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Preface

Humanoid robots, which are autonomous human-shaped robots, have potential

applications in public spaces. People expect the robots to communicate by using

their human-like eye gazes, gestures, and postures, in the same manner as humans.

Many research institutes have tried to develop humanoid robots that can talk like

human beings. Thanks to their developments, the motor ability of these robots is

similar to that of human beings. In contrast, their communication ability is still

far from that of human beings.

Humanoid robots in public spaces need to use the on-board microphones to

obtain sounds because the number of dialogue participants cannot be controlled

by them. Thus, we cannot assume that all human participants wear microphones

because this is not realistic. Moreover, the robot does not always detect sounds

clearly, and receives not only utterances but also surrounding noises. Therefore,

humanoid robots need to be able to determine whether they should take a turn

when they detect a sound, i.e., turn-taking decision.

The main contribution of the dissertation is the implementation of the turn-

taking decision module by using social norms, which are implicit rules that govern

human behaviors in a group. This means that a robot infers the dialogue situation

from several observations and selects an appropriate action according to social

norms. The observations can be divided into two types: observations about the

robot and observations about users. The former is the robot states, such as its

postures, motion, and utterance; the latter is the users’ states. This dissertation

presents two methods for situation understanding based on each observation. The

first method is to predict ease of speaking, i.e., when a user is likely to begin

speaking to a robot based on the robot’s states. The second one is to estimate

response obligation, i.e., whether a robot should respond to its detected sounds

based on the users’ states. These methods can make the robot estimate the current

dialogue situation and behave according to social norms.

Chapter 1 provides this study’s background, and introduces a new architec-

ture of spoken dialogue systems for humanoid robots in public spaces. Chapter 2
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describes the first method, i.e., predicting when a user is likely to begin speaking

to a robot. The problem is cast as a binary machine-learning task with the in-

put consisting of features describing the robot’s state. Chapter 3 shows that the

first method can be used for spoken dialogue systems for humanoid robots. Be-

fore incorporating the method in a spoken dialogue system, this chapter discusses

two issues. This chapter confirms whether ease of speaking is influenced by the

specific participants and whether the robot can handle individual differences and

influences of users’ urgency. Moreover, an actual spoken dialogue system for a

humanoid robot is introduced. Chapter 4 describes the second method, i.e., de-

termining whether a robot should respond to its detected sounds in public spaces.

Here, typical user behaviors in human-robot dialogue are exploited for making the

estimation. Finally, Chapter 5 concludes this dissertation and points to directions

that future studies can take.

This dissertation summarizes my study on human-robot dialogue in Doctor’s

Course of Department of Information and Communications Technology, Graduate

School of Engineering, Osaka University. Contents of every chapter in this dis-

sertation except Chapter 1 and 5 are based on some publications shown in the

publication list as follows:

Chapter 2: Publications A-3, B-5, C-2, D-7, and D-8,

Chapter 3: Publications A-2, B-2, B-3, B-4, D-3, D-4 and C-5,

Chapter 4: Publications A-1, B-1, C-1, and D-1.



Acknowledgements

First and foremost, I offer my sincerest gratitude to my supervisor, Professor

Noboru Babaguchi, for his valuable and insightful advices on my career and this

dissertation. I have had the support and encouragement of him. Without his

persistent help, this dissertation would not have been possible.

I am also grateful to Professor Satoshi Sato of Nagoya University for his super-

vision and continuing encouragement through the course of my research in Nagoya

University and Osaka University. It was a great pleasure to work with him, and I

have learned a lot of things from him. His profound insights always stimulated me,

and his professional, diligent, and rigorous style of work has had a great influence

on me. I would like to follow his gentle manners in the future.

I would like to express my appreciation to my doctoral committee members,

Professor Takashi Washio and Associate Professor Naoko Nitta for their insightful

comments and suggestions on this dissertation.

I also take pleasure in thanking Professor Tetsuya Takine, Professor Akihiro

Maruta, Professor Seiichi Sampei, Professor Atsuko Miyaji, and Professor Kyo

Inoue. Their valuable discussions and favorable comments greatly enhanced the

quality of this dissertation.

I would like to express my sincere gratitude to Ms. Aya Inoue, secretary of

Babaguchi laboratory, for her enormous support. I also thank Assistant Professor

Kazuaki Nakamura for his support for my research activities.

My sincere thanks are due to Professor Yoshinobu Kitamura of Ritsumeikan

University, Associate Professor Koji Kozaki, and Assistant Professor Ryu Takeda,

who were the teaching staff in Komatani laboratory. They gave me a lot of valuable

iii



iv

suggestions and comments on my research. Of course, I really appreciate the

member of Komatani laboratory, students and staff. Especially, I would like to

thank Ms. Chizuko Motozono, who was secretary of the laboratory. She supported

me so much. I also would like to thank Dr. Yuki Yamagata who always encouraged

me.

I would like to express thanks to the member of Sato laboratory; Associate

Professor Takuya Matsuzaki, Ms. Rika Shiga, Ms. Kazuko Natsume, and students.

They welcomed me when I came back to Sato laboratory and encouraged me

greatly. I also would like to express my gratitude to alumni of Sato laboratory. I

learned a lot of things from them.

I have really enjoyed working with Dr. Kotaro Funakoshi and Dr. Mikio

Nakano at Honda Research Institute Japan Co., Ltd. They gave me invaluable

advices and comments on my research. I also express thanks to the members of

Honda Research Institute Japan Co., Ltd. for their hospitality during my visit.

I am very grateful to Lecturer Kiyohisa Nishiyama, who is my teacher for tech-

nical writing in Nagoya University, for his invaluable comments on this dissertation.

I had a great time discussing my research.

I would like to thank my family and grandparents for their love, understanding,

constant support, and sincere encouragement. Finally, I express thanks to Yuko

for her unconditional support and encouragement in my college life.



Contents

Preface i

Acknowledgments iii

List of figures x

List of tables xi

1 Introduction 1

1.1 Humanoid Robot in Public Spaces . . . . . . . . . . . . . . . . . . . 1

1.1.1 Communication Ability of Humanoid Robot . . . . . . . . . 1

1.1.2 Social Ability and Social Norms . . . . . . . . . . . . . . . . 3

1.2 Architecture of Spoken Dialogue Systems for Humanoid Robots in

Public Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Turn-Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Talking with Multiple Users . . . . . . . . . . . . . . . . . . 9

1.3.3 Dealing with Various Sounds . . . . . . . . . . . . . . . . . . 10

1.4 Utilizing Social Norms in Human-Robot Dialogue . . . . . . . . . . 11

1.5 Outline of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 12

2 Predicting When a Human is Likely to Begin Speaking to a Hu-

manoid Robot 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Definition and Formalization . . . . . . . . . . . . . . . . . . . . . . 15

v



vi CONTENTS

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Building the Prediction Model . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Making Robot Behavior Sequences . . . . . . . . . . . . . . 20

2.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Making Training Data . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Experimental Evaluation by Cross-Validation . . . . . . . . 31

2.4.3 Experimental Evaluation on Open Data . . . . . . . . . . . 32

2.5 Summary of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Building a Spoken Dialogue System for Humanoid Robots with a

Prediction Model based on Social Norms 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Evaluating a Model that Predicts When People Will Speak to a

Humanoid Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Data Collection using Participants from the General Public . 37

3.2.2 Making Training Data . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Evaluation of Dependency on Specific Participants . . . . . . 41

3.3 Handling Variations Caused by User-Annotated Labels . . . . . . . 45

3.3.1 Handling Individuality . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Handling the Influence of Instructions . . . . . . . . . . . . . 47

3.4 Incorporating the Prediction Model in a Spoken Dialogue System

for a Humanoid Robot . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Overview of Spoken Dialogue System . . . . . . . . . . . . . 51

3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Estimating Response Obligation in Multi-Party Human-Robot

Dialogue 57



CONTENTS vii

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Estimating Response Obligation . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Overview of the Proposed Method . . . . . . . . . . . . . . . 60

4.2.2 Features for Handling Various Sounds in Public Spaces . . . 60

4.2.3 New Feature Groups Used in This Study . . . . . . . . . . . 63

4.2.4 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Dialogue Corpus for Training and Test Data . . . . . . . . . 66

4.3.2 Annotating Labels for Sound Segments . . . . . . . . . . . . 67

4.3.3 Input Features for the Response Obligation Estimation . . . 68

4.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.5 Identifying Effective Features . . . . . . . . . . . . . . . . . 75

4.4 Summary of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions 79

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

References 84

Publication List 93





List of Figures

1.1 Three categories of communication ability. . . . . . . . . . . . . . . 2

1.2 Architecture of spoken dialogue systems for humanoid robots. . . . 6

2.1 Overview of proposed method for predicting when a user is likely

to begin speaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Part of sequence X. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Part of sequence Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 When the three participants would be likely to begin speaking for

data X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 When the three participants would be likely to begin speaking for

data Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Feature x1: Speech interval. . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Features x4 through x7: Motion. . . . . . . . . . . . . . . . . . . . . 28

2.8 Features x8 and x9: Robot’s head/eye direction. . . . . . . . . . . . 29

3.1 Part of instructions used in data collections. . . . . . . . . . . . . . 38

3.2 Data collection procedure. . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Part of the questionnaire. . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Performance improvement in going from a fixed threshold (0.5) to

a changing threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Optimized thresholds and number of frames. . . . . . . . . . . . . . 48

3.6 Relationship between ratings and how much each human participant

felt it was possible to begin speaking. . . . . . . . . . . . . . . . . . 49

3.7 Overview of the spoken dialogue system for the humanoid robot. . . 50

ix



x LIST OF FIGURES

3.8 The robot is introducing my laboratory to a user while the user is

looking at screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Successful and failed human-robot dialogues when an ambulance

passed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Interaction among three people and a robot (condition of data col-

lection). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Overview of estimating response obligation. . . . . . . . . . . . . . 60

4.3 Example of annotation of speech segment of ought-to-respond. . . . 68



List of Tables

1.1 Ideal turn-taking decision for humanoid robots in public spaces. . . 5

1.2 Classification of related work. . . . . . . . . . . . . . . . . . . . . . 8

2.1 Input features obtained from robot behaviors. . . . . . . . . . . . . 19

2.2 Duration in which the three participants gave the same labels (in

seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Details of common labels (in seconds). . . . . . . . . . . . . . . . . 31

2.4 Prediction accuracy and subsets of features (%). . . . . . . . . . . . 32

2.5 Comparison of models with different training data (open vs. cross-

validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Differences in the data collections. . . . . . . . . . . . . . . . . . . . 38

3.2 Training data and details of common labels (in frames). . . . . . . . 41

3.3 Performance obtained with the two training data sets (macro-average

F1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Effect on performance when thresholds were changed. . . . . . . . . 46

4.1 List of feature sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Data size and breakdown by target labels. . . . . . . . . . . . . . . 67

4.3 Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Accuracies per category of input sound (Recall rates). . . . . . . . . 77

4.5 Performance deterioration in terms of F-measure when individual

feature sets are removed from the estimation. . . . . . . . . . . . . 77

5.1 Summary of proposed methods and applicable conditions. . . . . . . 80

xi





Chapter 1

Introduction

1.1 Humanoid Robot in Public Spaces

1.1.1 Communication Ability of Humanoid Robot

Humanoid robots, which are autonomous robots with a human-shaped body, have

potential applications in public spaces, such as hotels, restaurants, exhibition halls,

and nursing homes. Many research institutes have tried to develop humanoid

robots that can talk like human beings. For example, Honda Motor Co., Ltd. has

developed ASIMO [19]; Waseda University has developed SCHEMA [35]; SoftBank

Robotics released Pepper [46] in 2015. The motor ability of these humanoid robots,

in terms of walking, carrying, and standing, is similar to that of human beings. In

contrast, their communication ability, in terms of speaking and hearing, is still far

from that of human beings.

The communication ability of human beings can be viewed as a mixture of

several abilities. This study classifies these abilities into three categories: a signal

ability, language ability, and social ability (see Figure 1.1). Humanoid robots

should have these three abilities in order to communicate with people smoothly in

public spaces.

On the reception side of communication, signal ability is the ability to detect

a sound and determine whether it is a noise or an utterance. The methods of

realizing this ability in a robot are input sound classification and voice activity

1



 

	

Figure 1.1: Three categories of communication ability.

detection. They are usually applied before speech recognition as a preprocess.

Moreover on the reception side, language ability is the ability to understand an

utterance. This ability can be realized through speech recognition and language

understanding. The former converts a detected sound into a language representa-

tion; the latter converts the language representation into a semantic representation

that a robot (i.e., a spoken dialogue system) can interpret to determine an appro-

priate action.

On the generation side, these two abilities work in the reverse direction. Lan-

guage ability is required to generate a language representation (utterance), while

signal ability is required to convert the language representation into a sound.

