<table>
<thead>
<tr>
<th>Title</th>
<th>Fundamentals of Ceramic (Glass)-Metal Bonding (II) : Characteristics of zirconia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iwamoto, Nobuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 1981, 10(1), p. 113-123</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6167</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REVIEW

Fundamentals of Ceramic (Glass)-Metal Bonding (II)†
— Characteristics of zirconia —

Nobuya IWAMOTO *

Abstract

Environment upon materials has become severer with the development of various energy sources such as nuclear fusion reactor, MHD energy conversion and so on. Zirconia is an important compound as coating material on metal. In this review, characteristics of zirconia for obtaining stabilized form and good mechanical properties have been summed up.

KEY WORDS: (Ceramic) (Interface) (Bonding) (Metal)

1. Introduction

From the olden time an oxide having the following properties such as higher stability in the oxidizing and reducing atmosphere, lower vapor pressure at the higher temperature, lower thermal conductivity, lower specific heat, and higher resistivity against chemical corrosiveness, has been desired more and more. From the standpoint of utilization of nuclear power it has become the necessary conditions to have lower neutron cross section for the choice of oxide material. Furthermore severer environment such as MHD generator and coal liquefaction process has demanded higher resistance to corrosiveness of coal ash.

Zirconia was used for refractory material from 1900 and as crucible material from 1906 and as lining material for open hearth furnace in steelmaking in 1916. Now it is widely used as coating material by plasma spraying in the various fields.

It was very important matter to do fundamental study to hinder the disintegration phenomenon due to crystal transformation at about 1100°C.

In this review the author summarized the characteristics of zirconia in the past and the application of analyzing means to know thermal behavior of stabilized zirconia.

2. Phase relationship in the binary systems

2.1 Dietzel’s cation field strength theory

Although many literatures have been presented as for phase relationship between zirconia and other component, there exist many disagreements because of the following causes such as impurities effect, specimen preparation and testing, thermal history, and non-equilibrium condition.

Dietzel derived the rules for the formation of compound between zirconia and other component by using relative field strength, that is to say, the difference of cation field strength between them.1) In Table 1, the possibility as regards the formation of stable compound is given.

Dietzel said that the formation of compound between two oxides was likely only when the difference between the field strengths of both cations exceeded 0.3, but the

<table>
<thead>
<tr>
<th>Foreign Oxide</th>
<th>z/\alpha^2</th>
<th>Compound formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>0.17</td>
<td>+</td>
</tr>
<tr>
<td>Li₂O</td>
<td>0.23</td>
<td>+</td>
</tr>
<tr>
<td>BaO</td>
<td>0.24</td>
<td>+</td>
</tr>
<tr>
<td>SrO</td>
<td>0.27</td>
<td>+</td>
</tr>
<tr>
<td>CaO</td>
<td>0.33</td>
<td>+</td>
</tr>
<tr>
<td>PbO</td>
<td>0.34</td>
<td>+</td>
</tr>
<tr>
<td>CdO</td>
<td>0.44</td>
<td>+</td>
</tr>
<tr>
<td>MgO</td>
<td>0.45</td>
<td>—</td>
</tr>
<tr>
<td>MnO</td>
<td>0.48</td>
<td>—</td>
</tr>
<tr>
<td>FeO</td>
<td>0.52</td>
<td>—</td>
</tr>
<tr>
<td>CoO</td>
<td>0.53</td>
<td>—</td>
</tr>
<tr>
<td>NiO</td>
<td>0.55</td>
<td>—</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.59</td>
<td>—</td>
</tr>
<tr>
<td>ThO₂</td>
<td>0.64</td>
<td>—</td>
</tr>
<tr>
<td>Sc₂O₃</td>
<td>0.65</td>
<td>—</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>0.78/0.95</td>
<td>—</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.84</td>
<td>—</td>
</tr>
<tr>
<td>BeO</td>
<td>0.87</td>
<td>—</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.95</td>
<td>—</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.25</td>
<td>—</td>
</tr>
<tr>
<td>BiO₃</td>
<td>1.45</td>
<td>+</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1.57</td>
<td>+</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>1.85</td>
<td>+</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2.08</td>
<td>+</td>
</tr>
</tbody>
</table>

† Received on March 31, 1981
* Professor
compound melted incongruently because of poor lattice stability when the difference was only slightly greater.

