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Introduction. Adopting the terminology of [1]1}, a ring A is called w-
invariant (or strongly n-invariant) if A satisfies the condition: Given a ring B
and indeterminates Xly • - , ! „ ; Yly •••, Yny if A[Xly ~ yXn] is isomorphic to
B[Yly •••, YJ, then A is isomorphic to B (or if any ring B and any isomorphism
φ: A[Xly ...9XH]->B(Y1, — , y j are given, then φ(A)=B). If a ring A is
^-invariant (or strongly w-invariant) for every integer n ^ l , A is said to be
invariant (or strongly invariant).

Several types of rings are known to be invariant or strongly invariant re-
spectively (cf. [1], [2], [8] etc.). However we have not any good criteria for a
ring to be invariant or strongly invariant, and it is tempting to look for criteria
of this kind. A purpose of the present paper is to give sufficient or necessary
conditions for a ring to be strongly invariant in terms of locally finite (or locally
finite iterative) higher derivations.

The present paper consists of three parts. In the first section, definitions
of locally finite (or locally finite iterative) higher derivations are recalled, and
several results which follow easily from definitions are given. In the second
section, sufficient or necessary conditions for strong invariance are given. In the
final section we shall see how well these conditions work in giving examples and
counter-examples. In the appendix we shall prove a Lemma on a ring which
has a locally finite iterative higher derivation.

Our terminology is essentially the same as that of [1].

1. Preliminaries

We shall begin with

DEFINITION 1.1. Let A be a ring (or an algebra over a ring R). A locally
finite higher derivation on A is a set of endomorphίsms D={Doy Dly •••} of the
abelian group A satisfying the following conditions:

(1) Do = identity, D{(ab) = Σ Dj{a)Dk(b) for any as b of A.

(2) For any a of A, there exists an integer n>0 such that Dm(a)=0 for every

*> The senior author is supported by Takeda Science Foundation
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2 M. MlYANISHI AND Y. NAKAI

m>n.
When A is an R-algebra and Dn is R-linear for all n>0, D is called R-trivial.
D is called iterative if D satisfies the additional conditions:

(3) /),/), = ('•+J')Z),+,for alii,j>0.

The concept of locally finite (or locally finite iterative) higher derivations
has its own geometric meanings. Namely we have

Lemma 1.2. Let A be a ring {or an algebra over a ring R). Then the
following conditions are equivalent to each other:

(1) D is a locally finite higher derivation {or a locally finite R-trivίal higher
derivation) on A.

(2) The mapping φ: A-^A[t] given by φ{a)=Σ Dn{a)tn is a homomorphism

of rings (or R-algebras) , where t is an indeterminate.
Similarly the following conditions are equivalent to each other:
(Γ) D is a locally finite iterative higher derivation {or a locally finite itera-

tive R-trivial higher derivation) on A.
(2') φ: A^A[t] defined in the above condition (2) is a homomorphism of rings

{or R-algebras) such that {φ®id.)φ = {id.®A)φ, where A: Z[t]-+ Z[t]®zZ[t]
{or Δ: R[t]->R[t]®RR[t]) is a homomorphism of Z-algebras {or R-algebras) defined
by A{t)=t®ί + l®t (cf. the following diagram);

A -¥-+ A[t]=A®RR[t]

φ\ \φ®ίd

A®RR[t] ——-> A®RR[t]®RR[t]
ιd®A

(30 > : Spec (A) X zGaZ -» Spec {A) (or aφ: Spec (A) X RGa>R -* Spec (A))
is an action of the additive group scheme GaZ {or GaR) on Speφ4).

Proof. The equivalence between (1) and (2) is nothing but a reformulation
of the definition. The equivalence of (I7), (2') and {3') will be found in [7].

Let D be a locally finite higher derivation on a ring A. An element a of
A is called a D-constant if D^a)=0 for all i>0. An easy remark on D-constants
is the following

Lemma 3. Let A be an integral domain and let D be a locally finite higher
derivation on A. Then any invertible element of A is a D-constant.

Proof. Let φ: A-+A[t] be the homomorphism defined as above. If a is
an invertible element of A> φ{a) is invertible in A[t\. Hence φ{a)^A. q.e.d.
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The set of all D-constants form a subring AQ of A, and it is easy to see that
Ao is algebraically closed in A. If D is iterative, we can say more about AQ.
Namely,

Lemma 1.4. Let A be a ring, let D be a locally finite iterative higher deriva-
tion on A and let Ao be the subring of D-constants. If there is an element t of A
such that A ( 0 = 1 and A00=O for al1 *">!> tfιen A=A0[t] and t is algebraically
independent over AQ. If A is an R-algebra and D is R-ίήvial, Ao is an R-sub-
algebra of A.

For the proof, we refer to [7].

When an integral domain A has a locally finite higher derivation Z), we
can ask if the quotient field K of A is a simple transcendental extension of a
subfield of K. (If this is the case, we say that A is birationally ruled.) A
partial answer is given in

Lemma 1.5. Let k be a field, let Abe a finitely generated k-domain, let K
be the quotient field of A and let D be a non-trivial (i.e., A^A0) locally finite
higher derivation on A. Assume one of the following conditions:

(1) D is iterative.
(2) dim A=\ and the set of k-rational points of Spec (A), Sρec(A)(k), is

a dense subset of Spec (̂ 4).
(3) The k-algebra komomorphism φ: A-+A[t] defined by D gives K(t)=

φ{K)(t).
Then A is birationally ruled.