Social ability is the ability to act socially, i.e., according to social norms. To the

best of my knowledge, there is no method for realizing this ability in human-robot

communication. Spoken dialogue systems on smartphones, such as Apple’s Siri, do

not need this ability, because they have no bodies. People do not treat smartphones

as social beings and do not expect them to act socially in dialogue. In contrast,

for spoken dialogue systems installed in humanoid robots, social ability is crucial

because people treat them as social beings [23, 39]. Robot’s behaviors according

to social norms enable the robot to take dialogue situation and users’ states1 into

account when interpreting input sound signals and language representation. For

example, when a robot determines whether a detected sound is a noise or an

utterance (signal ability), the robot can use users’ and the robot’s states as well

1This dissertation uses “user” as a robot user unless there are some particular reasons.

2



as acoustic information.

1.1.2 Social Ability and Social Norms

Social norms are implicit rules that govern human behaviors in a group [49]. In

dialogue, they govern verbal and non-verbal behaviors on the basis of dialogue

situations. The followings are typical examples of social norms.

• When a speaker is talking to a listener, the listener should not interrupt the

speaker.

• When a speaker is talking to a listener, the speaker should face toward the

listener.

• A speaker and a listener should keep a social distance [17], which is the

distance that someone implicitly allows others to approach in an interaction.

Social norms depend on not only the dialogue situations, but also human relations.

For example,

• when a speaker talks to her boss, she should speak clearly and carefully;

• when a speaker talks to his friends, he may speak frankly;

• when an adult talks to a child, he should use plain expressions.

This study tries to incorporate a social ability to spoken dialogue systems

installed in humanoid robots under the assumption that people obey social norms

and act cooperatively in human-robot dialogue. People have a tendency to treat

humanoid robots as social beings; this was demonstrated in a famous psychological

experiment conducted by Reeves and Nass [44]. Moreover, this study assumes that

people interacting with a robot will not perform uncooperative actions that conflict

with social norms. Accordingly, social norms can be used to determine whether a

robot should respond to an input sound, i.e., take a turn.

Previous studies on spoken dialogue systems do not focus on the social ability

of spoken dialogue systems. This is because the typical target platforms of spo-

ken dialogue systems were mobile phones and smartphones. People do not treat

3



them as social beings because these platforms do not have human-shaped bodies.

Thus, in these previous studies, they did not need to consider the social ability

for smooth human-machine dialogue. In contrast, several researchers in the field

of human-agent interaction (HAI) have paid much attention to social ability [16].

For example, Azaria et al. [2] have built systems that encourage people by using

a social channel (human-like utterances and motions).

1.2 Architecture of Spoken Dialogue Systems for

Humanoid Robots in Public Spaces

The conventional architecture of spoken dialogue systems consists of five modules:

automatic speech recognition, natural language understanding, dialogue manage-

ment, natural language generation, and text-to-speech synthesis [36, 51]. These

systems accept a user utterance (sound) as input and generate a system utterance

as output. The first four modules are related to the language ability in Figure 1.1,

and the fifth is related to the signal ability.

This architecture works as follows.

1. The automatic speech recognition module converts an input sound into a

linguistic representation (“What’s your name?”).

2. The natural language understanding module converts the linguistic repre-

sentation into a semantic representation (“ASK: NAME”).

3. The dialogue management module determines the system’s action according

to the semantic representation and generates a semantic representation for

the response (“OUTPUT (SPEECH: MYNAME)”).

4. The natural language generation module converts the obtained semantic rep-

resentation into a language representation (“My name is Nao.”).

5. Finally, the text-to-speech synthesis module synthesizes the sound of the

language representation.

4



Table 1.1: Ideal turn-taking decision for humanoid robots in public spaces.

Utterance toward an interlocutor�

Monologue � Surrounding 
noise 

Toward the robot � Toward 
other 
users�

Question, 
etc.�

Interjection, 
etc.�

Whether the 
robot should 

respond? �
Yes� No � No � No � No �

This architecture is designed under the assumption that all input sounds are utter-

ances toward the system. This is because the typical platforms of spoken dialogue

systems are mobile phones and smartphones. These devices are used by plac-

ing one’s mouth next to them, and thus, they clearly receive the sounds of the

utterances; surrounding noises can be ignored in this situation.

In contrast, when a spoken dialogue system is installed on a humanoid robot

in public spaces, this assumption, i.e., all input sounds are utterances toward the

system, is not satisfied. Table 1.1 shows sounds that humanoid robots may detect

in public spaces and ideal robot’s actions. In public spaces, the number of dialogue

participants cannot be controlled; two or more people may join a dialogue with a

robot. Therefore, an expectation that all human participants wear microphones is

not realistic. The robot has to receive sound through on-board microphones that

detect not only utterances but also surrounding noises. This means that the robot

has to be able to distinguish utterances from surrounding noises.

In public spaces, moreover, the robot has to recognize the direction of the

utterance, i.e., to whom the utterance is directed, when there are two or more

human participants. When a user utterance is spoken to the robot and the user

expects the robot to respond (for example, questions), the robot should respond

to it. When a user utterance is spoken to other users or is a monologue or the user

does not expect the robot to respond (for example, interjections), the robot must

not respond to it, because such incorrect responses cause the dialogue to break

down.

This dissertation presents a novel architecture of spoken dialogue systems for

5



	
	

 

Figure 1.2: Architecture of spoken dialogue systems for humanoid robots.

humanoid robots in public spaces. This architecture (Figure 1.2) includes two

new modules: a sound detection module and a turn-taking decision module. The

sound detection module discriminates between sound intervals and silent intervals.

The turn-taking decision module determines whether the robot should respond to

detected sound intervals.

The former is conventionally done as a preprocessing of the speech recognition

part and is called endpointing [48] or voice activity detection [54]. This is because

that these conventional studies assumed that sound intervals are speech intervals

and can be clearly detected. In contrast, for humanoid robots in public spaces,

the sound detection is important because they do not always detect sounds clearly

and receive not only utterances but also surrounding noises. Therefore, this study

positions the sound detection as a major module.

6



This study focuses on the development of the turn-taking decision module un-

der the assumption that people obey social norms and act cooperatively with the

humanoid robot. To the best of my knowledge, there is no practical method for

the turn-taking decision. That is, this study tackles the problem that a humanoid

robot in a public space estimates whether it should respond to sound intervals,

which are detected by using a conventional method for the sound detection. This

module focuses on “taking a turn”, i.e., when to generate a response or an ut-

terance, whereas the term “turn-taking” more generally includes both “taking a

turn” and “releasing a turn”. For smooth turn-taking between a humanoid robot

and users, the robot should be able to release a turn, as well as take one. How-

ever, it seems that “taking a turn” is more important than “releasing a turn” for

humanoid robots, because the dialogue will break down if the robot fails to take

one, whereas even if the robot fails to release a turn, human participants can save

the dialogue.

1.3 Related Work

Table 1.2 is a classification of related work. Studies on spoken dialogue systems

can be classified on two axes: the number of participants and the dialogue environ-

ment. “Two-party” indicates a one-to-one conversation, i.e., a human talks with

a system, while “multi-party” indicates a conversation among groups of three or

more participants. “Silent environment” indicates that the input sounds are only

utterances, i.e., do not include noises, while “public space” indicates that both

utterances and noises are included in the input sounds.

Many conventional studies on spoken dialogue systems fall into the class of two-

party dialogue in a silent environment (the upper-left area in Table 1.2). This is

because the typical target platforms of spoken dialogue systems are mobile phones

and smartphones. Numerous studies on interactive voice response (IVR) systems

were actively conducted in the early 2000’s [10]. These studies have dealt with

utterances toward the robot (system) only in Table 1.1.

Recent research on spoken dialogue systems has explored two directions. Some

7



Table 1.2: Classification of related work.
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studies have aimed at the development of multi-party spoken dialogue systems (the

upper-right area in Table 1.2), while others have worked on the development of

spoken dialogue systems which can be used in public spaces (the lower-left area in

Table 1.2). The former’s typical platform is a humanoid robot. These studies have

dealt with whether utterances are toward the robot or other users in Table 1.1.

The latter’s is a car navigation system. These studies have dealt with whether

input sounds are utterances toward the robot or surrounding noises in Table 1.1.

This study explores the area of multi-party dialogue in public spaces (the lower-

right area in Table 1.2). This study deal with all input sounds in Table 1.1. This is

a more realistic setting for spoken dialogue systems installed in humanoid robots

in public spaces. The following subsections discuss the conventional techniques of

turn-taking, talking with multiple users, and dealing with various sounds.

1.3.1 Turn-Taking

Turn-taking is the fundamental way that humans interactively organize dialogue

by guessing the timing of taking and releasing their turns to speak or respond.

Humans unconsciously take turns depending on the interlocutors’ status in terms

of their utterances, motions, and facial expressions. Sacks et al. [47] were the

first researchers to propose a model of turn-taking, i.e., linguistic rules, in human-

human dialogue. Other studies analyzed human-human dialogue and revealed that

non-verbal behaviors are cues for turn-taking [13, 26].
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These findings have been introduced into human-machine interaction. Raux

and Eskenazi [43] proposed a method for controlling the timing of turn-taking over

the single modality of speech. Skantze et al. [52] monitored users’ attention by

tracking their head movements for smooth turn-taking. They recently proposed a

method for generating turn-taking cues at an appropriate timing in a face-to-face

setting [53]. Vertegaal et al. [57] constructed a conversational system that uses eye

movements to determine to whom the user is speaking.

Smooth turn-taking is very important for spoken dialogue systems for hu-

manoid robots. Humans talk naturally to robots that have a human-like ap-

pearance. Therefore, the robots need to be able to estimate the timing of taking

or releasing a turn from the dialogue situation. Hatice et al. [31] developed a

humanoid robot Kaspar and used probabilistic models for natural turn-taking in

drumming interaction games. Chao et al. [9] showed that a humanoid robot’s gaze

can control the utterance timing of human listeners.

1.3.2 Talking with Multiple Users

Some studies have aimed to develop spoken dialogue systems for humanoid robots

that can engage in speech interactions with multiple users. Bohus and Horvits [3]

devised a method for managing engagement in multi-party dialogue and imple-

mented it in a spoken dialogue system for a robot. Engagement is the process by

which two or more users join, maintain, and leave their conversation [50]. They

estimated dialogue participants and speakers from multi-modal information. They

installed their system in a humanoid robot named Nao [45], which works as a nav-

igator in front of elevators in a building [4]. Keizer et al. [25] explored an approach

involving automatic learning of dialogue strategies for multi-party human-robot

dialogue and demonstrated it using an example of a robot bartender.

The problem of addressee identification in multi-party dialogue situations is

closely related to this study, in which the addressee is identified by using acoustic

and visual information. Nakano et al. [40] showed that their agent can iden-

tify addressees by using face tracking and prosodic analysis of user utterances in
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human-agent interactions with high accuracy. By using this method, the agent

can respond to an input sound when it identifies the addressee as itself only. How-

ever, this method is limited to identifying an addressee of an utterance under the

assumption that every input sound is an utterance toward one of the interlocu-

tors. The experiments of these studies excluded noises, despite that they used the

on-board microphones to obtain sounds; this is an unrealistic setting.

1.3.3 Dealing with Various Sounds

As described in Section 1.2, spoken dialogue systems used in public spaces receive

surrounding noises as well as utterances. Furthermore, a user may talk to himself,

i.e., conduct a monologue. Incorrect responses to noises and monologues can cause

dialogue breakdowns.

Surrounding noises occur at arbitrary timings in public spaces. Noises in public

spaces include, for example, ringtones, users’ footsteps, and even motor noises

of the robot. Many researchers have proposed methods for making noise-robust

spoken dialogue systems. These methods can be categorized as noise robust speech

recognition or input sound classification.

As for the studies on noise robust speech recognition, Gales et al. [15] proposed

hidden Markov model (HMM) composition by using parallel model combination

to optimize a speech recognition system to surrounding noises. Boll [5] proposed a

noise suppression algorithm for reducing the spectral effects of acoustically added

noise in speech. Recent studies have proposed methods of blind dereverberations

that can be used for recovering unknown sources from observations without the

aid of information about the sources [58].

As for the studies on input sound classification, Lee et al. [34] collected sounds

data in public spaces and divided these sounds into five categories (adult, child,

laugh, cough, and noise). They built five GMMs by using acoustic features, and

distinguished these categories. Brueckmann et al. [8] proposed a method to adap-

tively reduce noise. These methods need to build sound classification models based

on acoustic features beforehand. Moreover, Huang et al. [20] proposed a method
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for voice activity detection by using lip movements obtained from a vision system.

This method uses the shape of the region between the lips to determine whether

the mouth is open or closed. Recently, a voice activity detection method that

integrates audio and visual information has been proposed [62]. By using these

methods, the systems can ignore noises and respond only to utterances.

Monologues are acoustically similar to utterances toward someone. In order to

discriminate between these utterances, non-acoustic features are needed in addi-

tion to acoustic features. Komatani et al. [29] proposed a method to distinguish

monologues from utterances toward a spoken dialogue system with information

peculiar to spoken dialogue systems, such as the duration of an utterance and

elapsed time since the end of the system’s utterance.

