorphism,
Then F’ is a section of the trivial P'-bundle #~'(U). Therefore V Nz~ (U)==
n (U)X A'. Let S be the multiplicatively closed set generated by s in A4,.
Then S'A=(S"'4,)[¢] for some element ¢ of 4, which is algebraically inde-
pendent over A. We can now define a non-trivial locally finite iterative higher
derivation D on 4 as follows: Dy=id,4, D,| 4,=0 and D,(¢)=s* with sufficiently
large integer o and D,=(1/i!)D{. 1If a,, ---, a, are generators of A4 over k and
if a;=f(t)/s* with f(t)eA,[t] for 1<i<m, it is enough to take « as large as

a>max (). q.e.d.
1<i<r

The authors have an impression that the third case is contained in the first

case. Further observation on the third case will be given in the final part of
this paper. When dim 4>2, we have nothing to say.

3. Examples and counterexamples

1. One of the interesting examples of strongly invariant rings was first given
in [6] and later discussed in [3]. 'This is the following:

Let R be the field of real numbers and let 4, be the affine ring of the real
n-sphere, ie., 4,=R[X,, -, X,]/(X§+---+X2—1) for n=1, 2, .. Then 4,
is strongly invariant, a one-parameter polynomial ring 4,[#] is invariant and a
polynomial ring A4,[¢, +*-, t,] of dimension # is not 1-invariant if n=1, 3, 7.

Looking at this example one might ask if a one-parameter polynomial ring
A[t] is invariant (or A-invariant) provided that A4 is strongly invariant. However
this is false as it is shown by the following example (cf. [2]): Let & be a field of
characteristic p>0 (p=2) and let A=Fk[t?, t?*'], ¢ being an indeterminate.
Let A[X] be a one-parameter polynomial ring. Then A[X] 1s not invariant,
while 4 is strongly invariant.

2. The converse of Lemma 2.7 is false. An example is a one-dimensional
k-wound unipotent group: Let & be a non-perfect field of characteristic p>0,
and let A=k[X, Y](Y?"—X—a,X?—---—a,X?"), where a,, ***, a,=k and one
of a, -+, a,&k?. Then A is strongly invariant (use (2.3)). (Note that A4 is
not k-rational except when p=2 and Y?=X-+4aX*? with ack and ack’)
However if & is the perfect closure of k, AQ.k" is a polynomial ring over %’.
Hence AQ &’ is not strongly invariant.

3. The remaining part of this paper is devoted to an investigation of the third
case of Theorem 2.10. In the following % is an algebraically closed field of
characteristic p and C is a non-singular complete curve of genus g>0. We use
the term ‘“‘vector bundle” synonymously with “locally free ©,-module”. A
section of a projective bundle P(E)is a curve on P(E), on which the restriction
of the canonical projection P(E)—C is an isomorphism.
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We have in the first place

Lemma 3.1. Let L be an ample line bundle on C and let E be a non-trivial
extension of L by O¢. Let s be the section of P(E) corresponding to L and let X=
P(E)—s. Assume that the characteristic of k is zero or deg L>2g. Then X
is an affine surface such that the restriction onto X of the projection P(E)—C is
a surjective morphism onto C. Conversely if an affine surface X is P'-bundle
P(E) on C deleted a section, then X is isomorphic to an affine surface constructed
tn the above fashion.

Proof. Let L be an ample line bundle on C and let £ be a non-trivail
extension of L by Oc. Assume that the characteristic of & is zero or deg
L>2g. Then it is known (cf. [4]) that £ is an ample vector bundle on C and
the tautological line bundle Opz(1) is isomorphic to Opgy(s). Therefore s is
an ample divisor on a non-singular projective surface P(E) and X=P(E)—s is
affine. It is obvious that the restriction onto X of the projection P(E)—C
is a surjective morphism onto C.