Proof. (1) When D is iterative, the additive group scheme Gak acts non-
trivially on Spec(^4). Our assertion then follows from ([7], Theorems 2.1, 2.2
and the remark at P. 205). Moreover, K is a simple transcendental extension
of the quotient field Ko of Ao (loc. cit.).

(2) Assume the second condition. Then there is an element a of A such
that φ(a)=a-\-a1t-\ \-ant

n and φ(a)$EA, where a^A (l<i<ή) and αΛΦθ.
Since Spec(A)(k) is dense in Spec(^4), there is a ^-algebra homomorphism
π: A->k such that π(an) Φθ. The composite ρ=(π®id)φ: A-+k[t] is a ^-algebra
homomorphism such that p(A)(tk. Since dim A = l, Kerp = 0. Hence by
Luroth's theorem, A is rational.

(3) Consider the ί'^adic valuation of K(t) over K and its valuation ring
b*. Let us set t> = t>* Π φ(K). Let p* and p be the maximal ideals of b* and
fc> respectively. Since D is non-trivial, there is an element a of A such that
<p(a)<£A. Write φ(a)=a+a1t

J

ί \-ant
n with α Λ φ0. Then φ(a)-1 = t~n(an+

an-xt-
χ-\ \-aΓ')-1(Ξp*f)φ(K) = p. Hence t>Φθ. Since tr. degkφ(K) =

tr. degΛ(b/|))+ht p, the residue field b*/p*y which is isomorphic to K, is not
algebraic over the residue field Όjp. Since b* is obviously a discrete valuation
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ring, we can conclude by Nagata's theorem [9] that K is a simple transcendental
extension of a finite algeraic extension of t>/$>. q.e.d.

An easy consequence of the first case of Lemma 1.5 is

Corallary 1.6. Let k be a field and let A be a finitely generated k-domain
of dimension 1. If A has a non-trivial locally finite iterative higher derivation
D, then A is a polynomial ring over the algebraic closure k0 of kin A.

Proof. We have only to show the existence of a &0-rational point in Spec(^4).
It is easy to see that Ao is a subfield of A and is in fact the algebraic clusure of
k in A. Then, Lemma 1.5 implies that Spec (̂ 4) is birational to the affine line
A1 over k0. Hence Spec (A) has a ^-rational point. q.e.d.

The assumption that A is a finitely generated ^-algebra is not necessary in
proving (1.6). For the proof we refer to the appendix.

2. Strongly invariant rings

In this section, we are interested in looking for sufficent or necessary con-
ditions for a ring to be strongly invariant. A sufficient condition for strong
1-invariance is given, making use of Nagata's theorem [9], in the

Theorem 2.1. ([1]). Let k be a field and let A be an affine k-domain.
If A is not birationally ruled, then A is strongly l-invariant.

If A is not birationally ruled, it seems plausible that A is strongly invariant.
However the authors could not determine whether this is true or not. Another
sufficient condition for strong invariance is stated as follows:

Theorem 2.2. Let A be a ring and assume that A contains a subdomain C
of infinite cardinality, whose non-zero elements are non-zero divisors of A. If A
has no non-trivial locally finite higher derivation, then A is strongly invariant.

Proof. Assume that A is not strongly invariant. Then there is a ring
B(ΦA) such that A[Xly ..., Xn]=B[Yly . . . ,yj, where Xly -7Xn and Y19.~9Yn

are algebraically independent over A and B respectively. Since A^FB, there is
an element a^A such that, regarded as an element of B[Yly •••, Yn]9 a is written
in the form α = Σ bΛlr..tΛnY*i »Y%n with bΛlt...t<Λn^B. Let wly -"ywn be positive
integers. Define a locally finite higher derivation D on B[Yly •••, Yn] by a

homomorphism of rings φ\ B[Yly •••, Yn]-+B[Yly •••, Yny t]y which is given by

φ(b) = b for all b(=B and φ(Yi)=Yi+ffi for \<i<n. We can choose wly ~,wn

so that φ{a) = btm-\-(a polynomial in t of degree <m with coefficients in
B[Yly ..., Yn])y where b^B and m>0. Since B[Yly ..., Yn]=A[Xly .-.., Xn]y we
can rewrite φ{a) in the form φ(a)=f(Xly •••, XΛ)*m+(a polynomial in t of
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degree<w and with coefficients in A[Xly ~yXn]). Then by virtue of the

following easy sublemma, there are elements cly •••, cn in C such that f(cly •••, cM)

Φ θ . Let q: A[Xly --y Xny ΐ]^A[t] be the ^4-algebra homomorphism given by

q(t) = t and q{Xi)=ci for \<i<n. Let c be the canonical injection ι: A-+

A[Xly • ••, Xn] and let p = qφι. Then p: A->A[t] is a homomorphism of ring

with p(A)(tA. Therefore p defines a non-trivial locally finite higher derivation

on A and this is a contradiction. q.e.d.

Sublemma. Let A and C be as in Theorem 2.2. Let f(Xiy ~yXn) be a

polynomial over A in n-indeterminates Xly •••, Xn. If f(cly •••, cn) = 0 for any set

(cly ~'ycn) of elements of Cy then f is identically zero.

The proof is standard and we therefore omit it.

The assumption on A in Theorem 2.2 is satisfied if either the characteristic

of A is zero or A contains an infinite field.

A criterion of strong invariance given in Theorem 2.2 is rather difficult to

use practically, and is well complemented by the following result, which can be

proved by the same principle as in Theorem 2.2.

Theorem 2.3. Let k be an infinite field and let A be a k-domain satisfying

the conditions:

(1) Speφ4)(&) is dense in S p e φ ϊ ) .

(2) There is no non-onstant k-morphism from the affine line to Spec (A).