All of these methods introduced in this subsection fall into the binary classi-

fication category. Therefore, they cannot be applied to multi-class classification

for sounds in public spaces. For example, a method for distinguishing between

utterances and noises cannot correctly distinguish an announcement in a station

and utterances directed toward the robot because these sounds are acoustically

equivalent.

1.4 Utilizing Social Norms in Human-Robot Di-

alogue

This study utilizes social norms for multi-party human-robot dialogue in public

spaces, by implementing a turn-taking decision module. This means that a robot

infers the dialogue situation from several observations and selects an appropriate

action (whether to respond or not) according to social norms. This study calls it

situation understanding of turn-taking.

The observations can be divided into two types: observations about the robot

and observations about users. The former is the robot states, such as its postures,

motion, and utterance; the latter is the users’ states. This dissertation presents

two methods for situation understanding based on each observation.
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First, this dissertation focuses on the observations about the robot. This dis-

sertation presents a method to predict when a user is likely to begin speaking to

a robot based on the robot’s states, such as its posture, motion, and utterances.

If the robot can predict whether the user is likely to begin speaking, it can reject

sounds as noise when the user is not likely to begin speaking.

Second, this dissertation focuses on the observations about users. This disserta-

tion presents a method to determine whether the robot should respond to its input

sounds on the basis of the users’ states. In such environments, the robot would

receive various sounds from its surroundings including noises and utterances. This

method gives each input sound interval one of two labels: ought-to-respond and

ought-not-to-respond. This method is useful for preventing the robot from making

incorrect or unnecessary responses in a multi-party situation.

1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2, 3, and 4 describe

my study, which was addressed in Osaka University, on human-robot dialogue.

Chapter 2 describes a model for predicting when a user is likely to begin speaking

to a humanoid robot [A-3, B-5]2. The problem is cast as a binary machine-learning

task with the input consisting of features describing the robot’s state, such as its

postures, motions, and utterances. Chapter 3 shows that the prediction model

described in Chapter 2 can be used for spoken dialogue systems of humanoid robots

[A-2, B-2, B-3, B-4]. This chapter discusses two issues that arise when applying

this model to the spoken dialogue system and describes the actual construction

of the system. Chapter 4 discusses how a robot determines whether it should

respond to its input sounds in a realistic situation, i.e., in a multi-party human-

robot dialogue in a public space. Here, typical user behaviors in human-robot

dialogue are exploited for making the estimation [A-1, B-1]. Finally, Chapter 5

concludes this dissertation and points to directions that future studies can take.

2These labels correspond with the publication list.
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Chapter 2

Predicting When a Human is

Likely to Begin Speaking to a

Humanoid Robot

2.1 Introduction

This chapter describes a method for predicting ease-of-speaking, i.e., when a user

is likely to begin speaking to a robot. It focuses on observations about a robot

(described in Section 1.4) and uses the following social norm for building the

method: a human speaker considers her interlocutor’s situation when she deter-

mines whether to begin speaking. For example, if her interlocutor is speaking

and/or looks busy, she refrains from beginning speaking.

Incorrect or unnecessary responses are a critical problem in speech interaction

with humanoid robots. It is important for communication robots to prevent such

responses because automatic speech recognition by using the robot’s head-mounted

microphones is more difficult than that of using microphones in headsets [32]. The

robot needs to ignore unnecessary sounds, such as environmental noises, a user’s

unintentional mutters, and laughter. In order to ignore unnecessary sounds, many

researchers have focused on sounds which are detected by systems [28, 61, 34],

because acoustic information can be extracted from detected sounds. However,
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these methods cannot distinguish between human voices and sounds similar to

human voices, such as voices and singing on the radio and TV, because these

sounds are acoustically equivalent.

We adopt a novel approach to ignoring unnecessary sounds: we focus on the

robot’s state rather than the users’ state. This idea is inspired by the fact that

human speakers usually take the state of their addressee into consideration and

chooses when to begin speaking to the addressee. We assume that this convention

can be applied to human-robot interaction and have built a model that uses the

robot’s state to predict when the user is likely to begin speaking. If the robot can

predict the user’s timing, it can know the timing when a cooperative user is likely

to begin speaking. Conversely, audio received when the user is unlikely to begin

speaking can be discarded as non-speech with high probability. The proposed

model can be used in conjunction with existing approaches focusing on input

sounds to help distinguish user utterances. Furthermore, the robot can produce

situations in which the user is not likely to begin speaking and thus can control

when the user begins speaking.

The approach of the method is twofold:

1. The problem is formulated within a machine-learning framework.

2. Training data for the machine learning is collected from an experiment in-

volving multiple participants.

First, we define the robot states, i.e., the observation about the robot, to be used

as input features for the machine learning. These states are defined at any timing

by using the robot’s behaviors, such as its posture, motion, utterances, etc. We

then predict ease of speaking, i.e., whether the user is likely to begin speaking to

the robot. That is, we cast the problem as a binary machine-learning task, where

the input consists of features describing the robot’s state, and the output indicates

whether the user is likely to begin speaking or not likely to begin speaking.

Second, we collect training data for the machine learning by using multiple par-

ticipants. Different people may have different ideas about when to begin speaking,

so we conducted an experiment in which we asked several participants to label
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some real-time behaviors. While they were watching a sequence of behaviors of a

humanoid robot, they indicated in real time whether they would be likely to begin

speaking. We used the parts to which the participants gave the same labels in the

training to predict ease of speaking that most people feel. In essence, this enabled

us to extract the parts in which multiple participants are likely to begin speaking,

thereby eliminating the effect of individuality.

2.2 Definition and Formalization

2.2.1 Definition

The proposed method predicts whether a user is likely to begin speaking to a

robot. The prediction target corresponds to the transition relevance place (TRP)

in human-human dialogue. The TRP was first advocated by Sacks et al. [47] and

is a well-known notion in the human conversation analysis community. It indicates

places where the addressee is likely to begin speaking, i.e., when she will take a

turn.

This chapter assumes three conditions:

1. The content that the user is trying to convey to the robot is not urgent.

2. The user regards the robot as a social being.

3. The time when most cooperative users are and are not likely to begin speak-

ing exists.

Here, this chapter assumes that the content the user is trying to convey is

not urgent, e.g., asking the robot to turn on the air conditioner. The content of

an utterance is crucial to determining whether a user is actually likely to begin

speaking to the robot. Very urgent content, e.g., asking the robot to call an

ambulance, would be dealt with regardless of the robot’s state. Section 3.3.2

will discuss how the proposed method handles the variation caused by degree of

urgency.
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Figure 2.1: Overview of proposed method for predicting when a user is likely to
begin speaking.

In addition, this study assumes that the user treats the robot as not a machine

but as a social being; that is, we assume that the user feels a kind of anthropomor-

phism. It is well known that robots such as Geminoid [21] and Repliee R1 [38],

which closely resemble humans, make users feel anthropomorphism [44, 39, 23]. If

a robot moves only when instructed, people begin speaking to it without really

considering its state. Here, we use a humanoid robot that speaks and moves like

a human, thereby satisfying this assumption.

Finally, this study assumes that the time when most cooperative users are and

are not likely to begin speaking exists. In general, ease of speaking depends on

individuality. However, we believe that the timing when most people feel common

ease of speaking regardless of individuality exists. This study aims to build the

model that can predict the timing.

2.2.2 Formalization

An overview of the proposed method is shown in Figure 2.1. This method predicts

ease of speaking, i.e., the output indicates whether the user is likely to begin

speaking or not likely to begin speaking. We cast the problem as a binary machine-

learning task with the input consisting of features describing the robot’s state,

such as its postures, motions, and utterances. Whether the user is likely to begin
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speaking to the robot is estimated every 0.1 seconds.

The prediction model is defined as:

y(t) = fp(x
(t)), (2.1)

where x(t) is the input feature vector obtained at time t, and the function fp is a

predictor taking the feature vector as the input and outputting whether the user is

likely to begin speaking to the robot. We used logistic regression as the predictor

fp. This is because that we can easily understand which input features contribute

to predict ease of speaking and how likely users are to begin speaking by observing

coefficients and the probability value of the function fp. The output y(t) is a binary

value:

y(t) =

⎧
⎪⎨

⎪⎩

0 (not likely to begin speaking)

1 (likely to begin speaking).
(2.2)

In the training phase, ‘1’ means likely to begin speaking, and ‘0’ means not likely

to begin speaking.

The input features consist of the nine features listed in Table 2.1. x1 through

x3 represent the previous robot’s utterance, x4 through x7 represent the robot’s

motion, and x8 and x9 represent the robot’s head/eye direction. Section 2.3.3

describes the input features in detail.

We obtained these features every 0.1 seconds; therefore, the prediction is per-

formed every 0.1 seconds. Although our prediction target, when a user is likely to

begin speaking, depends on context in dialogue, we did not use contents of robot’s

utterance as features. This is because that using the contents as features may

make the model depend a domain and need to retrain it when using in another

domain. We use “speech interval”, “utterance pattern”, and “prosody” as features

of the prediction model instead of the contents. These features implicitly represent

dialogue context and are independent in domains.

We use non-verbal information as well as verbal information as features. Be-

cause robot behaviors can be controlled by the system developer, one of the ambi-

tious applications of the prediction model is to control the users’ behaviors in such
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a way that they will ignore noises. Moreover, it is difficult to predict whether the

user is likely to begin speaking by using only verbal information. When the robot

is not talking, but is moving with its back to the user, for example, the user is

not likely to begin speaking. Thus, we predict the situation by using the robot’s

motion and head/eye direction.
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2.3 Building the Prediction Model

We faced two issues in building the model for predicting ease of speaking. First,

we needed to prepare training data. We had to collect data from people that

indicated when they are likely to begin speaking in a dialogue because there are

no other studies on ease of speaking. Next, we needed to design features for the

machine learning by using the robot’s states.

The above considerations led us to proceed with this study as follows.

1. We made the robot’s behavior sequences including its various motions and

utterances of the robot.

2. We asked several participants to watch the sequences and to assign labels

indicating whether they are likely to begin speaking to the robot at any time

they felt appropriate during the sequence.

3. We built a model to predict ease of speaking by using the labels as supervisory

signals and the robot’s states obtained from the sequences as features.

2.3.1 Making Robot Behavior Sequences

To determine whether a user is likely to begin speaking to the robot, we took the

following factors into consideration: the robot’s posture, motion, and utterances;

specifically, whether the robot turns towards the user, moves, or utters something.

We only used factors that the robot can automatically obtain because these are

what would be used as input features in the online interactions.

Whether a user is likely to begin speaking cannot be determined by just one

factor because an actual robot’s behaviors contain these factors in a continuous

and compound manner. By continuous, we mean that directly after the robot

exhibits one behavior, it exhibits another behavior. If the robot exhibits two or

more behaviors continuously, a user needs to consider the relationship between

them when deciding whether to speak. For example, a user may be likely to begin

speaking when the robot turns towards her after speaking in another direction. By

compound, we mean that the robot exhibits behaviors containing many factors at
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the same time. When the robot is exhibiting such behaviors, whether the user is

likely to begin speaking depends on the specific combination of factors. For exam-

ple, a user is likely to begin speaking when the robot says nothing. However, the

user is not likely to begin speaking when the robot bows and makes no utterance.

Thus, we made two sequences that contain the various factors in a continuous

and compound manner. The content of the sequences was a self-introduction by

Nao [45], which is a humanoid robot made by SoftBank Robotics. We used Voice-

Text [11] as the text-to-speech (TTS) engine. We called these two sequences X and

Y. Sequence X was 150.0 seconds long, and sequence Y was 259.3 seconds long.

We made sequence X first because it was simpler and contained mostly speech

information. Sequence Y was longer and contained a more varied combination of

factors than sequence X. Figures 2.2 and 2.3 show parts of sequences X and Y. Se-

quences X and Y include 30 and 39 utterances altogether. We used these sequences

for making training and evaluation data sets after making manual annotations on

them.

Part of sequence X is depicted in Figure 2.2. In (i), the robot waves its hand,

turns right, and says “Hello”. In particular, the robot moves its head, then its

right arm, and then its right hand and left hand. Since we assume that the user

is in front of the robot, the robot is not facing the user at the time. In (ii), the

robot faces forward — that is, in the direction of the user — and does not move

or speak. In (iii), the robot speaks for about one second and looks around. Here,

(i) and (iii) exhibit compound factors, and (i) and (ii) exhibit continuous factors.
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2.3.2 Data Collection

We collected a data set and had participants give it labels indicating whether

they would be likely to begin speaking to the robot. The target data was the two

robot behavior sequences described in the previous section. Because the prediction

model should not be dependent on a specific user, we specified that

• multiple participants must be used, and

• each participant must annotate the data multiple times.

We asked three participants to make annotations as they watched a sequence of

behaviors of a humanoid robot. The participants were students in our laboratory.