Conversely, let E be a vector bundle on C, let P(E) be the P'-bundle
associated with E and let X be the P(E) deleted a section s. Let L’ be the
quotient line bundle of E corresponding to s and let L be the kernel of E—L’;
O—->L—E—L—-0. We shall show that L’'QL™" is ample and that X is iso-
morphic to P(EQL™")—the section s’ corresponding to L'@L™*. Since X is
affine, s is irreducible and P(E) is non-singular, the section s regarded as a
divisor on P(E) must be ample. Let 7: P(E)— P(EQ®L™") be the canonical
isomorphism. Then the section s is transformed to the section ' by 7 and X to
the affine surface P(E®L™')—s. Hence s’ is an ample divisor on P(EQL™).
Let j: C— P(E) be the isomorphism sending C to s. Then ¢.j is an
imbedding. Taking account of the facts that Opger-1,(1)=Opger-1(s’) and
(@) *(Oprceor- (1)) =*(Opre(1)QL™")=L"QL™", we know that L’®L"" is ample
on C. q.e.d.

The affine ring of an affine surface constructed in Lemma 3.1 has no non-
trivial locally finite iterative higher derivation, though it has a non-trivial locally
finite higher derivation. This is an immediate consequence of

Lemma 3.2. Let V be a variety defined over k, let L be a line bundle over
V and let E be an extension of L by Oy. Let X be the P(E) minus the section
corresponding to L. If H'(V, L™")%0, X has a non-trivial G,-action. If there
is no non-constant morphism from A to V, then H(V, L™")=£0 provided that X
has a non-trivial G ,-action.

Proof. Let U={U,},c; be an affine open covering of V such that E| U, is
trivial for any /= and let {(8;‘:‘ l{f‘)} be the transition matrices of E relative to



STRONGLY INVARIANT RINGS 11

1, where {a;;} is the transition functions of L. X is in fact an A’-bundle on
V with affine coordinates {x;} which are subject to x;=a;;x;+b;; for any 7, j € I.

If H(V°, L™")=%0, we a may assume that there is a set of functions {s;} on
V such that s,eT\(U;, Oy) and s;=a;;s; for any i, j€l. Define a non-trivial
locally finite iterative higher derivation D={D,, D,,**-} on I'(U;, Oy)[,], which
is the affine ring of z7'(U;), = being the canonical projection from X to

V: Dy=id., Dyl rcw, 00 =0 for any n>0, D,(x7) =(’Z >x2’""s‘§‘ if m>nand 0

otherwise. Then D gives rise to a non-trivial G,-action on {z7'(U,)},
‘pp: r (U)X G,—n"'(U,). It is now easy to show that the G,-actions on
{="'(U;)} patch each other on = ~*(U;N U;) to give a nonstrivial G,-action on X.

Assume next that there is no non-constant morphism from A' to V. If
X has a non-trivial G,-action, then G, should act on X along fibres of #, and
the G,-invariant subfield in k(X) is (V) (cf. [7]). For each i1, the G,-action
restricted on z~*(U;) gives rise to a I'(U;, Oy)-homomorphism @,: T'(U;, Oy)[x,]—
T(U;, Oy)[x;, t], t being an indeterminate. Write @,(x;)=s;t"-+(terms of lower
degree in ¢ with coefficients in T'(U;, Oy)), where n>1 and s,€T(U,, Oy)[x,].
Since the G,-invariant subfield of kA(X) is k(V) and since s; is G,-invariant,
s;€T(U;, Oy)[x]Nk(V)=T(U;, Oy). Moreover it is easy to see that z is inde-
pendent of ¢ and s;=a;s; for any 7, j&1. Then {s,;},c; give a non-zero section

of H(V, L™"). Hence H(V, L™")=0. q.e.d.

The affine ring of an affine surface constructed in Lemma 3.1 is strongly
1-invariant if the characteristic of & is zero. 'To prove this result, we need

Lemma 3.3. Let k be a field of characteristic zero and let @ be a k-auto-
morphism of the polynomial ring k[x, y] in two variables given by p(x)=f, p(y)=g.
Then f has the following form unless f is a polynomial in x or y alone.