Then A is strongly invariant.

The converse of Theorem 2.2 does not hold as it is shown by the following

Theorem 2.4. Let k be a field and let A be the affinίe ring of the affine cone

of a smooth projective variety U. Assume that there is no non-constant k-rational

mapping from the affine line A1 to U, k being an algebraic closure of k. Then A

is strongly invariant, while A has a non-trivial locally finite higher derivation.

Proof. (1) Write A = k[Z09 ••-, Zt]l(F19 - , Fm), where Fl9 - , Fm are

homogeneous polynomials of k[Z0, « , Z J . Define a higher derivation D on

k[Zoy —,Zt] by setting D 0 =id. , A ( ^ ) = Z f a n d DAZi)=G f o r 0<i<t a n d ; > 2 .

It is then easy to see that D induces a non-trivial locally finite higher deriva-

tion D on A.

(2) We shall show next that A is strongly invariant. Assume that we are

given a ^-algebra B such that A[Xly •••, Xn]=B[Yly •••, Yn]y where Xly •••, Xn

and Y19 ~-yYn are algebraically independent over A and B respectively. By

virtue of Lemma 2.7 below, we may assume that k is algebraically closed. Set

V=^ Spec (A) and W=Spec(B). Noting that B is an affine Λ-domain as well, V

and Ware the affine varieties defined over k. Then we have VxAn=WxAn,
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where An stands for the affine rc-space. First of all we show that for any point
w of W, the affine space w=An (which is a fibre of the canonical fibration
WxAr'~>W) coincides with an affine space vXAn for some point v of V, vXAn

being a fibre of the canonical fibration q: VxAn-+V. Let π be the canonical
projection V—(0, •••, 0)—>C/. The image πq(wXAn) should be one-point,
since there is no non-constant rational mapping from A1 to U. Therefore the
image q{wXAn) is either one-point or an affine rational curve with only one
place at infinity. Assume the latter case. Then q{wXAn) coincides with a
generator of the cone. Hence q(wXAn) passes through the vertex 0={Oy •••, 0)
of the cone, which is the only singular point of V. This means that w X A" has
a non-empty intersection with the singular locus O X An of Vx An. However it
is easy to see that W has the only one singular point wo> and the singular locus
of WxAn must be woxAn. Since the affine space wX An has no non-empty
intersection with the singular locus QXAn=woχAn if w^w0, the above ob-
servation leads to a contradiction. Thus q(w X An) is a one-point v of V and
wXAn is contained in the affine space vXAn. Then we have obviously
wxAn=vXAn. Actually this is the case for all points w of W, taking into
account the fact that OxAn=wQχAn. This means that every maximal ideal of
B is vertical relative to A. Then we conclude our proof owing to the result
([1], (1.13)). q.e.d.

To state Lemma 2.7 which we used in the above proof, we need

DEFINITION 2.5. Let R be a ring and let A be an R-algebra. A is called

R-n-ίnvarίant {or strongly R-n-invariant) if A satisfies the condition: Given an

R-algebra B and ίndeterminates Xly —, Xn; Y19 •••, Yn, if A[Xlf •••, Xn] is R-iso-

morphίc to B[Yly •••, Yn], then A is R-isomorphίc to B {or if any R-algebra B and

any R-ίsomorphism φ: A[Xly •••, Xn]-^B[Yly ~,Yn] are given, then φ{A)=B).

If an R-algebra A is R-n-ίnvariant {or strongly R-n-ίnvarίant) for all n>\, A is

simply called R-invarίant {or strongly R-invarinat).

L e m m a 2.6. Let R be a ring and let A be a reduced R-algebra. Assume

that A satisfies the condition: Given any R-algebra B and a relation A[Xly •••, Xn]

=B[Y19 •••, y j , Xlf •••, Xn and Yly •••, Yn being algebraically independent over A

and B respectively, we have B[Xly "',Xn]=B[Y1J •••, Yn]. Then A is strongly

R-n-invariant.

For the proof, we refer to [2].

Now the result used in the proof of Theorem 2.4 can be stated as follows:

Lemma 2.7. Let R be a ring and let A be a reduced R-algebra. Let R/

be an R-algebra which is a faithfully flat R-module. If A®RR' is strongly R-n-
invariant, A is strongly R-n-invariant.
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Proof. Assume that we are are given an i?-algebra B such that

A[X19 .-,J5ΓJ=β[yi, . , YJ. Ύhen(A®RR)[Xιr-yXn]=(B®RR)[Yir"J YJ.

Since A®RRf is strongly iϊ'-w-invariant, we have A®RRr=B®RRf'. On the

other hand, we have the canonical inclusion B[Xlt •••, XJcJBfY^ •••, YM], and

(f l®*#)[*„ - , Xn]=(B®RR')[Y1}.-, YJ. By the (fpqc)-descent theory ([5],

IV (2.7.1)), we have B[X19-, Xn]=B[Yly~', YJ. Then Lemma 2.6

acomplishes our proof. q.e.d.

One of the concrete examples which satisfy the conditions of Theorem 2.4
is: A=k[X, Y3 Z]/(X3+Y3+Z3).

Before going to further sufficient conditions for strong invariance, we shall
give a necessary condition:

Theorem 2.8. Let A be a ring. If A is strongly 1-invariant, A has no
non-trivial locally finite iterative higher derivation.