The data collection procedure was as follows:

1. Participants were instructed on the experimental procedure and usage of a

graphical user interface (GUI) for annotation and then allowed to practice

with the GUI for a while.

2. Participants sat down in front of the robot.

3. Participants watched the sequence several times to prevent them from being

surprised when watching the sequence for the first time.

4. Participants made annotations as to whether they would begin speaking by

using the GUI. They watched the same sequence three times.

For simplicity, we conducted the data collection one by one. In general, there

may be several users in public spaces. If several users are participating in the same

conversation, whether a user is likely to begin speaking will vary depending on his

position. For example, suppose a robot turns towards user A and stops silently,

and user B is located to the left of the robot. In such a case, we expect that user

A will begin speaking and user B will not because the robot is facing user A.

The GUI rigged to a computer display showed and recorded whether the par-

ticipants indicated they were likely to begin speaking: “likely to begin speaking”

was indicated by their keeping the mouse button pushed down and “not likely to
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Figure 2.4: When the three participants would be likely to begin speaking for data
X.

begin speaking” was indicated when they stopped pushing it. The robot’s behav-

ior sequences do not change regardless of whether the participants push down the

mouse button. In general, their decisions would be affected by the preceding robot

behaviors. However, we asked the participants to watch the entire sequence of the

robot’s behaviors to collect annotation data on the same conditions.

Written instructions were provided before the experiment to avoid any inaccu-

racies stemming from unreliable oral instructions. Participants could ask questions

if necessary. Participants were also given the following instruction:

Please indicate when you can say “Hey” to the robot to ask it to speak

a little bit more loudly.

The labels given by the three participants are shown in Figures 2.4 (data X)

and 2.5 (data Y). These figures show when each participant pushed the mouse

button; that is, when they would be likely to begin speaking. The black parts

denote when the participants would be likely to begin speaking, and the white

parts denote when they would not be likely to begin speaking. The horizontal axis

is the time of the robot behaviors. We analyze these data in subsection 2.4.1 to

make training and evaluation data.
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Figure 2.5: When the three participants would be likely to begin speaking for data
Y.

2.3.3 Input Features

The proposed method uses the robot’s state as the input feature to predict ease

of speaking. Because the robot’s state is controllable by the system developer, the

proposed method has the potential of being used to control user behaviors as well

as make the robot ignore noises. These states are defined at any time by using the

robot’s behaviors, such as its posture, motion, and utterances. In particular, we

use the nine features listed in Table 2.1. These features were calculated by using

the robot’s behavior sequences every 0.1 seconds, as shown in subsection 2.3.1.

Speech interval (x1) Feature x1 represents the elapsed time from the end of

the robot’s previous utterance. An example is shown in Figure 2.6, where the

horizontal axis is time, and the robot utterances are indicated by the gray blocks.

The length of each gray block indicates the elapsed time of each utterance. A

space between a gray block and the next bar represents a speech interval.

Generally, when a speaker talks continuously, a listener is not likely to begin

speaking. In particular, as shown in Figure 2.6, the shorter the pause is, the

more difficult it is for the listener to begin speaking to the speaker. On the other

hand, the listener is likely to begin speaking when the pause is long. Thus, speech

intervals are useful for predicting ease of speaking.
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Figure 2.6: Feature x1: Speech interval.

Feature x1 is defined as

x1 =

⎧
⎪⎨

⎪⎩

t− (ti + t0) (x1 > t0)

0 (otherwise).
(2.3)

Here, ti is the end time of the previous utterance i of the robot, and t is the current

time. t0 is a constant offset reflecting the time until the user perceives the end of

a robot utterance. We set t0 to 1.1 after a preliminary experiment. This feature

was calculated for every time t of both robot’s behaviors.

Utterance pattern (x2) Humans can smoothly take turns in human-human

dialogue because they predict the end of an interlocutor’s utterance by using ut-

terance patterns. For example, “question” and “request” evoke taking turns; i.e.,

the interlocutor will finish speaking soon.

Feature x2 represents whether a previous robot utterance is a question. In

particular, when the previous robot utterance is interrogative, this feature remains

‘1’ until the next robot utterance starts. In this study, we manually assigned ‘1’

or ‘0’ to Feature x2 every 0.1 seconds.

Prosody (x3) Humans also uses prosodic information to predict the end of ut-

terances. For example, people can predict the end of an utterance when the in-

terlocutor says “How can I help you?” or “You are a student, right?”. Duncan et

al. [13] have shown that high rising intonation is correlated with the occurrence of

turn-taking attempts.
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Figure 2.7: Features x4 through x7: Motion.

As well as for Feature x3, when the previous robot utterance ends with a rising

intonation, this feature remains ‘1’ until the next robot utterance starts.

Motion (x4, x5, x6, and x7) When the robot is moving, a user is not likely

to begin speaking. Features x4 through x7 represent the robot’s motion and are

defined by changes in the joint angles of the robot. The robot we used, Nao, has

26 joint angles, as shown in Figure 2.7, and their angle positions can be obtained

via its Application Programming Interface (API). Here, “change” is defined as the

absolute difference between the angle position of the current frame and that of the

previous frame (i.e., 0.1 seconds before). We summed the differences for each part

(head, left arm, right arm, and legs) to roughly represent the robot’s motion and

ignored small noises from the position sensors. We separately used each difference

as a feature.

Head/eye direction (x8 and x9) When the robot looks towards the user, she

is likely to begin speaking. On the other hand, when it looks in another direction,

she is not likely to begin speaking.

Features x8 and x9 represent the robot’s head/eye direction and are defined

by using the angle positions of the robot’s neck, which can also be obtained via
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Figure 2.8: Features x8 and x9: Robot’s head/eye direction.

its API. These features are defined as the absolute angle difference (in radians)

between the user position and the robot’s head/eye direction, since both indicate

whether the robot has turned towards the user or not. We assume that the user

is sitting down in front of the robot, so these features are simply angle positions

from the front. The robot’s head/eye direction is shown in Figure 2.8. The left

and right figures are for features x8 and x9, respectively.

2.4 Experiment

2.4.1 Making Training Data

To make training data, we analyzed data X and Y collected in subsection 2.3.2. In

particular, we investigated the differences among the participants on the basis of

data X and Y. We tried to determine whether there were common parts at which

the three participants were likely to begin or not begin speaking. This was done

to check whether the collected data could be used as training data for the machine

learning.

Using the common parts for training data enables us to make the prediction

model by a small amount of training data. As described in subsection 2.2.1,

we aim to build the model that can predict the timing when most people feel
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common ease of speaking regardless of individuality. It is supposed to ask many

participants to make annotations with robot’s behavior sequences including various

motions and utterances and then use all the parts for training data, however

this requires high cost for these data collection. Moreover, while this approach

eliminates parts peculiar to individuals, it is difficult for the prediction model to

handle the variation for any individual in public spaces. Therefore, we took an

approach that the common parts were used as training data of the prediction

model.

We obtained three data sets from each participant (each participant watched

the same sequences three times). We used the second data set from each because

we felt that the participants may not have been skilled enough to use the GUI

during the first trial. We also thought that the participants might have forgotten

to give labels for the first data set, although we tried to prevent them from being

surprised. As for the third data set, some participants seemed tired by this time.

Consequently, we used the two sequences from the second trial and denoted them

as data X and Y. Each data set contained the annotations of all three participants.

We tried to determine whether the three participants gave the same labels to

the same behaviors. For example, in data X (Figure 2.4), all three participants

would be likely to begin speaking at 25, 40, 60, 90, 115, and 120 seconds during the

robot behaviors. There were also several common parts where they were not likely

to begin speaking. The results show that, in general, there are several common

parts mixed in with a few that the participants did not agree on. We used the

common parts as the training and evaluation data.

Here, we discuss the details of the collected data. Table 2.2 shows that the three

participants gave the same labels for 135.0 of 150.0 seconds in data X and 143.0 of

259.3 seconds in data Y. The details of the parts given the same labels are shown

in Table 2.3. In data X, they indicated they would be likely to begin speaking

for 14.2 seconds and were not likely to begin speaking for 120.8 seconds during

the 135.0 seconds. In data Y, they were likely to begin speaking for 16.1 seconds

and not likely to begin speaking for 126.9 seconds during the 143.0 seconds. We

assigned weights in accordance with the ratio of the two parts during the training
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Table 2.2: Duration in which the three participants gave the same labels (in sec-
onds).

Data X Data Y
Same labels were given 135.0 143.0

Different labels were given 15.0 116.3
Total 150.0 259.3

Table 2.3: Details of common labels (in seconds).

Data X Data Y
Likely to begin speaking 14.2 16.1

Not likely to begin speaking 120.8 126.9
Total 135.0 143.0

and evaluation phase.

2.4.2 Experimental Evaluation by Cross-Validation

First, we evaluated the performance of our model by cross-validation; i.e., within

each data set. We used logistic regression as the machine-learning method as

already described in subsection 2.2.2. The training and evaluation data sets are

the common parts to which the three participants gave the same labels (Table 2.3).

Because the data was discretized every 0.1 seconds, the data items numbered 1,350

for data X and 1,430 for data Y. We used the commonly agreed upon labels as

the teaching signals of the target variable; that is, we assigned ‘1’ when the agreed

upon label was “likely to begin speaking” and ‘0’ otherwise. The explanatory

variables were the nine input features described in the previous section. We gave

weights to the cases of likely to begin speaking in accordance with the numbers of

the two labels (8.5 and 7.9) for data X and Y. The performance was measured in

terms of prediction accuracy, i.e., the ratio of the number of correctly predicted

labels to the number of labels agreed upon by everyone. A stratified ten-fold

cross-validation was then performed.

The prediction accuracies of the proposed method were 87.4% and 92.1% for
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Table 2.4: Prediction accuracy and subsets of features (%).

Data X Data Y
All features (proposed) 87.4 92.1

Utterance only 85.9 91.2
Motion only 63.2 76.0

Head/eye direction only 63.4 71.5

data X and Y, respectively (Table 2.4). We also showed how much the individ-

ual features contributed to the performance. We classified the nine features into

three groups: “Utterance”, “Motion”, and “Head/eye direction”. “Utterance” in-

cludes x1 (speech interval), x2 (utterance pattern), and x3 (prosody). “Motion”

includes x4 (head motion), x5 (left arm motion), x6 (right arm motion), and x7

(legs motion). “Head/eye direction” includes x8 (horizontal head/eye direction)

and x9 (vertical head/eye direction). Their prediction accuracies are also listed in

Table 2.4. The prediction accuracies of “Utterance” were 85.9% and 91.2 % for

data X and Y, respectively. “Utterance” was the most effective for the prediction.

“Motion” and “Head/eye direction” were less effective when used by themselves,

but were helpful when used together with other features.

2.4.3 Experimental Evaluation on Open Data

We performed an additional experiment in which we completely separated the

evaluation data set from the training data set to show that our model is effective on

data sets other than the original training data set. We trained the model using data

sets X and Y and then evaluated these models on data X. An evaluation using ten-

fold cross-validation was also performed with data X. The case of using data Y was

an open test. The results are summarized in Table 2.5. The prediction accuracies

of the open test and the cross-validation were 88.5% and 87.4%, respectively.

The accuracy of the open test, 88.5%, was only 1.1% higher than that of the

cross-validation. Since it was almost equivalent to that of the cross-validation, the

model trained with a specific data set is also effective on another data set. This

result demonstrates that our model does not depend on a specific training data
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Table 2.5: Comparison of models with different training data (open vs. cross-
validation).

Training data Relationship with test data Prediction accuracy for data X
Data Y Open 88.5 % (1,195/1,350)
Data X Cross-validation 87.4 % (1,180/1,350)

set.

2.5 Summary of this Chapter

In human-human dialogue, people usually take the state of their addressee into

consideration when taking a turn; that is, they do not begin speaking at a random

time. Assuming that humans begin speaking to humanoid robots in a similar

manner, we constructed a model for predicting when a user is likely to begin

speaking to a robot. In particular, we predicted this time by using a machine-

learning method that takes a humanoid robot’s behaviors (its posture, motion,

and utterances) as input features.

We evaluated the prediction model by ten-fold cross-validation and evaluated

the prediction accuracies in each test set: 92.1% and 87.4%. After that, we eval-

uated the prediction model on completely different data sets for the training and

open test. The prediction accuracy in this case was 88.5%, which is almost equiva-

lent to that of cross-validation (87.4%). This result demonstrated that this model

does not depend on a specific training data set. Furthermore, it showed that the

robot’s motion, posture, and utterances are useful features for predicting ease of

speaking.
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Chapter 3

Building a Spoken Dialogue

System for Humanoid Robots

with a Prediction Model based on

Social Norms

3.1 Introduction

In this chapter, we discuss that how the prediction model described in Chapter

2 can be used in actual spoken dialogues. In the research reported in Chapter 2,

we showed the proposed method can predict whether the user is likely to begin

speaking. However, before incorporating the proposed method in a spoken dialogue

system for a humanoid robot, we need to discuss two issues of the prediction model.