2.2 ZrO₂-CaO system

It was well known that the addition of calcia to zirconia transformed the zirconia into a cubic form. The reason why the addition of calcia occurs such a stabilization and the information how many content is necessary to hold cubic structure must be obtained. Many investigatore have challenged to solve this problem. The first group concluded that cubic zirconia solid solution could be formed though the stabilizing content of calcia differed depending on the experimental conditions²⁴. Figure 1 shows the results. Other investigators showed signs of

![Figure 1](image1.png)

Figure 1 Cubic fields in the system CaO-ZrO₂ which show no compound formation⁶.

stable compound⁵.⁶ Figure 2 gives the stabilized region.

Garvie³ concluded that the cubic field may then be described as originating from a solid solution series between cubic zirconia and CaZr₄O₉ from using lattice parameter measurement and the crystallographical consideration by russian investigator⁸. Phase diagram is given in Figure 3.

![Figure 2](image2.png)

Figure 2 Cubic field in the system CaO-ZrO₂ which show compound formation⁶.

![Figure 3](image3.png)

Figure 3 Partial phase diagram (with heating) of the system CaO-ZrO₂⁸.
2.3 ZrO$_2$-MgO system

Many investigators have reported the magnesia was effective to stabilize the zirconia in partially cubic modification for commercial usage.$^{9-11}$ From the subsequent heat-treatment on the stabilized zirconia with magnesia, it was found to be unstable.2,12

Phase diagrams for the system zirconia-magnesia were presented by several researchers.$^{13-18}$ Grain19 revised the phase diagram and the result is given in Figure 4. He applied the detailed measurement of lattice parameter.

![Figure 4: Phase diagram of ZrO$_2$-MgO system.](image)

Fig. 4 Phases relations in a portion of the system ZrO$_2$-MgO9)

2.4 ZrO$_2$-UO$_2$ system

Evans20 applied solar furnace to study the phase diagram of this system. A tentative phase diagram based on a composition of some of Lambertson and Muller's findings21 and on his result is given in Figure 5. The solid solutions are, respectively, face-centered cubic and face-centered tetragonal on the UO$_2$ and ZrO$_2$ sides of the equilibrium diagram. However Wolten22 emphasized the effect of cooling velocity of specimens held at higher temperature on phase separation based on the investigation by Moronov et al.23 Further Mumpton and Roy24 indicated the effect of atmosphere to know phase relation and the importance of phase rule point of view.

![Figure 5: Proposed phase diagram for the system ZrO$_2$-UO$_2$.](image)

2.5 ZrO$_2$-TiO$_2$ system

Because of inconsistencies in results of this system by previous investigators,25,26 Brown Jr. and Duwez27 performed study of phase relation of this system. The result is given in Figure 6 and the compound of ZrTiO$_4$

![Figure 6: Proposed phase diagram for the system ZrO$_2$-TiO$_2$.](image)
was confirmed. Noguchi\textsuperscript{28) determined liquidus curve by using solar furnace and revised the phase diagram as shown in Figure 7.

2.6 ZrO$_2$-CeO$_2$ system

Duwez and Odell\textsuperscript{29) carried out phase diagram study by firing at 2000°C. As shown in Figure 9, zirconia and ceria are completely soluble in each other (cubic CaF$_2$ type of solid solution) from about 24 to 100 mole % ceria. It was determined that this solid solution was retained at room temperature by moderately fast cooling and two phase region (tetragonal and cubic solid solution) extended with the temperature decrease.

2.7 ZrO$_2$-ThO$_2$ system

Duwez and Loh\textsuperscript{30) studied phase relationship of this system by using solar furnace. Tentative phase diagram was given as Figure 9. Significant point is that the monoclinic-tetragonal transformation in zirconia rich region becomes lower as 810°C with a maximum amount of 5% solid solution of thorium.