Proof. Assuming that A has a non-trivial locally finite iterative higher
derivation Dy we shall show that A is not strongly 1-invariant. Define a ring
homomorphism φ: A->A[t] as usual, and let B = φ(A). We claim that A[t]=
B[t], In fact, the inclusion i?|Y]c:^l[£] is obvious. To show the converse
inclusion, we need the notion of length of each element of A with respect to a
given locally finite iterative higher derivation D. The length l(a) of an element
a of A is a non-negative integer n such that DM(β)Φθ and Dm(a)=0 for all m>n.
By induction on the length l(a), we prove the inclusion: AczB[f\. If l(a)=0,
then a€ΞB. Assume that all elements of A of length <.n belong to B[t\. Let
a be an element with l(a)=n. Then l(Dt{a))<n if i>\. Hence Dt{a)^B[t],

By the way, φ(a)=a+D1(a)t-\ \-Dn(a)tn. Hence a^B[t\. Thus we have
proved ^[£]=i?[i]. Since D is non-trivial, JBΦ A Therefore A is not strongly
1-invariant. q.e.d.

A question which arises from Theorem 2.8 is: Let A be a ring. If A
has no non-trivial llocally finite iterative higher derivation, is A strongly
invariant (or at least strongly 1-invariant)? When A is an affine domain of
dimension 1 over a field, this is true and was essentially proved in [1], (3.4).
We have in fact

Theorem 2.9. Let k be afield and let A be an affine k-domain of dimension

1. Then the following conditions are equivalent to each other \

(1) A is strongly invariant.

(2) A is strongly ί-invariant.

(3) A has no non-trival locally finite iterative higher derivations.



8 M. MlYANISHI AND Y. NAKAI

Proof. The implication (1)=Φ(2) is clear, while (2)=>(3) follows from (2.8).
Therefore it remains to show (3)=#>(1). For this, we use the result, proved in
[1], (3.4), that under the above assumptions A is either strongly invariant or A
is a polynomial ring ko[x] over the algebraic closure k0 of k in A. In the latter
case, A has a non-trivial locally finite iterative higher derivation. Therefore, A
should be strongly invariant under the condition (3). q.e.d.

When dim A=2, a partial answer to the above question is stated as follows:

Theorem 2.10. Let k be an algebraically closed field of characteristic zero

and let A be an irrational smooth k-affine domain of dimension 2. Then one of

the following three cases takes place:

(1) A is strongly l-invariant.

(2) A has a non-trivial locally finite iterative higher derivation.

(3) There is a surjective morphism from Spec {A) to a non-singular complete

curve ofgenus>0.

Proof. If A is not strongly 1-invariant, there exists a ^-algebra B

such that ^4[X]=J5[y], where X and Y are algebraically independent over A

and B respectively. Then the ruling of Spec(v4[X|) given by the fibration

Sρec(^4[Z])=Spec(^)X A'-^Spec^) does not coincide with the ruling of the

same variety given by the fibration Spec(B[ Y])=Spec(B) x ^t1->Spec(B). For,

otherwise, all maximal ideals of B are vertical relative to A. Henec A=B (cf.

[1], (1.13)). Let V=Sptc(A) and H^Spec(β). Then VxAλ=WxA\ Let

V be a non-singular completion of Vy whose existence will be clear and which

we may assume that F= V— V has no exceptional curves of the first kind. V is

a ruled surface (cf. (2.1)). Let C be the base curve of V and let π: V->C be

the canonical projection. By the assumption that A is not rational. C is a

non-singular complete curve of genus > 0 . Denote by lw the affine line wx A1

for any wG Wand by Vw the image of lw by the canonical projection q: VX A1-> V.

For a general w^Wy Vw is an affine rational curve with only one place at infinity.

Since the genus of C is >0, Vw must be contained in a fibre of π. Therefore, for

a sufficiently general point w^W, l'w is isomorphic to A1 and is of the form:

(a fibre of π)—(the point of infinity). Moreover, Vw Π IL>=Φ if Iw^l'w

If π(V)=C. we are led to the third case in the statement of Theorem.

Assume that π(V)ΦC Then π(V) is an affine open set of C Let π(V)=

Spec(^40). Ao is a ^-subalgebra of A. It is now easy to see that there exists an

element s of Ao such that setting £/=(the set of points of π(V) where s does not

vanish), π~\U) is a trivaiJ P^bundle, i.e., π~1(U)^UxP\ and that for any

u^U, V {^π~ι(u) is of the form for Γw some w^W and is isomorphic to A1.

Let F'=F Ππ~\U). Since π\F

/: F'->U is generically one to one and the

characteristic of k is zero, π\F' is birational. Shrinking U to a smaller affine
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open set of C if necessary, we may assume that π\ F': F'->U is an isomorphism.

Then F' is a section of the trivial P'-bundle n'\U). Therefore V Π π'\U)^

π~1(U)xA1. Let S be the multiplicatively closed set generated by s in Ao.

Then S~1A=(S~1A0)[t] for some element t of Ao which is algebraically inde-

pendent over A. We can now define a non-trivial locally finite iterative higher

derivation D on A as follows: D0—idA, D J ^ ^ O and D1(t)=sΛ with sufficiently

large integer a and Z)# =(l//!)Z)ί. If aly •••, βM are generators of A over & and

if αf = / l (ί)/ίΛ» with/ f (ί)e^40[ί] for l < ί < w , it is enough to take a as large as

a > max (αt ). q.e.d.

The authors have an impression that the third case is contained in the first

case. Further observation on the third case will be given in the final part of

this paper. When dim A>2, we have nothing to say.

3. Examples and counterexamples

1. One of the interesting examples of strongly invariant rings was first given

in [6] and later discussed in [3]. This is the following:

Let R be the field of real numbers and let An be the affine ring of the real

n-sphere, i.e., An=R[X0, •••, Xn]l(X2

0-\ h X Ϊ - 1 ) for n=ly 2, .... Then An

is strongly invariant, a one-parameter polynomial ring An[t] is invariant and a

polynomial ring An[tlf •••, tn] of dimension n is not 1-invariant if rcφl, 3, 7.