First, in Chapter 2, we collected data from three students in our laboratory

and used it as data for training the prediction model. In contrast, people who talk

to a spoken dialogue system in public spaces would be members of the general

public who vary widely in age and are of different sexes. Therefore, we need to

determine whether the prediction model built in Chapter 2 was influenced by the

specific participants (students in my laboratory).

Second, in public spaces, the robot has to talk with not only users who have
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been already known by it but also unknown users. The robot cannot also know

what the user will speak in advance. Therefore, the robot handles variations in

these. Ease-of-speaking depends on their character and on what they want to say.

For example, some people are talkative, while others are taciturn. Talkative people

may quickly respond to the robot when it finishes talking. In contrast, taciturn

people may not quickly respond to it. Furthermore, when a person wants to talk

about something urgent (for example, he wants to go to the bathroom), he may

talk to the interlocutor immediately. In contrast, when he wants to adjust an

air conditioner’s temperature a little, he does not need to talk immediately. The

prediction model needs to be able to handle variations such as these when it is

used in public spaces.

In this chapter, we show three primary contributions to utilizing the predic-

tion model based on social norms for humanoid robots in public spaces. First,

we demonstrate that the method described in Chapter 2 does not depend on the

specific participants. We collected data from 25 participants recruited from the

general public and used it to retrain the prediction model. We determined its

performance by conducting cross-validation and open tests. Second, we demon-

strate that the prediction model can handle two variations that arise when the

participants give labels. Essentially, when people are likely to begin speaking de-

pends on two things: who the individual is, and which instructions are given prior

to the data collection. Finally, we incorporate our method in an actual spoken

dialogue system for a humanoid robot and show an example that the prediction

model enables the robot to ignore irrelevant sounds.
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3.2 Evaluating a Model that Predicts When Peo-

ple Will Speak to a Humanoid Robot

3.2.1 Data Collection using Participants from the General

Public

This study aims at building a prediction model that does not depend on specific

participants. To this end, we recruited 25 human participants from the general

public and had them label the robot’s behaviors sequences (X and Y) as in the

experiment described in the previous chapter.

Table 3.1 compares the two data collections. The participants (13 males and

12 females) were from the general public, and their ages ranged from 20 to 50

years. The participants were equally distributed by age group. The average age

of the participants was 37.9 years.

Participants were given three separate instructions related to the situation in

each data collection, including the level of urgency (Figure 3.1). These instructions

were not to limit the utterance content but to inform the participants of the degree

of urgency. We specified the degree of urgency so that all participants would

experience the same situation.

The data collection procedure is shown in Figure 3.2. Before the actual ex-

periment, participants watched the sequences and practiced with the GUI so that

they would be accustomed to the task. Data collections 1 and 2 differed only in

the sequences. The 25 participants annotated each sequence three times with in-

struction A. We had them perform the annotation three times to habituate them

to each sequence. Each data set was then used as training and test data. We

gave different instructions (as shown in Figure 3.1) during data collection 3 from

that used during data collections 1 and 2, to investigate the influence of different

instructions. In particular, the participants labeled sequence Y by following in-

structions B and C. At the end the data collection process, the participants were

asked to fill out a questionnaire with responses on a seven-point Likert scale, part

of which is shown in Figure 3.3. The participants rated how much their feelings
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Table 3.1: Differences in the data collections.

Data collections Section 3.2.1 Section 2.3.2
Participants The general public Students in my laboratory

Number of participants 25 people 3 students
Sex 13 males and 12 females All three males
Age 20-50 years old About 20 years old

	

	

	

Figure 3.1: Part of instructions used in data collections.

changed when instructions B or C were given. These were rated relative to the

case when instruction A was given.
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Practice�

Data Collection 1�
•  Sequence X� 
•  Instruction A� 
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•  3 times 

Data Collection 3�
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 1st   Instruction B 
 2nd  Instruction C� 
•  Once for each 

Questionnaire�

Rest: 5 minutes�

Figure 3.2: Data collection procedure.
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Figure 3.3: Part of the questionnaire.

40



Table 3.2: Training data and details of common labels (in frames).

Data Y’ Data Y
Data collections Section 3.2.1 Section 2.3.2

Sequence Y Y
Used parts 21 or more participants All 3 participants

Likely to begin speaking 259 161
Not likely to begin speaking 1,123 1,269

Total 1,382 1,430

3.2.2 Making Training Data

We prepared two training data sets: data Y and data Y’. Data Y was the same as

in Section 2.3.2. Data Y’ was obtained from data collection 2 described above. We

used the second out of the three trials for the same reason as before Section 2.4.1.

The data are summarized in Table 3.2.

For data Y’, we used the parts to which 21 or more participants gave the same

labels, indicating whether they would be likely to begin speaking. The number 21

is 7/8th of 25. This number was derived from the probability when the labels by

the three participants agree by chance is (1/2)3, which corresponds to the condition

in the previous data collection (i.e., data Y). Table 3.2 also shows the numbers of

frames to which 21 of the participants gave the same labels: 259 are labeled likely

to begin speaking, and 1,123 are labeled not likely to begin speaking. We gave

weights to the cases of “likely to begin speaking” based on the ratio of the two

labels (4.34).

3.2.3 Evaluation of Dependency on Specific Participants

We tried to determine whether the proposed method depended on the participants

whose data were used in the previous data collection. We did so by comparing the

new prediction model based on data Y’ with the model built from the previous

data (the one based on data Y).

The performance was measured in terms of the macro-average F1, which is

the arithmetic average of the two F-values for the two labels, “Likely to begin
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speaking” and “Not likely to begin speaking”. The macro-average F1 is a popu-

lar measure used in the text categorization community [60]. The F-value is the

harmonic mean of the precision and recall rates. The numbers of the two labels

were not equal, and we used this measure to equivalently evaluate the prediction

performance of the two labels. In addition, we set a majority baseline to verify

that a simple method did not perform well. We used the average of two F-values

when all labels were ‘1’ and ‘0’ as the baseline method. Its macro-average F1 was

47.2.

We calculated the macro-average F1 for the following three conditions.

(1) Ten-fold cross-validation

(2-1) Open test for all data

(2-2) Open test for the parts to which t or more participants gave the same labels

We used the data for sequence X consisting of 1,500 frames as the evaluation

target for Conditions (2-1) and (2-2). These data were completely separate from

the training data set (sequence Y); this means the test was an open one.

For Condition (2-1), we used all the data, which means that all frames, in-

cluding the uncommon parts, were used in the evaluation. The performances for

Condition (2-1) are the averages of the macro-average F1 values for all partici-

pants. For Condition (2-2), we used the parts to which most of the participants

gave the same labels. In particular, we set this condition as 18 or more participants

giving the same labels for which the macro-average F1 was the highest. Eighteen

or more participants gave the same labels to 1,362 frames; the numbers of frames

at which they were likely and not likely to begin speaking were 135 and 1,227,

respectively.

Table 3.3 compares the performances obtained under these conditions. The

difference in performance between data Y’ and data Y was at most 1.6 points

under all three conditions. This difference was statistically insignificant (P <

0.05). This result shows that the new model based on data Y’ performed almost

equivalently to the model based on data Y. Namely, despite the difference in
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the participants’ backgrounds (students in my laboratory vs. the general public)

and the different numbers of participants, these models performed almost the

same. This demonstrates that the proposed method does not depend on specific

participants whose data were used in the previous data collection.

In contrast, the performance of (2-1) was lower than that of (2-2). For training

data of the prediction models, we used the parts to which almost participants

commonly gave the same labels to eliminate the effect of individuality. That is, it

is difficult for the models to predict the parts to which participants gave different

labels. Thus, the proposed model needs to be able to handle individual differences,

which we will investigate in the next section.
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3.3 Handling Variations Caused by User-Annotated

Labels

3.3.1 Handling Individuality

Next, we determined whether the variation caused by individuality, i.e., differ-

ences between interlocutors, can be represented by changing the threshold of the

logistic regression. If this were possible, it would enable us to automatically set

the threshold according to individuality. Moreover, this approach does not need

to retrain the prediction model. If the robot predicts whether a specific user is

likely to begin speaking, we should use the user’s annotation for training data. In

contrast, we want to use the prediction model in public spaces, and so building

the model for each user is impractical.

In particular, we needed to verify that we set the optimal threshold for each

individual and that the performance improved. We compared two cases. One is

when the fixed threshold of the logistic regression is used for all participants. We

examined the effect of setting the optimized threshold (0.5) in the training data

and setting the threshold (0.4) of the best performance for the test data. The

other case is when the threshold is changed for each individual. Here, we used all

the data collected from the 25 participants in data collection 1 as the test data.

After this verification, we discuss how the optimized threshold is set.

We verify that we set the optimal threshold for each individual and that the

performance improved. Table 3.4 shows the average and standard deviation of the

macro-average F1 of each trial of the 25 participants. The case when the threshold

is fixed is the same as the case in Section 3.2.3 and corresponds to Condition (2-1)

in Table 3.3. The optimized thresholds were set per participant to those when

the macro-average F1 was the highest by varying the threshold from 0.1 to 0.9

in increments of 0.1. Figure 3.4 shows the performance improvement from the

fixed threshold (0.5) to the optimized threshold for each individual. The perfor-

mance improved 72 times out of the total 75 trials. The maximum performance

improvement was 18.0 points in a trial by one participant. Table 3.4 shows that,
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Table 3.4: Effect on performance when thresholds were changed.
Macro-average F1

Trials First Second Third
Optimized 76.1± 6.1 74.3± 8.2 74.7± 7.7
Fixed (0.5) 70.0± 7.2 69.8± 8.4 69.1± 7.8
Fixed (0.4) 73.1± 8.8 72.8± 9.4 72.4± 9.3

-4	
-2	
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2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

	 	 	

Figure 3.4: Performance improvement in going from a fixed threshold (0.5) to a
changing threshold.

overall, the performance when the threshold was changed was higher than when

the threshold was fixed (0.4 or 0.5). This demonstrates that changing the threshold

for each individual results in better performance.

Next, we discuss how the optimized threshold is set. In particular, we analyzed

the results in more detail by focusing on the relationship between the optimized

thresholds and the number of frames in which the user is likely to begin speaking.

We did so because we thought the optimized threshold might correspond to how

much the individual participants felt likely to begin speaking. As an example, the

optimized threshold for one participant was 0.3 and the number of the frames was
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300, while another optimized threshold was 0.8 and its number was 83. In other

words, when the number of the frames was higher, the threshold was lower, and

vice versa. The relationship is shown in Figure 3.5. The correlation coefficient

was −0.70, and its regression equation was y = −447x + 400, where x is the

optimized threshold and y is the number of frames at which the user is likely to

begin speaking. This result suggests that if we can set the threshold according

to this personal attribute, i.e., how likely participants are to begin speaking, the

performance of the proposed model will improve.

Furthermore, we consider whether this threshold can be automatically changed

according to individuals online. To use the relationship in actual human-robot

dialogue, we need to know how likely the individual is to speak and use it as

her attribute. In particular, we need to prepare the number of the frames that

can be obtained by having the users the labels indicating whether they are likely

to begin speaking to a sequence prepared in advance. The author believes that

the number of frames can be estimated from the information obtained during a

conversation, such as the utterance frequency of the user, because it corresponds

to how likely the user is likely to begin speaking. That is, the threshold is set to

0.5 in the first place as the default when a robot talks to a stranger. After that,

the robot estimates the optimal threshold from the utterance frequency during a

certain interval. Finally, the robot set the optimized threshold.

3.3.2 Handling the Influence of Instructions

To verify that the model can handle the variation caused by the influence of the

instructions given to the participants, we investigated the relationship between

the instructions given before the data was collected and the variations caused by

users labeling the data differently. As described in Section 3.2.1, the instruction

corresponded to the degree of urgency. Therefore, if we estimate the degree of

urgency for each individual, we may be able to adjust the threshold of the logistic

regression with the proposed model online.

We investigated the relationship between how much each participant felt it was
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Figure 3.5: Optimized thresholds and number of frames.

possible to begin speaking and the participant’s ratings on how likely they felt to

begin speaking in comparison with the case of instruction A. Note that how much

each participant felt it was possible to begin speaking means the difference in the

number of frames in which the user is likely to speak. The relationship is shown

in Figure 3.6. The correlation coefficient was 0.83, and its regression equation was

y = 204x − 834, where x is each participant’s rating and y is the fluctuation in

the number of the frames compared with the case when instruction A was given.

This result shows that these measures are correlated. That is, when participants

feel more urgency, the number of the frames increases, and vice versa.

This tendency is helpful for adjusting the threshold during a conversation if

we also obtain the user’s degree of urgency in addition to the number of the

frames explained in Section 3.3.1. The user’s degree of urgency corresponds to

the numerical ratings of the participants (Figure 3.6). Komatani et al. [30] showed

that the user’s degree of urgency could be estimated from the information obtained

during a conversation, such as the frequency of barge-ins (a user begins speaking

when a robot is speaking). This method enables us to estimate the user’s degree

of urgency and its results can then be used to change the threshold.
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Figure 3.6: Relationship between ratings and how much each human participant
felt it was possible to begin speaking.