![Fig. 7 Phase diagram of the ZrO$_2$-TiO$_2$ system28)\nobreakspace]

\begin{itemize}
 \item C$_1$: cubic ZrO$_2$ solid solution
 \item D: ZrO$_2$ solid solution
 \item F: ZrTiO$_4$ solid solution
 \item G: TiO$_2$ solid solution
 \item T: tetragonal ZrO$_2$ solid solution
\end{itemize}

![Fig. 8 Tentative phase diagram of the system ZrO$_2$-CeO$_2$29)\nobreakspace]

![Fig. 9 Suggested phase diagram for the system ZrO$_2$-ThO$_2$30)\nobreakspace]

116
2.8 ZrO\textsubscript{2}-SrO system

Tentative phase diagram of this system was proposed by using solar furnace28,31 The result is shown in Figure 10. The formation of compounds such as SrZO\textsubscript{3}, Sr\textsubscript{4}Zr\textsubscript{3}O\textsubscript{10}, Sr\textsubscript{3}Zr\textsubscript{2}O\textsubscript{4}, and Sr\textsubscript{2}ZrO\textsubscript{4} were reported.

![Figure 10 Phase diagram of the ZrO\textsubscript{2}-SrO system28,31](image)

Fig. 10 Phase diagram of the ZrO\textsubscript{2}-SrO system28,31

- C\textsubscript{1} : cubic ZrO\textsubscript{2} solid solution
- D : ZrO\textsubscript{2} solid solution
- J : Sr\textsubscript{4}Zr\textsubscript{3}O\textsubscript{10}
- M : Sr\textsubscript{3}ZrO\textsubscript{4}
- N : SrZrO\textsubscript{3} solid solution
- Q : SrO solid solution
- R : Sr\textsubscript{3}Zr\textsubscript{2}O\textsubscript{7}
- T : tetragonal ZrO\textsubscript{2} solid solution

2.9 ZrO\textsubscript{2}-Y\textsubscript{2}O\textsubscript{3} system

Recently the stabilized zirconia with yttria is noticed from the remarkable stability under thermal cycling32 Duwez, Brown Jr., and Odell33 have given tentative phase diagram as shown in Figure 11 and the following considerations as for the stabilization mechanism of yttria on zirconia from crystallographic viewpoint:

1) Although the crystal structure of yttria looks very complex, it shows some resemblance to that of cubic zirconia (CaF\textsubscript{2} structure).

2) In the case of solid solutions between MO\textsubscript{2} type and M\textsubscript{2}O\textsubscript{3} type oxides, the formation of solid solutions are possible only if the crystal structure of MO\textsubscript{2} type oxide is stable with vacant oxygen sites and if M\textsubscript{2}O\textsubscript{3}.

![Figure 11 Tentative phase diagram of the ZrO\textsubscript{2}-Y\textsubscript{2}O\textsubscript{3} system33](image)

Fig. 11 Tentative phase diagram of the ZrO\textsubscript{2}-Y\textsubscript{2}O\textsubscript{3} system33

![Figure 12 Phase diagram of the ZrO\textsubscript{2}-La\textsubscript{2}O\textsubscript{3} system36-37](image)

Fig. 12 Phase diagram of the ZrO\textsubscript{2}-La\textsubscript{2}O\textsubscript{3} system36-37

- A : hexagonal La\textsubscript{2}O\textsubscript{3}
- C\textsubscript{1} : cubic ZrO\textsubscript{2} solid solution
- C\textsubscript{2} : cubic ZrO\textsubscript{2}·La\textsubscript{2}O\textsubscript{3}
- H : hexagonal La\textsubscript{2}O\textsubscript{3}
- P : pyrochlore type La\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7}
- T : tetragonal ZrO\textsubscript{2} solid solution
- X : cubic La\textsubscript{2}O\textsubscript{3}
type oxide has “holes” which is capable to accept the excess oxygens.