Looking at this example one might ask if a one-parameter polynomial ring

A[t] is invariant (or ^4-invariant) provided that A is strongly invariant. However

this is false as it is shown by the following example (cf. [2]): Let k be a field of

characteristic p>0 (/>Φ2) and let A = k[tp, tp+1], t being an indeterminate.

Let A[X] be a one-parameter polynomial ring. Then A[X] is not invariant,

while A is strongly invariant.

2. The converse of Lemma 2.7 is false. An example is a one-dimensional

Λ-wound unipotent group: Let k be a non-perfect field of characteristic p>0,

and let A=k[X, Y}l{Ypn-X-aλX
p arX

pr\ where a» - , ar£Ξk and one

of a19 - ,ar^kp. Then A is strongly invariant (use (2.3)). (Note that A is

not ^-rational except when p = 2 and Y2 = X-\-aX2 with a^k and a^k2.)

However if k' is the perfect closure of k, A®kh! is a polynomial ring over k'.

Hence A®kk' is not strongly invariant.

3. The remaining part of this paper is devoted to an investigation of the third

case of Theorem 2.10. In the following k is an algebraically closed field of

characteristic p and C is a non-singular complete curve of genus g>0. We use

the term 'Vector bundle" synonymously with "locally free Oc-module". A

section of a projective bundle P{E) is a curve on P(E), on which the restriction

of the canonical projection P(E)->C is an isomorphism.
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We have in the first place

L e m m a 3.1. Let L be an ample line bundle on C and let E be a non-trivial

extension of L by Oc. Let s be the section of P(E) corresponding to L and let X=

P(E)—s. Assume that the characteristic of k is zero or deg L>2g. Then X

is an affine surface such that the restriction onto X of the projection P(E)->C is

a surjectίve morphism onto C. Conversely if an affine surface X is P1-bundle

P(E) on C deleted a section, then X is isomorphic to an affine surface constructed

in the above fashion.

Proof. Let L be an ample line bundle on C and let E be a non-trivail
extension of L by Qc. Assume that the characteristic of k is zero or deg
L>2g. Then it is known (cf. [4]) that E is an ample vector bundle on C and
the tautological line bundle OPCE^(1) is isomorphic to OP(iE^(s). Therefore s is
an ample divisor on a non-singular projective surface P(E) and X=P(E)—s is
affine. It is obvious that the restriction onto X of the projection P(E)->C
is a surjective morphism onto C.

Conversely, let £ b e a vector bundle on C, let P(E) be the P^bundle
associated with E and let X be the P(E) deleted a section s. Let IJ be the
quotient line bundle of E corresponding to s and let L be the kernel of E->L';
O->L->E->L'-^O. We shall show that L^L'1 is ample and that X is iso-
morphic to P(E®L~1)—the section s' corresponding to L't&L'1. Since X is
affine, s is irreducible and P(E) is non-singular, the section s regarded as a
divisor on P(E) must be ample. Let i: P(E)-^P(E®L~1) be the canonical
isomorphism. Then the section s is transformed to the section s' by i and X to
the affine surface P{E®L~ι)—s'. Hence / is an ample divisor on P(E®L~1).
Let j : C-*P{E) be the isomorphism sending C to s. Then i j is an
imbedding. Taking account of the facts that OP(E®L-^{\)~OPiE®L-^{s') and
{i'j)%0piE®L-ιi\))=p{ΘPiEi\)®L-1)=L/®L-\ we know that L'®!/"1 is ample
on C. q.e.d.

The affine ring of an affine surface constructed in Lemma 3.1 has no non-
trivial locally finite iterative higher derivation, though it has a non-trivial locally
finite higher derivation. This is an immediate consequence of

Lemma 3.2. Let V be a variety defined over k, let L be a line bundle over
V and let E be an extension of L by Ov- Let X be the P(E) minus the section
corresponding to L. If H°(V, L'^ΦO, X has a non-trivial Ga-actίon. If there
is no non-constant morphism from A1 to V, then H°(y, L'^ΦO provided that X
has a non-trivial Ga-action.

Proof. Let U={ί7 f} f e / be an affine open covering of V such that E \ U{ is

trivial for any i^I and let \ί^Ji ΛJΊ)\ be the transition matrices of E relative to
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U, where {ajΊ} is the transition functions of L. X is in fact an ^-bundle on

Fwith affine coordinates {x£} which are subject to χ5=aj£x£-\-bj£ for any i,j^I.

If H(V°y L-^ΦO, we a may assume that there is a set of functions {s£} on

V such that s£^Γ(U£, Qv) and Sj=aJ£s£ for any i,j^I. Define a non-trivial

locally finite iterative higher derivation D={D0, Du "} on T(U£, Ov)[Xi], which

is the affine ring of π~\U£), π being the canonical projection from X to

V: DQ=id., Dn\ rcu^Or)== ̂  ^ o r anY n^>^> Dn(χ7) = ( J#?~n$" if tn > # and 0

otherwise. Then D gives rise to a non-trivial GΛ-action on {TΓ"1 (£/,)},
Λ9?£>: π~1(U£)xGa->π~1(U£). It is now easy to show that the Gα-actions on

{π~\U£)} patch each other on π~\U£ft U/) to give a nonstrivial GΛ-action on X.