) f= @byt Ty
S
where a, b and c’s are elements of k and ab==0. The same holds for g.

Proof. (I) First we shall treat the case where one of f and g, say f, is a
polynomial in, say, y alone. By the assumption @ is an automorphism of
k[x,y]. Hence we must have that (0f/0y)(0g/0x) is a non-zero constant in k.
Hence 0f/0y=a and 0g/0y=>b are also non-zero constant in k. From this we
get easily f=ay+-c, g=bx+h(y).

Now assume f has the form (*). We shall show that if g is not a polynomial
in x or y alone, then g has also the form of (). Let us set first

g = a(Px“+ta () taly)  (ay)*0, u>0)

where ay)Ek[y]. From the fact that 0(f, g)/0(x, y) is a non-zero constant
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we easily get a5(y)=0. Hence a,(y) is a non-zero element of k. Similarly if
we rewrite g in the form

g = Bo(®)y"+Bi(x)y" 4 +By(x)  (By(x)+0, 2>0)

We easily see that B, is an element of k. These two results imply that g has
the form (*).

(II) It 1s well known (cf. [10]) that any k-automorphism of R[x, y] is
written as a composite of linear automorphisms; (x, y)—(ax+By-+-¢, vx+3y+d)
with ad—Bv=+0, and Jonquiére automorphisms; (x, y)—(x, y-+h(x)) with
h(x)ek[x]. Using this result, we shall show that any k-automorphism of k[x, y]
is a composite of automorphisms, each of which is an automorphism p such that
p(x) or p(y) coincides with one of x and y. (We shall say such an automor-
phism to be of type (P)). Since Jonquiére automorphisms are of type (P), it
suffices to show that a linear automorphism is a composite of two linear auto-
morphisms of type (P). In fact, a linear automorphism (x, y)— (ax-By-+c,
vx+38y-+d) is decomposed as follows: If a==0, (x, y)—(x',y)=(ax+By+c, y),
(', ¥) > (¥, (V] )+ ((@d— By +(d—(vela))). If a0, (x, ) (¥, ¥)
=(9, va-+8y+d), (+', ¥ )~ ((By—ad)[v)¥' +(a/v)y' +(c—(ad]7), ¥).

(III) Write the given automorphism ¢ as @=@, @, " @, Where
@y, -+, @, are automorphisms of type (P). We shall prove our assertion by
induction on r. If r=1, @ is one of the following forms (x, y) (ax+A4(y), ),
(%, 93, ax+h(3), (5 M, by+I) or (x,9)1- (b.y+1(x), %), where a,
a, b, b,k and k(y), h(y)=k[y] and l(x), [,(x)=k[x]. Hence the assertion is
clear. Assuming next that the assertion is true when ¢ is a composite of less
than r automorphisms of type (P), we consider the case where o=@, @,_,+*** +@,.
Let yr=@,_, -, and let Y (x, ¥)=(f,, g.) with f,, g, €k[x, y].

By induction assumption f,, g, have the form (*) unless they are polynomials
in x or y alone. Since @, is an automorphism of type (P) we have one of the
following four cases.

W) e=f, () e#)=g, (i) o0)=f ) e(¥)=g.

In any casz we easily get the assertion from the results in the step (I). q.e.d.

Now we can prove

Theorem 3.4. Let k be an algebraically closed field of characteristic zevo,
let C be a non-singular complete curve of genus =0 defined over k, let L be an ample
line bundle over C and let E be a non-trivial extension of L by Oc. Let X be the
P'-bundle P(E) minus the section s corresponding to L and let A be the affine ring
of X. Then A is strongly 1-invariant.

Proof. Our proof consists of several steps.