2.10 ZrO$_2$-Sc$_2$O$_3$ system

Ruf, Garret, Domagaal and Patell34 studied phase relationship using high temperature X-ray diffraction and DTA methods. In the contrary to Duwez et al31 prediction, only stable cubic region was obtained beyond 77.5\% scandia.34 Sekiya et al have given another phase diagram35.

2.11 ZrO$_2$-La$_2$O$_3$ system

Rouanet36 reported phase diagram of this system using thermal analysis with a solar furnace and X-ray diffractometry as shown in Figure 12, which involved new phase detected by Foex and Travers37.

2.12 ZrO$_2$-Nd$_2$O$_3$ system

Brown Jr. and Duwez38 have given the phase diagram of this binary system as shown in Figure 13. As suggested by Ref. 33, there exists wider region of cubic structure.

2.13 ZrO$_2$-Gd$_2$O$_3$ system

Rouanet and Fox39 have reported phase diagram of this system using solar furnace and discovered new phase X at high temperature as shown in Figure 14.

Fig. 13 Proposed phase diagram for the system ZrO$_2$-Nd$_2$O$_3$ 38

Fig. 14 Phase diagram of the ZrO$_2$-Gd$_2$O$_3$ system 39

Fig. 15 Phase diagram of the ZrO$_2$-Sm$_2$O$_3$ system 39

A': hexagonal Sm$_2$O$_3$
B: monoclinic Sm$_2$O$_3$
C$_1$: cubic ZrO$_2$ solid solution
H': hexagonal Sm$_2$O$_3$
P: pyrochlore type Sm$_2$Zr$_2$O$_7$
T: tetragonal ZrO$_2$ solid solution
X': cubic Sm$_2$O$_3$
2.14 ZrO₂·Sm₂O₃ system

Rouanet and Foex³³ studied phase diagram using solar furnace and found the existence of a compound Sm₂Zr₂O₇ having cubic structure of pyrochlore type as shown in Figure 15.

2.15 ZrO₂·Er₂O₃ system

Duran⁴⁰ studied phase diagram of this system using high temperature X-ray diffraction and thermal expansion measurements. Figure 16 shows that pyrochlore structure does not form.

![Phase diagram of the ZrO₂·Er₂O₃ system](image)

Fig. 16 Phase diagram of the ZrO₂·Er₂O₃ system⁴⁰

- **M (ss)**: monoclinic solid solution
- **T (ss)**: tetragonal solid solution
- **F (ss)**: cubic solid solution
- **H₃**: hexagonal compound of type M₇O₄₄ (70 mole% Er₂O₃)
- **C (ss)**: cubic Er₂O₃ solid solution
- **H₁**: hexagonal compound (40 mole% Er₂O₃)

2.16 ZrO₂·Dy₂O₃ or Yb₂O₃ system

Fehrenbacher, Jacobson and Lynch⁴¹ observed that a 3 mole% addition of Yb₂O₃ or Dy₂O₃ to zirconia produced a tetragonal structure and no pyrochlore structure was found with a linear thermal expansion measurement in accordance with opinion by Torba⁴² that the rare earth elements with the smaller ionic radii such as ytterbium or dysprosium has not yielded the pyrochlore phase with zirconia.

2.17 Summarized view by Roth⁴³

Although the summarized view concerning phase stability of zirconia in binary system has been given, it seems important to check out fundamental points.

1) Divalent Ion: With oxides of smaller ion such as Mg, Ca, Mn, and Ti, stabilized zirconia solid solution can not form. On the other hand, larger divalent ions such as Zn and Be form perovskite-type compound though smaller ion does not form compound.

2) Trivalent ion: With oxide of smaller trivalent ion such as La can form cubic zirconia, but very smallest ion as Al and Coe not form cubic one. Larger trivalent ions such as La³⁺ and Nd³⁺ can form AₙBₙO₇ pyrochlore-type compounds or solid solutions.

3) Tetravalent ion: Oxides having larger tetravalent ion such Ce and U can form tetragonal zirconia solid solution which exist at room temperature. However in the case of smaller ionic radii does not form stable solid solution, but 1:1 compounds such as ZrO₂·TiO₂ and ZrO₂·SiO₂ are formed.