3.4 Incorporating the Prediction Model in a Spo-

ken Dialogue System for a Humanoid Robot

The previous section showed how humanoid robots can predict when a user is

likely to begin speaking and handle two variations in dialogue. In this section,

we introduce an example of a spoken dialogue system for a humanoid robot in a

public space and how the prediction model is incorporated in the spoken dialogue

system.
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3.4.1 Overview of Spoken Dialogue System

Figure 3.7 is an overview of the spoken dialogue system for a humanoid robot.

We used the humanoid robot Nao [45], the speech recognition decoder software

Julius [33], and the text-to-speech engine VoiceText [11].

We used multi-modal information (audio and visual information, as well as the

robot’s posture) as the system’s input. Conventional spoken dialogue systems take

only audio information as input. In contrast, in public spaces, the interpretation of

sounds obtained from the robot’s head-mounted microphones is much more difficult

than the interpretation of sounds obtained a headset or directional microphone [32].

Therefore, to enable the robot to ignore certain sounds, we used not only audio

information but also visual and posture information as input. For noise-robust

human-robot dialogue, it is essential that the robot interpret this information

comprehensively.

Audio information was obtained through the robot’s four head-mounted mi-

crophones. This information was used for sound source localization, sound source

separation, speech recognition, and for distinguishing human voices from surround-

ing noises. To distinguish these sounds, we made Gaussian mixture models (GMM)

using the Hidden Markov Model Toolkit [63] (HTK) on the basis of acoustic fea-

tures.

Visual information was obtained from the robot’s head-mounted camera. From

it, we obtained the interlocutor’s position by using face detection and lip movement

analysis using Intraface [12]. Several other studies have used visual information to

detect a user’s facial and lip movements [6]. By using this method, it is possible to

recognize whether a user’s mouth is moving, regardless of the acoustic environment.

Thus, a sound can be regarded as noise if the user’s mouth is not moving at the

time.

Posture information was obtained via the application programming interface

(API) and the dialogue manager. The posture information was used for calculating

the input features of the prediction model based on social norms.

All the above information was collected by the I-O manager, which sent it

51



to the language understanding and response generation module. The language

understanding and response generation module sent speech and motion commands

to the robot’s API, NAOqi. As the robot’s response, a voice sound file, loaded in

Nao in advance, was played from the robot’s speaker. The robot moved by sending

commands from the language understanding and response generation module to

the API.

The dialogue system ran the main processes, including speech recognition and

sound source localization and separation, on an external computer because the

robot’s CPU did not have enough computational power to perform computation-

ally these intensive processes.

Processing delay is often a problem when transferring large amounts of data

from a robot to an external computer, especially if a multi-modal function is used.

For example, if there is a delay in the input of the visual information at one time

t, this input may be transferred at the same timing as the next audio signal at

another time t+1. To prevent this from happening, we used the Robot Operating

System (ROS) [42] as an I-O control. ROS has a function that manages each input

and output of modules for each time series. We avoided the processing delay by

managing the information needed to generate the response of the robot via ROS

in advance. Furthermore, it is easy for ROS to add a new module to the dialogue

system because ROS manages each module in parallel.

3.4.2 Discussion

We introduce a dialogue situation where the spoken dialogue system is useful. In

particular, the situation is when the robot detects an unnecessary sound. Fig-

ure 3.8 shows the robot introducing my laboratory to a user. Figure 3.9 shows

successful and failed examples of dialogues when a warning sounded from an am-

bulance nearby. In this case, the ambulance driver was giving an audible warning

to pedestrians.

In the failed dialogue, the robot responded incorrectly to the warning from

the ambulance. In the case of using an input sound classifier by using audio
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Figure 3.8: The robot is introducing my laboratory to a user while the user is
looking at screen.

information only, the output may be classified as a “human voice” because part of

this warning is actually a recording of a human voice.

On the other hand, by using the proposed method, the robot knew when the

user would likely to begin speaking. For example, when it turns on the TV and

talks to the user, as shown in Figure 3.8, the user is not likely to begin speaking.

Therefore, the robot estimated that the audio information detected when the user

was unlikely to begin speaking as probably not speech, and hence it ignored this

noise and waited for the next sound.
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U"erance	 Robot’s	gaze	
Robot:	 What	do	you	want	to	know?	 Toward	user	
User:	 I	want	to	know	something	about	the	

research	field.	
R:	 This	laboratory's	research	field	is	

spoken	language	systems	and	…	
Toward	slide	

Noise:	 Wee	Woo	Wee	Woo…	
Turn	to	the	leE.	Please	be	careful.	

	Failed	Example 	
R:	 I’m	Nao.	I'm	from	France…	

Robot	responds	incorrectly	to	
warning	from	ambulance 	

	Successful	Example 	
R:	 Robot	rejects	noise	and	then	waits	

for	next	sound 	
Toward	user

U:	 I	want	to	know	about	the	boss.	
R:	 Our	boss	is	very	kind…	 Toward	user	

Figure 3.9: Successful and failed human-robot dialogues when an ambulance
passed by.
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3.5 Summary of this Chapter

This chapter showed that the method described in Chapter 2 is useful in actual

human-robot dialogues. We described three primary contributions for incorporat-

ing the prediction model, i.e., the model for predicting whether a user is likely to

begin speaking to a robot, in humanoid robots in public spaces.

First, we demonstrated that the prediction model described in Chapter 2 does

not depend on specific participants. We rebuilt the prediction model with data

collected from 25 participants recruited from the general public. We compared

its prediction performance with that of the prediction model built (in Chapter

2) using data collected from participants who were students in my laboratory.

Experimental results showed that these models performed almost the same despite

the differences in the participants’ background and the number of participants.

Second, we demonstrated that the prediction model can handle two variations,

(1) individuality and (2) influence of instructions, that appear when participants

give labels. Regarding (1), we found that the threshold of the logistic regression

could be changed by investigating the relationship between the thresholds and the

number of the frames. Regarding (2), we investigated the relationship between the

number of the frames and the influence of the instructions given before the data

collection, i.e., the user’s degree of urgency. We showed that the user’s degree of

urgency could be used to predict whether the user is likely to begin speaking from

the relationship between the participant ratings and the fluctuation in the number

of the frames.

Finally, we introduced a spoken dialogue system for a humanoid robot in a

public space and how the prediction model is incorporated in it. We described a

dialogue situation where the proposed method enabled the robot to ignore unim-

portant sounds.
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Chapter 4

Estimating Response Obligation

in Multi-Party Human-Robot

Dialogue

4.1 Introduction

This chapter discusses how a robot can determine whether it should respond to

input sounds in a realistic situation, i.e., a multi-party human robot dialogue in

public spaces. This chapter focuses on observations about users, while Chapter 2

focused on observations about the robots.

Communication robots are expected to be capable of interacting with people

in public spaces, such as a reception desk of a restaurant or a hotel. In such envi-

ronments, the robot receives various sounds, such as noises from its surrounding

and users’ voices, and furthermore, it needs to be able to interact with multiple

people at the same time. Moreover, it is often suddenly talked to. If it incorrectly

determines that it should respond to these sounds, it may, for example, erroneously

speak to the surrounding noises or ignore a user talking to it.

In this chapter, we present a machine-learning based method to estimate a

response obligation, i.e., whether an input sound should be responded to by a robot

or not. The input sounds are all sounds that occur while the robot is interacting
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Figure 4.1: Interaction among three people and a robot (condition of data collec-
tion).

with users. We give each sound segment one of two labels: ought-to-respond and

ought-not-to-respond. The former is given to those to which the robot should

respond. The latter is given to user monologues, user utterances towards other

users, surrounding noises (e.g., footsteps and motor noises), and user utterances

to which the robot should not respond, such as interjections.

This method is useful for preventing the robot from making incorrect or unnec-

essary responses in a multi-party situation. For example, let us assume a situation

in which three users and a robot interact, as shown in Figure 4.1. Here, user C

is speaking to the robot, and user A is talking to user B. If the robot correctly

estimates a sound segment corresponding to the utterance of user A as ought-not-

to-respond, the robot can reject it and continue talking with user C. If the robot

estimates a sound segment corresponding to an utterance of user C as ought-to-

respond, the robot can correctly respond to the utterance.

Response obligation is basically the same concept as discourse obligation [55].
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However, response obligation includes the case of multi-party dialogue; discourse

obligation has only been discussed in the context of two-party dialogue. Further-

more, we take into consideration other input sounds, not just human speech. Fur-

thermore, Jahansson et al. [22] dealt with the same problem setting, i.e., estimating

response obligation in multi-party dialogue. They suggested a method to estimate

response obligation by using the state of play and players’ gazes while playing

cards. They used typical features of playing cards and their input sounds were

recorded by microphones in the users’ headsets; we do not use such information

because we want to build a robot that can talk with users in a real environment.

That is, we pursue a method that can be used in wider dialogue domains.

To estimate the response obligation, we mainly use acoustic and visual infor-

mation: an input sound classification result and a user’s whole body motion both

during and after the sound segment. The input sound classification result is useful

for distinguishing speech and non-speech sounds. The whole body motion enables

us to make use of differences in user behaviors when they speak to the robot and

those when they speak to other users.

The novelty of this study is two-fold. First, we address a more realistic problem

setting than those assumed in previous studies. The previous studies assume

that the input sounds are utterances only that are towards one of interlocutors,

while we deal with not only utterances but also noises. Therefore, our problem

setting is closer to actual interactions in public spaces. We demonstrate that

our model can determine whether the robot should respond to input sounds and

that it outperforms a conventional model based on a previous study [40]. Second,

we introduce new features that improve the estimation accuracy of the response

obligation in a more realistic situation. We investigate the performances of models

using various combinations of features and find that the new features are helpful

for estimating the response obligation.
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Figure 4.2: Overview of estimating response obligation.

4.2 Estimating Response Obligation

4.2.1 Overview of the Proposed Method

An overview of the method is shown in Figure 4.2. When a user asks a robot,

e.g., “Is that an apple?”, it detects an input sound segment and estimates the

response obligation to it, i.e., classifies the sound as ought-to-respond or ought-not-

to-respond. This is a binary classification task using various input features obtained

from acoustic and visual information during and after the segment. Although the

response obligation might be gradual in nature, we treat it as a binary notion. If it

is classified as ought-to-respond, the robot responds to the speaker. Otherwise, it

ignores the sound. We do not handle situations when several users simultaneously

talk to the robot because they do not occur frequently in current human-robot

interaction.

4.2.2 Features for Handling Various Sounds in Public Spaces

Two issues affect the response obligation estimate.

1. The robot has to classify whether the detected sound is a voice.

2. If the sound is a voice, it has to determine whether the addressee is the robot
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and whether the robot should respond to it.

The second issue is strongly related to a previous study on addressee identification

in multi-party dialogue [40], which deals with identifying which interlocutor is the

addressee for each utterance. The response obligation is easier to estimate in this

study than in the previous one because the robot only has to determine whether

the addressee is itself. On the other hand, our study does not assume that the

addressee of an utterance always exists; i.e., our study includes monologues as an

estimation target. In that sense, our study is more difficult than the previous one

because the robot needs to be able to determine when the utterance is a monologue.

To handle various sounds in public spaces, we use the following feature sets.

(a) User’s face direction during the sound segment,

(b) Prosodic information,

(c) Duration of the detected sound segment,

(d) Input sound classification result,

(e) User’s motion during the sound segment,

(f) User’s motion and face direction after the sound segment,

(g) Robot’s dialogue act type just before the sound segment.
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Feature sets (a) through (c) were used in the previous study on addressee

identification [40]. We use these feature sets for estimating response obligation.

In contrast, we do not use the other features used in the previous study [40]

because the following assumption was satisfied to use them: the system has already

recognized a speaker. For example, they used the ratio of the time that the speaker

keeps looking at the system to the utterance time as a feature for identifying the

addressee. We cannot use such features because we do not limit the detected

sounds to utterances. Thus, we only use the features that do not need to limit the

detected sounds to utterances.

Feature sets (d) through (g) are new ones for estimating the response obligation.

Section 4.3.3 and Table 4.1 describe these features. The next subsection explains

the concepts of this new information.

4.2.3 New Feature Groups Used in This Study

We use four new feature sets to estimate the response obligation.

(d) Input sound classification result

Our target sounds include non-speech sounds, such as surrounding noises and the

robot’s motor noise. Therefore, to estimate the response obligation, the robot

needs to determine whether a detected sound is a user utterance. To distinguish

speech and non-speech sounds, we used the results of a previous study on input

sound classification [34] into two classes of Gaussian Mixture Models. We use the

classification result and the relative likelihood as features.

(e) User’s motion during the sound segment

The user’s whole body motion during the sound segment enables us to capture

differences in user behaviors between when they speak to the robot and when they

speak to another user. For example, when speaking to the robot, a user tends to

stand still. In contrast, when speaking to other users, she tends to move her head

a little and slowly sways because she is relaxed. We thus use these tendencies as
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features.