Assume next that there is no non-constant morphism from A1 to V. If

X has a non-trivial Gβ-action, then Ga should act on X along fibres of π, and

the GΛ-invariant subfield in k(X) is k(V) (cf. [7]). For each ι'e/, the GΛ-action

restricted on 7r-1( ί7f ) gives rise to a Γ( C/, , 0K)-homomorphism φ£: Γ( C/, , Ov)[x£]->

Γ(C/, , Oκ)[^ύ ]̂> ̂  being an indeterminate. Write φ f (a:/)=ίίf*+(terms of lower

degree in ί with coefficients in T(U£) Ov)), where n>\ and s£^T(U£) Ov)[x£].

Since the GΛ-invariant subfield of k(X) is k(V) and since s£ is GΛ-invariant,

ί, GΓ(ί/ t , Oy)M nk(V)=T(Ui9 Ov). Moreover it is easy to see that n is inde-

pendent of ί and Sj=aj£s£ for any i,j^L Then {ίt }2 <=/ give a non-zero section

of H\V, L-1). Hence H°(Vy L'^ΦO. q.e.d.

The affine ring of an affine surface constructed in Lemma 3.1 is strongly

1-invariant if the characteristic of k is zero. To prove this result, we need

Lemma 3.3. Let k be a field of characteristic zero and let φ be a k-auto-

morphίsm of the polynomial ring k[x, y\ in two variables given by φ(x)=f, φ(y)=g.

Then f has the following form unless f is a polynomial in x or y alone.

(*) / = axm+byn+J]cijx
iyi

>
n>3

where a, b and c's are elements of k and ab =t= 0. The same holds for g.

Proof. (I) First we shall treat the case where one of/ and^, say/, is a

polynomial in, say, y alone. By the assumption φ is an automorphism of

&[#,;y]. Hence we must have that (βfldy)(Qgldx) is a non-zero constant in k.

Hence dfjdy—a and dgjdy=b are also non-zero constant in k. From this we

get easily f=ay-\-c, g=bx-\-h(y).

Now assume/has the form (*). We shall show that if g is not a polynomial

in x or y alone, then g has also the form of (*). Let us set first

g = aQ(y)x«+ai(y)χ«-i+.~+au(y) (αo(j0*O, u>0)

where ai{y)^k[y\. From the fact that 9(/, g)/d(x, y) is a non-zero constant
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we easily get aΌ(y)=O. Hence aQ(y) is a non-zero element of k. Similarly if
we rewrite g in the form

g = βϋ(x)f+β1(x)f-1+-+βυ(x) (/3O(*)ΦO, v>0)

We easily see that β0 is an element of k. These two results imply that g has

the form (*).

(II) It is well known (cf. [10]) that any ^-automorphism of k[x, y] is
written as a composite of linear automorphisms; (xίy)^^(ax+βy+ci 7#+8y+d)
with αδ—/3γΦθ, and Jonquiere automorphisms; (x, y)^(x, y^-h(x)) with
h(x)^k[x]. Using this result, we shall show that any ^-automorphism of &[#,;y]
is a composite of automorphisms, each of which is an automorphism p such that
p(x) or ρ{y) coincides with one of x and y. (We shall say such an automor-
phism to be of type (P)). Since Jonquiere automorphisms are of type (P), it
suffices to show that a linear automorphism is a composite of two linear auto-
morphisms of type (P). In fact, a linear automorphism (x, y)t-*(ax+βy-\-cy

yx+8y-\-d) is decomposed as follows: If αΦO, (x, y)t-*(x?, y')=(ax+βy+c, y)9

(x'y / ) H* (*', (Ύlay+((^~βΎ)la)y+(d-(Ύφ))). If a=0y (*, y) H*(χ>, / )

(Ill) Write the given automorphism φ as φ==φr φr.1"* φly where
φly "'yφr are automorphisms of type (P). We shall prove our assertion by
induction on r. If r = l , φ is one of the following forms (x, y)t-^(ax-\-h(y), y),
(x, y)*->(y, ayx+h^y)), (x} y)*->(x, by+l(x)) or (x)y)^(b1y+l1(x)y x)f where a,
aly b, b^k and h(y), K(y)^k[y\ a n d Kx)> h(x)^k[χ] Hence the assertion is
clear. Assuming next that the assertion is true when φ is a composite of less

than r automorphisms of type (P), we consider the case where φ=φr <pr_1 φx.

Let ψ=φr-i ψi and let ψ(x, y)=(flf gλ) with flf g^k[x, y].
By induction assumption f19 gλ have the form (*) unless they are polynomials

in x or y alone. Since φr is an automorphism of type (P) we have one of the
following four cases.

(i) φ(x)=fly (ϋ) φ(x)=gi, (in) <p(y)=fi, (iv) ψ{y)=g^
In any case we easily get the assertion from the results in the step (I). q.e.d.

Now we can prove

Theorem 3.4. Let k be an algebraically closed field of characteristic zero,

let C be a non-singular complete curve of genus 2^0 defined over k, let L be an ample

line bundle over C and let E be a non-trivial extension of L by Oc Let X be the

P1-bundle P(E) minus the section s corresponding to L and let A be the affine ring

of X. Then A is strongly l-invariant.