4) Pentavalent ion: Compound such as [Zr₄(Zr₂Nb₂)O₁₀] can be formed with Nb₂O₅ or Ta₂O₅.

The authors tried to make stable phase from the starting materials manufactured with coprecipitation.⁴⁴ However it was impossible to form stable zirconia compound or solid solution disregard of rule above-described.

3. Phase relationship in the multicomponent systems

3.1 ZrO₂·TiO₂·VO system

As investigation of the system Zr³⁺·TiO₂·VO showed that TiO₂ and mixtures of TiO₂ and TiO₂ will form cubic zirconia, Hoch and Mathur⁴⁶ extended phase study in this system. (Figure 17) In Table 2, the region to form single cubic zirconia, which were surrounded with A, B, C, and D, is shown.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO₂</td>
<td>37.0</td>
<td>41.5</td>
<td>58.0</td>
<td>40.0</td>
</tr>
<tr>
<td>VO</td>
<td>28.0</td>
<td>12.5</td>
<td>12.0</td>
<td>31.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>35.0</td>
<td>46.0</td>
<td>30.0</td>
<td>28.5</td>
</tr>
</tbody>
</table>

3.2 ZrO₂·TiO₂·M (Transition metals of groups V and VI)

As investigation of the systems Nb·Ti·Zr·O⁴⁷ showed the center of the single cubic zirconia phase region from 55 mole% ZrO₂, 35 mole% TiO₂, and 10 mole% Nb, Hoch and Mathur⁴⁶ studied exchange effect of the elements
such as Cr, Mo, W, V, and Ta instead of Nb and identified the formation of cubic zirconia in all cases.

3.3 ZrO$_2$-WO$_3$-WO$_3$ system

From the necessity to obtain an information on the oxidation behavior of tungsten-zirconium mixture at high temperature, phase relationship of this system was studied48. At 1200°C cubic phase as Zr$_x$W$_{1-x}$O$_{2.9-0.9x}$ where x is between 0.05 and 0.08 appeared as a homogeneity range along the ZrO$_2$-W$_{20}$O$_{58}$ join. At 1300°C the cubic phase has a larger range of solid solution than at 1200°C, but becomes more extensive along the Zr-WO$_3$ join toward metallic zirconium than along the ZrO$_2$-W$_{20}$O$_{58}$ join. With the increase of temperature the solid solution of the cubic phase could not be delineated.

4. ZrO$_2$-M (Ti, Zr, Cr, V, Si, Mo and W metals)

After the finding that the addition of Ti on zirconia inverts at lower temperature more slowly and accordingly the resistance on thermal shock is able to alter13, several studies were performed to know solubility limit of metallic element in zirconia and to solve the cause why mechanical properties could be altered by addition of metallic element.

Ruh49 found that the content up to 4% Ti can be retained in substitutional solid solution in zirconia and the soluble content increased with the temperature rise. Ruh and Garrett50 determined that the content up to 1% Cr can be retained in zirconia solid solution. Ruh, Tallan and Lipsitt51 studied the effect of metal additions on the microstructure of zirconia and certified that the increased sintering occurred only when compositions above the solubility limit were fired considerably above the melting temperature of metal added. Lipsitt and Ruh52 studied the compressive properties of titan-modified zirconia at elevated temperatures and observed that the strain to fracture of the aged specimens becomes significantly greater than that for the virgin specimens at room temperature.

Arias53 studied why the addition of 15 mole% Ti improves mechanical properties such as the thermal shock resistance, the modulus of rupture, and strength in comparison to calcia-stabilized zirconia. Further Arias54 extended metal sort to be Cr, V and Zr and that other metals added in zirconia improved the thermal shock resistance as well as Ti. Watson, Hill and Chapman55 investigated the solidification behavior of stabilized zirconia and W mixture. Virkark and Johnson56 studied the fracture behavior of zirconia-Zr composites and reported that residual stress exists (compressive in the oxide phase and tensile in the metal) due to the volume change accompanying the phase transformation in the oxide phase.