(f) User’s motion and face direction after the sound segment

We use the user’s whole body motion after the sound segment to exploit typical

user behaviors in human-robot interaction. In general, when a user asks the robot a

question, a few second delay occurs before it responds to her. During this time, she

tends to stand still while facing it, because she expects the robot to respond. On

the other hand, when she speaks in monologue or talks to other users, she usually

sways slightly because she is relaxed. Turnhout et al. [56] analyzed dialogues

among two people and a system and empirically demonstrated that a longer silence

can be observed after system-directed utterances than after utterances directed to

the other user. Taking this tendency into account, the case will likely be ought-

to-respond if a user stops moving after her utterance, and ought-not-to-respond

otherwise.

(g) Robot’s dialogue act type just before the sound segment

When a robot greets cooperative users, it is typical for users to respond instantly.

On the other hand, when it asks a question, the users tend to insert interjectional

utterances or consult with each other. Thus, the dialogue act type of the robot’s

preceding utterance is expected to be useful for estimating the response obligation.

We do not use verbal information except the dialogue act type of the preceding

robot utterance. Katzenmaier et al. [24] identified the addressee in human-robot

dialogue by using automatic speech recognition and face tracking. Zuo et al. [64]

suggested a method to detect robot-directed utterances for understanding object

manipulation requests in a real environment. They used speech recognition and the

consistency of the dialogue situation to detect these utterances. We believe that it

is desirable to estimate the response obligation without using verbal information

such as speech recognition results. This is because that speech recognition results

vary from one domain to another, and avoiding speech recognition errors is difficult

for a robot, especially when it stands apart from users who are freely talking with
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each other, as shown in Figure 4.1. That is, even if it is useful in this study, it

might not always be useful in another domain. Instead, we use the dialogue act

types of the robot utterances.

4.2.4 Formulation

Response obligation is estimated for each input sound segment k, whose start

and end times are denoted as s(k) and e(k), respectively. The estimation can be

represented as y(k) = f(x(k)), where fe denotes the estimator and y(k) is a binary

value:

y(k) =

⎧
⎪⎨

⎪⎩

1 (ought-to-respond)

0 (ought-not-to-respond).

x(k) ≡ (x(k)
1 , ..., x(k)

N ) is an input feature vector having N dimensions. We calculated

feature sets (a), (b), (c), (d), and (e) from interval (s(k), e(k)), as listed in Table 4.1.

For (f), we obtained the feature set from interval (s(k), s(k)+α). Here, the constant

α denotes the duration in which to collect the user’s motion and face direction after

the sound segment. For (g), we used the dialogue act type of the robot utterance

starting just before s(k). We used Random Forests as the estimator fe because

it performed best among several methods, including logistic regression, support

vector machine, and decision tree, in our preliminary experiment. Moreover, we

believe that decision tree models are more effective than log-linear models because

our feature sets are strongly correlated. For example, when a user looks toward a

robot (user’s face direction), his voice power (prosodic information) is important

for estimating response obligation, and vice versa. That is, we chose Random

Forests, which are one of decision tree models and are considered combinations

of input features. We trained the estimator with the data described in the next

section.
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4.3 Experiments

4.3.1 Dialogue Corpus for Training and Test Data

We used the multi-party dialogue corpus collected in a Wizard-of-Oz manner [27]

as the training and test data. This corpus consists of 60 human-robot multi-

party interactions, where each of 30 trios (90 participants in total) engaged in

two interactions with a humanoid robot, Nao. In each interaction, up to three

participants played a quiz game with the robot, as shown in Figure 4.1. Each

interaction lasted about 25 minutes. The participants could enter or leave the

place at any time; there were times when one to three participants took part in

the game. The robot was controlled by a human operator in another room, who

judged whether it should respond to input sounds. Participants were instructed

that they should speak in Japanese or English, while it spoke in English.

We used the 12 sessions that had already been fully tagged from all the sessions

as the training and test data. The total duration of the 12 sessions was about 320

minutes. The 12 sessions of the dialogue corpus consist of three kinds of data (each

kind of data was saved in a file.):

1. Kinect data: Videos (color and depth) recorded by a Microsoft Kinect [37]

camera set behind the robot. We used Kinect for Windows v1.

2. Dialogue sound data: Sounds recorded as WAV format files by a microphone

set behind the robot.

3. Annotation data: Speakers, speech segments, addressees, gazes, participa-

tion statuses, dialogue act types, and transcriptions were manually annotated

with ELAN [59].

The dialogue act types of the annotation data were annotated with the 25 kinds

of dialogue act types proposed by Kennington et al. [27].
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Table 4.2: Data size and breakdown by target labels.

Sound segments Response obligation label Number of segments Total
Speech ought-to-respond 871 871

ought-not-to-respond 2,421
Non-speech ought-not-to-respond 714 3,135

4.3.2 Annotating Labels for Sound Segments

Table 4.2 is a breakdown by target label in our data. Sound segments consist of

speech and non-speech segments. We gave two labels, i.e., ought-to-respond and

ought-not-to-respond, to both segments. Speech segments were manually labeled,

from which various features were extracted. This corresponds to an ideal condi-

tion in which speech segments are successfully detected. We labeled the speech

segments with dialogue act type tags and addressee tags. Greeting, Answer, and

Time-Management are examples of dialogue act types. An addressee tag indicates

a person to whom a user or robot speaks. When the robot said “Hello” to user A,

this segment was labeled with Greeting as the dialogue act type and with “To A”

as the addressee.

We gave the ought-to-respond label to the speech segments to which the robot

actually responded. As mentioned before, the robot was controlled by an operator.

In other words, the robot’s responses to speech segments meant that the operator

judged the segment as ought-to-respond. Taking this point into account, we set

the ought-to-respond label based on the robot’s actual responses. The sound seg-

ments labeled with ought-to-respond did not include non-speech segments because

the robot should not respond to non-speech sounds such as surrounding noises.

Figure 4.3 illustrates a speech segment labeled ought-to-respond. We gave the

ought-to-respond label to a user utterance directed to the robot that the robot

replied to within ten seconds in which no other utterances of the same user were

directed to the robot. We treated the robot utterances as replies only when they

had a specific reply-related dialogue act type such as Answer to exclude vague

cases where it was hard to determine whether the robot actually responded or not.
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Figure 4.3: Example of annotation of speech segment of ought-to-respond.

We gave the ought-not-to-respond label to the following sound segments:

1. speech segments that should not be responded to by the robot, and

2. non-speech segments.

First, we gave ought-not-to-respond labels to user speech segments that do not

necessarily require the robot to make a response, such as Time-Management and

Monologue. Next, we gave ought-not-to-respond labels to non-speech segments cor-

responding to surrounding noises (footsteps, hand clapping, etc.) and the robot’s

motor noise. The non-speech sounds had not been annotated, and thus, we au-

tomatically extracted the segments where the energy was larger than a certain

threshold by using the Julius adintool software1.

Table 4.2 lists the data sizes of the labels. The number of speech segments for

ought-to-respond is 871, and the number of speech and non-speech segments for

ought-not-to-respond is 3,135.

4.3.3 Input Features for the Response Obligation Estima-

tion

This section explains the feature vector x(k). Note that section 4.2.3 describes the

concepts of the new features. We used 50 features grouped into seven sets, as

1http://julius.sourceforge.jp/juliusbook/en/adintool.html
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listed in Figure 4.1. Feature sets (a) through (c) were used in the previous study

on addressee identification [40]. Feature sets (d) through (g) are the new features.

(a) User’s face direction during the sound segment (nine features): This

feature set consists of the following features calculated per input sound segment:

the average of each face rotation Euler angle (yaw, pitch, roll) during the sound

segment, the average angular velocity of each face rotation angle, and the maxi-

mum angular velocity of each face rotation angle. This results in nine features.

We can obtain the face direction information of the user from the Kinect data

by using Kinect SDK every 30 msec (33.3 frames per second). The face direction

information for each frame can be obtained as Euler angle components (yaw, pitch,

roll). Each value of this feature set was calculated by using the face direction

information. The average of each face rotation Euler angle was calculated by

averaging out each face rotation Euler angle obtained in each frame during the

sound segment. Furthermore, we calculated the absolute difference in the angle

from the previous frame and used the average of the difference and the maximum

difference during the sound segment as features.

We can use Kinect SDK to capture direction information for up to two users’

faces (and skeleton information as well) in the order of their distance from the

Kinect. We determined the target user whose face and body are to be used as

features on the basis of the manual annotations of the speech segments, that is,

the speaker who talked. This corresponds to a situation where we can correctly

obtain the localization results of the sound segments. We did not use automatic

sound source localization methods. On the other hand, state-of-the-art sound

source localization technology can identify the speaker [1]. For the non-speech

segments, we used the face and body information of the user who was the closest

to Kinect.

(b) Prosodic information (ten features): We obtained three pieces of prosodic

information from the dialogue sound data for every 10-msec frame by using openSMILE[14]:

1. voice probability (the ratio of the harmonic components to the total power)
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2. F0

3. loudness

This feature set consists of the following features calculated per input sound

segment: the average of each piece of prosodic information over the sound segment,

the difference between the intrasegmental average, and the average for all sound

segments of the three pieces of information, the averages of inter-frame differences

for the three pieces, and the maximum inter-frame difference in only loudness,

resulting in ten features.

The three pieces of information were calculated for each sound segment (4,006

segments in total), as shown in Table 4.2, and averaged. The averages of the inter-

frame differences were gotten by calculating the absolute difference in each piece

of information from the previous frame. The maximum inter-frame difference in

loudness is the largest inter-frame difference in the sound segment.

(c) Duration of sound segment (one feature): This feature set represents

the duration of the sound segment. We used the speech intervals and non-speech

intervals extracted in Section 4.3.2 as speech segments and non-speech segments,

respectively.

(d) Input sound classification result (two features): This feature set con-

sists of results of input sound classifications using GMMs and their relative likeli-

hood. The Gaussian Mixture Model has been a major method for these verifica-

tion [34] because of its text-independency and powerful classification performance.

For the classifier, we built two GMM classes: speech and non-speech. As the

training data for GMMs, we used sound segments extracted from ten sessions.

The speech GMM was trained with the speech segments that were manually an-

notated in the ten sessions included in the dialogue corpus. The non-speech GMM

was trained with non-speech segments that were automatically extracted from the

sessions by using adintool, as mentioned before. We regarded the sound segments

detected outside the annotated speech segments as non-speech segments. The total
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durations of these training data for the “speech” and “non-speech” GMMs were

about 7,320 and 671 seconds, respectively.

We built GMMs using HTK [63]. We set the number of mixtures to 16 on

the basis of the results of a preliminary experiment. GMMs were trained with 26-

dimensional features, i.e., 12-dimensional Mel-Frequency Cepstrum Coefficients

(MFCC) vector, 12-dimensional ΔMFCC vector, power, and Δ power. We used

the foreground noise detection function of the Julius speech recognizer as an input

sound classifier.

(e) User’s motion during the sound segment (18 features): This feature

set consists of the following features calculated per input sound segment: the

average velocity of each coordinate value in 3D for four joints (the head, the spine,

the right elbow, and the left elbow), the average velocity of each coordinate value

of the whole upper body, and the maximum velocity of each coordinate value of

the head. This results in 18 features.

As well as face direction information, we obtained skeletal information of the

user from the Kinect data by using Kinect SDK every 30 msec as well as face

direction information. For each frame, 3D coordinate values of joints were obtained

via Kinect SDK. The origin of the coordinate system was the Kinect. These

features were calculated by using this skeletal information.

The average velocity of each coordinate value for four joints can be gotten by

calculating the velocity of each coordinate per frame and then taking the average in

the sound segment. The average velocity of the whole upper body was calculated

as follows. First, we calculated the velocities of each coordinate value for six joints

(the head, the spine, the center of the hips, the center of the shoulders, the right

shoulder, and the left shoulder) per frame. Second, we summed these velocities

per coordinate value. Finally, we took their average in the sound segment. The

maximum velocity of each coordinate value of the head is the largest velocity of

each coordinate value calculated per frame.
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(f) User’s motion and face direction after the sound segment (nine fea-

tures): This feature set consists of the average velocity of each coordinate value

for two joints (the head and the spine) and the average angular velocity of each

face rotation angle (yaw, pitch, roll), resulting in nine features.

We obtained the skeletal and face direction information during t seconds after

the sound segment and calculated these features. The calculation procedure is the

same as those during the sound segment. We set t to 2.0 because we found the

shortest speech interval between the end of a user utterance and the start of a

robot utterance was about two seconds.

(g) Robot’s dialogue act type just before the sound segment (one fea-

ture): This feature set consists of the robot’s dialogue act type just before the

sound segment only. One of 25 dialogue act types [27] was used as this feature for

the input sound segment.