Proof. Our proof consists of several steps.
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(1) Let B be a δ-algebra such that A[T]=B[V], T and V being algebrai-

cally independent over A and B respectively. Let Y=Sρec(Z?) and let π: X-+C

be the canonical projection. By the composite of projections YxA1=XxΛ1

Pi
>X^>Cy each line (y)xA1 with y e Y is sent to a point of C. Hence π px

Pi ?
factors as YxA1 >Y • C and Y is regarded as a C-scheme by q. Hence

q is surjective. Let tt={£/,},<=/ be an affine open covering of C such that E \ υ .

is trivial for any i e / . Let {#,},<=/ be an affine coordinate system of X relative

to U. Then {#,},<=/ is subject to xj=ajixi-\-bji for any t,j^I. Let f/, =

Spec(jR, ) and let ^E/,)=Spec(£,). Then #,[*,., Γ ] = S , [F]. Since 5, is an

i?ralgebra and i?f is regular, there is an element y^B£ such that B~Ri[yi\

(cf. [1]). For any i}j^Iy we have: yj=af

uyi+bf

Jt with a'^R.% and Vit^Rjiy

where C/̂ Π ί/y=Spec(i2yf). Then, it is easy to see that ί ί ^ ' j J Λ| are transi-

tion matrices of a vector bundle E', which is an extension of a line bundle ΊJ

by Oc, L' being defined by transition functions {a'jt} relative to U. Moreover

Y is the P^bundle P(E') deleted the section / corresponding to ZΛ

(2) Let Ω}χ/C be the 0^-module of l-differential forms of X over C. Since

Ωχ/cl*-1ct7fo=(^ίP*-ict/p and dxJ=ajidxi, we have Ω ^ / C ^ L ^ O G O X . The

relation i4[Γ] =B[F] implies that L®^OX[Γ]®OX[T]^U®OCOY[V]®OY[V].

Hence I r Θ o ^ σ ^ Γ ] ^ ^ ® ^ ^ ^ ] , and (L®ocL
/-1)®θcOx[T]^Oχ[T].

Then reducing 0*[T] by TOX[T], we have ( L Θ o ^ " 1 ) ® ^ ^ ^ ^ . Let

D be a divisor on C such that L®L/~1=ΘC(D). Then there exists a rational

function h of &(X) such that zr"1(Z))=(A). Let 5r be the canonical projection

P(E)->C. Then, looking upon A as an element of k(P(E)\ we have ^

ms=(h)> where m^Z and ί is the section of P(i?) coresponding to L. If

(7t~1(D)-{-ms)Ί=m for a general fibre / of TΓ. This is absurd unless m=0.

Then restricting τΓ\D)=(h) on the section ί, we know that DM) on C.

Therefore L^L'. Shrinking the affine open covering to a finer one, we may

assume that aJi=a/

ji for any t,jGl.

(3) We have R^x^ T]=Ri[yiy V] for any i^L Therefore we can write:

yi=M*i)+Mxi)T+ - +fφi)Tn with /,„(*,.), - ,/ ί r t (^) e Rfa]. We shall

prove that n=0. Otherwise, j t is a generator of the two-dimensional polynomial

ring K\xi} Γ], K being the function field k(C) of C. Then, Lemma 3.3 implies

that fin{xt)^K. Hence /,-«(#,•)̂ /?,[#,] (Ί K=R{. On the other hand, it is easy

to see Ui2Ltfjn(xj)Tn is the term of the highest degree in T oiy5 and that/in(#y)
==ajifin(Xi) for any i,j^I. Let ai=fin{x^. Then {αt }f e / defines a non-zero

section of ϋf°(C, L"1). This is absurd since L is an ample divisor on C.

Therefore we know that n=0. Then y^R^x^ for any / G / . It is easy to see

that BczA. Changing the roles of x{ and y{ in the above argument, we have

Therefore A=B, and A is thus strongly 1-invarinat. q.e.d.
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We shall next give a brief indication of constructing more complicated
affine surfaces from the affine surface given in Lemma 3.1. We use the
same notations as in Lemma 3.1. Let / be a general fibre of the projection
π: P(E)->Cy and let P19 * , P m be points on / other than the point of intersec-
tion P0=l s. Blow up points P1? •••, P w and let EPv •••, EPm be the exceptional
curves. Let V be the proper transform of /. Then it is not difficult to show
that ns+V is an ample divisor on the surface DilPl...tPm(P(E)), for sufficiently
larger. Therefore X'=DilPlr..Pm(P(E)) — (sUΓ) is an affine surface which is
isomorphic to X with m affine lines inserted in place of one fibre deleted.
More complicatedly, we can blow up as many infinitely near points at P19 -,Pm

successively as we like. Let p: S->P(E) be the surface obtained by these
blowings up. Then a divisor on S whose components are irreducible com-
ponents of p~1(s U /) with appropriate multiplicities is an ample divisor if we
require the following conditions satisfied:

(1) D contains ρ~\s) with sufficiently high multiplicity.
(2) D is connected and S—D contains no complete curves.

Then S—D is affine. The operation of this kind can be made on a finite number
of fibres of π. A question which arises naturally is to ask whether these affine
surfaces are strongly invarinat or not. In simpler cases, we can prove that they
are strongly 1-invariant.

An affine version of our Theorem 3.4 was given in [3]. To state the results,
we need

DEFINITION 3.5. Let R be a ring and let A be an R-algebra. A is said a
local polynomial ring over R if for any prime ideal p of R, Ap is a polynomial
ring over Rp.

Then we can prove the following two results, for whose proofs the reader
can refer to [3].

Theorem 3.6. Let R be a reduced ring and let A be a finitely generated
local polynomial ring over R of relative dimension 1. Then there exists a projec-
tive module P of rank 1 such that A is R-isomorphίc to the symmetric R-algebra
S'(P) generated by P.

Theorem 3.7. Let R be a normal domain and let P be a protective R-
module of rank 1. Then the symmetric R-algebra S'(P) generated by P is R-
invarianty but it is not strongly R-invariant.