5. Impurities in raw material

Inconsistencies in reports as for the inversion temperature of tetragonal-monoclinic zirconia and physical properties can be reduced to the existence of various impurities in raw material. Heffelfinger, Blesser and Henry57 performed chemical analysis. In Table 3 typical impurities determined with spectrographic and chemical analysis are given.

6. Starting temperature of reaction

Smoot and Ryan58 applied high temperature X-ray diffraction procedure to know the starting temperature for the reaction of the mixtures between zirconia with yttria, magnesia, calcia, ceria, and combination of calcia and magnesia. The results obtained are given in Table 4. From this table, it will be anticipated that the combination of calcia and magnesia showed appearance of initial solid solution at temperature lower than calcia alone. From this fact, this way is applied to make stabilized zirconia in Japan.

7. Phase analysis in zirconia systems

Although Duwez and Odell$^{59, 60}$ performed quantitative study to determine correct quantities of cubic and monoclinic zirconias, there existed uncertainty as for precision. Garbie and Nicholson61 applied matrix me-
Table 3. Typical impurities in zirconia (ppm)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
<th>Hf</th>
<th>Mg</th>
<th>Na</th>
<th>S</th>
<th>Si</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>7TAM</td>
<td>400</td>
<td>2000</td>
<td>190</td>
<td>22000</td>
<td>200</td>
<td>200</td>
<td>500</td>
<td>2500</td>
<td>200</td>
</tr>
<tr>
<td>9TAM</td>
<td>50</td>
<td>300</td>
<td>500</td>
<td><100+</td>
<td>100</td>
<td>10</td>
<td>6000</td>
<td>700</td>
<td>100</td>
</tr>
<tr>
<td>21Wch</td>
<td><10*</td>
<td>20</td>
<td><10*</td>
<td>100</td>
<td><10*</td>
<td>10</td>
<td><30+</td>
<td>200</td>
<td><25*</td>
</tr>
<tr>
<td>25 C.M.</td>
<td>30</td>
<td>1500</td>
<td>800</td>
<td><100+</td>
<td>300</td>
<td>30</td>
<td>80</td>
<td>500</td>
<td><25+</td>
</tr>
<tr>
<td>27 C.M.</td>
<td>100</td>
<td>3000</td>
<td>160</td>
<td><100+</td>
<td>500</td>
<td>50</td>
<td>10300</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>30ZrCA</td>
<td>400</td>
<td>2000</td>
<td>570</td>
<td>22000</td>
<td>400</td>
<td>200</td>
<td>570</td>
<td>5800</td>
<td>1700</td>
</tr>
<tr>
<td>32Tiz</td>
<td>100</td>
<td>300</td>
<td>220</td>
<td>24000</td>
<td>100</td>
<td>50</td>
<td>170</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>33Mons</td>
<td>300</td>
<td>300</td>
<td>2000</td>
<td>15000</td>
<td>200</td>
<td>50</td>
<td>N.S.#</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>34Cab</td>
<td>3000</td>
<td>500</td>
<td>1800</td>
<td>20000</td>
<td>50</td>
<td>100</td>
<td>N.S.#</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>35Deg</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td><100+</td>
<td><10*</td>
<td>20</td>
<td>30</td>
<td>100</td>
<td><25+</td>
</tr>
<tr>
<td>7Japan</td>
<td>60</td>
<td>50</td>
<td>200</td>
<td>24000</td>
<td><10*</td>
<td>300</td>
<td>70</td>
<td>1300</td>
<td>300</td>
</tr>
<tr>
<td>8 S.P.E.</td>
<td>30</td>
<td>100</td>
<td>10</td>
<td>22000</td>
<td>20</td>
<td>10</td>
<td><30+</td>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>41Harsh</td>
<td>30</td>
<td>500</td>
<td>10</td>
<td>22000</td>
<td>100</td>
<td>100</td>
<td>130</td>
<td>1100</td>
<td>1000</td>
</tr>
<tr>
<td>43Zircoc</td>
<td>100</td>
<td>500</td>
<td>100</td>
<td><100+</td>
<td>100</td>
<td>30</td>
<td>70</td>
<td>1500</td>
<td>50</td>
</tr>
</tbody>
</table>