4.3.4 Evaluation

We investigated the performance of our model in estimating the response obliga-

tion. In particular, we compared the results of three models:

1. Proposed model

This model was trained by using all feature sets listed in Table 4.1, i.e.,

feature sets (a) through (g).

2. Baseline model

This model was trained by using the previously used features, i.e., (a) through

(c), corresponding to the features used for the conventional addressee iden-

tification [40].

3. Only GMM model

This model was trained by using only feature set (d). This corresponds to

estimating the response obligation by classifying as speech or non-speech.
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We used Weka [18] ver. 3.7.5 machine-learning software to train and evaluate

the models. We chose Random Forests [7] as described in subsection 4.2.4. We set

the number of trees to 18 because it performed best with 18 trees in our preliminary

experiment.

The number of ought-to-respond segments was less than the sample number of

ought-not-to-respond ones, as shown in Table 4.2. Therefore, we gave the ratio of

the two labels (3.60) as a weight for the cases of ought-to-respond in the training

phase to take this deviation into account.

We evaluated the three models by 10-fold cross-validation. The performance

was measured in terms of precision, recall, F-measure, and the arithmetic mean

between the F-measures of ought-to-respond and ought-not-to-respond.

Table 4.3 compares the performances of the three models. The average F-

measures of the three models (proposed model, baseline model, and only GMM

model) were 0.823, 0.772, and 0.767, respectively. The average F-measure of the

only-GMM model was lowest of the three models because this model could not

distinguish between utterances toward other users and the robot. The average

F-measure of our model was the highest of the three models. This difference was

found to be statistically significant by z-test (p = .0017 < .01). Furthermore,

the F-measure of ought-not-to-respond of our model was also the highest of the

three models. We believe that the performance of ought-not-to-respond is more

important than that of ought-to-respond. For example, if the robot incorrectly

responds to surrounding noises and user’s monologues, it might confuse the users

and cause the subsequent interaction to fail. On the other hand, even if the robot

incorrectly does not respond to a user utterance to which it should respond, it can

go on talking as long as he/she repeats the utterance.
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Next, we investigated the results in more detail. In particular, we divided the

sound segments labeled ought-not-to-respond into four categories: robot-directed

utterances, user-directed utterances, monologues, and non-speech sounds. Sound

segments labeled ought-to-respond are all robot-directed utterances. We calculated

the accuracies, i.e., recall rates, of the estimation results for the five categories

(Table 4.4). The accuracies of each category correspond to those in Table 4.32.

We found that our model outperformed the baseline model in all categories.

The difference in the robot-directed utterances was the largest of all categories.

This is because the new feature sets were the most effective when estimating robot-

directed utterances. On the other hand, the performances of both models for non-

speech sounds were comparable. This result showed that non-speech sounds were

only estimated by the previously used features, i.e., duration of the sound segment

and prosodic information.

Moreover, we compared the accuracies of our model with those of the only

GMM model. Here, our model outperformed the only GMM model in the four

categories of ought-not-to-respond. Furthermore, in each category, we found that

while the performances of the only GMM model for robot-directed utterances of

ought-to-respond and non-speech sounds were relatively high, those for the oth-

ers were low. These results showed that the only GMM model could determine

whether the sound is speech only, and almost all speech sounds were thus classified

as ought-to-respond. We also found that the accuracy of our model for non-speech

sounds was 0.02 higher than that of the only GMM model.

4.3.5 Identifying Effective Features

We investigated how much the performance varied when one of the feature sets

was removed. If the performance deteriorates when we remove a feature set, the

feature set is effective for estimating the response obligation. In this analysis, we

changed only feature sets and evaluated with the same data and evaluation method

as in the previous section.

2Although the recall rates should agree, differences arise from the implementation of the
10-fold cross-validation in Weka.
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Table 4.5 shows the effect of removing each feature set. Removal of any fea-

ture set decreased the average F-measure compared with the performance of the

proposed model as shown in Table 4.3. Thus, all the feature sets were effective

for estimating the response obligation. Additionally, when we removed (d), the

performance showed the largest decline. We can easily guess that (d) is especially

useful for estimating the response obligation because the only GMM model could

even classify non-speech sounds as ought-not-to-respond. The second largest drop

in performance was when we removed (f); i.e., the average F-measure was 0.028

lower than that of the proposed method. The decline was worse than in the cases

of removing (a) and (e). We found that the user’s motion after the sound segment

was more effective than the user’s motion and face direction during the sound

segment.
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4.4 Summary of this Chapter

When a robot interacts with two or more users in public spaces, it needs to ap-

propriately estimate a response obligation, i.e., whether the robot should respond

to input sounds. This chapter presented a machine-learning based method to esti-

mate the response obligation for dialogue situational understanding. This method

focuses on the observation about users. We cast the problem as a binary classi-

fication task using features based on this observation. We used not only acoustic

information but also the users’ motions during sound segments and the results

of the input sound classification. We additionally used users’ motions and head

directions after sound segments.

The evaluation showed that our model can accurately determine whether the

robot should respond to input sounds. The arithmetic mean of the F-measures

for ought-to-respond and ought-not-to-respond was 0.823, which was 0.051 higher

than the baseline corresponding to Nakano et al. [40] with statistical significance.

We examined the accuracies of the estimations for the five categories of input

sounds and showed that the proposed model can more accurately estimate the

response obligation in user-directed utterances and monologues. Furthermore, we

investigated how much the performance varied when each of the seven feature sets

was removed. As a result, we found that the input sound classification result and

the users’ whole body motions were helpful for estimating the response obligation.
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Chapter 5

Conclusions

5.1 Summary

This dissertation presented a novel architecture of spoken dialogue systems for

humanoid robots in public spaces. Two new modules were introduced to the

conventional architecture of spoken dialogue systems: sound detection and turn-

taking decision. These modules contribute to resolving the following two issues

affecting humanoid robots in public spaces. First, a humanoid robot in a public

space needs to be able to talk with multiple users. The robot has to classify

utterances into two categories: utterances toward it and utterances toward other

users. Second, the robot needs to be able to deal with various sounds. It receives

not only utterances from its interlocutors but also surrounding noises and even

user monologues. The robot has to distinguish utterances toward it from other

input sounds.

This study focused on the implementation of the turn-taking decision module

using social norms. In particular, this dissertation presented two methods of situ-

ation understanding for the turn-taking decision module and installed them in a

humanoid robot, Nao. These methods enable the robot to estimate the current

dialogue situation and behave according to social norms.

Chapter 2 described a model utilizing a social norm wherein a human speaker

considers his interlocutor’s situation when he takes a turn. In particular, this
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Table 5.1: Summary of proposed methods and applicable conditions.
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chapter presented a method to predict when a user is likely to begin speaking to

a humanoid robot. The method is a machine-learning based method that uses the

robot’s behaviors, such as its posture, motion, and utterances, as input features.

Experimental results showed that this method can accurately predict when the

user is likely to begin speaking and that the features about the robot’s behaviors

are useful for the prediction.

Chapter 3 showed that the method described in Chapter 2 is useful in actual

human-robot dialogues. In Chapter 2, we collected data from three students in

my laboratory and used it as training data of the prediction model; as such, the

model might have been influenced by the specific participants. In this chapter, the

prediction model was rebuilt by using newly collected data from 25 participants.

Experimental results showed that the method described in Chapter 2 does not

depend on specific participants. Moreover, this chapter showed that individual

variations caused by the label annotation can be handled by adjusting the threshold

of the logistic regression. The threshold could be optimized by the correlation

between the number of frames annotated as positive (how many frames in which an

individual participant feels likely to speak) and his rating of the dialogue situation.

Finally, we introduced a spoken dialogue system for a humanoid robot in a public

space. We described an example that it is useful for ignoring unnecessary sounds.

Chapter 4 presented a method for deciding whether to respond in a multi-

party human-robot dialogue. This method is a machine-learning based one that
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estimates the response obligation. It uses not only acoustic information, but also

the users’ motions during sound segments and the results of the input sound clas-

sification. In addition, it uses the users’ motions and head directions after sound

segments. The experimental results showed that the proposed model can deter-

mine whether the robot should respond to input sounds more accurately than a

conventional method of addressee identification. The results also revealed that

two of these features, i.e., the sound classification results and users’ whole body

motions, were especially helpful for estimating the response obligation.

Table 5.1 summarizes the two proposed methods (predicting ease of speaking

and estimating response obligation) for situation understanding and applicable

conditions. Each method used information which obtained from robot’s states

and users’ states. The performance of predicting ease of speaking was about 75%

when applied to individuality, i.e., 25% of the predictions were incorrect. This is

because that the prediction model could not predict for timings depending on a

specific user. As described in Chapter 2, we eliminated parts peculiar to individu-

als the from collected data. To predict these timings appropriately, training data

should be made by the specific user’s annotation, but this is not a proper way

for humanoid robots in public spaces. Moreover, the performance of estimating

response obligation was about 82%. This estimator could not predict correctly

when a robot detected overlapped sound events, such as when a surrounding noise

overlapped with a user utterance. To solve this problem, we can separate over-

lapped sounds by sound source separation technology [41]. To utilize the proposed

methods in actual human-robot dialogue, all input features have to be obtained

appropriately. For example, if the robot fails to obtain users’ states because of an

overlap of users and too noisy environment, it cannot estimate response obligation.

That is, the experiments in this study were conducted under ideal environment,

i.e., the robot can obtain information appropriately.

We describe three technical contributions in this study to the development of

spoken dialogue systems for humanoid robots in public spaces as follows:

(1) New architecture of spoken dialogue systems for humanoid robots in public
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spaces was demonstrated. The two modules newly introduced in this study

are essential processes for humanoid robots in public spaces and can be

utilized for interpretation of input sounds.

(2) Social norms in human-human dialogue were applied to human-robot dia-

logue. Both presented methods in Chapter 2 and 4 were used social norms

for input features of machine-learning based models. It is essential for hu-

manoid robots in public spaces to select an appropriate action according to

social norms. The new findings and ideas in this study can contribute to

develop innovative methods for human-robot dialogue.

(3) The robot states were used for situation understanding in human-robot inter-

action. Chapter 2 confirmed that the robot states were useful for predicting

ease of speaking under the assumption that users act cooperatively in human-

robot dialogue. Using the robot states as well as users’ states enables the

robot to estimate a dialogue situation.

5.2 Future Direction

First of all, all the experiments in this dissertation were performed offline as de-

scribed in the previous section. Therefore, the following works should be conducted

preferentially.

1. Incorporating the estimator into the spoken dialogue system in Figure 3.7

2. Investigating how valid the proposed methods are for actual human-robot

dialogue in public spaces

Moreover, there are some directions in which to expand the study of my dis-

sertation.

The first direction is integration of the proposed methods. This dissertation

described the developments of two methods for situation understanding in human-

robot dialogue: one for predicting when a user is likely to begin speaking to a

robot from the observations about the robot (described in Chapter 2) and one
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for determining whether the robot should respond to input sounds from the ob-

servations about users (described in Chapter 4). Although these methods are not

integrated, they can be integrated to enable a more accurate estimation of whether

the robot should respond to input sounds because the two methods use different

observations (the observations about the robot vs. the observations about users).

Therefore, the method for integrating these methods should be investigated.

The second direction is to prove the generality of the proposed methods. In

Chapter 2 and 3, we used two robot’s behavior sequences when conducting data

collection to make training data. To show that the prediction model can be used

in variety of dialogue situations, how various behaviors are needed to include in

these sequences should be investigated. Moreover, we did not use a time sequence

model that can train context, such as hidden markov models and recurrent neural

network, because we used the common parts which participants gave same labels

only as training data, i.e., this is not time series data. In contrast, if we sufficiently

collected training data including various dialogue situations, we would have used all

parts which participants gave labels and trained the prediction model by the time

sequence model. Furthermore, this dissertation only showed their effectiveness in

experiments using Nao. To verify the generality of the methods, experiments with

other humanoid robots that have different body parts should be conducted. For

example, while Nao has human-shaped body parts, such as a head, legs, and arms,

Pepper [46] has wheels instead of human-shaped legs. Finally, experiments with

humanoid robots that have good communication abilities, such as quick reactions

and accurate detection of input sounds, should be conducted. In Chapter 4, we

used as input features user behaviors specific to when they are talking to the

humanoid robot used in the experiment; for example, a user stands still when he is

talking to the robot although he moves his head and slowly sways when he talks to

the other user. These user behaviors may depend on the robot’s communication

ability; if the robot can talk more smoothly, users may talk to it in the same

manner as they do to other users.

The third direction is to control dialogue situations by generating behaviors

according to social norms. This study used social norms for determining whether
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a robot should respond to input sound intervals. This is a passive aspect of utilizing

social norms. On the other hand, social norms can be actively used in dialogue

situations. For example, when it is very noisy in a dialogue, it is difficult for the

robot to recognize utterances accurately. In this situation, the robot could produce

situations in which a user is not likely to begin speaking, such as by putting its

finger on its lips and saying “wait a moment”, because the robot does not want

users to talk to it.
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