In the proof of the last theorem, we use the fact that if R is a normal domain,
then a polynomial ring over R of dimension 1 is ^-invariant (cf. [2]).

Appendix

In this appendix we shall determine the structure of an integral domain
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which has a locally finite iterative higher derivation (abbreviated as "lfihd").

Theorem. Let A be an integral domain and let D={Di9 i=0, 1, •••} be
a lfihd on A and let Ao be the ring of D-constant, i.e. the set of elements a such that
Di(a)=0for ί>\. Then there exists an element u of Ao such that we have A[u~*]=
AQIU'1]^] where x is a variable element over Ao. Conversely assume that A is
finitely generated over a subring Ao. Then the existence of an element u satisfying
the above condition implies that A has a lfihd.

Proof. We shall denote by A{ the set of elements defined by

A{ = {a^A\Dn(a) = 0 for

Ao is the ring of D-constants, A/s are ^-modules and we have A= \JA{. An
integer n will be called a jump index if we have An.x^An. If the first jump
index is 1 the proof is immediate. In fact let x be an element of Aλ not in Ao.
Then u=D(x) is a D-constant. Hence we can extend D uniquely to the quotient
ring A[ιΓλ] in which the element xu'1 satisties the condition in (1.4). Hence
we have -4[tt"1]=-40[

w"1]M Since the first jump index is 1 if the characteristic
of A is zero and D is not trivial, we shall hereafter be mainly interested in the
case of positive characteristic p. Hence in the following we shall assume that
the characteristic of A is a positive prime p and the first jump index of D is
larger than 1. We shall prove first the followings:

(1) The first jump index n is a power of/), say, n=ps.

(2) The m-th jump index is mp* (m=l, 2, •••).

(3) Let a be an arbitrary element of AJ\AH-X. Then Suρp(α) consists
of powers of py where we mean by Supp(α) the set of integers k such that
DΛ(<z)Φθ. Moreover Dk(a)'s are D-constant for any

Let n be the first jump index and let

n = n.+n.p+n.p2-] \-nsp
s, (0^nt

be its />-adic expansion. Since D is iterative we can see easily that we have

where n\\=no\n1\'"ns\. Now assume n is not a power of p. Then we have
either

(i) no>\
or

(ii) no=0 and nx-\ \-ns>2.

In case (i) we have «^0 (mod p). Then c=Dn_1(a) belongs to Ax but not to

Ao since D1(c)=D1Dn.1(a)=nDn(a)^O where a^An\An^. This is a contradic-

tion to the assumption that the first jump index i s>l . In case (ii) we shall set
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c=Dps(a). Then we can see immediately that any integer larger than n—ps

(<n— 1) cannot be a support of a. Hence c belongs to An-1=AQ. On the other
hand we see that Dn_psDps(a)=nsDn(a)^O and n— ps>\. This is a contradic-
tion. Thus we have proven that n is a power of p.

Next we shall prove (2). It is clear that mps(m=ίy 2, •••) are jump indices
because if x is in Ap* and not in Ao, then xm is contained in AmP» but not in the
preceding A's. Hence it remains to show that mps exhaust all jump indices.
Let q be the least jump index which is not a multiple of ps and assume that we
have

tnps<q<(m+l)ps .

Let us set qo=q—mps<ps. Let x be an element of Aq not in Aq.γ and let us
set c=DmP*(x). Then we have Dgo(c)=DgoDmP*(x)=Dg(x)Φθ. Since ps>q0

>0, c is not a Z)-constant. On the other hand the supoprt of c consists of
integers less than ps because x is in Aq. This is a contradiction.

The proof of (3) will be carried out by a similar device. In fact if x is an
element of Ap* which is not a D-constant and let m be a support of x9 i.e.,
/>«(*) φO. If we set

and if we assume either mt>2 or some of mi(t<t) is not zero then we shall set
c=Dpt(x). Then we have Z)m_y(c)Φθ, and this will lead us to a contradiction
since m<ps and AQ= — =AJϊ-1. The rest of assertion in (3) is also immediate.

After these preparation we shall go to the proof of the Theorem. Let, as
before, n=ps be the first jump index for a lfihd D and let x be an elements of
An not in Ao. Let u be the product of non-zero Dpi(x)9s (0<i<s). Since u
is a Z)-constant we can extend D to the quotient ring ^[w"1] in a unique way.
Let a be an arbitrary element of A. Then there exists an integer m such that
a belongs to AmPs. Let us set

ax = a-DmpS(a)Dps(x)-mxm.

Then we have DmPs(a1)=0. Hence ax is contained in ACm_ΌPs. We can con-
tinue this process until we get a polynomial expression in x with coefficients in
AQIU'1]. It is easy to see that x is a variable over Ao.

Conversely assume that there exist an element u in A such that we have
-4[M"1]=-40[M"1][Λ?] where Ao is a subring of A containing u and x is a variable
element over Ao contained in A and A is finitely generated over Ao. Then we
can define a lfihd D on Aty'1] in a standard way. Since 4̂ is finitely generated
over Ao, there is an index / such that ufD transforms A into itself (see the
proof of (2.9)). This proves the Theorem completely.
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Corollary. Let A be an integral domain over a field k of transcendence
degree 1. Then A has a Ifihd if and only if we have A=ko[x] where k0 is the
algebraic closure of k in A.

Proof. Let u be an element of Ao such that A\u~v\=AJ(u~v\[x\. Since A
is of transcendence degree 1 over k and x is variable over AOi Ao must be algebraic
over k, i.e., Ao is contained in k0. Hence u must be a unit of A. This implies
that A is contained in ko[x]. The converse inclusion is trivial and we have
A=ko[x].
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