*Trace, +Not detected, #No sample

Table 4. Lattice parameter and initial appearance temperature of cubic ZrO2

<table>
<thead>
<tr>
<th>Compt. systems</th>
<th>CaO-ZrO2</th>
<th>MgO-ZrO2</th>
<th>Y2O3-ZrO2</th>
<th>CeO2-ZrO2</th>
<th>CaO-MgO-ZrO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizer (w/o)</td>
<td>4CaO</td>
<td>3CaO</td>
<td>6MgO</td>
<td>15Y2O3</td>
<td>20CeO2</td>
</tr>
<tr>
<td>Initial temp. of tetragonal-cubic phase appearance (°F)</td>
<td>1700</td>
<td>1500</td>
<td>900</td>
<td>1950</td>
<td>1000</td>
</tr>
<tr>
<td>a of initial phase (Å)</td>
<td>5.148</td>
<td>5.142</td>
<td>5.112</td>
<td>5.171</td>
<td>5.091</td>
</tr>
</tbody>
</table>
| 8. Stability of thermomechanical properties

Garbie and Nicholson studied relationship between thermomechanical properties such as spalling resistance, stress relief, and microstructure of zirconia. In Figure 18, spalling resistance is given as a function of phase composition. It was recognized that partial stabilized zirconia increases spalling resistance and there occurs quasistatic crack propagation from complex substructure of 1000 Å domains of cubic and monoclinic zirconia.

9. Detection of zirconia polymorphs

McDevitt and Baun applied infrared absorption spectroscopy to identify monoclinic and cubic zirconias. Phillips and Mazdiyasni established the infrared and Raman frequencies of monoclinic zirconia and of stabilized and metastable tetragonal and cubic zirconias. In Figure 19 frequencies and ranges of transmission bands of each zirconia is given.

Fig. 18 Spalling resistance as a function of phase composition

![Graph showing spalling resistance as a function of phase composition]
10. Transformation mechanism of zirconia

Because of the nonquenchable transformation of zirconia from a monoclinic to a tetragonal phase with a hysteresis over a temperature interval in the neighborhood of 1000°C and no change in the relative proportions of the two phases at any constant temperature within the transformation range with time, Wolten\(^6\) considered that this behavior is typical of the majority of martensite transformation. Wolten performed to make clearly this behavior by applying a high-temperature X-ray diffraction procedure\(^8\).

11. Stability of zirconia under thermal cycling

Stabilized zirconia is often used for coating on engine in aeroplane. Stepka, Liebert and Stecura carried out failure test under thermal cycling on stabilized zirconia with yttria, calcia and magnesia.\(^{69}\) In Table 5, an example of their experiment is given.

As for the segregation of calcia along the grain boundary when alumina and silica were contained as impurities in raw materials, secondary electron image was given.\(^{61}\) Further the decomposition of stabilized zirconia with magnesia on heating at 1750°C for 3 hours was shown by secondary electron image.\(^{18}\) In Figure 20, the segregation behavior of stabilized zirconia is shown and it is understood that impurity elements in raw material will play an important role.

Table 5. Cyclic furnace evaluation of various zirconia

<table>
<thead>
<tr>
<th>Specimen</th>
<th>ZrO(_2)-12Y(_2)O(_3)</th>
<th>ZrO(_2)-3.4 MgO</th>
<th>ZrO(_2)-5.4 CaO</th>
<th>ZrO(_2)-5.4 CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*673</td>
<td>460</td>
<td>255</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>*650</td>
<td>450</td>
<td>255</td>
<td>87</td>
</tr>
</tbody>
</table>

Not failed, Cycle: 1 hr at 1248°K and 1 hr to cool to 553°K
References

36) A. Bouanet: Compt. Rend., 267C (1968), p. 395
44) N. Iwamoto, O. Nakamura and K. Ogin: Unpublished Data