STRONGLY INVARIANT RINGS 13

(1) Let B be a k-algebra such that A[T]=B[V], T and V being algebrai-
cally independent over 4 and B respectively. Let Y=Spec(B) and let n: X—C
be the canonical projection. By the composite of projections ¥ X A'=XXx A’

—p;X —C, each line (y) X A' with ye Y is sent to a point of C. Hence 7+ p,

4
factors as Y X A‘—P—1> Y——q—+ C and Y is regarded as a C-scheme by ¢q. Hence
q is surjective. Let W={U,},c; be an affine open covering of C such that E |y,
is trivial for any i€1. Let {;},c; be an affine coordinate system of X relative
to U. Then {x;},c; is subject to x;=a;x,+b;; for any i,j=I. Let U=
Spec(R;) and let ¢-((U;)=Spec(B;). Then R/]x; T]=B,V]. Since B;is an
R;-algebra and R; is regular, there is an element y,&B; such that B,=R,[y;]
(cf. [1]). For any i, j 1, we have: y;=aj,y;,+b}, with a},€R¥; and b}, R,

where U;N U;=Spec(R;;). Then, it is easy to see that {(85‘ ?-,”)} are transi-

tion matrices of a vector bundle E’, which is an extension of a line bundle L’
by Oc, L’ being defined by transition functions {aj},} relative to . Moreover
Y is the P'-bundle P(E’) deleted the section s’ corresponding to L.

(2) Let Q%/c be the O x-module of 1-differential forms of X over C. Since
Qkscla-1wp=(d%)0-1vp and dx;=a;dx; we have Qk,c=LR0,Ox. The
relation A[T']=B[V]implies that LQO:Ox[T]DOx[T =L Q@0:O¢[V 1D O¢[V].
Hence LQ®0:Ox[T]=L ®0:0¢[V], and (LQocL' ") R®0sOx[T]=Ox[T].
Then reducing Ox[T] by TOx[T], we have (LQoL ")QR0,0x=0x. Let
D be a divisor on C such that LQL "*=0Og(D). Then there exists a rational
function & of k(X) such that z~'(D)=(k). Let # be the canonical projection
P(E)—C. Then, Jooking upon % as an element of k(P(E)), we have #~*(D)-+
ms=(h), where me Z and s is the section of P(E) coresponding to L. If m=0,
(7"Y(D)+ms)-I=m for a general fibre / of #. This is absurd unless m=0.
Then restricting #"'(D)=(k) on the section s, we know that D~0 on C.
Therefore L=L’. Shrinking the affine open covering to a finer one, we may
assume that a;;=a), for any 7, j= 1.

(3) We have R,[x;, T]=R,[y;, V] for any il. Therefore we can write:
Vi=Fo(%)F ()T -+ +fiu()T™ with fi()), -+, fin(®;) € Ri[x;]. We shall
prove that n=0. Otherwise, y, is a generator of the two-dimensional polynomial
ring K{x;, T, K being the function field 2(C) of C. Then, Lemma 3.3 implies
that f.(»;)=K. Hence f,,(x;)ER[x;]JNK=R;. On the other hand, it is easy
to see that f,,(x;)T" is the term of the highest degree in T of y; and that f;,(x;)
=a,;fi(x;) for any 7, jel. Let a;=f;,(x;). Then {a,};c; defines a non-zero
section of H°(C, L™). This is absurd since L is an ample divisor on C.
Therefore we know that n=0. Then y,=R,[x;] for any /1. It is easy to see
that BC 4. Changing the roles of x; and y; in the above argument, we have
AcB. Therefore A=B, and 4 is thus strongly 1-invarinat. q.e.d.
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We shall next give a brief indication of constructing more complicated
affine surfaces from the affine surface given in Lemma 3.1. We use the
same notations as in Lemma 3.1. Let / be a general fibre of the projection
#: P(E)—C, and let P,,---, P,, be points on / other than the point of intersec-
tion Pi=I-s. Blow up points P,, -+, P,, and let Ep,, -, Ep_be the exceptional
curves. Let !/ be the proper transform of /. Then it is not difficult to show
that ns+/" is an ample divisor on the surface Dilp, .. p (P(E)), for sufficiently
large n. 'Therefore X’=Dilp, .. p (P(E))—(sU') is an affine surface which is
isomorphic to X with m affine lines inserted in place of one fibre deleted.
More complicatedly, we can blow up as many infinitely near points at P,,+**,P,,
successively as we like. Let p: S—P(E) be the surface obtained by these
blowings up. Then a divisor on S whose components are irreducible com-
ponents of p~*(sU!/) with appropriate multiplicities is an ample divisor if we
require the following conditions satisfied:

(1) D contains p~*(s) with sufficiently high multiplicity.

(2) D is connected and S—D contains no complete curves.

Then S—D is affine. 'The operation of this kind can be made on a finite number
of fibres of #. A question which arises naturally is to ask whether these affine
surfaces are strongly invarinat or not. In simpler cases, we can prove that they
are strongly 1-invariant.

An affine version of our Theorem 3.4 was given in [3]. To state the results,
we need

DerINITION 3.5. Let R be a ring and let A be an R-algebra. A is said a
local polynomial ring over R if for any prime ideal  of R, A, is a polynomial
ring over Ry,

Then we can prove the following two results, for whose proofs the reader
can refer to [3].

Theorem 3.6. Let R be a reduced ring and let A be a finitely generated
local polynomial ring over R of relative dimension 1. Then there exists a projec-
tive module P of rank 1 such that A is R-isomorphic to the symmetric R-algebra
S*(P) generated by P.

Theorem 3.7. Let R be a normal domain and let P be a projective R-
module of rank 1. Then the symmetric R-algebra S'(P) generated by P is R-
invariant, but it is not strongly R-invariant.

In the proof of the last theorem, we use the fact that if R is a normal domain,
then a polynomial ring over R of dimension 1 is R-invariant (cf. [2]).

Appendix

In this appendix we shall determine the structure of an integral domain
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which has a locally finite iterative higher derivation (abbreviated as ““1fihd”).

Theorem. Let A be an integral domain and let D={D,, i=0, 1, -} be
a lfihd on A and let A, be the ring of D-constant, i.e. the set of elements a such that
Dya)=0fori>1. Then there exists an element u of A, such that we have A[u™"]1=
Aju"][x] where x is a variable element over A,. Conversely assume that A 1is
finitely generated over a subring A,. Then the existence of an element u satisfying
the above condition implies that A has a Ilfihd.

Proof. We shall denote by A; the set of elements defined by
A;={acA4|D,(a) =0 for n>i}.

A4, is the ring of D-constants, A;’s are A,-modules and we have A=UA4;. An
integer # will be called a jump index if we have 4, S A4,. If the first jump
index is 1 the proof is immediate. In fact let x be an element of A4, not in A4,.
Then u=D(x) is a D-constant. Hence we can extend D uniquely to the quotient
ring A[x~"] in which the element xu~" satisties the condition in (1.4). Hence
we have A[u~']=A4,[u"*][x]. Since the first jump index is 1 if the characteristic
of A is zero and D is not trivial, we shall hereafter be mainly interested in the
case of positive characteristic p. Hence in the following we shall assume that
the characteristic of A4 is a positive prime p and the first jump index of D is
larger than 1. We shall prove first the followings:

(1) The first jump index = is a power of p, say, n=p".

(2) The m-th jump index is mp°® (m=1, 2, ---).

(3) Let a be an arbitrary element of 4,\A4,-,. Then Supp(a) consists
of powers of p, where we mean by Supp(e) the set of integers k such that
Dy(a)*=0. Moreover D(a)’s are D-constant for any k< Supp (a).

Let n be the first jump index and let

n= ”0+”1P+n21’2+ ""F%Ps ’ (OS”:<P: ns:t:O)
be its p-adic expansion. Since D is iterative we can see easily that we have
D, = (1/n!1)(D,)™(D )"+ (Dp*)™

where n!!=n,!n,!---n,!. Now assume # is not a power of p. Then we have
either

(i) n>1
or

(i) »,=0and n,4---+n,>2.
In case (i) we have n==0 (mod p). Then ¢=D,_,(a) belongs to A, but not to
A, since D,(c)=D,D,_,(a)=nD,(a)+0 where ac A,\A,-,. This isa contradic-
tion to the assumption that the first jump index is>1. In case (ii) we shall set
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c¢=Dys(a). Then we can see immediately that any integer larger than n—p°
(<n—1) cannot be a support of a. Hence ¢ belongs to 4,-,=A,. On the other
hand we see that D,,_ ;5D ys(a)=n,D,(a)+0 and n—p°>1. This is a contradic-
tion. Thus we have proven that # is a power of p.

Next we shall prove (2). Itisclear that mp’(m=1, 2,+-) are jump indices
because if x is in 4, and not in A,, then 4™ is contained in A,,,s but not in the
preceding A’s. Hence it remains to show that mp° exhaust all jump indices.
Let g be the least jump index which is not a multiple of p° and assume that we
have

mp*<g<(m-+1)p°.

Let us set g,—=¢g—mp°<<p®. Let x be an element of A, not in A,_, and let us
set c=D,,ps(x). Then we have Dy (c)==Dg D,.ps(x) =Dg(x) 0. Since p*>g,
>0, ¢ is not a D-constant. On the other hand the supoprt of ¢ consists of
integers less than p° because x is in 4,. This is a contradiction.

The proof of (3) will be carried out by a similar device. In fact if x is an
element of A4, which is not a D-constant and let m be a support of x, i.e.,
D, (x)=0. If we set

m = mo‘|‘m1P+“‘+tht (mt:l:O) 0£m,~<P)

and if we assume either m,>2 or some of m,(i<f) is not zero then we shall set
c=Dy(x). Then we have D,,_,/(c)%0, and this will lead us to a contradiction
since m< p° and A,=---=A,s_,. The rest of assertion in (3) is also immediate.

After these preparation we shall go to the proof of the Theorem. Let, as
before, n=p° be the first jump index for a lfihd D and let x be an elements of
A, not in A, Let u be the product of non-zero D,i(x)’s (0<i<s). Since u
is a D-constant we can extend D to the quotient ring A[»™*] in a unique way.
Let a be an arbitrary element of 4. Then there exists an integer m such that
a belongs to 4,,,s. Let us set

a, = a— Dm ps(a)Dps(x)_mxm .

Then we have D,,(a,)=0. Hence a, is contained in A, . We can con-
tinue this process until we get a polynomial expression in x with coefficients in
Aj[u*]. It is easy to see that x is a variable over 4,.

Conversely assume that there exist an element % in 4 such that we have
Alu]=A,[u""][x] where 4, is a subring of A containing # and x is a variable
element over 4, contained in 4 and 4 is finitely generated over 4,. Then we
can define a Ifihd D on A[u™"] in a standard way. Since 4 is finitely generated
over A, there is an index f such that u/D transforms A into itself (see the
proof of (2.9)). 'This proves the Theorem completely.
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Corollary. Let A be an integral domain over a field k of transcendence
degree 1.

Then A has a lfihd if and only if we have A=k,[x] where k, is the

algebraic closure of k in A.

Proof. Let u be an element of A4, such that A[u™"]=A4,[»""][x].

Since 4

is of transcendence degree 1 over k and x is variable over 4,, 4, must be algebraic

over &, i.e., A, is contained in &,.
that 4 is contained in k[x].

Hence # must be a unit of 4. This implies
The converse inclusion is trivial and we have

A=k[x].
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